Sample records for gasification systems engineering

  1. Gasification system

    DOEpatents

    Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  2. Gasification system

    DOEpatents

    Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  3. Coal gasification systems engineering and analysis. Appendix F: Critical technology items/issues

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Critical technology items and issues are defined in which there is a need for developmental research in order to assure technical and economic success for the state of the art of coal gasification in the United States. Technology development needs for the main processing units and the supporting units are discussed. While development needs are shown for a large number of systems, the most critical areas are associated with the gasifier itself and those systems which either feed the gasifier or directly receive products form the gasifier.

  4. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  5. Integrated bioenergy conversion concepts for small scale gasification power systems

    NASA Astrophysics Data System (ADS)

    Aldas, Rizaldo Elauria

    Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36°C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5°C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the microorganisms used to deal with tars are selected and pre-conditioned to the tar environment. Overall, the results provided a basis for operational and design strategy for a combined gasification system but further study is recommended such as determination of the impacts in terms of emissions, power, efficiency and costs associated with the use of producer gas-enriched biogas taking advantage of hydrogen enrichment to reduce NOx and other pollutants in reciprocating engines and other energy conversion systems.

  6. Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation 

    E-print Network

    Maglinao, Amado Latayan

    2013-04-11

    ) gasification for electrical power generation was conducted in a fluidized bed gasifier and the feasibility of using a control system was evaluated to facilitate its management and operation. The performance of an engine using the gas produced was evaluated. A...

  7. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  8. Power Systems Development Facility Gasification Test Campaing TC14

    SciTech Connect

    Southern Company Services

    2004-02-28

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

  9. Power Systems Development Facility Gasification Test Campaign TC17

    SciTech Connect

    Southern Company Services

    2004-11-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

  10. Solar heated fluidized bed gasification system

    NASA Astrophysics Data System (ADS)

    Qader, S. A.

    1981-09-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  11. Combined coal gasifer and fuel cell system and method

    Microsoft Academic Search

    F. D. Gmeindl; R. A. Geisbrecht

    1990-01-01

    This patent describes a coal gasification and fuel cell system. It comprises: in combination coal gasification means for endothermically reacting coal or coal char in the presence of a catalyst, an external source of heat and steam for producing a stream of gaseous products containing carbon dioxide and hydrogen at a temperature in the range of about 1150° to 1050°

  12. Power Systems Development Facility Gasification Test Campaign TC21

    SciTech Connect

    Southern Company Services

    2007-01-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of gasification operation with lignite coal following the 2006 gasifier configuration modifications. This demonstration took place during test campaign TC21, occurring from November 7, 2006, through January 26, 2007. The test campaign began with low sodium lignite fuel, and after 304 hours of operation, the fuel was changed to high sodium lignite, for 34 additional hours of operation. Both fuels were from the North Dakota Freedom mine. Stable operation with low sodium lignite was maintained for extended periods, although operation with high sodium lignite was problematic due to agglomeration formation in the gasifier restricting solids circulation.

  13. Gasification of an Indonesian subbituminous coal in a pilot-scale coal gasification system

    Microsoft Academic Search

    Yongseung Yun; Seok Woo Chung

    2007-01-01

    Indonesian Roto Middle subbituminous coal was gasified in a pilot-scale dry-feeding gasification system and the produced syngas\\u000a was purified with hot gas filtering and by low temperature desulfurization to the quality that can be utilized as a feedstock\\u000a for chemical conversion. Roto middle coal produced syngas that has a typical composition of 36–38% CO, 14–16% H2, and 5–8% CO2. Particulates

  14. LOW- AND MEDIUM-BTU GASIFICATION SYSTEMS: TECHNOLOGY OVERVIEW

    EPA Science Inventory

    The report gives an overview of low- and medium-Btu gasification systems. It describes systems or combinations of processes which are likely to be used for production of low- and medium-Btu gas from coal. This involves making judgments as to types of coals that will be processed,...

  15. Damage monitoring of refractory wall in a generic entrained-bed slagging gasification system

    E-print Network

    Ray, Asok

    INTRODUCTION Modern day gasification plants offer a versatile and clean way to convert coal and other791 Damage monitoring of refractory wall in a generic entrained-bed slagging gasification system-bed slagging gasification systems is attributed to evolution of structural damage in the refractory walls

  16. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  17. Materials Challenges for Advanced Combustion and Gasification Fossil Energy Systems

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Rozzelle, P.; Morreale, B.; Alman, D.

    2011-04-01

    This special section of Metallurgical and Materials Transactions is devoted to materials challenges associated with coal based energy conversion systems. The purpose of this introductory article is to provide a brief outline to the challenges associated with advanced combustion and advanced gasification, which has the potential of providing clean, affordable electricity by improving process efficiency and implementing carbon capture and sequestration. Affordable materials that can meet the demanding performance requirements will be a key enabling technology for these systems.

  18. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K. [Tokyo Inst. of Tech., Yokohama (Japan). Dept. of Environmental Physics and Engineering; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R. [Nippon Furnace Kogyo, Yokohama (Japan); Ootsuka, T. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  19. Introduction Systems Engineering Fundamentals ENGINEERING

    E-print Network

    Rhoads, James

    Introduction Systems Engineering Fundamentals i SYSTEMS ENGINEERING FUNDAMENTALS January 2001;Systems Engineering Fundamentals Introduction ii #12;Introduction Systems Engineering Fundamentals iii ............................................................................................................................................. iv PART 1. INTRODUCTION Chapter 1. Introduction to Systems Engineering Management

  20. Exergoeconomic analysis of a hybrid system based on steam biomass gasification products for hydrogen production

    Microsoft Academic Search

    A. Abuadala; I. Dincer

    2011-01-01

    In this paper, a conceptual hybrid biomass gasification system is developed to produce hydrogen and is exergoeconomically analyzed. The system is based on steam biomass gasification with the lumped solid oxide fuel cell (SOFC) and solid oxide electrolyser cell (SOEC) subsystem as the core components. The gasifier gasifies sawdust in a steam medium and operates at a temperature range of

  1. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    PubMed

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. PMID:22093706

  2. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  3. Coal properties and system operating parameters for underground coal gasification

    SciTech Connect

    Yang, L. [China University of Mining & Technology, Xuzhou (China)

    2008-07-01

    Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

  4. Gasification of refuse derived fuel in the Battelle high throughput gasification system

    SciTech Connect

    Paisley, M.A.; Creamer, K.S.; Tweksbury, T.L.; Taylor, D.R. (Battelle Columbus Div., Washington, DC (USA))

    1989-07-01

    This report presents the results of an experimental program to demonstrate the suitability of the Battelle High Throughput Gasification Process to non-wood biomass fuels. An extensive data base on wood gasification was generated during a multi-year experimental program. This data base and subsequent design and economic analysis activities led to the discussion to study the gasification character of other fuels. The specific fuel studied was refuse derived fuel (RDF) which is a prepared municipal solid waste (MSW). The use of RDF, while providing a valuable fuel, can also provide a solution to MSW disposal problems. Gasification of MSW provides advantages over land fill or mass burn technology since a more usable form of energy, medium Btu gas, is produced. Land filling of wastes produces no usable products and mass burning while greatly reducing the volume of wastes for disposal can produce only steam. This steam must be used on site or very nearby this limiting the potential locations for mass burn facilities. Such a gas, if produced from currently available supplies of MSW, can contribute 2 quads to the US energy supply. 3 refs., 12 figs., 7 tabs.

  5. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    SciTech Connect

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

  6. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

  7. Energy production from biomass (part 3): gasification technologies

    Microsoft Academic Search

    Peter McKendry

    2002-01-01

    The conversion of biomass by gasification into a fuel suitable for use in a gas engine increases greatly the potential usefulness of biomass as a renewable resource. Gasification is a robust proven technology that can be operated either as a simple, low technology system based on a fixed-bed gasifier, or as a more sophisticated system using fluidized-bed technology. The properties

  8. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

    2003-02-01

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary into the second stage of the gasifier. A high-pressure feed pump and fuel dispersion nozzles were tested for their ability to cross the pressure boundary and adequately disperse the sludge into the second stage of the gasifier. These results suggest that it is technically feasible to get the sludge dispersed to an appropriate size into the second stage of the gasifier although the recycle syngas pressure needed to disperse the sludge would be higher than originally desired. A preliminary design was prepared for a sludge-receiving, storage, and high-pressure feeding system at the Wabash River Plant. The installed capital costs were estimated at approximately $9.7 million, within an accuracy of {+-}10%. An economic analysis using DOE's IGCC Model, Version 3 spreadsheet indicates that in order to justify the additional capital cost of the system, Global Energy would have to receive a tipping fee of $12.40 per wet ton of municipal sludge delivered. This is based on operation with petroleum coke as the primary fuel. Similarly, with coal as the primary fuel, a minimum tipping of $16.70 would be required. The availability of delivered sludge from Indianapolis, Indiana, in this tipping-fee range is unlikely; however, given the higher treatment costs associated with sludge treatment in Chicago, Illinois, delivery of sludge from Chicago, given adequate rail access, might be economically viable.

  9. Utilisation of Malaysian Coal: Merit Pila in the Gasification System

    NASA Astrophysics Data System (ADS)

    Othman, Nor Fadzilah; Bosrooh, Mohd Hariffin; Majid, Kamsani Abdul

    2011-06-01

    Gasification is the most efficient Clean Coal Technology. Gasification of Merit Pila coal had been studied in a laboratory-scale, atmospheric fluidized bed gasifier using air and air-steam as fluidizing agent. Merit Pila coal was chosen for the gasification study because of its high reactivity in nitrogen. Determination of the producer gas compositions were conducted using Gas Chromatography. Gasification experiments were conducted at bed temperature of 650-800 °C, different equivalence ratios, ER and different bed heights. Low heating value, LHVpg of the producer gas were in the range of 2.0-5.5 MJ/Nm3. Introduction of steam as the gasifying agents had shown significant increased of CO, CH4 and H2 contents in producer gas. LHV also increased about 35% with the presence of steam.

  10. Greenhouse Gas Emissions from Coal Gasification Power Generation Systems

    Microsoft Academic Search

    John A. Ruether; Massood Ramezan; Peter C. Balash

    2004-01-01

    Life cycle assessments (LCA) of coal gasification-based electricity generation technologies for emissions of greenhouse gases (GHG), principally CO2, are computed. Two approaches for computing LCAs are compared for construction and operation of integrated coal gasification combined cycle (IGCC) plants: a traditional process-based approach, and one based on economic input-output analysis named Economic Input-Output Life Cycle Assessment (EIO-LCA). It is shown

  11. Development of water slurry gasification systems for high-moisture biomass

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.

    1985-05-01

    The development of a new biomass gasification system by Pacific Northwest Laboratory is described. The system promises to allow the efficient thermochemical conversion of high-moisture biomass feedstocks. The reactor operates at 400 to 450/sup 0/C and 4000 to 5000 psig to allow the gasification of water-biomass slurries containing up to 95% moisture. Initial results of gasification studies are presented. Raw product gases containing up to 95% moisture. Initial results of gasification studies are presented. Raw product gases containing up to 40% methane have been obtained with carbon conversions in excess of 95%. Feedstocks being studied include aquatic plants, agricultural residues, food processing waste and effluent from an anaerobic methane digestor. 11 refs., 4 figs., 4 tabs.

  12. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

    2001-11-01

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

  13. Diffusion Coatings for Corrosion Resistant Components in Coal Gasification Systems

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve its resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we focused on getting a bench-scale test system to expose alloy coupons to simulated gasifier environment. The test facility was designed to allow about 20 specimen coupons to be exposed simultaneously for an extend period to a simulated coal gas stream at temperatures up to 1000 C. The simulated gas stream contained about 26%H{sub 2}, 39%CO, 17%CO{sub 2}, 1.4% H{sub 2}S and balance steam. We successfully ran a 100+h test with coated and uncoated stainless steel coupons. The tested alloys include SS304, SS316, SS405, SS409, SS410, and IN800. The main finding is that Ti/Ta coating provides excellent protection to SS405 under conditions where uncoated austenitic and ferritic stainless steel alloy coupons are badly corroded. Cr coatings also appear to afford some protection against corrosion.

  14. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  15. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. A review of the literature indicated that the Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. We selected diffusion coatings of Cr and Al, and surface coatings of Si and Ti for the preliminary testing. These coatings will be applied using the fluidized bed chemical vapor deposition technique developed at SRI which is rapid and relatively inexpensive. We have procured coupons of typical alloys used in a gasifier. These coupons will be coated with Cr, Al, Si, and Ti. The samples will be tested in a bench-scale reactor using simulated coal gas compositions. In addition, we will be sending coated samples for insertion in the gas stream of the coal gasifier.

  16. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we coated coupons of selected alloy steels with diffusion coatings of Cr and Al, as well as with titanium and tantalum nitrides. The coated samples were analyzed for their surface composition. In several instances, the samples were also cut to determine the depth profile of the coating. Several of the early runs did not yield uniform or deep enough coatings and hence a significant portion of the effort in this period was devoted fixing the problems with our fluidized bed reactor. Before the end of the quarter we had prepared a number of samples, many of them in duplicates, and sent one set to Wabash River Energy Laboratory for them to install in their gasifier. The gasifier was undergoing a scheduled maintenance and thus presented an opportunity to place some of our coupons in the stream of an operating gasifier. The samples submitted included coated and uncoated pairs of different alloys.

  17. Advanced hybrid gasification facility

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H. [CRS Sirrine, Inc., Greenville, SC (United States); Johnson, S.A. [PSI Technology Co., Andover, MA (United States); Dixit, V.B. [Riley Stoker Corp., Worcester, MA (United States). Riley Research Center

    1993-08-01

    The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

  18. Power Systems Development Facility Gasification Test Run TC08

    SciTech Connect

    Southern Company Services

    2002-06-30

    This report discusses Test Campaign TC08 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier in air- and oxygen-blown modes during TC08. Test Run TC08 was started on June 9, 2002 and completed on June 29. Both gasifier and PCD operations were stable during the test run with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen blown was smooth. The gasifier temperature was varied between 1,710 and 1,770 F at pressures from 125 to 240 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC08, 476 hours of solid circulation and 364 hours of coal feed were attained with 153 hours of pure oxygen feed. The gasifier and PCD operations were stable in both enriched air and 100 percent oxygen blown modes. The oxygen concentration was slowly increased during the first transition to full oxygen-blown operations. Subsequent transitions from air to oxygen blown could be completed in less than 15 minutes. Oxygen-blown operations produced the highest synthesis gas heating value to date, with a projected synthesis gas heating value averaging 175 Btu/scf. Carbon conversions averaged 93 percent, slightly lower than carbon conversions achieved during air-blown gasification.

  19. Fluidized bed gasification of agricultural residue

    E-print Network

    Groves, John David

    1979-01-01

    advances in gasification technology have occurred. Among these are the use of oxygen, operation at elevated pressures, operation in a molten suspension, and use of' fluid beds (Rase, 1977). Fixed Bed Gasifiers Fixed bed gasifiers are currently being... and Horsfield (1977). The fuel gas obtained from the producer was used to power a small internal combustion engine attached to a ten kilowatt generator. Fluidized Bed Gasifiers One of the first systems to use a fluidized bed unit for gasification...

  20. Advanced coal gasification system for electric power generation. Third quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    None

    1980-07-25

    The operation, maintenance and modifications to the Westinghouse gasification process development unit during the quarter are reviewed. The tests of the gasifier-agglomerator included direct coal feed as well as oxygen-blown gasification of a char or coal bed. Then the whole system was tested in single and double stage operation. Laboratory support involved fluidized bed test facilities at ambient temperature and at design temperature for devolatilization and gasification studies. Other laboratory systems were related to thermal analysis and pressurized high temperature studies of gasification and gas cleaning. (LTN)

  1. Biomass-gasification system for 5-hp irrigation pumps

    SciTech Connect

    Gaur, S.; Anuradha, N.; Rao, T.R.; Iyer, P.V.R.; Grover, P.D.

    1987-01-01

    The increasing per capita energy demands and limited stocks of fossil fuels necessitate the exploration of alternative energy resources to meet energy requirements. In India, which is predominantly an agricultural country, major attention should be paid to fulfilling the energy demands of farmers. India is concerned with both meeting the energy needs of farmers and conservation of traditional fuels (such as wood) and crop land. Biomass-gasification, a process which may satisfy both of India's needs is discussed.

  2. Evaluation of advanced coal gasification combined-cycle systems under uncertainty

    Microsoft Academic Search

    H. Christopher Frey; Edward S. Rubin

    1992-01-01

    Advanced integrated gasification combined cycle (IGCC) systems have not been commercially demonstrated, and uncertainties remain regarding their commercial-scale performance and cost. Therefore, a probabilistic evaluation method has been developed and applied to explicitly consider these uncertainties. The insights afforded by this method are illustrated for an IGCC design featuring a fixed-bed gasifier and a hot gas cleanup system. Detailed case

  3. Combustion engineering issues for solid fuel systems

    SciTech Connect

    Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2008-05-15

    The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

  4. Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1992-03-01

    On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

  5. ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

    SciTech Connect

    Joseph Rabovitser; Bruce Bryan

    2003-04-01

    The objective of this project is the development and commercial demonstration of an advanced biomass gasification-based power generation system at Boise Cascade Corporation's pulp and paper mill in DeRidder, Louisiana. The advanced power generation system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as the primary fuel resource. The novel system is based on three advanced technology components: GTI's RENUGAS{reg_sign} and 3-stage solid fuels combustion technologies coupled with one of the power generation approaches used in DOE's HIPPS program. Phase 1 of the project is a technical and economic evaluation of the system at the DeRidder site. A Continuation Application will be submitted at the conclusion of Phase 1 for authorization to proceed to testing and design in Phase 2. Phase 2 includes pilot-scale verification of selected system components and preparation of a detailed engineering design and cost estimate for retrofit of the advanced power system at the DeRidder mill. Phase 3 will complete procurement and construction of the system at the DeRidder site along with all required permitting activities. Phase 4 of the project will included plant commissioning, startup and demonstration operations. Design information for the Gasification Island was completed during the quarter. Two vendor quotations were received for the bark/hog fuel dryers. A final layout plan for the major equipment was developed and submitted to DeRidder for review and approval. The Institute of Paper Science and Technology (IPST) completed a subcontract for a laboratory study on VOC emissions from wood waste drying using bark from the DeRidder mill. Samples of DeRidder's lime mud and green liquor dregs were collected and analyzed in GTI's laboratory. It was determined that lime mud is far too fine to be utilized as inert bed material in the fluidized bed gasifier. Results for the green liquor dregs are currently being reviewed. Design analysis for the in-furnace HPHT Air Heater was completed and the external Syngas Cooler/Air Heater was begun. Materials were received for the air heater tube testing system to be installed in Boiler No. 2 at DeRidder. A refractory interference problem with the original testing system design was discovered and resolved. Analyses of the externally recuperated gas turbine cycles (air heater and booster combustor in parallel or series) were continued including the effects of steam cooling and inlet air humidification on power output and operating cost. Discussions were continued with turbine manufacturers regarding the technical, time and cost requirements for developing an externally recuperated turbine engine suitable for use in the project. A 5-month no-cost time extension was requested and received for the project to accommodate design and evaluation of externally recuperated gas turbines using HPHT air as the working fluid.

  6. MODELLING THE LOW-TAR BIG GASIFICATION CONCEPT Lars Andersen, Brian Elmegaard, Bjrn Qvale, Ulrik Henriksen

    E-print Network

    and gasification chamber are bubbling fluid beds, fluidised with steam. For moist fuels, the gasifier can be integrated with a steam drying process, where the produced steam is used in the pyrolysis plant systems: Gas engine, Simple cycle gas turbine, Recuperated gas turbine and Integrated Gasification

  7. Integration and testing of hot desulfurization and entrained flow gasification for power generation systems. [Zinc titanates

    SciTech Connect

    Leininger, T.F.; Robin, A.; Jung, D.Y.; Kassman, J.S.; Wolfenbarger, J.K.; Yang, P.P.

    1992-01-01

    To help achieve the goal of clean, low cost power generation from coal, Texaco submitted an unsolicited proposal in July 1986 to develop and demonstrate the integration of high temperature desulfurization with the Texaco Coal Gasification Process (TCGP). The main goals of the proposed program were: Develop and demonstrate in-situ desulfurization of synthesis gas in an entrained flow gasifier using both air and oxygen gasification. Develop and demonstrate a high efficiency integrated system on a process development unit (PDU) scale which would include coal preparation, gasification, sulfur removal, particle and trace element removal and a gas turbine. In addition, secondary goals were proposed which would help further major research in which DOE/METC was already involved. These were: Test advanced instruments developed by METC for coal conversion processes. Screen alternative high temperature sulfur removal sorbents that could be used external to the gasifier. Development of these sorbents would provide a backup to the in-situ desulfurization approach. Accomplishments to date are presented.

  8. Integration and testing of hot desulfurization and entrained flow gasification for power generation systems

    SciTech Connect

    Leininger, T.F.; Robin, A.; Jung, D.Y.; Kassman, J.S.; Wolfenbarger, J.K.; Yang, P.P.

    1992-11-01

    To help achieve the goal of clean, low cost power generation from coal, Texaco submitted an unsolicited proposal in July 1986 to develop and demonstrate the integration of high temperature desulfurization with the Texaco Coal Gasification Process (TCGP). The main goals of the proposed program were: Develop and demonstrate in-situ desulfurization of synthesis gas in an entrained flow gasifier using both air and oxygen gasification. Develop and demonstrate a high efficiency integrated system on a process development unit (PDU) scale which would include coal preparation, gasification, sulfur removal, particle and trace element removal and a gas turbine. In addition, secondary goals were proposed which would help further major research in which DOE/METC was already involved. These were: Test advanced instruments developed by METC for coal conversion processes. Screen alternative high temperature sulfur removal sorbents that could be used external to the gasifier. Development of these sorbents would provide a backup to the in-situ desulfurization approach. Accomplishments to date are presented.

  9. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system is designed to initiate control procedures which will minimize damage to the engine and vehicle or test stand in the event of an engine failure. This report describes the features and the implementation issues associated with rocket engine safety systems. Specific concerns of safety systems applied to a space-based engine and long duration space missions are discussed. Examples of safety system features and architectures are given from recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, a general design and implementation process for rocket engine safety systems is presented.

  10. Hydrogen-methane fuel control systems for turbojet engines

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. S.; Bennett, G. W.

    1973-01-01

    Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.

  11. Reuse in Systems Engineering

    E-print Network

    Wang, Gan

    Reuse in systems engineering is a frequent but poorly understood phenomenon. Nevertheless, it has a significant impact on system development and on estimating the appropriate amount of systems engineering effort with models ...

  12. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    SciTech Connect

    Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

  13. Reuse in Systems Engineering

    Microsoft Academic Search

    Gan Wang; Ricardo Valerdi; Jared Fortune

    2010-01-01

    Reuse in systems engineering is a frequent but poorly understood phenomenon. Nevertheless, it has a significant impact on system development and on estimating the appropriate amount of systems engineering effort with models like the Constructive Systems Engineering Cost Model (COSYSMO). Practical experience showed that the initial version of COSYSMO, based on a “build from the scratch” philosophy, needed to be

  14. Carbonate fuel cell system with thermally integrated gasification

    DOEpatents

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  15. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  16. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  17. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  18. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    PubMed

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery. PMID:24121545

  19. Power Systems Development Facility Gasification Test Run TC09

    SciTech Connect

    Southern Company Services

    2002-09-30

    This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

  20. ENVIRONMENTAL ASSESSMENT REPORT: LURGI COAL GASIFICATION SYSTEMS FOR SNG

    EPA Science Inventory

    The report is a compilation and analysis of data on the equipment and processes constituting the Lurgi Substitute Natural Gas (SNG) systems, the control/disposal alternatives for a media, the performance and cost of control alternatives, and present and proposed environmental req...

  1. Simulation of biomass and/or coal gasification systems integrated with fuel cells

    SciTech Connect

    Ersoz, A.; Ozdogan, S.; Caglayan, E.; Olgun, H. [TUBITAK Marmara Research Center, Kocaeli (Turkey). Institute of Energy

    2006-11-15

    This paper presents the results of a system simulation study. The HYSYS 3.1 - ASPEN code has been used for simulation. The system consists of a fixed bed gasifier followed by reforming and clean-up units. The produced hydrogen gas is fed to a PEM fuel cell. The gasified hydrocarbons are hazelnut shells, bark, rice straw, animal waste, and two lignites. Hydrocarbon properties, gasification, and reforming process parameters all affect the system efficiency. The effect of the moisture content and oxygen to carbon ratio of the hydrocarbon fees on the fuel processing and overall system efficiencies are presented. The overall efficiency of the system increases with increasing hydrocarbon fees oxygen to carbon ratio; this tendency is more evident at higher moisture levels.

  2. Advanced coal-gasification system for electric-power generation. First quarterly progress report, Fiscal Year 1981, October 1December 31, 1980

    Microsoft Academic Search

    M. J. Arthurs; E. J. Chelen; P. Cherish; G. B. Haldipur; D. L. Keairns; L. K. Rath

    1981-01-01

    The overall objective of the Westinghouse Coal Gasification Program is to demonstrate the viability of the Westinghouse pressurized fluidized bed gasification system for production of low- and intermediate-Btu fuel gas for electric power generation, syngas, feedstocks or industrial fuels and to obtain performance and scale-up data for the process and hardware.

  3. Energy production from biomass (Part 3): Gasification technologies.

    PubMed

    McKendry, Peter

    2002-05-01

    The conversion of biomass by gasification into a fuel suitable for use in a gas engine increases greatly the potential usefulness of biomass as a renewable resource. Gasification is a robust proven technology that can be operated either as a simple, low technology system based on a fixed-bed gasifier, or as a more sophisticated system using fluidized-bed technology. The properties of the biomass feedstock and its preparation are key design parameters when selecting the gasifier system. Electricity generation using a gas engine operating on gas produced by the gasification of biomass is applicable equally to both the developed world (as a means of reducing greenhouse gas emissions by replacing fossil fuel) and to the developing world (by providing electricity in rural areas derived from traditional biomass). PMID:12058831

  4. Power Systems Development Facility Gasification Test Run TC07

    SciTech Connect

    Southern Company Services

    2002-04-05

    This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

  5. Power Systems Development Facility Gasification Test Run TC10

    SciTech Connect

    Southern Company Services

    2002-12-30

    This report discusses Test Campaign TC10 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC10 in air- (mainly for transitions and problematic operations) and oxygen-blown mode. Test Run TC10 was started on November 16, 2002, and completed on December 18, 2002. During oxygen-blown operations, gasifier temperatures varied between 1,675 and 1,825 F at pressures from 150 to 180 psig. After initial adjustments were made to reduce the feed rate, operations with the new fluidized coal feeder were stable with about half of the total coalfeed rate through the new feeder. However, the new fluidized-bed coal feeder proved to be difficult to control at low feed rates. Later the coal mills and original coal feeder experienced difficulties due to a high moisture content in the coal from heavy rains. Additional operational difficulties were experienced when several of the pressure sensing taps in the gasifier plugged. As the run progressed, modifications to the mills (to address processing the wet coal) resulted in a much larger feed size. This eventually resulted in the accumulation of large particles in the circulating solids causing operational instabilities in the standpipe and loop seal. Despite problems with the coal mills, coal feeder, pressure tap nozzles and the standpipe, the gasifier did experience short periods of stability during oxygenblown operations. During these periods, the syngas quality was high. During TC10, the gasifier gasified over 609 tons of Powder River Basin subbituminous coal and accumulated a total of 416 hours of coal feed, over 293 hours of which were in oxygen-blown operation. No sorbent was used during the run.

  6. Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

    1992-11-01

    The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas{trademark}, necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II & III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

  7. Unconfined flow as a mechanism of water influx to a UCG (underground coal gasification) system

    SciTech Connect

    Thorsness, C.B.; Grens, E.A. II

    1987-08-06

    Water influx to an operating underground coal gasification (UCG) cavity plays a major role in determining the success of the process. Often coal seams are aquifers, and as a result water influx estimates for a UCG cavity need to consider the flow of water from the coal to the cavity. Since the gasification cavity is gas filled, the flow takes place in the presence of a developing phreatic (free surface) separating the water saturated portion of the seam from the expanding unsaturated region. In this paper results are presented for water influx calculations for several geometries with phreatic surfaces related to UCG systems. Numerical solutions of the defining equations are compared to solutions obtained for simplified equation sets resulting from the application of the Dupuit approximation. Such approximate solutions appear to be adequate during initial transients and are more amenable to incorporation in global UCG models. Consideration is given to the influence of geometry, permeability, porosity, formation compressibility and the motion of cavity walls. In addition to general results, specific estimates of water influx for the upcoming Rocky Moutain I test are reported. 5 refs., 16 figs., 1 tab.

  8. Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems

    SciTech Connect

    Dean, J.; Braun, R.; Penev, M.; Kinchin, C.; Munoz, D.

    2010-01-01

    The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO{sub 2} equivalent (CO{sub 2}e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen can be produced for $0.27 premium per kilogram. Additionally, if a non-renewable, grid-mix electricity is used, the hybrid system is found to be a net CO{sub 2}e emitter.

  9. Biodiesel and electrical power production through vegetable oil extraction and byproducts gasification: modeling of the system.

    PubMed

    Allesina, Giulio; Pedrazzi, Simone; Tebianian, Sina; Tartarini, Paolo

    2014-10-01

    Aim of this work is to introduce an alternative to the standard biodiesel production chain, presenting an innovative in situ system. It is based on the chemical conversion of vegetable oil from oleaginous crops in synergy with the gasification of the protein cake disposed by the seed press. The syngas from the gasifier is here used to produce electrical power while part of it is converted into methanol. The methanol is finally used to transform the vegetable oil into biodiesel. Through a coupled use of ASPEN PLUS(TM) and MATLAB(TM) codes, a rapeseed, soy and sunflower rotation, with a duration of three year, was simulated considering 15ha of soil. This surface resulted sufficient to feed a 7kWel power plant. Simulation outputs proven the system to be self-sustainable. In addition, economical NPV of the investment is presented. Finally the environmental, economical and social advantages related to this approach are discussed. PMID:25151071

  10. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  11. Combustion Engineering two-stage, atmospheric-pressure, entrained-flow coal-gasification-process development-unit program. Final report

    Microsoft Academic Search

    S. L. Darling; R. W. Koucky; M. C. Tanca

    1983-01-01

    A program was conducted to design, construct and operate a two-stage, atmospheric-pressure, entrained-flow, low-Btu coal-gasification-process development unit (PDU) having a capacity of 5 tons\\/h of coal. The program was jointly sponsored by the US Department of Energy, the Electric Power Research Institute, and Combustion Engineering, Inc. The objectives of the program were: (1) to demonstrate the capability and suitability of

  12. Rotary engine cooling system

    Microsoft Academic Search

    Ch. Jones; E. J. Blum; R. M. Gigon

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions.

  13. Some studies on a solid state sulfur probe for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

  14. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez Mariano; Angel Sanjurjo

    2006-09-30

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The primary activity this period was preparation and presentation of the findings on this project at the Twenty-Third annual Pittsburgh Coal Conference. Dr. Malhotra attended this conference and presented a paper. A copy of his presentation constitutes this quarterly report.

  15. NASA systems engineering handbook

    Microsoft Academic Search

    Robert Shishko; Robert Aster; Robert G. Chamberlain; Patrick McDuffee; Les Pieniazek; Tom Rowell; Beth Bain; Renee I. Cox; Harold Mooz; Lou Polaski

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks,

  16. Unified Engineering Software System

    NASA Technical Reports Server (NTRS)

    Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.

    1989-01-01

    Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.

  17. The Caterpillar Coal Gasification Facility 

    E-print Network

    Welsh, J.; Coffeen, W. G., III

    1983-01-01

    INTO THE STEAM DRUM WHICH IS FITTED WITH WATER LEVEL AND STEAM PRESSURE CONTROLS. THE STEAM LEAVING THE TOP OF THE STEAM DRUM IS UTILIZED IN SATURATING THE AIR USED FOR GASIFICATION. THE WATER JACKET (ANNULAR BOILER) IS PROVIDED WITH A MANHOLE AND BLOWPOWN... EXPENSIVE AND A MORE RELIABLE SUPPLY. ALTHOUGH COAL GASIFICATION IS ONLY NOW BEING REDISCOVERD IN THE UNITED STATES, THE TECHNOLOGY HAS REMAINED RELA TIVELY COMMON IN OTHER PARTS OF THE WORLD, NOTABLY SOUTH AFRICA. A CATERPILLAR ENGINEERING TEAM VISITED...

  18. Engine intake system

    SciTech Connect

    Kanesaka, H.

    1989-02-07

    An intake system is described for an internal combustion engine, the system comprising: an intake passage having an intake port and an inertial supercharging intake pipe leading to the intake port; an intake valve mounted in the intake port and operatively connected to the engine for alternately opening and closing the intake port; a rotary valve operatively connected to the engine and disposed in the intake passage intermediate the inertial supercharging intake pipe and the intake port. The rotary valve is rotatable for opening and closing the intake passage, and timing adjusting means operatively connected to the engine and to the rotary valve for retarding the opening of the rotary valve relative to the opening of the intake valve at low engine speeds, and for advancing the opening of the rotary valve at high engine speeds, whereby the retarding and advancing of the opening of the rotary valve enables inertial supercharging in the intake pipe at both low and high engine speeds.

  19. Nuclear propulsion systems engineering

    NASA Astrophysics Data System (ADS)

    Madsen, W. W.; Neuman, J. E.; Vanhaften, D. H.

    1992-10-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of the entire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort and consider the implications for current nuclear propulsion efforts.

  20. Systems engineering management plans.

    SciTech Connect

    Rodriguez, Tamara S.

    2009-10-01

    The Systems Engineering Management Plan (SEMP) is a comprehensive and effective tool used to assist in the management of systems engineering efforts. It is intended to guide the work of all those involved in the project. The SEMP is comprised of three main sections: technical project planning and control, systems engineering process, and engineering specialty integration. The contents of each section must be tailored to the specific effort. A model outline and example SEMP are provided. The target audience is those who are familiar with the systems engineering approach and who have an interest in employing the SEMP as a tool for systems management. The goal of this document is to provide the reader with an appreciation for the use and importance of the SEMP, as well as provide a framework that can be used to create the management plan.

  1. Instrumentation and Evaluation of a Pilot Scale Fluidized Bed Biomass Gasification System 

    E-print Network

    Maglinao, Amado L

    2009-12-04

    A pilot scale fluidized bed biomass gasifier developed at Texas A&M University in College Station, Texas was instrumented with thermocouples, pressure transducers and motor controllers for monitoring gasification temperature and pressure, air flow...

  2. What is systems engineering?

    SciTech Connect

    Bahill, A.T. [comp.] [Arizona Univ. (United States). Systems and Industrial Engineering

    1995-08-01

    Systems Engineering is an interdisciplinary process that ensures that the customers` needs are satisfied throughout a system`s entire life cycle. This process includes: understanding customer needs; stating the problem; specifying requirements; defining performance and cost measures, prescribing tests, validating requirements, conducting design reviews, exploring alternative concepts, sensitivity analyses, functional decomposition, system design, designing and managing interfaces, system integration, total system test, configuration management, risk management, reliability analysis; total quality management; project management; and documentation. Material for this paper was gathered from senior Systems Engineers at Sandia National Laboratories.

  3. Investigation of plasma-aided bituminous coal gasification

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (United States)

    2009-04-15

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  4. Automotive Stirling Engine systems development

    Microsoft Academic Search

    Richey

    1984-01-01

    The objective of the Automotive Stirling Engine (ASE) program is to develop a Stirling engine for automotive use that provides a 30% improvement in fuel economy relative to a comparable internal-combustion engine while meeting emissions goals. This paper traces the engine systems' development efforts focusing on: 1) a summary of engine system performance for all Mod I engines; 2) the

  5. Clean coal technology—Study on the pilot project experiment of underground coal gasification

    Microsoft Academic Search

    Lanhe Yang; Jie Liang; Li Yu

    2003-01-01

    In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon

  6. Rotary engine cooling system

    NASA Technical Reports Server (NTRS)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  7. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

  8. Coal Gasification for Power Generation, 3. edition

    SciTech Connect

    NONE

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  9. SPACE SYSTEMS ENGINEERING

    E-print Network

    Yang, Eui-Hyeok

    , the leading educational institute for technical mission analysis and design, and the International Space to design cutting edge space missions, systems and associated products, as well as the systems knowledge0213 SPACE SYSTEMS ENGINEERING In today's space community, change is the only constant. From market

  10. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2005-03-15

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we conducted two 300-hour tests. In the first test, we exposed samples at 900 C under conditions simulating the high-temperature heat recovery unit (HTHRU). The second test was at 370 C, corresponding to the filter units following the HTHRU. The tests were showed the resilience of silicon nitride as a coating component, and the new coating procedures better penetrated the pores in sintered metal filter samples. Finally, we also received samples that were exposed in the Wabash River plant. Unfortunately, all these samples, that were prepared last year, were severely eroded and/or corroded.

  11. Plasma gasification of organic containing substances as a promising way of development of alternative renewable power engineering

    NASA Astrophysics Data System (ADS)

    Rutberg, Ph G.; Bratsev, A. N.; Kuznetsov, V. A.; Kumkova, I. I.; Popov, V. E.; Surov, A. V.

    2012-12-01

    The paper deals with perspectives of large-scale implementation of the plasma gasification process of solid organic-containing substances as a source of renewable energy. First of all, such substances as wood waste, agriculture waste, solid household waste are considered. Thanks to the process of the plasma high-temperature gasification the energy of their combustion can be completely converted into the energy of the synthesis gas combustion, which use as a fuel for the combined cycle allows electricity generation with efficiency of ~60 %. Thus, if the psychogenesis production wastes are considered, this technology enables avoiding additional emission of carbon dioxide into biosphere as for production of biomass from biosphere it is extracted the same amount of carbon dioxide as is emitted at its combustion. The report represents the realized and developing designs of plasma gasification, their advantages and deficiencies.

  12. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  13. System identification of jet engines

    Microsoft Academic Search

    N. Sugiyama

    2000-01-01

    System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can

  14. CHEMFLUB: a computer code model for fluidized bed coal gasification reactors. Volume III. Systems manual

    Microsoft Academic Search

    1984-01-01

    The purpose of this Systems Manual is to provide detailed material and descriptions relating to the structure and operation of the CHEMFLUB computer code. It is prepared for computer scientists, systems level analysts, and programmers whose responsibilities include modifications to the computer code, solution of program\\/system problems, etc. This volume is not being written for the physcists or engineers who

  15. Readings in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (editor); Lawbaugh, William M. (editor)

    1993-01-01

    This present collection was inspired by seven papers prepared by the NASA Alumni League, illustrating the members' systems engineering experience. These papers make up the heart of this collection. We have supplemented them with papers describing industry processes and other governmental practices to illustrate the diversity of systems engineering as it is formulated and practiced. This is one discipline that clearly benefits from cross-fertilization and infusion of new ideas. There is also a wide variety of tools and techniques described herein, some standard and some unique.

  16. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations

    E-print Network

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01

    The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

  17. Dry coal feeder development program at Ingersoll-Rand Research, Incorporated. [for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Mistry, D. K.; Chen, T. N.

    1977-01-01

    A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.

  18. Integration and testing of hot desulfurization and entrained flow gasification for power generation systems

    Microsoft Academic Search

    T. F. Leininger; A. Robin; D. Y. Jung; J. S. Kassman; J. K. Wolfenbarger; P. P. Yang

    1992-01-01

    To help achieve the goal of clean, low cost power generation from coal, Texaco submitted an unsolicited proposal in July 1986 to develop and demonstrate the integration of high temperature desulfurization with the Texaco Coal Gasification Process (TCGP). The main goals of the proposed program were: Develop and demonstrate in-situ desulfurization of synthesis gas in an entrained flow gasifier using

  19. Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine

    NASA Astrophysics Data System (ADS)

    Talebi Anaraki, Saber

    The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

  20. Rotary engine cooling system

    SciTech Connect

    Jones, C.

    1988-07-26

    A rotary internal combustion engine is described comprising: a rotor housing forming a trochoidal cavity therein; an insert of refractory material received in the recess, an element of a fuel injection and ignition system extending through the housing and insert bores, and the housing having cooling passages extending therethrough. The cooling passages are comprised of drilled holes.

  1. Developing systems engineers

    Microsoft Academic Search

    Duarte Gonçalves

    2008-01-01

    Systems engineering is a critical capability for our organisation's business following good growth in business but also because of risks in certain areas. Indeed, SE is of national importance if we are to sustain growth in the face of complex technologies. Ironically, there is a global shortage of these skills. This paper briefly reviews why it is difficult to develop

  2. Plasma Treatments and Biomass Gasification

    Microsoft Academic Search

    J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J Lédé

    2012-01-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to

  3. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This handbook is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the handbook is to increase awareness and consistency across the Agency and advance the practice of SE. This handbook provides perspectives relevant to NASA and data particular to NASA. The coverage in this handbook is limited to general concepts and generic descriptions of processes, tools, and techniques. It provides information on systems engineering best practices and pitfalls to avoid. There are many Center-specific handbooks and directives as well as textbooks that can be consulted for in-depth tutorials. This handbook describes systems engineering as it should be applied to the development and implementation of large and small NASA programs and projects. NASA has defined different life cycles that specifically address the major project categories, or product lines, which are: Flight Systems and Ground Support (FS&GS), Research and Technology (R&T), Construction of Facilities (CoF), and Environmental Compliance and Restoration (ECR). The technical content of the handbook provides systems engineering best practices that should be incorporated into all NASA product lines. (Check the NASA On-Line Directives Information System (NODIS) electronic document library for applicable NASA directives on topics such as product lines.) For simplicity this handbook uses the FS&GS product line as an example. The specifics of FS&GS can be seen in the description of the life cycle and the details of the milestone reviews. Each product line will vary in these two areas; therefore, the reader should refer to the applicable NASA procedural requirements for the specific requirements for their life cycle and reviews. The engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and iteratively for the design, development, operation, maintenance, and closeout of systems throughout the life cycle of the programs and projects.

  4. Solid fuel gasification in the global energy sector (a review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2015-07-01

    In the review of the Conference on Gasification of Solid Fuels, which was held on October 2013 by the United States, the commercial use of the most advanced coal gasification systems in the chemical and power industry is considered. Data on the projects of integrated solid fuel gasification combined-cycle plants, either being developed or exploited in the United States, as well as the nature and results performed in specialized organizations to improve the existing gasification equipment and systems, are presented.

  5. Converting biomass to electricity on a farm-sized scale using downdraft gasification and a spark-ignition engine

    Microsoft Academic Search

    T. J. B. Warren; R. Poulter; R. I. Parfitt

    1995-01-01

    The search for renewable, CO2-neutral sources of electricity has prompted a surge of interest in ways of converting coppice willow and poplar into electricity. The fall in farm revenues and the rising cost of excess food production make generation of electricity from biomass on a farm-scale attractive. Work has been undertaken to demonstrate that gasification of coppice-grown comminuted wood and

  6. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system.

    PubMed

    Wang, Zixing; Xu, Xiaochen; Gong, Zheng; Yang, Fenglin

    2012-10-15

    As a typical industrial wastewater, coal gasification wastewater has poor biodegradability and high toxicity. In this paper, a laboratory-scale anaerobic-anoxic-oxic membrane reactor (A(2)O-MBR) system was developed to investigate the treatment ability of coal gasification wastewater. The removal capacity of each pollutants used in this system were determined at different hydraulic residence times (HRT) and mixed liquor recycle ratios (R). The experimental results showed that this system could effectively deal with COD and phenol removal and remain in a stable level when the operational parameters altered, while the nitrification was sensitive to operational conditions. The best performance was obtained at HRT of 48 h and R of 3. The maximum removal efficiencies of COD, NH(4)(+)-N and phenols were 97.4%, 92.8% and 99.7%, with final concentrations in the effluent of 71 mg/L, 9.6 mg/L and 3 mg/L, respectively. Organics degradation and transformation were analyzed by GC/MS and it was found that anaerobic process played an important role in degradation of refractory compounds. PMID:22902132

  7. Computer System Engineering

    NSDL National Science Digital Library

    This course, presented by MIT, covers topics on the engineering of computer software and hardware systems. This include: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. The course also looks at case studies of working systems and readings from the current literature provide comparisons and contrasts, and do two design projects. The page also contains lectures notes, additional readings and a projects sections.

  8. Enhanced coal gasification heated by unmixed combustion integrated with an hybrid system of SOFC\\/GT

    Microsoft Academic Search

    Pilar Lisbona; Luis M. Romeo

    2008-01-01

    For clean utilization of coal, enhanced gasification by in situ CO2 capture has the advantage that hydrogen production efficiency is increased while no energy is required for CO2 separation. The unmixed fuel process uses a sorbent material as CO2 carrier and consists of three coupled reactors: a coal gasifier where CO2 is captured generating a H2-rich gas that can be

  9. Engine system for ships

    SciTech Connect

    Nam, C.W.

    1987-02-24

    This patent describes an engine system for ships, comprising: an engine body including a main combustion engine for transmitting the power generated by explosion pressure to a pumping piston and a power transmission apparatus for transmitting to a power crank shaft the power that is increased by the ratio of the cross-sectional areas of a combustion chamber piston to a power piston, wherein the stroke distance of the combustion chamber piston is equal to that of the power piston; one or more swash plate-type stirling engines coupled to the exhaust gas outlet of the main combustion engine to be driven by the exhaust gas heat; a single-stage screw-type compressor coupled by the drive shaft to the swash plate-type stirling engine; thereby generating a great amount of compressed air; a compressed air source connected to the compressor for storing a great amount of compressed air from the compressor; a booster connected between the compressed air source and the power transmission apparatus to amplify the air pressure derived from the compressed air source and then to provide the amplified air pressure to the power transmission apparatus by operation of the cam in accordance with the rotation of a crank shaft; an accumulator in communication with the power transmission apparatus through a fluid oil pipe, thereby maintaining constant control of the oil pressure in the power transmission apparatus; and a compressed air control device for intake and exhaust of compressed air which is added and released to/from the pumping piston of the power transmission apparatus.

  10. Systems Engineering Integrating Project Management, Science, Engineering, and

    E-print Network

    Mojzsis, Stephen J.

    Systems Engineering Integrating Project Management, Science, Engineering, and Mission Operations Systems Engineering Experience LASP is a full-cycle space institute, combining all aspects of space exploration through our expertise in science, engineering, mission operations, data analysis, and education

  11. Systems Engineering Integrating Project Management, Science, Engineering, and

    E-print Network

    Mojzsis, Stephen J.

    Systems Engineering Integrating Project Management, Science, Engineering, and Mission Operations mechanisms and control systems, detector developments, sun sensors, and magnetometers are a few examples paths for all system elements (hardware, software, facilities, personnel, and data). Systems engineers

  12. Engineering the ULTra System

    NSDL National Science Digital Library

    Lowson, Martin.

    2002-01-01

    The Advanced Transport Group at the University of Bristol, upon considering current traffic congestion problems in England and throughout the world, attempted to "identify the ideal system for future urban transport." The group's work has led to the development of the Urban Light Transport (ULTra) System. This paper, published in September 2002, describes the engineering challenges and accomplishments of the endeavor. Thus far, a test track has been constructed, and an initial vehicle design was successfully demonstrated. The ULTra home page provides much more information, documents, and videos.

  13. From coal to biomass gasification: Comparison of thermodynamic efficiency

    Microsoft Academic Search

    Mark J. Prins; Krzysztof J. Ptasinski; Frans J. J. G. Janssen

    2007-01-01

    The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O\\/C

  14. Intelligent systems engineering methodology

    NASA Technical Reports Server (NTRS)

    Fouse, Scott

    1990-01-01

    An added challenge for the designers of large scale systems such as Space Station Freedom is the appropriate incorporation of intelligent system technology (artificial intelligence, expert systems, knowledge-based systems, etc.) into their requirements and design. This presentation will describe a view of systems engineering which successfully addresses several aspects of this complex problem: design of large scale systems, design with requirements that are so complex they only completely unfold during the development of a baseline system and even then continue to evolve throughout the system's life cycle, design that involves the incorporation of new technologies, and design and development that takes place with many players in a distributed manner yet can be easily integrated to meet a single view of the requirements. The first generation of this methodology was developed and evolved jointly by ISX and the Lockheed Aeronautical Systems Company over the past five years on the Defense Advanced Research Projects Agency/Air Force Pilot's Associate Program, one of the largest, most complex, and most successful intelligent systems constructed to date. As the methodology has evolved it has also been applied successfully to a number of other projects. Some of the lessons learned from this experience may be applicable to Freedom.

  15. Trace element partitioning during coal gasification

    Microsoft Academic Search

    Joseph J. Helble; Wahab Mojtahedi; Jussi Lyyränen; Jorma Jokiniemi; Esko Kauppinen

    1996-01-01

    The fate of trace element pollutants in integrated gasification combined-cycle (IGCC) systems is closely tied to their volatilization in the gasifier and subsequent condensation or reaction with fine fly ash particles. The results of an experimental bench-scale programme to measure the partitioning of selected trace elements during atmospheric pressure entrained flow gasification of Illinois No. 6 bituminous coal are presented.

  16. Iron sulfide deposition during coal gasification

    Microsoft Academic Search

    D. Duane Brooker; Myongsook S. Oh

    1995-01-01

    Previous analysis of ash generated during coal gasification using a high calcium coal (SUFCo) suggested that iron sulfide was the dominant sulfide species in the system. During a recent analysis of ash material removed from a gasification pilot unit using Pittsburgh No. 8, a high iron coal, sub-?m to 5 ?m euhedral iron sulfide crystals were identified on the outer

  17. Control Systems Engineering Laboratory Daniel E. Rivera

    E-print Network

    Langerhans, Brian

    Control Systems Engineering Laboratory CSEL Daniel E. Rivera Control Systems Engineering Laboratory Behavioral Interventions 1 #12;Control Systems Engineering Laboratory CSEL Presentation Outline · What are adaptive behavioral interventions? · (Brief) overview of control systems engineering, · Analysis and design

  18. TWRS Systems Engineering Working Plan

    Microsoft Academic Search

    Eiholzer

    1994-01-01

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop

  19. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  20. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    NASA Technical Reports Server (NTRS)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  1. Gasification: redefining clean energy

    SciTech Connect

    NONE

    2008-05-15

    This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

  2. Development of water-slurry gasification systems for high-moisture biomass. [Spent grain, potato waste, kelp, water hyacinth, napier grass, sorghum

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.

    1985-01-01

    The development of a new biomass gasification system by Pacific Northwest Laboratory promises to allow the use of high-moisture biomass feedstocks. The reactor uses high pressure to allow the gasification of water-biomass slurries containing up to 95% moisture. Because the gasification takes place in an aqueous system, there is no need to dry or dewater the feedstocks prior to their use. Feedstocks under study include water hyacinths, kelp, napier grass, spent brewer's grain, and a waste stream obtained from the potato processing industry. Gasification products include hydrogen, CO/sub 2/ and methane. The effects of processing conditions including temperature, pressure, and catalyst are being studied in order to maximize both the rate of conversion and the yield of higher value products. The new reactor concept represents a significant opportunity for expanding the biomass resource base to include aquatic plants and other high-moisture feedstocks. Many of these feedstocks are uneconomical in conventional thermochemical and biological conversion schemes. By eliminating the need for energy intensive drying steps, the aqueous conversion route may also increase net energy yields from more conventional feedstocks. The work is being sponsored by the USDOE's Biomass Energy Technology Division, Thermochemical Conversion Program. 13 references, 4 figures, 4 tables.

  3. Potassium-catalyzed steam gasification of petroleum coke for H 2 production: Reactivity, selectivity and gas release

    Microsoft Academic Search

    Youqing Wu; Jianjian Wang; Shiyong Wu; Sheng Huang; Jinsheng Gao

    2011-01-01

    Potassium-catalyzed steam gasification of petroleum coke for H2 production was performed using a laboratory fixed-bed reaction system with an on-line quadruple mass spectrometer. The gasification reactivity, gasification selectivity and gas release for the catalytic gasification were investigated, compared with the non-catalytic gasification. The catalytic gasification could not only effectively promote these reactions (the water–carbon reaction, the water–gas shift reaction and

  4. Advanced gasification-based biomass power generation

    SciTech Connect

    Williams, R.H.; Larson, E.D. [Princeton Univ., NJ (United States)

    1993-12-31

    A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

  5. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  6. Advanced technology applications for second and third general coal gasification systems

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.

  7. Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines.

    PubMed

    Zhu, Yunhua; Frey, H Christopher

    2006-12-01

    Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. PMID:17195484

  8. Supercharging system for automotive engines

    SciTech Connect

    Yamada, T.; Yabuhara, H.; Takimoto, F.

    1988-03-15

    A supercharging system for an automotive engine is described comprising: a turbocharger driven by exhaust-gas of the engine; a supercharger; an intake passage connecting the turbocharger and the supercharger in series, for supplying air to the engine; driving means for driving the supercharger by the engine; clutch means provided in the driving means; a first bypass provided around the supercharger; a control valve provided in the first bypass; a second bypass provided around the turbine of the turbocharger; a waste gate valve provided in the second bypass; a first actuator for operating the control valve; a second actuator for operating the waste gate valve; first means for operating the second actuator to open the waste gate valve when supercharging pressure exceeds a predetermined value; an engine speed sensor for detecting speed of the engine; an engine load sensor for detecting load on the engine; and a control unit.

  9. NASA systems engineering handbook. Draft

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Chamberlain, Robert G.; Aster, Robert; Bilardo, Vincent; Forsberg, Kevin; Hammond, Walter E.; Mooz, Harold; Polaski, Lou; Wade, Ron; Cassingham, Randy (editor)

    1992-01-01

    This handbook is intended to provide information on systems engineering that will be useful to NASA system engineers, especially new ones. Its primary objective is to provide a generic description of systems engineering as it should be applied throughout NASA. Field Center Handbooks are encouraged to provide center-specific details of implementation. For NASA system engineers to choose to keep a copy of this handbook at their elbows, it must provide answers that cannot be easily found elsewhere. Consequently, it provides NASA-relevant perspectives and NASA-particular data. NASA management instructions (NMI's) are referenced when applicable. This handbook's secondary objective is to serve as a useful companion to all of the various courses in systems engineering that are being offered under NASA's auspices. The coverage of systems engineering is general to techniques, concepts, and generic descriptions of processes, tools, and techniques. It provides good systems engineering practices, and pitfalls to avoid. This handbook describes systems engineering as it should be applied to the development of major NASA product and producing systems.

  10. Systems engineering technology for networks

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The report summarizes research pursued within the Systems Engineering Design Laboratory at Virginia Polytechnic Institute and State University between May 16, 1993 and January 31, 1994. The project was proposed in cooperation with the Computational Science and Engineering Research Center at Howard University. Its purpose was to investigate emerging systems engineering tools and their applicability in analyzing the NASA Network Control Center (NCC) on the basis of metrics and measures.

  11. System identification of jet engines

    SciTech Connect

    Sugiyama, N.

    2000-01-01

    System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can recognize parameter change in engine components and estimate unmeasurable variables over whole flight conditions. These capabilities are useful for an advanced Full Authority Digital Electric Control (FADEC). Effects of measurement noise and bias, effects of operating point and unpredicted performance change are discussed. Some experimental results using the actual engine are shown to evaluate the effectiveness of CGEKF filter.

  12. Requirements engineering for systems of systems

    Microsoft Academic Search

    Grace A. Lewis; Edwin Morris; S. Simanta; D. B. Smith

    2009-01-01

    Traditional requirements engineering for single systems, while remaining a large challenge for engineers, has been extensively researched and many techniques have been proposed and used with varying degree of success. However, many modern systems of systems are being developed to support interaction across multiple controlling authorities and existing techniques are proving to be inadequate for meeting the challenges of requirements

  13. Automotive Stirling engine systems development

    NASA Technical Reports Server (NTRS)

    Richey, A. E.

    1984-01-01

    The objective of the Automotive Stirling Engine (ASE) program is to develop a Stirling engine for automotive use that provides a 30 percent improvement in fuel economy relative to a comparable internal-combustion engine while meeting emissions goals. This paper traces the engine systems' development efforts focusing on: (1) a summary of engine system performance for all Mod I engines; (2) the development, program conducted for the upgraded Mod I; and (3) vehicle systems work conducted to enhance vehicle fuel economy. Problems encountered during the upgraded Mod I test program are discussed. The importance of the EPA driving cycle cold-start penalty and the measures taken to minimize that penalty with the Mod II are also addressed.

  14. Engineering Reconfigurable Distributed Software Systems

    E-print Network

    Boyer, Edmond

    Engineering Reconfigurable Distributed Software Systems: Issues Arising for Pervasive Computing in general and in perva- sive systems in particular, by introducing a generic reconfiguration cycle environments. We, then, outline our approach towards uncontrolled reconfiguration targeting environments

  15. Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air\\/steam mixtures in a fluidized bed system

    Microsoft Academic Search

    Filomena Pinto; Carlos Franco; Rui Neto André; C. Tavares; M. Dias; I. Gulyurtlu; I. Cabrita

    2003-01-01

    The effect of temperature and of gasification medium was studied, using only air, only steam and mixtures of both as gasification medium, with the aim of optimising co-gasification of coal and wastes. The rise in gasification temperature promoted hydrocarbons further reactions, leading to a decrease in tars and hydrocarbons contents and an increase in H2 release. Increasing temperature, from 750

  16. Coal gasification system with a modulated on/off control system

    DOEpatents

    Fasching, George E. (Morgantown, WV)

    1984-01-01

    A modulated control system is provided for improving regulation of the bed level in a fixed-bed coal gasifier into which coal is fed from a rotary coal feeder. A nuclear bed level gauge using a cobalt source and an ion chamber detector is used to detect the coal bed level in the gasifier. The detector signal is compared to a bed level set point signal in a primary controller which operates in proportional/integral modes to produce an error signal. The error signal is modulated by the injection of a triangular wave signal of a frequency of about 0.0004 Hz and an amplitude of about 80% of the primary deadband. The modulated error signal is fed to a triple-deadband secondary controller which jogs the coal feeder speed up or down by on/off control of a feeder speed change driver such that the gasifier bed level is driven toward the set point while preventing excessive cycling (oscillation) common in on/off mode automatic controllers of this type. Regulation of the bed level is achieved without excessive feeder speed control jogging.

  17. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report

    SciTech Connect

    Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

    1982-09-01

    The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

  18. Systems engineering for very large systems

    NASA Technical Reports Server (NTRS)

    Lewkowicz, Paul E.

    1993-01-01

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  19. Some studies on a solid-state sulfur probe for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1978-01-01

    As a part of a program for the development of a sulfur probe for monitoring the sulfur potential in coal gasification reactors, an investigation was conducted regarding the efficiency of the solid electrolyte cell Ar+H2+H2S/CaS+CaF2+(Pt)//CaF2//Pt)+CaF2+CaS/H2S+H2+Ar. A demonstration is provided of the theory, design, and operation of a solid-state sulfur probe based on CaF2 electrolyte. It was found that the cell responds to changes in sulfur potential in a manner predicted by the Nernst equation. The response time of the cell at 1225 K, after a small change in temperature or gas composition, was 2.5 Hr, while at a lower temperature of 990 K the response time was approximately 9 hr. The cell emf was insensitive to a moderate increase in the flow rate of the test gas and/or the reference gas. The exact factors affecting the slow response time of galvanic cells based on a CaF2 electrolyte have not yet been determined. The rate-limiting steps may be either the kinetics of electrode reactions or the rate of transport through the electrolyte.

  20. Preface: Cognitive Engineering in Automated Systems Design

    E-print Network

    Kaber, David B.

    Preface: Cognitive Engineering in Automated Systems Design This special issue was motivated by an apparent paucity of research on applications of cognitive engineering principles in the design of complex systems including mainte- nance, manufacturing, and transportation systems. Cognitive engineering

  1. MIT Engineering Systems Symposium, March 2004 1 The Case for Evolving Systems Engineering as a

    E-print Network

    de Weck, Olivier L.

    MIT Engineering Systems Symposium, March 2004 1 The Case for Evolving Systems Engineering as a Field within Engineering Systems Donna Rhodes and Daniel Hastings Engineering Systems Division. Engineering Systems is an important new field of study focusing on the complex engineering of systems

  2. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  3. Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Cost, Thomas L.; Hofmann, Martin O.

    1990-01-01

    A prototype of an expert system was developed which applies qualitative or model-based reasoning to the task of post-test analysis and diagnosis of data resulting from a rocket engine firing. A combined component-based and process theory approach is adopted as the basis for system modeling. Such an approach provides a framework for explaining both normal and deviant system behavior in terms of individual component functionality. The diagnosis function is applied to digitized sensor time-histories generated during engine firings. The generic system is applicable to any liquid rocket engine but was adapted specifically in this work to the Space Shuttle Main Engine (SSME). The system is applied to idealized data resulting from turbomachinery malfunction in the SSME.

  4. Gasification. 2nd. ed.

    SciTech Connect

    Christopher Higman; Maarten van der Burgt [Lurgi Oel Gas Chemie (Germany)

    2008-02-15

    This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

  5. RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

    2003-11-01

    In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate (GHRR) equal to the original boiler design. Boiler efficiencies (cogeneration-steam plus air) is increased from the original design value of 70% to 78.9% due to a combination of improved burnout, operation with lower excess air, and drier fuel. For the fully implemented plant, the thermal efficiency of fuel to electricity conversion is 79.8% in the cogeneration mode, 5% above the design goal. Finally, self-generated electricity will be increased from the 10.8 MW currently attributable to No.2 Boiler to 46.7MW, an increase of 332%. Environmental benefits derived from the system include a reduction in NOx emissions from the boiler of about 30-50% (90-130 tons/year) through syngas reburning, improved carbon burnout and lower excess air. This does not count NOx reduction that may be associated with replacement of purchased electricity. The project would reduce CO{sub 2} emissions from the generation of electricity to meet the mill's power requirements, including 50,000 tons/yr from a net reduction in gas usage in the mill and an additional 410,000 tons/yr reduction in CO{sub 2} emissions due to a 34 MW reduction of purchased electricity. The total CO{sub 2} reduction amounts to about 33% of the CO{sub 2} currently generated to meet the mills electricity requirement. The overall conclusion of the study is that while significant engineering challenges are presented by the proposed system, they can be met with operationally acceptable and cost effective solutions. The benefits of the system can be realized in an economic manner, with a simple payback period on the order of 6 years. The results of the study are applicable to many paper mills in the U.S. firing woodwastes and other solid fuels for steam and power production.

  6. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

  7. Catalytic Wet Gasification of Municipal and Animal Wastes

    SciTech Connect

    Ro, Kyoung S.; Cantrell, Keri; Elliott, Douglas C.; Hunt, Patrick G.

    2007-02-21

    Applicability of wet gasification technology for various animal and municipal wastes was examined. Wet gasification of swine manure and raw sewage sludge generated high number of net energies. Furthermore, the moisture content of these wastes is ideal for current wet gasification technology. Significant quantities of water must be added to dry feedstock wastes such as poultry litter, feedlot manures and MSW to make the feedstock pumpable. Because of their high ash contents, MSW and unpaved feedlot manure would not generate positive energy return from wet gasification. The costs of a conceptual wet gasification manure management system for a model swine farm were significantly higher than that of the anaerobic lagoon system. However, many environmental advantages of the wet gasification system were identified, which might reduce the costs significantly. Due to high sulfur content of the wastes, pretreatment to prevent the poisoning of catalysts is critically needed.

  8. KESS: Knowledge Engineering Support System

    PubMed Central

    Said, Mohamed Ben; Dougherty, Nini; Anderson, Curtis; Altman, Stanley J.; Bouhaddou, Omar; Warner, Homer R.

    1987-01-01

    KESS (Knowledge Engineering Support System) is a relational information management system created at the University of Utah to document each step in the building of four expert knowledge bases. In weekly knowledge engineering sessions, groups of experts propose decision making criteria and examine information sources in the process of creating HELP knowledge frames. KESS utilizes many-to-many links with multiple files and central link files to track the different kinds of information generated and used in the four knowledge building projects.

  9. Partial Gasification for CO 2 Emissions Reduction

    Microsoft Academic Search

    Nirmal V. Gnanapragasam; Bale V. Reddy; Marc A. Rosen

    \\u000a From the perspective of energy security and environmental sustainability, highly effective uses for fossil fuel in energy\\u000a industries are demanded. Power plants having integrated gasification combined cycle (IGCC) with advanced configurations are\\u000a being developed worldwide to use coal and biomass more efficiently and thus cleanly. Gasification forms the major component\\u000a within the IGCC systems and has the best fuel flexibility

  10. Transportation Systems Engineering GRADUATE STUDIES

    E-print Network

    Wang, Yuhang

    Transportation Systems Engineering GRADUATE STUDIES TRANSPORTATION SYSTEMS are the building blocks and provides for an improved quality of life. However, transportation systems by their very nature also affect the environment through physical construction and operation of transportation facilities, and through the travel

  11. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system.

    PubMed

    Chiemchaisri, Chart; Charnnok, Boonya; Visvanathan, Chettiyappan

    2010-03-01

    An effort to utilize solid wastes at dumpsite as refuse-derived fuel (RDF) was carried out. The produced RDF briquette was then utilized in the gasification system. These wastes were initially examined for their physical composition and chemical characteristics. The wastes contained high plastic content of 24.6-44.8%, majority in polyethylene plastic bag form. The plastic wastes were purified by separating them from other components through manual separation and trommel screen after which their content increased to 82.9-89.7%. Subsequently, they were mixed with binding agent (cassava root) and transformed into RDF briquette. Maximum plastic content in RDF briquette was limit to 55% to maintain physical strength and maximum chlorine content. The RDF briquette was tested in a down-draft gasifier. The produced gas contained average energy content of 1.76 MJ/m(3), yielding cold gas efficiency of 66%. The energy production cost from this RDF process was estimated as USD0.05 perkWh. PMID:19758801

  12. Development of an advanced continuous mild gasification process for the production of coproducts. Task 4, System integration studies: Char upgrading

    SciTech Connect

    Jha, M.C.; McCormick, R.L.; Hogsett, R.F.; Rowe, R.M.; Anast, K.R.

    1991-12-01

    This document describes the results of Task 4 under which a 50 pound/hour char-to-carbon (CTC) process research unit (PRU) was designed in the second half of 1989, with construction completed in June 1990. The CTC PRU at Golden was operated for nearly one year during which 35 runs were completed for a total of nearly 800 hours of operation. Char methanation and carbon production reactor development activities are detailed in this report, as well as the results of integrated runs of the CTC process. Evaluation of the process and the carbon product produced is also included. It was concluded that carbon could be produced from mild gasification char utilizing the CTC process. Char methanation and membrane separation steps performed reasonably well and can scaled up with confidence. However, the novel directly heated reactor system for methane cracking did not work satisfactorily due to materials of construction and heat transfer problems, which adversely affected the quantity and quality of the carbon product. Alternative reactor designs are recommended.

  13. Biometric System Security Systems and Computer Engineering

    E-print Network

    Adler, Andy

    Biometric System Security Andy Adler Systems and Computer Engineering Carleton University, Ottawa to confidentiality and integrity". Defining biometrics system security is difficult, because of the ways biometric systems differ from tradi- tional computer and cryptographic security [40]. Implicit in all definitions

  14. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Third quarter progress report FY-1984, April 1-June 30, 1984

    SciTech Connect

    Not Available

    1986-01-31

    The overall objective of the KRW coal gasification program is to demonstrate the viability of the KRW pressurized, fluidized-bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) modifications to the PDU; (3) cold flow scaleup facility; (4) advanced process design and analysis; and (5) laboratory support studies. For laboratory support studies, coal and/or char fines from Wyoming Sub C, Western Kentucky, Republic of South Africa (RSA), and Pittsburgh seam coals processed in the PDU were characterized for reactivity on a thermogravimetric analyzer. The average relative reactivity of the fines (-120 x +140 mesh) was found to be nearly the same as that for larger size distribution (18 x 60 mesh, -1.0 + 0.25 mm). This is consistent with the observations of studies reported in literature on carbon gasification reactions.

  15. Gasification: A Cornerstone Technology

    SciTech Connect

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  16. Pulverized coal plasma gasification

    Microsoft Academic Search

    R. A. Kalinenko; A. P. Kuznetsov; A. A. Levitsky; V. E. Messerle; Yu. A. Mirokhin; L. S. Polak; Z. B. Sakipov; A. B. Ustimenko

    1993-01-01

    A number of experiments on the plasma-vapor gasification of brown coals of three types have been carried out using an experimental plant with an electric-arc reactor of the combined type. On the basis of the material and heat balances, process parameters have been obtained: the degree of carbon gasification (?c), the level of sulfur conversion into the gas phase (?s),

  17. Incentives boost coal gasification

    SciTech Connect

    Hess, G.

    2006-01-16

    Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

  18. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    SciTech Connect

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  19. MEMS Rotary Engine Power System

    NASA Astrophysics Data System (ADS)

    Fernandez-Pello, A. Carlos; Pisano, Albert P.; Fu, Kelvin; Walther, David C.; Knobloch, Aaron; Martinez, Fabian; Senesky, Matt; Stoldt, Conrad; Maboudian, Roya; Sanders, Seth; Liepmann, Dorian

    This work presents a project overview and recent research results for the MEMS Rotary Engine Power System project at the Berkeley Sensor & Actuator Center of the University of California at Berkeley. The research motivation for the project is the high specific energy density of hydrocarbon fuels. When compared with the energy density of batteries, hydrocarbon fuels may have as much as 20x more energy. However, the technical challenge is the conversion of hydrocarbon fuel to electricity in an efficient and clean micro engine. A 12.9 mm diameter Wankel engine will be shown that has already generated 4 Watts of power at 9300rpm. In addition, the 1mm and 2.4 mm Wankel engines that BSAC is developing for power generation at the microscale will be discussed. The project goal is to develop electrical power output of 90milliwatts from the 2.4 mm engine. Prototype engine components have already been fabricated and these will be described. The integrated generator design concept utilizes a nickel-iron alloy electroplated in the engine rotor poles, so that the engine rotor also serves as the generator rotor.

  20. Environmental effects of in situ coal gasification

    Microsoft Academic Search

    M. J. Humenick; T. F. Edgar; R. J. Charbeneau

    1983-01-01

    An assessment of avialable engineering, geological and operating data on underground coal gasification indicates that this process can cause significant air and water pollution and land subsidence. Of the possible impacts, groundwater pollution is the most serious. Modeling studies and large-scale field tests are needed to determine the long-term fate of pollutants and the degree of restoration required before UCG

  1. Engineering Resilient Cyber-Physical Systems

    E-print Network

    Engineering Resilient Cyber-Physical Systems Future Grid Thrust Area 6 White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Thrust Area 6 White Paper Engineering Resilient Cyber-Physical Systems Project Team Thomas J. Overbye University

  2. 2006 gasification technologies conference papers

    SciTech Connect

    NONE

    2006-07-01

    Sessions covered: business overview, industry trends and new developments; gasification projects progress reports; industrial applications and opportunities; Canadian oil sands; China/Asia gasification markets - status and projects; carbon management with gasification technologies; gasification economics and performance issues addressed; and research and development, and new technologies initiatives.

  3. System Engineering Paper

    NASA Technical Reports Server (NTRS)

    Heise, James; Hull, Bethanne J.; Bauer, Jonathan; Beougher, Nathan G.; Boe, Caleb; Canahui, Ricardo; Charles, John P.; Cooper, Zachary Davis Job; DeShaw, Mark A.; Fontanella, Luan Gasparetto; Friel, Mark; Goebel, Katie; Grant, Alex Martinsdacosta; Graves, Matt; Harms, Ryan Andrew; Hill, Aren; Lsely, Kevin Lee; Jose, Sonia; Klein, Andrew; Kolstad, Lauren Wickham; Lamp, Daniel A.; Lindquist, Mariangela Martin; Lopes, Daniel da Paula; Lourens, Rob; Matthews, Christopher

    2012-01-01

    The Iowa State University team, Team LunaCY, is composed of the following sub-teams: the main student organization, the Lunabotics Club; a senior mechanical engineering design course, ME 415; a senior multidisciplinary design course, ENGR 466; and a senior design course from Wartburg College in Waverly, Iowa. Team LunaCY designed and fabricated ART-E III, Astra Robotic Tractor- Excavator the Third, for the team's third appearance in the NASA Lunabotic Mining competition. While designing ART-E III, the team had four main goals for this year's competition:to reduce the total weight of the robot, to increase the amount of regolith simulant mined, to reduce dust, and to make ART-E III autonomous. After many designs and research, a final robot design was chosen that obtained all four goals of Team LunaCY. A few changes Team LunaCY made this year was to go to the electrical, computer, and software engineering club fest at Iowa State University to recruit engineering students to accomplish the task of making ART-E III autonomous. Team LunaCY chose to use LabView to program the robot and various sensors were installed to measure the distance between the robot and the surroundings to allow ART-E III to maneuver autonomously. Team LunaCY also built a testing arena to test prototypes and ART-E III in. To best replicate the competition arena at the Kennedy Space Center, a regolith simulant was made from sand, QuickCrete, and fly ash to cover the floor of the arena. Team LunaCY also installed fans to allow ventilation in the arena and used proper safety attire when working in the arena . With the additional practice in the testing arena and innovative robot design, Team LunaCY expects to make a strong appearance at the 2012 NASA Lunabotic Mining Competition. .

  4. "SYSTEMS ENGINEERING APPLICATIONS

    E-print Network

    Final: Develop and Assess Integrated Aircraft Carrier Island Concepts and Corresponding Implementation Drivers [`92] 9. System Technology Assessment Resource ("STAR") ['93] 10. "Autonomic" Ship [`93] 11 integrated aircraft carrier island & topside design system concepts capable of meeting future aircraft

  5. Fixed-bed gasification research using US coals. Volume 15. Gasification of ''fresh'' Rosebud subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-09-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the fifteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Rosebud subbituminous coal, from June 17, 1985 to June 24, 1985. 4 refs., 20 figs., 15 tabs.

  6. Computer systems and software engineering

    NASA Technical Reports Server (NTRS)

    Mckay, Charles W.

    1988-01-01

    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  7. Voraussetzungen: Control Systems I & II, System Modeling, Engine Class (IC Engines and Propulsion Systems,

    E-print Network

    Lygeros, John

    Systems, Introduction to Modeling and Control of Internal Combustion Engine Systems,...), MATLAB Design for a Novel Engine Concept Position Control for an Internal Combustion Engine (Simulation) German. The control task is to make an internal combustion engine piston follow a reference position trajectory

  8. Educating Systems Engineers: Encouraging Divergent Thinking

    Microsoft Academic Search

    William H. McCumber; Crystal Sloan

    Parallels between divergent thought processes, studied in creativity research by developmental psychologists, and the intellectual control imperatives of systems engineering are examined. A metaphorical template of the systems engineer's thought processes as defined by and taught from the standpoint of convergence is presented, and a core set of training modules to aid in evolving systems engineers from domain engineer stock

  9. Systems engineering at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  10. Systems Engineering Perspective

    E-print Network

    Selection Motor Operated Valves Compartment Arrangement Technical Manuals Remanufacturing Requirement Vendor Automatic fire suppression Fail set Four AC generators and three DC systems Multiple acceleration modes

  11. Chicken-Bio Nuggets Gasification process

    SciTech Connect

    Sheth, A.C. [Univ. of Tennessee Space Institute, Tullahoma, TN (United States)

    1996-12-31

    With the cost of landfill disposal skyrocketing and land availability becoming scarce, better options are required for managing our nation`s biomass waste. In response to this need, the University of Tennessee Space Institute (UTSI) is evaluating an innovative idea (described as Chicken-Bio Nuggets Gasification process) to gasify waste products from the poultry industry and industrial wood/biomass-based residues in {open_quotes}as-is{close_quotes} or aggregate form. The presence of potassium salts in the poultry waste as well as in the biomass can act as a catalyst in reducing the severity of the thermal gasification. As a result, the mixture of these waste products can be gasified at a much lower temperature (1,300-1,400{degrees}F versus 1,800-2,000{degrees}F for conventional thermal gasification). Also, these potassium salts act as a catalyst by accelerating the gasification reaction and enhancing the mediation reaction. Hence, the product gas from this UTSI concept can be richer in methane and probably can be used as a source of fuel (to replace propane in hard reach remote places) or as a chemical feed stock. Exxon Research and Engineering Company has tested a similar catalytic gasification concept in a fluid-bed gasifier using coal in a one ton/day pilot plant in Baytown, Texas. If found technically and economically feasible, this concept can be later on extended to include other kinds of waste products such as cow manure and wastes from swine, etc.

  12. ENGINEERING GRaduatE PRoGRams Biological SyStemS engineering Biomedical engineering chemical engineering civil and environmental engineering

    E-print Network

    California at Davis, University of

    ENGINEERING GRaduatE PRoGRams Biological SyStemS engineering § Biomedical engineering § chemical engineering § civil and environmental engineering computer Science § electrical and computer engineering and policy Biological SyStemS engineering (530) 752-0102 http://bae.engineering.ucdavis.edu Ph.D., M.S., M

  13. TWRS Systems Engineering Working Plan

    SciTech Connect

    Eiholzer, C.R.

    1994-09-16

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations.

  14. Gasification Technologie: Opportunities & Challenges

    SciTech Connect

    Breault, R.

    2012-01-01

    This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

  15. Gasification and combustion technologies of agro-residues and their application to rural electric power systems in India

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Anshu

    Biomass based power generation has the potential to add up to 20,000 MW of distributed capacity in India close to the rural load centers. However, the present production of biomass-based electricity is modest, contributing a mere 300 MW of installed capacity. In this thesis, we shall examine some of the scientific, technological and policy issues concerned with the generation and commercial viability of biomass-based electric power. We first consider the present status of biomass-based power in India and make an attempt to understand the reasons for low utilization. Our analysis suggests that the small-scale biomass power plants (<100 kW) when used for village electrification have a low Plant Load Factor (PLF) that adversely affects their economic viability. Medium Scale units (0.5 MW--5 MW) do not appear attractive because of the costs involved in the biomass transportation. There is thus a merit in considering power plants that use biomass available in large quantities in agro-processing centers such as rice or sugar mills where power plants of capacities in excess of 5 MW are possible without biomass transportation. We then simulate a biomass gasification combustion cycle using a naturally aspirated spark ignition engine since it can run totally on biomass gas. The gasifier and engine are modeled using the chemical equilibrium approach. The simulation is used to study the impact of fuel moisture and the performance of different biomass feedstock. Biomass power plants when used for decentralized power generation; close to the rural load centers can solve some of the problems of rural power supply: provide voltage support, reactive power and peak shaving. We consider an innovative option of setting up a rural electricity micro-grid using a decentralized biomass power plant and selected a rural feeder in Tumkur district, Karnataka for three-phase AC load flow studies. Our results suggest that this option significantly reduces the distribution losses and improves the voltage profiles. We examine a few innovative policy options for making a rural micro-grid economically viable and also a pricing mechanism for reactive power and wheeling. We next consider co-firing biomass and coal in utility boilers as an attractive option for biomass utilization because of low capital costs; high efficiency of utility boilers; lower CO2 emissions (per kWh) and also lower NOx and SO2. However, efficiency derating of the boilers caused by unburnt carbon in the fly ash is a major concern of the utilities. We develop a computational fluid dynamics (CFD) based model to understand the impact of co-firing on utility boilers. A detailed biomass devolatilization sub-model is also developed to study the importance of intra-particle heat and mass transport. Finally, we conduct an experimental study of the pyrolysis of rice husk. We conducted single particle experiments in a Confocal Scanning Laser Microscope (CSLM) at the Department of Material Science and Engineering, Carnegie Mellon University coupled with Scanning Electron Microscope (SEM) analysis of partially and fully combusted particles. Our results seem to indicate that the role of silica fibers is not merely to act as geometric shields for the carbon atoms. Instead there appears to be a strong and thermally resistant inter-molecular bonding that prevents carbon conversion. Therefore, it may not be possible to achieve full carbon conversion.

  16. Information technology security system engineering methodology

    NASA Technical Reports Server (NTRS)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  17. Comparative description of coal feeding systems for fixed bed pressure gasification

    NASA Technical Reports Server (NTRS)

    Funk, E.; Reimert, R.

    1977-01-01

    Coal feeding systems are discussed which are capable of feeding 20-100 T/H and the range of pressure is up to 100 bar. Most emphasis is placed on dry feeding systems. The systems outlined are subdivided into continuous and intermittent and the influence of each system on lock gas losses and reactor design is shown. Finally a cost estimate is presented which indicates the areas of preferred application and permits conclusions to be drawn regarding the economics of the various systems.

  18. Systems integration in maintenance engineering

    Microsoft Academic Search

    Andrew Starr; Andrew Ball

    2000-01-01

    Integration in maintenance engineering systems provides a potential solution to some complex and conflicting problems. Decision making is often achieved with uncertainty and unknowns, while measuring against conflicting performance criteria. Maintenance decisions are made in the context of business priorities. Integration must consider the bi-directional flow of data and information into the decision making and planning process at all levels.

  19. MEMS Rotary Engine Power System

    Microsoft Academic Search

    A. Carlos Fernandez-Pello; Albert P. Pisano; Kelvin Fu; David C. Walther; Aaron Knobloch; Fabian Martinez; Matt Senesky; Conrad Stoldt; Roya Maboudian; Seth Sanders; Dorian Liepmann

    2003-01-01

    This work presents a project overview and recent research results for the MEMS Rotary Engine Power System project at the Berkeley Sensor & Actuator Center of the University of California at Berkeley. The research motivation for the project is the high specific energy density of hydrocarbon fuels. When compared with the energy density of batteries, hydrocarbon fuels may have as

  20. Engineering Complex Computer Systems

    Microsoft Academic Search

    Alberto Broggi; Alexander D. Stoyenko

    1997-01-01

    Surely, nobody could have foreseen the degree to which we have become reliant on computer systems in our daily lives. They wake us up in the morning, cook our food, get us to work, control the traffic in the streets, entertain us, give us cash from our bank accounts (under certain conditions!), help to treat our diseases, monitor our health,

  1. Security systems engineering overview

    Microsoft Academic Search

    Steele

    1996-01-01

    Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose

  2. "SYSTEMS ENGINEERING APPLICATIONS

    E-print Network

    of fouling. A filtering system removes particles greater than 20 microns in size from the effluent. NSWCCD currently investigating various 'polishing' techniques in an effort to reduce levels of copper and zinc, such as paint thickness, hull plate thickness, and cathodic protection potentials. #12;AHMV Field Test on USS

  3. Security systems engineering overview

    NASA Astrophysics Data System (ADS)

    Steele, Basil J.

    1997-01-01

    Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at 70 billion dollars in direct costs and up to 300 billion dollars in indirect costs. Health insurance fraud alone is estimated to cost American businesses 100 billion dollars. Theft, warranty fraud, and counterfeiting of computer hardware totaled 3 billion dollars in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies; industrial espionage detection and prevention; security barrier technology.

  4. The organizational and political challenges of Enterprise Systems Engineering : a survey of senior systems engineers

    E-print Network

    Rashid, Faaiza

    2008-01-01

    Systems engineering efforts are becoming increasingly complex, novel and interdependent, making traditional systems engineering approaches only partially applicable to such efforts. Consequently, a new discipline is emerging ...

  5. Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle System Using

    E-print Network

    Frey, H. Christopher

    for the conversion of a variety of feedstocks, including coal, heavy residue oil, biomass, solid waste, and others GASIFIER-BASED IGCC SYSTEM In an IGCC power plant, coal is converted to a syngas, composed mainly, the syngas is utilized in a combined cycle power plant. IGCC systems are capable of significantly higher

  6. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion

    Microsoft Academic Search

    R. E. Sears; G. H. Griswold; M. O. Fankhanel; C. E. Kastner; D. H. Pontium

    1992-01-01

    Efficiencies in advanced power generation systems such as integrated gasification combined cycle, pressurized fluidized bed combustion and integrated gasification fuel cells can be maximized by feeding hot fuel gas or flue gas to the power block. However, advanced gas turbines have strict particulate requirements to minimize wear on the blades due to the close tolerances used to maximize the efficiency

  7. Gasification of biomass wastes and residues for electricity production

    Microsoft Academic Search

    René van Ree; Lars Waldheim; Eva Olsson; André Oudhuis; Ad van Wijk; Cees Daey-Ouwens; Wim Turkenburg

    1997-01-01

    The technical feasibility and the economic and environmental performance of atmospheric gasification of biomass wastes and residues integrated with a combined cycle for electricity production are investigated for Dutch conditions. The system selected for study is an atmospheric circulating fluidized bed gasifier-combined cycle (ACFBCC) plant based on the General Electric LM 2500 gas turbine and atmospheric gasification technology, including flue

  8. Gasification Product Improvement Facility status

    SciTech Connect

    Carson, R.D.; Sadowski, R.S.; Skinner, W.H. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Dixit, V.B.; Lisauskas, R.A. [Riley Stoker Corp., Worcester, MA (United States); Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.

    1994-10-01

    The objective of the Gasification Product Improvement Facility (GPIF) project is to provide a test site to support early commercialization of the Integrated Gasification Combined Cycle (IGCC) technology. The design of this facility will by based on PyGas{trademark}, a patented air blown fixed bed gasification process. The GPIF will be capable of processing run-of-mine high swelling coals that comprise 87% of all Eastern US coals. The GPIF project is expected to deliver a gasifier design that will satisfy the criteria for good process performance and cost effectiveness. The PyGas{trademark} process was conceived to handle high swelling coals, crack tars, and reduce ammonia and trace metal emissions. The GPIF program will generate useful scale up data. Initially, the PyGas{trademark}-IGCC systems will be offered as modular units for the repowering markets which will reduce the financial burden on utilities in comparison to large plants. In addition, modular designs will also reduce the plant construction schedules.

  9. Engineering intelligent tutoring systems

    NASA Technical Reports Server (NTRS)

    Warren, Kimberly C.; Goodman, Bradley A.

    1993-01-01

    We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.

  10. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  11. Engineering Design Information System (EDIS)

    SciTech Connect

    Smith, P.S.; Short, R.D.; Schwarz, R.K.

    1990-11-01

    This manual is a guide to the use of the Engineering Design Information System (EDIS) Phase I. The system runs on the Martin Marietta Energy Systems, Inc., IBM 3081 unclassified computer. This is the first phase in the implementation of EDIS, which is an index, storage, and retrieval system for engineering documents produced at various plants and laboratories operated by Energy Systems for the Department of Energy. This manual presents on overview of EDIS, describing the system's purpose; the functions it performs; hardware, software, and security requirements; and help and error functions. This manual describes how to access EDIS and how to operate system functions using Database 2 (DB2), Time Sharing Option (TSO), Interactive System Productivity Facility (ISPF), and Soft Master viewing features employed by this system. Appendix A contains a description of the Soft Master viewing capabilities provided through the EDIS View function. Appendix B provides examples of the system error screens and help screens for valid codes used for screen entry. Appendix C contains a dictionary of data elements and descriptions.

  12. Systems engineering process standardization and cultural diversity

    Microsoft Academic Search

    Timothy L. J. Ferris

    2007-01-01

    Systems engineering is the branch of engineering concerned with the development of large complex systems, managing both the design processes and the design of the systems. As such systems engineering has both a technical and a managerial focus. SE originated during the 1950s as a means to address the problems presented by large and consequently high risk US government acquisitions.

  13. System Engineering Online by the SEAS

    E-print Network

    Jalali. Bahram

    of Specialization: Radar Systems Probability (EE 131A) Digital Signal Processing (EE 113) Estimation and detection Engineering Area of Study can be achieved by completing a minimum of three of the System Engineering core of Completion of the System Engineering Area of Study is earned through completion of a minimum of three System

  14. Industrial & Enterprise Systems Engineering General Engineering Undergraduate Curriculum

    E-print Network

    Lee, Tonghun

    Industrial & Enterprise Systems Engineering General Engineering Undergraduate Curriculum (128\\Holly's Files\\Ugrad\\New Curriculum Documents\\GE Track 1 Odd Curriculum.doc Semester 1 CHEM 102--General--Engineering Graphics & Design MATH 221--Calculus I Liberal Education Elective1 3 1 0 0 3 4 3 14 Semester 2 ECE

  15. ANG coal gasification project management control system report. [Great Plains project

    SciTech Connect

    Not Available

    1981-01-01

    Much time, money and effort has been spent in the forefront of this project for project controls. The work breakdown structure for the systems has been custom designed. The systems, both manual and computerized, have been well scrutinized and chosen by ANG to represent the most cost effective and efficient way of controlling a project the magnitude of $1.5 billion. These systems have been developed in a manner so that information can be gathered as detailed or as summarized as necessary, and in the most timely and expeditious ways.

  16. Fixed-bed gasification research using US coals. Volume 6. Gasification of delayed petroleum coke

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the sixth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of delayed petroleum coke from Pine Bend, MN. The period of the gasification test was June 1-17, 1983. 2 refs., 15 figs., 22 tabs.

  17. Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

  18. Safety-driven system engineering process

    E-print Network

    Stringfellow, Margaret Virgina

    2008-01-01

    As the demand for high-performing complex systems has increased, the ability of engineers to meet that demand has not kept pace. The creators of the traditional system engineering processes did not anticipate modern complex ...

  19. Evaluation of the genotoxicity of process stream extracts from a coal gasification system.

    PubMed

    Shimizu, R W; Benson, J M; Li, A P; Henderson, R F; Brooks, A L

    1984-01-01

    Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays (CHO/HGPRT and Ames). The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. Coke oven main extract produced fewer revertants in bacteria than the raw gas sample. However, the coke oven main extract was more genotoxic in the two eukaryotic systems (CHL/SCE and CHO/HGPRT) than was the raw gas sample. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems. PMID:6389110

  20. _q .. SP-6102 -" IN SYSTEMS ENGINEERING

    E-print Network

    Rhoads, James

    _¢q .. SP-6102 -" READINGS IN SYSTEMS ENGINEERING Edited by Francis T. Hoban and William M. Lawbaugh co ! (NASA-SP-6102) REAOINGS IN SYSTEMS ENGINEERING (NASa) 215 p N93-24678 --THRU-- N93-24693 Unclas H1/31 0158570 #12;.J T ,j J #12;READINGS IN SYSTEMS ENGINEERING Edited by Francis T. Hoban

  1. Biomass Gasification Technology Assessment: Consolidated Report

    SciTech Connect

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  2. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  3. Systems Engineering for Civil Timekeeping

    E-print Network

    Seaman, Rob

    2011-01-01

    The future of Coordinated Universal Time has been a topic of energetic discussions for more than a dozen years. Different communities view the issue in different ways. Diametrically opposed visions exist for the range of appropriate solutions that should be entertained. Rather than an insoluble quandary, we suggest that well-known systems engineering best practices would provide a framework for reaching consensus. This starts with the coherent collection of project requirements.

  4. Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems

    SciTech Connect

    Jost Wendt; Sung Jun Lee; Paul Blowers

    2008-09-30

    The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

  5. Biothermal gasification of biomass

    SciTech Connect

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  6. Coal gasification for power generation. 2nd ed.

    SciTech Connect

    NONE

    2006-10-15

    The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

  7. Drilling, well completion and engineering activities in preparation of the first underground coal gasification trial in the framework of a European Community collaboration, Alcorisa, Spain

    SciTech Connect

    Fievez, P.; Green, M.; Obis, A. [Underground Gasification Europe, Alcorisa (Spain); Gonzalez Lago, J.M. [Instituto Tecnologico Geominero de Espana, Madrid (Spain); Goode, A. [AEA Technology PLC, Harwell (United Kingdom); Mostade, M. [Institution pour le Developpement de la Gazeification Souterraine, Liege (Belgium)

    1997-12-31

    The El Tremedal Underground Coal Gasification (UCG) Test at great depth ({much_gt} 600 meters) is located near Alcorisa, province of Teruel, Spain. The program is jointly sponsored by Spanish, Belgium and UK organizations, and the European Commission. The main objective of the project is to demonstrate the technical feasibility of UCG at an intermediate depth, a significant increase in depth over that of previous successful USA trials of UCG by in-seam drilling. The trial has several technical objectives including the demonstration of drilling long in-seam holes at this depth via deviated drilling from the surface, the construction of a competent gas flow circuit between injection and production wells, and the demonstration of adequate coal conversion. The two first main objectives were completed successfully and the gasification operations, the third main objective, are scheduled to be conducted in June 1997.

  8. Infrastructure Systems Track within Civil Engineering Course Recommendations

    E-print Network

    Wang, Yuhang

    Infrastructure Systems Track within Civil Engineering Course Recommendations Engineering CEE 4300 Environmental Engineering Systems CEE 4405 Geotechnical Engineering courses within one area of civil engineering, in order to further specialize

  9. Production of Hydrogen from Underground Coal Gasification

    DOEpatents

    Upadhye, Ravindra S. (Pleasanton, CA)

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  10. Systems Engineering for FDA QSR Compliance

    Microsoft Academic Search

    James H. Jones

    Many engineers have work experience with defense and aerospace suppliers and other government funded entities that included exposure to classical Systems Engineering methods with an Integrated Product\\/Process Team (IPPT) approach for products development. However, such employment is not universal, so even experienced Systems Engineers should know of one category of commercial enterprises that can benefit greatly from application of their

  11. Fuel system for internal combustion engines

    Microsoft Academic Search

    1984-01-01

    A fuel system for an internal combustion engine of the piston type vaporizes liquid fuel such as gasoline and delivers the same through inter-communicating control valves, one of which is responsive in operation to inlet manifold pressure in the internal combustion engine and the other responsive in operation to accelerator linkage controlling the internal combustion engine's operation. The system's principal

  12. Project geotechnical engineering: systems methodology considerations

    Microsoft Academic Search

    C. L. Vita

    1986-01-01

    Systems methodology considerations for project geotechnical engineering are discussed. Emphasis is on general systems and related geotechnical principles, issues and limitations. After an introduction, the paper outlines geotechnical programme management as a framework for defining, organizing and controlling the geotechnical engineering process. Then, following the logical order of elements in project geotechnical engineering, the paper discusses programme development, followed by

  13. An approach to teaching civil engineering systems

    Microsoft Academic Search

    Paul J. Ossenbruggen

    1985-01-01

    The approaches used in offering a required course for undergraduate students, an elective course for both undergraduate and graduate students, and a Master of Science program in civil engineering systems are described. Student attitudes about systems analysis and teaching challenges are discussed. My teaching philosophy is to integrate economic and engineering principles into an unified approach for solving civil engineering

  14. Systems and Computer Engineering 4456 Mackenzie Building

    E-print Network

    Dawson, Jeff W.

    Systems and Computer Engineering 4456 Mackenzie Building 1125 Colonel By Drive Ottawa, Canada K1S 5B6 Tel: (613) 520-5740 Fax: (613) 520-5727 The Department of Systems and Computer Engineering such as NSERC. The successful candidate must have a Ph.D. degree in electrical and computer engineering

  15. Review: Tissue engineering in the nervous system

    Microsoft Academic Search

    Ravi Bellamkonda; Patrick Aebischer

    1994-01-01

    The nervous system presents a challenge to the field of tissue engineering because some of its complex neu- rochemical and neuroanatomical architecture is just be- ginning to be understood. A combination of advances in molecular neurobiology, gene transfer techniques, and the concomitant advances in the engineering of biomaterials at a molecular level, are making tissue engineering in the nervous system

  16. Underground coal gasification. Presentations

    SciTech Connect

    NONE

    2007-07-01

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  17. Prerequisites: Control System I + II, Engine Systems, MATLAB/Simulink

    E-print Network

    Daraio, Chiara

    institute, we are working on a new concept: Diesel-CNG dual fuel engine. In this engine, Diesel is injected, retrofitting an existing heavy-duty Diesel engine is not just plug and play. A lot of modeling, optimizationPrerequisites: Control System I + II, Engine Systems, MATLAB/Simulink Contact: Mu Wang, ML K 41

  18. RDD-100 and the systems engineering process

    NASA Technical Reports Server (NTRS)

    Averill, Robert D.

    1994-01-01

    An effective systems engineering approach applied through the project life cycle can help Langley produce a better product. This paper demonstrates how an enhanced systems engineering process for in-house flight projects assures that each system will achieve its goals with quality performance and within planned budgets and schedules. This paper also describes how the systems engineering process can be used in combination with available software tools.

  19. ASPEN simulations of fluidized-bed and entrained-flow integrated gasification combined-cycle power plants. [KRW and Texaco

    Microsoft Academic Search

    1985-01-01

    A fluidized-bed, integrated gasification combined-cycle (IGCC) power plant simulation was developed by METC using the Advanced System for Process Engineering (ASPEN) process simulator. The ASPEN simulation is based on a conceptual design of a 570 megawatt (MW) IGCC plant using Kellogg-Rust-Westinghouse (KRW) ash agglomerating pressurized fluid-bed gasifiers and conventional cold gas cleanup processes. The conceptual design was completed by Bechtel

  20. Industrial & Enterprise Systems Engineering General Engineering Undergraduate Curriculum

    E-print Network

    Lee, Tonghun

    Industrial & Enterprise Systems Engineering General Engineering Undergraduate Curriculum (128\\Holly's Files\\Ugrad\\New Curriculum Documents\\GE Track 1 Even Curriculum.doc Semester 1 CHEM 102--General--Principles of Composition MATH 221--Calculus I Liberal Education Elective1 3 1 0 0 4 4 3 15 Semester 2 ECE

  1. Successful continuous injection of coal into gasification and PFBC system operating pressures exceeding 500 PSI - DOE funded program results

    SciTech Connect

    NONE

    2005-07-01

    President Bush's energy program is focussed towards commercializing power production technologies that offer improvements in efficiency and reductions in emissions while utilizing the nation's most abundant energy reserve - coal. Gasification offers such benefits. To bring this technology to full commercial acceptance, the operational issue of feeding solid fuel into the pressure environment needs to be addressed. The DOE, through the National Energy Technology Laboratory, has funded research to develop the unique Stamet 'Posimetric Solids Pump' to feed coal into current gasification operating pressures. The project comprised design and testing to feed coal into 300 PSI and a second Phase for feeding into 500 PSI. The 300 PSI target was achieved in December 2003. In January 2005, the Posimetric feeder achieved continuous injection of coal into 560 PSI, exceeding the Phase 2 target. This paper presents a review and evaluation of the design, design optimizations and test results of the successful feeder. It also presents analysis of economic benefits to pump use and results from semi-commercial testing at gasifier operating test facilities, which should have commenced by the date of the Conference. 16 figs., 6 tabs.

  2. Potential of underground coal gasification

    SciTech Connect

    Burwell, E.L.

    1984-02-01

    A rapidly growing interest in underground coal gasification (UCG), in the U.S. and several other countries, has developed in the past few years. This has been accompanied by in-depth evaluations of the potential of UCG, its technology, economics, risks, and rewards by a number of highly qualified engineering groups. Several common findings seem to emerge from each study as: sufficient technological feasibility has been proved to warrant further study; if long-term operation can be made to bear out the promise shown in field tests, the process will be economically competitive; actual development could greatly expand existing coal reserves; and significant potential advantages exist which made UCG a leading candidate for synfuels development.

  3. Numerical simulation of waste tyres gasification.

    PubMed

    Janajreh, Isam; Raza, Syed Shabbar

    2015-05-01

    Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000?°C-1600?°C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350?°C-550?°C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20?kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. PMID:25755167

  4. HR 160 performance in coal gasification equipment

    SciTech Connect

    Whittaker, G.S. [Eastman Chemical Co., Kingsport, TN (United States)

    1995-12-31

    An alloy 825 water-cooled component failed by sulfidation enhanced thermal fatigue in a commercial coal gasification system. In an attempt to improve component life the material of construction was changed to Haynes HR-160. After several years of operating experience the HR-160 has not provided the desired improvement. Analysis shows the failure mechanism has remained the same.

  5. Automotive Stirling engine system component review

    NASA Technical Reports Server (NTRS)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  6. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...false Engine system and component tests. 33.91 Section 33.91 ...STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and component tests. (a) For those systems...

  7. Catalyzed gasification of biomass

    Microsoft Academic Search

    L. J. Jr. Sealock; R. J. Robertus; L. K. Mudge; D. H. Mitchell; J. L. Cox

    1978-01-01

    Catalyzed biomass gasification studies are being conducted by Battelle's Pacific Northwest Laboratories. Investigations are being carried out concurrently at the bench and process development unit scales. These studies are designed to test the technical and economic feasibility of producing specific gaseous products from biomass by enhancing its reactivity and product specificity through the use of specific catalysts. The program is

  8. Kinetics of coal gasification

    Microsoft Academic Search

    Martin Schmal; Jose Luiz Fontes Monteiro; Jorge Luiz Castellan

    1982-01-01

    This work reports on a kinetic study on the gasification of Brazilian mineral coal with steam using a thermobalance. The coal is a high ash content (>50 wt %) subbituminous, run of mine coal (Charqueadas). Isothermal runs were made at temperatures between 800 and 1000\\/degree\\/C and at atmospheric pressure, using -14 +20 mesh Tyler size particles. The coal was devolatilized

  9. Underground coal gasification

    Microsoft Academic Search

    T. F. Edgar; D. W. Gregg

    1978-01-01

    Underground coal gasification (UCG) is a method whereby the mining and conversion of coal are accomplished in a single step. Many field tests of UCG have been operated worldwide since the 1930's with varying degrees of success; based on this experience (especially in the USSR and US), a field design which is applicable to a wide range of geological conditions

  10. Engine valve operating system for an internal combustion engine

    SciTech Connect

    Hara, S.; Matsumoto, Y.; Matayoshi, Y.

    1986-02-04

    This patent describes an engine valve operating system for an internal combustion engine. The system consists of: a driving cam rotatable in timed relation to engine revolution; a rocker arm having a first end section drivingly connected to an engine valve and a second end section drivably connected to the driving cam; an elongated lever pivoted at a first end section and disposed in fulcrum contact with the rocker arm; an apparatus for biasing the rocker arm and the lever away from each other; and a hydraulic actuator having a movable end section which is in contact with a second end section of the lever and movable to control the pivotal location of the lever in accordance with an engine operating condition.

  11. Overspeed limiter schemes for Full Authority Digital Engine Control System

    Microsoft Academic Search

    P. Gupta

    2010-01-01

    Engine control system of aircraft is used for controlling the engine parameters. In today's world Full Authority Digital Engine Control System (FADECS) is used for controlling engine of aircrafts. FADEC system broadly consists of the hydro-mechanical systems, sensors, harnesses, dedicated electronics and embedded software for controlling the engine parameters. FADEC system controls various engine parameters as per the control laws

  12. Coal gasification: New challenge for the Beaumont rotary feeder

    NASA Technical Reports Server (NTRS)

    Stelian, J.

    1977-01-01

    The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

  13. Electronic control system for internal combustion engines

    Microsoft Academic Search

    Suzuki

    1988-01-01

    This patent describes an electronic control system for an internal combustion engine, including fuel supply means for supplying fuel to the engine, and ignition means for ignition a mixture formed by fuel being supplied to the engine from the fuel supply means, the combination comprising a first central processing unit connected with the fuel supply means for controlling the fuel

  14. De Weck--Engineering Systems 4 Life-Cycle Properties of Engineering Systems: The Ilities

    E-print Network

    de Weck, Olivier L.

    of the systems' very essence. The Importance of Not Simply "Working" The first automobiles were largely motorized with 8799_004.indd 65 6/16/2011 7:30:21 PM #12;Q De Weck--Engineering Systems 66 Chapter 4 brakes, but onlyQ De Weck--Engineering Systems 4 Life-Cycle Properties of Engineering Systems: The Ilities

  15. A road map for implementing systems engineering

    SciTech Connect

    Dean, F.F. [Sandia National Labs., Albuquerque, NM (United States). New Mexico Weapons Systems Engineering Center; Bentz, B.; Bahill, A.T. [Univ. of Arizona, Tucson, AZ (United States)

    1997-02-01

    Studies by academia, industry, and government indicate that applying a sound systems engineering process to development programs is an important tool for preventing cost and schedule overruns and performance deficiencies. There is an enormous body of systems engineering knowledge. Where does one start? How can the principles of systems engineering be applied in the Sandia environment? This road map is intended to be an aid to answering these questions.

  16. Space shuttle main engine: Hydraulic system

    NASA Technical Reports Server (NTRS)

    Geller, G.; Lamb, C. D.

    1981-01-01

    The hydraulic actuation system of the space shuttle main engine is discussed. The system consists of five electrohydraulic actuators and a single engine filter used to control the five different propellant valves, which in turn control thrust and mixture ratio of the space shuttle main engine. The hydraulic actuation system provides this control with a precision of 98.7 percent or an error in position no greater than 1.3 percent of full scale rotational travel for critical positions.

  17. SYSTEMS ENGINEERING CONCENTRATION Systems Engineering is an interdisciplinary approach and means to enable the realization of successful systems. It

    E-print Network

    Rusu, Adrian

    System Dynamics and Control CE.08.305: Civil Engineering Systems CHE.06.405: Process Dynamics and ControlSYSTEMS ENGINEERING CONCENTRATION Systems Engineering is an interdisciplinary approach and means, performance, training & support, test, disposal, and manufacturing. Systems Engineering integrates all

  18. Nonlinear dynamics of parts in engineering systems

    Microsoft Academic Search

    Jenny Jerrelind; Annika Stensson

    2000-01-01

    By definition, chaotic vibrations arise from nonlinear deterministic physical systems or non-random differential or difference equations. In numerous engineering systems there exist nonlinearities which might affect the dynamic behaviour of the system. The objectives in this work are to summarise previous work on nonlinear dynamics of engineering parts and products and to investigate if research on how nonlinear parts can

  19. Semiotic oriented autonomous intelligent systems engineering

    Microsoft Academic Search

    Rodrigo Gonçalves; Ricardo Gudwin

    1998-01-01

    Introduces a first proposal on how to use semiotics in order to improve software engineering methods, when intelligent autonomous systems are targeted. First we investigate the current flaws in software engineering, concerning intelligent autonomous systems. Then we propose a knowledge taxonomy, based on semiotic ideas, aiming at a tool to understand the information domain of intelligent autonomous systems. Further, we

  20. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  1. Graduate School of Life Science and Systems Engineering School of Engineering

    E-print Network

    Kourai, Kenichi

    4 5 Graduate School of Life Science and Systems Engineering 1st Year School of Engineering Department of Civil and Architectural Engineering Architecture Course Civil and Environmental Engineering of Materials Science and Engineering Department of Integrated System Engineering Electrical Engineering Course

  2. Tank waste remediation system engineering plan

    SciTech Connect

    Rifaey, S.H.

    1998-01-09

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

  3. Advancing Systems Engineering Excellence: The Marshall Systems Engineering Leadership Development Program

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Whitfield, Susan

    2011-01-01

    As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.

  4. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  5. Engineering, Computing and Information Systems

    E-print Network

    Escher, Christine

    Engineering-B, M, D, P Forest Engineering-Civil Engineering-B, P Industrial Engineering-B, M, D, P Applied Ethics-M, UC Applied Visual Arts-B, P Art-B, P Contemporary Hispanic Studies-M Creative Writing Design and Housing Studies-B, P Language in Culture-UC Latin American Affairs-UC Liberal Studies-B, P

  6. Relations between information system engineering and software engineering

    NASA Technical Reports Server (NTRS)

    Callender, E. D.; Hartsough, C.; Morris, R. V.

    1981-01-01

    This paper examines some of the relations between information system engineering and software engineering. A model for the development process of an information system is presented that focuses on problems common to both disciplines. The concepts of complexity, multiplicity of view, distortion in communication, and concurrency and iteration in implementation are treated. A set of design constructs for the description of an information system is presented. The role of project management is treated. The issue of how to characterize requirements analysis is answered by making it a design activity from the point of view of a user of the product system.

  7. Engine sealing and lubrication systems

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1975-01-01

    Engine sealing programs are discussed which are directed toward the two major classes of engine seals: engine shaft seals and primary gas path seals. In addition, some concepts and results from fundamental lubrication research, as it pertains to the lubrication of bearings, are presented.

  8. Suggested criteria for evaluating systems engineering methodologies

    NASA Technical Reports Server (NTRS)

    Gates, Audrey; Paul, Arthur S.; Gill, Tepper L.

    1989-01-01

    Systems engineering is the application of mathematical and scientific principles to practical ends in the life-cycle of a system. A methodology for systems engineering is a carefully developed, relatively complex procedure or process for applying these mathematical and scientific principles. There are many systems engineering methodologies (or possibly many versions of a few methodologies) currently in use in government and industry. These methodologies are usually designed to meet the needs of a particular organization. It has been observed, however, that many technical and non-technical problems arise when inadequate systems engineering methodologies are applied by organizations to their systems development projects. Various criteria for evaluating systems engineering methodologies are discussed. Such criteria are developed to assist methodology-users in identifying and selecting methodologies that best fit the needs of the organization.

  9. Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

  10. Structural Systems Track within Civil Engineering Course Recommendations

    E-print Network

    Wang, Yuhang

    Structural Systems Track within Civil Engineering Course Recommendations Hydraulic Engineering CEE 4300 Environmental Engineering Systems CEE 4600 Transport to concentrate your elective courses within one area of civil engineering, in order

  11. Geotechnical Systems Track within Civil Engineering Course Recommendations

    E-print Network

    Wang, Yuhang

    Geotechnical Systems Track within Civil Engineering Course Recommendations Hydraulic Engineering CEE 4300 Environmental Engineering Systems CEE 4600 Transport to concentrate your elective courses within one area of civil engineering, in order

  12. Environmental Systems Track within Civil Engineering Course Recommendations

    E-print Network

    Wang, Yuhang

    Environmental Systems Track within Civil Engineering Course Recommendations: CEE 4200 Hydraulic Engineering CEE 4300 Environmental Engineering Systems CEE your elective courses within one area of civil engineering, in order

  13. Single-stage fluidized-bed gasification

    NASA Astrophysics Data System (ADS)

    Lau, F. S.; Rue, D. M.; Weil, S. A.; Punwani, D. V.

    1982-04-01

    The single-stage fluidized-bed gasification process, in addition to being a simple system, maximizes gas production and allows the economic exploitation of small peat deposits. The objective of this gasification project is to conduct experiments in order to obtain data for designing a single-stage fluidized-bed gasifier, and to evaluate the economics of converting peat to synthesis gas and to SNG by this process. An existing high-temperature and high-pressure process development unit (PDU) was modified to permit the direct feeding of peat to the fluidized bed. Peat flows by gravity from the feed hopper through a 6-inch line to the screw-feeder conveyor. From there, it is fed to the bottom tee section of the reactor and transported into the gasification zone. Oxygen and steam are fed through a distributing ring into the reactor. Gasification reactions occur in the annulus formed by the reactor tube and a central standpipe. Peat ash is discharged from the reactor by overflowing into the standpipe and is collected in a solids receiver.

  14. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  15. Prerequisites: Control Systems I+II, Engine Class (IC Engines and Propulsion Systems, Introduction to

    E-print Network

    Daraio, Chiara

    to Modeling and Control of Internal Combustion Engine Systems,...), Matlab/Simulink experience Contact for a Novel Engine Concept Position Control for an Internal Combustion Engine (Simulation) Description an internal combustion engine piston follow a reference position trajectory with sufficient accuracy

  16. The Petrocarb pneumatic feeding system: A proven method for feeding particulate solids at controlled rates. [for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Reintjes, H.

    1977-01-01

    An outline of the principal features of the Petrocarb Pneumatic Feeding System is given. Early development and various commercial applications are included. It is concluded that the Petrocarb Injection System is capable of feeding dry solids into most of the processes being developed for utilizing coal.

  17. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Final technical progress report, April 1981-July 1983

    SciTech Connect

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.

    1983-09-01

    This program is directed at performing experimental and analytical investigations, deriving system designs, and estimating costs to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report describes work completed on the four technical program tasks: Thermodynamic projections; Getter Selection and Qualification; System Performance Projections; and Program Definition for Concept Scale-up during the 27-month contract performance period. Work completed on the thermodynamic projections includes a data base update, development of alkali phase diagrams, and system performance projections. Getter selection and qualification efforts involved over 70 kinetic studies in which a leading candidate getter - emathlite - was selected and characterized. System performance projections identified a packed-bed configuration containing relatively large getter pellets as the preferred contacting device for a full-scale unit. For emathlite, we concluded that full-scale unit bed heights of 2 m or less would be required if we assume annual replacement on the basis of bed saturation capacity. Concept scale-up work involved defining the hardware and test program requirements for further development of the emathlite packed-bed system. 56 references, 80 figures, 74 tables.

  18. CAESY - COMPUTER AIDED ENGINEERING SYSTEM

    NASA Technical Reports Server (NTRS)

    Wette, M. R.

    1994-01-01

    Many developers of software and algorithms for control system design have recognized that current tools have limits in both flexibility and efficiency. Many forces drive the development of new tools including the desire to make complex system modeling design and analysis easier and the need for quicker turnaround time in analysis and design. Other considerations include the desire to make use of advanced computer architectures to help in control system design, adopt new methodologies in control, and integrate design processes (e.g., structure, control, optics). CAESY was developed to provide a means to evaluate methods for dealing with user needs in computer-aided control system design. It is an interpreter for performing engineering calculations and incorporates features of both Ada and MATLAB. It is designed to be reasonably flexible and powerful. CAESY includes internally defined functions and procedures, as well as user defined ones. Support for matrix calculations is provided in the same manner as MATLAB. However, the development of CAESY is a research project, and while it provides some features which are not found in commercially sold tools, it does not exhibit the robustness that many commercially developed tools provide. CAESY is written in C-language for use on Sun4 series computers running SunOS 4.1.1 and later. The program is designed to optionally use the LAPACK math library. The LAPACK math routines are available through anonymous ftp from research.att.com. CAESY requires 4Mb of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic tape cartridge (QIC-24) in UNIX tar format. CAESY was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  19. Engineering Complex Systems: Validating the Human Factors

    Microsoft Academic Search

    George M. Samaras

    Humans increase system complexity. Properly validating the human factors issues of the system reduces the degree of uncertainty in system behavior. Systems engineering employs validation to demonstrate that the proper system was constructed. Validation is based on requirements; faulty requirements result in faulty validations. Complete and correct requirements satisfice all stakeholders, inform system designers, and provide a basis for quantitative

  20. Current Measurement System for Ocean Engineering

    Microsoft Academic Search

    G. Edgerton; B. Streets; R. E. MacDougal; T. P. Smith

    1976-01-01

    A deep ocean current measurement system is being developed to meet the present and future environmental data requirements for ocean engineering design and construction. This development is being supported by the Naval Facilities Engineering Command, the Naval Oceanographic Office, and the Director of Navy Laboratories. The specific system goal is for 95% probability of full data recovery after one-year implant.

  1. Charging system for an automotive engine

    Microsoft Academic Search

    Matsui

    1987-01-01

    This patent describes a charging system for an automotive engine having a regulator for regulating the charge of battery, a vehicle speed sensor, an engine speed sensor, and an electric load sensor, the system comprising: first means for obtaining a balance vehicle speed at which mean charging current and mean discharging current are substantially balanced; second means for deciding a

  2. Combustion system for internal combustion engines

    Microsoft Academic Search

    I. Matsuno; H. Yamazoe

    1981-01-01

    A combustion system for internal combustion engines having an exhaust gas recirculating system which is operable by a lean airfuel mixture without aggravation of the combustion. The piston of the engine has a sub-piston projecting on the top thereof and the cylinder head is formed with a recess into which the sub-piston is insertable at a position near the top

  3. A Systems Engineering Approach to Developing

    E-print Network

    Langford Department of Systems Engineering #12;Large Company X Can Do Anything !! Is There Room For Start-UPs · Large companies ­ Build infrastructure, gain momentum ­ Confined to successful paradigms · Start (lottery for cash) · 80+ hour work weeks · Divorce rates are high #12;Beer and Systems Engineering #12;Beer

  4. Mechanical Engineering Industrial Energy Systems Laboratory

    E-print Network

    Candea, George

    's operation consists of two succeeding cycles, heat-pump and thermal- engine which represents the chargingSchool of Mechanical Engineering Industrial Energy Systems Laboratory Study of the Integration of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR

  5. Engineering aspects of water pollution control systems

    Microsoft Academic Search

    R. G. Dalbke; A. J. Turk

    1967-01-01

    The importance of proper engineering when providing pollution control systems is emphasized. Organization of engineering projects is described in detail. Included are discussions of: (1) collection and evaluation of available data; (2) establishment of survey and test program; (3) integration and evaluation of findings; (4) establishment of pollution control and water utilization systems; and (5) specification and detailed design preparation.

  6. FADEC control system for MPM 20 engine

    Microsoft Academic Search

    Rudolf Andoga; L. Fozo; L. Madarasz; J. Povazan

    2009-01-01

    The article deals with full authority digital engine control (FADEC) systems and possibilities of application of concepts and methods of artificial intelligence in such control system. FADEC represents a framework where the most modern methods of artificial intelligence can be applied. This represents a great potential for increase of reliability, efficiency and overall quality of control of turbojet engines. We

  7. System Study for Axial Vane Engine Technology

    NASA Technical Reports Server (NTRS)

    Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.

    2008-01-01

    The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.

  8. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

  9. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2013-01-01 2013-01-01 false Turbine engine bleed air system. 23.1111 Section...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

  10. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2014-01-01 2014-01-01 false Turbine engine bleed air system. 23.1111 Section...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

  11. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2012-01-01 2012-01-01 false Turbine engine bleed air system. 23.1111 Section...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

  12. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

  13. Great Plains Gasification Project process stream design data. [Lurgi Process

    SciTech Connect

    Honea, F.I.

    1985-09-01

    The Great Plains Coal Gasification Plant (GPGP) is the first commercial coal-to-synthetic natural gas plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams, and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the Department of Energy's ASPEN (Advanced System for Process Engineering) computer simulation models of the GPGP processes. 8 refs., 22 figs., 2 tabs.

  14. Systems Engineering -MENG Post Graduate Activities Detail & History

    E-print Network

    Lipson, Michal

    Mechanical Engineer Livermore CA Lockheed Martin Systems Engineer San Francisco CA Lockheed Martin Systems Engineer Senior Sunnyvale CA Lockheed Martin Mechanical Engineer Syracuse NY Lockheed Martin Mechanical Engineer West Palm Beach FL Lockheed Martin Software Engineer Moorestown NJ Lockheed Martin Systems

  15. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  16. Catalytic gasification fundamentals

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.

    1992-01-01

    Last year it was found that Maya coke gasification could be greatly accelerated if the colting took place in the presence of small amounts (below 1%) of caustic. When the Maya coke thus prepared was impregnated with 1% of CaO-KO[sub x] catalyst, the rate of gasification was doubled. During the past year, this phenomenon has been further investigated and the work has been extended to two other and very different cokes. As shown in Figure 2, a Statfjord Bottoms coke prepared in the presence of 1% NaOH and then impregnated with CaO[sub x]-KO[sub x] catalyst gasified very much faster than the same material coked in the absence of NaOH. The same phenomenon is exhibited in Figure 3 for a Torrance Hondo coke, although in this case the difference between the cokes prepared in the presence and absence of NaOH is somewhat smaller. It is concluded that the preparation method of the coke is of major importance for the rate of gasification and that the phenomenon that presence of alkali during coking is helpful is a generic one.

  17. Catalytic gasification fundamentals

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.

    1992-11-01

    Last year it was found that Maya coke gasification could be greatly accelerated if the coking took place in the presence of small amounts (below 1%) of caustic. When the Maya coke thus prepared was impregnated with 1% of CaO-KO{sub x} catalyst, the rate of gasification was doubled. During the past year, this phenomenon has been further investigated and the work has been extended to two other and very different cokes. As shown in Figure 2, a Statfjord Bottoms coke prepared in the presence of 1% NaOH and then impregnated with CaO{sub x}-KO{sub x} catalyst gasified very much faster than the same material coked in the absence of NaOH. The same phenomenon is exhibited in Figure 3 for a Torrance Hondo coke, although in this case the difference between the cokes prepared in the presence and absence of NaOH is somewhat smaller. It is concluded that the preparation method of the coke is of major importance for the rate of gasification and that the phenomenon that presence of alkali during coking is helpful is a generic one.

  18. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  19. Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, fourth quarter, 1983. [Great Plains, Mercer County, North Dakota

    SciTech Connect

    Not Available

    1983-01-01

    Activities remain on schedule to meet Great Plains Gasification Associates' full gas production date. Gasification Plant: detailed engineering in the Contractors' home office was completed in the fourth quarter. The remaining engineering tasks, which include field support activities and special projects, will be performed by the Contractors' Field Engineering Group. A substantial amount of construction progress was achieved during the fourth quarter. Although the Plant's construction activities are still slightly behind schedule, it is currently forecasted that the construction schedule will be regained by the end of June 1984. Start-Up operations are continuing at a rapid pace. The current emphasis is on system turnover and commissioning activities. The environmental permitting for the construction phase is complete. Freedom Mine: mine development activities remain on schedule.

  20. Engine powered auxiliary air supply system

    SciTech Connect

    Mc Lean, J.R.

    1987-01-27

    This patent describes an auxiliary air supply system comprising: an engine; at least one exhaust driven turbocharger including a turbine and a compressor associated therewith for supply of compressed air to the engine; a low pressure compressor including means for powering the low pressure compressor utilizing the engine exhaust gas and flow connected to receive a portion of the compressed air exiting the engine turbocharger compressor; a high pressure compressor including means for powering the high pressure compressor utilizing the engine exhaust gas and flow connected to receive the compressed air exiting the low pressure compressor; and means for directing engine exhaust gases between at least one engine turbocharger and the means for powering the low and high pressure compressors.

  1. Visualizing systems engineering data with Java

    SciTech Connect

    Barter, R; Vinzant, A

    1998-11-10

    Systems Engineers are required to deal with complex sets of data. To be useful, the data must be managed effectively, and presented in meaningful terms to a wide variety of information consumers. Two software patterns are presented as the basis for exploring the visualization of systems engineering data. The Model, View, Controller pattern defines an information management system architecture. The Entity, Relation, Attribute pattern defines the information model. MVC ?Views? then form the basis for the user interface between the information consumer and the MVC ?Controller?/?Model? combination. A Java tool set is described for exploring alternative views into the underlying complex data structures encountered in systems engineering.

  2. Turbocharged engine exhaust gas recirculation system

    SciTech Connect

    Stachowicz, R.W.

    1984-01-24

    Improved exhaust gas recirculation systems for turbocharged gas engines that include an exhaust pipe, a turbocharger connected thereto, and a carburetor connected with a source of gas for the engine. The recirculation system includes an air conduit extending from the turbocharger compressor discharge to a venturi, an exhaust gas conduit that extends from a connection with the exhaust pipe between the engine and the turbocharger to the venturi, a second air conduit that extends from the exhaust pipe to a connection with the first air conduit, and control valves located in the exhaust gas conduit and in the second air conduit. The valves are closed when the engine is being started or idling at no load and open when a load is imposed or when engine rpm's are increased. No pumps, blowers, etc. are needed because the system operates on a differential in pressure created within the system to cause the exhaust gas recirculation.

  3. Engine Data Interpretation System (EDIS), phase 2

    NASA Technical Reports Server (NTRS)

    Cost, Thomas L.; Hofmann, Martin O.

    1991-01-01

    A prototype of an expert system was developed which applies qualitative constraint-based reasoning to the task of post-test analysis of data resulting from a rocket engine firing. Data anomalies are detected and corresponding faults are diagnosed. Engine behavior is reconstructed using measured data and knowledge about engine behavior. Knowledge about common faults guides but does not restrict the search for the best explanation in terms of hypothesized faults. The system contains domain knowledge about the behavior of common rocket engine components and was configured for use with the Space Shuttle Main Engine (SSME). A graphical user interface allows an expert user to intimately interact with the system during diagnosis. The system was applied to data taken during actual SSME tests where data anomalies were observed.

  4. Expert systems software for civil engineering applications

    Microsoft Academic Search

    Richard N. Palmer; Brian W. Mar

    1988-01-01

    Expert systems offer a new and valuable approach to the problem of modelling civil engineering systems. This paper examines the advantages that expert systems offer over more conventional forms of computer programming and describes the components of such systems. It also suggests areas of application for which expert systems are likely to be successful and discusses the process of knowledge

  5. A systems engineering primer for every engineer and scientist

    Microsoft Academic Search

    William R

    2001-01-01

    The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http:\\/\\/www-eng.LBNL.gov\\/Systems\\/index.html). It

  6. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  7. HIGHLY EFFICIENT CONVERSION OF SYNGAS FROM BIOMASS GASIFICATION IN SOLID OXIDE FUEL CELLS

    Microsoft Academic Search

    J. Karl; S. Karellas; N. Frank; H. Spliethoff

    The coupling of highly efficient SOFC systems with gasification of biomass is a promising technology for reaching economic feasibility with decentralized combined heat and power production (CHP). But the predicted efficiency of common high temperature fuel cell systems with integrated gasification is usually significantly lower than the efficiency of fuel cells operated with hydrogen or methane. Additional system components like

  8. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Fifth quarterly project report, April 1982-June 1982. [Concentration of Na and K in gas at process conditions; also optimization of removal system

    SciTech Connect

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.

    1982-07-01

    This program is directed at performing experimental and analytical investigations, deriving system designs, and estimating costs to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a comprehensive plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report briefly summarizes efforts previously completed on thermodynamic projections and system performance projections, together with current work on getter selection and qualification completed during the fifth quarter of the project. Work on the thermodynamic projections has been completed and includes an update of the data base, development of alkali phase diagrams, and projections for several gasification processes. Getter selection and qualification efforts involved four tests - two with activated bauxite and one each with diatomaceous earth and Novacite on the thermogravimetric analysis (TGA) system. Finally, system performance projections entailed examination of available kinetic data to ascertain the rate-controlling step, along with modeling efforts to determine the size requirements of a commercial-sized unit.

  9. Systems Engineering and Integration for Technology Programs

    NASA Technical Reports Server (NTRS)

    Kennedy, Kruss J.

    2006-01-01

    The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.

  10. Compressed air storage with humidification (CASH) coal gasification power plant investigation

    Microsoft Academic Search

    M. Nakhamkin; M. Patel

    1991-01-01

    A study was performed to investigate and develop a hybrid coal gasification concept which utilizes an air saturator (AS) with an integrated coal gasification\\/compressed air energy storage (CGS\\/CAES) plant. This potentially attractive concept is designated as AS\\/CGS\\/CAES. In this concept, the coal gasification system provides fuel for the combustors of the CAES reheat turbomachinery train. Motive air from underground storage

  11. Westinghouse gasification process: commercialization status

    Microsoft Academic Search

    J. D. Holmgren; P. Cherish; W. J. Havener

    1983-01-01

    Since the early 1970s, Westinghouse Electric Corporation has been engaged in the development of a pressurized, fluidized bed, gasification process at its Waltz Mill Site located near Pittsburgh, Pennsylvania. This pressurized gasification technology has been developed jointly by the United States Department of Energy and its precursor agencies, the Gas Research Institute and Westinghouse. The process has been judged to

  12. Hybrid bio-thermal gasification

    Microsoft Academic Search

    D. P. Chtnoweth; P. B. Tarman

    1981-01-01

    A hybrid bio-thermal gasification process is disclosed for improved carbonaceous gasification. A biological feed is anaerobically digested with product methane and carbon dioxide containing gas withdrawn from the digester and biological residue separately withdrawn from the digester and introduced into a thermal gasifier where a substantial portion of the biological residue is gasified under elevated temperature conditions producing thermal gasifier

  13. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin

    2014-04-01

    A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process. PMID:24561627

  14. Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal.

    PubMed

    Wang, Wei; Han, Hongjun; Yuan, Min; Li, Huiqiang; Fang, Fang; Wang, Ke

    2011-05-01

    A two-continuous mesophilic (37 ± 2°C) UASB system with step-feed was investigated as an attractive optimization strategy for enhancing COD and total phenols removal of the system and improving aerobic biodegradability of real coal gasification wastewater. Through the step-feed period, the maximum removal efficiencies of COD and total phenols reached 55-60% and 58-63% respectively in the system, at an influent flow distribution ratio of 0.2 and influent COD concentration of 2500 mg/L; the corresponding efficiencies were at low levels of 45-50% and 43-50% respectively at total HRT of 48 h during the single-feed period. The maximum specific methanogenic activity and substrate utilization rate were 592 ± 16 mg COD-CH(4)/(g VSS d) and 89 ± 12 mg phenol/(g VSS d) during the step-feed operation. After the anaerobic digestion with step-feed, the aerobic effluent COD concentration decreased from 270 ± 9 to 215 ± 10 mg/L. The results suggested that step-feed enhanced the degradation of refractory organics in the second reactor. PMID:21093254

  15. Development of an advanced, continuous mild gasification process for the production of co-products (Tasks 2, 3, and 4. 1 to 4. 6), Volume 2

    SciTech Connect

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. (Institute of Gas Technology, Chicago, IL (United States)); Duthie, R.G. (Bechtel Group, Inc., San Francisco, CA (United States)); Wootten, J.M. (Peabody Holding Co., Inc., St. Louis, MO (United States))

    1991-09-01

    Volume 2 contains information on the following topics: (1) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (2) Bench-Scale Char Upgrading Study; (3) Mild Gasification Technology Development: System Integration Studies. (VC)

  16. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Systems-engineered metal buildings. 1926.758 Section 1926...Systems-engineered metal buildings. (a) All of the requirements of this subpart apply to...systems-engineered metal buildings except §§ 1926.755...

  17. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Systems-engineered metal buildings. 1926.758 Section 1926...Systems-engineered metal buildings. (a) All of the requirements of this subpart apply to...systems-engineered metal buildings except §§ 1926.755...

  18. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Systems-engineered metal buildings. 1926.758 Section 1926...Systems-engineered metal buildings. (a) All of the requirements of this subpart apply to...systems-engineered metal buildings except §§ 1926.755...

  19. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Systems-engineered metal buildings. 1926.758 Section 1926...Systems-engineered metal buildings. (a) All of the requirements of this subpart apply to...systems-engineered metal buildings except §§ 1926.755...

  20. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Systems-engineered metal buildings. 1926.758 Section 1926...Systems-engineered metal buildings. (a) All of the requirements of this subpart apply to...systems-engineered metal buildings except §§ 1926.755...

  1. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 2010-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

  2. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 2014-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

  3. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 2011-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

  4. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 2012-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

  5. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 2013-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

  6. Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

  7. System safety in Stirling engine development

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1981-01-01

    The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.

  8. Performance Engineering as an Expert System.

    ERIC Educational Resources Information Center

    Harmon, Paul

    1984-01-01

    Considers three powerful techniques--heuristics, context trees, and search via backward chaining--that a knowledge engineer might employ to develop an expert system to automate performance engineering, i.e., the branch of instructional technology that focuses on the problems of business and industry. (MBR)

  9. Valve operating system for internal combustion engine

    Microsoft Academic Search

    M. Matsuura; M. Nakamori; M. Kuroki

    1988-01-01

    This patent describes a valve operating system for an internal combustion engine, comprising an intake rotary valve and an exhaust rotary valve separately disposed in an intake passage and an exhaust passage, respectively, which independently communicate with a combustion chamber defined between a piston and a cylinder head in an internal combustion engine, the valves including spherical valve bodies adapted

  10. Nuclear engine system simulation (NESS) program update

    SciTech Connect

    Scheil, C.M.; Pelaccio, D.G. (Science Applications International Corporation, 10717 Griffith Park Drive NE, Albuquerque, NM 87123 (United States)); Petrosky, L.J. (Westinghouse Electric Corporation, Advanced Energy Systems, Waltz Mill Site Madison, PA 15663 (United States))

    1993-01-20

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump.

  11. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...system calibrations. (a) The engine flywheel torque and engine speed measurement...86.1308-84. (b) The engine flywheel torque feedback signals to the cycle... (d) When calibrating the engine flywheel torque transducer, any lever arm...

  12. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...system calibrations. (a) The engine flywheel torque and engine speed measurement...86.1308-84. (b) The engine flywheel torque feedback signals to the cycle... (d) When calibrating the engine flywheel torque transducer, any lever arm...

  13. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...system calibrations. (a) The engine flywheel torque and engine speed measurement...86.1308-84. (b) The engine flywheel torque feedback signals to the cycle... (d) When calibrating the engine flywheel torque transducer, any lever arm...

  14. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...system calibrations. (a) The engine flywheel torque and engine speed measurement...86.1308-84. (b) The engine flywheel torque feedback signals to the cycle... (d) When calibrating the engine flywheel torque transducer, any lever arm...

  15. Extending Systems Engineering Leading Indicators for Human Systems Integration Effectiveness

    E-print Network

    de Weck, Olivier L.

    lifecycle · Developing metrics to track HSI performance and indicators to predicatively assess HSI Consideration of Human Systems Integration (HSI) domains EARLY in acquisition and development process leadsExtending Systems Engineering Leading Indicators for Human Systems Integration Effectiveness

  16. Civil Engineering Decision Support Systems in Lithuania

    Microsoft Academic Search

    E. K. Zavadskas; A. Kaklauskas

    Summary Civil engineering decision support systems (construction, building life cycle, refurbishment, total quality management, innovation, etc.) created in Lithuania are described in this paper. The above decision support systems comprise of the following constituent parts: data (database and its management system), models (model base and its management system) and a user interface. Presentation of information in databases may be in

  17. Sodium heat engine system: Space application

    NASA Astrophysics Data System (ADS)

    Betz, Bryan H.; Sungu, Sabri; Vu, Hung V.

    1994-08-01

    This paper explores the possibility of utilizing the Sodium Heat Engine (SHE) or known as AMTEC (Alkali Metal Thermoelectric Converter), for electrical power generation in ``near earth'' geosynchronous orbit. The Sodium Heat Engine principle is very flexible and adapts well to a variety of physical geometries. The proposed system can be easily folded and then deployed into orbit without the need for on site assembly in space. Electric power generated from SHE engine can be used in communication satellites, in space station, and other applications such as electrical recharging of vehicles in space is one of the applications the Sodium Heat Engine could be adapted to serve.

  18. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    SciTech Connect

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  19. Gasification Plant Cost and Performance Optimization

    SciTech Connect

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

  20. Computer Based Systems Engineering Workshop

    Microsoft Academic Search

    Jonah Z. Lavi; Ashok K. Agrawala; Raymond J. A. Buhr; Ken Jackson; Michael Jackson; Bernard Lang

    1991-01-01

    Modern computer based systems are complex multi-systems consisting of many connected individual subsystems; each one of them is typically also a multicomputer system. The subsystems in a multi-system can be either geographically distributed or locally connected systems. Typical examples of computer based systems are medical systems, process control systems, communications systems, weapon systems and large information systems.\\u000a The development of

  1. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  2. Nuclear engine system simulation (NESS) program update

    NASA Astrophysics Data System (ADS)

    Scheil, Christine M.; Pelaccio, Dennis G.; Petrosky, Lyman J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump. Key code outputs include reactor operating charactertistics and weights and well as engine system parameters such as performance, weights, dimensions, pressures, temperatures, mass flows and turbopump operating characteristics for both design and off-design operating conditions. Representative NTP engine system designs are also shown. An overview of NESS methodology and capabilities is presented in this paper, with special emphasis being placed on recent code developments.

  3. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  4. Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water

    Microsoft Academic Search

    Youjun Lu; Liejin Guo; Ximin Zhang; Qiuhui Yan

    2007-01-01

    Biomass gasification in supercritical water is a promising technology for hydrogen production by utilizing wet biomass. A new experimental system of biomass gasification in supercritical water was built in SKLMF. In this paper, a comprehensive thermodynamic analysis, including chemical equilibrium in the reactor, gas–liquid equilibrium in the high-pressure separator, exergy and energy analysis of the whole system, was conducted. Chemical

  5. Heriot-Watt Micro Systems Engineering

    E-print Network

    Painter, Kevin

    Heriot-Watt Micro Systems Engineering Centre - MISEC KEY BENEFITS: · Clean room facilities and individuals. The MISEC facilities include a large fully equipped clean room with spin coater/ exposure, flip

  6. Modelbased Security Engineering for Evolving Systems

    E-print Network

    Jurjens, Jan

    Modelbased Security Engineering for Evolving Systems Jan Jürjens Open University (GB) Microsoft for Secure Change 2 Security: Some Problems ,,Blind" use of security mechanisms: · Security usually" (R. Needham). #12; Jan Jürjens: Models for Secure Change 3 Models Configurations Code Architectural

  7. Augmented Network Model For Engineering System Design

    E-print Network

    de Weck, Olivier L.

    research (supply chains), electrical engineering (circuit (controls) theory), and more recently systems the components of a vehicle, the parts (or subsystems) of an airplane or the states of a formation of flying

  8. Engineering Inspired from biological systems, nanotechnology (and

    E-print Network

    Chemical Engineering Inspired from biological systems, nanotechnology (and more recently, picotechnology) is beginning to revolutionize medicine including improving the prevention, diagnosis novel nanoparticles, nanotubes, and other nanomaterials to improve medicine. Efforts focused on the use

  9. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (inventor); Gilyard, Glenn B (inventor); Conley, Joseph L. (inventor); Stewart, James F. (inventor); Fullerton, Charles G. (inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  10. Prerequisites: Control Systems I+II, Engine Class (IC Engines and Propulsion Systems, Introduction to

    E-print Network

    Daraio, Chiara

    to Modeling and Control of Internal Combustion Engine Systems,...), Model Predictive Control, Matlab Iterative Learning Control for Internal Combustion Engines Modeling and Control Description: In classical. The objective of this work is to apply learning algorithms to highly dynamic internal combustion engines

  11. System engineering toolbox for design-oriented engineers

    NASA Technical Reports Server (NTRS)

    Goldberg, B. E.; Everhart, K.; Stevens, R.; Babbitt, N., III; Clemens, P.; Stout, L.

    1994-01-01

    This system engineering toolbox is designed to provide tools and methodologies to the design-oriented systems engineer. A tool is defined as a set of procedures to accomplish a specific function. A methodology is defined as a collection of tools, rules, and postulates to accomplish a purpose. For each concept addressed in the toolbox, the following information is provided: (1) description, (2) application, (3) procedures, (4) examples, if practical, (5) advantages, (6) limitations, and (7) bibliography and/or references. The scope of the document includes concept development tools, system safety and reliability tools, design-related analytical tools, graphical data interpretation tools, a brief description of common statistical tools and methodologies, so-called total quality management tools, and trend analysis tools. Both relationship to project phase and primary functional usage of the tools are also delineated. The toolbox also includes a case study for illustrative purposes. Fifty-five tools are delineated in the text.

  12. Engine idle control system for internal combustion engine

    SciTech Connect

    Yuzawa, H.; Seimiya, Y.

    1989-05-16

    A automotive vehicle is described including: an internal combustion engine having an induction system; a throttle valve disposed in the induction system, the throttle valve being movable in response to a manually derived command signal to move between a closed position and an open position; and a device for controlling the position of the throttle valve when the manually derived command signal is absent and the engine is idling; the device comprising: a control valve which modulates a vacuum pressure signal derived from the induction system in a manner to form a control signal, the control valve having a solenoid; a servo operatively connected with the throttle valve, the servo being responsive to the vacuum pressure signal and the control signal, the servo being arranged to be motivated by the vacuum pressure signal and so that the amount of motivation by the vacuum pressure signal is subject to control by the control signal.

  13. EE 337 Engineering nano-systems EE 337 Engineering micro and nano-systems

    E-print Network

    Levi, Anthony F. J.

    EE 337 Engineering nano-systems Page 1 EE 337 Engineering micro and nano-systems A.F.J. Levi Spring.edu/dept/engineering/eleceng/Adv_Network_Tech/Html/ee337.html This course is designed as an introduction to nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of nano-technology into systems

  14. Plasma gasification of biomedical waste

    SciTech Connect

    Carter, G.W.; Tsangaris, A.V.

    1995-12-31

    Resorption Canada Limited (RCL) has operated a plasma gasification installation near Ottawa, Ontario, Canada for over ten years; therefore, the salient capabilities and advantages of plasma gasification over other state-of-the-art technologies for environmentally cleaner disposal of a number of waste materials became increasingly clearer as more and more experience was gained. Plasma gasification is a non-incineration thermal process which uses extremely high temperatures to completely decompose input waste material into very simple molecules. The capability to generate such high heat without using oxygen, unlike a combustion flame, and the temperature profile of the hot plasma gases being between 3,000 C and 8,000 C was ideal for the disposal of waste materials through gasification. RCL conducted two major plasma gasification projects with Municipal Solid Waste (MSW) which were highly successful, indicating very clearly that the basic technology for plasma gasification was a very viable alternative to conventional incineration techniques with resultant environmental benefits related to gaseous emission levels and slag properties. The experimentation ended with two tests which included full environmental analyses for each. These results provided the initiative for similar testing with biomedical waste. The work on the plasma gasification of biomedical waste is summarized. The work on MSW is presented in a separate paper.

  15. Stirling cycle engine and refrigeration systems

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (inventor)

    1976-01-01

    A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.

  16. New Course in Engineering Systems at Purdue University - Introduction to Civil Engineering Systems Design

    Microsoft Academic Search

    Samuel Labi

    The large inventory and high value of civil engineering systems, coupled with the multiplicity of stakeholders and performance measures, necessitate a comprehensive yet integrated approach to the development and management of these systems. In wake of well-publicized failures, civil systems are facing scrutiny more than ever before, and engineers are increasingly being called upon to render account of their fiduciary

  17. EE 337 Engineering micro and nano-systems EE 337 Engineering micro and nano-systems

    E-print Network

    Levi, Anthony F. J.

    EE 337 Engineering micro and nano-systems EE 337 Engineering micro and nano-systems A.F.J. Levi as an introduction to micro and nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of micro and nano-technology into systems. It is a hands

  18. EE 238 Engineering nano-systems EE 238 Engineering nano-systems

    E-print Network

    Levi, Anthony F. J.

    EE 238 Engineering nano-systems Page 1 EE 238 Engineering nano-systems A.F.J. Levi Spring 2009, OHE This course is designed as an introduction to nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of nano-technology into systems. It is a hands

  19. Engineering an Immune System1 Stephanie Forrest

    E-print Network

    Forrest, Stephanie

    Engineering an Immune System1 Stephanie Forrest Dept. of Computer Science, University of New Mexico February 11, 2001 #12;1 1. Introduction The immune system is highly complex, and many researchers believe, simply ones that work well enough to increase survivability. We know that many simpler immune systems

  20. Turbopump systems for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The turbopump system, from preliminary design through rocket engine testing is examined. Selection of proper system type for each application and integration of the components into a working system are dealt with. Details are also given on the design of various components including inducers, pumps, turbines, gears, and bearings.

  1. Plasma gasification of municipal solid waste

    SciTech Connect

    Carter, G.W.; Tsangaris, A.V. [Resorption Canada Ltd., Ottawa, Ontario (Canada)

    1995-12-31

    Resorption Canada Limited (RCL) has conducted extensive operational testing with plasma technology in their plasma facility near Ottawa, Ontario, Canada to develop an environmentally friendly waste disposal process. Plasma technology, when utilized in a reactor vessel with the exclusion of oxygen, provides for the complete gasification of all combustibles in source materials with non-combustibles being converted to a non-hazardous slag. The energy and environmental characteristics of the plasma gasification of carbonaceous waste materials were studied over a period of eight years during which RCL completed extensive experimentation with MSW. A plasma processing system capable of processing 200--400 lbs/hr of MSW was designed and built. The experimentation on MSW concentrated on establishing the optimum operating parameters and determining the energy and environmental characteristics at these operating parameters.

  2. Plasma Treatments and Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  3. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and component tests. (a) For those systems or components that...

  4. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and component tests. (a) For those systems or components that...

  5. DEMONSTRATION OF BLACK LIQUOR GASIFICATION AT BIG ISLAND

    SciTech Connect

    Robert DeCarrera

    2003-10-20

    This Technical Progress Report provides an account of the status of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific Corporation's Big Island, VA facility. The report also includes budget information and a milestone schedule. The project to be conducted by G-P is a comprehensive, complete commercial-scale demonstration that is divided into two phases. Phase I is the validation of the project scope and cost estimate. Phase II is project execution, data acquisition and reporting, and consists of procurement of major equipment, construction and start-up of the new system. Phase II also includes operation of the system for a period of time to demonstrate the safe operation and full integration of the energy and chemical recovery systems in a commercial environment. The objective of Phase I is to validate the process design and to engineer viable solutions to any technology gaps. This phase includes engineering and planning for the integration of the full-scale MTCI/StoneChem PulseEnhanced{trademark} black liquor steam-reformer chemical recovery system into G-P's operating pulp and paper mill at Big Island, Virginia. During this phase, the scope and cost estimate will be finalized to confirm the cost of the project and its integration into the existing system at the mill. The objective of Phase II of the project is the successful and safe completion of the engineering, construction and functional operation of the fully integrated full-scale steam reformer process system. This phase includes installation of all associated support systems and equipment required for the enhanced recovery of both energy and chemicals from all of the black liquor generated from the pulping process at the Big Island Mill. The objective also includes operation of the steam reformer system to demonstrate the ability of the system to operate reliably and achieve designed levels of energy and chemical recovery while maintaining environmental emissions at or below the limits set by the environmental permits.

  6. Gasification Product Improvement Facility (GPIF). Final report

    SciTech Connect

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  7. Systems Engineering -MENG Post Graduate Activities Detail & History

    E-print Network

    Lipson, Michal

    Systems Engineer Pasadena CA Lockheed Martin Design and Sustaining Engineer Houston TX Lockheed Martin Electrical Engineer Baltimore/Washington MD/DC Lockheed Martin Embedded Software Engineer Owego NY Lockheed Martin Mechanical Engineer Philadelphia PA Lockheed Martin Senior Software Engineer Baltimore

  8. Reusable Rocket Engine Turbopump Health Management System

    NASA Technical Reports Server (NTRS)

    Surko, Pamela

    1994-01-01

    A health monitoring expert system software architecture has been developed to support condition-based health monitoring of rocket engines. Its first application is in the diagnosis decisions relating to the health of the high pressure oxidizer turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic system runs off-line, using as input the data recorded from hundreds of sensors, each running typically at rates of 25, 50, or .1 Hz. The system is invoked after a test has been completed, and produces an analysis and an organized graphical presentation of the data with important effects highlighted. The overall expert system architecture has been developed and documented so that expert modules analyzing other line replaceable units may easily be added. The architecture emphasizes modularity, reusability, and open system interfaces so that it may be used to analyze other engines as well.

  9. Engineered containment and control systems: nurturing nature.

    PubMed

    Clarke, James H; MacDonell, Margaret M; Smith, Ellen D; Dunn, R Jeffrey; Waugh, W Jody

    2004-06-01

    The development of engineered containment and control systems for contaminated sites must consider the environmental setting of each site. The behaviors of both contaminated materials and engineered systems are affected by environmental conditions that will continue to evolve over time as a result of such natural processes as climate change, ecological succession, pedogenesis, and landform changes. Understanding these processes is crucial to designing, implementing, and maintaining effective systems for sustained health and environmental protection. Traditional engineered systems such as landfill liners and caps are designed to resist natural processes rather than working with them. These systems cannot be expected to provide long-term isolation without continued maintenance. In some cases, full-scale replacement and remediation may be required within 50 years, at an effort and cost much higher than for the original cleanup. Approaches are being developed to define smarter containment and control systems for stewardship sites, considering lessons learned from implementing prescriptive waste disposal regulations enacted since the 1970s. These approaches more effectively involve integrating natural and engineered systems; enhancing sensors and predictive tools for evaluating performance; and incorporating information on failure events, including precursors and consequences, into system design and maintenance. An important feature is using natural analogs to predict environmental conditions and system responses over the long term, to accommodate environmental change in the design process, and, as possible, to engineer containment systems that mimic favorable natural systems. The key emphasis is harmony with the environment, so systems will work with and rely on natural processes rather than resisting them. Implementing these new integrated systems will reduce current requirements for active management, which are resource-intensive and expensive. PMID:15209944

  10. Two-tank working gas storage system for heat engine

    Microsoft Academic Search

    Hindes; Clyde J

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the

  11. Co-gasification of solid waste and lignite - a case study for Western Macedonia.

    PubMed

    Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E

    2008-01-01

    Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct co-gasification plant. The cost of electricity estimated was not competitive, compared to the prices dominating the Greek electricity market and thus further economic evaluation is required. The project would be acceptable if modular construction of the unit was first adopted near operating power plants, based on parallel co-gasification, and gradually incorporating the remaining process steps (gas purification, power generation) with the aim of eventually establishing a true direct co-gasification plant. PMID:17631995

  12. EE 337 Engineering micro and nano-systems EE 337 Engineering micro and nano-systems

    E-print Network

    Levi, Anthony F. J.

    EE 337 Engineering micro and nano-systems Page 1 EE 337 Engineering micro and nano-systems A.edu/dept/engineering/eleceng/Adv_Network_Tech/Html/ee337.html This course is designed as an introduction to micro and nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of micro and nano

  13. Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers

    EPA Science Inventory

    Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

  14. Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers

    EPA Science Inventory

    Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

  15. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

  16. Hybrid bio-thermal gasification

    SciTech Connect

    Chtnoweth, D.P.; Tarman, P.B.

    1981-09-15

    A hybrid bio-thermal gasification process is disclosed for improved carbonaceous gasification. A biological feed is anaerobically digested with product methane and carbon dioxide containing gas withdrawn from the digester and biological residue separately withdrawn from the digester and introduced into a thermal gasifier where a substantial portion of the biological residue is gasified under elevated temperature conditions producing thermal gasifier products and thermal residue with at least a portion of the thermal gasifier products or their derivatives being returned to the digester. The process provides high conversion of the carbonaceous material and biological feed stocks to gas products and permits gasification of a wider variety of biological feeds by anaerobic digestion processes while requiring less external nutrient feeding to the process. The process of this invention provides a highly efficient process for production of substitute natural gas. Various advantages of interrelation between the anaerobic digester and thermal gasification are taught.

  17. Engineering Information Management Systems survey: CADCAM-002

    SciTech Connect

    Fletcher, S.K.

    1984-09-01

    An immediate goal of CAD/CAM integration in the DOE Nuclear Weapons Complex is automated data transfer/translation between the design, analysis, and manufacturing functions. A longer range goal is to use CAD derived geometric part descriptions as official product definition, rather than the current drawing based product definition. The Engineering Information Management System is described loosely as that software system which performs all the needed functions related to archiving and accessing computer based product definition. Major ingredients of such a system include automated data management, neutral format, engineering databases, information models, and translators. This report surveys the current state of the art in these five areas.

  18. Engineering monitoring expert system's developer

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1991-01-01

    This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.

  19. Systems Engineering Research Overview and Opportunities

    E-print Network

    de Weck, Olivier L.

    could derail a $30 billion effort to field an integrated Ballistic Missile Defense System (BMDS Agency (MDA) has not completed a systems engineering plan or developed a sustainment plan for BMDS, jeopardizing the development of an integrated BMDS, the DOD IG said. The report emphasizes that DOD must

  20. APPLICATIONS OF EXPERT SYSTEMS IN ENVIRONMENTAL ENGINEERING

    EPA Science Inventory

    Expert systems are a promising computer-based approach to helping environmental engineers solve difficult problems. A number of such systems have been developed to date in the areas of hazard assessment, modeling support, process failure diagnosis, and regulatory support. The US ...

  1. Systems Engineering of Coast Guard Aviator Training.

    ERIC Educational Resources Information Center

    Hall, Eugene R.; Caro, Paul W.

    This paper describes a total-program application of the systems engineering concept of the U.S. Coast Guard aviation training programs. The systems approach used treats all aspects of the training to produce the most cost-effective integration of academic, synthetic, and flight training for the production of graduate Coast Guard aviators. The…

  2. Systems engineering for software-intensive projects

    Microsoft Academic Search

    Herbert Hecht

    1999-01-01

    The technical shortcomings of major software-intensive projects, as well as their cost overruns and schedule slippages, are usually attributed to poor management practices. We hope to show that the application of established systems engineering techniques can help to overcome, or at least to reduce, the difficulties that are encountered in the development of large information processing and automated control systems.

  3. A Management Engineered System for Bilingual Instruction.

    ERIC Educational Resources Information Center

    Blomstedt, Robert; Tinajero, Josefina

    The model shows how the essential components of a bilingual instructional setting can be interwoven with the concepts espoused in Management Engineered Teacher Education to provide a systems example that is adaptable to any classroom by the bilingual teacher. Implementation of the system begins with an assessment of the child's language…

  4. Hydrogen Production from Biomass via Supercritical Water Gasification

    Microsoft Academic Search

    A. Demirbas

    2010-01-01

    Comparison with other biomass thermochemical gasification, such as air gasification or steam gasification, the supercritical water gasification can directly deal with the wet biomass without drying, and has high gasification efficiency in lower temperatures. The cost of hydrogen production from supercritical water gasification of wet biomass was several times higher than the current price of hydrogen from steam methane reforming.

  5. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents and the feedstock quantity (i.e. coal), the pressure, the gasification and the combustion temperatures. The performance indicators included the composition and the energy content of the product gas as well as the carbon and energy efficiency achieved under each operational scenario. Different operational scenarios for every model configuration facilitated the cross-comparison among different configurations. The proximate and ultimate analysis data for the coal seams modelled were taken from a number of candidate UCG sites (Durucan et al., 2014) .The model findings were validated using the results of field trials reported in the literature. It was found that, increased gasification temperature leads to higher H2 and CO quantities in the product gas. Moreover, CH4 and CO2 concentrations increased as reaction pressure increased, while the CH4 quantity reached its highest value at the highest operational pressure, when combined with the lowest gasification temperature. The simulation models developed can be used to design and validate experimental UCG studies and offer significant advantages in terms of time and resource savings. As the UCG process consists of interrelated stages and a number of diverse phenomena, therefore, the gasification designs developed could act as the basis for an integrated UCG model tailored to the needs of a UCG pilot plant.

  6. System Engineering of Photonic Systems for Space Application

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  7. Optimization in the systems engineering process

    NASA Technical Reports Server (NTRS)

    Lemmerman, Loren A.

    1993-01-01

    The essential elements of the design process consist of the mission definition phase that provides the system requirements, the conceptual design, the preliminary design and finally the detailed design. Mission definition is performed largely by operations analysts in conjunction with the customer. The result of their study is handed off to the systems engineers for documentation as the systems requirements. The document that provides these requirements is the basis for the further design work of the design engineers at the Lockheed-Georgia Company. The design phase actually begins with conceptual design, which is generally conducted by a small group of engineers using multidisciplinary design programs. Because of the complexity of the design problem, the analyses are relatively simple and generally dependent on parametric analyses of the configuration. The result of this phase is a baseline configuration from which preliminary design may be initiated.

  8. Engineering of complex systems: The impact of systems engineering at NASA

    NASA Astrophysics Data System (ADS)

    Kludze, Ave-Klutse Kodzo Paaku

    The "true" impact or value of systems engineering to an organization unfortunately appears not to have been well-studied and understood. The principles of systems engineering are highly encouraged by NASA at all levels, and most practitioners, both internal and external to NASA, intuitively "believe" it adds some value to the development of complex systems by producing them faster, better and cheaper. This research, in trying to fill a gap that exists in the systems engineering literature, analyzes data collected within NASA and other sources external to NASA (INCOSE) for comparisons. Analyses involving a number of case studies performed on selected NASA projects are presented to draw attention to the impact systems engineering had or could have had on these projects. This research clearly shows that systems engineering does add value to projects within and outside NASA. The research results further demonstrate that systems engineering has been beneficial not only to NASA but also to organizations within which INCOSE members work. It was determined, however, that systems engineering does not operate in a vacuum and may not always guarantee success through mere application. During this research, it was discovered that the lack of or inadequate application of systems engineering in the development of complex systems may result in cost overruns, poor technical performance, project delays, and in some cases unmitigated risk with disastrous consequences including the loss of life and property. How much is saved (in terms of cost, schedule) or improved (in terms of technical performance) as a result of its implementation may never be known precisely, but by indirectly measuring its value or impact on a project, percentages of project budget spent on systems engineering activities and any schedule reductions or performance enhancements realized could be determined. According to this research, systems engineering is not a waste of time and resources; in most cases, it is likely to produce some positive impact or value in terms of cost, schedule, technical performance, and risk when applied. The stage in a project's life cycle in which systems engineering is introduced may determine the potential value to be realized by the project. The generation of systems engineering documents is not an indicator of proper execution or performance of systems engineering activities. Projects, as this research shows, are selective in documents they generate. Completion or attendance of job-sponsored systems engineering training programs has little or no effect on NASA engineers and their INCOSE counterparts. This research also uncovered some nontechnical (political and cultural preconceptions or alignments) issues that, when not properly addressed, may impact or impede the value derived from systems engineering. This dissertation also examined the satisfaction with the systems engineering process and the willingness of participants from the two groups studied (NASA and INCOSE) to use it on future projects. The approach used in this study may provide a tool for evaluating the benefits or impact of systems engineering on a project. The research also emphasizes the benefits and relationships among systems engineering, cost, technical performance, schedule, and risks in its analysis of selected NASA projects.

  9. User engineering: A new look at system engineering

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Larry L.

    1987-01-01

    User Engineering is a new System Engineering perspective responsible for defining and maintaining the user view of the system. Its elements are a process to guide the project and customer, a multidisciplinary team including hard and soft sciences, rapid prototyping tools to build user interfaces quickly and modify them frequently at low cost, and a prototyping center for involving users and designers in an iterative way. The main consideration is reducing the risk that the end user will not or cannot effectively use the system. The process begins with user analysis to produce cognitive and work style models, and task analysis to produce user work functions and scenarios. These become major drivers of the human computer interface design which is presented and reviewed as an interactive prototype by users. Feedback is rapid and productive, and user effectiveness can be measured and observed before the system is built and fielded. Requirements are derived via the prototype and baselined early to serve as an input to the architecture and software design.

  10. Thermoelectric system for an engine

    SciTech Connect

    Mcgilvray, Andrew N.; Vachon, John T.; Moser, William E.

    2010-06-22

    An internal combustion engine that includes a block, a cylinder head having an intake valve port and exhaust valve port formed therein, a piston, and a combustion chamber defined by the block, the piston, and the head. At least one thermoelectric device is positioned within either or both the intake valve port and the exhaust valve port. Each of the valves is configured to move within a respective intake and exhaust valve port thereby causing said valves to engage the thermoelectric devices resulting in heat transfer from the valves to the thermoelectric devices. The intake valve port and exhaust valve port are configured to fluidly direct intake air and exhaust gas, respectively, into the combustion chamber and the thermoelectric device is positioned within the intake valve port, and exhaust valve port, such that the thermoelectric device is in contact with the intake air and exhaust gas.

  11. Sodium heat engine system: Space application

    SciTech Connect

    Betz, B.H. [Environmental Engineering, Douglas Aircraft, Long Beach California (United States); Sungu, S.; Vu, H.V. [Mechanical Engineering Department, California State University, Long Beach California (United States)

    1994-08-10

    This paper explores the possibility of utilizing the Sodium Heat Engine (SHE) or known as AMTEC (Alkali Metal Thermoelectric Converter), for electrical power generation in ``near earth`` geosynchronous orbit. The Sodium Heat Engine principle is very flexible and adapts well to a variety of physical geometries. The proposed system can be easily folded and then deployed into orbit without the need for on site assembly in space. Electric power generated from SHE engine can be used in communication satellites, in space station, and other applications such as electrical recharging of vehicles in space is one of the applications the Sodium Heat Engine could be adapted to serve. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  12. Systems Engineering -MENG Post Graduate Activities Detail & History

    E-print Network

    Lipson, Michal

    New York NY Lockheed Martin Corporation Systems Engineer Moorestown NJ Lockheed Martin Corporation Engineer Owego NY Lockheed Martin Corporation Engrg Leadership Devel Prgrm Owego NY Lockheed Martin Corporation Systems Engineer ( 2 ) Owego NY Lockheed Martin Corporation Systems Engineer Syracuse NY Monitor

  13. May 17, 2011 Systems Engineering

    E-print Network

    ) communication with faculty (when necessary), (7) collaboration and communication with students (as much.K., "Business Strategies for Satellite Systems", (2004), Artech House. Grading Guide for Written Assignments

  14. Targeting engineering synchronization in chaotic systems

    E-print Network

    Sourav K. Bhowmick; Dibakar Ghosh

    2015-06-14

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in details. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  15. Angrenskaya underground coal gasification station

    SciTech Connect

    Olness, D.

    1982-06-17

    This report continues our survey of the Soviet effort in underground coal gasification (UCG) and summarizes production data and process improvements developed at the Angrenskaya Station. Of the six UCG stations operated in the Soviet Union, only the Angrenskaya Station was established from the outset as a commercial venture rather than as a research facility. Development began in 1952. Industrial operation began in 1961 and has continued to the present. It was anticipated that improvements planned for the Angren system, coupled with the assumed advantages of thick seams, would make the UCG process developed at Tula both efficient and profitable as operated at Angren. Unfortunately, this was not the case, and the cost of UCG at Angren has remained relatively high despite the various system changes that have been tried over the years. Although the Angrenskaya Station presently operates at only about 20% capacity, undoubtedly a consequence of the disappointing results, the Soviets keep it in operation as a demonstration facility for foreign investors who may wish to enter into licensing agreements and as a place for testing new process developments.

  16. System Dynamics and Vibration Lab Dept. of Mechanical Engineering

    E-print Network

    Shaw, Steven W.

    System Dynamics and Vibration Lab Dept. of Mechanical Engineering Component Mode Synthesis Using Nonlinear Normal Modes Polarit Apiwattanalunggarn and Steven Shaw Department of Mechanical Engineering Michigan State University East Lansing, MI Christophe Pierre Department of Mechanical Engineering

  17. THE CHALLENGES OF SYSTEMS BIOLOGY Reverse-Engineering Transcriptional

    E-print Network

    Gent, Universiteit

    THE CHALLENGES OF SYSTEMS BIOLOGY Reverse-Engineering Transcriptional Modules from Gene Expression extend beyond the dataset used to learn the models. Key words: reverse engineering; transcriptional modules; probabilistic graphical mod- els; ensemble methods Introduction Methods for reverse engineering

  18. Micro electromechanical systems (MEMS) for mechanical engineers

    SciTech Connect

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical engineers made impact. Through a basic understanding of the history of MEMS, the background physics and scaling in micromechanical systems, and an introduction to baseline MEMS processes, a mechanical engineer should be well on his way to Alice's wonderland in the ever-exciting playground of MEMS.

  19. Prerequisites: Control Systems I+II, System Modeling, Engine Class (Introduction to Modeling and Control of

    E-print Network

    Lygeros, John

    Thesis IDSC-LG-FZ-05 Gas Diesel Engine Modeling and Control The gas diesel engine is a natural gas enginePrerequisites: Control Systems I+II, System Modeling, Engine Class (Introduction to Modeling and Control of Internal Combustion Engine Systems, IC Engines, ...), Optimization Course, Matlab

  20. Proceedings of the 2009 Industrial Engineering Research Conference Developing a Curriculum in Service Systems Engineering

    E-print Network

    Onder, Nilufer

    in Service Systems Engineering Dana M. Johnson, Leonard J. Bohmann, Kris Mattila, Amlan Mukherjee, Nilufer of Civil and Environmental Engineering Department of Civil and Environmental Engineering Department courses to provide holistic coverage of service systems engineering issues. The paper will describe

  1. Systems Engineering -MENG Post Graduate Activities Detail & History

    E-print Network

    Lipson, Michal

    Schenectady NY Indian Institute of Science Research Associate Bangalore INDIA Lockheed Martin Systems Engineer San Francisco CA Lockheed Martin Embedded Software Engineer Denver CO Lockheed Martin Senior Engineer Bethesda MD Lockheed Martin Electronics Engineer Owego NY Lockheed Martin Engineer Owego NY Lockheed Martin

  2. June 2007 gasification technologies workshop papers

    SciTech Connect

    NONE

    2007-06-15

    Topics covered in this workshop are fundamentals of gasification, carbon capture and sequestration, reviews of financial and regulatory incentives, co-production, and focus on gasification in the Western US.

  3. Engineering computer system for Sizewell B

    SciTech Connect

    Binns, F. [Nuclear Electric Plc, Cheshire (United Kingdom)

    1995-03-01

    Achieving maximum availability and efficiency from a power plant relies on a number of inter-related, yet separate engineering activities. Traditionally, these activities have been addressed by individual systems with limited effectiveness. ECOS brings a radical new approach to the technical management of power plants. It can provide engineers with detailed information and analysis on all elements of the plant in an integrated environment for turning and trouble-shooting. Software applications supporting engineering activities are divorced from data acquisition and storage within a common user interface, allowing new applications software packages to be developed and added to the system at any time during its life in a straightforward manner. This paper describes ECOS at a functional level.

  4. Innovative Design of Complex Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2004-01-01

    The document contains the proceedings of the training workshop on Innovative Design of Complex Engineering Systems. The workshop was held at the Peninsula Higher Education Center, Hampton, Virginia, March 23 and 24, 2004. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to innovative design of high-tech engineering systems; and b) identify training needs for future aerospace work force development in the design area. The format of the workshop included fifteen, half-hour overview-type presentations, a panel discussion on how to teach and train engineers in innovative design, and three exhibits by commercial vendors.

  5. The Future of Software and Systems Engineering Processes

    Microsoft Academic Search

    Barry Boehm

    2005-01-01

    In response to the increasing criticality of software within systems and the increasing demands being put onto software-intensive systems, software and systems engineering processes will evolve significantly over the next two decades. This paper identifies eight relatively surprise-free trends - the increasing interaction of software engineering and systems engineering; increased emphasis on users and end value; increased emphasis on systems

  6. Systems engineering: a benefit or ballast in astronomical infrastructure projects?

    NASA Astrophysics Data System (ADS)

    Ansorge, Wolfgang R.

    2004-09-01

    The presentation describes the historical background of systems engineering and its development based on the urgent need for systematic management approaches in highly complex and sophisticated scientific (space) and military projects. Not in every project related to technical equipment for astronomical applications a separate expensive systems engineer or systems engineering team is absolutely necessary. The presentation outlines the typical project constellations and boundary conditions requiring the implementation of systems engineering in a project management organisation and explains the benefits and advantages system engineering offers to the project. Whether a project benefits from the sys-tems engineering function or rather consider it as ballast and wasted money depends to a large degree on the people involved in the systems engineering function. The required characteristics for an efficient systems engineer are discussed as well as the personal and professional experience, which are prerequisites to be or become an ideal systems engineer.

  7. Geosphere in underground coal gasification

    SciTech Connect

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  8. Chain modeling for life cycle systems engineering

    SciTech Connect

    Rivera, J.J. [Sandia National Lab., Albuquerque, NM (United States); Shapiro, V. [Univ. of Wisconsin, Madison, WI (United States). Spatial Automation Lab.

    1997-12-01

    Throughout Sandia`s history, products have been represented by drawings. Solid modeling systems have recently replaced drawings as the preferred means for representing product geometry. These systems are used for product visualization, engineering analysis and manufacturing planning. Unfortunately, solid modeling technology is inadequate for life cycle systems engineering, which requires maintenance of technical history, efficient management of geometric and non-geometric data, and explicit representation of engineering and manufacturing characteristics. Such information is not part of the mathematical foundation of solid modeling. The current state-of-the-art in life cycle engineering is comprised of painstakingly created special purpose tools, which often are incompatible. New research on {open_quotes}chain modeling{close_quotes} provides a method of chaining the functionality of a part to the geometric representation. Chain modeling extends classical solid modeling to include physical, manufacturing, and procedural information required for life cycle engineering. In addition, chain modeling promises to provide the missing theoretical basis for Sandia`s parent/child product realization paradigm. In chain modeling, artifacts and systems are characterized in terms of their combinatorial properties: cell complexes, chains, and their operators. This approach is firmly rooted in algebraic topology and is a natural extension of current technology. The potential benefits of this approach include explicit hierarchical and combinatorial representation of physics, geometry, functionality, test, and legacy data in a common computational framework that supports a rational decision process and partial design automation. Chain modeling will have a significant impact on design preservation, system identification, parameterization, system reliability, and design simplification.

  9. IEEE Systems Conference Panel Systems Engineering of

    E-print Network

    de Weck, Olivier L.

    anticipatory thinking, analysis, and decision making in design of systems 3. Model-based environment to enable Competencies Four Examples 1. Ability to think deeply about systems in their context 2. Situational Leadership trade ­ Understanding context in which decisions are made 3. Enhanced ability to think about `systems

  10. Converging Software and Systems Engineering Standards

    Microsoft Academic Search

    James W. Moore

    2006-01-01

    This work promises to provide a consistent description of software and systems engineering practices based on generally accepted knowledge and supported by curricula that the community broadly accepts as providing a baseline for responsible conduct and a foundation for future innovation

  11. Solar powered engine and tracking system

    Microsoft Academic Search

    Chromie

    1980-01-01

    A solar powered engine and tracking system comprises a piston working within a cylinder for turning a drive shaft for driving an electrical generator or performing other useful work, a solar concentrator comprising a plurality of mirrors, each reflecting sun light on a common focal point on the end of the cylinder for heating a flash boiler located thereon, preheated

  12. Solar powered engine and tracking system

    Microsoft Academic Search

    Chromie

    1979-01-01

    A solar powered engine and tracking system comprises a piston working within a cylinder for turning a drive shaft for driving an electrical generator or performing other useful work, a solar concentrator comprising a plurality of mirrors, each reflecting sunlight on a common focal point on the end of the cylinder for heating a flash boiler located thereon, preheated water

  13. Dynamics of mooring systems in ocean engineering

    Microsoft Academic Search

    E. Kreuzer; U. Wilke

    2003-01-01

    Summary The computation of restoring forces on floating platforms caused by mooring systems in ocean engineering is usually performed by means of quasi-static procedures. Thereby, nonlinear phenomena produced by the motion of the mooring line or the interaction between fluid and line are not considered. For lines in deep water, these effects may cause a tremendous increase in the tension

  14. SCIENTISTS AND ENGINEERS STATISTICAL DATA SYSTEM (SESTAT)

    EPA Science Inventory

    SESTAT is a comprehensive and integrated system of information about the employment, educational, and demographic characteristics of scientists and engineers (S&E) in the United States. In concept it covers those with a bachelor's degree or higher who either work in or are educat...

  15. Method and system for controlled combustion engines

    DOEpatents

    Oppenheim, A. K. (Berkeley, CA)

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  16. Sodium heat engine\\/AMTEC system experiments

    Microsoft Academic Search

    T. K. Hunt; J. V. Lasecki; R. F. Novak; J. R. McBride; J. T. Brockway

    1987-01-01

    The Sodium Heat Engine (SHE) or Alkali Metal Thermoelectric Converter (AMTEC) is a high efficiency device for the direct conversion of heat to electricity. The SHE system operates as a thermally regenerative concentration cell using sodium as the working fluid. Its operation relies on the high sodium ion conductivity and low electronic conductivity of sodium beta-alumina solid electrolyte. The SHE\\/AMTEC

  17. Hot gas engine and vehicle drive system

    Microsoft Academic Search

    E. W. Jr

    1986-01-01

    An apparatus is described for providing auxiliary power and braking to a vehicle including an electric monitoring system for the automatic control of the auxiliary power and braking and for the recovery of kinetic energy. The apparatus consists of: (a) a vehicle having at least one tire and a drive shaft; (b) an engine connected to the vehicle for powering

  18. Systems Engineering Introduction to Software Quality Management

    E-print Network

    Bryson, Joanna J.

    1 Systems Engineering Lecture 5 Introduction to Software Quality Management Dr. Joanna Bryson Dr in a typical Quality Management process. Discuss the advantages of difficulties presented by the use of Quality by an internal and external quality attribute. 3 Software Quality Management What is Quality? A product should

  19. Underground Coal Gasification Program plan

    SciTech Connect

    Not Available

    1986-03-01

    The Underground Coal Gasification (UCG) Program is directed toward the development of advanced technologies for recovering gas from large, currently unrecoverable coal resources. The overall goal of the UCG Program is to foster development within the private sector of an environmentally acceptable UCG industry whose products can compete with other electric utility fuels and as a chemical feedstock for liquid fuel production by the late 1990s. This goal includes appropriate environmental research to establish the information base required to identify and cost effectively mitigate potential problems. The objective of this environmental research is to characterize potential impacts and the performance of new and developmental systems in controlling these impacts so that more efficient solutions to environmental concerns are available on a schedule consistent with the development of advanced technology. To achieve this goal, a series of interrelated technology development steps must take place, some sponsored by DOE, some by other government agencies, and some by other governments and/or the private sector. These include basic and applied research and development, proof-of-concept activities, first-of-a-kind field tests, and associated commercial scale activity. This publication presents: (1) background and program goal; (2) technology description; (3) technology status and research needs; (4) program strategy; and (5) program management. 3 figs.

  20. Engineering plastics can cut fuel system cost

    SciTech Connect

    Nelson, K.W.

    1983-03-01

    A recent study shows that 40% of the cost of a fuel system may be saved via maximum use of the capabilities of engineering plastic materials. The use of small nylon, acetal, and polyester resin parts in carbureted and continuous (throttle body) fuel injection (CFI) systems as well as port fuel injected (PFI) systems is discussed. It is pointed out that conversions of larger castings offer car manufacturers more substantial cost savings (e.g., nylon air plenums have already replaced a sand casting for Peugeot's 505 engine). A PFI system is described in which throttle body, plenum, and intake runners with injector seats are combined in a single molding requiring no machining. It is emphasized that in addition to lessening weights and the expensive finishing steps inherent with metal parts, use of plastics offers greater design freedom and assembly ease.

  1. Gasification behavior of carbon residue in bed solids of black liquor gasifier

    SciTech Connect

    Preto, Fernando; Zhang, Xiaojie (Frank); Wang, Jinsheng [CANMET Energy Technology Centre, Natural Resources (Canada)

    2008-07-15

    Steam gasification of carbon residue in bed solids of a low-temperature black liquor gasifier was studied using a thermogravimetric system at 3 bar. Complete gasification of the carbon residue, which remained unreactive at 600 C, was achieved in about 10 min as the temperature increased to 800 C. The rate of gasification and its temperature dependence were evaluated from the non-isothermal experiment results. Effects of particle size and adding H{sub 2} and CO to the gasification agent were also studied. The rate of steam gasification could be taken as zero order in carbon until 80% of carbon was gasified, and for the rest of the gasification process the rate appeared to be first order in carbon. The maximum rate of carbon conversion was around 0.003/s and the activation energy was estimated to be in the range of 230-300 kJ/mol. The particle size did not show significant effect on the rate of gasification. Hydrogen and carbon monoxide appeared to retard the onset of the gasification process. (author)

  2. Coal gasification for advanced power generation

    Microsoft Academic Search

    Andrew J. Minchener

    2005-01-01

    This paper provides a review of the development and deployment of coal based gasification technologies for power generation. The global status of gasification is described covering the various process and technology options. The use of gasification for power generation is then highlighted including the advantages and disadvantages of this means for coal utilisation. The R, D & D needs and

  3. Energy from gasification of solid wastes

    Microsoft Academic Search

    V. Belgiorno; G. De Feo; C. Della Rocca; R. M. A. Napoli

    2003-01-01

    Gasification technology is by no means new: in the 1850s, most of the city of London was illuminated by “town gas” produced from the gasification of coal. Nowadays, gasification is the main technology for biomass conversion to energy and an attractive alternative for the thermal treatment of solid waste. The number of different uses of gas shows the flexibility of

  4. Socio-technical systems: From design methods to systems engineering

    E-print Network

    Sommerville, Ian

    1 Socio-technical systems: From design methods to systems engineering Gordon Baxter and Ian. Abstract The importance of adopting a socio-technical approach to system development is recognised by many but not widely practised. We analyse the reasons for this, considering the history of socio-technical design

  5. Socio-technical systems: From design methods to systems engineering

    E-print Network

    Sommerville, Ian

    1 Socio-technical systems: From design methods to systems engineering Gordon Baxter and Ian. Abstract It is widely acknowledged that adopting a socio-technical approach to system development leads with the better known socio-technical design methods. Based on this analysis we propose a new pragmatic framework

  6. Combustion, pyrolysis, gasification, and liquefaction of biomass

    SciTech Connect

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  7. Gasification of coal-derived chars in synthesis gas mixtures under intraparticle mass-transfer-controlled conditions

    Microsoft Academic Search

    A. Bliek; J. C. Lont; Swaaij van W. P. M

    1986-01-01

    A model has been formulated to describe the quasi-steady-state gasification of coal-derived chars in gas mixtures where both the reactants carbon dioxide and steam, and the gasification products carbon monoxide and hydrogen are present. As such, these conditions reflect the situation found in most practical gasification systems.\\u000a\\u000aThe model presented is applied under conditions where intraparticle mass transfer is rate-controlling.

  8. Systems Engineering -MENG Post Graduate Activities Detail & History

    E-print Network

    Lipson, Michal

    Advanced Technology Associate New York NY Diamond Management Analyst Chicago IL Lockheed Martin Engineering Development Owego NY Lockheed Martin Program Management Owego NY Lockheed Martin Software Engineer (2) Owego NY Lockheed Martin Systems Engineer Owego NY Lockheed Martin Systems Engineer Boston MA Microsoft

  9. Biomedical Engineering Strategies in System Design Space

    Microsoft Academic Search

    Michael A. Savageau

    2011-01-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components\\u000a of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the\\u000a digital representation of the genotype to the analog representation of the parameters for the molecular components. For example,\\u000a knowing the DNA sequence does

  10. Beluga Coal Gasification - ISER

    SciTech Connect

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  11. Lubricating system for vertical shaft engine

    SciTech Connect

    Miyaki, M.; Tachibana, Y.; Oguri, K.; Isaka, Y.

    1988-08-30

    This patent describes a lubrication system for an internal combustion engine having an output shaft rotatable about a generally vertically extending axis, a lubricant reservoir defined at least in part by a lower wall of the engine surrounding the output shaft and through which the output shaft passes for driving a driven element. The lower wall is formed with an upwardly extending baffle for dividing the lubricant reservoir into separate sections and for reducing sloshing of lubricant within the lubricant reservoir, and oil passage means extending through the baffle for permitting lubricant to flow therethrough.

  12. System engineering approach to GPM retrieval algorithms

    SciTech Connect

    Rose, C. R. (Chris R.); Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Ground validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do calculated at each bin, the rain rate can then be calculated based on a suitable rain-rate model. This paper develops a system engineering interface to the retrieval algorithms while remaining cognizant of system engineering issues so that it can be used to bridge the divide between algorithm physics an d overall mission requirements. Additionally, in line with the systems approach, a methodology is developed such that the measurement requirements pass through the retrieval model and other subsystems and manifest themselves as measurement and other system constraints. A systems model has been developed for the retrieval algorithm that can be evaluated through system-analysis tools such as MATLAB/Simulink.

  13. Development of an advanced, continuous mild gasification process for the production of co-products (Tasks 2, 3, and 4.1 to 4.6), Volume 2. Final report

    SciTech Connect

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. [Institute of Gas Technology, Chicago, IL (United States); Duthie, R.G. [Bechtel Group, Inc., San Francisco, CA (United States); Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

    1991-09-01

    Volume 2 contains information on the following topics: (1) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (2) Bench-Scale Char Upgrading Study; (3) Mild Gasification Technology Development: System Integration Studies. (VC)

  14. Rocket engine control and monitoring expert system

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Crawford, Roger

    1988-01-01

    This paper focuses on the application of expert systems technology to the automatic detection, verification and correction of anomalous rocket engine operations through interfacing with an intelligent adaptive control system. The design of a reliable and intelligent propulsion control and monitoring system is outlined which includes the architecture of an Integrated Expert System (IES) serving as the core component. The IES functions include automatic knowledge acquisition, integrated knowledge base, and fault diagnosis and prediction methodology. The results of fault analysis and diagnostic techniques are presented for an example fault in the SSME main combustion chamber injectors.

  15. Gasification of pelletized biomass in a pilot scale downdraft gasifier.

    PubMed

    Simone, Marco; Barontini, Federica; Nicolella, Cristiano; Tognotti, Leonardo

    2012-07-01

    This work presents a pilot-scale investigation aimed at assessing the feasibility and reliability of biomass pellet gasification. Wood sawdust and sunflower seeds pellets were tested in a 200 kW downdraft gasifier operating with air as gasifying agent. The gasification of pelletized biomass led to rather high and unstable pressure drops, reducing the gasifier productivity and stability. Furthermore the generation of fine residues compromised the operation of wet ash removal systems. On the other hand, good syngas compositions (H(2) 17.2%, N(2) 46.0%, CH(4) 2.5%, CO 21.2%, CO(2) 12.6%, and C(2)H(4) 0.4%), specific gas production (2.2-2.4 N m(3) kg(-1)) and cold gas efficiency (67.7-70.0%) were achieved. For these reasons pelletized biomass should be considered only as complementary fuel in co-gasification with other feedstock. PMID:22537399

  16. Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator

    E-print Network

    Demirel, Melik C.

    Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

  17. Engineering Study for a Full Scale Demonstration of Steam Reforming Black Liquor Gasification at Georgia-Pacific's Mill in Big Island, Virginia

    SciTech Connect

    Robert De Carrera; Mike Ohl

    2002-03-19

    Georgia-Pacific Corporation performed an engineering study to determine the feasibility of installing a full-scale demonstration project of steam reforming black liquor chemical recovery at Georgia-Pacific's mill in Big Island, Virginia. The technology considered was the Pulse Enhanced Steam Reforming technology that was developed and patented by Manufacturing and Technology Conversion, International (MTCI) and is currently licensed to StoneChem, Inc., for use in North America. Pilot studies of steam reforming have been carried out on a 25-ton per day reformer at Inland Container's Ontario, California mill and on a 50-ton per day unit at Weyerhaeuser's New Bern, North Carolina mill.

  18. Supercharger control system for internal combustion engines

    SciTech Connect

    Nagase, H.; Hirayama, T.

    1986-01-21

    This patent describes a supercharger control system for an internal combustion engine. The system has a throttle valve with a throttle operating lever, an engine air inlet passage, and a venturi-type carburetor. It consists of: a supercharger located in the engine air inlet passage upstream of the throttle valve, the supercharger being driven by the engine, a bypass within the engine inlet passage around the supercharger, a control valve with a control lever located within the bypass to control air flow, a diaphragm device, a first side of the diaphragm device being in communication with the engine inlet passage at the exit of the supercharger, a second side of the diaphragm being in communication with the venturi carburetor, a valve control linkage being constructed and arranged to open the control valve with increased vacuum in the first side of the diaphragm, spring means biasing the diaphragm to open the control valve, an activation lever with a stopper protrustion, the activation lever being pivotally mounted about the throttle valve, a first stop pin in the intake passage wall, a second stop pin on the throttle operating lever to selectively engage the activation lever, a regulation lever pivotally mounted about the control valve, a third stop pin on the control lever to selectively engage the regulating lever, an activation linkage connecting the activation lever and the regulating lever so as to create reciprocating motion, and spring means biasing both the regulating lever against the third stop pin when the control valve is in the fully open position and the stopper protrusion is against the first stop pin.

  19. Engine throttle valve position detecting system

    SciTech Connect

    Kamai, K.; Kikuchi, T.

    1987-03-31

    This patent describes an engine throttle valve position detecting system including: a throttle switch including a rotary detector member adapted to be rotated in accordance with the rotation of an engine throttle valve and having a guide portion including a section offset radially relative to the direction of rotation of the rotary detector member. A movable contact is movable by the rotation of the rotary detector member and a stationary contact disposed in opposed relationship to the movable contact. The stationary and movable contacts have opened and closed positions which are changed over at two different predetermined rotational positions of the rotary detector member; means for producing a signal related to the operation of the engine; means for comparing a temperature representative of the engine operating condition with a predetermined reference level; and judgment means operative, when the engine operating condition temperature is judged by the comparing means as being higher than predetermined reference level, to judge the position of the throttle valve based on one of the positions of the movable and stationary contacts and on the signal.

  20. Key tests set for underground coal gasification

    SciTech Connect

    Haggin, J.

    1983-07-18

    Underground coal gasification (UCG) is about to undergo some tests. The tests will be conducted by Lawrence Livermore National Laboratory (LLNL) in a coal seam owned by Washington Irrigation and Development Co. A much-improved UCG system has been developed by Stephens and his associates at LLNL - the controlled retracting injection point (CRIP) method. Pritchard Corp., Kansas City, has done some conceptual process design and has further studied the feasibility of using the raw gas from a UCG burn as a feedstock for methanol synthesis and/or MTG gasoline. Each method was described. (DP)

  1. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  2. Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-12-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

  3. Development of a hot gas cleanup system for integrated coal gasification\\/molten carbonate fuel cell power plants. Quarterly progress report, April 1June 30, 1984

    Microsoft Academic Search

    G. L. Anderson; F. O. Berry

    1984-01-01

    Under this program, the Institute of Gas Technology is conducting research in support of the development of both a high-temperature fuel-gas desulfurization process and a new, high-capacity sorbent for the removal of HCl and possibly other contaminants from coal-derived fuel gas at elevated temperatures for use in coal gasification\\/MCFC power plants. The high-temperature fuel-gas desulfurization process being developed by IGT

  4. Industrial and Systems Engineering THE OHIO STATE UNIVERSITY COLLEGE OF ENGINEERING

    E-print Network

    work, information analysis, training and distributed control. Faculty: Phil Smith, David Woods was established by the merger of the industrial and systems engineering and the welding engineering departments engineering and in welding engineering. In addition to these majors, minor programs of study are available

  5. Engineering Program Sign-up | 2014 Page 1 ENGINEERING PROGRAM SIGN-UP (EPS) SYSTEM

    E-print Network

    Calgary, University of

    Engineering Program Sign-up | 2014 Page 1 ENGINEERING PROGRAM SIGN-UP (EPS) SYSTEM Students who want to apply for a second-year major program in Engineering will sign up via will sign up via student ID #: #12;Engineering Program Sign-Up | 2014 Page 2 PLEASE NOTE: Since the 2011-2012 academic year

  6. ENGINEERING SYSTEMS CONFERENCE TALK--March 29, 2004 Complexity and Contradiction: Engineering Systems Approach

    E-print Network

    de Weck, Olivier L.

    Systems Approach By Thomas P. Hughes, University of Pennsylvania and MIT Robert Venturi, arguably. The overall thrust of Venturi's argument is that during the 20th century America passed from an adolescent, machines, and systems. The engineering systems approach, like Venturi's architecture of complexity

  7. Information systems security engineering: a critical component of the systems engineering lifecycle

    Microsoft Academic Search

    James F. Davis

    2004-01-01

    The purpose of this research paper is to illustrate the industrial and federal need for Information Systems Security Engineering (ISSE) in order to build Information Assurance (IA) into a system rather than the current costly practice of fixing systems after production. Extensive research was performed by collecting information from throughout the World Wide Web to include sites such as the

  8. Survey Report: Improving Integration of Program Management and Systems Engineering

    E-print Network

    Conforto, Edivandro

    For many years, a cultural barrier has existed between practitioners of systems engineering and of program management.  Some systems engineers and program managers have developed the mindset that their work activities ar ...

  9. Engineering the interface between cellular chassis and synthetic biological systems

    E-print Network

    Canton, Bartholomew (Bartholomew John)

    2008-01-01

    The aim of my thesis is to help enable the engineering of biological systems that behave in a predictable manner. Well-established techniques exist to engineer systems that behave as expected. Here, I apply such techniques ...

  10. A constraint framework for analysis of engineering systems

    E-print Network

    Iyo, Shannon Jun Ho

    2008-01-01

    This thesis presents the design and implementation of a constraint framework for use in analyzing engineering systems. This framework extends the Engineering Systems Matrix to allow the definition of quantitative relationships ...

  11. A systems engineering approach to AIS accreditation

    SciTech Connect

    Harris, L.M.; Hunteman, W.J.

    1994-04-01

    The systems engineering model provides the vehicle for communication between the developer and the customer by presenting system facts and demonstrating the system in an organized form. The same model provides implementors with views of the system`s function and capability. The authors contend that the process of obtaining accreditation for a classified Automated Information System (AIS) adheres to the typical systems engineering model. The accreditation process is modeled as a ``roadmap`` with the customer represented by the Designed Accrediting Authority. The ``roadmap`` model reduces the amount of accreditation knowledge required of an AIS developer and maximizes the effectiveness of participation in the accreditation process by making the understanding of accreditation a natural consequence of applying the model. This paper identifies ten ``destinations`` on the ``road`` to accreditation. The significance of each ``destination`` is explained, as are the potential consequences of its exclusion. The ``roadmap,`` which has been applied to a range of information systems throughout the DOE community, establishes a paradigm for the certification and accreditation of classified AISs.

  12. Engineer's Refractive Effects Prediction System (EREPS)

    NASA Astrophysics Data System (ADS)

    Hitney, Herbert V.

    1989-09-01

    In recent years, electromagnetic tactical decision aids were developed to assess environmental effects on the performance of operational systems such as shipboard radars. In general, these systems have performed well and are now routinely used by operational forces to optimize their use of sensors and deployment of forces. In many cases, the existing tactical decision aid software was taken and used to assess the performance of proposed new sensors. Since the original software was not designed for this purpose, many deficiencies in such a use were soon identified. For example, most engineers prefer to graphically compare performance results as a single design parameter, such as radar pulse length, is varied over a range of possible values. Also, in designing a new system, one is usually more interested in the long-term statistical performance than in single-event performance that the tactical decision aids are normally designed to assess. The Engineer's Refractive Effects Prediction System (EREPS) is a recent development effort tailored to engineering uses and based on the propagation models of the Integrated Refractive Effects Prediction System (IREPS). EREPS is hosted on IBM PC computers for maximum availability to the engineering community, and was developed using interactive graphics displays for optimum comparison studies. The models are designed in such a way as to give results within a few seconds to allow multiple design trade-off studies to be easily performed. EREPS Revision 1.00 was distributed to interested users in the summer of 1988 and is currently being revised for a summer 1989 distribution. Existing and planned capabilities will be presented along with some examples of applications.

  13. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  14. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  15. Multidisciplinary Engineering Systems Graduate Education: Master of Engineering in Mechatronics

    Microsoft Academic Search

    K. Craig; P. Voglewede

    2010-01-01

    The masters graduate degree program in engineering must change to respond to the needs of the modern practicing engineer. What is needed is a balance between theory and practice, between academic rigor and the best practices of industry, presented in an integrated way that feeds the needs of modern practicing engineers and the companies they work for. The new Master

  16. Coal gasification 2006: roadmap to commercialization

    SciTech Connect

    NONE

    2006-05-15

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  17. Systems engineering in the Large Synoptic Survey Telescope project: an application of model based systems engineering

    NASA Astrophysics Data System (ADS)

    Claver, C. F.; Selvy, Brian M.; Angeli, George; Delgado, Francisco; Dubois-Felsmann, Gregory; Hascall, Patrick; Lotz, Paul; Marshall, Stuart; Schumacher, German; Sebag, Jacques

    2014-08-01

    The Large Synoptic Survey Telescope project was an early adopter of SysML and Model Based Systems Engineering practices. The LSST project began using MBSE for requirements engineering beginning in 2006 shortly after the initial release of the first SysML standard. Out of this early work the LSST's MBSE effort has grown to include system requirements, operational use cases, physical system definition, interfaces, and system states along with behavior sequences and activities. In this paper we describe our approach and methodology for cross-linking these system elements over the three classical systems engineering domains - requirement, functional and physical - into the LSST System Architecture model. We also show how this model is used as the central element to the overall project systems engineering effort. More recently we have begun to use the cross-linked modeled system architecture to develop and plan the system verification and test process. In presenting this work we also describe "lessons learned" from several missteps the project has had with MBSE. Lastly, we conclude by summarizing the overall status of the LSST's System Architecture model and our plans for the future as the LSST heads toward construction.

  18. Biomedical Engineering Strategies in System Design Space

    PubMed Central

    Savageau, Michael A.

    2011-01-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a “system design space” for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development will be made. PMID:21203848

  19. Groundwater Management During Intermediate-to-Deep Underground Coal Gasification

    Microsoft Academic Search

    Shaun Lavis; Edward Stanley; Marc Mostade; Matthew Turner

    2010-01-01

    Underground coal gasification (UCG) is a safe, economic way to extract energy from coal with significant environmental benefits compared with other coal-based energy production methods. However, in the wrong hands, UCG can adversely impact groundwater systems in two ways: 1) by contamination with inorganic and organic compounds; and 2) groundwater depletion. The hydrogeological conditions of UCG are highly site-specific and

  20. Gasification of hybrid feedstock using animal manures and hays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to evaluate the efficiency of a proprietary integrated gasification-internal combustion system in producing electricity from mixtures of animal manures such as swine solids, chicken litter, and hays. Five to 10 gallons of mixtures of swine manure, chicken litter, and h...

  1. National Launch System Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III

    1991-01-01

    The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.

  2. Astronomical and space-based systems engineering

    NASA Astrophysics Data System (ADS)

    Mosser, Benoît; Abergel, Alain

    2011-06-01

    The Master's degree ``Outils et Systèmes de l'Astronomie et de l'Espace'' (OSAE, ``Astronomical and Space-based Systems Engineering'') is intended for students interested in Astronomy and Space technology. Students undergo a comprehensive training in partnership with international-level laboratories and with leading private companies. The degree provides physicists with a wide range of skills, appropriate for those whose intention is to participate in subsystems, equipment and engineering systems, and also for future project managers, working in the aerospace industry or similar technological industries or in national and European agencies. The 1-year course is given in collaboration with national and international institutions, laboratories and industries. It includes an extended training period (5 to 6 months) and a theoretical and practical specialization given by university and industrial teachers. It benefits from the network of laboratories associated with the Astronomy and Astrophysics doctorate school of the Île-de-France.

  3. Fuel control system for internal combustion engine

    SciTech Connect

    Koshizawa, T.; Yoshimura, H.; Sugimura, T.

    1988-09-27

    This patent describes a fuel control system for an internal combustion engine having fuel supply means for metering fuel to be supplied to the engine in response to an electric command given by fuel supply command means. The fuel control system consists of: a step motor for driving a fuel metering member of the fuel supply means; learning means for learning the number of steps required for energizing the step motor to move the fuel metering member from an idle position to a full-load position; computing means for computing the number of steps required for the step motor to reach a target load position by dividing in proportion the learned number of steps by a ratio between a target load value of an electric command from the fuel supply command means and a maximum value of the electric command; and drive means for energizing the step motor to achieve the number of steps computed by the computing means.

  4. Cardiac tissue engineering using perfusion bioreactor systems

    PubMed Central

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  5. Engineering Self-Adaptive Systems through Feedback Loops

    E-print Network

    Brun, Yuriy

    Engineering Self-Adaptive Systems through Feedback Loops Yuriy Brun1 , Giovanna Di Marzo Serugendo2, software engineers have turned to self-adaptivity. Self-adaptive systems are capable of dealing with a con. In this pa- per, we explore the state-of-the-art in engineering self-adaptive systems and identify potential

  6. Design of intelligent control system for Saphir-5 jet engine

    Microsoft Academic Search

    J. Povazan; M. Sutak; L. Fozo

    2010-01-01

    This paper deals with some methods of artificial intelligence which are applicable and useable in an engine control. This research is directed towards the jet engine application, specifically on the Saphir-5 engine. The main goal of the work is to substitute current control system with the system FADEC coupled with an expert system which should introduce some level of intelligence

  7. Systems engineering considerations for operational support systems

    NASA Technical Reports Server (NTRS)

    Aller, Robert O.

    1993-01-01

    Operations support as considered here is the infrastructure of people, procedures, facilities and systems that provide NASA with the capability to conduct space missions. This infrastructure involves most of the Centers but is concentrated principally at the Johnson Space Center, the Kennedy Space Center, the Goddard Space Flight Center, and the Jet Propulsion Laboratory. It includes mission training and planning, launch and recovery, mission control, tracking, communications, data retrieval and data processing.

  8. The use of biomass syngas in IC engines and CCGT plants: A comparative analysis

    Microsoft Academic Search

    M. Baratieri; P. Baggio; B. Bosio; M. Grigiante; G. A. Longo

    2009-01-01

    This paper studies the use of biomass syngas, obtained from pyrolysis or gasification, in traditional energy-production systems, specifically internal combustion (IC) engines and combined cycle gas turbine (CCGT) plants. The biomass conversion stage has been simulated by means of a gas–solid thermodynamic model. The IC and CCGT plant configurations were optimised to maximise heat and power production. Several types of

  9. Exhaust system for an internal combustion engine

    SciTech Connect

    Ikenoya, Y.; Otani, J.

    1982-10-19

    An exhaust system for an engine of a motorcycle is disclosed having catalytic and silencing mufflers arranged in adjacent side -by-side series flow relationship, the catalytic muffler extending rearwardly of the motorcycle, and, adjacent its rear end, being interconnected with the silencing muffler, the silencing muffler including plural expansion chambers which are interconnected in flow reversal relationship for gases to be exhausted rearwardly of the motorcycle.

  10. DUALISTIC SYSTEMS OF CIVIL ENGINEERING PRACTICE

    Microsoft Academic Search

    SAKARI RIIHELÄ

    1995-01-01

    Civil engineering practice and research can often make good use of scientific methods which have been gradually developed through the evolution of philosophy and the whole civilization history of mankind. Many principles in the philosophy of science have a twofold or dualistic character. This paper describes the usual dualistic methodological systems, such as holistic\\/atomistic, analytic\\/synthetic, inductive\\/deductive, agreeing\\/disagreeing, rational\\/empirical, aprioristic\\/aposterioric, quantitative\\/qualitative

  11. Expert systems in mechanical and manufacturing engineering

    Microsoft Academic Search

    D. T. Pham; P. T. N. Pham

    1988-01-01

    This paper consists of two parts. In the first part, the technology underlying the field of knowledge engineering is reviewed\\u000a to highlight the nature of expert systems and their internal organisation. The review focuses on the two key elements of these\\u000a intelligent programs, the knowledge base and the inference mechanism. It is seen that the knowledge base can be constructed

  12. Plasma Treatments and Biomass Gasification This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-print Network

    Boyer, Edmond

    . Syngas produced from biomass can be used to power internal combustion engines or, after purificationPlasma Treatments and Biomass Gasification This article has been downloaded from IOPscience. Please Treatments and Biomass Gasification J Luche1 , Q Falcoz2 , T Bastien2 , J P Leninger2 , K Arabi1 , O Aubry1

  13. Selected Systems Engineering Process Deficiencies and Their Consequences

    NASA Technical Reports Server (NTRS)

    Thomas, Lawrence Dale

    2006-01-01

    The systems engineering process is well established and well understood. While this statement could be argued in the light of the many systems engineering guidelines and that have been developed, comparative review of these respective descriptions reveal that they differ primarily in the number of discrete steps or other nuances, and are at their core essentially common. Likewise, the systems engineering textbooks differ primarily in the context for application of systems engineering or in the utilization of evolved tools and techniques, not in the basic method. Thus, failures in systems engineering cannot credibly be attributed to implementation of the wrong systems engineering process among alternatives. However, numerous systems failures can be attributed to deficient implementation of the systems engineering process. What may clearly be perceived as a system engineering deficiency in retrospect can appear to be a well considered system engineering efficiency in real time - an efficiency taken to reduce cost or meet a schedule, or more often both. Typically these efficiencies are grounded on apparently solid rationale, such as reuse of heritage hardware or software. Over time, unintended consequences of a systems engineering process deficiency may begin to be realized, and unfortunately often the consequence is system failure. This paper describes several actual cases of system failures that resulted from deficiencies in their systems engineering process implementation, including the Ariane 5 and the Hubble Space Telescope.

  14. 1A-01 C JOG System Engineering, IncA-1 SHIPBOARD SYSTEM INTERFACE

    E-print Network

    1A-01 C JOG System Engineering, IncA-1 SHIPBOARD SYSTEM INTERFACE DEVELOPMENT Presented at the Naval Post Graduate School August 12, 2004 Jeffrey O. Grady President, JOG System Engineering, Inc. 6015;1A-01 C JOG System Engineering, IncA-2 CURRENT POSITION President, JOG System Engineering, Inc

  15. The Art and Science of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  16. BIMOMASS GASIFICATION PILOT PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  17. Prerequisites: Control Systems I+II, System Modeling, Engine Class (Introduction to Modeling and Control of

    E-print Network

    Daraio, Chiara

    and Control of Internal Combustion Engine Systems, IC Engines, ...), Optimization Course, Matlab The gas-diesel engine is a natural gas engine, where the combustion is initiated by a small quantity on the investigation of the combustion process of the gas-diesel engine. A highly flexible engine test-bench with COC

  18. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  19. Investigations on catalyzed steam gasification of biomass

    SciTech Connect

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    The purpose of the study is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from December 1977 to October 1980. The study was comprised of laboratory studies, process development, and economic analyses. The laboratory studies were conducted to develop operating conditions and catalyst systems for generating methane-rich gas, synthesis gases, hydrogen, and carbon monoxide; these studies also developed techniques for catalyst recovery, regeneration, and recycling. A process development unit (PDU) was designed and constructed to evaluate laboratory systems at conditions approximating commercial operations. The economic analyses, performed by Davy McKee, Inc. for PNL, evaluated the feasibility of adapting the wood-to-methane and wood-to-methanol processes to full-scale commercial operations. Plants were designed in the economic analyses to produce fuel-grade methanol from wood and substitute natural gas (SNG) from wood via catalytic gasification with steam.

  20. 6.828 Operating System Engineering, Fall 2003

    E-print Network

    Kaashoek, Frans, 1965-

    Teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, ...

  1. Ammonia Emissions and Animal Agriculture Susan W. Gay, Extension Engineer, Biological Systems Engineering, Virginia Tech

    E-print Network

    Liskiewicz, Maciej

    Ammonia Emissions and Animal Agriculture Susan W. Gay, Extension Engineer, Biological Systems Engineering, Virginia Tech Katharine F. Knowlton, Assistant Professor, Dairy Science, Virginia Tech during the past two decades, air quality issues have become an increasing concern. Odors have been

  2. Distributed control system for turbine engines

    SciTech Connect

    Shaffer, P.L. [General Electric Aircraft Engines, Cincinnati, OH (United States)

    1999-01-01

    A distributed control system (DCS) for a turbine engine has been demonstrated and tested, consisting of prototype electronic interface units (EIUs) connected to data and power busses. In the DCS, a central control computer communicated with smart sensors and smart actuators via a 2.5 megabit/sec digital data bus, using the Fieldbus protocol. Power was distributed to the smart devices as 100 kHz 100V peak AC, allowing light, simple power converters at each smart device. All smart sensors, smart actuators, and cables were dual redundant. The smart actuators received position demand from the central control computer, exchanged data between channels to provide local redundancy management, closed the position loop locally, and reported actuator position to the central controller. Smart sensors converted sensed signals to digital values in engineering units, and performed local built-in tests. Testing of the DCS was done in a closed-loop simulation with an engine model. Frequency response of the DCS was almost identical with the conventional system.

  3. Carburetor priming system for internal combustion engines

    SciTech Connect

    Everts, R.G.

    1986-05-20

    A carburetor priming system is described for an internal combustion engine, the engine including: a fuel tank, a carburetor having an air inlet, a fuel-air mixing throat, and an air-fuel mixture outlet communicating with the combustion chambers of the engine, the priming system comprising, in combination: (a) a hollow housing having air inlet openings in the walls thereof, shaped and dimensioned to cover the air inlet of the carburetor; (b) an air-permeable wick retained in the housing; (c) priming fuel pump means, including (i) a depressable hollow resilient priming bulb, (ii) a priming fuel supply conduit extending between the fuel tank and the interior of the priming bulb, (iii) a priming fuel discharge conduit extending between the interior of the priming bulb and the wick, (iv) a normally closed first check valve in the priming fuel supply conduit which opens to permit fuel to flow into the priming bulb and which closes when the priming bulb is depressed, (v) a normally closed second check valve disposed in the priming fuel discharge conduit, the second check valve being mechanically actuated by external pressure on the priming bulb, to open when the priming bulb is depressed.

  4. Fluidized bed gasification ash reduction and removal process

    DOEpatents

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  5. Low emission turbo compound engine system

    DOEpatents

    Vuk; Carl T. (Denver, IA)

    2011-05-31

    A diesel or HHCI engine has an air intake and an exhaust for products of combustion. A pair of turbochargers receive the products of combustion in a series relationship and an exhaust aftertreatment device receive the products of combustion from the downstream turbine. A power turbine receives the output from the exhaust aftertreatment device and an EGR system of the power turbine passes a selected portion of the output to a point upstream of the upstream turbocharger compressor. A device adds fuel to the aftertreatment device to regenerate the particulate filter and the power turbine recoups the additional energy. The power turbine may be used to drive accessories or the prime output of the engine.

  6. Systems Engineering and Integration (SE and I)

    NASA Technical Reports Server (NTRS)

    Chevers, ED; Haley, Sam

    1990-01-01

    The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.

  7. Systems Engineering Challenges A Perspective from the B-2 Bomber

    E-print Network

    -2 Systems Group Wright-Patterson AFB, OH #12;· B-2 System Description · Benefits of Stealth · Systems Engineering Perspectives · Results of Stealth Overview #12;B-2 System Description 172 Ft High of Stealth · Systems Engineering Perspectives · Results of Stealth Overview #12;Stealth Features SMOOTH SHAPE

  8. System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    Microsoft Academic Search

    VAN BEEK

    2000-01-01

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate

  9. Decision-Making Ontology for Information System Engineering

    E-print Network

    Paris-Sud XI, Université de

    Decision-Making Ontology for Information System Engineering Elena Kornyshova, Rébecca Deneckère CRI with decision-making (DM) in ISE increasingly grows. As DM becomes widespread in the ISE field, it is necessary the requirements engineering field. Keywords: Decision-making, Ontology, Information System Engineering. 1

  10. A process of re-engineering large and complicated systems

    Microsoft Academic Search

    Moisey Lerner

    1991-01-01

    For very large and old systems the program source code is often the only reliable representation. Supporting documentation for system maintenance can be extracted from the source code by a reverse engineering process, which is similar to that used in electrical engineering. Program schematics alone are enough to perform the re-engineering process of decomposition. The example shows that there is

  11. Design of Expression Systems for Metabolic Engineering: Coordinated

    E-print Network

    Chen, Wilfred

    Design of Expression Systems for Metabolic Engineering: Coordinated Synthesis and Degradation@biotech.biol.ethz.ch Received 23 February 1996; accepted 20 December 1996 Abstract: In metabolic engineering, systems which John Wiley & Sons, Inc. Biotechnol Bioeng 55: 419­426, 1997. Keywords: metabolic engineering; glycogen

  12. ARRL: A Criterion for Composable Safety and Systems Engineering

    E-print Network

    Paris-Sud XI, Université de

    that takes the industrial practice into account and show how it complements the Safety Integrity Level concept. Keywords: safety engineering, system engineering, safety standard, Safety Integrity LevelARRL: A Criterion for Composable Safety and Systems Engineering Eric Verhulst1 , Jose Luis de la

  13. Auxiliary air conditioning, heating and engine warming system for trucks

    Microsoft Academic Search

    Greer

    1987-01-01

    This patent describes an air conditioning, heating and engine warming system for trucks and like vehicles comprising: an engine including a block connected to a radiator; an engine and truck air conditioning and heating system including a truck compressor, a condenser, refrigerant lines extending from the truck compressor to at least one air conditioning unit and extending from the air

  14. Characterization and disposal of coal-gasification waste products. Phase 2. Topical report, 1 May 1984-30 April 1986

    Microsoft Academic Search

    P. W. Spaite; D. A. Dalrymple; G. C. Page

    1987-01-01

    The Gas Research Institute has sponsored a program to collect, organize, and evaluate information relevant to controlling potential environmental, health and safety (EHandS) impacts of coal gasification. A technology assessment was conducted using previously developed methodology, and the results were used as a basis for the development of GRI Coal Gasification EHandS Information System and a computerized information management program.

  15. 46 CFR 31.35-5 - Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... false Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc.-TB/ALL. 31...35-5 Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc.—TB/ALL....

  16. 46 CFR 31.35-5 - Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... false Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc.-TB/ALL. 31...35-5 Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc.—TB/ALL....

  17. 46 CFR 31.35-5 - Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... false Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc.-TB/ALL. 31...35-5 Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc.—TB/ALL....

  18. 46 CFR 31.35-5 - Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... false Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc.-TB/ALL. 31...35-5 Communications; alarm systems, telephone and voice tube systems, engine telegraph systems, etc.—TB/ALL....

  19. Numerous methods of lifting and lowering objects from the seabed have been developed throughout the history of ocean engineering and exploration.

    E-print Network

    Sóbester, András

    attachment Figure 2 The central part of the device is the cryogenic Dewar and gasification system the history of ocean engineering and exploration. Initially, these methods were in practice for the purpose of a lightweight cryogenic marine heavy lift buoyancy system. · The objective is to be able to lift or lower large

  20. Embedded expert system for space shuttle main engine maintenance

    NASA Technical Reports Server (NTRS)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  1. 40 CFR 91.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.407 Engine inlet and exhaust systems. (a) The...

  2. Designing Engineering Systems for Sustainability Peter Sandborn and Jessica Myers

    E-print Network

    Sandborn, Peter

    , manufacturing and policy. Business or Corporate Sustainability ­ the increase in productivity and/or reduction6 Designing Engineering Systems for Sustainability Peter Sandborn and Jessica Myers CALCE, Department of Mechanical Engineering, University of Maryland Abstract Sustainability means keeping

  3. History of visual systems in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Christianson, David C.

    1989-01-01

    The Systems Engineering Simulator (SES) houses a variety of real-time computer generated visual systems. The earliest machine dates from the mid-1960's and is one of the first real-time graphics systems in the world. The latest acquisition is the state-of-the-art Evans and Sutherland CT6. Between the span of time from the mid-1960's to the late 1980's, tremendous strides have been made in the real-time graphics world. These strides include advances in both software and hardware engineering. The purpose is to explore the history of the development of these real-time computer generated image systems from the first machine to the present. Hardware advances as well as software algorithm changes are presented. This history is not only quite interesting but also provides us with a perspective with which we can look backward and forward.

  4. Optical monitoring system for a turbine engine

    DOEpatents

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  5. Template for Systems Engineering Tools Trade Study

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle D.

    2005-01-01

    A discussion of Systems Engineering tools brings out numerous preferences and reactions regarding tools of choice as well as the functions those tools are to perform. A recent study of Systems Engineering Tools for a new Program illustrated the need for a generic template for use by new Programs or Projects to determine the toolset appropriate for their use. This paper will provide the guidelines new initiatives can follow and tailor to their specific needs, to enable them to make their choice of tools in an efficient and informed manner. Clearly, those who perform purely technical functions will need different tools than those who perform purely systems engineering functions. And, everyone has tools they are comfortable with. That degree of comfort is frequently the deciding factor in tools choice rather than an objective study of all criteria and weighting factors. This paper strives to produce a comprehensive list of criteria for selection with suggestions for weighting factors based on a number of assumptions regarding the given Program or Project. In addition, any given Program will begin with assumptions for its toolset based on Program size, tool cost, user base and technical needs. In providing a template for tool selection, this paper will guide the reader through assumptions based on Program need; decision criteria; potential weighting factors; the need for a compilation of available tools; the importance of tool demonstrations; and finally a down selection of tools. While specific vendors cannot be mentioned in this work, it is expected that this template could serve other Programs in the formulation phase by alleviating the trade study process of some of its subjectivity.

  6. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  7. Engineering task plan for purged light system

    SciTech Connect

    BOGER, R.M.

    1999-05-11

    A purged, closed circuit television system is currently used to video inside of waste tanks. The video is used to support inspection and assessment of the tank interiors, waste residues, and deployed hardware. The system is also used to facilitate deployment of new equipment. A new light source has been requested by Characterization Project Operations (CPO) for the video system. The current light used is mounted on the camera and provides 75 watts of light, which is insufficient for clear video. Other light sources currently in use on the Hanford site either can not be deployed in a 4-inch riser or do not meet the ignition source controls. The scope of this Engineering Task Plan is to address all activities associated with the specification and procurement of a light source for use with the existing CPO video equipment. The installation design change to tank farm facilities is not within the scope of this ETP.

  8. Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics

    Microsoft Academic Search

    I. I. Ahmed; A. K. Gupta

    2010-01-01

    Characteristics of syngas from the pyrolysis and gasification of food waste has been investigated. Characteristic differences in syngas properties and overall yields from pyrolysis and gasification were determined at two distinct high temperatures of 800 and 900°C. Pyrolysis and gasification behavior were evaluated in terms of syngas flow rate, hydrogen flow rate, output power, total syngas yield, total hydrogen yield,

  9. Coal gasification in a large underground gasifier: Process efficiency

    SciTech Connect

    Blinderman, M.S.

    1997-12-31

    The process of Underground Coal Gasification (UCG) in a large, commercial scale, underground gasifier is considered both from theoretical and practical points of view. Such a gasifier may comprise a number of gasification channels in the coal seam where the actual coal-to-gas conversion occurs. The UCG gas quality and process efficiency in such a system are investigated as functions of the process parameters. The latter include geological characteristics of coal seam, gasifier layout and controlled technology variables (e.g. flow rate and pressure of the oxidant). In addition to the gasification itself, the author studied how the gas quality and process efficiency are affected by conditions in process wells. The gas formation is not completed in the gasification channel of an underground gasifier. A number of reactions may proceed in production wells. The ways to control the reactions are discussed. Quality of the gas is determined not only by its composition, but also by its enthalpy as well as by concentration of oils and tars and particulates in the gas. The author discusses how these factors are influenced by the process parameters and design. The process efficiency depends on many factors including gas and heat loss. The ways to mitigate and/or recover these losses are suggested. Examples of commercial scale gasifiers are considered.

  10. Evaluation of treated gasification wastewater as cooling tower makeup

    SciTech Connect

    Galegher, S.J.; Mann, M.D.; Johnson, M.D.

    1985-04-01

    The principal goal of gasification research at the University of North Dakota Energy Research Center (UNDERC) is to develop process and environmental data on the treatability and reuse of aqueous effluents from the fixed-bed gasification of lignite. It is the objective of the UNDERC wastewater research program to define the extent of treatment required to produce a gas liquor for use as cooling tower makeup that will have no adverse effects on operating equipment or on the environment. The UNDERC pilot wastewater treatment scheme was designed to simulate the wastewater reuse process being used at the Great Plains Gasification Associates (GPGA) lignite gasification facility near Beulah, North Dakota. At GPGA, aqueous gasifier waste streams are treated via the Phenosolvan and Phosam-W processes to remove the bulk of the wastewater organics as well as ammonia and acid gases. This minimally treated wastewater, referred to as stripped gas liquor (SGL), is fed to the process cooling towers. At UNDERC, SGL was produced from a pilot slagging fixed-bed gasifier (SFBG) followed by extraction and steam-stripping treatment. UNDERC wastewater was used initially to determine the effects of cooling tower wastewater reuse before GPGA wastewater became available. An additional cooling tower reuse test was performed with water from GPGA. This work addresses the comparative effects of wastewater from the UNDERC slagging gasifier and the GPGA dry-ash gasifier on cooling system operation. 14 refs., 6 figs., 5 tabs.

  11. Experimental study on MSW gasification and melting technology.

    PubMed

    Xiao, Gang; Jin, Bao-sheng; Zhong, Zhao-ping; Chi, Yong; Ni, Ming-jiang; Cen, Ke-fa; Xiao, Rui; Huang, Ya-ji; Huang, He

    2007-01-01

    In order to develop municipal solid waste (MSW) gasification and melting technology, two preliminary experiments and a principle integrated experiment were fulfilled respectively. The gasification characteristics of MSW were studied at 500-750 degrees C when equivalence ratio (ER) was 0.2-0.5 using a fluidized-bed gasifier. When temperature was 550-700 degrees C and ER was 0.2-0.4, low heat value (LHV) of syngas reaches 4000-12000 kJ/Nm3. The melting characteristics of fly ash were investigated at 1100-1460 degrees C using a fixed-bed furnace. It was proved that over 99.9% of dioxins could be decomposed and most heavy-metals could be solidified when temperature was 1100-1300 degrees C. The principle integrated experiment was carried out in a fluidized-bed gasification and swirl-melting system. MSW was gasified efficiently at 550-650 degrees C, swirl-melting furnace maintains at 1200-1300 degrees C stably and over 95% of fly ash could be caught by the swirl-melting furnace. The results provided much practical experience and basic data to develop MSW gasification and melting technology. PMID:18232238

  12. Gasification world database 2007. Current industry status

    SciTech Connect

    NONE

    2007-10-15

    Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

  13. Self-replicating systems: A systems engineering approach

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G.; Darbro, W. A.

    1980-01-01

    A first approach to conceptualize self-replicating systems was developed from past and present abstract theories. The engineering elements of self-replicating systems are defined in terms of a basic reference system. A number of options are investigated. The growth characteristics and their problems are analyzed, the mathematics of various exponential growth options are outlined, and the problems of universal parts production and systems closure are discussed. Selected areas of further study are defined and a 20 year development and demonstration program is presented.

  14. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems. Phase 2, Process optimization: Volume 1, Program summary and PDU operations

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  15. Plasma gasification of coal in different oxidants

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

    2008-12-15

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  16. Underground coal gasification using oxygen and steam

    SciTech Connect

    Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

    2009-07-01

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  17. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1987-11-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  18. Underground coal gasification: environmental update

    SciTech Connect

    Dockter, L.; McTernon, E.M.

    1985-06-01

    Over the past decade underground coal gasification (UCG) in the US has progressed to the point where both its technical and economic prospects are causing industry to re-evaluate the process as a means of converting coal to gaseous fuels and synthesis gas. The technical feasibility of UCG has been demonstrated for subbituminous coals. Steeply dipping beds of these coals seem particularly amenable to recovery by this process. The fact that coal in currently uneconomical deposits or deposits which are difficult to mine can be converted into a useful gaseous product without large surface facilities, mines, and transportation requirements makes UCG very attractive. Contamination of ground water is a major concern in the development of underground coal gasification. A realistic evaluation of this possibility is presented.

  19. The MSFC Systems Engineering Guide: An Overview and Plan

    NASA Technical Reports Server (NTRS)

    Shelby, Jerry; Thomas, L. Dale

    2007-01-01

    This paper describes the guiding vision, progress to date and the plan forward for development of the Marshall Space Flight Center (MSFC) Systems Engineering Guide (SEG), a virtual systems engineering handbook and archive that describes the system engineering processes used by MSFC in the development of ongoing complex space systems such as the Ares launch vehicle and forthcoming ones as well. It is the intent of this website to be a "One Stop Shop' for MSFC systems engineers that will provide tutorial information, an overview of processes and procedures and links to assist system engineering with guidance and references, and provide an archive of relevant systems engineering artifacts produced by the many NASA projects developed and managed by MSFC over the years.

  20. Systems Theory for the civil engineer Experience with knowledge acquisition for an engineering expert system

    Microsoft Academic Search

    K. D. Barlishen; D. H. Burn; S. P. Simonovic

    1991-01-01

    Issues involved in the knowledge acquisition process for engineering applications of expert systems are discussed, with reference to a project underway in the reservoir management domain. Since there are no well established guidelines for the crucial task of acquiring human problem solving expertise, the individual responsible forthis task must rely on his own judgement and suggestions found in the literature.