These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Coal gasification systems engineering and analysis. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

1980-01-01

2

Application of availability engineering to coal gasification systems  

Microsoft Academic Search

The Erie Mining Company in Hoyt Lakes, Minnesota, and the Department of Energy have studied the feasibility of constructing a demonstration-scale coal gasification system. The purpose of this paper is to demonstrate that, if a reliability, maintainability, and availability (RMA) study is conducted during the planning and design stages of a system, the design will be improved and costs will

R. D; P. Y. Wang; P. S. Chopra; J. B. L. Harkness

1979-01-01

3

Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog  

NASA Technical Reports Server (NTRS)

The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

1980-01-01

4

Gasification system  

DOEpatents

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1985-01-01

5

Gasification system  

DOEpatents

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1983-01-01

6

Coal gasification systems engineering and analysis, volume 2  

NASA Technical Reports Server (NTRS)

The major design related features of each generic plant system were characterized in a catalog. Based on the catalog and requirements data, approximately 17 designs and cost estimates were developed for MBG and alternate products. A series of generic trade studies was conducted to support all of the design studies. A set of cost and programmatic analyses were conducted to supplement the designs. The cost methodology employed for the design and sensitivity studies was documented and implemented in a computer program. Plant design and construction schedules were developed for the K-T, Texaco, and B&W MBG plant designs. A generic work breakdown structure was prepared, based on the K-T design, to coincide with TVA's planned management approach. An extensive set of cost sensitivity analyses was completed for K-T, Texaco, and B&W design. Product price competitiveness was evaluated for MBG and the alternate products. A draft management policy and procedures manual was evaluated. A supporting technology development plan was developed to address high technology risk issues. The issues were identified and ranked in terms of importance and tractability, and a plan developed for obtaining data or developing technology required to mitigate the risk.

1980-01-01

7

Coal gasification systems engineering and analysis. Appendix G: Commercial design and technology evaluation  

NASA Technical Reports Server (NTRS)

A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.

1980-01-01

8

Coal gasification systems engineering and analysis. Appendix B: Medium B+U gas design  

NASA Technical Reports Server (NTRS)

A four module, 20,000 TPD, based on KT coal gasification technology was designed. The plant processes Kentucky No. 9 coal with provisions for up to five percent North Alabama coal. Medium BTU gas with heat content of 305 BTU/SCF and not more than 200 ppm sulfur is the primary plant product. Sulfur is recovered for scale as prilled sulfur. Ash disposal is on site. The plant is designed for zero water discharge. Trade studies provided the basis for not using boiler produced steam to drive prime movers. Thus process derived steam in excess of process requirements in superheated for power use in prime movers. Electricity from the TVA grid is used to supply the balance of the plant prime mover power requirements. A study of the effect of mine mouth coal cleaning showed that coal cleaning is not an economically preferred route. The design procedure involved defining available processes to meet the requirements of each system, technical/economic trade studies to select the preferred processes, and engineering design and flow sheet development for each module. Cost studies assumed a staggered construction schedule for the four modules beginning spring 1981 and a 90% on stream factor.

1980-01-01

9

Coal gasification systems engineering and analysis. Appendix F: Critical technology items/issues  

NASA Technical Reports Server (NTRS)

Critical technology items and issues are defined in which there is a need for developmental research in order to assure technical and economic success for the state of the art of coal gasification in the United States. Technology development needs for the main processing units and the supporting units are discussed. While development needs are shown for a large number of systems, the most critical areas are associated with the gasifier itself and those systems which either feed the gasifier or directly receive products form the gasifier.

1980-01-01

10

Coal gasification systems engineering and analysis. Appendix H: Work breakdown structure  

NASA Technical Reports Server (NTRS)

A work breakdown structure (WBS) is presented which encompasses the multiple facets (hardware, software, services, and other tasks) of the coal gasification program. The WBS is shown to provide the basis for the following: management and control; cost estimating; budgeting and reporting; scheduling activities; organizational structuring; specification tree generation; weight allocation and control; procurement and contracting activities; and serves as a tool for program evaluation.

1980-01-01

11

Methanol production from eucalyptus wood chips. Attachment VIII. The wood-fueled gasification system, Evergreen Energy Corporation's final engineering report  

SciTech Connect

Evergreen Energy Corporation provided projected cost and operating data on the Evergreen/Texaco entrained-bed wood gasification system currently under development as an alternative to the state-of-the-art fixed-bed wood gasification system proposed by Davy McKee. Overall capital costs for the total plant remain about the same at approx. $250 million. The Evergreen/Texaco system will provide significant capital cost savings in the gasifiers, gas cleanup, and waste water treatment sections, and eliminate the need for a large off-site wood-fired power boiler. These reductions are offset by higher investments in the feedstock preparation, drying, and feeding section plus the need for a larger air separation plant and compressor to supply oxygen at high pressure to the gasifier.

Fishkind, H.H.

1982-06-01

12

Coal gasification systems engineering and analysis. Appendix E: Cost estimation and economic evaluation methodology  

NASA Technical Reports Server (NTRS)

The cost estimation and economic evaluation methodologies presented are consistent with industry practice for assessing capital investment requirements and operating costs of coal conversion systems. All values stated are based on January, 1980 dollars with appropriate recognition of the time value of money. Evaluation of project economic feasibility can be considered a two step process (subject to considerable refinement). First, the costs of the project must be quantified and second, the price at which the product can be manufacturd must be determined. These two major categories are discussed. The summary of methodology is divided into five parts: (1) systems costs, (2)instant plant costs, (3) annual operating costs, (4) escalation and discounting process, and (5) product pricing.

1980-01-01

13

Coal gasification systems engineering and analysis. Appendix C: Alternate product facility designs  

NASA Technical Reports Server (NTRS)

The study of the production of methane, methanol, gasoline, and hydrogen by an add-on facility to a Koppers-Totzek based MBG plant is presented. Applications to a Texaco facility are inferred by evaluation of delta effects from the K-T cases. The production of methane from an add-on facility to a Lurgi based MBG plant and the co-production of methane and methanol from a Lurgi based system is studied. Studies are included of the production of methane from up to 50 percent of the MBG produced in an integrated K-T based plant and the production of methane from up to 50 percent of the MBG produced from an integrated plant in which module 1 is based on K-T technology and modules 2, 3, and 4 are based on Texaco technology.

1980-01-01

14

Coal Integrated Gasification Fuel Cell System Study  

SciTech Connect

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31

15

Improved system integration for integrated gasification combined cycle (IGCC) systems  

Microsoft Academic Search

Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility

H. Christopher Frey; Yunhua Zhu

2006-01-01

16

Power Systems Development Facility Gasification Test Campaign TC22  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

Southern Company Services

2008-11-01

17

Power Systems Development Facility Gasification Test Campaign TC16  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

Southern Company Services

2004-08-24

18

Power Systems Development Facility Gasification Test Campaign TC20  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of the Transport Gasifier following significant modifications of the gasifier configuration. This demonstration took place during test campaign TC20, occurring from August 8 to September 23, 2006. The modifications proved successful in increasing gasifier residence time and particulate collection efficiency, two parameters critical in broadening of the fuel operating envelope and advancing gasification technology. The gasification process operated for over 870 hours, providing the opportunity for additional testing of various gasification technologies, such as PCD failsafe evaluation and sensor development.

Southern Company Services

2006-09-30

19

Power Systems Development Facility Gasification Test Campaing TC14  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

Southern Company Services

2004-02-28

20

Biomass gasification opportunities in a district heating system  

Microsoft Academic Search

This paper evaluates the economic effects and the potential for reduced CO2 emissions when biomass gasification applications are introduced in a Swedish district heating (DH) system. The gasification applications included in the study deliver heat to the DH network while producing renewable electricity or biofuels. Gasification applications included are: external superheater for steam from waste incineration (waste boost, WB), gas

Kristina Difs; Elisabeth Wetterlund; Louise Trygg; Mats Söderström

2010-01-01

21

Power Systems Development Facility Gasification Test Campaign TC17  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

Southern Company Services

2004-11-30

22

Solar heated fluidized bed gasification system  

NASA Technical Reports Server (NTRS)

A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

Qader, S. A. (inventor)

1981-01-01

23

Power Systems Development Facility Gasification Test Campaing TC18  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

Southern Company Services

2005-08-31

24

Development of a catalytic system for gasification of wet biomass  

SciTech Connect

A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350 C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversion of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R.

1993-08-01

25

Power Systems Development Facility Gasification Test Campaign TC25  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

Southern Company Services

2008-12-01

26

Power Systems Development Facility Gasification Test Campaign TC24  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

Southern Company Services

2008-03-30

27

Power Systems Development Facility Gasification Test Campaign TC21  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of gasification operation with lignite coal following the 2006 gasifier configuration modifications. This demonstration took place during test campaign TC21, occurring from November 7, 2006, through January 26, 2007. The test campaign began with low sodium lignite fuel, and after 304 hours of operation, the fuel was changed to high sodium lignite, for 34 additional hours of operation. Both fuels were from the North Dakota Freedom mine. Stable operation with low sodium lignite was maintained for extended periods, although operation with high sodium lignite was problematic due to agglomeration formation in the gasifier restricting solids circulation.

Southern Company Services

2007-01-30

28

Basic design of the coal gasification systems for Korean IGCC application  

SciTech Connect

Presented is the basic design scheme of coal gasification system as a part of IGCC engineering package. The basic design scheme has sequential design steps for pulverized coal storage bin, lock hoppers, injection vessels, coal/oxidizer burner nozzles, gasifier, preheater, slag discharge hopper and product gas quencher. Each design module is constructed to generate design data and specifications, and is then coupled together with other design modules in computerized system. The present design method was used for small scale coal gasification facility construction with success, and can be applied to perform parametric studies and scale-up analyses that will be helpful for large scale IGCC power plant applications.

Kim, H.T.; Kim, S.W. [Ajou Univ., Suwon (Korea, Republic of). Dept. of Energy; Lee, C. [Univ. of Suwon (Korea, Republic of). Dept. of Mechanical Engineering

1996-12-31

29

Techniques for Mercury Control and Measurement in Gasification Systems  

SciTech Connect

A major concern for power systems that use coal as an energy source is the air emissions from the plant. Although certain air emissions are currently regulated, the emergence of new regulations for other pollutants are on the horizon. Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. The Department of Energy envisions increased use of gasification in the United States during the next twenty years. As such, the DOE Gasification Technologies Program will strive to approach a near-zero emissions goal with respect to pollutants. The mercury research detailed in this proposal addresses the Gas Cleaning and Conditioning program technology area.

Granite, E.J.; King, W.P.; Pennline, H.W.

2002-09-20

30

LOW- AND MEDIUM-BTU GASIFICATION SYSTEMS: TECHNOLOGY OVERVIEW  

EPA Science Inventory

The report gives an overview of low- and medium-Btu gasification systems. It describes systems or combinations of processes which are likely to be used for production of low- and medium-Btu gas from coal. This involves making judgments as to types of coals that will be processed,...

31

Improved system integration for integrated gasification combined cycle (IGCC) systems  

SciTech Connect

Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility via improved process integration. A process simulation model was developed for IGCC systems with alternative types of ASU and gas turbine integration. The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. The optimal combination of air extraction coupled with nitrogen injection had slightly worse efficiency, power output, and emissions than the optimal nitrogen injection only case. Air extraction alone typically produced lower efficiency, lower power output, and higher emissions than all other cases. The recommended nitrogen injection only case is estimated to provide annualized cost savings compared to a nonintegrated design. Process simulation modeling is shown to be a useful tool for evaluation and screening of technology options. 27 refs., 3 figs., 4 tabs.

H. Christopher Frey; Yunhua Zhu [North Carolina State University, Raleigh, NC (United States). Department of Civil, Construction, and Environmental Engineering

2006-03-01

32

Improved system integration for integrated gasification combined cycle (IGCC) systems.  

PubMed

Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility via improved process integration. A process simulation model was developed for IGCC systems with alternative types of ASU and gas turbine integration. The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. The optimal combination of air extraction coupled with nitrogen injection had slightly worse efficiency, power output, and emissions than the optimal nitrogen injection only case. Air extraction alone typically produced lower efficiency, lower power output, and higher emissions than all other cases. The recommended nitrogen injection only case is estimated to provide annualized cost savings compared to a nonintegrated design. Process simulation modeling is shown to be a useful tool for evaluation and screening of technology options. PMID:16568789

Frey, H Christopher; Zhu, Yunhua

2006-03-01

33

Fluidized bed gasification ash reduction and removal system  

DOEpatents

In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

1984-02-28

34

A Comprehensive Economical Analysis Concerning Biomass Gasification Systems  

NASA Astrophysics Data System (ADS)

This paper describes on a comprehensive economic analysis concerning biomass gasification systems. In Japan, promoting biomass energy systems in domestic area comes to be expected recently. However, there are some problems in achieving this project. The costs for plant building are very expensive comparing with conventional ones. Accordingly, the unit costs of electricity increase up to as high as other environmental energy systems. In this paper, biomass energy systems using woody biomass are proposed from the viewpoints of successful environmental business. The biomass integrated gasification combined cycle (BIGCC) plant by Independent Power Producer and biomass gasification co-generation (BGCGS) plant in the sawmill or the asphalt-concrete production factory will have opportunities to be implemented in the near future. Our analysis concludes that the systems proposed in this paper provide the following outcomes with subsidies: (1) the generating cost in BIGCC becomes from 15.1 to 36.6 yen/kWh, (2) the generating cost in BGCGS becomes from 2.6 to 32.2 yen/kWh, (3) the cost reduction of products in BGCGS in asphalt factory comes to about 60 million yen per year.

Dowaki, Kiyoshi; Mori, Shunsuke; Fukushima, Chihiro; Asai, Noriyasu

35

Biomass-integrated gasification fuel cell systems – Part 1: Definition of systems and technical analysis  

Microsoft Academic Search

The combination of biomass gasification with fuel cells is commonly referred to as Biomass-Integrated gasification fuel cell systems (B-IGFC). In this two-part system analysis, we investigate seven B-IGFC systems and four solid oxide fuel cell (SOFC) designs with a system power output of around 1MWel. In this part, we define the B-IGFC systems and asses their technical feasibility using a

Florian P. Nagel; Tilman J. Schildhauer; Serge M. A. Biollaz

2009-01-01

36

Introduction Systems Engineering Fundamentals ENGINEERING  

E-print Network

Introduction Systems Engineering Fundamentals i SYSTEMS ENGINEERING FUNDAMENTALS January 2001;Systems Engineering Fundamentals Introduction ii #12;Introduction Systems Engineering Fundamentals iii ............................................................................................................................................. iv PART 1. INTRODUCTION Chapter 1. Introduction to Systems Engineering Management

Rhoads, James

37

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

SciTech Connect

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20

38

ENVIRONMENTAL ASSESSMENT REPORT: WELLMAN-GALUSHA LOW-BTU GASIFICATION SYSTEMS  

EPA Science Inventory

The report, an Environmental Assessment Report (EAR) for Wellman-Galusha low-Btu gasification systems, is part of an overall environmental assessment program for low-medium-Btu gasification technology. This EAR provides EPA administrators and program offices with a document repre...

39

DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS  

SciTech Connect

Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

2004-05-01

40

Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation  

E-print Network

the outputs of the processes (Nise, 2000). Usually, closing a conventional PID (Proportional-Integral-Derivative) controllers around feed actuators is utilized to provide automatic control in existing biomass gasification systems (Sagues et al., 2007...

Maglinao, Amado Latayan

2013-04-11

41

Utilisation of Malaysian Coal: Merit Pila in the Gasification System  

NASA Astrophysics Data System (ADS)

Gasification is the most efficient Clean Coal Technology. Gasification of Merit Pila coal had been studied in a laboratory-scale, atmospheric fluidized bed gasifier using air and air-steam as fluidizing agent. Merit Pila coal was chosen for the gasification study because of its high reactivity in nitrogen. Determination of the producer gas compositions were conducted using Gas Chromatography. Gasification experiments were conducted at bed temperature of 650-800 °C, different equivalence ratios, ER and different bed heights. Low heating value, LHVpg of the producer gas were in the range of 2.0-5.5 MJ/Nm3. Introduction of steam as the gasifying agents had shown significant increased of CO, CH4 and H2 contents in producer gas. LHV also increased about 35% with the presence of steam.

Othman, Nor Fadzilah; Bosrooh, Mohd Hariffin; Majid, Kamsani Abdul

2011-06-01

42

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

SciTech Connect

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary into the second stage of the gasifier. A high-pressure feed pump and fuel dispersion nozzles were tested for their ability to cross the pressure boundary and adequately disperse the sludge into the second stage of the gasifier. These results suggest that it is technically feasible to get the sludge dispersed to an appropriate size into the second stage of the gasifier although the recycle syngas pressure needed to disperse the sludge would be higher than originally desired. A preliminary design was prepared for a sludge-receiving, storage, and high-pressure feeding system at the Wabash River Plant. The installed capital costs were estimated at approximately $9.7 million, within an accuracy of {+-}10%. An economic analysis using DOE's IGCC Model, Version 3 spreadsheet indicates that in order to justify the additional capital cost of the system, Global Energy would have to receive a tipping fee of $12.40 per wet ton of municipal sludge delivered. This is based on operation with petroleum coke as the primary fuel. Similarly, with coal as the primary fuel, a minimum tipping of $16.70 would be required. The availability of delivered sludge from Indianapolis, Indiana, in this tipping-fee range is unlikely; however, given the higher treatment costs associated with sludge treatment in Chicago, Illinois, delivery of sludge from Chicago, given adequate rail access, might be economically viable.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

2003-02-01

43

Greenhouse Gas Emissions from Coal Gasification Power Generation Systems  

Microsoft Academic Search

Life cycle assessments (LCA) of coal gasification-based electricity generation technologies for emissions of greenhouse gases (GHG), principally CO2, are computed. Two approaches for computing LCAs are compared for construction and operation of integrated coal gasification combined cycle (IGCC) plants: a traditional process-based approach, and one based on economic input-output analysis named Economic Input-Output Life Cycle Assessment (EIO-LCA). It is shown

John A. Ruether; Massood Ramezan; Peter C. Balash

2004-01-01

44

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

SciTech Connect

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

2001-11-01

45

Diffusion Coatings for Corrosion Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve its resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we focused on getting a bench-scale test system to expose alloy coupons to simulated gasifier environment. The test facility was designed to allow about 20 specimen coupons to be exposed simultaneously for an extend period to a simulated coal gas stream at temperatures up to 1000 C. The simulated gas stream contained about 26%H{sub 2}, 39%CO, 17%CO{sub 2}, 1.4% H{sub 2}S and balance steam. We successfully ran a 100+h test with coated and uncoated stainless steel coupons. The tested alloys include SS304, SS316, SS405, SS409, SS410, and IN800. The main finding is that Ti/Ta coating provides excellent protection to SS405 under conditions where uncoated austenitic and ferritic stainless steel alloy coupons are badly corroded. Cr coatings also appear to afford some protection against corrosion.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2005-01-01

46

Technical analysis of advanced wastewater-treatment systems for coal-gasification plants  

SciTech Connect

This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

Not Available

1981-03-31

47

DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we coated coupons of selected alloy steels with diffusion coatings of Cr and Al, as well as with titanium and tantalum nitrides. The coated samples were analyzed for their surface composition. In several instances, the samples were also cut to determine the depth profile of the coating. Several of the early runs did not yield uniform or deep enough coatings and hence a significant portion of the effort in this period was devoted fixing the problems with our fluidized bed reactor. Before the end of the quarter we had prepared a number of samples, many of them in duplicates, and sent one set to Wabash River Energy Laboratory for them to install in their gasifier. The gasifier was undergoing a scheduled maintenance and thus presented an opportunity to place some of our coupons in the stream of an operating gasifier. The samples submitted included coated and uncoated pairs of different alloys.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2005-01-01

48

Power Systems Development Facility Gasification Test Run TC08  

SciTech Connect

This report discusses Test Campaign TC08 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier in air- and oxygen-blown modes during TC08. Test Run TC08 was started on June 9, 2002 and completed on June 29. Both gasifier and PCD operations were stable during the test run with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen blown was smooth. The gasifier temperature was varied between 1,710 and 1,770 F at pressures from 125 to 240 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC08, 476 hours of solid circulation and 364 hours of coal feed were attained with 153 hours of pure oxygen feed. The gasifier and PCD operations were stable in both enriched air and 100 percent oxygen blown modes. The oxygen concentration was slowly increased during the first transition to full oxygen-blown operations. Subsequent transitions from air to oxygen blown could be completed in less than 15 minutes. Oxygen-blown operations produced the highest synthesis gas heating value to date, with a projected synthesis gas heating value averaging 175 Btu/scf. Carbon conversions averaged 93 percent, slightly lower than carbon conversions achieved during air-blown gasification.

Southern Company Services

2002-06-30

49

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01

50

Analysis of power generation system on gasification of coal and solid wastes using high temperature air  

SciTech Connect

A new concept of gasification power generation systems fueled by coal, RDF and various kinds of wastes using high temperature air is proposed. Cycle analyses of these IGCC and boiler systems are done. The calculation shows that calorific value of syngas almost doubles when one increases the gasification air temperature from 25 C to 1,000 C. More than 45% thermal efficiency is obtainable for both coal and RDF by employing the new high temperature air blown IGCC system. This IGCC system is applicable to various wastes including low grade wastes such as sludge.

Kobayashi, Hiromichi; Yoshikawa, Kunio; Shioda, Susumu

1999-07-01

51

DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we conducted two exposure tests with coated and uncoated coupons. The first one was aborted after a short period, because of a leak in the pressure regulator of a CO/CO{sub 2}/H{sub 2} gas mixture gas cylinder that was used to prepare the simulated coal gas stream. Nevertheless, this run was very instructive as it showed that during the brief exposure when the concentration of H{sub 2}S increased to 8.6%, even specialty alloys such as HR160 and I800 were badly corroded, yet the sample of a SS405-steel that was coated with Ti/Ta showed no signs of corrosion. After replacing the pressure regulator, a second run was conducted with a fresh set of coated and uncoated samples. The Ti/Ta-coated on to SS405 steel from the earlier runs was also exposed in this test. The run proceeded smoothly, and at the end of test the uncoated steels were badly damaged, some evidence of corrosion was found on coupons of HR160 and I800 alloys and the Cr-coated steels, but again, the Ti/Ta-coated sample appeared unaffected.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2005-03-01

52

Application of a detailed dimensional solid oxide fuel cell model in integrated gasification fuel cell system design and analysis  

Microsoft Academic Search

Integrated gasification fuel cell (IGFC) systems that combine coal gasification and solid oxide fuel cells (SOFC) are promising for highly efficient and environmentally sensitive utilization of coal for power production. Most IGFC system analysis efforts performed to-date have employed non-dimensional SOFC models, which predict SOFC performance based upon global mass and energy balances that do not resolve important intrinsic constraints

Mu Li; Jacob Brouwer; Ashok D. Rao; G. Scott Samuelsen

2011-01-01

53

Acid Gas Removal by Customized Sorbents for Integrated Gasification Fuel Cell Systems  

SciTech Connect

In order to reduce exergy losses, gas cleaning at high temperatures is favored in IGFC systems. As shown by thermodynamic data, separation efficiencies of common sorbents decrease with increasing temperature. Therefore, acid gas removal systems have to be developed for IGFC applications considering sorbent capacity, operation temperature, gasification feedstock composition and fuel cell threshold values.

Kapfenberger, J.; Sohnemann, J.; Schleitzer, D.; Loewen, A.

2002-09-20

54

Combustion engineering issues for solid fuel systems  

SciTech Connect

The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

2008-05-15

55

The Role of Diatomite Particles in the Activated Sludge System for Treating Coal Gasification Wastewater  

Microsoft Academic Search

Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental resultsindicated that diatomite added in the activated sludge system could promote the biomass

Wenqi ZHANG; Pinhua RAO; Hui ZHANG; Jingli XU

2009-01-01

56

Damage monitoring of refractory wall in a generic entrained-bed slagging gasification system  

E-print Network

-bed slagging gasification systems, refractory failure, fault diagnostics, time series data analysis 1 of evolving anomaly through usage of a recently reported data-driven pattern identification tool called anomaly detection and damage prediction method is potentially capable of char- acterizing the health

Ray, Asok

57

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2  

SciTech Connect

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01

58

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program  

SciTech Connect

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL P) Lakeside Generating Station, while capturing 90% of the coal's sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E's technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01

59

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

Not Available

1992-03-01

60

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

SciTech Connect

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01

61

DEPARTMENT CHAIR Engineering Management & Systems Engineering Department  

E-print Network

DEPARTMENT CHAIR Engineering Management & Systems Engineering Department Old Dominion University invites application for the position of Department Chair, Department of Engineering Management and Systems leading to doctoral and masters degrees in Engineering Management and Systems Engineering as well

62

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1  

SciTech Connect

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01

63

Evolving Systems Engineering as a Field within Engineering Systems  

E-print Network

Management Social Science Engineering Systems Engineering Systems: Field of Scholarship ENGINEERING SYSTEMS the user needs. Engineering Management Systems Engineering #12;© 2008 Massachusetts Institute of Technology Management Technology & Policy Engineering Systems as a Field of Scholarship #12;© 2008 Massachusetts

de Weck, Olivier L.

64

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

The objective of this project is the development and commercial demonstration of an advanced biomass gasification-based power generation system at Boise Cascade Corporation's pulp and paper mill in DeRidder, Louisiana. The advanced power generation system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as the primary fuel resource. The novel system is based on three advanced technology components: GTI's RENUGAS{reg_sign} and 3-stage solid fuels combustion technologies coupled with one of the power generation approaches used in DOE's HIPPS program. Phase 1 of the project is a technical and economic evaluation of the system at the DeRidder site. A Continuation Application will be submitted at the conclusion of Phase 1 for authorization to proceed to testing and design in Phase 2. Phase 2 includes pilot-scale verification of selected system components and preparation of a detailed engineering design and cost estimate for retrofit of the advanced power system at the DeRidder mill. Phase 3 will complete procurement and construction of the system at the DeRidder site along with all required permitting activities. Phase 4 of the project will included plant commissioning, startup and demonstration operations. Design information for the Gasification Island was completed during the quarter. Two vendor quotations were received for the bark/hog fuel dryers. A final layout plan for the major equipment was developed and submitted to DeRidder for review and approval. The Institute of Paper Science and Technology (IPST) completed a subcontract for a laboratory study on VOC emissions from wood waste drying using bark from the DeRidder mill. Samples of DeRidder's lime mud and green liquor dregs were collected and analyzed in GTI's laboratory. It was determined that lime mud is far too fine to be utilized as inert bed material in the fluidized bed gasifier. Results for the green liquor dregs are currently being reviewed. Design analysis for the in-furnace HPHT Air Heater was completed and the external Syngas Cooler/Air Heater was begun. Materials were received for the air heater tube testing system to be installed in Boiler No. 2 at DeRidder. A refractory interference problem with the original testing system design was discovered and resolved. Analyses of the externally recuperated gas turbine cycles (air heater and booster combustor in parallel or series) were continued including the effects of steam cooling and inlet air humidification on power output and operating cost. Discussions were continued with turbine manufacturers regarding the technical, time and cost requirements for developing an externally recuperated turbine engine suitable for use in the project. A 5-month no-cost time extension was requested and received for the project to accommodate design and evaluation of externally recuperated gas turbines using HPHT air as the working fluid.

Joseph Rabovitser; Bruce Bryan

2003-04-01

65

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01

66

Dynamic modeling of gas turbines in integrated gasification fuel cell systems  

Microsoft Academic Search

Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail.

James Davenport Maclay

2009-01-01

67

Coal gasification for power plant fuel  

Microsoft Academic Search

Combustion Engineering, Inc. is a major supplier of stack gas scrubbing systems in the United States, and has active development programs underway in gasification, solvent refining and fluid bed combustion. These development programs are in response to the growing need for economical and environmentally-acceptable methods to use coal to produce electric power. Although primary development in the United States has

1979-01-01

68

Basic design model of entrained-bed coal gasification system in IGCC power plant  

SciTech Connect

Proposed is the basic design model of entrained-bed coal gasification system, which will be a tool to identify the basic design parameters and the feasible operating range of each component in the system. The present design model is composed of three major design modules for coal/oxidizer burner nozzle, gasifier with refractory, preheater, slag discharge hopper and product gas quenching system. Each design module is constructed by incorporating lumped-mass based design approach with thermochemical data and relevant correlation in order to give the basic design specification of the component, and is then coupled together with other design module. Using the present design model, parametric studies are carried out to investigate the influences of gasification system design variables on the performance parameters of key component, and then scale-up analysis is performed to obtain design data for large scale IGCC (Integrated Gasification Combined Cycle) application. Furthermore, the present model will be combined with the data base of marketable products, from which designer can select the product suitable to the component design specification obtained from design modules.

Kim, H.T.; Kim, S.W.; Lee, C.

1996-12-31

69

GASIFICATION FOR DISTRIBUTED GENERATION  

Microsoft Academic Search

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-01-01

70

Site systems engineering: Systems engineering management plan  

SciTech Connect

The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

Grygiel, M.L. [Westinghouse Hanford Co., Richland, WA (United States)

1996-05-03

71

Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system  

NASA Astrophysics Data System (ADS)

The combination of biomass gasification and high-temperature solid oxide fuel cells (SOFCs) offers great potential as a future sustainable power generation system. In order to provide insights into an integrated small-scale SOFC-biomass gasification power generation system, system simulation was performed under diverse operating conditions. A detailed anode-supported planar SOFC model under co-flow operation and a thermodynamic equilibrium for biomass gasification model were developed and verified by reliable experimental and simulation data. The other peripheral components include three gas-to-gas heat exchangers (HXs), heat recovery steam generator (HRSG), burner, fuel and air compressors. To determine safe operating conditions with high system efficiency, energy and exergy analysis was performed to investigate the influence through detailed sensitivity analysis of four key parameters, e.g. steam-to-biomass ratio (STBR), SOFC inlet stream temperatures, fuel utilization factor (Uf) and anode off-gas recycle ratio (AGR) on system performance. Due to the fact that SOFC stack is accounted for the most expensive part of the initial investment cost, the number of cells required for SOFC stack is economically optimized as well. Through the detailed sensitivity analysis, it shows that the increase of STBR positively affects SOFC while gasifier performance drops. The most preferable operating STBR is 1.5 when the highest system efficiencies and the smallest number of cells. The increase in SOFC inlet temperature shows negative impact on system and gasifier performances while SOFC efficiencies are slightly increased. The number of cells required for SOFC is reduced with the increase of SOFC inlet temperature. The system performance is optimized for Uf of 0.75 while SOFC and system efficiencies are the highest with the smallest number of cells. The result also shows the optimal anode off-gas recycle ratio of 0.6. Regarding with the increase of anode off-gas recycle ratio, there is a trade-off between overall efficiencies and the number of SOFC cells.

Wongchanapai, Suranat; Iwai, Hiroshi; Saito, Motohiro; Yoshida, Hideo

2012-10-01

72

Hydrogen-methane fuel control systems for turbojet engines  

NASA Technical Reports Server (NTRS)

Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.

Goldsmith, J. S.; Bennett, G. W.

1973-01-01

73

Program (systems) engineering  

NASA Technical Reports Server (NTRS)

Program Systems Engineering applies the principles of Systems Engineering at the program level. Space programs are composed of interrelated elements which can include collections of projects, advanced technologies, information systems, etc. Some program elements are outside traditional engineering's physical systems, such as education and public outreach, public relations, resource flow, and interactions within the political environments.

Baroff, Lynn E.; Easter, Robert W.; Pomphrey, Richard B.

2004-01-01

74

NASA Systems Engineering Handbook  

NASA Technical Reports Server (NTRS)

This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

1995-01-01

75

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01

76

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01

77

Systems Engineering Handbook Foreword ................................ ................................ ................................ ............................ ix  

E-print Network

NASA Systems Engineering Handbook SP-610S June 1995 #12;Contents Foreword ................................ ................................ ................................ .... 1 Fundamentals of System Engineering ................................ ............................ 3 Definition of Systems Engineering

Rhoads, James

78

Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process  

SciTech Connect

The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

2010-04-30

79

Engineering Industrial & Systems  

E-print Network

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

80

Laboratory tests at elevated pressures of a silane igniter system for in-situ coal gasification  

NASA Astrophysics Data System (ADS)

A silane/propane igniter and burner system was used for the first time in underground coal gasification experiments in the Tono Basin of Washington in the winter of 1981-1982. With this system, a small diameter tube (1/2 in.) is inserted in the hole to the point where ignition is desired; the tube is purged with nitrogen to drive out the air, and a change of the pyrophoric gas silane (SiH4) is forced through itp when the silane reaches the end of the tube, it bursts into flame upon exposure to the air; a fuel gas such as propane is sent through the tube behind the silane to sustain the burn for as long as desired. The system was designed both for igniting coal and for burning through steel pipe from the inside to provide a new outlet from the pipe. The optimum operating procedure for the igniter system was demonstrated and the system was tested under elevated pressures such as may be encountered in underground coal gasification. It is found that the essential steps in the operating procedure are to turn off the flow briefly after the silane reaches the end of the tube, then slowly begin the flow of fuel behind the silane. Both propane and methane were tested as fuels; propane was found to be preferable for pressures up to about 70 psia (5 atm), and methane for higher pressures. The upper pressure limit for silane ignition was found to be about 230 psia (16 atm).

Thorsness, C. B.; Skinner, D. F.; Fields, D. B.

1982-11-01

81

Conceptual design and simulation study for the production of hydrogen in coal gasification system  

Microsoft Academic Search

The conceptual design of a coal gasification system for the production of hydrogen is undertaken here using the PRO-II Simulation program. The operating conditions for the gasifier were tuned to between 1200 °C–1500 °C, 15 atm–30 atm and to a feed molar ratio of C:H2O:O2 = 1:0.5–1:0.25–0.5. The refinery temperature and pressure were kept at 550 °Cand 24.5 atm. The syngas produced goes to water gas shift (WGS)

Yun Ju Lee; Sang Deuk Lee; Suk In Hong; Dong Ju Moon

2010-01-01

82

Carbonate fuel cell system with thermally integrated gasification  

DOEpatents

A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

Steinfeld, G.; Meyers, S.J.; Lee, A.

1996-09-10

83

Industrial & Systems Engineering Areas of Engineering Interests  

E-print Network

Industrial & Systems Engineering Areas of Engineering Interests The Department of Industrial and Systems Engineering understands our students may work as Industrial Engineers in other engineering industries, and to help prepare them for these careers, the ISE Areas of Interest was formulated. The courses

Berdichevsky, Victor

84

Systems Science and Engineering  

E-print Network

447 Systems Science and Industrial Engineering UNDERGRADUATE PROGRAMS The bachelor of science-Year Engineering Science Association (TYESA) agreement with community colleges in New York state. The emphasis with industry. The primary goal is to prepare the industrial and systems engineering bachelor of science

Suzuki, Masatsugu

85

Engineering scalable biological systems  

E-print Network

Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial, and environmental problems. At the core of engineered organisms are ...

Lu, Timothy K.

86

Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas  

SciTech Connect

This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

1982-06-01

87

A liquefied petroleum gas gasification system utilizing solar thermal energy  

Microsoft Academic Search

Liquefied petroleum gas (abbreviated as LPG) is still an important source of residential gas in China due to its advantages. LPG gasfier is the key equipment of the LPG center supplement system. Traditional LPG vaporizer mainly depends on electric heating as its heat source, which leads to high energy cost and can not meet the demand of energy conservation policy.

Guohua Shi; Youyin Jing; Yuefen Gao

2008-01-01

88

ENVIRONMENTAL ASSESSMENT REPORT: LURGI COAL GASIFICATION SYSTEMS FOR SNG  

EPA Science Inventory

The report is a compilation and analysis of data on the equipment and processes constituting the Lurgi Substitute Natural Gas (SNG) systems, the control/disposal alternatives for a media, the performance and cost of control alternatives, and present and proposed environmental req...

89

Power Systems Development Facility Gasification Test Run TC09  

SciTech Connect

This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

Southern Company Services

2002-09-30

90

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-print Network

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

Rohs, Remo

91

Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.  

PubMed

In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery. PMID:24121545

Okada, Takashi; Suzuki, Masaru

2013-11-30

92

Power Systems Development Facility Gasification Test Run TC11  

SciTech Connect

This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

Southern Company Services

2003-04-30

93

Power Systems Development Facility Gasification Test Run TC07  

SciTech Connect

This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

Southern Company Services

2002-04-05

94

Advanced coal-gasification system for electric-power generation. First quarterly progress report, Fiscal Year 1981, October 1December 31, 1980  

Microsoft Academic Search

The overall objective of the Westinghouse Coal Gasification Program is to demonstrate the viability of the Westinghouse pressurized fluidized bed gasification system for production of low- and intermediate-Btu fuel gas for electric power generation, syngas, feedstocks or industrial fuels and to obtain performance and scale-up data for the process and hardware.

M. J. Arthurs; E. J. Chelen; P. Cherish; G. B. Haldipur; D. L. Keairns; L. K. Rath

1981-01-01

95

Power Systems Development Facility Gasification Test Run TC10  

SciTech Connect

This report discusses Test Campaign TC10 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC10 in air- (mainly for transitions and problematic operations) and oxygen-blown mode. Test Run TC10 was started on November 16, 2002, and completed on December 18, 2002. During oxygen-blown operations, gasifier temperatures varied between 1,675 and 1,825 F at pressures from 150 to 180 psig. After initial adjustments were made to reduce the feed rate, operations with the new fluidized coal feeder were stable with about half of the total coalfeed rate through the new feeder. However, the new fluidized-bed coal feeder proved to be difficult to control at low feed rates. Later the coal mills and original coal feeder experienced difficulties due to a high moisture content in the coal from heavy rains. Additional operational difficulties were experienced when several of the pressure sensing taps in the gasifier plugged. As the run progressed, modifications to the mills (to address processing the wet coal) resulted in a much larger feed size. This eventually resulted in the accumulation of large particles in the circulating solids causing operational instabilities in the standpipe and loop seal. Despite problems with the coal mills, coal feeder, pressure tap nozzles and the standpipe, the gasifier did experience short periods of stability during oxygenblown operations. During these periods, the syngas quality was high. During TC10, the gasifier gasified over 609 tons of Powder River Basin subbituminous coal and accumulated a total of 416 hours of coal feed, over 293 hours of which were in oxygen-blown operation. No sorbent was used during the run.

Southern Company Services

2002-12-30

96

Energy production from biomass (Part 3): Gasification technologies.  

PubMed

The conversion of biomass by gasification into a fuel suitable for use in a gas engine increases greatly the potential usefulness of biomass as a renewable resource. Gasification is a robust proven technology that can be operated either as a simple, low technology system based on a fixed-bed gasifier, or as a more sophisticated system using fluidized-bed technology. The properties of the biomass feedstock and its preparation are key design parameters when selecting the gasifier system. Electricity generation using a gas engine operating on gas produced by the gasification of biomass is applicable equally to both the developed world (as a means of reducing greenhouse gas emissions by replacing fossil fuel) and to the developing world (by providing electricity in rural areas derived from traditional biomass). PMID:12058831

McKendry, Peter

2002-05-01

97

Industrial and Systems engineering  

E-print Network

technology master's degree program t One of 23 U.S. PACE institutions t A founding Systems Engineering to market through courses in entrepreneurial marketing, finance, law and management, as well as engineering. Additionally, engineering students have direct access to a wide range of business incubators, partner services

Berdichevsky, Victor

98

Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant  

SciTech Connect

System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

2013-09-17

99

Biodiesel and electrical power production through vegetable oil extraction and byproducts gasification: modeling of the system.  

PubMed

Aim of this work is to introduce an alternative to the standard biodiesel production chain, presenting an innovative in situ system. It is based on the chemical conversion of vegetable oil from oleaginous crops in synergy with the gasification of the protein cake disposed by the seed press. The syngas from the gasifier is here used to produce electrical power while part of it is converted into methanol. The methanol is finally used to transform the vegetable oil into biodiesel. Through a coupled use of ASPEN PLUS(TM) and MATLAB(TM) codes, a rapeseed, soy and sunflower rotation, with a duration of three year, was simulated considering 15ha of soil. This surface resulted sufficient to feed a 7kWel power plant. Simulation outputs proven the system to be self-sustainable. In addition, economical NPV of the investment is presented. Finally the environmental, economical and social advantages related to this approach are discussed. PMID:25151071

Allesina, Giulio; Pedrazzi, Simone; Tebianian, Sina; Tartarini, Paolo

2014-10-01

100

Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.  

PubMed

A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L?1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L?1, 497 mg L?1 and 164 mg N L?1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling. PMID:25461944

Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

2014-12-01

101

Model predictive control system and method for integrated gasification combined cycle power generation  

DOEpatents

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09

102

Systems Engineering Research in the Engineering Systems Context  

E-print Network

Systems Engineering Research in the Engineering Systems Context: Value-Driven Architecting and Design of Engineering Systems Presented by: Dr. Donna H. Rhodes and Dr. Adam M. Ross Massachusetts Topics PART I. Systems Engineering Research in the Engineering Systems Context · Brief Overview

de Weck, Olivier L.

103

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-print Network

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

104

Systems engineering management plans.  

SciTech Connect

The Systems Engineering Management Plan (SEMP) is a comprehensive and effective tool used to assist in the management of systems engineering efforts. It is intended to guide the work of all those involved in the project. The SEMP is comprised of three main sections: technical project planning and control, systems engineering process, and engineering specialty integration. The contents of each section must be tailored to the specific effort. A model outline and example SEMP are provided. The target audience is those who are familiar with the systems engineering approach and who have an interest in employing the SEMP as a tool for systems management. The goal of this document is to provide the reader with an appreciation for the use and importance of the SEMP, as well as provide a framework that can be used to create the management plan.

Rodriguez, Tamara S.

2009-10-01

105

Some studies on a solid state sulfur probe for coal gasification systems  

NASA Technical Reports Server (NTRS)

Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

Jacob, K. T.; Rao, D. B.; Nelson, H. G.

1977-01-01

106

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The primary activity this period was preparation and presentation of the findings on this project at the Twenty-Third annual Pittsburgh Coal Conference. Dr. Malhotra attended this conference and presented a paper. A copy of his presentation constitutes this quarterly report.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez Mariano; Angel Sanjurjo

2006-09-30

107

Carburetion system for engines  

Microsoft Academic Search

An improved carburetion system is described for spark-ignited, gaseous fueled engines having an intake system and an exhaust system, the carburetion system comprising: a fuel and air mixer having an outlet for connection to the intake system; pressure regulated fuel supply means connected to the mixer; air supply means connected to the mixer; first valve means in the air supply

1987-01-01

108

What is systems engineering?  

SciTech Connect

Systems Engineering is an interdisciplinary process that ensures that the customers` needs are satisfied throughout a system`s entire life cycle. This process includes: understanding customer needs; stating the problem; specifying requirements; defining performance and cost measures, prescribing tests, validating requirements, conducting design reviews, exploring alternative concepts, sensitivity analyses, functional decomposition, system design, designing and managing interfaces, system integration, total system test, configuration management, risk management, reliability analysis; total quality management; project management; and documentation. Material for this paper was gathered from senior Systems Engineers at Sandia National Laboratories.

Bahill, A.T. [comp.] [Arizona Univ. (United States). Systems and Industrial Engineering

1995-08-01

109

Integrating Cognitive Systems Engineering Throughout the Systems Engineering Process  

Microsoft Academic Search

In order for cognitive systems engineering (CSE) to deliver the benefits of recent theoretical advances in actual systems being developed, the insights of CSE must be transformed into pragmatic engineering practices. The CSE engineering practices described in this article (using the applied cognitive systems engineering methodology as an exemplar) are typical of just such an engineering adaptation of revolutionary science

William C. Elm; James W. Gualtieri; Brian P. McKenna; James S. Tittle; Jay E. Peffer; Samantha S. Szymczak; Justin B. Grossman

2008-01-01

110

Combustion engine system  

NASA Technical Reports Server (NTRS)

A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

Houseman, John (inventor); Voecks, Gerald E. (inventor)

1986-01-01

111

Engineering Lessons Learned and Systems Engineering Applications  

NASA Technical Reports Server (NTRS)

Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

Gill, Paul S.; Garcia, Danny; Vaughan, William W.

2005-01-01

112

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11

113

Engineering pluripotent information systems  

Microsoft Academic Search

A pluripotent information system is an open and distributed information system that (i) automatically adapts at runtime to changing operating conditions, and (ii) satisfies both the requirements anticipated at development time, and those unanticipated before but relevant at runtime. Engineering pluripotency into an information system therefore responds to two recurring critical issues: (i) the need for adaptability given the uncertainty

Ivan J. Jureta; Stéphane Faulkner; Jean Vanderdonckt

2008-01-01

114

industrial & systems Industrial and Systems engineers use engineering  

E-print Network

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take s e n G i n e e r i n G ( i s e ) ISE 105 Introduction to Industrial and Systems Engineering (2, Fa

Rohs, Remo

115

industrial & systems Industrial and Systems engineers use engineering  

E-print Network

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take to introduce the philosophy, subject matter, aims, goals, and techniques of industrial and systems engineering

Rohs, Remo

116

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

Not Available

1990-12-01

117

Novel hydrogen separation device development for coal gasification system applications. Final report  

SciTech Connect

This study was undertaken for the development of a novel Electrochemical Hydrogen Separator (EHS) technology for low-cost hydrogen separation from coal derived gases. Design and operating parameter testing was performed using subscale cells (25 cm{sup 2}). High H{sub 2} purity, >99% is one of the main features of the EHS. It was found that N{sub 2}, CO{sub 2} and CH{sub 4} behave as equivalent inerts; EHS performance is not affected by the balance of feed gas containing these components. This product purity level is not sacrificed by increased H{sub 2} recovery. CO, however, does adversely affect EHS performance and therefore feed stream pretreatment is recommended. Low levels of H{sub 2}S and NH{sub 3} were added to the feed gas stream and it was verified that these impurities did not affect EHS performance. Task 2 demonstrated the scale-up to full size multi-cell module operation while maintaining a stable energy requirement. A 10-cell full-size module (1050 cm{sup 2} cell active area) was operated for over 3,800 hours and gave a stable baseline performance. Several applications for the EHS were investigated. The most economically attractive systems incorporating an EHS contain low pressure, dilute hydrogen streams, such as coal gasification carbonate fuel cell systems, hydrogen plant purification and fluid catalytic cracker units. In addition, secondary hydrogen recovery from PSA or membrane tailstreams using an EHS may increase overall system efficiency.

Not Available

1993-08-01

118

System identification of jet engines  

Microsoft Academic Search

System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can

N. Sugiyama

2000-01-01

119

Graduate Studies Transportation Systems Engineering  

E-print Network

Graduate Studies Transportation Systems Engineering TRANSPORTATION SYSTEMS The transportation that transportation systems engineering can promote a thriving economy and a better quality of life by ensuring that transportation systems themselves affect the environment through operations, construction, and maintenance

Jacobs, Laurence J.

120

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. In previous tests, we had frequently encountered problems with our steam generator that were exacerbated by the very low flow rates that we needed. During this period we installed a new computer-controlled system for injecting water into the steam generator that eliminated this problem. We also tested alloy coupons coated by using the improved procedures described in our last quarterly report. Most of these coatings were nitrided Ti and Ta coatings, either by themselves, or sometimes with barrier layers of Al and Si nitrides. The samples were tested for 300 h at 900 C in a gas stream designed to mimic the environment in the high temperature heat recovery unit (HTHRU). Three samples that showed least corrosion were exposed for an additional 100 h.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2006-06-01

121

Optimization under variability and uncertainty: a case study for NOx emissions control for a gasification system.  

PubMed

Methods for optimization of process technologies considering the distinction between variability and uncertainty are developed and applied to case studies of NOx control for Integrated Gasification Combined Cycle systems. Existing methods of stochastic optimization (SO) and stochastic programming (SP) are demonstrated. A comparison of SO and SP results provides the value of collecting additional information to reduce uncertainty. For example, an expected annual benefit of 240,000 dollars is estimated if uncertainty can be reduced before a final design is chosen. SO and SP are typically applied to uncertainty. However, when applied to variability, the benefit of dynamic process control is obtained. For example, an annual savings of 1 million dollars could be achieved if the system is adjusted to changes in process conditions. When variability and uncertainty are treated distinctively, a coupled stochastic optimization and programming method and a two-dimensional stochastic programming method are demonstrated via a case study. For the case study, the mean annual benefit of dynamic process control is estimated to be 700,000 dollars, with a 95% confidence range of 500,000 dollars to 940,000 dollars. These methods are expected to be of greatest utility for problems involving a large commitment of resources, for which small differences in designs can produce large cost savings. PMID:15669335

Chen, Jianjun; Frey, H Christopher

2004-12-15

122

Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983  

SciTech Connect

KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

None

1987-07-31

123

Engineering scalable biological systems  

PubMed Central

Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

2010-01-01

124

Readings in Systems Engineering  

NASA Technical Reports Server (NTRS)

This present collection was inspired by seven papers prepared by the NASA Alumni League, illustrating the members' systems engineering experience. These papers make up the heart of this collection. We have supplemented them with papers describing industry processes and other governmental practices to illustrate the diversity of systems engineering as it is formulated and practiced. This is one discipline that clearly benefits from cross-fertilization and infusion of new ideas. There is also a wide variety of tools and techniques described herein, some standard and some unique.

Hoban, Francis T. (editor); Lawbaugh, William M. (editor)

1993-01-01

125

Mutagenicity of Tween 80-solvated mild gasification products in the Ames salmonella microsomal assay system  

SciTech Connect

The results of the Tween 80-solvated Ames testing of six mild gasification samples indicate significant mutagenic activity only in the composite materials (MG-119 and MG-120), previously suspected from the DMSO-solvated assays, which had shown some variable but ultimately insignificant mutagenic responses. The activity of these samples from the Tween 80-solvated assays was quite low when compared to either the positive controls or the SRC-II HD coal-liquefaction reference material. The class of mutagenic activity expressed by these samples solvated in Tween 80 was that of an indirect-acting, frameshift mutagen(s) since significant activity was found only on tester strain TA98 in the presence of the metabolic activation fraction (S9). Because DMSO and other solvents have been shown to affect the mutagenic activity of certain pure chemicals, the possibility of solvent/mutagen interactions in complex mixtures such as coal-derived liquids exists. Thus, the testing of the genotoxic activity of undefined, chemically complex compounds may require the use of at least two solvent systems to reduce the possibility of artifactual findings. 10 refs., 4 tabs.

Not Available

1992-01-13

126

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat exchangers, particle filters, turbines, and other components in an integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high-alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period, we conducted a simulated gasifier test primarily with TiN-coated steel samples. Although the test showed these coatings to offer significant protection against corrosion, they also revealed a lack of uniformity in the coatings. We spent a considerable amount of effort improving our coatings procedure as well as the fluidized bed reactor and its heater. Based on the results collected thus far, we selected 12 samples and sent them to ConocoPhillips for testing in their gasifier at the Wabash River Energy plant.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2005-12-01

127

Life cycle assessment of a biomass gasification combined-cycle power system  

SciTech Connect

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01

128

SPACE SYSTEMS ENGINEERING  

E-print Network

0213 SPACE SYSTEMS ENGINEERING In today's space community, change is the only constant. From market and technological changes to policy and budgetary uncertainty, the space industry has been faced with increasing within a modern space-centric enterprise, it is crucial to have both the technical knowledge necessary

Yang, Eui-Hyeok

129

NASA Systems Engineering Handbook  

NASA Technical Reports Server (NTRS)

This handbook is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the handbook is to increase awareness and consistency across the Agency and advance the practice of SE. This handbook provides perspectives relevant to NASA and data particular to NASA. The coverage in this handbook is limited to general concepts and generic descriptions of processes, tools, and techniques. It provides information on systems engineering best practices and pitfalls to avoid. There are many Center-specific handbooks and directives as well as textbooks that can be consulted for in-depth tutorials. This handbook describes systems engineering as it should be applied to the development and implementation of large and small NASA programs and projects. NASA has defined different life cycles that specifically address the major project categories, or product lines, which are: Flight Systems and Ground Support (FS&GS), Research and Technology (R&T), Construction of Facilities (CoF), and Environmental Compliance and Restoration (ECR). The technical content of the handbook provides systems engineering best practices that should be incorporated into all NASA product lines. (Check the NASA On-Line Directives Information System (NODIS) electronic document library for applicable NASA directives on topics such as product lines.) For simplicity this handbook uses the FS&GS product line as an example. The specifics of FS&GS can be seen in the description of the life cycle and the details of the milestone reviews. Each product line will vary in these two areas; therefore, the reader should refer to the applicable NASA procedural requirements for the specific requirements for their life cycle and reviews. The engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and iteratively for the design, development, operation, maintenance, and closeout of systems throughout the life cycle of the programs and projects.

2007-01-01

130

Survey of biomass gasification. Volume II. Principles of gasification  

SciTech Connect

Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

Reed, T.B. (comp.)

1979-07-01

131

Biological Systems Engineering Bioenvironmental Engineering Option  

E-print Network

267 (Differential Equations) 2 Chem 211 (Environmental Analysis) 2 Chem 211L (Environ. Analysis Lab (Organic Chemistry) 3 Micro 302 (Microorganisms) 1 Chem 231L (Organic Chemistry Lab) 1 Micro 302L Total Credits #12;Biological Systems Engineering Food Engineering Option 2013-2014 Catalog 128 Total

Lin, Zhiqun

132

Computer System Engineering  

NSDL National Science Digital Library

This course, presented by MIT, covers topics on the engineering of computer software and hardware systems. This include: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. The course also looks at case studies of working systems and readings from the current literature provide comparisons and contrasts, and do two design projects. The page also contains lectures notes, additional readings and a projects sections.

133

Assessment of environmental control technologies for Koppers-Totzek, Winkler, and Texaco coal gasification systems  

Microsoft Academic Search

The US Department of Energy, Division of Environmental Control Technology, supports the Assistant Secretary for Environment in discharging responsibilities for environmental control aspects of technology in use and development. The coal gasification technologies employed by Winkler, Koppers-Totzek (K-T) and Texaco are described. Evaluation of the status of these technologies for control of major environmental pollutants indicates that a minimum risk

L. K. Mudge; L. J. Jr. Sealock

1979-01-01

134

Dry coal feeder development program at Ingersoll-Rand Research, Incorporated. [for coal gasification systems  

NASA Technical Reports Server (NTRS)

A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.

Mistry, D. K.; Chen, T. N.

1977-01-01

135

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-print Network

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01

136

Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine  

NASA Astrophysics Data System (ADS)

The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

Talebi Anaraki, Saber

137

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the hightemperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several 409 low alloy steel samples after coating them in our fluidized bed reactor and also after exposing them to our corrosion test. We report the following findings: 1. A protective coating was deposited inside a porous 409 steel sample to protect it from sulfidation attack. The coating was based on a combination of Si diffusion layer, Nb interlayer and nitrides of titanium and silicon. 2. Analysis of solid coupons exposed to simulated coal gas at 900 C for 300 h showed that multilayer metal/ceramic coatings provide a better protection than ceramic coatings. 3. Deposition of several ceramic/metal multilayer coatings showed that coatings with niobium and tantalum interlayers have good adhesion. However, coatings with a tungsten interlayer suffered localized delaminating and coatings with Zr interlayers showed poor adhesion. 4. Analysis of solid coupons, coated with the above-mentioned multilayer films, after exposure to simulated coal gas at 900 C for 300 h showed that niobium is the best candidate for interlayer material.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

2007-03-31

138

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period we tested coated alloy coupons under conditions designed to mimic the conditions in the filter unit after the high-temperature heat recovery unit (HTHRU). The filter unit is another important area where corrosion has caused unscheduled downtime, and the remedy has been the use of sintered metal tubes made of expensive alloys such as inconel. The objective of our test was to determine if those coatings on 400-series steel that were not able to withstand the harsher conditions of the HTHRU, may be sufficiently resistant for use in the filter unit, at the reduced temperatures. Indeed, most of our coatings survived well; the exceptions were the coated porous samples of SS316. We continued making improvements to our coatings apparatus and the procedure began during the last quarter. As a result of these modifications, the coupons we are now producing are uniform. We describe the improved procedure for preparing diffusion coatings. Finally, because porous samples of steel in grades other than SS316 are not readily available, we also decided to procure SS409 powder and fabricate our own sintered porous coupons.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2006-01-01

139

GENETIC ALGORITHMS CONTROL SYSTEMS ENGINEERING  

E-print Network

GENETIC ALGORITHMS IN CONTROL SYSTEMS ENGINEERING P. J. FLEMING R. C. PURSHOUSE Department. 789 May 2001 #12;Genetic algorithms in control systems engineering P. J. Fleming and R. C. Purshouse of Automatic Control and Systems Engineering University of Sheffield Sheffield, S1 3JD UK Research Report No

Coello, Carlos A. Coello

140

Engineering the ULTra System  

NSDL National Science Digital Library

The Advanced Transport Group at the University of Bristol, upon considering current traffic congestion problems in England and throughout the world, attempted to "identify the ideal system for future urban transport." The group's work has led to the development of the Urban Light Transport (ULTra) System. This paper, published in September 2002, describes the engineering challenges and accomplishments of the endeavor. Thus far, a test track has been constructed, and an initial vehicle design was successfully demonstrated. The ULTra home page provides much more information, documents, and videos.

Lowson, Martin.

2002-01-01

141

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06

142

Dynamic modeling of gas turbines in integrated gasification fuel cell systems  

NASA Astrophysics Data System (ADS)

Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles employing cathode recycle using either an ejector or a blower indicate that the cycles with the blower provide better turbo-machinery stability and higher system efficiencies than the cycles with the ejector. A comparison of two models controlled to maintain constant fuel cell operating temperatures of 1,100 K and 1,373 K, show similar dynamic performance trends, indicating that the results are applicable to planar and tubular SOFC-GT systems and should apply to other operating temperatures.

Maclay, James Davenport

2009-12-01

143

2007 gasification technologies conference papers  

SciTech Connect

Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

NONE

2007-07-01

144

Boiler control systems engineering  

SciTech Connect

The book provides in-depth coverage on how to safely and reliably control the firing of a boiler. Regardless of the capacity or fuel, certain fundamental control systems are required for boiler control. Large utility systems are more complex due to the number of burners and the overall capacity and equipment. This book covers engineering details on control systems and provides specific examples of boiler control including configuration and tuning. References to requirements are based on the 2004 NFPA 85 along with other ISA standards. Detailed chapters cover: Boiler fundamentals including piping and instrument diagrams (P&IDs) and a design basis checklist; Control of boilers, from strategies and bumpless transfer to interlock circuitry and final control elements; Furnace draft; Feedwater; Coal-fired boilers; Fuel and air control; Steam temperature; Burner management systems; Environment; and Control valve sizing. 2 apps.

Gilman, J.

2005-07-01

145

The Evolution of Systems Engineering  

Microsoft Academic Search

The 21st century is an exciting time for the field of systems engineering. Advances in our understanding of the traditional discipline are being made. At the same time new modes of systems engineering are emerging to address the engineering challenges of systems-of-systems (SoS) and enterprise systems. Even at this early point in their evolution, these new modes are evincing their

George Rebovich

2008-01-01

146

Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system.  

PubMed

As a typical industrial wastewater, coal gasification wastewater has poor biodegradability and high toxicity. In this paper, a laboratory-scale anaerobic-anoxic-oxic membrane reactor (A(2)O-MBR) system was developed to investigate the treatment ability of coal gasification wastewater. The removal capacity of each pollutants used in this system were determined at different hydraulic residence times (HRT) and mixed liquor recycle ratios (R). The experimental results showed that this system could effectively deal with COD and phenol removal and remain in a stable level when the operational parameters altered, while the nitrification was sensitive to operational conditions. The best performance was obtained at HRT of 48 h and R of 3. The maximum removal efficiencies of COD, NH(4)(+)-N and phenols were 97.4%, 92.8% and 99.7%, with final concentrations in the effluent of 71 mg/L, 9.6 mg/L and 3 mg/L, respectively. Organics degradation and transformation were analyzed by GC/MS and it was found that anaerobic process played an important role in degradation of refractory compounds. PMID:22902132

Wang, Zixing; Xu, Xiaochen; Gong, Zheng; Yang, Fenglin

2012-10-15

147

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

Microsoft Academic Search

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (COâ). This project emphasizes COâ-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address COâ transportation, COâ use, and options for the long-term sequestering of unused COâ. Commercially available COâ-capture technology is providing a performance and

R. D; J. C. Molburg; P. R. Thimmapuram; G. F. Berry; C. D. Livengood

1994-01-01

148

Systems Engineering Integrating Project Management, Science, Engineering, and  

E-print Network

Systems Engineering Integrating Project Management, Science, Engineering, and Mission Operations of space exploration through our expertise in science, engineering, mission operations, data analysis aspects of space exploration through our expertise in science, engineering, mission operations, and data

Mojzsis, Stephen J.

149

Systems Engineering Integrating Project Management, Science, Engineering, and  

E-print Network

Systems Engineering Integrating Project Management, Science, Engineering, and Mission Operations exploration through our expertise in science, engineering, mission operations, data analysis, and education in science, engineering, mission operations, and data management. As an institute at the University

Mojzsis, Stephen J.

150

Systems Engineering Leadership Development: Advancing Systems Engineering Excellence  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

Hall, Phil; Whitfield, Susan

2011-01-01

151

Engine exhaust gas recirculation system  

Microsoft Academic Search

An exhaust gas recirculation system for an internal combustion engine employs a recirculation control valve in a passageway connecting the engine exhaust passage to the engine intake passage downstream from the throttle valve. An air conduit having an air control valve therein furnishes atmospheric air to the intake passage downstream from the throttle valve. Vacuum responsive actuators are provided for

H. Nishimura; T. Shioya; T. Umemoto

1981-01-01

152

Spacecraft Systems Engineering Courses for Traditional Engineering Curriculum  

Microsoft Academic Search

Systems engineering is an important skill for future engineers. Systems engineering is a management technology that allows engineers to effectively design, develop, and deploy large scale systems. It is an essential part of engineering education that teaches by demonstrating the utility of many important technical skills such as electronics, communications, controls as well as soft skills such as teamwork, leadership,

Chang-Hee Won

2007-01-01

153

A DISCUSSION OF SYSTEMS ENGINEERING  

E-print Network

· NRO Future Direction · The Importance of Risk Analysis · Individual Engineering Disciplines #12 Systems · Joint STARS · NRO Advanced Systems and Technology · NRO Systems Engineering #12;Historical...SE is inextricably linked to program management · NRO ­ SE is a process used to develop requirements and integrate

154

NASA System Engineering Design Process  

NASA Technical Reports Server (NTRS)

This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

Roman, Jose

2011-01-01

155

Ceramic filters systems -- Necessary equipment for combined cycles based on coal gasification?  

SciTech Connect

An overview about the development of a hot gas filter technology arranging ceramic candles in a different way compared to competing technologies is shown. This technology has been developed executing an extended research program on PFBC (Pressurized Fluidized Bed Combustion). The same technology is used in gasification applications. The paper describes the benefits resulting from using ceramic candle filters in such processes and describes the available technology. Test results and different configurations using the same basic principles of the filtration process will be shown.

Wedel, G. von; Kalthoff, U. [LLB Lurgi Lentjes Babcock Energietechnik GmbH, Oberhausen (Germany)

1994-12-31

156

Intelligent Engine Systems: Bearing System  

NASA Technical Reports Server (NTRS)

The overall requirements necessary for sensing bearing distress and the related criteria to select a particular rotating sensor were established during the phase I. The current phase II efforts performed studies to evaluate the Robustness and Durability Enhancement of the rotating sensors, and to design, and develop the Built-in Telemetry System concepts for an aircraft engine differential sump. A generic test vehicle that can test the proposed bearing diagnostic system was designed, developed, and built. The Timken Company, who also assisted with testing the GE concept of using rotating sensors for the differential bearing diagnostics during previous phase, was selected as a subcontractor to assist General Electric (GE) for the design, and procurement of the test vehicle. A purchase order was prepared to define the different sub-tasks, and deliverables for this task. The University of Akron was selected to provide the necessary support for installing, and integrating the test vehicle with their newly designed test facility capable of simulating the operating environment for the planned testing. The planned testing with good and damaged bearings will be on hold pending further continuation of this effort during next phase.

Singh, Arnant P.

2008-01-01

157

NASA systems engineering handbook. Draft  

NASA Technical Reports Server (NTRS)

This handbook is intended to provide information on systems engineering that will be useful to NASA system engineers, especially new ones. Its primary objective is to provide a generic description of systems engineering as it should be applied throughout NASA. Field Center Handbooks are encouraged to provide center-specific details of implementation. For NASA system engineers to choose to keep a copy of this handbook at their elbows, it must provide answers that cannot be easily found elsewhere. Consequently, it provides NASA-relevant perspectives and NASA-particular data. NASA management instructions (NMI's) are referenced when applicable. This handbook's secondary objective is to serve as a useful companion to all of the various courses in systems engineering that are being offered under NASA's auspices. The coverage of systems engineering is general to techniques, concepts, and generic descriptions of processes, tools, and techniques. It provides good systems engineering practices, and pitfalls to avoid. This handbook describes systems engineering as it should be applied to the development of major NASA product and producing systems.

Shishko, Robert; Chamberlain, Robert G.; Aster, Robert; Bilardo, Vincent; Forsberg, Kevin; Hammond, Walter E.; Mooz, Harold; Polaski, Lou; Wade, Ron; Cassingham, Randy (editor)

1992-01-01

158

Systems engineering technology for networks  

NASA Technical Reports Server (NTRS)

The report summarizes research pursued within the Systems Engineering Design Laboratory at Virginia Polytechnic Institute and State University between May 16, 1993 and January 31, 1994. The project was proposed in cooperation with the Computational Science and Engineering Research Center at Howard University. Its purpose was to investigate emerging systems engineering tools and their applicability in analyzing the NASA Network Control Center (NCC) on the basis of metrics and measures.

1994-01-01

159

industrial & systems (ISE) Industrial and Systems Engineers use engineering and business principles  

E-print Network

70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business systems to help companies compete in today's global marketplace. The Industrial and Systems Engineer. Programs Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial

Rohs, Remo

160

System safety engineering analysis handbook  

NASA Technical Reports Server (NTRS)

The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

Ijams, T. E.

1972-01-01

161

Development of water-slurry gasification systems for high-moisture biomass. [Spent grain, potato waste, kelp, water hyacinth, napier grass, sorghum  

SciTech Connect

The development of a new biomass gasification system by Pacific Northwest Laboratory promises to allow the use of high-moisture biomass feedstocks. The reactor uses high pressure to allow the gasification of water-biomass slurries containing up to 95% moisture. Because the gasification takes place in an aqueous system, there is no need to dry or dewater the feedstocks prior to their use. Feedstocks under study include water hyacinths, kelp, napier grass, spent brewer's grain, and a waste stream obtained from the potato processing industry. Gasification products include hydrogen, CO/sub 2/ and methane. The effects of processing conditions including temperature, pressure, and catalyst are being studied in order to maximize both the rate of conversion and the yield of higher value products. The new reactor concept represents a significant opportunity for expanding the biomass resource base to include aquatic plants and other high-moisture feedstocks. Many of these feedstocks are uneconomical in conventional thermochemical and biological conversion schemes. By eliminating the need for energy intensive drying steps, the aqueous conversion route may also increase net energy yields from more conventional feedstocks. The work is being sponsored by the USDOE's Biomass Energy Technology Division, Thermochemical Conversion Program. 13 references, 4 figures, 4 tables.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.

1985-01-01

162

Engine systems technology  

NASA Technical Reports Server (NTRS)

Current full-scale engine development programs are discussed, and efforts to improve the available technology base are presented. The Lewis full-scale engine test facilities are described. Several typical engine programs and plans for research in aeromechanical instability or flutter are summarized. An overview of Lewis studies of flow distortion and its effects on engine stability is presented. The origins and nature of the distortion problem are summarized, and some of the results and methods for both steady and time-varying distortions are discussed.

Willoh, R.; Graber, E. J.; Teren, F.; Coltrin, R. E.

1975-01-01

163

Stirling engine heating system  

SciTech Connect

A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

Johansson, L.N.; Houtman, W.H.; Percival, W.H.

1988-06-28

164

Automatic engine control system  

SciTech Connect

This patent describes an automatic control circuit for an internal combustion engine and clutch assembly. One component of this circuit is a timer for determining the time the engine is allowed to run and the clutch is engaged and a second period of time when the clutch is automatically disengaged. Associated with the timer is a starter means to start the engine during the first time period and a clutch actuating mechanism for engaging the clutch near the first time period initiation after the starter starts the engine. An engine shut down and clutch disengagement mechanism is also responsive to the first timer. The patent then goes on to describe a supplemental timer mechanism for determining a third and fourth period of time within the second time period such that the third period being when the engine is shut off and the fourth period being when the engine runs with clutch disengaged. The starter mechanism is responsive to the supplemental timer to start the engine at the beginning of the fourth period. A shut down means stops the engine at the beginning of the third period in response to the timer.

Geary, W.C.; Mirsaiidi, M.V.; Redfern, T.; Wolfe, D.W.

1986-01-14

165

Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion  

SciTech Connect

Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

2011-05-28

166

Advanced gasification-based biomass power generation  

SciTech Connect

A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

Williams, R.H.; Larson, E.D. [Princeton Univ., NJ (United States)

1993-12-31

167

Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

168

2010 Worldwide Gasification Database  

DOE Data Explorer

The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

169

Considerations on coal gasification  

NASA Technical Reports Server (NTRS)

Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

Franzen, J. E.

1978-01-01

170

Advanced technology applications for second and third general coal gasification systems  

NASA Technical Reports Server (NTRS)

The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.

Bradford, R.; Hyde, J. D.; Mead, C. W.

1980-01-01

171

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Advanced electric power generation systems use a coal gasifier to convert coal to a gas rich in fuels such as H{sub 2} and CO. The gas stream contains impurities such as H{sub 2}S and HCl, which attack metal components of the coal gas train, causing plant downtime and increasing the cost of power generation. Corrosion-resistant coatings would improve plant availability and decrease maintenance costs, thus allowing the environmentally superior integrated-gasification-combined-cycle (IGCC) plants to be more competitive with standard power-generation technologies. Heat-exchangers, particle filters, turbines, and other components in the IGCC system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy will improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. In this study, the use of corrosion-resistant coatings on low alloy steels was investigated for use as high-temperature components in IGCC systems. The coatings were deposited using SRI's fluidized-bed reactor chemical vapor deposition technique. Diffusion coatings of Cr and Al were deposited by this method on to dense and porous, low alloy stainless steel substrates. Bench-scale exposure tests at 900 C with a simulated coal gas stream containing 1.7% H{sub 2}S showed that the low alloy steels such SS405 and SS409 coated with {approx}20%Cr and Al each can be resistant to sulfidation attack for 500 h. However, exposure to an actual coal gasifier gas stream at the Wabash River gasifier facility for 1000 h in the temperature range 900 to 950 C indicated that Cr and Al present in the coating diffused further into the substrate decreasing the protective ability of these elements against attack by H{sub 2}S. Similarly, adherent multilayer coatings containing Si, Ti, Al, and Nb were also deposited with subsequent nitridation of these elements to increase the corrosion resistance. Both dense and porous SS409 or SS 410 alloy substrates were coated by using this method. Multilayer coatings containing Ti-Al-Si nitrides along with a diffusion barrier of Nb were deposited on SS410 and they were found also to be resistant to sulfidation attack in the bench scale tests at 900 C. However, they were corroded during exposure to the actual coal gasifier stream at the Wabash River gasifier facility for 1000 h. The Cr/Al coatings deposited inside a porous substrate was found to be resistant to sulfidation attack in the bench-scale simulated tests at 370 C. The long-term exposure test at the Wabash River gasifier facility at 370 C for 2100 h showed that only a minor sulfidation attack occurred inside the porous SS 409 alloy coupons that contained Cr and Al diffusion coatings. This attack can be prevented by improving the coating process to deposit uniform coatings at the interior of the porous structure. It is recommended that additional studies be initiated to optimize the FBR-CVD process to deposit diffusion coatings of the corrosion resistant elements such as Cr, Al, and Ti inside porous metal filters to increase their corrosion resistance. Long-term exposure tests using an actual gas stream from an operating gasifier need to be conducted to determine the suitability of the coatings for use in the gasifier environment.

Gopala N. Krishnan; Ripudaman Malhotra; Jordi Perez; Marc Hornbostel; Kai-Hung Lau; Angel Sanjurjo

2007-05-31

172

industrial & systems (ISE) Industrial and Systems engineers use engineering and business principles  

E-print Network

74 industrial & systems (ISE) Industrial and Systems engineers use engineering and business to help companies compete in today's global marketplace. The Industrial and Systems engineer's task. Programs Available · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial

Rohs, Remo

173

Systems engineering for very large systems  

NASA Technical Reports Server (NTRS)

Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

Lewkowicz, Paul E.

1993-01-01

174

Industrial & Enterprise Systems Engineering Industrial Engineering Undergraduate Curriculum  

E-print Network

Industrial & Enterprise Systems Engineering Industrial Engineering Undergraduate Curriculum (128 and Logistics (SC&L) V. Economic & Finance (E&F) VI. Human Factors Engineering (HFE) 3 CS Elective ­ 3 hours

Illinois at Urbana-Champaign, University of

175

PNNL Coal Gasification Research  

SciTech Connect

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28

176

Preface: Cognitive Engineering in Automated Systems Design  

E-print Network

Preface: Cognitive Engineering in Automated Systems Design This special issue was motivated by an apparent paucity of research on applications of cognitive engineering principles in the design of complex systems including mainte- nance, manufacturing, and transportation systems. Cognitive engineering

Kaber, David B.

177

Engine Data Interpretation System (EDIS)  

NASA Technical Reports Server (NTRS)

A prototype of an expert system was developed which applies qualitative or model-based reasoning to the task of post-test analysis and diagnosis of data resulting from a rocket engine firing. A combined component-based and process theory approach is adopted as the basis for system modeling. Such an approach provides a framework for explaining both normal and deviant system behavior in terms of individual component functionality. The diagnosis function is applied to digitized sensor time-histories generated during engine firings. The generic system is applicable to any liquid rocket engine but was adapted specifically in this work to the Space Shuttle Main Engine (SSME). The system is applied to idealized data resulting from turbomachinery malfunction in the SSME.

Cost, Thomas L.; Hofmann, Martin O.

1990-01-01

178

MIT Engineering Systems Symposium, March 2004 1 The Case for Evolving Systems Engineering as a  

E-print Network

MIT Engineering Systems Symposium, March 2004 1 The Case for Evolving Systems Engineering as a Field within Engineering Systems Donna Rhodes and Daniel Hastings Engineering Systems Division. Engineering Systems is an important new field of study focusing on the complex engineering of systems

de Weck, Olivier L.

179

Engine air intake control system  

SciTech Connect

A system for controlling the amount of air taken in by an engine comprises an air duct tube bypassing a throttle valve of an intake tube for taking in air supplied to an automobile engine, a plurality of valves for regulating the amount of air passing through the air duct tube, and control device therefor. The amount of air in the bypass is controlled in accordance with the temperature and number of revolutions of the engine and the air intake pressure downstream of the throttle valve. During the idling of the engine, the air intake control system generates a signal representing the standard engine idling revolutions in accordance with the engine temperature, compares the actual engine revolutions with a reference, and regulates the amount of air flowing in the bypass by use of the results of a comparison, thus rendering the actual engine revolutions identical to the reference. During the loaded engine operation, by contrast, the amount of bypass air is so controlled that the air intake pressure downstream of the throttle valve is maintained at predetermined constant value.

Fujisawa, H.; Kinugawa, M.; Omori, N.; Sueishi, M.

1980-12-09

180

Intelligent Engine Systems  

NASA Technical Reports Server (NTRS)

A high bypass jet engine fan case represents one of the largest, heaviest single components in an engine. In addition to supporting the inlet and providing the fan flowpath, the most critical function is the containment of a failed fan blade. In this development program, a lightweight, low-cost composite containment case with diagnostic capabilities was developed, fabricated, and tested. The fan case design, containment methods, and diagnostic concepts evaluated in the initial Propulsion 21 program were improved and scaled up to a full case design.

Xie, Ming

2008-01-01

181

Optical systems engineering - A tutorial  

NASA Technical Reports Server (NTRS)

The paper examines the use of the systems engineering approach in the design of optical systems, noting that the use of such an approach which involves an integrated interdisciplinary approach to the development of systems is most appropriate for optics. It is shown that the high precision character of optics leads to complex and subtle effects on optical system performance, resulting from structural, thermal dynamical, control system, and manufacturing and assembly considerations. Attention is given to communication problems that often occur among users and optical engineers due to the unique factors of optical systems. It is concluded that it is essential that the optics community provide leadership to resolve communication problems and fully formalize the field of optical systems engineering.

Wyman, C. L.

1979-01-01

182

Coal gasification system with a modulated on/off control system  

DOEpatents

A modulated control system is provided for improving regulation of the bed level in a fixed-bed coal gasifier into which coal is fed from a rotary coal feeder. A nuclear bed level gauge using a cobalt source and an ion chamber detector is used to detect the coal bed level in the gasifier. The detector signal is compared to a bed level set point signal in a primary controller which operates in proportional/integral modes to produce an error signal. The error signal is modulated by the injection of a triangular wave signal of a frequency of about 0.0004 Hz and an amplitude of about 80% of the primary deadband. The modulated error signal is fed to a triple-deadband secondary controller which jogs the coal feeder speed up or down by on/off control of a feeder speed change driver such that the gasifier bed level is driven toward the set point while preventing excessive cycling (oscillation) common in on/off mode automatic controllers of this type. Regulation of the bed level is achieved without excessive feeder speed control jogging.

Fasching, George E. (Morgantown, WV)

1984-01-01

183

A Virtual Engineering Framework for Simulating Advanced Power System  

SciTech Connect

In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

2008-06-18

184

Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems  

DOEpatents

A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

1983-08-26

185

Transportation Systems Engineering GRADUATE STUDIES  

E-print Network

Transportation Systems Engineering GRADUATE STUDIES TRANSPORTATION SYSTEMS are the building blocks and provides for an improved quality of life. However, transportation systems by their very nature also affect the environment through physical construction and operation of transportation facilities, and through the travel

Wang, Yuhang

186

Engineering the Lymphatic System  

PubMed Central

The recent advances in our understanding of lymphatic physiology and the role of the lymphatics in actively regulating fluid balance, lipid transport, and immune cell trafficking has been furthered in part through innovations in imaging, tissue engineering, quantitative biology, biomechanics, and computational modeling. Interdisciplinary and bioengineering approaches will continue to be crucial to the progression of the field, given that lymphatic biology and function are intimately woven with the local microenvironment and mechanical loads experienced by the vessel. This is particularly the case in lymphatic diseases such as lymphedema where the microenvironment can be drastically altered by tissue fibrosis and adipocyte accumulation. In this review we will highlight contributions engineering and mechanics have made to lymphatic physiology and will discuss areas that will be important for future research. PMID:23408477

Nipper, Matthew E.

2011-01-01

187

Engine valve train system  

SciTech Connect

This patent describes a reciprocating internal combustion engine of the type having an engine block means defining at least one cylinder with an associate pair of ports, a valve located for axial movement in each of the ports with each valve normally biased to a valve closed position relative to its associate port. A rocker shaft support means is fixed to the engine block means, and a valve actuator is spaced from the valves and operable to effect reciprocation of the valves. The improvement described here comprises a rocker shaft pivotably supported by the rocker shaft support means, the rocker shaft having an axial passage adapted to be in continuous flow communication with the pressurized lubricant supply of the engine. It also includes first rocker arm pivotably supported on the rocker shaft in position for engagement with the valve actuator and with one of the valves and actuated in rocking movement whereby it can operate to effect opening and closing movement of one of the valves, and a second rocker arm pivotably supported on the rocker shaft next adjacent to the first rocker arm and operatively engaging the other one of the valves, the second rocker arm having a hydraulic cylinder means therein. A piston is sealingly journaled in the hydraulic cylinder means and located so as to permit engagement of the piston with the first rocker arm, the second rocker arm having a supply/drain passage means therein to the hydraulic cylinder means, and a drain passage which extends to the exterior of the second rocker arm and which is located in circumferentially spaced apart relationship to the supply/drain passage means.

Derringer, J.G.

1986-12-09

188

Industrial and Systems Engineering Applications in NASA  

NASA Technical Reports Server (NTRS)

A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

Shivers, Charles H.

2006-01-01

189

Integrated supercritical water gasification combined cycle (IGCC) systems for improved performance and reduced operating costs in existing plants  

SciTech Connect

A revolutionary hydrothermal heat recovery steam generator (HRSG) is being developed to produce clean fuels for gas turbines from slurries and emulsions of opportunity fuels. Water can be above 80% by weight and solids below 20%, including coal fines, coal water fuels, biomass, composted municipal refuse, sewage sludge and bitumen/Orimulsion. The patented HRSG tubes use a commercial method of particle scrubbing to improve heat transfer and prevent corrosion and deposition on heat transfer surfaces. A continuous-flow pilot plant is planned to test the HRSG over a wide range of operating conditions, including the supercritical conditions of water, above 221 bar (3,205 psia) and 374 C (705 F). Bench scale data shows, that supercritical water gasification below 580 C (1,076 F) and low residence time without catalysts or an oxidizer can produce a char product that can contain carbon up to the amount of fixed carbon in the proximate analysis of the solids in the feed. This char can be burned with coal in an existing combustion system to provide the heat required for gasification. The new HRSG tubes can be retrofitted into existing power plant boilers for repowering of existing plants for improved performance and reduced costs. A special condensing turbine allows final low-temperature cleaning and maintains quality and combustibility of the fuel vapor for modern gas turbine in the new Vapor Transmission Cycle (VTC). Increased power output and efficiency can be provided for existing plants, while reducing fuel costs. A preliminary computer-based process simulation model has been prepared that includes material and energy balances that simulate commercial-scale operations of the VTC on sewage sludge and coal. Results predict over 40% HHV thermal efficiency to electric power from sewage sludge at more than 83% water by weight. The system appears to become autothermal (no supplemental fuel required) at about 35% fixed carbon in the feed. Thus, bituminous and lignite coal slurries could be gasified at less than 25% coal and more than 75% water. Preliminary life cycle cost analyses indicate that disposal fees for sewage sludge improve operating economics over fuel that must be purchased, the cost and schedule advantages of natural gas-fired combined cycle systems are preserved. Sensitivity analyses show that increasing capital costs by 50% can be offset by an increase in sewage sludge disposal fees of $10/metric ton.

Tolman, R.; Parkinson, W.J.

1999-07-01

190

Program plan for development of hot dirty-gas heat exchangers for coal-gasification systems. [Entrained-flow, moving bed, and fluidized-bed gasifiers  

Microsoft Academic Search

This report deals with the heat exchanger applications, and its scope includes a broad range of gasification systems, such as the generic models for entrained-flow, moving-bed, and fluidized-bed gasifiers. The major application of hot dirty-gas heat exchangers is in the area of heat recovery for improved gasifier efficiency. The inlet temperature requirements for these heat exchangers varies from approx. 650

Churnetski

1983-01-01

191

Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report  

SciTech Connect

The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

1982-09-01

192

Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering  

SciTech Connect

From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

2011-06-01

193

MEMS Rotary Engine Power System  

NASA Astrophysics Data System (ADS)

This work presents a project overview and recent research results for the MEMS Rotary Engine Power System project at the Berkeley Sensor & Actuator Center of the University of California at Berkeley. The research motivation for the project is the high specific energy density of hydrocarbon fuels. When compared with the energy density of batteries, hydrocarbon fuels may have as much as 20x more energy. However, the technical challenge is the conversion of hydrocarbon fuel to electricity in an efficient and clean micro engine. A 12.9 mm diameter Wankel engine will be shown that has already generated 4 Watts of power at 9300rpm. In addition, the 1mm and 2.4 mm Wankel engines that BSAC is developing for power generation at the microscale will be discussed. The project goal is to develop electrical power output of 90milliwatts from the 2.4 mm engine. Prototype engine components have already been fabricated and these will be described. The integrated generator design concept utilizes a nickel-iron alloy electroplated in the engine rotor poles, so that the engine rotor also serves as the generator rotor.

Fernandez-Pello, A. Carlos; Pisano, Albert P.; Fu, Kelvin; Walther, David C.; Knobloch, Aaron; Martinez, Fabian; Senesky, Matt; Stoldt, Conrad; Maboudian, Roya; Sanders, Seth; Liepmann, Dorian

194

Screening of low cost sorbents for arsenic and mercury capture in gasification systems  

SciTech Connect

A novel laboratory-scale fixed-bed reactor has been developed to investigate trace metal capture on selected sorbents for cleaning the hot raw gas in Integrated Gasification Combined Cycle (IGCC) power plants. The new reactor design is presented, together with initial results for mercury and arsenic capture on five sorbents. It was expected that the capture efficiency of sorbents would decrease with increasing temperature. However, a commercial activated carbon, Norit Darco 'Hg', and a pyrolysis char prepared from scrap tire rubber exhibit similar efficiencies for arsenic at 200 and at 400{sup o}C (70% and 50%, respectively). Meta-kaolinite and fly ash both exhibit an efficiency of around 50% at 200{sup o}C, which then dropped as the test temperature was increased to 400{sup o}C. Activated scrap tire char performed better at 200{sup o}C than the pyrolysis char showing an arsenic capture capacity similar to that of commercial Norit Darco 'Hg'; however, efficiency dropped to below 40% at 400{sup o}C. These results suggest that the capture mechanism of arsenic (As4) is more complex than purely physical adsorption onto the sorbents. Certain elements within the sorbents may have significant importance for chemical adsorption, in addition to the effect of surface area, as determined by the BET method. This was indeed the case for the mercury capture efficiency for all four sorbents tested. Three of the sorbents tested retained 90% of the mercury when operated at 100{sup o}C. As the temperature increased, the efficiency of activated carbon and pyrolysis char reduced significantly. Curiously, despite having the smallest Brunauer-Emmet-Teller (BET) surface area, a pf-combustion ash was the most effective in capturing mercury over the temperature range studied. These observations suggest that the observed mercury capture was not purely physical adsorption but a combination of physical and chemical processes. 27 refs., 4 figs., 4 tabs.

Cedric Charpenteau; Revata Seneviratne; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-09-15

195

System Engineering Paper  

NASA Technical Reports Server (NTRS)

The Iowa State University team, Team LunaCY, is composed of the following sub-teams: the main student organization, the Lunabotics Club; a senior mechanical engineering design course, ME 415; a senior multidisciplinary design course, ENGR 466; and a senior design course from Wartburg College in Waverly, Iowa. Team LunaCY designed and fabricated ART-E III, Astra Robotic Tractor- Excavator the Third, for the team's third appearance in the NASA Lunabotic Mining competition. While designing ART-E III, the team had four main goals for this year's competition:to reduce the total weight of the robot, to increase the amount of regolith simulant mined, to reduce dust, and to make ART-E III autonomous. After many designs and research, a final robot design was chosen that obtained all four goals of Team LunaCY. A few changes Team LunaCY made this year was to go to the electrical, computer, and software engineering club fest at Iowa State University to recruit engineering students to accomplish the task of making ART-E III autonomous. Team LunaCY chose to use LabView to program the robot and various sensors were installed to measure the distance between the robot and the surroundings to allow ART-E III to maneuver autonomously. Team LunaCY also built a testing arena to test prototypes and ART-E III in. To best replicate the competition arena at the Kennedy Space Center, a regolith simulant was made from sand, QuickCrete, and fly ash to cover the floor of the arena. Team LunaCY also installed fans to allow ventilation in the arena and used proper safety attire when working in the arena . With the additional practice in the testing arena and innovative robot design, Team LunaCY expects to make a strong appearance at the 2012 NASA Lunabotic Mining Competition. .

Heise, James; Hull, Bethanne J.; Bauer, Jonathan; Beougher, Nathan G.; Boe, Caleb; Canahui, Ricardo; Charles, John P.; Cooper, Zachary Davis Job; DeShaw, Mark A.; Fontanella, Luan Gasparetto; Friel, Mark; Goebel, Katie; Grant, Alex Martinsdacosta; Graves, Matt; Harms, Ryan Andrew; Hill, Aren; Lsely, Kevin Lee; Jose, Sonia; Klein, Andrew; Kolstad, Lauren Wickham; Lamp, Daniel A.; Lindquist, Mariangela Martin; Lopes, Daniel da Paula; Lourens, Rob; Matthews, Christopher

2012-01-01

196

RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY  

SciTech Connect

In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate (GHRR) equal to the original boiler design. Boiler efficiencies (cogeneration-steam plus air) is increased from the original design value of 70% to 78.9% due to a combination of improved burnout, operation with lower excess air, and drier fuel. For the fully implemented plant, the thermal efficiency of fuel to electricity conversion is 79.8% in the cogeneration mode, 5% above the design goal. Finally, self-generated electricity will be increased from the 10.8 MW currently attributable to No.2 Boiler to 46.7MW, an increase of 332%. Environmental benefits derived from the system include a reduction in NOx emissions from the boiler of about 30-50% (90-130 tons/year) through syngas reburning, improved carbon burnout and lower excess air. This does not count NOx reduction that may be associated with replacement of purchased electricity. The project would reduce CO{sub 2} emissions from the generation of electricity to meet the mill's power requirements, including 50,000 tons/yr from a net reduction in gas usage in the mill and an additional 410,000 tons/yr reduction in CO{sub 2} emissions due to a 34 MW reduction of purchased electricity. The total CO{sub 2} reduction amounts to about 33% of the CO{sub 2} currently generated to meet the mills electricity requirement. The overall conclusion of the study is that while significant engineering challenges are presented by the proposed system, they can be met with operationally acceptable and cost effective solutions. The benefits of the system can be realized in an economic manner, with a simple payback period on the order of 6 years. The results of the study are applicable to many paper mills in the U.S. firing woodwastes and other solid fuels for steam and power production.

Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

2003-11-01

197

Hybrid Combustion-Gasification Chemical Looping  

SciTech Connect

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07

198

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use  

E-print Network

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

199

Gasification. 2nd. ed.  

SciTech Connect

This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

Christopher Higman; Maarten van der Burgt [Lurgi Oel Gas Chemie (Germany)

2008-02-15

200

Making a case for Systems Engineering  

Microsoft Academic Search

In late 2007, the Systems Engineering Advancement (SEA) Project at the Jet Propulsion Laboratory (JPL) decided to design a multi-day Systems Engineering Workshop to train systems engineers in the practice of systems engineering. They were determined to avoid the trap of merely giving hours of lectures and presentations that would bore the audience and soon be forgotten. They decided to

P. A. Jansma

2010-01-01

201

Making a case for systems engineering  

Microsoft Academic Search

In late 2007, the Systems Engineering Advancement (SEA) Project at the Jet Propulsion Laboratory (JPL) decided to design a multi-day Systems Engineering Workshop to train systems engineers in the practice of systems engineering. They were determined to avoid the trap of merely giving hours of lectures and presentations that would bore audiences and soon be forgotten. They decided to base

P. A. T. Jansma

2010-01-01

202

Engineering Resilient Cyber-Physical Systems  

E-print Network

Engineering Resilient Cyber-Physical Systems Future Grid Thrust Area 6 White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Thrust Area 6 White Paper Engineering Resilient Cyber-Physical Systems Project Team Thomas J. Overbye University

203

Computer Jet-Engine-Monitoring System  

NASA Technical Reports Server (NTRS)

"Intelligent Computer Assistant for Engine Monitoring" (ICAEM), computer-based monitoring system intended to distill and display data on conditions of operation of two turbofan engines of F-18, is in preliminary state of development. System reduces burden on propulsion engineer by providing single display of summary information on statuses of engines and alerting engineer to anomalous conditions. Effective use of prior engine-monitoring system requires continuous attention to multiple displays.

Disbrow, James D.; Duke, Eugene L.; Ray, Ronald J.

1992-01-01

204

Catalytic Wet Gasification of Municipal and Animal Wastes  

SciTech Connect

Applicability of wet gasification technology for various animal and municipal wastes was examined. Wet gasification of swine manure and raw sewage sludge generated high number of net energies. Furthermore, the moisture content of these wastes is ideal for current wet gasification technology. Significant quantities of water must be added to dry feedstock wastes such as poultry litter, feedlot manures and MSW to make the feedstock pumpable. Because of their high ash contents, MSW and unpaved feedlot manure would not generate positive energy return from wet gasification. The costs of a conceptual wet gasification manure management system for a model swine farm were significantly higher than that of the anaerobic lagoon system. However, many environmental advantages of the wet gasification system were identified, which might reduce the costs significantly. Due to high sulfur content of the wastes, pretreatment to prevent the poisoning of catalysts is critically needed.

Ro, Kyoung S.; Cantrell, Keri; Elliott, Douglas C.; Hunt, Patrick G.

2007-02-21

205

2.0 AEDL Systems Engineering  

NASA Technical Reports Server (NTRS)

Some engineering topics: Some Initial Thoughts. Capability Description. Capability State-of-the-Art. Capability Requirements. Systems Engineering. Capability Roadmap. Capability Maturity. Candidate Technologies. Metrics.

Graves, Claude

2005-01-01

206

Development of an advanced continuous mild gasification process for the production of coproducts. Task 4, System integration studies: Char upgrading  

SciTech Connect

This document describes the results of Task 4 under which a 50 pound/hour char-to-carbon (CTC) process research unit (PRU) was designed in the second half of 1989, with construction completed in June 1990. The CTC PRU at Golden was operated for nearly one year during which 35 runs were completed for a total of nearly 800 hours of operation. Char methanation and carbon production reactor development activities are detailed in this report, as well as the results of integrated runs of the CTC process. Evaluation of the process and the carbon product produced is also included. It was concluded that carbon could be produced from mild gasification char utilizing the CTC process. Char methanation and membrane separation steps performed reasonably well and can scaled up with confidence. However, the novel directly heated reactor system for methane cracking did not work satisfactorily due to materials of construction and heat transfer problems, which adversely affected the quantity and quality of the carbon product. Alternative reactor designs are recommended.

Jha, M.C.; McCormick, R.L.; Hogsett, R.F.; Rowe, R.M.; Anast, K.R.

1991-12-01

207

Systems engineering at the nanoscale  

NASA Astrophysics Data System (ADS)

Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

2012-06-01

208

Aerospace Systems Engineering Required (2) AE 542 Aerospace Systems Engineering I  

E-print Network

Aerospace Systems Engineering Required (2) AE 542 Aerospace Systems Engineering I AE 543 Aerospace Fundamentals Link to all online AE courses #12;Aerospace Systems Engineering Required (2) AE 542 Aerospace Systems Engineering I (F) AE 543 Aerospace Systems Engineering II (Sp) Breadth-SMM (choose 1): AE 420

Illinois at Urbana-Champaign, University of

209

INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering  

E-print Network

design, human/machine interface, and data processing economics. Prerequisite: CSCI 101L. 390 Special companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited distribu- tions and transformations of random variables; limit theorems; approximations and applications

Rohs, Remo

210

UNDERGRADUATE DEGREES Industrial and Systems Engineering  

E-print Network

UNDERGRADUATE DEGREES Industrial and Systems Engineering The Bachelor's Degree in Industrial, consulting at amusement parks, analyzing systems, and beyond. SYSTEMS ScIENcE AND INDUSTRIAl ENGINEERING of Engineering in Industrial Engineering (MEng IE) equips graduates to be effective in industry and provides

Suzuki, Masatsugu

211

Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

SciTech Connect

This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energyâ??s Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process â?? High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

Howard Meyer

2010-11-30

212

Intelligent Engine Systems: Acoustics  

NASA Technical Reports Server (NTRS)

An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

Wojno, John; Martens, Steve; Simpson, Benjamin

2008-01-01

213

Feasibility study of wood biomass gasification\\/molten carbonate fuel cell power system—comparative characterization of fuel cell and gas turbine systems  

Microsoft Academic Search

The conversion of biomass by means of gasification into a fuel suitable for a high-temperature fuel cell has recently received more attention as a potential substitute for fossil fuels in electric power production. However, combining biomass gasification with a high-temperature fuel cell raises many questions with regard to efficiency, feasibility and process requirements. In this study, a biomass gasification\\/molten carbonate

H. Morita; F. Yoshiba; N. Woudstra; K. Hemmes; H. Spliethoff

2004-01-01

214

TWRS Systems Engineering Working Plan  

SciTech Connect

The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations.

Eiholzer, C.R.

1994-09-16

215

Core Concepts of Systems Engineering  

NSDL National Science Digital Library

This telecollaborative project is designed to provide students in grades 9-12 with an orientation to systems engineering concepts. Through guided activities students will reverse-engineer a common device that contains both electrical and mechanical components and then create a systems diagram for the deconstructed device. (In this case, the device is a disposable camera.) In partnership with other project participants across the country, learners will reassemble the device and test their reconstruction against quality controls. The project is free with teacher registration. The module includes lesson plans, comprehensive teacher tutorial, reference material, question sets and worksheets, and digital collaboration tools. This resource was developed by the Center for Innovation in Science and Engineering Education (CIESE). Participation is cost-free with teacher registration. Editor's Note: Several components of this activity specifically address a physics curriculum. Disposable flash cameras provide an opportunity for analysis of electric field, charging a capacitor, and energy storage on a capacitor.

2012-04-03

216

Handbook of biomass downdraft gasifier engine systems  

SciTech Connect

This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

Reed, T B; Das, A

1988-03-01

217

Diesel engine fuel systems  

SciTech Connect

The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

Not Available

1994-01-01

218

Diesel engine fuel systems  

SciTech Connect

The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

NONE

1994-12-31

219

Security systems engineering overview  

Microsoft Academic Search

Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose

Steele

1996-01-01

220

Incentives boost coal gasification  

SciTech Connect

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16

221

Gasification: A Cornerstone Technology  

ScienceCinema

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2010-01-08

222

MEMS Rotary Engine Power System  

Microsoft Academic Search

This work presents a project overview and recent research results for the MEMS Rotary Engine Power System project at the Berkeley Sensor & Actuator Center of the University of California at Berkeley. The research motivation for the project is the high specific energy density of hydrocarbon fuels. When compared with the energy density of batteries, hydrocarbon fuels may have as

A. Carlos Fernandez-Pello; Albert P. Pisano; Kelvin Fu; David C. Walther; Aaron Knobloch; Fabian Martinez; Matt Senesky; Conrad Stoldt; Roya Maboudian; Seth Sanders; Dorian Liepmann

2003-01-01

223

Certificate Industrial and Systems Engineering  

E-print Network

Six Sigma Certificate Industrial and Systems Engineering San José State University September, 2008 #12;1 Lean Enterprise and Six Sigma Lean Enterprise about transforming the old mass production-to-cradle design, incorporating design for manufacturability, reproducibility, product lifecycle, etc. Six Sigma

Su, Xiao

224

Risk and Criticality Systems Engineering  

E-print Network

1 Lecture 11 Risk and Criticality Systems Engineering Dr. Joanna Bryson Dr. Leon Watts University should be able to: Describe the risk management process and define the concept of risk. Identify common risks in a software project. Perform probabilistic risk analysis Explain what is meant by a critical

Bryson, Joanna J.

225

Security systems engineering overview  

SciTech Connect

Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at $70 billion in direct costs and up to $300 billion in indirect costs. Health insurance fraud alone is estimated to cost American businesses $100 billion. Theft, warranty fraud, and counterfeiting of computer hardware totaled $3 billion in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies (counterfeit currency, cellular phone billing, credit card fraud, health care fraud, passport, green cards, and questionable documents); industrial espionage detection and prevention (intellectual property, computer chips, etc.); and security barrier technology (creation of delay such as gates, vaults, etc.).

Steele, B.J.

1996-12-31

226

Information technology security system engineering methodology  

NASA Technical Reports Server (NTRS)

A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

Childs, D.

2003-01-01

227

Management issues in systems engineering  

NASA Technical Reports Server (NTRS)

When applied to a system, the doctrine of successive refinement is a divide-and-conquer strategy. Complex systems are sucessively divided into pieces that are less complex, until they are simple enough to be conquered. This decomposition results in several structures for describing the product system and the producing system. These structures play important roles in systems engineering and project management. Many of the remaining sections in this chapter are devoted to describing some of these key structures. Structures that describe the product system include, but are not limited to, the requirements tree, system architecture and certain symbolic information such as system drawings, schematics, and data bases. The structures that describe the producing system include the project's work breakdown, schedules, cost accounts and organization.

Shishko, Robert; Chamberlain, Robert G.; Aster, Robert; Bilardo, Vincent; Forsberg, Kevin; Mooz, Hal; Polaski, Lou; Wade, Ron

1993-01-01

228

Engineering intelligent tutoring systems  

NASA Technical Reports Server (NTRS)

We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.

Warren, Kimberly C.; Goodman, Bradley A.

1993-01-01

229

Diesel engine catalytic combustor system. [aircraft engines  

NASA Technical Reports Server (NTRS)

A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

Ream, L. W. (inventor)

1984-01-01

230

2006 gasification technologies conference papers  

SciTech Connect

Sessions covered: business overview, industry trends and new developments; gasification projects progress reports; industrial applications and opportunities; Canadian oil sands; China/Asia gasification markets - status and projects; carbon management with gasification technologies; gasification economics and performance issues addressed; and research and development, and new technologies initiatives.

NONE

2006-07-01

231

Manufacturing system engineering with mechatronical units  

Microsoft Academic Search

Within the engineering of manufacturing systems the paradigm mechatronical units is of important interest. To deal properly with mechatronical units within manufacturing system engineering they have to be defined, described and used in an appropriate way establishing a mechatronical engineering process. This paper describes from good practice experience how mechatronical units can be modeled and used within the mechatronical engineering

Arndt Lüder; L. H. M. Foehr; T. Wagner; J.-J. Zaddach; T. Holm

2010-01-01

232

The organizational and political challenges of Enterprise Systems Engineering : a survey of senior systems engineers  

E-print Network

Systems engineering efforts are becoming increasingly complex, novel and interdependent, making traditional systems engineering approaches only partially applicable to such efforts. Consequently, a new discipline is emerging ...

Rashid, Faaiza

2008-01-01

233

Management System for Engineering Ethics  

NASA Astrophysics Data System (ADS)

In the context of independent profession based societies, ethics charter/codes of professional bodies have significant influence on the conduct of engineers. Contrarily in Japan, most of active engineers are in-house and feel immediate identity as the member of firm or institution, rather than professional bodies. Therefore, establishment and operation of engineering ethics management system (E2ms) is essential for incentive to make innovative and ethical decision with confidence. The paper introduces the outline of the educational kit for E2ms developed by the author. The kit aims to enhance ability of management relevant to E2ms. The kit also involves ten cases for case method teaching. The test use of the kit indicates the potential to create satisfactory educational achievement.

Yashiro, Tomonari

234

WABASH RIVER COAL GASIFICATION REPOWERING PROJECT  

SciTech Connect

The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

Unknown

2000-09-01

235

The engineering of cybernetic systems  

NASA Astrophysics Data System (ADS)

This tutorial develops a logical basis for the engineering of systems that operate cybernetically. The term cybernetic system has a clear quantitative definition. It is a system that dynamically matches acquired information to selected actions relative to a computational issue that defines the essential purpose of the system or machine. This notion requires that information and control be further quantified. The logic of questions and assertions as developed by Cox provides one means of doing this. The design and operation of cybernetic systems can be understood by contrasting these kinds of systems with communication systems and information theory as developed by Shannon. The joint logic of questions and assertions can be seen to underlie and be common to both information theory as applied to the design of discrete communication systems and to a theory of discrete general systems. The joint logic captures a natural complementarity between systems that transmit and receive information and those that acquire and act on it. Specific comparisons and contrasts are made between the source rate and channel capacity of a communication system and the acquisition rate and control capacity of a general system. An overview is provided of the joint logic of questions and assertions and the ties that this logic has to both conventional information theory and to a general theory of systems. I-diagrams, the interrogative complement of Venn diagrams, are described as providing valuable reasoning tools. An initial framework is suggested for the design of cybernetic systems. Two examples are given to illustrate this framework as applied to discrete cybernetic systems. These examples include a predator-prey problem as illustrated through "The Dog Chrysippus Pursuing its Prey," and the derivation of a single-neuron system that operates cybernetically and is biologically plausible. Future areas of research are highlighted which require development for a mature engineering framework.

Fry, Robert L.

2002-05-01

236

Aerospace Engineering Systems  

NASA Technical Reports Server (NTRS)

Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.

VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

1999-01-01

237

Systems Engineering in the Glass Industry  

Microsoft Academic Search

A survey of current trends of systems engineering in the glass industry is presented. The central theme is that systems engineering is the technique through which the process of our time¿the information revolution exemplified by the digital computer¿is exerting its impact on the industry. Systems engineering is examined and basic concepts reviewed, and the production system is defined as a

RAYMOND J. MOULY

1969-01-01

238

Materials of Gasification  

SciTech Connect

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15

239

Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

240

Fixed-bed gasification research using US coals. Volume 14. Gasification of Kemmerer subbituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the fourteen volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Kemmerer subbituminous coal, from August 11, 1984 to August 15, 1984. 4 refs., 20 figs., 13 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

241

Embedded Computing Systems for Computer Engineering and Electrical Engineering Programs  

E-print Network

Embedded Computing Systems for Computer Engineering and Electrical Engineering Programs Overview An embedded computer system is designed for specific functions (usually control functions) within a larger that effect desired changes in the observed world. Embedded computer systems are everywhere: in hand

Humphrey, Marty

242

Systems engineering: A problem of perception  

SciTech Connect

The characterization of systems engineering as a discipline, process, procedure or a set of heuristics will have an impact on the implementation strategy, the training methodology, and operational environment. The systems engineering upgrade activities in the New Mexico Weapons Development Center and a search of systems engineering related information provides evidence of a degree of ambiguity in this characterization of systems engineering. A case is made in this article for systems engineering being the engineering discipline applied to the science of complexity. Implications of this characterization and some generic issues are delineated with the goal of providing an enterprise with a starting point for developing its business environment.

Senglaub, M.

1995-08-01

243

ENGINEERING GRaduatE PRoGRams Biological SyStemS engineering Biomedical engineering chemical engineering civil and environmental engineering  

E-print Network

ENGINEERING GRaduatE PRoGRams Biological SyStemS engineering § Biomedical engineering § chemical engineering § civil and environmental engineering computer Science § electrical and computer engineering § materialS Science and engineering mechanical and aeronautical engineering § tranSportation technology

California at Davis, University of

244

Combustion of Syngas in Internal Combustion Engines  

Microsoft Academic Search

The combustion of synthesis gas will play an important role in advanced power systems based on the gasification of fuel feedstocks and combined cycle power production. While the most commonly discussed option is to burn syngas in gas turbine engines, another possibility is to burn the syngas in stationary reciprocating engines. Whether spark ignited or compression ignited, syngas could serve

André L. Boehman; Olivier Le Corre

2008-01-01

245

industrial & systems (ISE) Industrial and Systems Engineers use engineering and business prin-  

E-print Network

70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business prin to help companies compete in today's global marketplace. The Industrial and Systems Engineer's task Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial and Systems

Rohs, Remo

246

System Engineering Challenges of Future Space Missions  

NASA Technical Reports Server (NTRS)

A viewgraph presentation on the system engineering challenges that face NASA's future space missions is shown. The topics include: 1) Future Space Missions; 2) Trends; and 3) Developing System Engineers.

Hyde, Tristam Tupper

2005-01-01

247

Safety-driven system engineering process  

E-print Network

As the demand for high-performing complex systems has increased, the ability of engineers to meet that demand has not kept pace. The creators of the traditional system engineering processes did not anticipate modern complex ...

Stringfellow, Margaret Virgina

2008-01-01

248

Gasification and combustion technologies of agro-residues and their application to rural electric power systems in India  

NASA Astrophysics Data System (ADS)

Biomass based power generation has the potential to add up to 20,000 MW of distributed capacity in India close to the rural load centers. However, the present production of biomass-based electricity is modest, contributing a mere 300 MW of installed capacity. In this thesis, we shall examine some of the scientific, technological and policy issues concerned with the generation and commercial viability of biomass-based electric power. We first consider the present status of biomass-based power in India and make an attempt to understand the reasons for low utilization. Our analysis suggests that the small-scale biomass power plants (<100 kW) when used for village electrification have a low Plant Load Factor (PLF) that adversely affects their economic viability. Medium Scale units (0.5 MW--5 MW) do not appear attractive because of the costs involved in the biomass transportation. There is thus a merit in considering power plants that use biomass available in large quantities in agro-processing centers such as rice or sugar mills where power plants of capacities in excess of 5 MW are possible without biomass transportation. We then simulate a biomass gasification combustion cycle using a naturally aspirated spark ignition engine since it can run totally on biomass gas. The gasifier and engine are modeled using the chemical equilibrium approach. The simulation is used to study the impact of fuel moisture and the performance of different biomass feedstock. Biomass power plants when used for decentralized power generation; close to the rural load centers can solve some of the problems of rural power supply: provide voltage support, reactive power and peak shaving. We consider an innovative option of setting up a rural electricity micro-grid using a decentralized biomass power plant and selected a rural feeder in Tumkur district, Karnataka for three-phase AC load flow studies. Our results suggest that this option significantly reduces the distribution losses and improves the voltage profiles. We examine a few innovative policy options for making a rural micro-grid economically viable and also a pricing mechanism for reactive power and wheeling. We next consider co-firing biomass and coal in utility boilers as an attractive option for biomass utilization because of low capital costs; high efficiency of utility boilers; lower CO2 emissions (per kWh) and also lower NOx and SO2. However, efficiency derating of the boilers caused by unburnt carbon in the fly ash is a major concern of the utilities. We develop a computational fluid dynamics (CFD) based model to understand the impact of co-firing on utility boilers. A detailed biomass devolatilization sub-model is also developed to study the importance of intra-particle heat and mass transport. Finally, we conduct an experimental study of the pyrolysis of rice husk. We conducted single particle experiments in a Confocal Scanning Laser Microscope (CSLM) at the Department of Material Science and Engineering, Carnegie Mellon University coupled with Scanning Electron Microscope (SEM) analysis of partially and fully combusted particles. Our results seem to indicate that the role of silica fibers is not merely to act as geometric shields for the carbon atoms. Instead there appears to be a strong and thermally resistant inter-molecular bonding that prevents carbon conversion. Therefore, it may not be possible to achieve full carbon conversion.

Bharadwaj, Anshu

249

Heat engine generator control system  

DOEpatents

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

1998-01-01

250

Heat engine generator control system  

DOEpatents

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

1998-05-12

251

SMAP Instrument Mechanical System Engineering  

NASA Technical Reports Server (NTRS)

The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

Slimko, Eric; French, Richard; Riggs, Benjamin

2013-01-01

252

Gasification Technologie: Opportunities & Challenges  

SciTech Connect

This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

Breault, R.

2012-01-01

253

_q .. SP-6102 -" IN SYSTEMS ENGINEERING  

E-print Network

_¢q .. SP-6102 -" READINGS IN SYSTEMS ENGINEERING Edited by Francis T. Hoban and William M. Lawbaugh co ! (NASA-SP-6102) REAOINGS IN SYSTEMS ENGINEERING (NASa) 215 p N93-24678 --THRU-- N93-24693 Unclas H1/31 0158570 #12;.J T ,j J #12;READINGS IN SYSTEMS ENGINEERING Edited by Francis T. Hoban

Rhoads, James

254

PLAN OF WORK GRADUATE CERTIFICATE SYSTEMS ENGINEERING  

E-print Network

required foundation course in systems engineering: at least one required course in project management, risk the Engineering Management or Industrial Engineering Degree. Core Course SYE 6490 Semester _______ Year _______ Year_______ Grade______ SYE 7998 ­ Engineering Management and Leadership: Cr.2 Semester _______ Year

Berdichevsky, Victor

255

CAD system use and engineering performance  

Microsoft Academic Search

Computer-aided design (CAD) systems can support engineering work at three levels: design, analysis, and communication. Seventy-five engineers in two gas turbine engine manufacturing companies were surveyed in an attempt to understand the relationship between these three types of CAD use and engineering performance. The results show strong links between different types of CAD use; use for design enables for for

David Robertson; Thomas J. Allen

1993-01-01

256

Stirling Engine Dynamic System Modeling  

NASA Technical Reports Server (NTRS)

The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

Nakis, Christopher G.

2004-01-01

257

Information Technology: Computer Systems Engineer  

NSDL National Science Digital Library

In this video adapted from Pathways to Technology, learn what drove Choice Jenningsâ??someone who had never owned a computer of his ownâ??to become interested in computer graphics, attend community college, earn an associate's degree in computer systems engineering (CSE), and start his own information technology (IT) business. Also see the many roles a CSE professional can play, from systems administrator to IT director.The video runs 2:45 and is accompanied by a background essay, standards alignment, and discussion questions. Users who sign up for a free account can save the resource and download the video as well.

258

ANG coal gasification project management control system report. [Great Plains project  

SciTech Connect

Much time, money and effort has been spent in the forefront of this project for project controls. The work breakdown structure for the systems has been custom designed. The systems, both manual and computerized, have been well scrutinized and chosen by ANG to represent the most cost effective and efficient way of controlling a project the magnitude of $1.5 billion. These systems have been developed in a manner so that information can be gathered as detailed or as summarized as necessary, and in the most timely and expeditious ways.

Not Available

1981-01-01

259

Multimedia Feedback Systems for Engineering  

SciTech Connect

The World Wide Web has become a key tool for information sharing. Engineers and scientists are finding that the web is especially suited to publishing the graphical, multi-layered information that is typical of their work. Web pages are easier to distribute than hardcopy. Web movies have become more accessible, in many offices, than videos. Good VRML viewing software, bundled with most new PCs, has sufficient power to support many engineering needs. In addition to publishing information science and engineering has an important tradition of peer and customer review. Reports, drawings and graphs are typically printed, distributed, reviewed, marked up, and returned to the author. Adding review comments to paper is easy. When, however, the information is in electronic form, this ease of review goes away. It's hard to write on videos. It's even harder to write comments on animated 3D models. These feedback limitations reduce the value of the information overall. Fortunately, the web can also be a useful tool for collecting peer and customer review information. When properly formed, web reports, movies, and 3D animations can be readily linked to review notes. This paper describes three multimedia feed-back systems that Sandia National Laboratories has developed to tap that potential. Each system allows people to make context-sensitive comments about specific web content and electronically ties the comments back to the web content being referenced. The fuel system ties comments to specific web pages, the second system ties the comments to specific frames of digital movies, and the third ties the comments to specific times and viewpoints within 3D animations. In addition to the technologies, this paper describes how they are being used to support intelligent machine systems design at Sandia.

Gladwell, S.; Gottlieb, E.J.; McDonald, M.J.; Slutter, C.L.

1998-12-15

260

The production of synthetic natural gas (SNG): A comparison of three wood gasification systems for energy balance and overall efficiency  

Microsoft Academic Search

The production of Synthetic Natural Gas from biomass (Bio-SNG) by gasification and upgrading of the gas is an attractive option to reduce CO2 emissions and replace declining fossil natural gas reserves. Production of energy from biomass is approximately CO2 neutral. Production of Bio-SNG can even be CO2 negative, since in the final upgrading step, part of the biomass carbon is

Christiaan M. van der Meijden; Hubert J. Veringa; Luc P. L. M. Rabou

2010-01-01

261

Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

262

Review: Tissue engineering in the nervous system  

Microsoft Academic Search

The nervous system presents a challenge to the field of tissue engineering because some of its complex neu- rochemical and neuroanatomical architecture is just be- ginning to be understood. A combination of advances in molecular neurobiology, gene transfer techniques, and the concomitant advances in the engineering of biomaterials at a molecular level, are making tissue engineering in the nervous system

Ravi Bellamkonda; Patrick Aebischer

1994-01-01

263

Industrial & Systems Engineering University of Washington  

E-print Network

Industrial & Systems Engineering University of Washington Linda Ng Boyle, Ph.D. Associate Professor linda@u.washington.edu #12;Agenda · What is Industrial & Systems Engineering? · Where do Industrial Engineers get jobs? · What classes would you take in ISE? · Where do UW graduates with ISE degrees

Anderson, Richard

264

Systems Engineering and Reusable Avionics  

NASA Technical Reports Server (NTRS)

One concept for future space flights is to construct building blocks for a wide variety of avionics systems. Once a unit has served its original purpose, it can be removed from the original vehicle and reused in a similar or dissimilar function, depending on the function blocks the unit contains. For example: Once a lunar lander has reached the moon's surface, an engine controller for the Lunar Decent Module would be removed and used for a lunar rover motor control unit or for a Environmental Control Unit for a Lunar Habitat. This senior design project included the investigation of a wide range of functions of space vehicles and possible uses. Specifically, this includes: (1) Determining and specifying the basic functioning blocks of space vehicles. (2) Building and demonstrating a concept model. (3) Showing high reliability is maintained. The specific implementation of this senior design project included a large project team made up of Systems, Electrical, Computer, and Mechanical Engineers/Technologists. The efforts were made up of several sub-groups that each worked on a part of the entire project. The large size and complexity made this project one of the more difficult to manage and advise. Typical projects only have 3-4 students, but this project had 10 students from five different disciplines. This paper describes the difference of this large project compared to typical projects, and the challenges encountered. It also describes how the systems engineering approach was successfully implemented so that the students were able to meet nearly all of the project requirements.

Conrad, James M.; Murphy, Gloria

2010-01-01

265

Applying System Engineering to Pharmaceutical Safety  

E-print Network

While engineering techniques are used in the development of medical devices and have been applied to individual healthcare processes, such as the use of checklists in surgery and ICUs, the application of system engineering ...

Couturier, Matthieu

266

Prerequisites: Control System I + II, Engine Systems, MATLAB/Simulink  

E-print Network

institute, we are working on a new concept: Diesel-CNG dual fuel engine. In this engine, Diesel is injected, retrofitting an existing heavy-duty Diesel engine is not just plug and play. A lot of modeling, optimizationPrerequisites: Control System I + II, Engine Systems, MATLAB/Simulink Contact: Mu Wang, ML K 41

Daraio, Chiara

267

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING Dwight look College of Engineering  

E-print Network

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING Dwight look College of Engineering .NOTICE of Industrial &Systems Engineering; participate in scholarly activities such as conducting research.D. in industrial and systems engineering, cognitive psychology or a closely related discipline. SALARY

Behmer, Spencer T.

268

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

SciTech Connect

The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

Jost Wendt; Sung Jun Lee; Paul Blowers

2008-09-30

269

Boston University College of Engineering Division of Systems Engineering  

E-print Network

. The Division provides a home for faculty and students interested in the theory, methods, and tools for modeling of applications. Highlights Systems Engineering cuts across the traditional engineering departments communities. During the 2009-10 academic year, I look forward to an evaluation of the Division's first year

Goldberg, Bennett

270

Engine driven heating system components for Stirling engines  

Microsoft Academic Search

A mechanical drive system permits a single electric motor to drive at least three rotary components necessary to the cold starting of a Stirling engine. These components comprise a rotary preheater, an air atomizing pump for facilitating proper injection of fuel particle size, and a combustion air blower, all necessary to heat the working gas of a Stirling engine prior

L. A. Reams; A. E. Geddes

1978-01-01

271

Biomass Gasification Technology Assessment: Consolidated Report  

SciTech Connect

Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

Worley, M.; Yale, J.

2012-11-01

272

Ruhrchemie\\/Ruhrkohle demonstration plant of the Texaco coal gasification process; gasification of a Western US coal as a pretest for Cool Water  

Microsoft Academic Search

In 1980, German engineers performed test runs on two US coals - candidates for the Cool Water, Calif., gasification plant - in a 150 ton-day Texaco coal-gasification demonstration plant in West Germany. Both runs, with Illinois No. 6 and Utah coals, proved the excellent design and commercial readiness of the Texaco process as well as the suitability of the feedstocks.

B. Cornils; P. Ruprecht; R. Duerrfeld; J. Langhoff

1982-01-01

273

Graduate School of Life Science and Systems Engineering School of Engineering  

E-print Network

4 5 Graduate School of Life Science and Systems Engineering 1st Year School of Engineering of Materials Science and Engineering Department of Integrated System Engineering Electrical Engineering Course Engineering Department of Materials Science Department of Applied Science for Integrated System Engineering

Kourai, Kenichi

274

Automotive Stirling engine system component review  

NASA Technical Reports Server (NTRS)

The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

Hindes, Chip; Stotts, Robert

1987-01-01

275

Engine valve operating system for an internal combustion engine  

SciTech Connect

This patent describes an engine valve operating system for an internal combustion engine. The system consists of: a driving cam rotatable in timed relation to engine revolution; a rocker arm having a first end section drivingly connected to an engine valve and a second end section drivably connected to the driving cam; an elongated lever pivoted at a first end section and disposed in fulcrum contact with the rocker arm; an apparatus for biasing the rocker arm and the lever away from each other; and a hydraulic actuator having a movable end section which is in contact with a second end section of the lever and movable to control the pivotal location of the lever in accordance with an engine operating condition.

Hara, S.; Matsumoto, Y.; Matayoshi, Y.

1986-02-04

276

Texaco coal gasification  

SciTech Connect

It is a pleasure to be with you today and to be speaking to you about a clean coal technology, the Texaco Coal Gasification Process. Texaco's gasification research began in the 1940s and in the 70s and 80s Texaco incorporated into its goals the production of energy from coal in an environmental clean and technological superior manner. Gasification technology can also be used to gasify other materials such as natural gas, waste refinery gas, oil, petroleum coke, and even organic waste, such as sludge, etc. This technology is also applicable to the manufacture of high purity hydrogen, which we will discuss in a few minutes. Texaco gasification is license in 100 plants throughout the world today. Texaco coal gasification technology begins with grinding the coal and slurrying it with water, pumping the slurry to a gasifier vessel through a burner where it is mixed with oxygen at approximately 2400{degrees} F and pressures of three to six hundred pounds. Here, inside a refractory lines vessel, the partial oxidation of the carbon occurs and produces hydrogen syngas, a mixture of carbon monoxide and hydrogen. The operating temperature (2400{degrees} F) is high enough to melt the mineral matte in the coal, so that it becomes slag and falls to the bottom of the vessel. It is an inert unleachable nonhazardous material. Sulfur within the coal is converted to hydrogen sulfide and is removed by one of several commercially proven technologies as elemental sulfur.

Siegart, W.R.

1992-01-01

277

System identification of a natural gas engine  

Microsoft Academic Search

Simulation results are shown for linear system identification carried out to identify key model parameters of a lean-burn natural gas engine with transmission. The natural gas engine can be described by a nonlinear plant with three states. The dynamic state equations of the model involve parameters that might vary depending on ambient conditions, type of transmission connected to the engine,

Anupam Gangopadhyay; Peter Meckl

1998-01-01

278

Coal gasification systems engineering and analysis. Appendix D: Cost and economic studies  

NASA Technical Reports Server (NTRS)

The detailed cost estimate documentation for the designs prepared in this study are presented. The include: (1) Koppers-Totzek, (2) Texaco (3) Babcock and Wilcox, (4) BGC-Lurgi, and (5) Lurgi. The alternate product cost estimates include: (1) Koppers-Totzek and Texaco single product facilities (methane, methanol, gasoline, hydrogen), (2) Kopers-Totzek SNG and MBG, (3) Kopers-Totzek and Texaco SNG and MBG, and (4) Lurgi-methane and Lurgi-methane and methanol.

1980-01-01

279

Space shuttle main engine: Hydraulic system  

NASA Technical Reports Server (NTRS)

The hydraulic actuation system of the space shuttle main engine is discussed. The system consists of five electrohydraulic actuators and a single engine filter used to control the five different propellant valves, which in turn control thrust and mixture ratio of the space shuttle main engine. The hydraulic actuation system provides this control with a precision of 98.7 percent or an error in position no greater than 1.3 percent of full scale rotational travel for critical positions.

Geller, G.; Lamb, C. D.

1981-01-01

280

Engine Structures Modeling Software System (ESMOSS)  

NASA Technical Reports Server (NTRS)

Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

1991-01-01

281

Production of Hydrogen from Underground Coal Gasification  

DOEpatents

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07

282

Automobile shredder residue gasification.  

PubMed

Automobile Shredder Residue (ASR) shows a broad chemical composition owing to the presence of different materials, and its high organic content makes it interesting as a source of energy. In this work, a bench scale two-stage reactor is used for gasifying ASR. The reactor shows an efficient ASR gasification, avoiding the formation of difficult to manage char and tar and allowing an easy recovery of energy. The results of the investigation were used to test a simple model based on mass and energy balances and chemical equilibrium, predicting syngas composition including the presence of problematic elements such as sulphur and chlorine. Gasification data calculated by the model agree in a satisfactory way with the experimental ones. Due to the large variation in ASR composition, the model predicts that ASR gasification is industrially feasible only if a blend of ASR and RDF is used as a reactor feed. PMID:14661893

De Filippis, Paolo; Pochetti, Fausto; Borgianni, Carlo; Paolucci, Martino

2003-10-01

283

Game Engines as Embedded Systems  

Microsoft Academic Search

This essay has the following mission: 1) to analyze game engines as cultural objects reflecting deeply held assumptions about what functional requirements are needed in order to experience a game in a fun and meaningful way; 2) to position the player as a key functional requirement of the engine; 3) to demonstrate how the engine and the player work together

Robert F. Nideffer

284

System Engineering of Autonomous Space Vehicles  

NASA Technical Reports Server (NTRS)

Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

2014-01-01

285

Advancing Systems Engineering Excellence: The Marshall Systems Engineering Leadership Development Program  

NASA Technical Reports Server (NTRS)

As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.

Hall, Philip; Whitfield, Susan

2011-01-01

286

Graduate School of Creative Science and Engineering Department of Industrial and Management Systems Engineering  

E-print Network

Graduate School of Creative Science and Engineering Department of Industrial and Management and Engineering Department of Industrial and Management Systems Engineering Research Instruction Application; Graduate School of Creative Science and Engineering Department of Industrial and Management Systems

Kaji, Hajime

287

Suggested criteria for evaluating systems engineering methodologies  

NASA Technical Reports Server (NTRS)

Systems engineering is the application of mathematical and scientific principles to practical ends in the life-cycle of a system. A methodology for systems engineering is a carefully developed, relatively complex procedure or process for applying these mathematical and scientific principles. There are many systems engineering methodologies (or possibly many versions of a few methodologies) currently in use in government and industry. These methodologies are usually designed to meet the needs of a particular organization. It has been observed, however, that many technical and non-technical problems arise when inadequate systems engineering methodologies are applied by organizations to their systems development projects. Various criteria for evaluating systems engineering methodologies are discussed. Such criteria are developed to assist methodology-users in identifying and selecting methodologies that best fit the needs of the organization.

Gates, Audrey; Paul, Arthur S.; Gill, Tepper L.

1989-01-01

288

Engine system assessment study using Martian propellants  

NASA Technical Reports Server (NTRS)

A top-level feasibility study was conducted that identified and characterized promising chemical propulsion system designs which use two or more of the following propellant combinations: LOX/H2, LOX/CH4, and LOX/CO. The engine systems examined emphasized the usage of common subsystem/component hardware where possible. In support of this study, numerous mission scenarios were characterized that used various combinations of Earth, lunar, and Mars propellants to establish engine system requirements to assess the promising engine system design concept examined, and to determine overall exploration leverage of such systems compared to state-of-the-art cryogenic (LOX/H2) propulsion systems. Initially in the study, critical propulsion system technologies were assessed. Candidate expander and gas generator cycle LOX/H2/CO, LOX/H2/CH4, and LOX/CO/CH4 engine system designs were parametrically evaluated. From this evaluation baseline, tripropellant Mars Transfer Vehicle (MTV) LOX cooled and bipropellant Lunar Excursion Vehicle (LEV) and Mars Excursion Vehicle (MEV) engine systems were identified. Representative tankage designs for a MTV were also investigated. Re-evaluation of the missions using the baseline engine design showed that in general the slightly lower performance, smaller, lower weight gas generator cycle-based engines required less overall mission Mars and in situ propellant production (ISPP) infrastructure support compared to the larger, heavier, higher performing expander cycle engine systems.

Pelaccio, Dennis; Jacobs, Mark; Scheil, Christine; Collins, John

1992-01-01

289

Earth Systems Science and Engineering  

SciTech Connect

Providing the essential energy and water systems to support human needs while understanding and addressing their environmental consequences is a watershed problem for the 21st century. The LLNL Earth System Science and Engineering Program seeks to provide the scientific understanding and technological expertise to help provide solutions at both global and regional scales. Our work is highly collaborative with universities, laboratories and industrial partners across the world and involves observational data, laboratory experiments, and numerical simulations. The energy systems we have enjoyed for the last 100 years have resulted in the advanced standard of living in the developed world and a major emerging problem with climate change. Now we face a simultaneous realization that our reliance on fossil fuels is a source of conflict and economic disruption as well as causing potentially abrupt, even catastrophic global climate change. The climate and energy problem is perhaps the greatest challenge ever faced by mankind. Fossil fuel remains the least expensive and most available source of energy and the basis of our economy. The use of fossil fuels, especially over the last 100 years has led to a 30% increase in CO{sub 2} in the atmosphere. The problem is growing. The population of the Earth will increase by several billion people in the next 50 years. If economic growth is to continue, the demand for energy is estimated to approximately double in the next 50 years so that we will need approximately 10 TW more energy than the 15 TW we use now. Much of this demand will come from the developing world where most of the population growth will occur and where advanced energy technology is not generally used. The problem affects and is affected by a complex system of systems. The climate and energy problem will affect resources, social structure and the probability of increased conflict. No one person, no one nation, no one technology can solve the problem. There is no parallel precedent on which to model a solution. On these grounds, we have chosen to tackle four key tasks: (1) Understanding the natural Earth system and anthropogenic systems examining key forcings and processes driving these systems and the interactions between systems; (2) Identify climate change impacts important to society and develop strategies and technologies to adapt to the climate change that is inevitable given past, current, and potential emissions; (3) Developing strategies and technologies to reduce/eliminate greenhouse gas emissions thereby mitigating climate change while generating energy that is economically and socially viable; and (4) Engaging with appropriate economic, legal, social, and political structures to inform key decisions.

Rotman, D A

2006-02-21

290

Method and system for controlling an engine  

SciTech Connect

This patent describes method for controlling an engine provided with an auto-decelerator system in a construction vehicle the construction vehicle having plural operating levers, characterized in that the auto-decelerator system is automatically temporarily actuated immediately after all of the plural operating levers have been returned to their neutral positions, respectively, thereby causing a small extent reduction in the number of revolutions of the engine, and after allowing the engine to run under such a condition for a predetermined period, the auto-decelerator system is automatically actuated again to reduce the number of revolutions of the engine to those in the idling speed condition.

Sakaguchi, S.; Nagata, Y.

1988-10-04

291

Comparative Analysis of Engine Ignition Systems  

Microsoft Academic Search

The experimental data of a comparative analysis of a spark-ignition system and a nanosecond-discharge-based ignition system in engines are presented. The effectiveness of the ignition systems used was evaluated on fuel consumption and exhaust-gas composition during the road and laboratory tests. It has been discovered that using a plasma-ignition system rather than a spark-ignition system considerably improves engine performance and

Albina A. Tropina; Lonnie Lenarduzzi; Sergey V. Marasov; Anatoliy P. Kuzmenko

2009-01-01

292

ATK Launch Systems Engineering NASA Programs Engineering Examples  

NASA Technical Reports Server (NTRS)

This presentation provides an overview of the work done at ATK Launch Systems with and indication of how engineering knowledge can be applied to several real world problems. All material in the presentation has been screened to meet ITAR restrictions. The information provided is a compilation of general engineering knowledge and material available in the public domain. The presentation provides an overview of ATK Launch Systems and NASA programs. Some discussion is provided about the types of engineering conducted at the Promontory plant with added detail about RSRM nozzle engineering. Some brief examples of examples of nozzle technical issues with regard to adhesives and phenolics are shared. These technical issue discussions are based on material available in the public domain.

Richardson, David

2007-01-01

293

Optimum Design of Coal Gasification Plants  

E-print Network

This paper deals with the optimum design of heat recovery systems using the Texaco Coal Gasification Process (TCGP). TCGP uses an entrained type gasifier and produces hot gases at approximately 2500oF with high heat flux. This heat is removed...

Pohani, B. P.; Ray, H. P.; Wen, H.

1982-01-01

294

CAESY - COMPUTER AIDED ENGINEERING SYSTEM  

NASA Technical Reports Server (NTRS)

Many developers of software and algorithms for control system design have recognized that current tools have limits in both flexibility and efficiency. Many forces drive the development of new tools including the desire to make complex system modeling design and analysis easier and the need for quicker turnaround time in analysis and design. Other considerations include the desire to make use of advanced computer architectures to help in control system design, adopt new methodologies in control, and integrate design processes (e.g., structure, control, optics). CAESY was developed to provide a means to evaluate methods for dealing with user needs in computer-aided control system design. It is an interpreter for performing engineering calculations and incorporates features of both Ada and MATLAB. It is designed to be reasonably flexible and powerful. CAESY includes internally defined functions and procedures, as well as user defined ones. Support for matrix calculations is provided in the same manner as MATLAB. However, the development of CAESY is a research project, and while it provides some features which are not found in commercially sold tools, it does not exhibit the robustness that many commercially developed tools provide. CAESY is written in C-language for use on Sun4 series computers running SunOS 4.1.1 and later. The program is designed to optionally use the LAPACK math library. The LAPACK math routines are available through anonymous ftp from research.att.com. CAESY requires 4Mb of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic tape cartridge (QIC-24) in UNIX tar format. CAESY was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

Wette, M. R.

1994-01-01

295

Environmental Systems Track within Civil Engineering Course Recommendations  

E-print Network

Environmental Systems Track within Civil Engineering Course Recommendations your elective courses within one area of civil engineering, in order: CEE 4200 Hydraulic Engineering CEE 4300 Environmental Engineering Systems CEE

Wang, Yuhang

296

Project Management vs. Systems Engineering Management: A Practitioners' View on  

E-print Network

Project Management vs. Systems Engineering Management: A Practitioners' View on Integrating Engineering and Management, Technion, Israel Institute of Technology, Haifa 32000, Israel 2 EngineeringPROJECT MANAGEMENT VS. SYSTEMS ENGINEERING MANAGEMENT Received 3 August 2010; Revised 18 December 2010

de Weck, Olivier L.

297

14 CFR 33.95 - Engine-propeller systems tests.  

Code of Federal Regulations, 2010 CFR

... 2010-01-01 false Engine-propeller systems tests. 33.95 Section...Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be...

2010-01-01

298

Complex Adaptive System of Systems (CASoS) Engineering Initiative  

E-print Network

Complex Adaptive System of Systems (CASoS) Engineering Initiative http://www.sandia.gov/CasosEngineering/ SAND 2011-3354 P Complex Adaptive Systems of Systems (CASoS) E i i M i A i ti t P bl Alexander V. Outkin Aldo A. Zagonel Eighth International Conference on Complex Systems Quincy, MA June 26

299

Prerequisites: Control Systems I+II, Engine Class (IC Engines and Propulsion Systems, Introduction to  

E-print Network

to Modeling and Control of Internal Combustion Engine Systems,...), Matlab/Simulink experience Contact for a Novel Engine Concept Position Control for an Internal Combustion Engine (Simulation) Description an internal combustion engine piston follow a reference position trajectory with sufficient accuracy

Daraio, Chiara

300

Engineering aspects of water pollution control systems  

Microsoft Academic Search

The importance of proper engineering when providing pollution control systems is emphasized. Organization of engineering projects is described in detail. Included are discussions of: (1) collection and evaluation of available data; (2) establishment of survey and test program; (3) integration and evaluation of findings; (4) establishment of pollution control and water utilization systems; and (5) specification and detailed design preparation.

R. G. Dalbke; A. J. Turk

1967-01-01

301

Supercharger system for internal combustion engine  

Microsoft Academic Search

The design of a supercharger system for use with an internal combustion engine is given. A rotatable centrifugal compressor has an inlet port for receiving a compressible gas and an outlet port for discharge to the engine. A rotatable turbine drives the compressor, and a fluid system drives the turbine wheel with an incompressible working fluid which is continuously maintained

Gamell

1974-01-01

302

An EHF telecommunication system engineering model  

Microsoft Academic Search

An extremely high frequency telecommunication system engineering model (ETSEM) was developed as an aid in the design of line-of-sight (LOS) communication systems from 10 to 100 GHz. ETSEM provides tabulation of path geometry parameters and analyzes ray path and Fresnel zone clearances to help the engineer design the path. ETSEM also predicts the performance (availability) of both digital and analog

Kenneth C. Allen

1987-01-01

303

Energy Systems Engineering 1 Clean Coal Technologies  

E-print Network

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12.ofPlants Source: CEA,2006, Thermal performance report 377 plants Sub-critical Pulverised coal (535-575 oC, 175/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types

Banerjee, Rangan

304

System Study for Axial Vane Engine Technology  

NASA Technical Reports Server (NTRS)

The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.

Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.

2008-01-01

305

Gasification of black liquor  

DOEpatents

A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

Kohl, Arthur L. (Woodland Hills, CA)

1987-07-28

306

Gasification of black liquor  

DOEpatents

A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

Kohl, A.L.

1987-07-28

307

Engine health monitoring: An advanced system  

NASA Technical Reports Server (NTRS)

The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

Dyson, R. J. E.

1981-01-01

308

Measuring Systems Engineering Success: Insights from Baseball  

E-print Network

Optimizing the efficiency of socio-technical systems and determining accurate measurements of performance is a critical issue in many systems engineering enterprises. In our analysis we explore some of the recurring themes ...

Blackburn, Craig

2008-06-15

309

Measuring Systems Engineering Success: Insights from Baseball  

E-print Network

Optimizing the efficiency of socio-technical systems and determining accurate measurements of performance is a critical issue in many systems engineering enterprises. In our analysis we explore some of the recurring themes ...

Blackburn, Craig

2008-01-01

310

14 CFR 23.1111 - Turbine engine bleed air system.  

Code of Federal Regulations, 2010 CFR

... 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

2010-01-01

311

14 CFR 23.1111 - Turbine engine bleed air system.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

2011-01-01

312

14 CFR 23.1111 - Turbine engine bleed air system.  

Code of Federal Regulations, 2014 CFR

...2014-01-01 2014-01-01 false Turbine engine bleed air system. 23.1111 Section 23...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

2014-01-01

313

14 CFR 23.1111 - Turbine engine bleed air system.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 2013-01-01 false Turbine engine bleed air system. 23.1111 Section 23...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

2013-01-01

314

14 CFR 23.1111 - Turbine engine bleed air system.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 2012-01-01 false Turbine engine bleed air system. 23.1111 Section 23...Powerplant Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following...

2012-01-01

315

Systems Engineering of Electric and Hybrid Vehicles  

NASA Technical Reports Server (NTRS)

Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

Kurtz, D. W.; Levin, R. R.

1986-01-01

316

Coal gasification: New challenge for the Beaumont rotary feeder  

NASA Technical Reports Server (NTRS)

The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

Stelian, J.

1977-01-01

317

Computer simulation of engine systems  

NASA Technical Reports Server (NTRS)

The use of computerized simulations of the steady state and transient performance of jet engines throughout the flight regime is discussed. In addition, installation effects on thrust and specific fuel consumption is accounted for as well as engine weight, dimensions and cost. The availability throughout the government and industry of analytical methods for calculating these quantities are pointed out.

Fishbach, L. H.

1980-01-01

318

Systems engineering: A formal approach. Part 1: System concepts  

NASA Astrophysics Data System (ADS)

Engineering is the scientific discipline focused on the creation of new artifacts that are supposed to be of some use to our society. Different types of artifacts require different engineering approaches. However, in all these disciplines the development of a new artifact is divided into stages. Three stages can always be recognized: Analysis, Design, and Realization. The book considers only the first two stages of the development process. It focuses on a specific type of artifacts, called discrete dynamic systems. These systems consist of active components of actors that consume and produce passive components or tokens. Three subtypes are studied in more detail: business systems (like a factory or restaurant), information systems (whether automated or not), and automated systems (systems that are controlled by an automated information system). The first subtype is studied by industrial engineers, the last by software engineers and electrical engineers, whereas the second is a battlefield for all three disciplines. The union of these disciplines is called systems engineering.

Vanhee, K. M.

1993-03-01

319

Engine Data Interpretation System (EDIS), phase 2  

NASA Technical Reports Server (NTRS)

A prototype of an expert system was developed which applies qualitative constraint-based reasoning to the task of post-test analysis of data resulting from a rocket engine firing. Data anomalies are detected and corresponding faults are diagnosed. Engine behavior is reconstructed using measured data and knowledge about engine behavior. Knowledge about common faults guides but does not restrict the search for the best explanation in terms of hypothesized faults. The system contains domain knowledge about the behavior of common rocket engine components and was configured for use with the Space Shuttle Main Engine (SSME). A graphical user interface allows an expert user to intimately interact with the system during diagnosis. The system was applied to data taken during actual SSME tests where data anomalies were observed.

Cost, Thomas L.; Hofmann, Martin O.

1991-01-01

320

The Petrocarb pneumatic feeding system: A proven method for feeding particulate solids at controlled rates. [for coal gasification systems  

NASA Technical Reports Server (NTRS)

An outline of the principal features of the Petrocarb Pneumatic Feeding System is given. Early development and various commercial applications are included. It is concluded that the Petrocarb Injection System is capable of feeding dry solids into most of the processes being developed for utilizing coal.

Reintjes, H.

1977-01-01

321

Systems Engineering and Integration for Technology Programs  

NASA Technical Reports Server (NTRS)

The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.

Kennedy, Kruss J.

2006-01-01

322

Congeneration system with a Stirling engine  

SciTech Connect

This patent describes a cogeneration system for producing process heat for useful purposes and electric energy. It comprises an electric generator; a Stirling cycle engine having an output shaft operatively coupled to the generator for driving the generator, the engine including at least one internal fuel combustor; means for circulating a cooling liquid about the generator and engine to extract heat therefrom; an exhaust system coupled with the engine for exhausting combustion gases from the engine, the exhaust system including a condensing heat exchanger for cooling the combustion gases below the condensing, temperature of the water vapor in the exhaust gases; means for directing the cooling liquid around the condensing heat exchanger to extract heat therefrom and heat the liquid; and means for directing the cooling liquid for useful purposes.

Meijer, R.J.; Meijer, E.J.; Godett, T.M.

1991-12-24

323

Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Final technical progress report, April 1981-July 1983  

SciTech Connect

This program is directed at performing experimental and analytical investigations, deriving system designs, and estimating costs to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report describes work completed on the four technical program tasks: Thermodynamic projections; Getter Selection and Qualification; System Performance Projections; and Program Definition for Concept Scale-up during the 27-month contract performance period. Work completed on the thermodynamic projections includes a data base update, development of alkali phase diagrams, and system performance projections. Getter selection and qualification efforts involved over 70 kinetic studies in which a leading candidate getter - emathlite - was selected and characterized. System performance projections identified a packed-bed configuration containing relatively large getter pellets as the preferred contacting device for a full-scale unit. For emathlite, we concluded that full-scale unit bed heights of 2 m or less would be required if we assume annual replacement on the basis of bed saturation capacity. Concept scale-up work involved defining the hardware and test program requirements for further development of the emathlite packed-bed system. 56 references, 80 figures, 74 tables.

Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.

1983-09-01

324

System safety in Stirling engine development  

NASA Technical Reports Server (NTRS)

The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.

Bankaitis, H.

1981-01-01

325

Ignition system for internal combustion engine  

Microsoft Academic Search

An ignition system for an internal combustion engine is described, comprising: an ignition voltage generating circuit for inducing a high voltage across a secondary coil of an ignition coil by operating a semiconductor switch to quickly vary a primary current of the ignition coil; a signal coil for generating an AC signal in synchronism with rotation of the engine, the

A. Kinoshita; H. Tamai

1989-01-01

326

46 CFR 184.620 - Propulsion engine control systems.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 false Propulsion engine control systems. 184.620 Section 184...184.620 Propulsion engine control systems. (a) A vessel must have... (c) A propulsion engine control system, including pilothouse...

2010-10-01

327

46 CFR 121.620 - Propulsion engine control systems.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 false Propulsion engine control systems. 121.620 Section 121...121.620 Propulsion engine control systems. (a) A vessel must have... (c) A propulsion engine control system, including pilothouse...

2010-10-01

328

40 CFR 1037.660 - Automatic engine shutdown systems.  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 false Automatic engine shutdown systems...Provisions § 1037.660 Automatic engine shutdown systems...requirements that apply for certified automatic engine shutdown systems...conditions are met: (1) The transmission is set in neutral with...

2012-07-01

329

40 CFR 1037.660 - Automatic engine shutdown systems.  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 false Automatic engine shutdown systems...Provisions § 1037.660 Automatic engine shutdown systems...requirements that apply for certified automatic engine shutdown systems...conditions are met: (1) The transmission is set in neutral with...

2013-07-01

330

40 CFR 91.307 - Engine cooling system.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2013-07-01 true Engine cooling system. 91.307 Section 91.307 Protection...Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient...

2014-07-01

331

40 CFR 91.307 - Engine cooling system.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Engine cooling system. 91.307 Section 91.307 Protection...Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient...

2012-07-01

332

40 CFR 91.307 - Engine cooling system.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Engine cooling system. 91.307 Section 91.307 Protection...Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient...

2011-07-01

333

40 CFR 90.307 - Engine cooling system.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Engine cooling system. 90.307 Section 90.307 Protection...Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient...

2013-07-01

334

40 CFR 89.329 - Engine cooling system.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Engine cooling system. 89.329 Section 89.329 Protection...Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity...

2012-07-01

335

40 CFR 89.329 - Engine cooling system.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Engine cooling system. 89.329 Section 89.329 Protection...Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity...

2010-07-01

336

40 CFR 89.329 - Engine cooling system.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2013-07-01 true Engine cooling system. 89.329 Section 89.329 Protection...Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity...

2014-07-01

337

40 CFR 90.307 - Engine cooling system.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2013-07-01 true Engine cooling system. 90.307 Section 90.307 Protection...Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient...

2014-07-01

338

40 CFR 89.329 - Engine cooling system.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Engine cooling system. 89.329 Section 89.329 Protection...Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity...

2013-07-01

339

40 CFR 90.307 - Engine cooling system.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Engine cooling system. 90.307 Section 90.307 Protection...Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient...

2012-07-01

340

40 CFR 90.307 - Engine cooling system.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Engine cooling system. 90.307 Section 90.307 Protection...Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient...

2011-07-01

341

40 CFR 89.329 - Engine cooling system.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Engine cooling system. 89.329 Section 89.329 Protection...Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity...

2011-07-01

342

40 CFR 90.307 - Engine cooling system.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Engine cooling system. 90.307 Section 90.307 Protection...Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient...

2010-07-01

343

40 CFR 91.307 - Engine cooling system.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Engine cooling system. 91.307 Section 91.307 Protection...Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient...

2010-07-01

344

40 CFR 91.307 - Engine cooling system.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Engine cooling system. 91.307 Section 91.307 Protection...Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient...

2013-07-01

345

46 CFR 126.470 - Marine-engineering systems.  

Code of Federal Regulations, 2010 CFR

... 2010-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

2010-10-01

346

46 CFR 126.470 - Marine-engineering systems.  

Code of Federal Regulations, 2011 CFR

... 2011-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

2011-10-01

347

46 CFR 126.470 - Marine-engineering systems.  

Code of Federal Regulations, 2014 CFR

... 2014-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

2014-10-01

348

46 CFR 126.470 - Marine-engineering systems.  

Code of Federal Regulations, 2012 CFR

... 2012-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

2012-10-01

349

46 CFR 126.470 - Marine-engineering systems.  

Code of Federal Regulations, 2013 CFR

... 2013-10-01 false Marine-engineering systems. 126.470 Section 126...Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F...

2013-10-01

350

Nuclear engine system simulation (NESS) program update  

SciTech Connect

The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump.

Scheil, C.M.; Pelaccio, D.G. (Science Applications International Corporation, 10717 Griffith Park Drive NE, Albuquerque, NM 87123 (United States)); Petrosky, L.J. (Westinghouse Electric Corporation, Advanced Energy Systems, Waltz Mill Site Madison, PA 15663 (United States))

1993-01-20

351

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

2001-12-01

352

Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

353

Complex Adaptive Systems of Systems (CASOS) engineering environment.  

SciTech Connect

Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

2012-02-01

354

Fuel injection system for diesel engine  

SciTech Connect

A fuel injection system is described for a diesel engine comprising a fuel injection nozzle, a valve needle slidably supported within the fuel injection nozzle and adapted to be lifted under fuel pressure fed from a fuel injection pump to increase the effective spray area with increase in the lift of the valve needle. A needle-lift-suppressing means limits the lift of the valve needle to a pre-lift of a predetermined amount when the engine operates at low load and/or low speed. A starting detecting means detects starting of the engine. A needle-lift-correcting means is adapted to receive an output of the starting detecting means and to control the needle-lift-suppressing means so as to permit lift of the valve needle beyond pre-lift, irrespective of the engine load and engine speed when the engine is started.

Nishida, T.; Nomoto, Y.; Sahara, M.; Yamauchi, H.

1987-06-02

355

Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications  

SciTech Connect

This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

Peterson, D.; Haase, S.

2009-07-01

356

System safety in Stirling engine development  

SciTech Connect

The Department of Energy has established a number of broad programs aimed at reducing highway fuel consumption. One of the programs addresses the Stirling engine propulsion system as a possible alternative to the conventional spark-ignition engine. The objective of this program is the development, by 1984, of a Stirling engine system having at least 30% improvement in fuel economy (mpg) over production vehicles powered by conventional spark-ignition engines of the same weight and performance, based on equal BTU content of fuel used. The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are being evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are being applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.

Bankaitis, H.

1981-01-01

357

Biomass Gasification Combined Cycle  

SciTech Connect

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01

358

Engineering Inspired from biological systems, nanotechnology (and  

E-print Network

, cardiovascular, vascular, and the bladder. Materials to be covered will include ceramics, metals, polymers. Specifically, his research addresses the design, synthesis, and evaluation of nanophase materials (that isChemical Engineering Inspired from biological systems, nanotechnology (and more recently

359

2363 -Associate Systems Engineer Customer Service Overview  

E-print Network

2363 - Associate Systems Engineer ­ Customer Service Overview: Calix is the largest communications equipment supplier focused solely on access and is a leading-based network architectures. With more than 900 customers ­ whose networks serve over

Ravikumar, B.

360

Conceptual design of a black liquor gasification pilot plant  

SciTech Connect

In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

Kelleher, E. G.

1987-08-01

361

System engineering toolbox for design-oriented engineers  

NASA Technical Reports Server (NTRS)

This system engineering toolbox is designed to provide tools and methodologies to the design-oriented systems engineer. A tool is defined as a set of procedures to accomplish a specific function. A methodology is defined as a collection of tools, rules, and postulates to accomplish a purpose. For each concept addressed in the toolbox, the following information is provided: (1) description, (2) application, (3) procedures, (4) examples, if practical, (5) advantages, (6) limitations, and (7) bibliography and/or references. The scope of the document includes concept development tools, system safety and reliability tools, design-related analytical tools, graphical data interpretation tools, a brief description of common statistical tools and methodologies, so-called total quality management tools, and trend analysis tools. Both relationship to project phase and primary functional usage of the tools are also delineated. The toolbox also includes a case study for illustrative purposes. Fifty-five tools are delineated in the text.

Goldberg, B. E.; Everhart, K.; Stevens, R.; Babbitt, N., III; Clemens, P.; Stout, L.

1994-01-01

362

A systems engineering primer for every engineer and scientist  

SciTech Connect

The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http://www-eng.LBNL.gov/Systems/index.html). It includes: SE guidelines and principles; A list of in-house tools; Templates; Case studies with ''how to'' examples; and Links to useful SE material. These sources are living documents to be updated as necessary. The viewpoint adopted in this document is that what LBNL engineers and scientists need is a set of principles and guiding practices for developing R and D systems rather than a ''cookbook''. There are many excellent ''how to'' resources such as the ''INCOSE Systems Engineering Handbook'' to guide those in search of more details. The SE staff is another resource available to consult and support projects. This document specifies SE principles and activities that are applicable to all LBNL projects independent of their specific differences. Each project should tailor the SE implementation to meet its individual needs and culture including project-specific resources, procedures, products, and tools.

Edwards, William R.

2001-12-10

363

Implementing Systems Engineering on a CERCLA Project  

SciTech Connect

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), enacted in 1980, provides a regulatory and legal mechanism to reduce risks from prior disposal of hazardous and toxic chemicals. Regulations, Standards, and Guidelines have been published to further define the CERCLA Process. The OU 7-10 Staged Interim Action Project at the Idaho National Engineering and Environmental Laboratory (INEEL) is a CERCLA project working to remediate the pre-1970 disposal pit in which transuranic materials have been disposed. This paper analyzes the CERCLA process from a systems engineering perspective and describes how systems engineering is implemented on this project.

Beitel, George Alois

1999-06-01

364

Solar thermal system engineering guidebook  

Microsoft Academic Search

This report presents a graphical methodology for the preliminary evaluation of solar thermal energy plants by Air Force base civil engineers. The report is organized as a Guidebook with worksheets and nomograms provided for rapid estimation of solar collector area, land area, energy output, and thermal power output of a solar thermal plant. Flat plate, evacuated tube, parabolic trough, and

M. K. Selcuk; S. A. Bluhm

1983-01-01

365

Systems Engineering Advancement Research Initiative  

E-print Network

within the School of Engineering, as well as the School of Science, the School of Humanities, Arts, and Social Sciences, and the Sloan School of Management. This setting offers a robust research and learning Program at MIT. Find out more at http://seari.mit.edu/ SEAri Website 2.0 Launched Websites are proving

de Weck, Olivier L.

366

Systems Engineering Advancement Research Initiative  

E-print Network

within the School of Engineering, as well as the School of Science, the School of Humanities, Arts, and Social Sciences, and the Sloan School of Management. This setting offers a robust research and learning on the SEAri website. Given the growing number, a representative "top ten" reading list has been added

de Weck, Olivier L.

367

Prerequisites: Control Systems I+II, Engine Class (IC Engines and Propulsion Systems, Introduction to  

E-print Network

to Modeling and Control of Internal Combustion Engine Systems,...), Model Predictive Control, Matlab Iterative Learning Control for Internal Combustion Engines Modeling and Control Description: In classical. The objective of this work is to apply learning algorithms to highly dynamic internal combustion engines

Daraio, Chiara

368

Joseph and Rosemary Bittorf Industrial and Systems Engineering Scholarship  

E-print Network

Joseph and Rosemary Bittorf Industrial and Systems Engineering Scholarship The purpose of the Fund be a declared major in Industrial and Systems Engineering. Candidates must be in good standing in Industrial and Systems Engineering in the College of Engineering and Engineering Technology for the academic

Kostic, Milivoje M.

369

Tank waste remediation system systems engineering management plan  

SciTech Connect

This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation Systems (TWRS) implementation of U.S. Department of Energy (DOE) Systems Engineering (SE) policy provided in Tank Waste Remediation System Systems Engineering Management Policy, DOE/RL letter, 95-RTI-107, Oct. 31, 1995. This SEMP defines the products, process, organization, and procedures used by the TWRS Program to accomplish SE objectives. This TWRS SEMP is applicable to all aspects of the TWRS Program and will be used as the basis for tailoring SE to apply necessary concepts and principles to develop and mature the processes and physical systems necessary to achieve the desired end states of the program.

Peck, L.G.

1996-02-06

370

EE 337 Engineering nano-systems EE 337 Engineering micro and nano-systems  

E-print Network

EE 337 Engineering nano-systems Page 1 EE 337 Engineering micro and nano-systems A.F.J. Levi Spring.edu/dept/engineering/eleceng/Adv_Network_Tech/Html/ee337.html This course is designed as an introduction to nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of nano-technology into systems

Levi, Anthony F. J.

371

Stirling cycle engine and refrigeration systems  

NASA Technical Reports Server (NTRS)

A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.

Higa, W. H. (inventor)

1976-01-01

372

Turbopump systems for liquid rocket engines  

NASA Technical Reports Server (NTRS)

The turbopump system, from preliminary design through rocket engine testing is examined. Selection of proper system type for each application and integration of the components into a working system are dealt with. Details are also given on the design of various components including inducers, pumps, turbines, gears, and bearings.

1974-01-01

373

PISTON ENGINE INTAKE AND EXHAUST SYSTEM DESIGN  

Microsoft Academic Search

The aim of intake and exhaust system design is to control the transfer of acoustic energy from the sources and its emission by the system with minimal loss of engine performance. A rational design process depends on the adoption of a design methodology based on predictive modelling of acoustic behaviour. Virtually any system geometry can be modelled by breaking it

P. O. A. L. Davies

1996-01-01

374

Engineering an Immune System1 Stephanie Forrest  

E-print Network

Engineering an Immune System1 Stephanie Forrest Dept. of Computer Science, University of New Mexico February 11, 2001 #12;1 1. Introduction The immune system is highly complex, and many researchers believe, simply ones that work well enough to increase survivability. We know that many simpler immune systems

Forrest, Stephanie

375

Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered  

E-print Network

hydrogen compared to other methods such as coal gasification, water electrolysis and the water-gas shift Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute is an attractive energy source due to its high energy value and since it produces only water instead of GHG during

Wood, Thomas K.

376

EE 337 Engineering micro and nano-systems EE 337 Engineering micro and nano-systems  

E-print Network

EE 337 Engineering micro and nano-systems EE 337 Engineering micro and nano-systems A.F.J. Levi as an introduction to micro and nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of micro and nano-technology into systems. It is a hands

Levi, Anthony F. J.

377

EE 238 Engineering nano-systems EE 238 Engineering nano-systems  

E-print Network

EE 238 Engineering nano-systems Page 1 EE 238 Engineering nano-systems A.F.J. Levi Spring 2009, OHE This course is designed as an introduction to nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of nano-technology into systems. It is a hands

Levi, Anthony F. J.

378

Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system.  

PubMed

A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process. PMID:24561627

Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin

2014-04-01

379

Engineering management of large scale systems  

NASA Technical Reports Server (NTRS)

The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

1989-01-01

380

GASIFICATION BASED BIOMASS CO-FIRING - PHASE I  

SciTech Connect

Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

Babul Patel; Kevin McQuigg; Robert F. Toerne

2001-12-01

381

Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering  

NASA Astrophysics Data System (ADS)

We describe an analytic approach, multiscale analysis, that can demonstrate the fundamental limitations of decomposition based engineering for the development of highly complex systems. The interdependence of components and communication between design teams limits any planning based process. Recognizing this limitation, we found that a new strategy for constructing many highly complex systems should be modeled after biological evolution, or market economies, where multiple design efforts compete in parallel for adoption through testing in actual use. Evolution is the only process that is known to create highly complex systems.

Bar-Yam, Yaneer

382

Integrated air separation plant-integrated gasification combined cycle power generator  

Microsoft Academic Search

This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of

R. J. Allam; A. Topham

1992-01-01

383

Programmed temperature gasification study. Final report, October 1, 1979-November 30, 1980  

SciTech Connect

An experimental, modeling and conceptual engineering analysis study has been performed to assess the feasibility of TRW's Programmed Temperature Gasification (PTG) concept for carbonizing caking coals without severe agglomeration. The concept involves control of carbonizing heating rate to maintain metaplast concentration at a level equal to or slightly below that which causes agglomeration. The experimental studies required the contruction of a novel programmed temperature, elevated pressure, hot stage video microscope for observation of coal particle changes during heating. This system was used to develop a minimum-time heating schedule capable of carbonizing the coal at elevated pressures in the presence of hydrogen without severe agglomeration. Isothermal fixed heating rate data for a series of coals were subsequently used to calibrate and verify the mathematical model for the PTG process. These results showed good correlation between experimental data and mathematical predictions. Commercial application of the PTG concept to batch, moving bed and fluid bed processing schemes was then evaluated. Based on the calibrated model programmed temperature gasification of the coal without severe agglomeration could be carried out on a commercial batch reaction in 4 to 12 minutes. The next step in development of the PTG concept for commercial application would require testing on a bench scale (3-inch diameter) gasifier coupled with a full commercial assessment to determine size and cost of various gasification units.

Spoon, M.J.; Gardner, M.P.; Starkovich, J.A.; Fein, H.L.; Apte, A.J.

1980-11-30

384

Solar thermal system engineering guidebook  

NASA Astrophysics Data System (ADS)

This report presents a graphical methodology for the preliminary evaluation of solar thermal energy plants by Air Force base civil engineers. The report is organized as a Guidebook with worksheets and nomograms provided for rapid estimation of solar collector area, land area, energy output, and thermal power output of a solar thermal plant. Flat plate, evacuated tube, parabolic trough, and parabolic dish solar thermal technologies are considered.

Selcuk, M. K.; Bluhm, S. A.

1983-05-01

385

14 CFR 33.91 - Engine system and component tests.  

Code of Federal Regulations, 2013 CFR

...AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and component tests. (a) For those systems or components that...

2013-01-01

386

Intelligent Engine Systems: Adaptive Control  

NASA Technical Reports Server (NTRS)

We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.

Gibson, Nathan

2008-01-01

387

Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

388

Development of an advanced, continuous mild gasification process for the production of co-products (Tasks 2, 3, and 4. 1 to 4. 6), Volume 2  

SciTech Connect

Volume 2 contains information on the following topics: (1) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (2) Bench-Scale Char Upgrading Study; (3) Mild Gasification Technology Development: System Integration Studies. (VC)

Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. (Institute of Gas Technology, Chicago, IL (United States)); Duthie, R.G. (Bechtel Group, Inc., San Francisco, CA (United States)); Wootten, J.M. (Peabody Holding Co., Inc., St. Louis, MO (United States))

1991-09-01

389

Generative engineering databases - Toward expert systems  

NASA Technical Reports Server (NTRS)

Engineering data management, incorporating concepts of optimization with data representation, is receiving increasing attention as the amount and complexity of information necessary for performing engineering operations increases and the need to coordinate its representation and use increases. Research in this area promises advantages for a wide variety of engineering applications, particularly those which seek to use data in innovative ways in the engineering process. This paper presents a framework for a comprehensive, relational database management system that combines a knowledge base of design constraints with a database of engineering data items in order to achieve a 'generative database' - one which automatically generates new engineering design data according to the design constraints stored in the knowledge base. The representation requires a database that is able to store all of the data normally associated with engineering design and to accurately represent the interactions between constraints and the stored data while guaranteeing its integrity. The representation also requires a knowledge base that is able to store all the constraints imposed upon the engineering design process.

Rasdorf, W. J.; Salley, G. C.

1985-01-01

390

Engineered containment and control systems : nurturing nature.  

SciTech Connect

The development of engineered containment and control systems for contaminated sites must consider the environmental setting of each site. The behaviors of both contaminated materials and engineered systems are affected by environmental conditions that will continue to evolve over time as a result of such natural processes as climate change, ecological succession, pedogenesis, and landform changes. Understanding these processes is crucial to designing, implementing, and maintaining effective systems for sustained health and environmental protection. Traditional engineered systems such as landfill liners and caps are designed to resist natural processes rather than working with them. These systems cannot be expected to provide long-term isolation without continued maintenance. In some cases, full-scale replacement and remediation may be required within 50 years, at an effort and cost much higher than for the original cleanup. Approaches are being developed to define smarter containment and control systems for stewardship sites, considering lessons learned from implementing prescriptive waste disposal regulations enacted since the 1970s. These approaches more effectively involve integrating natural and engineered systems; enhancing sensors and predictive tools for evaluating performance; and incorporating information on failure events, including precursors and consequences, into system design and maintenance. An important feature is using natural analogs to predict environmental conditions and system responses over the long term, to accommodate environmental change in the design process, and, as possible, to engineer containment systems that mimic favorable natural systems. The key emphasis is harmony with the environment, so systems will work with and rely on natural processes rather than resisting them. Implementing these new integrated systems will reduce current requirements for active management, which are resource-intensive and expensive.

MacDonell, M.; Clarke, J.; Smith, E.; Dunn, J.; Waugh, J.; Environmental Assessment; Vanderbilt Univ.; ORNL; Kleinfelder; U.S. Department of Energy Grand Junction Office

2004-06-01

391

SSME Automated Engine Calibration System (AECS)  

NASA Astrophysics Data System (ADS)

An algorithm is derived for the real-time calibration of the engine fuel flowmeter and the engine mixture ratio during Space Shuttle Main Engine (SSME) ground testing. Because currently used calibration methods are post-test operations, there exists no fail-safe way of predicting at what mixture ratio a planned test will run. It is proposed that the algorithm developed here be used as part of an Automated Engine Calibration System (AECS) which could ensure that nearly all SSME tests are run at the proper mixture ratio. In this way, AECS has the potential of increasing the efficiency of the SSME ground test program. In addition to the derivation of the algorithm, an overview of this calibration system is presented along with the list of test stand facility instrumentation necessary for AECS implementation.

Greene, William D.

1992-07-01

392

EE 337 Engineering micro and nano-systems EE 337 Engineering micro and nano-systems  

E-print Network

EE 337 Engineering micro and nano-systems Page 1 EE 337 Engineering micro and nano-systems A.edu/dept/engineering/eleceng/Adv_Network_Tech/Html/ee337.html This course is designed as an introduction to micro and nano-technology, methods to control and exploit the new degrees of freedom delivered by nano-science, and the integration of micro and nano

Levi, Anthony F. J.

393

Gasification Plant Cost and Performance Optimization  

SciTech Connect

As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

2005-05-01

394

Catalysis in biomass gasification  

SciTech Connect

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01

395

A Vision for Systems Engineering Applied to Wind Energy (Presentation)  

SciTech Connect

This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

Felker, F.; Dykes, K.

2015-01-01

396

Engineering Information Management Systems survey: CADCAM-002  

SciTech Connect

An immediate goal of CAD/CAM integration in the DOE Nuclear Weapons Complex is automated data transfer/translation between the design, analysis, and manufacturing functions. A longer range goal is to use CAD derived geometric part descriptions as official product definition, rather than the current drawing based product definition. The Engineering Information Management System is described loosely as that software system which performs all the needed functions related to archiving and accessing computer based product definition. Major ingredients of such a system include automated data management, neutral format, engineering databases, information models, and translators. This report surveys the current state of the art in these five areas.

Fletcher, S.K.

1984-09-01

397

Fiberscope-based engine condition monitoring system  

NASA Astrophysics Data System (ADS)

The article presents the engine condition monitoring system. The system uses dependence between amount of rub products gathered in lubricating oil and current wear condition of device. The measure method bases on ferrographic method. Images are taken from sample and magnified by fiberscope, and then converted by CCD camera into digital form. Then raster images are classified by dedicated computer system. This paper presents actual state of system research.

Podeszwa, Tomasz; Jaroszewicz, Leszek R.; Cyran, Krzysztof

2003-09-01

398

Evaporative cooling system of internal combustion engine  

SciTech Connect

This patent describes an evaporative cooling system of an internal combustion engine, comprising: means defining in the engine a coolant jacket into which coolant is introduced in liquid state through an inlet port formed in the engine and from which the coolant is discharged in gaseous state through an outlet port formed in the engine; a condenser into which the gaseous coolant from the coolant jacket of the engine is introduced to be liquefied; a lower tank connected to the condenser to collect therein the coolant which has been liquefied by the condenser, the lower tank having a bottom which is submerged in the liquefied coolant; an electric pump by which the liquid coolant in the lower tank near the bottom of the same is pumped into the coolant jacket through the inlet port of the engine; conduit means connecting the outlet port, the condenser, the lower tank, the electric pump and the inlet port thereby to form a coolant circulation circuit; and a capacity variable tank fluidly connected through a conduit to the lower tank to temporarily capture therein air remaining in the coolant circulation circuit during operation of the cooling system, the conduit being connected to an upper portion of the tank. The upper portion is empty of the liquid coolant under normal operation of the cooling system.

Hayashi, Y.

1987-03-10

399

Deep Space Telecommunications Systems Engineering  

NASA Technical Reports Server (NTRS)

Descriptive and analytical information useful for the optimal design, specification, and performance evaluation of deep space telecommunications systems is presented. Telemetry, tracking, and command systems, receiver design, spacecraft antennas, frequency selection, interference, and modulation techniques are addressed.

Yuen, J. H. (editor)

1982-01-01

400

Gasification combined cycle R&A assessment  

NASA Astrophysics Data System (ADS)

This paper describes the development and application of a methodology for assessing the reliability and availability of coal gasification combined cycle (GCC) power plant designs. The methodology was developed for and applied to a design of an 1100-megawatt baseload GCC power plant. The specific objectives of the analysis were to obtain baseline reliability and availability values for the GCC plant design and to develop criticality rankings of the plant's components based on their impact on the system's reliability and availability measures

Witt, J. H.; Neely, M. C.

401

Fluidized bed injection assembly for coal gasification  

DOEpatents

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01

402

Engineering Information Management Systems survey: CADCAM002  

Microsoft Academic Search

An immediate goal of CAD\\/CAM integration in the DOE Nuclear Weapons Complex is automated data transfer\\/translation between the design, analysis, and manufacturing functions. A longer range goal is to use CAD derived geometric part descriptions as official product definition, rather than the current drawing based product definition. The Engineering Information Management System is described loosely as that software system which

1984-01-01

403

Engineering Complex Real-Time Systems  

Microsoft Academic Search

This paper introduces a systems integration framework for engineering large-scale, heterogeneous, distributed real-time systems whose timing properties can be strictly controlled and analyzed. Our approach exploits the natural pipelining execution pattern found in a large number of continuous (periodic) applications executing over heterogenous, distributed resources. We formalize this distributed pipelining approach using a set of abstractions and transformations that enable

Saurav Chatterjee; Jay Strosnider

1995-01-01

404

Engineering the System and Technical Integration  

NASA Technical Reports Server (NTRS)

Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.

Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

2011-01-01

405

Automated reverse engineering of nonlinear dynamical systems  

E-print Network

. This method is applicable to any system that can be described using sets of ordinary nonlinear differential differential equations from a hidden coupled nonlinear system, given either the ability to selectively perturb and engineering, but uncovering the underlying differential equations directly from observations poses

Napp, Nils

406

Mechanical Engineering Industrial Energy Systems Laboratory  

E-print Network

the marginal costs and average total costs of the various energy services provided by the system. As expected a continuously decreasing average total cost is found for the monopolistic energy service firm. The basic ideaSchool of Mechanical Engineering Industrial Energy Systems Laboratory Study of the Integration

Candea, George

407

APPLICATIONS OF EXPERT SYSTEMS IN ENVIRONMENTAL ENGINEERING  

EPA Science Inventory

Expert systems are a promising computer-based approach to helping environmental engineers solve difficult problems. A number of such systems have been developed to date in the areas of hazard assessment, modeling support, process failure diagnosis, and regulatory support. The US ...

408

Expert systems in industrial engineering  

Microsoft Academic Search

An expert system can be denned as ‘a tool which has the capability to understand problem specific knowledge and use the domain knowledge intelligently to suggest alternate paths of action’. This paper presents a structured framework for the development of an expert system. The five major aspects of expert system development are: Problem definition; knowledge acquisition, representation and coordination; inference

S. R. T. KUMARA; SANJAY JOSHI; R. L. KASHYAP; C. L. MOODIE; T. C. CHANG

1986-01-01

409

Conceptual design report -- Gasification Product Improvement Facility (GPIF)  

SciTech Connect

The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

1994-09-01

410

Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water  

Microsoft Academic Search

Biomass gasification in supercritical water is a promising technology for hydrogen production by utilizing wet biomass. A new experimental system of biomass gasification in supercritical water was built in SKLMF. In this paper, a comprehensive thermodynamic analysis, including chemical equilibrium in the reactor, gas–liquid equilibrium in the high-pressure separator, exergy and energy analysis of the whole system, was conducted. Chemical

Youjun Lu; Liejin Guo; Ximin Zhang; Qiuhui Yan

2007-01-01

411

Mutagenicity of Tween 80-solvated mild gasification products in the Ames salmonella microsomal assay system. [Quarterly report, October--December 1991  

SciTech Connect

The results of the Tween 80-solvated Ames testing of six mild gasification samples indicate significant mutagenic activity only in the composite materials (MG-119 and MG-120), previously suspected from the DMSO-solvated assays, which had shown some variable but ultimately insignificant mutagenic responses. The activity of these samples from the Tween 80-solvated assays was quite low when compared to either the positive controls or the SRC-II HD coal-liquefaction reference material. The class of mutagenic activity expressed by these samples solvated in Tween 80 was that of an indirect-acting, frameshift mutagen(s) since significant activity was found only on tester strain TA98 in the presence of the metabolic activation fraction (S9). Because DMSO and other solvents have been shown to affect the mutagenic activity of certain pure chemicals, the possibility of solvent/mutagen interactions in complex mixtures such as coal-derived liquids exists. Thus, the testing of the genotoxic activity of undefined, chemically complex compounds may require the use of at least two solvent systems to reduce the possibility of artifactual findings. 10 refs., 4 tabs.

Not Available

1992-01-13

412

Thermoelectric system for an engine  

DOEpatents

An internal combustion engine that includes a block, a cylinder head having an intake valve port and exhaust valve port formed therein, a piston, and a combustion chamber defined by the block, the piston, and the head. At least one thermoelectric device is positioned within either or both the intake valve port and the exhaust valve port. Each of the valves is configured to move within a respective intake and exhaust valve port thereby causing said valves to engage the thermoelectric devices resulting in heat transfer from the valves to the thermoelectric devices. The intake valve port and exhaust valve port are configured to fluidly direct intake air and exhaust gas, respectively, into the combustion chamber and the thermoelectric device is positioned within the intake valve port, and exhaust valve port, such that the thermoelectric device is in contact with the intake air and exhaust gas.

Mcgilvray, Andrew N.; Vachon, John T.; Moser, William E.

2010-06-22

413

Tenure track positions in systems engineering In response to growing Navy demands for systems engineering education and research,  

E-print Network

Tenure track positions in systems engineering In response to growing Navy demands for systems complex engineered systems. Excellent teaching references are required. For senior positions, a solid engineering education and research, the Naval Postgraduate School is expanding its systems engineering faculty

414

industrial & Systems Engineers Engineer Systems The challenge is in how you can manage complexity to solve your problem.  

E-print Network

industrial & Systems Engineers Engineer Systems The challenge is in how you can manage complexity of Industrial & Systems Engineering http://www.ise.nus.edu.sg/Sye http://www.facebook.com/ise.nus #12;The to solve your problem. Only Systems Engineering tools and techniques can effectively address complexity

Chaudhuri, Sanjay

415

User engineering: A new look at system engineering  

NASA Astrophysics Data System (ADS)

User Engineering is a new System Engineering perspective responsible for defining and maintaining the user view of the system. Its elements are a process to guide the project and customer, a multidisciplinary team including hard and soft sciences, rapid prototyping tools to build user interfaces quickly and modify them frequently at low cost, and a prototyping center for involving users and designers in an iterative way. The main consideration is reducing the risk that the end user will not or cannot effectively use the system. The process begins with user analysis to produce cognitive and work style models, and task analysis to produce user work functions and scenarios. These become major drivers of the human computer interface design which is presented and reviewed as an interactive prototype by users. Feedback is rapid and productive, and user effectiveness can be measured and observed before the system is built and fielded. Requirements are derived via the prototype and baselined early to serve as an input to the architecture and software design.

McLaughlin, Larry L.

1987-10-01

416

User engineering: A new look at system engineering  

NASA Technical Reports Server (NTRS)

User Engineering is a new System Engineering perspective responsible for defining and maintaining the user view of the system. Its elements are a process to guide the project and customer, a multidisciplinary team including hard and soft sciences, rapid prototyping tools to build user interfaces quickly and modify them frequently at low cost, and a prototyping center for involving users and designers in an iterative way. The main consideration is reducing the risk that the end user will not or cannot effectively use the system. The process begins with user analysis to produce cognitive and work style models, and task analysis to produce user work functions and scenarios. These become major drivers of the human computer interface design which is presented and reviewed as an interactive prototype by users. Feedback is rapid and productive, and user effectiveness can be measured and observed before the system is built and fielded. Requirements are derived via the prototype and baselined early to serve as an input to the architecture and software design.

Mclaughlin, Larry L.

1987-01-01

417

May 17, 2011 Systems Engineering  

E-print Network

) communication with faculty (when necessary), (7) collaboration and communication with students (as much.K., "Business Strategies for Satellite Systems", (2004), Artech House. Grading Guide for Written Assignments

418

Cognitive Systems Engineering: The Next 30 Years  

NASA Technical Reports Server (NTRS)

This presentation is part of panel discussion on Cognitive Systems Engineering. The purpose of this panel is to discuss the challenges and future directions of Cognitive Systems Engineering for the next 30 years. I intended to present the work we have been doing with the Aviation Safety program and Space Human Factors Engineering project on Work Domain Analysis and some areas of Research Focus. Specifically, I intend to focus on the shift on the need to understand and model attention in mixed-initiative systems, the need for methods which can generate results to be used in trade-off decisions, and the need to account for a range of human behavior in the design.

Feary, Michael

2012-01-01

419

An inference engine for embedded diagnostic systems  

NASA Technical Reports Server (NTRS)

The implementation of an inference engine for embedded diagnostic systems is described. The system consists of two distinct parts. The first is an off-line compiler which accepts a propositional logical statement of the relationship between facts and conclusions and produces data structures required by the on-line inference engine. The second part consists of the inference engine and interface routines which accept assertions of fact and return the conclusions which necessarily follow. Given a set of assertions, it will generate exactly the conclusions which logically follow. At the same time, it will detect any inconsistencies which may propagate from an inconsistent set of assertions or a poorly formulated set of rules. The memory requirements are fixed and the worst case execution times are bounded at compile time. The data structures and inference algorithms are very simple and well understood. The data structures and algorithms are described in detail. The system has been implemented on Lisp, Pascal, and Modula-2.

Fox, Barry R.; Brewster, Larry T.

1987-01-01

420

Optimization in the systems engineering process  

NASA Technical Reports Server (NTRS)

The essential elements of the design process consist of the mission definition phase that provides the system requirements, the conceptual design, the preliminary design and finally the detailed design. Mission definition is performed largely by operations analysts in conjunction with the customer. The result of their study is handed off to the systems engineers for documentation as the systems requirements. The document that provides these requirements is the basis for the further design work of the design engineers at the Lockheed-Georgia Company. The design phase actually begins with conceptual design, which is generally conducted by a small group of engineers using multidisciplinary design programs. Because of the complexity of the design problem, the analyses are relatively simple and generally dependent on parametric analyses of the configuration. The result of this phase is a baseline configuration from which preliminary design may be initiated.

Lemmerman, Loren A.

1993-01-01

421

ASPEN. Advanced System for Process Engineering  

SciTech Connect

ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.

Bajura, R.A. [USDOE Morgantown Energy Technology Center, WV (United States)

1985-10-01

422

System Engineering of Photonic Systems for Space Application  

NASA Technical Reports Server (NTRS)

The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

Watson, Michael D.; Pryor, Jonathan E.

2014-01-01

423

Engineering of complex systems: The impact of systems engineering at NASA  

NASA Astrophysics Data System (ADS)

The "true" impact or value of systems engineering to an organization unfortunately appears not to have been well-studied and understood. The principles of systems engineering are highly encouraged by NASA at all levels, and most practitioners, both internal and external to NASA, intuitively "believe" it adds some value to the development of complex systems by producing them faster, better and cheaper. This research, in trying to fill a gap that exists in the systems engineering literature, analyzes data collected within NASA and other sources external to NASA (INCOSE) for comparisons. Analyses involving a number of case studies performed on selected NASA projects are presented to draw attention to the impact systems engineering had or could have had on these projects. This research clearly shows that systems engineering does add value to projects within and outside NASA. The research results further demonstrate that systems engineering has been beneficial not only to NASA but also to organizations within which INCOSE members work. It was determined, however, that systems engineering does not operate in a vacuum and may not always guarantee success through mere application. During this research, it was discovered that the lack of or inadequate application of systems engineering in the development of complex systems may result in cost overruns, poor technical performance, project delays, and in some cases unmitigated risk with disastrous consequences including the loss of life and property. How much is saved (in terms of cost, schedule) or improved (in terms of technical performance) as a result of its implementation may never be known precisely, but by indirectly measuring its value or impact on a project, percentages of project budget spent on systems engineering activities and any schedule reductions or performance enhancements realized could be determined. According to this research, systems engineering is not a waste of time and resources; in most cases, it is likely to produce some positive impact or value in terms of cost, schedule, technical performance, and risk when applied. The stage in a project's life cycle in which systems engineering is introduced may determine the potential value to be realized by the project. The generation of systems engineering documents is not an indicator of proper execution or performance of systems engineering activities. Projects, as this research shows, are selective in documents they generate. Completion or attendance of job-sponsored systems engineering training programs has little or no effect on NASA engineers and their INCOSE counterparts. This research also uncovered some nontechnical (political and cultural preconceptions or alignments) issues that, when not properly addressed, may impact or impede the value derived from systems engineering. This dissertation also examined the satisfaction with the systems engineering process and the willingness of participants from the two groups studied (NASA and INCOSE) to use it on future projects. The approach used in this study may provide a tool for evaluating the benefits or impact of systems engineering on a project. The research also emphasizes the benefits and relationships among systems engineering, cost, technical performance, schedule, and risks in its analysis of selected NASA projects.

Kludze, Ave-Klutse Kodzo Paaku

424

Deep space telecommunication systems engineering  

Microsoft Academic Search

Descriptive and analytical information useful for the optimal design, specification, and performance evaluation of deep space telecommunications systems is presented. Telemetry, tracking, and command systems, receiver design, spacecraft antennas, frequency selection, interference, and modulation techniques are addressed. Previously announced in STAR as N83-22226

J. H. Yuen

1983-01-01

425

DEMONSTRATION OF BLACK LIQUOR GASIFICATION AT BIG ISLAND  

SciTech Connect

This Technical Progress Report provides an account of the status of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific Corporation's Big Island, VA facility. The report also includes budget information and a milestone schedule. The project to be conducted by G-P is a comprehensive, complete commercial-scale demonstration that is divided into two phases. Phase I is the validation of the project scope and cost estimate. Phase II is project execution, data acquisition and reporting, and consists of procurement of major equipment, construction and start-up of the new system. Phase II also includes operation of the system for a period of time to demonstrate the safe operation and full integration of the energy and chemical recovery systems in a commercial environment. The objective of Phase I is to validate the process design and to engineer viable solutions to any technology gaps. This phase includes engineering and planning for the integration of the full-scale MTCI/StoneChem PulseEnhanced{trademark} black liquor steam-reformer chemical recovery system into G-P's operating pulp and paper mill at Big Island, Virginia. During this phase, the scope and cost estimate will be finalized to confirm the cost of the project and its integration into the existing system at the mill. The objective of Phase II of the project is the successful and safe completion of the engineering, construction and functional operation of the fully integrated full-scale steam reformer process system. This phase includes installation of all associated support systems and equipment required for the enhanced recovery of both energy and chemicals from all of the black liquor generated from the pulping process at the Big Island Mill. The objective also includes operation of the steam reformer system to demonstrate the ability of the system to operate reliably and achieve designed levels of energy and chemical recovery while maintaining environmental emissions at or below the limits set by the environmental permits.

Robert DeCarrera

2003-10-20

426

Engineered Barrier System: Physical and Chemical Environment  

SciTech Connect

The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

P. Dixon

2004-04-26

427

Titanium in Engine Valve Systems  

NASA Astrophysics Data System (ADS)

Titanium alloys offer a unique combination of high strength-to-weight ratio, good corrosion resistance and favorable high temperature mechanical properties. Still, their relatively high cost has discouraged consideration for widespread use in automotive components. Recent demands for increased fuel economy have led to the consideration of these alloys for use as valve train materials where higher costs might be offset by improvements in performance and fuel economy. Lighter weight valve train components permit the use of lower spring loads, thus reducing friction and increasing fuel economy. Camshaft friction measurements made on a typical small displacement engine indicate that a twoto-four percent increase in fuel economy can be achieved. Valve train components are, however, subject to a severe operating environment, including elevated temperatures, sliding wear and high mechanical loads. This paper discusses the details of alloy and heat treatment selection for optimizing valve performance. When properly manufactured, titanium valves have been shown to withstand very stringent durability testing, indicating the technical feasibility of this approach to fuel economy improvement.

Allison, J. E.; Sherman, A. M.; Bapna, M. R.

1987-03-01

428

Intelligent Work Process Engineering System  

NASA Technical Reports Server (NTRS)

Optimizing performance on work activities and processes requires metrics of performance for management to monitor and analyze in order to support further improvements in efficiency, effectiveness, safety, reliability and cost. Information systems are therefore required to assist management in making timely, informed decisions regarding these work processes and activities. Currently information systems regarding Space Shuttle maintenance and servicing do not exist to make such timely decisions. The work to be presented details a system which incorporates various automated and intelligent processes and analysis tools to capture organize and analyze work process related data, to make the necessary decisions to meet KSC organizational goals. The advantages and disadvantages of design alternatives to the development of such a system will be discussed including technologies, which would need to bedesigned, prototyped and evaluated.

Williams, Kent E.

2003-01-01

429

Gasification Product Improvement Facility (GPIF). Final report  

SciTech Connect

The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

NONE

1995-09-01

430

Alfalfa stem feedstock for IGCC power system fuel  

SciTech Connect

A feasibility study was completed for an integrated gasification combined cycle (IGCC) electric power generation plant to operate in conjunction with an alfalfa processing plant that provides the gasification feedstock and a mid-level protein animal feed co-product. Alfalfa stem material was evaluated as a gasification feedstock. The leaf material was evaluated as a mid-level protein animal feed supplement. The alfalfa leaf-stem separation and power generation operations have dual and/or synergistic functions which contribute to a technically and economically compatible combination. The pressurized biomass gasification process selected is the IGT RENUGAS{trademark} system licensed to Tampella Power Corp. Adaptation of the air-blown gasification process to alfalfa stems results in low-Btu fuel gas suitable for combustion turbines. The gasification process is expected to obtain very high carbon conversion with low tar production, overcome ash agglomeration, and provide for control of volatile alkali species. A hot gas clean-up system removes particulate matter with a ceramic filter system. The collected ash residues are expected to be returned to the land that grew the alfalfa. The physical and chemical properties of the alfalfa feedstock were evaluated for the gasification process. The alfalfa char carbon-steam reaction, which is the slowest step in the complete conversion of biomass to gases, was measured and the char proved to have a high reactivity. Ash components were measured and evaluated in terms of agglomeration within the gasifier. Using this information, the alfalfa gasification conditions were predicted. A subsequent preliminary gasification test confirmed the alfalfa gasification conditions. To complete the engineering design of the IGCC system, additional testing is required, but the results to date are positive for a successful process.

DeLong, M.M.; Onischak, M.; Schmid, M.; Wiant, B.; Oelke, E.

1995-12-31

431

Micro electromechanical systems (MEMS) for mechanical engineers  

SciTech Connect

The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical engineers made impact. Through a basic understanding of the history of MEMS, the background physics and scaling in micromechanical systems, and an introduction to baseline MEMS processes, a mechanical engineer should be well on his way to Alice's wonderland in the ever-exciting playground of MEMS.

Lee, A. P., LLNL

1996-11-18

432

40 CFR 86.1318-84 - Engine dynamometer system calibrations.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Engine dynamometer system calibrations...IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...

2010-07-01

433

40 CFR 86.1318-84 - Engine dynamometer system calibrations.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Engine dynamometer system calibrations...IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...

2011-07-01

434

40 CFR 86.1318-84 - Engine dynamometer system calibrations.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Engine dynamometer system calibrations...IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...

2013-07-01

435

40 CFR 86.1318-84 - Engine dynamometer system calibrations.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Engine dynamometer system calibrations...IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...

2012-07-01

436

Structural Systems Track within Civil Engineering Course Recommendations  

E-print Network

Structural Systems Track within Civil Engineering Course Recommendations to concentrate your elective courses within one area of civil engineering, in order Geotechnical Engineering Choose 1 of 3 from the following list: CEE 4200

Wang, Yuhang

437

Geotechnical Systems Track within Civil Engineering Course Recommendations  

E-print Network

Geotechnical Systems Track within Civil Engineering Course Recommendations to concentrate your elective courses within one area of civil engineering, in order: CEE 3055 Structural Analysis CEE 4405 Geotechnical Engineering Choose 2

Wang, Yuhang

438

Infrastructure Systems Track within Civil Engineering Course Recommendations  

E-print Network

Infrastructure Systems Track within Civil Engineering Course Recommendations courses within one area of civil engineering, in order to further specialize: CEE 4100 Construction Management CEE 4600 Transport Engineering Choose 2

Wang, Yuhang

439

System Dynamics and Vibration Lab Dept. of Mechanical Engineering  

E-print Network

System Dynamics and Vibration Lab Dept. of Mechanical Engineering Component Mode Synthesis Using Nonlinear Normal Modes Polarit Apiwattanalunggarn and Steven Shaw Department of Mechanical Engineering Michigan State University East Lansing, MI Christophe Pierre Department of Mechanical Engineering

Shaw, Steven W.

440

SPOTLIGHT on: Jennifer Dowling Industrial and Systems Engineering  

E-print Network

SPOTLIGHT on: Jennifer Dowling Industrial and Systems Engineering Hometown: La Mirada, CA Involvement at USC: Society of Women Engineers- Corporate Affairs Committee member, Institute of Industrial Engineers- President, Viterbi Graduate Admissions Office- student staff member, Song Girl 2007 Favorite

Wang, Hai

441

Innovative Design of Complex Engineering Systems  

NASA Technical Reports Server (NTRS)

The document contains the proceedings of the training workshop on Innovative Design of Complex Engineering Systems. The workshop was held at the Peninsula Higher Education Center, Hampton, Virginia, March 23 and 24, 2004. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to innovative design of high-tech engineering systems; and b) identify training needs for future aerospace work force development in the design area. The format of the workshop included fifteen, half-hour overview-type presentations, a panel discussion on how to teach and train engineers in innovative design, and three exhibits by commercial vendors.

Noor, Ahmed K. (Compiler)

2004-01-01

442

Prerequisites: Control Systems I+II, System Modeling, Engine Class (Introduction to Modeling and Control of  

E-print Network

Thesis IDSC-LG-FZ-05 Gas Diesel Engine Modeling and Control The gas diesel engine is a natural gas enginePrerequisites: Control Systems I+II, System Modeling, Engine Class (Introduction to Modeling and Control of Internal Combustion Engine Systems, IC Engines, ...), Optimization Course, Matlab

Lygeros, John

443

Video display engineering and optimization system  

NASA Technical Reports Server (NTRS)

A video display engineering and optimization CAD simulation system for designing a LCD display integrates models of a display device circuit, electro-optics, surface geometry, and physiological optics to model the system performance of a display. This CAD system permits system performance and design trade-offs to be evaluated without constructing a physical prototype of the device. The systems includes a series of modules which permit analysis of design trade-offs in terms of their visual impact on a viewer looking at a display.

Larimer, James (Inventor)

1997-01-01

444

7th Annual Systems Biology Symposium: Systems Biology and Engineering  

SciTech Connect

Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

Galitski, Timothy P.

2008-04-01

445

Biometric System Security Systems and Computer Engineering  

E-print Network

on system vulnerabilities which are a consequence of this core biometric chal- lenge. Since biometric in detail. Maltoni et al. [27], classify biometric system vulnerabilities as follows: #12;· Circumvention). Such vulnerabilities bypass the computer security system, since the biometric features are legitimate. It may

Adler, Andy

446

Intelligent tutoring systems for systems engineering methodologies  

NASA Technical Reports Server (NTRS)

The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype.

Meyer, Richard J.; Toland, Joel; Decker, Louis

1991-01-01

447

40 CFR 91.407 - Engine inlet and exhaust systems.  

Code of Federal Regulations, 2013 CFR

...restrictions that are specified by the manufacturer for that particular engine. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must be the systems expected to yield the highest emission...

2013-07-01

448

40 CFR 91.407 - Engine inlet and exhaust systems.  

Code of Federal Regulations, 2011 CFR

...restrictions that are specified by the manufacturer for that particular engine. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must be the systems expected to yield the highest emission...

2011-07-01

449

40 CFR 91.407 - Engine inlet and exhaust systems.  

Code of Federal Regulations, 2010 CFR

...restrictions that are specified by the manufacturer for that particular engine. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must be the systems expected to yield the highest emission...

2010-07-01

450

40 CFR 91.407 - Engine inlet and exhaust systems.  

Code of Federal Regulations, 2012 CFR

...restrictions that are specified by the manufacturer for that particular engine. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must be the systems expected to yield the highest emission...

2012-07-01

451

40 CFR 91.407 - Engine inlet and exhaust systems.  

Code of Federal Regulations, 2014 CFR

...restrictions that are specified by the manufacturer for that particular engine. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must be the systems expected to yield the highest emission...

2014-07-01

452

Investigation of Exoskeletal Engine Propulsion System Concept  

NASA Technical Reports Server (NTRS)

An innovative approach to gas turbine design involves mounting compressor and turbine blades to an outer rotating shell. Designated the exoskeletal engine, compression (preferable to tension for high-temperature ceramic materials, generally) becomes the dominant blade force. Exoskeletal engine feasibility lies in the structural and mechanical design (as opposed to cycle or aerothermodynamic design), so this study focused on the development and assessment of a structural-mechanical exoskeletal concept using the Rolls-Royce AE3007 regional airliner all-axial turbofan as a baseline. The effort was further limited to the definition of an exoskeletal high-pressure spool concept, where the major structural and thermal challenges are represented. The mass of the high-pressure spool was calculated and compared with the mass of AE3007 engine components. It was found that the exoskeletal engine rotating components can be significantly lighter than the rotating components of a conventional engine. However, bearing technology development is required, since the mass of existing bearing systems would exceed rotating machinery mass savings. It is recommended that once bearing technology is sufficiently advanced, a "clean sheet" preliminary design of an exoskeletal system be accomplished to better quantify the potential for the exoskeletal concept to deliver benefits in mass, structural efficiency, and cycle design flexibility.

Roche, Joseph M.; Palac, Donald T.; Hunter, James E.; Myers, David E.; Snyder, Christopher A.; Kosareo, Daniel N.; McCurdy, David R.; Dougherty, Kevin T.

2005-01-01

453

Integrating Ontologies into Multiagent Systems Engineering  

E-print Network

Integrating Ontologies into Multiagent Systems Engineering Jonathan DiLeo1 , Timothy Jacobs2 , Scott DeLoach 3 1 College of Aerospace Doctrine, Research and Education, 620 Chennault Circle, Maxwell AFB, AL, USA 36112-6428 Jonathan.Dileo@maxwell.af.mil 2 Air Force Institute of Technology, AFIT

Deloach, Scott A.

454

Method and system for controlled combustion engines  

DOEpatents

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01

455

Spatial Information System and Golden Bridge Engineering  

Microsoft Academic Search

The development and integration of information technology,computer technology and modern communication technology have made construction of global information network possible. The paper describes some of the key techniques on network-based spatial information system and principal contents in applied exemplar engineering. Through this project, we attempt to study the technical support for the construction of global information infrastructure.

Qi Li; Jicheng Cheng; Shiwei Tang

1995-01-01

456

Intake system for internal combustion engines  

Microsoft Academic Search

An intake system for an internal combustion engine is described comprising working chamber means having a volume which changes cyclically between a top dead center of a smallest volume and a bottom dead center of a largest volume, intake passage means adapted to be cyclically opened to the working chamber means in an intake stroke which starts prior to the

M. Hitorai; S. Okazaki; K. Onishi; J. Sasaki; K. Tominaga

1988-01-01

457

Engineering Education as a Complex System  

ERIC Educational Resources Information Center

This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

2011-01-01

458

SCIENTISTS AND ENGINEERS STATISTICAL DATA SYSTEM (SESTAT)  

EPA Science Inventory

SESTAT is a comprehensive and integrated system of information about the employment, educational, and demographic characteristics of scientists and engineers (S&E) in the United States. In concept it covers those with a bachelor's degree or higher who either work in or are educat...

459

Heriot-Watt Micro Systems Engineering  

E-print Network

Heriot-Watt Micro Systems Engineering Centre - MISEC KEY BENEFITS: · Clean room facilities and individuals. The MISEC facilities include a large fully equipped clean room with spin coater/ exposure, flip, life sciences & condition monitoring technologies · Design of Flex, Flex-Rigid, LCP & LTCC circuitry

Painter, Kevin

460

A performance measurement system for engineering services  

NASA Technical Reports Server (NTRS)

A performance measurement system which provides both a means of monitoring performance and a resource to support management decision making is described. The process of performance indicator development is discussed and typical indicators are described. The paper concludes with a summary of some of the lessons learned in applying productivity measurements to engineering services tasks and in automating data collection, evaluation and interpretation.

West, R. L.

1985-01-01

461

The Systems and Global Engineering Project  

ERIC Educational Resources Information Center

This article describes the Systems and Global Engineering (SAGE) Project in which students collaborate with others from around the world to model solutions to some of today's most significant global problems. Stevens Institute of Technology and the New Jersey Technology Education Association (NJTEA) have teamed up to develop innovative…

Harms, Henry; Janosz, David A., Jr.; Maietta, Steve

2010-01-01

462

Starting system for internal combustion engine  

Microsoft Academic Search

A startling systems for an internal combustion engine is described which consists of: a prime mover having a rotary drive shaft, the shaft having a first end and a second end opposite the first end; a pinion mounted on the first end of the shaft so as to be reciprocally axially movable thereon between a first axial position and a

I. Hamano; A. Morishita; Y. Akae; T. Tanaka; K. Yabunaka

1986-01-01

463

The systems engineering overview and process (from the Systems Engineering Management Guide, 1990)  

NASA Technical Reports Server (NTRS)

The past several decades have seen the rise of large, highly interactive systems that are on the forward edge of technology. As a result of this growth and the increased usage of digital systems (computers and software), the concept of systems engineering has gained increasing attention. Some of this attention is no doubt due to large program failures which possibly could have been avoided, or at least mitigated, through the use of systems engineering principles. The complexity of modern day weapon systems requires conscious application of systems engineering concepts to ensure producible, operable and supportable systems that satisfy mission requirements. Although many authors have traced the roots of systems engineering to earlier dates, the initial formalization of the systems engineering process for military development began to surface in the mid-1950s on the ballistic missile programs. These early ballistic missile development programs marked the emergence of engineering discipline 'specialists' which has since continued to grow. Each of these specialties not only has a need to take data from the overall development process, but also to supply data, in the form of requirements and analysis results, to the process. A number of technical instructions, military standards and specifications, and manuals were developed as a result of these development programs. In particular, MILSTD-499 was issued in 1969 to assist both government and contractor personnel in defining the systems engineering effort in support of defense acquisition programs. This standard was updated to MIL-STD499A in 1974, and formed the foundation for current application of systems engineering principles to military development programs.

1993-01-01

464

GASIFICATION BASED BIOMASS CO-FIRING  

SciTech Connect

Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

2003-01-01

465

Thermal expansion of slag and fly ash from coal gasification in IGCC power plant  

Microsoft Academic Search

Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and

M. Aineto; A. Acosta; J. Ma. Rincón; M. Romero

2006-01-01