Science.gov

Sample records for gasoline plant engineering

  1. Gasoline engine choking arrangement

    SciTech Connect

    Armes, P.W.

    1987-10-13

    In combination with a gasoline engine including a fuel tank having a fuel inlet and outlet, an automatic choke is described having a pivotal choke butterfly plate, an air filter, and a rod mounting the air filter. A choking arrangement comprises means immobilizing the pivotal choke butterfly plate at an open position and means communicating with the fuel inlet selectively urging fuel passage from the fuel tank outlet during gasoline engine starting.

  2. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    SciTech Connect

    Not Available

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  3. Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…

  4. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  5. Gasoline Engine Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of five terminal objectives presented in this curriculum guide for a basic gasoline engine mechanics course at the secondary level. (For the intermediate course guide see CE 010 946.) The materials were developed for a two semester (2 hours daily)…

  6. Process engineering and mechanical design reports. Volume 5: Preliminary design and assessment of a 50,000 BPD coal-to-methanol-to-gasoline plant

    NASA Astrophysics Data System (ADS)

    1982-08-01

    Equipment data sheets and other data on automatic control equipment for a coal-to-methanol-to-gasoline fuel production plant are given. Data on operating panels, programmable logic controllers, and conveyor equipment are given.

  7. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  8. Possible improvements in gasoline engines

    NASA Technical Reports Server (NTRS)

    Ziembinski, S

    1923-01-01

    High-compression engines are investigated with the three main objects being elimination of vibration, increase of maximum efficiency, and conservation of this efficiency at the highest possible speeds.

  9. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  10. Comparative performance study of spark ignition engines burning alcohols, gasoline, and alcohol-gasoline blends

    SciTech Connect

    Desoky, A.A.; Rabie, L.H.

    1983-12-01

    In recent years it has been clear that the reserves of oil, from which petrol is refined, are becoming limited. In order to conserve these stocks of oil, and to minimize motoring costs as the price of dwindling oil resources escalates, it's obviously desirable to improve the thermal efficiency of the spark ignition engine. There are also obvious benefits to be obtained from making spark ignition engines run efficiently on alternative fuel, (non-crude based fuel). It has been claimed that hydrogen is an ideal fuel for the internal combustion engine it certainly causes little pollution, but is difficult to store, high in price, and difficult to burn efficiently in the engine without it knocking and backfiring. These problems arise because of the very wide flammability limits and the very high flame velocity of hydrogen. Alcohols used an additive or substitute for gasoline could immediately help to solve both energy and pollution problems. An experimental tests were carried out at Mansoura University Laboratories using a small single cylinder SIE, fully instrumented to measure the engine performance. The engine was fueled with pure methonol, pure ethonol, gasoline methanol blends and gasaline ethanol blends. The results showed that in principle, from kechnological aspects it's possible to use alcohols as a gasoline extender or as alcohol's gasoline, blends for automobiles. With regard to energy consumptions alcohols and alcohols gasoline blends lead to interesting results. The fuel economy benefits of using alcohols gasoline blends was found to be interesting in the part throltle operation.

  11. Health effects of inhaled gasoline engine emissions.

    PubMed

    McDonald, Jacob D; Reed, Matthew D; Campen, Matthew J; Barrett, Edward G; Seagrave, JeanClare; Mauderly, Joe L

    2007-01-01

    Despite their prevalence in the environment, and the myriad studies that have shown associations between morbidity or mortality with proximity to roadways (proxy for motor vehicle exposures), relatively little is known about the toxicity of gasoline engine emissions (GEE). We review the studies conducted on GEE to date, and summarize the findings from each of these studies. While there have been several studies, most of the studies were conducted prior to 1980 and thus were not conducted with contemporary engines, fuels, and driving cycles. In addition, many of the biological assays conducted during those studies did not include many of the assays that are conducted on contemporary inhalation exposures to air pollutants, including cardiovascular responses and others. None of the exposures from these earlier studies were characterized at the level of detail that would be considered adequate today. A recent GEE study was conducted as part of the National Environmental Respiratory Center (www.nercenter.org). In this study several in-use mid-mileage General Motors (Chevrolet S-10) vehicles were purchased and utilized for inhalation exposures. An exposure protocol was developed where engines were operated with a repeating California Unified Driving Cycle with one cold start per day. Two separate engines were used to provide two cold starts over a 6-h inhalation period. The exposure atmospheres were characterized in detail, including detailed chemical and physical analysis of the gas, vapor, and particle phase. Multiple rodent biological models were studied, including general toxicity and inflammation (e.g., serum chemistry, lung lavage cell counts/differentials, cytokine/chemokine analysis, histopathology), asthma (adult and in utero exposures with pulmonary function and biochemical analysis), cardiovascular effects (biochemical and electrocardiograph changes in susceptible rodent models), and susceptibility to infection (Pseudomonas bacteria challenge). GEE resulted in

  12. 46 CFR 58.10-5 - Gasoline engine installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... flame arrester complying with SAE J-1928 (incorporated by reference; see 46 CFR 58.03-1) or UL 1111 (incorporated by reference; see 46 CFR 58.03-1) and marked accordingly. The flame arrester must be...

  13. 46 CFR 58.10-5 - Gasoline engine installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... flame arrester complying with SAE J-1928 (incorporated by reference; see 46 CFR 58.03-1) or UL 1111 (incorporated by reference; see 46 CFR 58.03-1) and marked accordingly. The flame arrester must be...

  14. 46 CFR 58.10-5 - Gasoline engine installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... flame arrester complying with SAE J-1928 (incorporated by reference; see 46 CFR 58.03-1) or UL 1111 (incorporated by reference; see 46 CFR 58.03-1) and marked accordingly. The flame arrester must be...

  15. 46 CFR 58.10-5 - Gasoline engine installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... flame arrester complying with SAE J-1928 (incorporated by reference; see 46 CFR 58.03-1) or UL 1111 (incorporated by reference; see 46 CFR 58.03-1) and marked accordingly. The flame arrester must be...

  16. 46 CFR 58.10-5 - Gasoline engine installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... flame arrester complying with SAE J-1928 (incorporated by reference; see 46 CFR 58.03-1) or UL 1111 (incorporated by reference; see 46 CFR 58.03-1) and marked accordingly. The flame arrester must be...

  17. 35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM THE ARTISAN WELL (THROUGH THE DOORWAY) TO THE CISTERN ON THE ROOF. WATER WAS THEN FED BY GRAVITY TO THE REST OF THE FACTORY. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  18. Basic Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a basic gasoline engine mechanics program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  19. 12. Detail of clutch and backup gasoline engine for powering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail of clutch and backup gasoline engine for powering Stoney gates. Clutch mechanism manufactured by Baldridge Machine Company, Detroit, Michigan, ca. 1910. Instrument to the left records volume of flow through headworks. View looking south towards Stoney gates. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  20. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed...

  1. Engine and vehicle concepts for methanol-gasoline blends

    SciTech Connect

    Menrad, H.; Nierhauve, B.

    1983-10-01

    Blending methanol (MEOH) into gasoline results in the variation of the fuel properties, which are partially significant for the vehicle performance. Based on the modified fuel, necessary changes in the engine-vehicle concept are discussed including variations in the characteristics of the cars. Several steps of blending rates are considered: Low percentage in present production gasoline vehicles, medium rate up to 15 % and high values up to 60 % in modified concepts. The most influencing factor proves to be the material compatibility, followed by hot driving problems (vapor lock). Experiences with prototypes are discussed as well as larger test programs, e.g. the German Methanol Program with 1000 M 15 vehicles.

  2. Some Notes on Gasoline-Engine Development

    NASA Technical Reports Server (NTRS)

    Ricardo, H R

    1927-01-01

    Experiments were carried out using a special engine with small glass windows and a stroboscope to record various aspects of engine performance. Valve position, supercharging, and torque recoil were all investigated with this experimental apparatus.

  3. On the knocking of gasoline engines

    NASA Technical Reports Server (NTRS)

    Richter, Ludwig

    1926-01-01

    It is of the greatest importance, not only for automobile engines, but also for every other kind of internal combustion engine, since it limits the degree of compression and the thermal efficiency and its investigation indicates ways for saving fuel.

  4. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    SciTech Connect

    Wagner, Terrance

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  5. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P; Thomas, John F; Barone, Teresa L; Eibl, Mary A; Nafziger, Eric J; Kaul, Brian C

    2014-01-01

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  6. Combustion behavior of gasoline and gasoline/ethanol blends in a modern direct-injection 4-cylinder engine.

    SciTech Connect

    Wallner, T.; Miers, S. A.

    2008-04-01

    Early in 2007 President Bush announced in his State of the Union Address a plan to off-set 20% of gasoline with alternative fuels in the next ten years. Ethanol, due to its excellent fuel properties for example, high octane number, renewable character, etc., appears to be a favorable alternative fuel from an engine perspective. Replacing gasoline with ethanol without any additional measures results in unacceptable disadvantages mainly in terms of vehicle range.

  7. Emissions and Total Energy Consumption of a Multicylinder Piston Engine Running on Gasoline and a Hydrogen-gasoline Mixture

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.

    1977-01-01

    A multicylinder reciprocating engine was used to extend the efficient lean operating range of gasoline by adding hydrogen. Both bottled hydrogen and hydrogen produced by a research methanol steam reformer were used. These results were compared with results for all gasoline. A high-compression-ratio, displacement production engine was used. Apparent flame speed was used to describe the differences in emissions and performance. Therefore, engine emissions and performance, including apparent flame speed and energy lost to the cooling system and the exhaust gas, were measured over a range of equivalence ratios for each fuel. All emission levels decreased at the leaner conditions. Adding hydrogen significantly increased flame speed over all equivalence ratios.

  8. Air-fuel ratio control in a gasoline engine

    NASA Astrophysics Data System (ADS)

    Lauber, J.; Guerra, T. M.; Dambrine, M.

    2011-02-01

    The aim of this article is to design an air-fuel ratio control law for a gasoline IC engine. The air-fuel ratio is measured by a lambda sensor in the exhaust manifold. As a consequence, a variable transport delay arises in the model considered. A non-linear control approach based on a Takagi-Sugeno's model of the system is used. Then, two structures of control law are compared based on parallel distributed compensation control laws, which take into account the variable time delay. Finally, some simulations are given to show the efficiency of the developed control law.

  9. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    NASA Astrophysics Data System (ADS)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2

  10. 40 CFR 63.11086 - What requirements must I meet if my facility is a bulk gasoline plant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facility is a bulk gasoline plant? 63.11086 Section 63.11086 Protection of Environment ENVIRONMENTAL... Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities Emission... gasoline plant? Each owner or operator of an affected bulk gasoline plant, as defined in § 63.11100,...

  11. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect

    Ciatti, S. A.; Subramanian, S.

    2011-09-01

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  12. 40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gasoline-fueled engine dynamometer test run. 86.340-79 Section 86.340-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Procedures § 86.340-79 Gasoline-fueled engine dynamometer test run. (a) This section applies to...

  13. 40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine dynamometer test run. 86.340-79 Section 86.340-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Procedures § 86.340-79 Gasoline-fueled engine dynamometer test run. (a) This section applies to...

  14. 40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gasoline-fueled engine dynamometer test run. 86.340-79 Section 86.340-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Procedures § 86.340-79 Gasoline-fueled engine dynamometer test run. (a) This section applies to...

  15. 40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gasoline-fueled engine dynamometer test run. 86.340-79 Section 86.340-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Procedures § 86.340-79 Gasoline-fueled engine dynamometer test run. (a) This section applies to...

  16. Generation and characterization of gasoline engine exhaust inhalation exposure atmospheres.

    PubMed

    McDonald, Jacob D; Barr, Edward B; White, Richard K; Kracko, Dean; Chow, Judith C; Zielinska, Barbara; Grosjean, Eric

    2008-10-01

    Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 4.3-L gasoline engine coupled to a dynamometer and operated on an adapted California Unified Driving Cycle. Exposure levels were maintained at three different dilution rates. One chamber at the lowest dilution had particles removed by filtration. Each exposure atmosphere was characterized for particle mass, particle number, particle size distribution, and detailed chemical speciation. The majority of the mass in the exposure atmospheres was gaseous carbon monoxide, nitrogen oxides, and volatile organics, with small amounts of particle-bound carbon/ions and metals. The atmospheres varied according to the cycle, with the largest spikes in volatile organic and inorganic species shown during the "cold start" portion of the cycle. Ammonia present from the exhaust and rodents interacted with the gasoline exhaust to form secondary inorganic particles, and an increase in exhaust resulted in higher proportions of secondary inorganics as a portion of the total particle mass. Particle size had a median of 10-20 nm by number and approximately 150 nm by mass. Volatile organics matched the composition of the fuel, with large proportions of aliphatic and aromatic hydrocarbons coupled to low amounts of oxygenated organics. A new measurement technique revealed organics reacting with nitrogen oxides have likely resulted in measurement bias in previous studies of combustion emissions. Identified and measured particle organic species accounted for about 10% of total organic particle mass and were mostly aliphatic acids and polycyclic aromatic hydrocarbons. PMID:18951232

  17. Carbon Monoxide Hazards from Small Gasoline Powered Engines

    MedlinePlus

    ... where he had been working with an 8-horse-power, gasoline-powered pump. Doors adjacent to the ... treated for CO poisoning after using two 8 horse-power, gasoline-powered, pressure washers in a poorly ...

  18. Combined manual and power starting device for gasoline engines

    SciTech Connect

    Scheckel, W.D.

    1986-10-07

    A combined manual and power starting device is described for a gasoline engine of a type which may be started by rotating the crankshaft thereof, the starting device comprising: a. a first sleeve mounted rotatably on an extended portion of the crankshaft; b. a first overrunning clutch including a driving member formed by a portion of the first sleeve and a driven member fixed to the crankshaft; c. a second sleeve mounted rotatably and slidably on the first sleeve; d. means biasing the second clutch yieldably to an engaged position; e. a rope pulley rotatably mounted in the engine housing coaxially with the crankshaft, and having axially slidable but non-rotatable connection with the second sleeve, f. a rope wound on the pulley and operable by outward manual tension thereon to turn the crankshaft in an engine-starting direction through both of the first and second clutches. The pulley has a hollow hub through which the crankshaft extension projects outwardly from the engine housing, and g. a drive member affixed to the outwardly extended end of the crankshaft extension and operable to be turned by power means.

  19. High-Speed Visualisation of Combustion in Modern Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Sauter, W.; Nauwerck, A.; Han, K.-M.; Pfeil, J.; Velji, A.; Spicher, U.

    2006-07-01

    Today research and development in the field of gasoline engines have to face a double challenge: on the one hand, fuel consumption has to be reduced, while on the other hand, ever more stringent emission standards have to be fulfilled. The development of engines with its complexity of in-cylinder processes requires modern development tools to exploit the full potential in order to reduce fuel consumption. Especially optical, non-intrusive measurement techniques will help to get a better understanding of the processes. With the presented high-speed visualisation system the electromagnetic radiation from combustion in the UV range is collected by an endoscope and transmitted to a visualisation system by 10, 000 optical fibres. The signal is projected to 1, 920 photomultipliers, which convert the optical into electric signals with a maximum temporal resolution of 200 kHz. This paper shows the systematic application of flame diagnostics in modern combustion systems. For this purpose, a single-cylinder SI engine has been modified for a spray guided combustion strategy as well as for HCCI. The characteristics of flame propagation in both combustion modes were recorded and correlated with thermodynamic analyses. In case of the spray guided GDI engine, high pressure fuel injection was applied and evaluated.

  20. Utilization of LPG and gasoline engine exhaust emissions by microalgae.

    PubMed

    Taştan, Burcu Ertit; Duygu, Ergin; Ilbaş, Mustafa; Dönmez, Gönül

    2013-02-15

    The effect of engine exhaust emissions on air pollution is one of the greatest problems that the world is facing today. The study focused on the effects of realistic levels of engine exhaust emissions of liquid petroleum gas (LPG) and gasoline (GSN) on Phormidium sp. and Chlorella sp. Multi parameters including pH, different medial compositions, fuel types, flow rates and biomass concentrations were described in detail. Effects of some growth factors such as triacontanol (TRIA) and salicylic acid (SA) have also been tested. The maximum biomass concentration of Phormidium sp. reached after 15 days at 0.36 and 0.15 g/L initial biomass concentrations were found as 1.160 g/L for LPG emission treated cultures and 1.331 g/L for GSN emission treated cultures, respectively. The corresponding figures were 1.478 g/L for LPG emission treated cultures and 1.636 g/L for GSN emission treated cultures at 0.65 and 0.36 g/L initial Chlorella sp. biomass concentrations. This study highlights the significance of using Phormidium sp. and Chlorella sp. for utilization of LPG and GSN engine exhaust emissions by the help of growth factors. PMID:23298742

  1. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels

    NASA Astrophysics Data System (ADS)

    Hsieh, Wei-Dong; Chen, Rong-Hong; Wu, Tsung-Lin; Lin, Ta-Hui

    The purpose of this study is to experimentally investigate the engine performance and pollutant emission of a commercial SI engine using ethanol-gasoline blended fuels with various blended rates (0%, 5%, 10%, 20%, 30%). Fuel properties of ethanol-gasoline blended fuels were first examined by the standard ASTM methods. Results showed that with increasing the ethanol content, the heating value of the blended fuels is decreased, while the octane number of the blended fuels increases. It was also found that with increasing the ethanol content, the Reid vapor pressure of the blended fuels initially increases to a maximum at 10% ethanol addition, and then decreases. Results of the engine test indicated that using ethanol-gasoline blended fuels, torque output and fuel consumption of the engine slightly increase; CO and HC emissions decrease dramatically as a result of the leaning effect caused by the ethanol addition; and CO 2 emission increases because of the improved combustion. Finally, it was noted that NO x emission depends on the engine operating condition rather than the ethanol content.

  2. Hypereutectic aluminum - A piston material for modern high specific output gasoline engines

    SciTech Connect

    Whitacre, J.P.

    1987-01-01

    (Piston requirements for (gasoline engines) have changed dramatically in the last ten years. Several factors have combined to tax traditionally used alloys to their limits. This paper is concerned with the used of high silicon ''(hypereutectic)'' aluminum alloy in gasoline engine pistons. Problem areas with standard piston alloys are discussed, along with the benefits to be gained by the use of hypereutectic material. Manufacturing problems associated with the production of quality hypereutectic pistons are also discussed.

  3. Studies on exhaust emissions of catalytic coated spark ignition engine with adulterated gasoline.

    PubMed

    Muralikrishna, M V S; Kishor, K; Venkata Ramana Reddy, Ch

    2006-04-01

    Adulteration of automotive fuels, especially, gasoline with cheaper fuels is widespread throughout south Asia. Some adulterants decrease the performance and life of the engine and increase the emission of harmful pollutants causing environmental and health problems. The present investigation is carried out to study the exhaust emissions from a single cylinder spark ignition (SI) engine with kerosene blended gasoline with different versions of the engine, such as conventional engine and catalytic coated engine with different proportions of the kerosene ranging from 0% to 40% by volume in steps of 10% in the kerosene-gasoline blend. The catalytic coated engine used in the study has copper coating of thickness 400 microns on piston and inner surface of the cylinder head. The pollutants in the exhaust, carbon monoxide (CO) and unburnt hydrocarbons (UBHC) are measured with Netel Chromatograph CO and HC analyzer at peak load operation of the engine. The engine is provided with catalytic converter with sponge iron as a catalyst to control the pollutants from the exhaust of the engine. An air injection is also provided to the catalytic converter to further reduce the pollutants. The pollutants found to increase drastically with adulterated gasoline. Copper-coated engine with catalytic converter significantly reduced pollutants, when compared to conventional engine. PMID:17913184

  4. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  5. Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2016-04-19

    Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models. PMID:27023443

  6. Combustion parameters of spark ignition engine using waste potato bioethanol and gasoline blended fuels

    NASA Astrophysics Data System (ADS)

    Ghobadian, B.; Najafi, G.; Abasian, M.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the combustion parameters of a SI engine operating on bioethanol-gasoline blends (E0-E20: 20% bioethanol and 80% gasoline by volume). A reactor was designed, fabricated and evaluated for bioethanol production from potato wastes. The results showed that increasing the bioethanol content in the blend fuel will decrease the heating value of the blended fuel and increase the octane number. Combustion parameters were evaluated and analyzed at different engine speeds and loads (1000-5000 rpm). The results revealed that using bioethanol-gasoline blended fuels will increase the cylinder pressure and its 1st and 2nd derivatives (P(θ), P•(θ) and P••(θ)). Moreover, using bioethanol- gasoline blends will increase the heat release (Q•(θ)) and worked of the cycle. This improvement was due to the high oxygen percentage in the ethanol.

  7. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    SciTech Connect

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.

  8. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    DOE PAGESBeta

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  9. Safe genetically engineered plants

    NASA Astrophysics Data System (ADS)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  10. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  11. Plant Plastid Engineering

    PubMed Central

    Wani, Shabir H.; Haider, Nadia; Kumar, Hitesh; Singh, N.B.

    2010-01-01

    Genetic material in plants is distributed into nucleus, plastids and mitochondria. Plastid has a central role of carrying out photosynthesis in plant cells. Plastid transformation is becoming more popular and an alternative to nuclear gene transformation because of various advantages like high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs, and gene containment through the lack of pollen transmission. Recently, much progress in plastid engineering has been made. In addition to model plant tobacco, many transplastomic crop plants have been generated which possess higher resistance to biotic and abiotic stresses and molecular pharming. In this mini review, we will discuss the features of the plastid DNA and advantages of plastid transformation. We will also present some examples of transplastomic plants developed so far through plastid engineering, and the various applications of plastid transformation. PMID:21532834

  12. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  13. Conversion of Gasoline Engines to Use Ethanol as the Sole Fuel. Student Guide.

    ERIC Educational Resources Information Center

    Mishler, Glenn; Spignesi, Bill

    This student guide is a learning packet that is intended for use as part of the regular auto mechanics curriculum and that provides the information necessary to convert a gasoline engine with a minimum of modifications to successfully be operated on ethanol alcohol. Contents include an introduction, objectives, procedures, list of tasks to be…

  14. Conversion of Gasoline Engines to Use Ethanol as the Sole Fuel. Instructor's Guide.

    ERIC Educational Resources Information Center

    Mishler, Glenn; Spignesi, Bill

    This instructor's guide contains materials that are intended for use as part of the regular auto mechanics curriculum and that provide information necessary to convert a gasoline engine with a niminum of modifications to successfully be operated on ethanol alcohol. It accompanies a student guide that is available separately. Contents include a…

  15. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  16. The relative performance obtained with several methods of control of an overcompressed engine using gasoline

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Whedon, William E

    1928-01-01

    This report presents some results obtained during an investigation to determine the relative characteristics for several methods of control of an overcompressed engine using gasoline and operating under sea-level conditions. For this work, a special single cylinder test engine, 5-inch bore by 7-inch stroke, and designed for ready adjustment of compression ratio, valve timing and valve lift while running, was used. This engine has been fully described in NACA-TR-250. Tests were made at an engine speed of 1,400 R. P. M. for compression ratios ranging from 4.0 to 7.6. The air-fuel ratios were on the rich side of the chemically correct mixture and were approximately those giving maximum power. When using plain domestic gasoline, detonation was controlled to a constant, predetermined amount (audible), such as would be permissible for continuous operation, by (a) throttling the carburetor, (b) maintaining full throttle but greatly retarding the ignition, and (c) varying the timing of the inlet valve to reduce the effective compression ratio. From the results of the tests, it may be concluded that method (b) gives the best all-round performance and, being easily employed in service, appears to be the most practicable method for controlling an overcompressed engine using gasoline at low altitudes.

  17. Development of a fuel injected two-stroke gasoline engine

    SciTech Connect

    Plohberger, D.; Mikulic, L.A.; Landfahrer, K.

    1988-01-01

    AVL's development of a semi-direct injected two-stroke engine employed a carburetted 250cc production motorcycle engine as a baseline. Special emphasis was placed on the investigation of fuel jet and scavenge flow interactions. To evaluate the scavenge flow pattern, a steady flow test procedure was developed and applied. The results of scavenging system optimization were confirmed by subsequent engine tests which showed significant gains in power output. Completion of the first phase of the research program resulted in the development of a semi-direct injection system using currently available automotive low pressure manifold injection system components. Compared to the original carburetted engine, significant improvements were demonstrated, including a 30% reduction of fuel consumption, a reduction of up to 60% in hydrocarbon emissions and up to 70% in carbon monoxide emission, averaged over the engine's speed and load range. Engine BMEP and power characteristics were maintained and improved. In addition, the critical idle operating conditions were improved significantly by stabilizing the combustion with minimized cyclic variations. The results of thermodynamic cycle analyses, based both on engine test measurements and on calculations, are presented. Finally, the paper compares the semi-direct and direct injection systems and presents an outlook based on some of the results of the current phase of AVL's low emission two-stroke engine research program.

  18. Measurement of Organic Compounds in Diesel and Gasoline Engine Exhaust using Thermal Desorption PTR-MS

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Gueneron, M.; Erickson, M. H.; Vanderschelden, G. S.

    2013-12-01

    A proton transfer reaction mass spectrometer modified with a thermal desorption sampler was used to measure organic compounds in diesel and gasoline engine exhaust in a laboratory setting. The drift tube was operated at 80 Td, providing an M+1 and M-1 mass spectrum for the most abundant constituents of the exhaust including alkenes, cycloalkanes, bicycloalkanes, monoaromatics, and naphthenic monoaromatic compounds. Alkanes were observed to fragment to a common set of ions. Use of the thermal desorption sampler enabled the total concentration of C10-C17 alkanes to be determined. The abundance of higher molecular weight cycloalkanes, bicycloalkanes, napthenic monoaromatics, and larger C10-C17 alkanes was much greater in diesel exhaust, allowing for a distinct source fingerprint pattern to distinguish diesel from gasoline exhaust. Use of the finger print source profiles allowed us to quantify the relative amounts of diesel and gasoline exhaust in mixtures, suggesting its utility to determine the relative contributions of gasoline and diesel engine exhaust to hydrocarbon concentrations in urban areas.

  19. Comparative Toxicity of Gasoline and Diesel Engine Emissions

    SciTech Connect

    JeanClare Seagrave; Joe L. Mauderly; Barbara Zielinska; John Sagebiel; Kevin Whitney; Doughlas R. Lawson; Michael Gurevich

    2000-06-19

    Better information on the comparative toxicity of airborne emissions from different types of engines is needed to guide the development of heavy vehicle engine, fuel, lubricant, and exhaust after-treatment technologies, and to place the health hazards of current heavy vehicle emissions in their proper perspective. To help fill this information gap, samples of vehicle exhaust particles and semi-volatile organic compounds (SVOC) were collected and analyzed. The biological activity of the combined particle-SVOC samples is being tested using standardized toxicity assays. This report provides an update on the design of experiments to test the relative toxicity of engine emissions from various sources.

  20. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    SciTech Connect

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissions is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.

  1. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  2. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  3. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE PAGESBeta

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; Toops, Todd J.

    2016-04-05

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCRmore » approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher underfloor temperatures, NH3 oxidation over the SCR limited NH3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering

  4. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of

  5. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  6. Filter-based control of particulate matter from a lean gasoline direct injection engine

    SciTech Connect

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses; Prikhodko, Vitaly Y; Storey, John Morse

    2016-01-01

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The

  7. Experimental study of N{sub 2}O emission from gasoline engines at various operating modes

    SciTech Connect

    Zhao, Zheshi; Ozaki, Masuo; Danov, Stanislav; Matsunami, Aritaka; Arai, Norio

    1998-07-01

    Systematic investigations on N{sub 2}O emission from automotive internal combustion engines equipped with primary or secondary NO control techniques, are scarce or do not exist at all. In this study, experiments have been carried out to investigate the N{sub 2}O emission from a gasoline 4-stroke automotive engine equipped with a 3-way catalytic converter. The results obtained from laboratory studies on gasoline automotive engines show that the N{sub 2}O emission is strongly influenced by the operating conditions of the engine in terms of the rotating speed and load. Also, the technical status of the engine has significant impact with respect to the N{sub 2}O emission. The analysis show that some catalytic NO converters in the presence of ammonia can be considered as a potential source of N{sub 2}O. It was found that the 3-way catalytic converter produces some ammonia during the NO reduction, and also that N{sub 2}O formation is enhanced by the presence of H{sub 2} or/and CO. The N{sub 2}O production rate increases with an increase of rotating speed, but this increase can be explained by the increase of the air/fuel equivalence ratio, which also increases with the rise of engine rotating speed at constant load.

  8. Assessing the Climate Trade-Offs of Gasoline Direct Injection Engines.

    PubMed

    Zimmerman, Naomi; Wang, Jonathan M; Jeong, Cheol-Heon; Wallace, James S; Evans, Greg J

    2016-08-01

    Compared to port fuel injection (PFI) engine exhaust, gasoline direct injection (GDI) engine exhaust has higher emissions of black carbon (BC), a climate-warming pollutant. However, the relative increase in BC emissions and climate trade-offs of replacing PFI vehicles with more fuel efficient GDI vehicles remain uncertain. In this study, BC emissions from GDI and PFI vehicles were compiled and BC emissions scenarios were developed to evaluate the climate impact of GDI vehicles using global warming potential (GWP) and global temperature potential (GTP) metrics. From a 20 year time horizon GWP analysis, average fuel economy improvements ranging from 0.14 to 14% with GDI vehicles are required to offset BC-induced warming. For all but the lowest BC scenario, installing a gasoline particulate filter with an 80% BC removal efficiency and <1% fuel penalty is climate beneficial. From the GTP-based analysis, it was also determined that GDI vehicles are climate beneficial within <1-20 years; longer time horizons were associated with higher BC scenarios. The GDI BC emissions spanned 2 orders of magnitude and varied by ambient temperature, engine operation, and fuel composition. More work is needed to understand BC formation mechanisms in GDI engines to ensure that the climate impacts of this engine technology are minimal. PMID:27406325

  9. Apparatus for improving gasoline comsumption, power and reducing emission pollutants of internal combustion engines

    SciTech Connect

    Piedrafita, R.

    1986-02-18

    This patent describes an apparatus for improving performance and reducing fuel comsumption and emission pollutants from an internal combustion gasoline engine. This apparatus consists of: 1.) an internal combustion gasoline engine having, in part, an intake manifold and an exhaust manifold where the exhaust manifold is modified to include a manifold exhaust port; 2.) a modified internal combustion engine carburetor connected to the intake manifold on the engine; 3.) a positive crankcase ventilation valve (PCV) which has an input port conventionally connected to the internal combustion engine and also has a PCV output port; 4.) an automobile fuel pump having an input connected to a conventional fuel tank and having a fuel pump output port; 5.) a thermic reactor; 6.) a thermic reactor air cleaner pneumatically connected to the clean air input port on the thermic reactor; 7.) a catalytic gas injector; 8.) a fuel regulator/restrictor consisting of a solid block having a fuel pump input port and a carburetor output port.

  10. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions

    NASA Astrophysics Data System (ADS)

    Khalili, Nasrin R.; Scheff, Peter A.; Holsen, Thomas M.

    To evaluate the chemical composition (source fingerprint) of the major sources of polyaromatic hydrocarbons (PAHs) in the Chicago metropolitan area, a study of major PAH sources was conducted during 1990-1992. In this study, a modified high-volume sampling method (PS-1 sampler) was employed to collect airborne PAHs in both the particulate and gas phases. Hewlett Packard 5890 gas chromatographs equipped with the flame ionization and mass spectrometer detectors (GC/FID and GC/MS) were used to analyze the samples. The sources sampled were: coke ovens, highway vehicles, heavy-duty diesel engines, gasoline engines and wood combustion. Results of this study showed that two and three ring PAHs were responsible for 98, 76, 92, 73 and 80% of the total concentration of measured 20 PAHs for coke ovens, diesel engines, highway tunnels, gasoline engines and wood combustion samples, respectively. Six ring PAHs such as indeno(1,2,3- cd)pyrene and benzo( ghi)perylene were mostly below the detection limit of this study and only detected in the highway tunnel, diesel and gasoline engine samples. The source fingerprints were obtained by averaging the ratios of individual PAH concentrations to the total concentration of categorical pollutants including: (a) total measured mass of PAHs with retention times between naphthalene and coronene, (b) the mass of the 20 PAHs measured in this study, (c) total VOCs, and (d) total PM10. Since concentrations of the above categorical pollutants were different for individual samples and different sources, the chemical composition patterns obtained for each categorical pollutant were different. The source fingerprints have been developed for use in chemical mass balance receptor modeling calculations.

  11. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions

    SciTech Connect

    Mehl, M; Pitz, W J; Westbrook, C K; Curran, H J

    2010-01-11

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, an improved version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multicomponent gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines (3-50 atm, 650-1200K, stoichiometric fuel/air mixtures). Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  12. 40 CFR 63.11086 - What requirements must I meet if my facility is a bulk gasoline plant?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false What requirements must I meet if my facility is a bulk gasoline plant? 63.11086 Section 63.11086 Protection of Environment ENVIRONMENTAL... collection systems that collect and transport gasoline to reclamation and recycling devices, such as...

  13. 40 CFR 63.11086 - What requirements must I meet if my facility is a bulk gasoline plant?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false What requirements must I meet if my facility is a bulk gasoline plant? 63.11086 Section 63.11086 Protection of Environment ENVIRONMENTAL... collection systems that collect and transport gasoline to reclamation and recycling devices, such as...

  14. 40 CFR 63.11086 - What requirements must I meet if my facility is a bulk gasoline plant?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false What requirements must I meet if my facility is a bulk gasoline plant? 63.11086 Section 63.11086 Protection of Environment ENVIRONMENTAL... collection systems that collect and transport gasoline to reclamation and recycling devices, such as...

  15. 40 CFR 63.11086 - What requirements must I meet if my facility is a bulk gasoline plant?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 15 2013-07-01 2013-07-01 false What requirements must I meet if my facility is a bulk gasoline plant? 63.11086 Section 63.11086 Protection of Environment ENVIRONMENTAL... collection systems that collect and transport gasoline to reclamation and recycling devices, such as...

  16. Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation

    SciTech Connect

    Machrafi, Hatim; Cavadias, Simeon

    2008-12-15

    The alternative HCCI combustion mode presents a possible means for decreasing the pollution with respect to conventional gasoline or diesel engines, while maintaining the efficiency of a diesel engine or even increasing it. This paper investigates the possibility of using gasoline in an HCCI engine and analyzes the autoignition of gasoline in such an engine. The compression ratio that has been used is 13.5, keeping the inlet temperature at 70 C, varying the equivalence ratio from 0.3 to 0.54, and the EGR (represented by N{sub 2}) ratio from 0 to 37 vol%. For comparison, a PRF95 and a surrogate containing 11 vol% n-heptane, 59 vol% iso-octane, and 30 vol% toluene are used. A previously validated kinetic surrogate mechanism is used to analyze the experiments and to yield possible explanations to kinetic phenomena. From this work, it seems quite possible to use the high octane-rated gasoline for autoignition purposes, even under lean inlet conditions. Furthermore, it appeared that gasoline and its surrogate, unlike PRF95, show a three-stage autoignition. Since the PRF95 does not contain toluene, it is suggested by the kinetic mechanism that the benzyl radical, issued from toluene, causes this so-defined ''obstructed preignition'' and delaying thereby the final ignition for gasoline and its surrogate. The results of the kinetic mechanism supporting this explanation are shown in this paper. (author)

  17. Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

    SciTech Connect

    Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J; Simmie, J M; Westbrook, C K

    2005-01-07

    Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. It is found that the low temperature heat-release rate depends strongly on engine speed, reactions of RO{sub 2}+HO{sub 2}, fuel composition, and pressure boost.

  18. First methanol-to-gasoline plant nears startup in New Zealand

    SciTech Connect

    Haggin, J.

    1985-03-25

    Sometime during the summer 1985, New Zealand Synthetic Fuels Co. was scheduled to begin operating its new plant at Motunui, New Zealand. It marks the first commercial application of the Mobil methanol-to-gasoline (MTG) process. Moreover, as the result of a modular approach directed by Bechtel Corp. personnel, the plant represents a major construction success. It is also the first example of a new technology that may seriously challenge traditional Fischer-Tropsch chemistry as a route to synthetic fuels and organic feedstocks. The MTG plant will produce 14,000 barrels per day of gasoline with an octane number rating of 92 to 94 (according to research results). This amount is about one third of present New Zealand demand. The gasoline will be made by catalytic conversion of methanol coming from two plants, each producing about 220 metric tons per day for the single-train MTG plant. The methanol, in turn, is derived from reforming of natural gas from offshore fields in the Tasman Sea.

  19. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2016-01-01

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel

  20. Influence of ethanol-gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine.

    PubMed

    Jia, Li-Wei; Shen, Mei-Qing; Wang, Jun; Lin, Man-Qun

    2005-08-31

    Emission characteristics from a four-stroke motorcycle engine using 10% (v/v) ethanol-gasoline blended fuel (E10) were investigated at different driving modes on the chassis dynamometers. The results indicate that CO and HC emissions in the engine exhaust are lower with the operation of E10 as compared to the use of unleaded gasoline, whereas the effect of ethanol on NO(X) emission is not significant. Furthermore, species of both unburned hydrocarbons and their ramifications were analyzed by the combination of gas chromatography/mass spectrometry (GC/MS) and gas chromatography/flame ionization detection (GC/FID). This analysis shows that aromatic compounds (benzene, toluene, xylene isomers (o-xylene, m-xylene and p-xylene), ethyltoluene isomers (o-ethyltoluene, m-ethyltoluene and p-ethyltoluene) and trimethylbenzene isomers (1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene)) and fatty group ones (ethylene, methane, acetaldehyde, ethanol, butene, pentane and hexane) are major compounds in motorcycle engine exhaust. It is found that the E10-fueled motorcycle engine produces more ethylene, acetaldehyde and ethanol emissions than unleaded gasoline engine does. The no significant reduction of aromatics is observed in the case of ethanol-gasoline blended fuel. The ethanol-gasoline blended fuel can somewhat improve emissions of the rest species. PMID:15923082

  1. A hybrid disturbance rejection control solution for variable valve timing system of gasoline engines.

    PubMed

    Xie, Hui; Song, Kang; He, Yu

    2014-07-01

    A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations. PMID:24238361

  2. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  3. Detailed Characterization of Particulates Emitted by Pre-Commercial Single-Cylinder Gasoline Compression Ignition Engine

    SciTech Connect

    Zelenyuk, Alla; Reitz, Paul; Stewart, Mark L.; Imre, D.; Loeper, Paul; Adams, Cory; Andrie, Michael; Rothamer, David; Foster, David E.; Narayanaswamy, Kushal; Najt, Paul M.; Solomon, Arun S.

    2014-08-01

    Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. We present the results of advanced aerosol analysis methods that have been used for detailed real-time characterization of PM emitted from a single-cylinder GCI engine operated at different speed, load, timing, and number and duration of near-TDC fuel injections. PM characterization included 28 measurements of size and composition of individual particles sampled directly from the exhaust and after mass and/or mobility classification. We use these data to calculate particle effective density, fractal dimension, dynamic shape factors in free-molecular and transition flow regimes, average diameter of primary spherules, number of spherules, and void fraction of soot agglomerates.

  4. Bladder cancer and occupational exposure to diesel and gasoline engine emissions among Canadian men.

    PubMed

    Latifovic, Lidija; Villeneuve, Paul J; Parent, Marie-Élise; Johnson, Kenneth C; Kachuri, Linda; Harris, Shelley A

    2015-12-01

    The International Agency for Research on Cancer has classified diesel exhaust as a carcinogen based on lung cancer evidence; however, few studies have investigated the effect of engine emissions on bladder cancer. The purpose of this study was to investigate the association between occupational exposure to diesel and gasoline emissions and bladder cancer in men using data from the Canadian National Enhanced Cancer Surveillance System; a population-based case-control study. This analysis included 658 bladder cancer cases and 1360 controls with information on lifetime occupational histories and a large number of possible cancer risk factors. A job-exposure matrix for engine emissions was supplemented by expert review to assign values for each job across three dimensions of exposure: concentration, frequency, and reliability. Odds ratios (OR) and their corresponding 95% confidence intervals were estimated using logistic regression. Relative to unexposed, men ever exposed to high concentrations of diesel emissions were at an increased risk of bladder cancer (OR = 1.64, 0.87-3.08), but this result was not significant, and those with >10 years of exposure to diesel emissions at high concentrations had a greater than twofold increase in risk (OR = 2.45, 1.04-5.74). Increased risk of bladder cancer was also observed with >30% of work time exposed to gasoline engine emissions (OR = 1.59, 1.04-2.43) relative to the unexposed, but only among men that had never been exposed to diesel emissions. Taken together, our findings support the hypothesis that exposure to high concentrations of diesel engine emissions may increase the risk of bladder cancer. PMID:26511593

  5. Simulation: Gasoline Compression Ignition

    SciTech Connect

    2015-04-13

    The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.

  6. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    PubMed

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area. PMID:24261886

  7. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage

    PubMed Central

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569

  8. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage.

    PubMed

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569

  9. A comparison on the emission of polycyclic aromatic hydrocarbons and their corresponding carcinogenic potencies from a vehicle engine using leaded and lead-free gasoline.

    PubMed Central

    Mi, H H; Lee, W J; Tsai, P J; Chen, C B

    2001-01-01

    Our objective in this study was to assess the effect of using two kinds of lead-free gasoline [including 92-lead-free gasoline (92-LFG) and 95-lead-free gasoline (95-LFG), rated according to their octane levels] to replace the use of premium leaded gasoline (PLG) on the emissions of polycyclic aromatic hydrocarbons (PAHs) and their corresponding benzo[a]pyrene equivalent (BaP(eq)) amounts from the gasoline-powered engine. The results show that the three gasoline fuels originally contained similar total PAHs and total BaP(eq) contents; however, we found significant differences in the engine exhausts in both contents. The above results suggest that PAHs originally contained in the gasoline fuel did not affect the PAH emissions in the engine exhausts. The emission factors of both total PAHs and total BaP(eq) obtained from the three gasoline fuels shared the same trend: 95-LFG > PLG > 92-LFG. The above result suggests that when PLG was replaced by 95-LFG, the emissions would increase in both total PAHs and total BaP(eq), but when replaced by 92-LFG would lead to the decreased emissions of both contents. By taking emission factors and their corresponding annual gasoline consumption rates into account, we found that both total PAH and total BaP(eq) emissions increased from 1994 to 1999. However, the annual increasing rates in total BaP(eq) emissions were slightly higher than the corresponding increasing rates in total PAHs. PMID:11748037

  10. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    SciTech Connect

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  11. Gasoline composition for reducing intake valve deposits in port fuel injected engines

    SciTech Connect

    Aiello, R.P.; Riley, M.J.; Millay, H.D.

    1991-04-09

    This patent describes an unleaded fuel composition. It comprises a major amount of hydrocarbon base fuel of the gasoline boiling range containing an effective amount to reduce intake valve deposits in electronic port fuel injected engines of a mixture of about 2.5 ppmw or higher of basic nitrogen based on the fuel composition in the form of an oil soluble aliphatic alkylene polyamine containing at least one olefinic polymer chain attached to at least one nitrogen or carbon atom of the alkylene radical connecting the amino nitrogen atoms and the polyamine having a molecular weight in the range of from about 600 to about 10,000 and from about 75 ppmw to about 125 ppmw based on the fuel composition of at least one component selected from a polymer of a C{sub 2} to C{sub 6} monoolefin, the corresponding hydrogenated polymer or copolymer, an oil soluble poly(oxyalkylene) alcohol, glycol or polyol or a mono or di ether thereof, which has the formula R{sub 1}-O-(R{sub 2}O){sub n}-R{sub 3} wherein R{sub 1} and R{sub 3} each independently is a hydrogen atom or an aliphatic, cycloaliphatic or mononuclear aromatic hydrocarbon group of up to 40 carbon atoms, R{sub 2} represents an alkylene group and n is an integer of at least 7, a naphthenic or paraffinic oil having a viscosity of 100{degrees}C.

  12. Engineering plants for spaceflight environments

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1999-01-01

    The conversion efficiency of radiation into biomass and yield has steadily increased for centuries because of continued improvement in both plant genetics and environmental control. Considerable effort has gone into improving the environment for plant growth in space, but work has only begun to engineer plants for spaceflight. Genetic manipulation offers tremendous potential to improve our ability to study gravitational effects. Genetic manipulation will also be necessary to build an efficient regenerative life support system. We cannot fully characterize plant response to the spaceflight environment without understanding and manipulating their genetic composition. Identification and selection of the existing germplasm is the first step. There are thousands of cultivars of each of our major crop plants, each specifically adapted to a unique environment on our planet. Thousands of additional lines are held in national germplasm collections to maintain genetic diversity. Spaceflight imposes the need to tap this diversity. Existing lines need to be evaluated in the environment that is characteristic of closed-system spaceflight conditions. Many of the plant growth challenges we confront in space can be better solved through genetic change than by hardware engineering. Ten thousand years of plant breeding has demonstrated the value of matching genetics with the environment. For example, providing continuous light can increase plant growth in space, but this often induces calcium deficiencies because Ca is not supplied by guttation during a dark period. This deficiency cannot be eliminated through increased root-zone and foliar Ca applications. It can be solved, in wheat, through genetic selection of lines that do not have the deficiency. Subsequent comparison of lines with and without the Ca deficiency has also helped us understand the nature of the problem.

  13. Technical support report: Preliminary design and assessment of a 50,000 BPD coal-to-methanol-to-gasoline plant

    NASA Astrophysics Data System (ADS)

    1983-04-01

    The technical support provided from process licensors, equipment suppliers, and consultants for use in the preliminary design of a coal-to-methanol-to-gasoline plant is discussed. Prime consideration was given to the selection of processes and equipment that was proven commercially. Support was given for pollution control, desulfurizing, water treatment, and environment effects.

  14. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress. PMID:27369091

  15. Carburator/mixing chamber and dual throttle control apparatus for gasoline engine

    SciTech Connect

    Jimenez, M.A.

    1987-06-23

    A method is described for providing a fuel-air mixture to an intake manifold of an internal combustion engine, the method comprising the steps of: (a) providing a mixing chamber having first, second and third inlet ports and an outlet port each in open communication with the interior of the mixing chamber; positioning the mixing chamber between the base of a conventional carburetor and the inlet of an intake manifold of the engine to allow a mixture of air and a mist of gasoline droplets produced by the carburetor to pass through the first inlet port into the interior of the mixing chamber; to allow gas to flow from the interior of the mixing chamber through the outlet port into the inlet of the intake manifold; (b) completely vaporizing an amount of liquid fuel externally of the mixing chamber and the carburetor; and (c) partially opening a first throttle valve disposed to control flow of gas through the outlet port, while causing a second throttle valve contained in the carburetor to remain in a substantially closed configuration causing the intake manifold to draw the externally vaporized fuel and outside air that does not pass through the carburetor into the interior of the mixing chamber through the second and third inlet ports, respectively. The entire vaporized fuel is mixed with the outside air in the interior of the mixing chamber causing the intake manifold to draw the mixture of air and entirely vaporized fuel through the first throttle valve into the intake manifold while preventing significant amounts of air and fuel mist from passing from the carburetor through the first inlet port into the interior of the mixing chamber. The outside air drawn through the third inlet port does not pass through the carburetor.

  16. Comparison of Performance of AN-F-58 Fuel and Gasoline in J34-WE-22 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Dowman, Harry W; Younger, George G

    1949-01-01

    As part of an investigation of the performance of AN-F-58 fuel in various types of turbojet engine, the performance of this fuel in a 3000-pound-thrust turbojet engine has been investigated in an altitude test chamber together with the comparative performance of 62-octane gasoline. The investigation of normal engine performance, which covered a range of engine speeds at altitudes from 5000 to 50,000 feet and flight Mach numbers up to 1.00, showed that both the net thrust and average turbine-outlet temperatures were approximately the same for both fuels. The specific fuel consumption and the combustion efficiency at the maximum engine speeds investigated were approximately the same for both fuels at altitudes up to 35,000 feet, but at an altitude of 50,000 feet the specific fuel consumption was about 9 percent higher and the combustion efficiency was correspondingly lower with the AN-F-58 fuel than with gasoline. The low-engine-speed blow-out limits were about the same for both fuels. Ignition of AN-F-58 fuel with the standard spark plug was possible only with the spark plug in a clean condition; ignition was impossible at all flight conditions investigated when the plug was fouled by an accumulation of liquid fuel from a preceding false start. Use of an extended-electrode spark plug provided satisfactory ignition over a slightly smaller range of altitudes and flight Mach numbers than for gasoline with the standard spark plug.

  17. Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: an approach using the red edge spectral feature.

    PubMed

    Sanches, I D; Souza Filho, C R; Magalhães, L A; Quitério, G C M; Alves, M N; Oliveira, W J

    2013-03-01

    Pipeline systems used to transport petroleum products represent a potential source of soil pollution worldwide. The design of new techniques that may improve current monitoring of pipeline leakage is imperative. This paper assesses the remote detection of small leakages of liquid hydrocarbons indirectly, through the analysis of spectral features of contaminated plants. Leaf and canopy spectra of healthy plants were compared to spectra of plants contaminated with diesel and gasoline, at increasing rates of soil contamination. Contamination effects were observed both visually in the field and thorough changes in the spectral reflectance patterns of vegetation. Results indicate that the remote detection of small volumes of gasoline and diesel contaminations is feasible based on the red edge analysis of leaf and canopy spectra of plants. Brachiaria grass ranks as a favourable choice to be used as an indicator of HCs leakages along pipelines. PMID:23246622

  18. Experimental characterization of cooled EGR in a gasoline direct injection engine for reducing fuel consumption and nitrogen oxide emission

    NASA Astrophysics Data System (ADS)

    Park, Sang-Ki; Lee, Jungkoo; Kim, Kyungcheol; Park, Seongho; Kim, Hyung-Man

    2015-11-01

    The emphasis on increasing fuel economy and reducing emissions is increasing. Attention has turned to how the performance of a gasoline direct injection (GDI) engine can be improved to achieve lower fuel consumption and NOx emission. Therefore, positive effects can reduce fuel consumption and NOx emission as well as knock suppression. The cooled exhaust gas recirculation (EGR) ranges within the characteristic map are characterized from the experimental results at various speeds and brake mean effective pressures in a GDI engine. The results show that the application of cooled EGR system brought in 3.63 % reduction as for the fuel consumption and 4.34 % as for NOx emission.

  19. Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters.

    PubMed

    Moldovan, M; Palacios, M A; Gómez, M M; Morrison, G; Rauch, S; McLeod, C; Ma, R; Caroli, S; Alimonti, A; Petrucci, F; Bocca, B; Schramel, P; Zischka, M; Pettersson, C; Wass, U; Luna, M; Saenz, J C; Santamaría, J

    2002-09-16

    A comparison of platinum-group element (PGE) emission between gasoline and diesel engine catalytic converters is reported within this work. Whole raw exhaust fumes from four catalysts of three different types were examined during their useful lifetime, from fresh to 80,000 km. Two were gasoline engine catalysts (Pt-Pd-Rh and Pd-Rh), while the other two were diesel engine catalysts (Pt). Samples were collected following the 91441 EUDC driving cycle for light-duty vehicle testing, and the sample collection device used allowed differentiation between the particulate and soluble fractions, the latter being the most relevant from an environmental point of view. Analyses were performed by inductively coupled plasma-mass spectrometry (ICP-MS) (quadrupole and high resolution), and special attention was paid to the control of spectral interference, especially in the case of Pd and Rh. The results obtained show that, for fresh catalysts, the release of particulate PGE through car exhaust fumes does not follow any particular trend, with a wide range (one-two orders of magnitude) for the content of noble metals emitted. The samples collected from 30,000-80,000 km present a more homogeneous PGE release for all catalysts studied. A decrease of approximately one order of magnitude is observed with respect to the release from fresh catalysts, except in the case of the diesel engine catalyst, for which PGE emission continued to be higher than in the case of gasoline engines. The fraction of soluble PGE was found to represent less than 10% of the total amount released from fresh catalysts. For aged catalysts, the figures are significantly higher, especially for Pd and Rh. Particulate PGE can be considered as virtually biologically inert, while soluble PGE forms can represent an environmental risk due to their bioavailability, which leads them to accumulate in the environment. PMID:12398337

  20. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    NASA Astrophysics Data System (ADS)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  1. Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines.

    PubMed

    Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf

    2015-01-01

    Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions. PMID:26340629

  2. Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines

    PubMed Central

    Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf

    2015-01-01

    Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions. PMID:26340629

  3. Effects of unbalance location on dynamic characteristics of high-speed gasoline engine turbocharger with floating ring bearings

    NASA Astrophysics Data System (ADS)

    Wang, Longkai; Bin, Guangfu; Li, Xuejun; Liu, Dingqu

    2016-03-01

    For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.

  4. 75 FR 68043 - Regulation To Mitigate the Misfueling of Vehicles and Engines With Gasoline Containing Greater...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... certification fuel under the current interpretation. As explained at 44 FR 20777 (April 6, 1979), E10 received a... 211(f)(4), which has subsequently been amended. \\8\\ See 56 FR 5352 (February 11, 1991). Section 211(c... request for ethanol-gasoline blends containing up to 15 vol% ethanol had been met. (See 74 FR 18228)....

  5. Gasoline marketing

    SciTech Connect

    Metzenbaum, H.M.

    1991-02-01

    Consumers have the option of purchasing several different grades of unleaded gasoline regular, mid-grade, and premium which are classified according to an octane rating. Because of concern that consumers may be needlessly buying higher priced premium unleaded gasoline for their automobiles when regular unleaded gasoline would meet their needs, this paper determines whether consumers were buying premium gasoline that they may not need, whether the higher retail price of premium gasoline includes a price mark-up added between the refinery and the retail pump which is greater than that included in the retail price for regular gasoline, and possible reasons for the price differences between premium and regular gasoline.

  6. Oxidative destruction of biomolecules by gasoline engine exhaust products and detoxifying effects of the three-way catalytic converter.

    PubMed

    Blaurock, B; Hippeli, S; Metz, N; Elstner, E F

    1992-01-01

    Aqueous solutions of engine exhaust condensation products were derived from cars powered by diesel or four-stroke gasoline engines (with and without three-way catalytic converter). The cars were operated on a static test platform. Samples of the different exhaust solutions accumulated in a Grimmer-type distillation trap (VDI 3872) during standard test programs (Federal Test Procedure) were incubated with important biomolecules. As indicators of reactive oxygen species or oxidative destruction, ascorbic acid, cysteine, glutathione, serum albumin, the enzymes glycerinaldehyde phosphate dehydrogenase and xanthine oxidase, and the oxygen free-radical indicator keto-methylthiobutyrate were used. During and after the incubations, oxygen activation (consumption) and oxidative destruction were determined. Comparison of the oxidative activities of the different types of exhaust condensates clearly showed that the exhaust condensate derived from the four-stroke car equipped with a three-way catalytic converter exhibited by far the lowest oxidative and destructive power. PMID:1283938

  7. Plant oils as applied to spark ignition engines

    SciTech Connect

    Hoki, M.; Liljedahl, J.B.; Takeda, S.

    1983-12-01

    Eucalyptus and orange oil blended with gasoline were used to find their burning characteristics and the effect upon engine performance. The appropriate ignition timing for the eucalyptus oil blend fuel for optimum engine performance was investigated as well as the antiknock quality of the fuel.

  8. Chemical Composition of Aerosol Particles Emitted by a Passenger Car Engine Fueled by Ethanol/Gasoline Mixtures

    NASA Astrophysics Data System (ADS)

    Medrano, J. M.; Gross, D. S.; Dutcher, D. D.; Drayton, M.; Kittelson, D.; McMurry, P.

    2007-12-01

    With concerns of national security, climate change, and human health, many people have called for oil independence for the United States and for the creation of alternative fuels. Ethanol has been widely praised as a viable alternative to petroleum-based fuels, due to the fact that it can be produced locally. A great deal of work has been done to characterize the energy balance of ethanol production versus consumption, but there have been fewer studies of the environmental and health impacts of emissions from combustion of ethanol/gasoline mixtures such as those burned in the modern vehicle fleet. To study the particulate emissions from such fuels, different ethanol/gasoline fuel mixtures with 0, 20, 40, and 85% ethanol were burned in a dynamometer-mounted automobile engine. The engine exhaust was diluted and sampled with two aerosol Time-of-Flight Mass Spectrometers (TSI 3800 ATOFMS), sampling different particle size ranges (50-500 nm and 150-3000 nm, respectively), to measure size and composition of the emitted aerosol particles. A variety of other aerosol characterization techniques were also employed to determine the size distribution of the aerosol particles, the mass emission rate from the engine, and the concentration of polycyclic aromatic hydrocarbons (PAHs) and elemental carbon (EC) in the particle emissions. Here we will focus on results from the ATOFMS, which provides us with a particle size and mass spectra - for both negative and positive ions - for each particle that is sampled. Particles being emitted were found to contain primarily PAHs, elemental carbon (EC), nitrates, and sulfates. Particles were analyzed to investigate trends in particle composition as a function of fuel ethanol content, particle size, and for the types of particles emitted. A trend in particle type as a function of fuel ethanol content was evident in smaller particles, and trends in composition as a function of particle size were visible across the entire size range sampled.

  9. The effect of using 30% iso-butanol-gasoline blend on hydrocarbon emissions from a spark-ignition engine

    SciTech Connect

    Alasfour, F.N.

    1999-06-01

    The level of hydrocarbon (HC) emissions, from a spark-ignition engine using a 30% iso-butanol-gasoline blend was experimentally investigated. Experiments were conducted on a Hydra single-cylinder, spark-ignition, fuel-injection engine. HC emissions were measured as a function of fuel/air equivalence ratio, ignition timing and engine speed. The effect of varying the temperature of cooling water on HC emissions was also investigated under three fuel/air equivalence ratios (lean, stoichiometric, and rich). Results show that retarding ignition timing with respect to maximum break torque (MBT) has a great effect on HC emissions reduction, where for lean mixture, {Phi} = 0.85, retarding ignition timing by 6 degrees from MBT reduces the exhaust HC emissions by 12%. The level of HC emissions is also reduced by 30% at MBT, as the cooling water temperature increase from 55 to 90 C. It is noticed that as the engine speed increases, the level of HC emissions decrease.

  10. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    SciTech Connect

    Keating, Edward; Gough, Charles

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  11. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  12. Gasoline poisoning

    MedlinePlus

    This article discusses the harmful effects from swallowing gasoline or breathing in its fumes. This article is ... The poisonous ingredients in gasoline are chemicals called ... only hydrogen and carbon. Examples are benzene and methane.

  13. Divided Combustion Chamber Gasoline Engines - A Review for Emissions and Efficiency

    ERIC Educational Resources Information Center

    Bascunana, Jose L.

    1974-01-01

    Describes characteristic designs of the engine. Data for fuel economy and emission are presented. Data show that automobiles equipped with one of the engines described have passed the 1975 Federal Emissions Standards. (SLH)

  14. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Gasoline. 1065.710 Section 1065.710 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must...

  15. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gasoline. 1065.710 Section 1065.710 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must...

  16. Chromosome engineering: power tools for plant genetics.

    PubMed

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. PMID:20933291

  17. Key applications of plant metabolic engineering.

    PubMed

    Lau, Warren; Fischbach, Michael A; Osbourn, Anne; Sattely, Elizabeth S

    2014-06-01

    Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field. PMID:24915445

  18. Key Applications of Plant Metabolic Engineering

    PubMed Central

    Lau, Warren; Fischbach, Michael A.; Osbourn, Anne; Sattely, Elizabeth S.

    2014-01-01

    Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field. PMID:24915445

  19. Modelling, sizing and testing a scroll expander for a waste heat recovery application on a gasoline engine

    NASA Astrophysics Data System (ADS)

    Legros, Arnaud; Guillaume, Ludovic; Diny, Mouad; Lemort, Vincent

    2015-08-01

    Waste heat recovery technologies in a mobile application emerge every time energy becomes a valuable resource. It has been the case in the 70s with oil crisis and it is starting to regain some interests now due to the continuously rising price of oil and due to the restrictive standards imposed by the different governments. This paper deals with the recovery on the exhaust gases of an internal combustion engine by using a Rankine system. The study focuses on the expander, which is one of the most important components of the system. The use of a scroll expander operating with steam is currently investigated through simulation and experimentation. This paper presents the modelling of a scroll expander. The model is a detailed model including various losses such as leakage, friction or under or over expansion. This model has been used to design and size a tailor-made scroll expander. This was necessary due to the small amount of expanders on the market and also to have a machine that fits our application. After designing the machine, a prototype has been built. It has also been tested on our prototype bench of waste heat recovery on a gasoline engine, by means of a Rankine cycle. Measured performance will be presented, analysed and compared to predictions by the model. The first results will be presented here and discussed in order to give recommendations for the design of next prototypes.

  20. Characteristics of cyclic heat release variability in the transition from spark ignition to HCCI in a gasoline engine

    SciTech Connect

    Sen, Asok K; Litak, Grzegorz; Edwards, Kevin Dean; FINNEY, Charles E A; Daw, C Stuart; Wagner, Robert M

    2011-01-01

    We study selected examples of previously published cyclic heat-release measurements from a single-cylinder gasoline engine as stepwise valve timing adjustments were made to shift from spark ignited (SI) combustion to homogeneous charge compression ignition (HCCI). Wavelet analysis of the time series, combined with conventional statistics and multifractal analysis, revealed previously undocumented features in the combustion variability as the shift occurred. In the spark-ignition combustion mode, the heat-release variations were very small in amplitude and exhibited more persistent low-frequency oscillations with intermittent high-frequency bursts. In the HCCI combustion mode, the amplitude of the heat-release variations again was small and involved mainly low-frequency oscillations. At intermediate states between SI and HCCI, a wide range of very large-amplitude oscillations occurred, including both persistent low-frequency periodicities and intermittent high-frequency bursts. It appears from these results that real-time wavelet decomposition of engine cylinder pressure measurements may be useful for on-board tracking of SI HCCI combustion regime shifts.

  1. 40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NOX) Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during mode i... engines. (b) The mass flow rate, Wi in g/hr, of an emission for mode i is determined from the following... water in an ideal gas; 40 CFR 1065.645 describes how to determine this value (referred to as xH 2 O)....

  2. 40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NOX) Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during mode i... engines. (b) The mass flow rate, Wi in g/hr, of an emission for mode i is determined from the following... water in an ideal gas; 40 CFR 1065.645 describes how to determine this value (referred to as xH 2 O)....

  3. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation

    DOE PAGESBeta

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; Toops, Todd J.

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NOX) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH3 is then used to reduce NOX emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratio and spark timing, onmore » NH3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NOX reduction, NH3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH3 production; however, the rich operation necessary for NH3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NOX emissions and, thereby, NH3 levels. Additionally, higher engine out NOX during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  4. Metabolomic changes in murine serum following inhalation exposure to gasoline and diesel engine emissions.

    PubMed

    Brower, Jeremy B; Doyle-Eisele, Melanie; Moeller, Benjamin; Stirdivant, Steven; McDonald, Jacob D; Campen, Matthew J

    2016-04-01

    The adverse health effects of environmental exposure to gaseous and particulate components of vehicular emissions are a major concern among urban populations. A link has been established between respiratory exposure to vehicular emissions and the development of cardiovascular disease (CVD), but the mechanisms driving this interaction remain unknown. Chronic inhalation exposure to mixed vehicle emissions has been linked to CVD in animal models. This study evaluated the temporal effects of acute exposure to mixed vehicle emissions (MVE; mixed gasoline and diesel emissions) on potentially active metabolites in the serum of exposed mice. C57Bl/6 mice were exposed to a single 6-hour exposure to filtered air (FA) or MVE (100 or 300 μg/m(3)) by whole body inhalation. Immediately after and 18 hours after the end of the exposure period, animals were sacrificed for serum and tissue collection. Serum was analyzed for metabolites that were differentially present between treatment groups and time points. Changes in metabolite levels suggestive of increased oxidative stress (oxidized glutathione, cysteine disulfide, taurine), lipid peroxidation (13-HODE, 9-HODE), energy metabolism (lactate, glycerate, branched chain amino acid catabolites, butrylcarnitine, fatty acids), and inflammation (DiHOME, palmitoyl ethanolamide) were observed immediately after the end of exposure in the serum of animals exposed to MVE relative to those exposed to FA. By 18 hours post exposure, serum metabolite differences between animals exposed to MVE versus those exposed to FA were less pronounced. These findings highlight complex metabolomics alterations in the circulation following inhalation exposure to a common source of combustion emissions. PMID:27017952

  5. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    NASA Astrophysics Data System (ADS)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  6. Gasoline-related organics in Lake Tahoe before and after prohibition of carbureted two-stroke engines

    USGS Publications Warehouse

    Lico, M.S.

    2004-01-01

    On June 1, 1999, carbureted two-stroke engines were banned on waters within the Lake Tahoe Basin of California and Nevada. The main gasoline components MTBE (methyl tert-butyl ether) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were present at detectable concentrations in all samples taken from Lake Tahoe during 1997-98 prior to the ban. Samples taken from 1999 through 2001 after the ban contained between 10 and 60 percent of the pre-ban concentrations of these compounds, with MTBE exhibiting the most dramatic change (a 90 percent decrease). MTBE and BTEX concentrations in water samples from Lake Tahoe and Lower Echo Lake were related to the amount of boat use at the sampling sites. Polycyclic aromatic hydrocarbon (PAH) compounds are produced by high-temperature pyrolytic reactions. They were sampled using semipermeable membrane sampling devices in Lake Tahoe and nearby Donner Lake, where carbureted two-stroke engines are legal. PAHs were detected in all samples taken from Lake Tahoe and Donner Lake. The number of PAH compounds and their concentrations are related to boat use. The highest concentrations of PAH were detected in samples from two heavily used boating areas, Tahoe Keys Marina and Donner Lake boat ramp. Other sources of PAH, such as atmospheric deposition, wood smoke, tributary streams, and automobile exhaust do not contribute large amounts of PAH to Lake Tahoe. Similar numbers of PAH compounds and concentrations were found in Lake Tahoe before and after the ban of carbureted two-stroke engines. ?? by the North American Lake Management Society 2004.

  7. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  8. EMISSIONS FROM TWO OUTBOARD ENGINES OPERATING ON REFORMULATED GASOLINE CONTAINING MTBE

    EPA Science Inventory

    Air and water pollutant emissions were measured from two 9.9 HP outboard engines: a two-stroke Evinrude and its four-stroke Honda counterpart. In addition to the measurement of regulated air pollutants, speciated organic pollutants and particulate matter emissions were determi...

  9. 76 FR 44405 - Regulation To Mitigate the Misfueling of Vehicles and Engines With Gasoline Containing Greater...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Issues G. Petition for Rulemaking To Require the Continued Availability of E10 and/or E0 II. Background A... and the VOC Adjustment Rule H. Federalism Issues IV. Other Issues Addressed by Commenters A. Cost of.... Emissions Warranty Issues for Vehicles, Engines, and Equipment c. Other Issues Outside of CAA Jurisdiction...

  10. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Cycle No. Mode No. Mode Observed torque (percent of maximum observed) Time in mode-seconds Cumulative... stabilization period the torque must be held at the specified value ±5 percent until the exhaust gas analysis... engine torque must be at the specified value ±2 percent of the maximum torque observed. For example,...

  11. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Cycle No. Mode No. Mode Observed torque (percent of maximum observed) Time in mode-seconds Cumulative... stabilization period the torque must be held at the specified value ±5 percent until the exhaust gas analysis... engine torque must be at the specified value ±2 percent of the maximum torque observed. For example,...

  12. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Cycle No. Mode No. Mode Observed torque (percent of maximum observed) Time in mode-seconds Cumulative... stabilization period the torque must be held at the specified value ±5 percent until the exhaust gas analysis... engine torque must be at the specified value ±2 percent of the maximum torque observed. For example,...

  13. Assessing Rates of Global Warming Emissions from Port- Fuel Injection and Gasoline Direct Injection Engines in Light-Duty Passenger Vehicles

    NASA Astrophysics Data System (ADS)

    Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.

    2013-12-01

    Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology

  14. An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma.

    PubMed

    Ye, Dan; Gao, Dengshan; Yu, Gang; Shen, Xianglin; Gu, Fan

    2005-12-01

    A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 microm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions. PMID:16129557

  15. Engineering photosynthesis in plants and synthetic microorganisms.

    PubMed

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed. PMID:23028016

  16. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    SciTech Connect

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  17. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  18. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  19. High Ethanol Fuel Endurance: A Study of the Effects of Running Gasoline with 15% Ethanol Concentration in Current Production Outboard Four-Stroke Engines and Conventional Two-Stroke Outboard Marine Engines

    SciTech Connect

    Hilbert, D.

    2011-10-01

    Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deterioration that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.

  20. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  1. A study of combustion of hydrogen-enriched gasoline in a spark ignition engine

    SciTech Connect

    Apostolescu, N.; Chiriac, R.

    1996-09-01

    An investigation has been done on the influence of small amounts of hydrogen added to hydrocarbons-air mixtures on combustion characteristics. The effect of hydrogen addition to a hydrocarbon-air mixture was firstly approached in an experimental bomb, to measure the laminar burning velocity and the shift of lean flammability limit. Experiments carried out with a single-cylinder four stroke SI engine confirmed the possibility of expanding the combustion stability limit, which correlates well with the general trend of enhancing the rate of combustion. An increase of brake thermal efficiency has been obtained with a reduction of HC emissions; the NO{sub x} emissions were higher, except for very lean mixtures.

  2. Gasoline poisoning

    MedlinePlus

    The poisonous ingredients in gasoline are chemicals called hydrocarbons, which are substances that contain only hydrogen and ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et al, eds. Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  3. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE PAGESBeta

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities

  4. Tri-State Synfuels Project Review: Volume 8. Commercial status of licensed process units. [Proposed Henderson, Kentucky coal to gasoline plant; licensed commercial processes

    SciTech Connect

    Not Available

    1982-06-01

    This document demonstrates the commercial status of the process units to be used in the Tri-State Synfuels Project at Henderson, Kentucky. The basic design philosophy as established in October, 1979, was to use the commercial SASOL II/III plants as a basis. This was changed in January 1982 to a plant configuration to produce gasoline via a methanol and methanol to gasoline process. To accomplish this change the Synthol, Oil workup and Chemical Workup Units were eliminated and replaced by Methanol Synthesis and Methanol to Gasoline Units. Certain other changes to optimize the Lurgi liquids processing eliminated the Tar Distillation and Naphtha Hydrotreater Units which were replaced by the Partial Oxidation Unit. The coals to be gasified are moderately caking which necessitates the installation of stirring mechanism in the Lurgi Dry Bottom gasifier. This work is in the demonstration phase. Process licenses either have been obtained or must be obtained for a number of processes to be used in the plant. The commercial nature of these processes is discussed in detail in the tabbed sections of this document. In many cases there is a list of commercial installations at which the licensed equipment is used.

  5. Engineering of complex protein sialylation in plants.

    PubMed

    Kallolimath, Somanath; Castilho, Alexandra; Strasser, Richard; Grünwald-Gruber, Clemens; Altmann, Friedrich; Strubl, Sebastian; Galuska, Christina Elisabeth; Zlatina, Kristina; Galuska, Sebastian Peter; Werner, Stefan; Thiesler, Hauke; Werneburg, Sebastian; Hildebrandt, Herbert; Gerardy-Schahn, Rita; Steinkellner, Herta

    2016-08-23

    Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions. PMID:27444013

  6. Engineering of complex protein sialylation in plants

    PubMed Central

    Kallolimath, Somanath; Castilho, Alexandra; Strasser, Richard; Grünwald-Gruber, Clemens; Altmann, Friedrich; Strubl, Sebastian; Galuska, Christina Elisabeth; Zlatina, Kristina; Galuska, Sebastian Peter; Werner, Stefan; Thiesler, Hauke; Werneburg, Sebastian; Hildebrandt, Herbert; Gerardy-Schahn, Rita; Steinkellner, Herta

    2016-01-01

    Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions. PMID:27444013

  7. LAILAPS: The Plant Science Search Engine

    PubMed Central

    Esch, Maria; Chen, Jinbo; Colmsee, Christian; Klapperstück, Matthias; Grafahrend-Belau, Eva; Scholz, Uwe; Lange, Matthias

    2015-01-01

    With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of different databases. Information retrieval (IR) has become an all-encompassing bioinformatics methodology for extracting knowledge from complex, heterogeneous and distributed databases, and therefore can be a useful tool for obtaining a comprehensive view of plant genomics, from genes to traits. Here we describe LAILAPS (http://lailaps.ipk-gatersleben.de), an IR system designed to link plant genomic data in the context of phenotypic attributes for a detailed forward genetic research. LAILAPS comprises around 65 million indexed documents, encompassing >13 major life science databases with around 80 million links to plant genomic resources. The LAILAPS search engine allows fuzzy querying for candidate genes linked to specific traits over a loosely integrated system of indexed and interlinked genome databases. Query assistance and an evidence-based annotation system enable time-efficient and comprehensive information retrieval. An artificial neural network incorporating user feedback and behavior tracking allows relevance sorting of results. We fully describe LAILAPS’s functionality and capabilities by comparing this system’s performance with other widely used systems and by reporting both a validation in maize and a knowledge discovery use-case focusing on candidate genes in barley. PMID:25480116

  8. Capital and operating cost estimates. Volume I. Preliminary design and assessment of a 12,500 BPD coal-to-methanol-to-gasoline plant. [Grace C-M-G Plant, Henderson County, Kentucky

    SciTech Connect

    Not Available

    1982-08-01

    This Deliverable No. 18b - Capital and Operating Cost Estimates includes a detailed presentation of the 12,500 BPD coal-to-methanol-to-gasoline plant from the standpoint of capital, preoperations, start-up and operations cost estimation. The base capital cost estimate in June 1982 dollars was prepared by the Ralph M. Parsons Company under the direction of Grace. The escalated capital cost estimate as well as separate estimates for preoperations, startup and operations activities were developed by Grace. The deliverable consists of four volumes. Volume I contains details of methodology used in developing the capital cost estimate, summary information on a base June 1982 capital cost, details of the escalated capital cost estimate and separate sections devoted to preoperations, start-up, and operations cost. The base estimate is supported by detailed information in Volumes II, III and IV. The degree of detail for some units was constrained due to proprietary data. Attempts have been made to exhibit the estimating methodology by including data on individual equipment pricing. Proprietary details are available for inspection upon execution of nondisclosure and/or secrecy agreements with the licensors to whom the data is proprietary. Details of factoring certain pieces of equipment and/or entire modules or units from the 50,000 BPD capital estimate are also included. In the case of the escalated capital estimate, Grace has chosen to include a sensitivity analysis which allows for ready assessment of impacts of escalation rates (inflation), contingency allowances and the construction interest financing rates on the escalated capital cost. Each of the estimates associated with bringing the plant to commercial production rates has as a basis the schedule and engineering documentation found in Deliverable No. 14b - Process Engineering and Mechanical Design Report, No. 28b - Staffing Plans, No. 31b - Construction Plan, and No. 33b - Startup and Operation Plan.

  9. Effect of Premixed Fuel Preparation for Partially Premixed Combustion with a Low Octane Gasoline on a Light-Duty Multi-Cylinder Compression Ignition Engine

    DOE PAGESBeta

    Dempsey, Adam B.; Curran, Scott; Wagner, Robert M.; Cannella, William C.

    2015-05-12

    Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to createmore » a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study

  10. Effect of Premixed Fuel Preparation for Partially Premixed Combustion with a Low Octane Gasoline on a Light-Duty Multi-Cylinder Compression Ignition Engine

    SciTech Connect

    Dempsey, Adam B.; Curran, Scott; Wagner, Robert M.; Cannella, William C.

    2015-05-12

    Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study has

  11. [Research progress of genetic engineering on medicinal plants].

    PubMed

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants. PMID:26137675

  12. 20. Power plant engine piping details and schedules, sheet 82 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Power plant engine piping details and schedules, sheet 82 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  13. 18. Power plant engine piping floor plan, sheet 71 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Power plant engine piping floor plan, sheet 71 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  14. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  15. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. 19. Power plant engine pipinglower level plan, sheet 80 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Power plant engine piping-lower level plan, sheet 80 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  17. Engineering aspects of the plant design to separate volatile hydrocarbons by vapor permeation

    SciTech Connect

    Ohlrogge, K.; Wind, J.; Behling, R.D.; Brockmoeller, J.

    1993-01-01

    The paper deals with engineering aspects of the design of membrane systems for the separation and recovery of volatile hydrocarbons from off-gases. The membrane which is used for this application is a thin film composite membrane with an elastomeric selective top layer. This membrane has a high permeability for various hydrocarbon vapors and a low permeability for oxygen and nitrogen. The membrane configuration is a flat sheet membrane manufactured to an envelope with a round shape which is installed in the so-called GS module. The energy impact in accordance with the condensation mode and operating pressures is shown. Case studies on the influence of different process parameters, e.g., plant capacity, recovery rate, pressure ratio, stage cut and retentate concentration were carried out on the basis of given feed compressor and vacuum pump capacities. Finally, the investment costs of vapor recovery units in gasoline tank farms are discussed.

  18. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  19. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  20. 2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar

    SciTech Connect

    Erich Grotewold

    2008-09-15

    Plant Metabolic Engineering is an emerging field that integrates a diverse range of disciplines including plant genetics, genomics, biochemistry, chemistry and cell biology. The Gordon-Kenan Graduate Research Seminar (GRS) in Plant Metabolic Engineering was initiated to provide a unique opportunity for future researcher leaders to present their work in this field. It also creates an environment allowing for peer-review and critical assessment of work without the intimidation usually associated with the presence of senior investigators. The GRS immediately precedes the Plant Metabolic Engineering Gordon Research Conference and will be for and by graduate students and post-docs, with the assistance of the organizers listed.

  1. Development and evaluation of an air quality modeling approach to assess near-field impacts of lead emissions from piston-engine aircraft operating on leaded aviation gasoline

    NASA Astrophysics Data System (ADS)

    Carr, Edward; Lee, Mark; Marin, Kristen; Holder, Christopher; Hoyer, Marion; Pedde, Meredith; Cook, Rich; Touma, Jawad

    2011-10-01

    Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality modeling approach using U.S. Environmental Protection Agency's (EPA) American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was developed and evaluated for estimating atmospheric concentrations of Pb at and near general aviation airports where leaded aviation gasoline (avgas) is used. These detailed procedures were made to accurately characterize emissions and dispersion leading to improved model performance for a pollutant with concentrations that vary rapidly across short distances. The new aspects of this work included a comprehensive Pb emission inventory that incorporated sub-daily time-in-mode (TIM) activity data for piston-engine aircraft, aircraft-induced wake turbulence, plume rise of the aircraft exhaust, and allocation of approach and climb-out emissions to 50-m increments in altitude. To evaluate the modeling approach used here, ambient Pb concentrations were measured upwind and downwind of the Santa Monica Airport (SMO) and compared to modeled air concentrations. Modeling results paired in both time and space with monitoring data showed excellent overall agreement (absolute fractional bias of 0.29 winter, 0.07 summer). The modeling results on individual days show Pb concentration gradients above the urban background concentration of 10 ng m-3 extending downwind up to 900 m from the airport, with a crosswind extent of 400 m. Three-month average modeled concentrations above the background were found to extend to a maximum distance of approximately 450 m beyond the airport property in summer and fall. Modeling results show aircraft engine “run-up” is the most important source contribution to the maximum Pb concentration. Sensitivity analysis

  2. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  3. Photographic Study of Combustion in a Rocket Engine I : Variation in Combustion of Liquid Oxygen and Gasoline with Seven Methods of Propellant Injection

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Humphrey, Jack C

    1948-01-01

    Motion pictures at camera speeds up to 3000 frames per second were taken of the combustion of liquid oxygen and gasoline in a 100-pound-thrust rocket engine. The engine consisted of thin contour and injection plates clamped between two clear plastic sheets forming a two-dimensional engine with a view of the entire combustion chamber and nozzle. A photographic investigation was made of the effect of seven methods of propellant injection on the uniformity of combustion. From the photographs, it was found that the flame front extended almost to the faces of the injectors with most of the injection methods, all the injection systems resulted in a considerable nonuniformity of combustion, and luminosity rapidly decreased in the divergent part of the nozzle. Pressure vibration records indicated combustion vibrations that approximately corresponded to the resonant frequencies of the length and the thickness of the chamber. The combustion temperature divided by the molecular weight of the combustion gases as determined from the combustion photographs was about 50 to 70 percent of the theoretical value.

  4. Genetic engineering of syringyl-enriched lignin in plants

    DOEpatents

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  5. Effect of gasoline composition on exhaust hydrocarbon

    SciTech Connect

    Kameoka, Atsushi; Akiyama, Ken-ichi; Hosoi, Kenzo

    1994-10-01

    The purpose of this study is to evaluate the characteristics of individual hydrocarbons in gasoline and to clarify the effect of the gasoline composition on engine-out exhaust hydrocarbons. Experiments were performed on a single cylinder research engine operating under steady state condition. The test fuels were blended gasolines of alkylate, catalytic reformate and fluid catalytic cracking gasoline. Chemically defined binary fuel mixtures of isooctane, benzene, toluene, xylene, and ethylbenzene were used as variables to study their impact on exhaust hydrocarbons. The individual exhaust hydrocarbon species were analyzed using a gas chromatograph with flame ionization detector. The results of tests with blended gasoline indicated that the exhaust hydrocarbons were classified into the unburned fuel and the cracked products such as methane, ethane and various olefins. The production coefficients of benzene were 5% for toluene, 4% for xylene and 6% for ethylbenzene. These values suggested that alkylbenzene in the fuel produced benzene in the exhaust. 8 refs., 16 figs., 5 tabs.

  6. Engineering performance monitoring: Sustained contributions to plant performance improvement

    SciTech Connect

    Bebko, J.J. )

    1992-01-01

    With the aim of achieving excellence in an engineering department that makes both individual project-by-project contributions to plant performance improvement and sustained overall contributions to plant performance, the Niagara Mohawk Nuclear Engineering Department went back to the basics of running a business and established an Engineering Performance Monitoring System. This system focused on the unique products and services of the department and their cost, schedule, and quality parameters. The goals were to provide the best possible service to customers and the generation department and to be one of the best engineering departments in the industry.

  7. ENGINEERING ASPECTS OF COLLEGE PLANT DESIGN.

    ERIC Educational Resources Information Center

    DALTON, LIAM F.; SEGNER, MARVIN

    THE ARTICLE FOCUSES ON MECHANICAL AND ELECTRICAL FACILITIES THAT SHOULD BE CONSIDERED WHEN DEVELOPING A LONG RANGE MASTER PLAN. DEVELOPMENT OF THE MASTER PLAN SHOULD CONSIDER THE FOLLOWING--(1) COMPARATIVE FUEL COSTS, (2) POWER DISTRIBUTION, (3) HEATING PLANT, (4) CENTRAL PLANT SITE, (5) COOLING PLANT, (6) WATER SUPPLY, (7) STORM DRAINAGE, (8)…

  8. X-ray fluorescence mapping and micro-XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT-added gasoline.

    PubMed

    Mölders, N; Schilling, P J; Wong, J; Roos, J W; Smith, I L

    2001-08-01

    The elemental distribution and compositional homogeneity in auto exhaust particulates emitted from methylcyclopentadienyl manganese tricarbonyl-(MMT-)added gasoline engines have been investigated using a newly installed synchrotron X-ray microprobe. Two representative groups of exhaust particulate matter, as defined in a recent bulk X-ray absorption fine structure (XAFS) spectroscopic study at the Mn K-edge, were studied. The micro-X-ray absorption near-edge structure (XANES) spectra indicate a relatively homogeneous distribution of phases within a given particulate sample, down to a spatial extent of 40 microm (the resolution of microprobe). The micro-XANES also enabled analysis of several areas which displayed compositions different from the bulk sample, supporting the general theory describing manganese species formation in the exhaust. The ability to evaluate small regions also enabled direct verification of manganese sulfate from the S XANES despite the vast excess of sulfur present in other forms. The presence of a chloride compound, introduced through the sample dilution air and engine intake air, was also revealed. The study demonstrates the value of the combined X-ray microfluorescence with excitation by polychromatic radiation for elemental mapping and micro-XANES spectroscopy for chemical speciation in the study of dilute environmental materials containing low-Z constituents such as Cl, S, and P. PMID:11505987

  9. Gas engines provide cogeneration service for Fantoni MDF plant

    SciTech Connect

    Chellini, R.

    1996-12-01

    A large MDF (medium density fiberboard) plant recently started industrial production at the headquarters of Fantoni, in Osoppo (UDINE) Italy. Providing electric power and thermal energy to the process is a cogeneration plant based on four large spark-ignited gas engines. The new Osoppo MDF plant processes 800 m{sup 3} of finished boards per day in a manufacturing line that combines the most advanced technologies available from several European equipment manufacturers. The cogeneration plant features four type 12VA32G spark-ignited gas engines from Fincantieri`s Diesel Engine Division, driving 50Hz, 6.3 kV, 5400 kVA Ansaldo generators at 750 r/min. The turbocharged and intercooled engines are a spark-ignited version of the company`s A32 diesel. They feature 12 Vee-arranged cylinders with 320 mm bore and 390 mm stroke. 5 figs.

  10. Metabolic engineering for the production of plant isoquinoline alkaloids.

    PubMed

    Diamond, Andrew; Desgagné-Penix, Isabel

    2016-06-01

    Several plant isoquinoline alkaloids (PIAs) possess powerful pharmaceutical and biotechnological properties. Thus, PIA metabolism and its fascinating molecules, including morphine, colchicine and galanthamine, have attracted the attention of both the industry and researchers involved in plant science, biochemistry, chemical bioengineering and medicine. Currently, access and availability of high-value PIAs [commercialized (e.g. galanthamine) or not (e.g. narciclasine)] is limited by low concentration in nature, lack of cultivation or geographic access, seasonal production and risk of overharvesting wild plant species. Nevertheless, most commercial PIAs are still extracted from plant sources. Efforts to improve the production of PIA have largely been impaired by the lack of knowledge on PIA metabolism. With the development and integration of next-generation sequencing technologies, high-throughput proteomics and metabolomics analyses and bioinformatics, systems biology was used to unravel metabolic pathways allowing the use of metabolic engineering and synthetic biology approaches to increase production of valuable PIAs. Metabolic engineering provides opportunity to overcome issues related to restricted availability, diversification and productivity of plant alkaloids. Engineered plant, plant cells and microbial cell cultures can act as biofactories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a specific alkaloid. In this article, is presented an update on the production of PIA in engineered plant, plant cell cultures and heterologous micro-organisms. PMID:26503307

  11. Towards engineering carboxysomes into C3 plants.

    PubMed

    Hanson, Maureen R; Lin, Myat T; Carmo-Silva, A Elizabete; Parry, Martin A J

    2016-07-01

    Photosynthesis in C3 plants is limited by features of the carbon-fixing enzyme Rubisco, which exhibits a low turnover rate and can react with O2 instead of CO2 , leading to photorespiration. In cyanobacteria, bacterial microcompartments, known as carboxysomes, improve the efficiency of photosynthesis by concentrating CO2 near the enzyme Rubisco. Cyanobacterial Rubisco enzymes are faster than those of C3 plants, though they have lower specificity toward CO2 than the land plant enzyme. Replacement of land plant Rubisco by faster bacterial variants with lower CO2 specificity will improve photosynthesis only if a microcompartment capable of concentrating CO2 can also be installed into the chloroplast. We review current information about cyanobacterial microcompartments and carbon-concentrating mechanisms, plant transformation strategies, replacement of Rubisco in a model C3 plant with cyanobacterial Rubisco and progress toward synthesizing a carboxysome in chloroplasts. PMID:26867858

  12. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    PubMed

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. PMID:26164437

  13. Plants as ecosystem engineers in subsurface-flow treatment wetlands.

    PubMed

    Tanner, C C

    2001-01-01

    Mass balance performance data from side by side studies of planted and unplanted gravel-bed treatment wetlands with horizontal subsurface-flow are compared. Planted systems showed enhanced nitrogen and initial phosphorus removal, but only small improvements in disinfection, BOD, COD and suspended solids removal. Direct nutrient uptake by plants was insufficient to account for more than a fraction of the improved removal shown by planted systems. Roles of plants as ecosystem engineers are summarised, with organic matter production and root-zone oxygen release identified as key factors influencing nutrient transformation and sequestration. PMID:11804163

  14. Engineering system co-design with limited plant redesign

    NASA Astrophysics Data System (ADS)

    Allison, James T.

    2014-02-01

    Rather than designing engineering systems from the ground up, engineers often redesign strategic portions of existing systems to accommodate emerging needs. In the redesign of mechatronic systems, engineers typically seek to meet the requirements of a new application via control redesign only, but this is often insufficient and physical system (plant) design changes must be explored. Here, an integrated approach is presented for the redesign of mechatronic systems involving partial plant redesign that avoids costly complete redesign. Candidate plant modifications are identified using sensitivity analysis, and then an optimization problem is solved that minimizes redesign cost while satisfying system requirements. This formal methodology for Plant-Limited Co-Design (PLCD) is demonstrated using a robotic manipulator design problem. The PLCD result costs significantly less than the full redesign, and parametric studies illustrate the tradeoff between redesign cost and performance. It is shown that the proposed sensitivity analysis results in the lowest cost limited redesign.

  15. PHYTOREMEDIATION: INTEGRATING ART AND ENGINEERING THROUGH PLANTING

    EPA Science Inventory

    Landscape Architecture and Remediation Engineering are related fields, united by common areas of endeavor, yet they have strikingly different languages, techniques, and habits of thought. What unites the fields is the fact that they often work on the same site, with the common go...

  16. Trends in auto emissions and gasoline composition.

    PubMed

    Sawyer, R F

    1993-12-01

    The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations. PMID:7517353

  17. Trends in auto emissions and gasoline composition.

    PubMed Central

    Sawyer, R F

    1993-01-01

    The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations. PMID:7517353

  18. Prospects for Genetic Engineering in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetically modified plants now constitute a significant portion of the worlds agricultural output. Genetically modified corn, soybean, canola, rice, and cotton are being adopted by growers in both industrialized and developing nations at an increasing rate. The most popular products have been eng...

  19. The challenges of cellular compartmentalization in plant metabolic engineering.

    PubMed

    Heinig, Uwe; Gutensohn, Michael; Dudareva, Natalia; Aharoni, Asaph

    2013-04-01

    The complex metabolic networks in plants are highly compartmentalized and biochemical steps of a single pathway can take place in multiple subcellular locations. Our knowledge regarding reactions and precursor compounds in the various cellular compartments has increased in recent years due to innovations in tracking the spatial distribution of proteins and metabolites. Nevertheless, to date only few studies have integrated subcellular localization criteria in metabolic engineering attempts. Here, we highlight the crucial factors for subcellular-localization-based strategies in plant metabolic engineering including substrate availability, enzyme targeting, the role of transporters, and multigene transfer approaches. The availability of compartmentalized metabolic network models for plants in the near future will greatly advance the integration of localization constraints in metabolic engineering experiments and aid in predicting their outcomes. PMID:23246154

  20. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  1. Engineering Microbes for Plant Polyketide Biosynthesis

    PubMed Central

    Lussier, François-Xavier; Colatriano, David; Wiltshire, Zach; Page, Jonathan E.; Martin, Vincent J. J.

    2013-01-01

    Polyketides are an important group of secondary metabolites, many of which have important industrial applications in the food and pharmaceutical industries. Polyketides are synthesized from one of three classes of enzymes differentiated by their biochemical features and product structure: type I, type II or type III polyketide synthases (PKSs). Plant type III PKS enzymes, which will be the main focus of this review, are relatively small homodimeric proteins that catalyze iterative decarboxylative condensations of malonyl units with a CoA-linked starter molecule. This review will describe the plant type III polyketide synthetic pathway, including the synthesis of chalcones, stilbenes and curcuminoids, as well as recent work on the synthesis of these polyketides in heterologous organisms. The limitations and bottlenecks of heterologous expression as well as attempts at creating diversity through the synthesis of novel “unnatural” polyketides using type III PKSs will also be discussed. Although synthetic production of plant polyketides is still in its infancy, their potential as useful bioactive compounds makes them an extremely interesting area of study. PMID:24688680

  2. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  3. A historical analysis of the co-evolution of gasoline octane number and spark-ignition engines

    DOE PAGESBeta

    Splitter, Derek A.; Pawlowski, Alex E.; Wagner, Robert M.

    2016-01-06

    In our work, the authors reviewed engine, vehicle, and fuel data since 1925 to examine the historical and recent coupling of compression ratio and fuel antiknock properties (i.e., octane number) in the U.S. light-duty vehicle market. The analysis identified historical timeframes, trends, and illustrated how three factors: consumer preferences, technical capabilities, and regulatory legislation, affect personal mobility. Data showed that throughout history these three factors have a complex and time sensitive interplay. Long term trends in the data were identified where interaction and evolution between all three factors was observed. Transportation efficiency per unit power (gal/ton-mi/hp) was found to bemore » a good metric to integrate technical, societal, and regulatory effects into the evolutional pathway of personal mobility. From this framework, discussions of future evolutionary changes to personal mobility are also presented.« less

  4. An engineered plant peroxisome and its application in biotechnology.

    PubMed

    Kessel-Vigelius, Sarah K; Wiese, Jan; Schroers, Martin G; Wrobel, Thomas J; Hahn, Florian; Linka, Nicole

    2013-09-01

    Plant metabolic engineering is a promising tool for biotechnological applications. Major goals include enhancing plant fitness for an increased product yield and improving or introducing novel pathways to synthesize industrially relevant products. Plant peroxisomes are favorable targets for metabolic engineering, because they are involved in diverse functions, including primary and secondary metabolism, development, abiotic stress response, and pathogen defense. This review discusses targets for manipulating endogenous peroxisomal pathways, such as fatty acid β-oxidation, or introducing novel pathways, such as the synthesis of biodegradable polymers. Furthermore, strategies to bypass peroxisomal pathways for improved energy efficiency and detoxification of environmental pollutants are discussed. In sum, we highlight the biotechnological potential of plant peroxisomes and indicate future perspectives to exploit peroxisomes as biofactories. PMID:23849130

  5. Metabolic engineering with plants for a sustainable biobased economy.

    PubMed

    Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V

    2013-01-01

    Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants. PMID:23540288

  6. Engineered Barriers in the Waste Isolation Pilot Plant

    SciTech Connect

    Ghose, Shankar

    2002-07-01

    The Waste Isolation Pilot Plant (WIPP) is a deep geological repository being developed by the Department of Energy as a research and disposal facility in the bedded salt deposit of New Mexico. WIPP is essentially an underground salt mine at 2150 feet (655 meters) below the surface and operates on multiple barrier mechanism. Engineered barriers provide an additional protective measure to prevent the movement of fluid towards the accessible environment. Four types of engineered barriers are used in the WIPP disposal system. This paper presents an analysis of the effectiveness of the engineered barriers in various repository environments. (authors)

  7. 13. View northeast of boiler plant (Building 39), engineering work ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View northeast of boiler plant (Building 39), engineering work order building/former tin shop (Building 129), laundry MAT workshop (Building 28), pipe shop/former water softening plant (Building 81), paint spray shop/former blacksmith shop (Building 95), fuel oil storage tank building (Building 103), mason's shop (Building 77), and carpenter shop (Building 97) with steel water tank (Building 124) in background - National Home for Disabled Volunteer Soldiers Western Branch, 4101 South Fourth Street, Leavenworth, Leavenworth County, KS

  8. Comparison of alcogas aviation fuel with export aviation gasoline

    NASA Technical Reports Server (NTRS)

    Gage, V R; Sparrow, S W; Harper, D R

    1921-01-01

    Mixtures of gasoline and alcohol when used in internal combustion engines designed for gasoline have been found to possess the advantage of alcohol in withstanding high compression without "knock" while retaining advantages of gasoline with regard to starting characteristics. Test of such fuels for maximum power-producing ability and fuel economy at various rates of consumption are thus of practical importance, with especial reference to high-compression engine development. This report discusses the results of tests which compares the performance of alcogas with x gasoline (export grade) as a standard.

  9. Hydroxysafflor yellow A of Carthamus tinctorius attenuates lung injury of aged rats exposed to gasoline engine exhaust by down-regulating platelet activation.

    PubMed

    Wang, Chaoyun; Wang, Chunhua; Ma, Chunlei; Huang, Qingxian; Sun, Hongliu; Zhang, Xiaomin; Bai, Xianyong

    2014-02-15

    Long-term inhalation of gasoline engine exhaust (GEE) increases the risk of respiratory disease. Studies have suggested involvement of platelets in the development of some lung diseases. Hydroxysafflor yellow A (HSYA), a flavonoid compound, prevents hemostasis. Therefore, we investigated its effects on GEE-induced lung injury, and role of platelets in injury. Sixty-week-old male Sprague-Dawley rats were exposed to GEE for 4h/day for 6 weeks, and then grouped as follows: control, GEE, GEE+HSYA, GEE+HSYA+GW9662, and GEE+GW9662. Arterial oxygen tension (PaO2), carbon dioxide tension (PaCO2), pH, and the PaO2/fraction of inspired oxygen ratio (PaO2/FiO2) in the blood were detected using a blood gas analyzer. Wet/dry lung weight ratio, total protein in bronchoalveolar lavage fluid (BALF), and cytokine concentrations in serum and BALF were determined. Furthermore, cyclic adenosine monophosphate (cAMP) level and expression levels of target proteins were analyzed. Platelets were counted and their state was evaluated. HSYA attenuated GEE-mediated decreases in PaO2, PaO2/FiO2, platelet cAMP level, protein kinase A (PKA) activity, and peroxisome proliferator-activated receptor γ (PPARγ) expression. HSYA also attenuated GEE-mediated increases in lung permeability, cytokine levels in serum and BALF, plasma platelet count, and ADP-mediated platelet aggregation. Moreover, it suppressed GEE-induced increases in the expression of adhesion molecules and proinflammatory cytokines in platelets and lung tissue. Therefore, HSYA is therapeutically effective for GEE-mediated lung injury and acts by enhancing PKA activity and inhibiting platelet activation. PMID:24192212

  10. Engineering Plant One-Carbon Metabolism

    SciTech Connect

    David Rhodes

    2005-02-09

    Primary and secondary metabolism intersect in the one-carbon (C1) area. Primary metabolism supplies most of the C1 units and competes with secondary metabolism for their use. This competition is potentially severe because secondary products such as lignin, alkaloids, and glycine betaine (GlyBet) require massive amounts of C1 units. Towards the goal of understanding how C1 metabolism is regulated at the metabolic and gene levels so as to successfully engineer C1 supply to match demand, we have: (1) cloned complete suites of C1 genes from maize and tobacco, and incorporated them into DNA arrays; (2) prepared antisense constructs and mutants engineered with alterations in C1 unit supply and demand; and (3) have quantified the impacts of these alterations on gene expression (using DNA arrays), and on metabolic fluxes (by combining isotope labeling, MS, NMR and computer modeling). Metabolic flux analysis and modeling in tobacco engineered for GlyBet synthesis by expressing choline oxidizing enzymes in either the chloroplast or cytosol, has shown that the choline biosynthesis network is rigid, and tends to resist large changes in C1 demand. A major constraint on engineering enhanced flux to GlyBet in tobacco is a low capacity of choline transport across the chloroplast envelope. Maize and sorghum mutants defective in GlyBet synthesis show greatly reduced flux of C1 units into choline in comparison to GlyBet-accumulating wildtypes, but this is not associated with altered expression of any of the C1 genes. Control of C1 flux to choline in tobacco, maize and sorghum appears to reside primarily at the level of N-methylation of phosphoethanolamine. A candidate signal for the control of this flux is the pool size of phosphocholine which down-regulates and feedback inhibits phosphoethanolamine N-methyltransferase. Methionine S-methyltransferase (MMT) catalyzes the synthesis of S-methylmethionine (SMM) from methionine (Met) and S-adenosylmethionine (AdoMet). SMM can be

  11. Combining Wind Plant Control With Systems Engineering (Presentation)

    SciTech Connect

    Fleming, P.; Ning, A.; Gebraad, P.; Dykes, K.

    2015-02-01

    This presentation was given at the third Wind Energy Systems Engineering Workshop in Boulder, Colorado, and focused on wind plant controls research, combined optimization, a case study on the Princess Amalia Wind Park, results from the case study, and future work.

  12. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    EPA Science Inventory

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  13. An engineering analysis of a closed cycle plant growth module

    NASA Technical Reports Server (NTRS)

    Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.

    1986-01-01

    The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.

  14. Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance

    PubMed Central

    Jeandet, Philippe; Clément, Christophe; Courot, Eric; Cordelier, Sylvain

    2013-01-01

    Phytoalexins are antimicrobial substances of low molecular weight produced by plants in response to infection or stress, which form part of their active defense mechanisms. Starting in the 1950’s, research on phytoalexins has begun with biochemistry and bio-organic chemistry, resulting in the determination of their structure, their biological activity as well as mechanisms of their synthesis and their catabolism by microorganisms. Elucidation of the biosynthesis of numerous phytoalexins has permitted the use of molecular biology tools for the exploration of the genes encoding enzymes of their synthesis pathways and their regulators. Genetic manipulation of phytoalexins has been investigated to increase the disease resistance of plants. The first example of a disease resistance resulting from foreign phytoalexin expression in a novel plant has concerned a phytoalexin from grapevine which was transferred to tobacco. Transformations were then operated to investigate the potential of other phytoalexin biosynthetic genes to confer resistance to pathogens. Unexpectedly, engineering phytoalexins for disease resistance in plants seem to have been limited to exploiting only a few phytoalexin biosynthetic genes, especially those encoding stilbenes and some isoflavonoids. Research has rather focused on indirect approaches which allow modulation of the accumulation of phytoalexin employing transcriptional regulators or components of upstream regulatory pathways. Genetic approaches using gain- or less-of functions in phytoalexin engineering together with modulation of phytoalexin accumulation through molecular engineering of plant hormones and defense-related marker and elicitor genes have been reviewed. PMID:23880860

  15. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  16. Engineered Biosynthesis of Medicinally Important Plant Natural Products in Microorganisms.

    PubMed

    Zhang, Shuwei; Wang, Siyuan; Zhan, Jixun

    2016-01-01

    Plants produce structurally and functionally diverse natural products. Some of these compounds possess promising health-benefiting properties, such as resveratrol (antioxidant) curcumin (anti-inflammatory, anti-allergic and anticancer), paclitaxel (anticancer) and artemisinin (antimalarial). These compounds are produced through particular biosynthetic pathways in the plants. While supply of these medicinally important molecules relies on extraction from the producing species, recent years have seen significant advances in metabolic engineering of microorganisms for the production of plant natural products. Escherichia coli and Saccharomyces cerevisiae are the two most widely used heterologous hosts for expression of enzymes and reconstitution of plant natural product biosynthetic pathways. Total biosynthesis of many plant polyketide natural products such as curcumin and piceatannol in microorganisms has been achieved. While the late biosynthetic steps of more complex molecules such as paclitaxel and artemisinin remain to be understood, reconstitution of their partial biosynthetic pathways and microbial production of key intermediates have been successful. This review covers recent advances in understanding and engineering the biosynthesis of plant polyketides and terpenoids in microbial hosts. PMID:26456465

  17. Predict octane number for gasoline blends

    SciTech Connect

    Zahed, A.H.; Mullah, S.A.; Bashir, M.D. )

    1993-05-01

    A model with five independent variables is used to predict the octane number of gasoline blends with more accuracy than any previous model. Often, it is useful to know the resulting octane number before the gasoline is blended. Clearly, such a model is useful because good predictive models have been few and far between. With high-powered and faster personal computers, regressional analyses are quite easy to perform with many more independent variables. The objective here was to develop an empirical equation using the regressional analyses are quite easy to perform with many more independent variables. The objective here was to develop an empirical equation using the regression analysis technique to predict the octane rating of 16 blends of motor gasoline. Predicted results for the 16 blends of gasolines were compared with experimental results obtained on CFR engines. Predicted results from the proposed empirical model were in agreement with the experimental data with an average deviational error of 0.54%.

  18. Metabolic engineering of higher plants and algae for isoprenoid production.

    PubMed

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering. PMID:25636485

  19. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering

    PubMed Central

    Willard, James J.; Drexler, Jason W.; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded

    2013-01-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  20. Plant-derived human collagen scaffolds for skin tissue engineering.

    PubMed

    Willard, James J; Drexler, Jason W; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded; Powell, Heather M

    2013-07-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  1. Ecosystem engineers modulate exotic invasions in riparian plant communities

    NASA Astrophysics Data System (ADS)

    Corenblit, D.; Tabacchi, E.; Steiger, J.; Gonzales, E.; Planty-Tabacchi, A. M.

    2012-04-01

    The relationship between biodiversity and invasibility of exotic plant species within different environments and at different spatial scales is still being discussed amongst scientists. In this study, patterns of native and exotic plant species richness and cover were examined in relation with ecosystem engineer effects of pioneer vegetation within the active tract of the Mediterranean gravel bed river Tech, South France. The floristic composition was characterized according to two distinct vegetation types corresponding to two habitats with contrasted conditions: (i) open and exposed alluvial bars dominated by herbaceous communities and (ii) islands and river margins partly stabilized by ecosystem engineer plants, disconnected from annual hydrogeomorphic disturbances, and covered by woody vegetation. A significant positive correlation between exotic and native plant species richness and cover was observed for the herbaceous and the woody types, indicating that both native and exotic richness benefit from the prevailing environmental conditions. However, significant differences in native and exotic specific richness and cover were found between these two vegetation types. Higher values of total species richness and Shannon diversity of native and exotic species were attained within the herbaceous vegetation type compared to the woody type. These differences may be related to changes in local exposure to hydrogeomorphic disturbances driven by engineer plant species, and to vegetation succession. A lower exotic cover within the woody vegetation type compared to the herbaceous type suggested an increase of resistance to invasion by exotic species during the biogeomorphic succession. The engineer effects of woody vegetation resulted in a decrease of alpha (α) diversity at patch scale but, in parallel, caused an increase in gamma (γ) diversity at the scale of the studied river segment. Our study corroborates recent investigations that support the theory of biotic

  2. Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants

    PubMed Central

    Petrie, James R.; Singh, Surinder P.

    2011-01-01

    Background Algae are becoming an increasingly important component of land plant metabolic engineering projects. Land plants and algae have similar enough genetics to allow relatively straightforward gene transfer and they also share enough metabolic similarities that algal enzymes often function in a plant cell environment. Understanding metabolic systems in algae can provide insights into homologous systems in land plants. As examples, algal models are currently being used by several groups to better understand starch and lipid metabolism and catabolism, fields which have relevance in land plants. Importantly, land plants and algae also have enough metabolic divergence that algal genes can often provide new metabolic traits to plants. Furthermore, many algal genomes have now been sequenced, with many more in progress, and this easy access to genome-wide information has revealed that algal genomes are often relatively simple when compared with plants. Scope One example of the importance of algal, and in particular microalgal, resources to land plant research is the metabolic engineering of long-chain polyunsaturated fatty acids into oilseed crops which typically uses microalgal genes to extend existing natural plant biosynthetic pathways. This review describes both recent progress and remaining challenges in this field. PMID:22476481

  3. [Pilot plant for microbiological synthesis. Engineer and technological aspects].

    PubMed

    Lukanin, A V

    2007-01-01

    A biotechnological pilot plant (National Research Centre of Antibiotics) and its technical potentialities in production of various biosynthetic products are described. Some engineer and technological aspects of the fermentation equipment and particularly sterilization of the media and apparatus, fermentation broth aeration under sterile conditions and control of biosynthesis technological parameters (t degrees, pO2, P, pH, foaming, etc.) are considered. The pilot plant is designed for fermentation processes under aseptic conditions with the use practically of any object, from bacteria to tissue cultures. PMID:20583471

  4. Tests of several bearing materials lubricated by gasoline

    NASA Technical Reports Server (NTRS)

    Joachin, W F; Case, Harold W

    1926-01-01

    This investigation on the relative wear of several bearing materials lubricated by gasoline was conducted at the Langley Memorial Aeronautical Laboratory, as part of a general research on fuel injection engines for aircraft. The specific purpose of the work was to find a durable bearing material for gear pumps to be used for the delivery of gasoline and diesel engine fuel oil at moderate pressures to the high pressure pumps of fuel injection engines.

  5. Development and Evaluation of an Air Quality Modeling Approach to Assess Near-Field Impacts of Lead Emissions from Piston-Engine Aircraft Operating on Leaded Aviation Gasoline

    EPA Science Inventory

    Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality m...

  6. 25. Photographic copy of plant engineer's handdrawn buildings function chart, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photographic copy of plant engineer's hand-drawn buildings function chart, dated 1967; Ink and pencil on tracing paper; Attributed to GWN, Original in collection of Rath drawings and blueprints owned by Waterloo Community Development Board, Waterloo, Iowa; SHEET TWO; OUTLINES ACTIVITIES TAKING PLANE ON EACH FLOOR OF MAJOR BUILDINGS IN THE RATH COMPLEX - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  7. 26. Photographic copy of plant engineer's handdrawn buildings function chart, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photographic copy of plant engineer's hand-drawn buildings function chart, dated 1967; Ink and pencil on tracing paper; Attributed to GWN, Original in collection of Rath drawings and blueprints owned by Waterloo Community Development Board, Waterloo, Iowa; SHEET THREE; OUTLINES ACTIVITIES TAKING PLANE ON EACH FLOOR OF MAJOR BUILDINGS IN THE RATH COMPLEX - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  8. 24. Photographic copy of plant engineer's handdrawn buildings function chart, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photographic copy of plant engineer's hand-drawn buildings function chart, dated 1967; Ink and pencil on tracing paper; Attributed to GWN, Original in collection of Rath drawings and blueprints owned by Waterloo Community Development Board, Waterloo, Iowa; SHEET ONE; OUTLINES ACTIVITIES TAKING PLANE ON EACH FLOOR OF MAJOR BUILDINGS IN THE RATH COMPLEX - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  9. 46 CFR 56.50-70 - Gasoline fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Gasoline fuel systems. 56.50-70 Section 56.50-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-70 Gasoline fuel systems. (a) Material. (1) Fuel supply piping to the...

  10. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape. Tanks may be of either cylindrical...

  11. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by § 182.460(a)(1)(ii) of this chapter, must be operated prior to starting gasoline engines for the time sufficient to insure at least one complete change of air in the space served....

  12. Engineered Minichromosomes in Plants: Structure, Function, and Applications.

    PubMed

    Graham, Nathaniel D; Cody, Jon P; Swyers, Nathan C; McCaw, Morgan E; Zhao, Changzeng; Birchler, James A

    2015-01-01

    Engineered minichromosomes are small chromosomes that contain a transgene and selectable marker, as well as all of the necessary components required for maintenance in an organism separately from the standard chromosome set. The separation from endogenous chromosomes makes engineered minichromosomes useful in the production of transgenic plants. Introducing transgenes to minichromosomes does not have the risk of insertion within a native gene; additionally, transgenes on minichromosomes can be transferred between lines without the movement of linked genes. Of the two methods proposed for creating engineered minichromosomes, telomere-mediated truncation is more reliable in plant systems. Additionally, many plants contain a supernumerary, or B chromosome, which is an excellent starting material for minichromosome creation. The use of site-specific recombination systems in minichromosomes can increase their utility, allowing for the addition or subtraction of transgenes in vivo. The creation of minichromosomes with binary bacterial artificial chromosome vectors provides the ability to introduce many transgenes at one time. Furthermore, coupling minichromosomes with haploid induction systems can facilitate transfer between lines. Minichromosomes can be introduced to a haploid-inducing line and crossed to target lines. Haploids of the target line that then contain a minichromosome can then be doubled. These homozygous lines will contain the transgene without the need for repeated introgressions. PMID:26315884

  13. [Effect of ethanol gasoline and unleaded gasoline on exhaust emissions of EFI vehicles with TWC].

    PubMed

    Wang, Chun-jie; Wang, Wei; Tang, Da-gang; Cui, Ping

    2004-07-01

    The injectors' flow-rate of all test vehicles that each was fixed with a three-way catalytic converter (TWC) and Electronic Fuel Injection System (EFI) was tested including before and after vehicles operated on unleaded and ethanol gasoline respectively running for a long time on real road. The three main engine-out exhaust emissions (HC, CO and NOx) from vehicles operating on different fuels were also analyzed by exhaust testing procedure for the whole light-duty vehicle. Test results showed that comparing with unleaded gasoline and ethanol gasoline has a remarkable effect on decreasing engine-out exhaust emissions of CO and HC (both at about ten percent) and the exhaust emissions of CO, HC and NOx from vehicles with TWC respectively. When burning with unleaded gasoline the three main pollutants from vehicles with TWC have already or nearly reached Europe Exhaust First Standard, after changing to ethanol gasoline CO has drastically decreased at about thirty percent, while HC and NOx decreased at about eighteen and ten percent respectively, at this time which they were all above Europe Exhaust Standard First or nearly reached Europe Exhaust Second Standard; ethanol gasoline has also other better performance such as a slight cleaning function on injectors, a slower deteriorative trend of engine-out CO and HC and a longer operating life-span of TWC. PMID:15515949

  14. Trends in motor gasolines: 1942-1981

    SciTech Connect

    Shelton, E M; Whisman, M L; Woodward, P W

    1982-06-01

    Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

  15. Evaporative Gasoline Emissions and Asthma Symptoms

    PubMed Central

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-01-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  16. Evaporative gasoline emissions and asthma symptoms.

    PubMed

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-08-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR's minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  17. The Plant Genetic Engineering Laboratory For Desert Adaptation

    NASA Astrophysics Data System (ADS)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  18. Genetic elements of plant viruses as tools for genetic engineering.

    PubMed Central

    Mushegian, A R; Shepherd, R J

    1995-01-01

    Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent and RNA-dependent RNA synthesis, sequences on the virus mRNAs that enable translational control, and sequences that control processing and intracellular sorting of virus proteins. Use of plant viruses as extrachromosomal expression vectors is also discussed, along with the issue of their stability. PMID:8531885

  19. Engineering Plant-Microbe Symbiosis for Rhizoremediation of Heavy Metals

    PubMed Central

    Wu, Cindy H.; Wood, Thomas K.; Mulchandani, Ashok; Chen, Wilfred

    2006-01-01

    The use of plants for rehabilitation of heavy-metal-contaminated environments is an emerging area of interest because it provides an ecologically sound and safe method for restoration and remediation. Although a number of plant species are capable of hyperaccumulation of heavy metals, the technology is not applicable for remediating sites with multiple contaminants. A clever solution is to combine the advantages of microbe-plant symbiosis within the plant rhizosphere into an effective cleanup technology. We demonstrated that expression of a metal-binding peptide (EC20) in a rhizobacterium, Pseudomonas putida 06909, not only improved cadmium binding but also alleviated the cellular toxicity of cadmium. More importantly, inoculation of sunflower roots with the engineered rhizobacterium resulted in a marked decrease in cadmium phytotoxicity and a 40% increase in cadmium accumulation in the plant root. Owing to the significantly improved growth characteristics of both the rhizobacterium and plant, the use of EC20-expressing P. putida endowed with organic-degrading capabilities may be a promising strategy to remediate mixed organic-metal-contaminated sites. PMID:16461658

  20. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?

    PubMed

    Reddy, P Venkata Laxma; Hernandez-Viezcas, J A; Peralta-Videa, J R; Gardea-Torresdey, J L

    2016-10-15

    The expansion of nanotechnology and its ubiquitous applications has fostered unavoidable interaction between engineered nanomaterials (ENMs) and plants. Recent research has shown ambiguous results with regard to the impact of ENMs in plants. On one hand, there are reports that show hazardous effects, while on the other hand, some reports highlight positive effects. This uncertainty whether the ENMs are primarily hazardous or whether they have a potential for propitious impact on plants, has raised questions in the scientific community. In this review, we tried to demystify this ambiguity by citing various exposure studies of different ENMs (nano-Ag, nano-Au, nano-Si, nano-CeO2, nano-TiO2, nano-CuO, nano-ZnO, and CNTs, among others) and their effects on various groups of plant families. After scrutinizing the most recent literature, it seems that the divergence in the research results may be possibly attributed to multiple factors such as ENM properties, plant species, soil dynamics, and soil microbial community. The analysis of the literature also suggests that there is a knowledge gap on the effects of ENMs towards changes in color, texture, shape, and nutritional aspects on ENM exposed plants. PMID:27314900

  1. Reformulated gasoline quality issues

    SciTech Connect

    Gonzalez, R.G.; Felch, D.E.; Edgar, M.D.

    1995-11-01

    One year ago, a panel of industry experts were interviewed in the November/December 1994 issue of Fuel Reformulation (Vol. 4, No. 6). With the focus then and now on refinery investments, the panelists were asked to forecast which refining processes would grow in importance. It is apparent from their response, and from other articles and discussions throughout the year, that hydroprocessing and catalytic conversion processes are synergistic in the overall refinery design, with flexibility and process objectives varying on a unit-by-unit case. To an extent, future refinery investments in downstream petrochemicals, such as for paraxylene production, are based on available catalytic reforming feedstock. Just a importantly, hydroprocessing units (hydrotreating, hydrocracking) needed for clean fuel production (gasoline, diesel, aviation fuel), are heavily dependent on hydrogen production from the catalytic reformer. Catalytic reforming`s significant influence in the refinery hydrogen balance, as well as its status as a significant naphtha conversion route to higher-quality fuels, make this unit a high-priority issue for engineers and planners striving for flexibility.

  2. Gasoline additives, emissions, and performance

    SciTech Connect

    1995-12-31

    The papers included in this publication deal with the influence of fuel, additive, and hardware changes on a variety of vehicle performance characteristics. Advanced techniques for measuring these performance parameters are also described. Contents include: Fleet test evaluation of gasoline additives for intake valve and combustion chamber deposit clean up; A technique for evaluating octane requirement additives in modern engines on dynamometer test stands; A fleet test of two additive technologies comparing their effects on tailpipe emissions; Investigation into the vehicle exhaust emissions of high percentage ethanol blends; Variability in hydrocarbon speciation measurements at low emission (ULEV) levels; and more.

  3. Gasoline-methanol blends boost mileage

    SciTech Connect

    Not Available

    1981-06-17

    A 16-month study commissioned by the Bank of America reports that by blending gasoline with methanol, substantial increases in fuel economy can be obtained in late-model cars. Fuel economy was found to increase by 3% in 1975-79 models and by 13% in 1980 models. Operating costs were found to be lower, and there was an improvement in engine performance.

  4. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  5. Metabolic engineering of volatile isoprenoids in plants and microbes.

    PubMed

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. PMID:24588680

  6. Gasoline immersion injury

    SciTech Connect

    Simpson, L.A.; Cruse, C.W.

    1981-01-01

    Chemical burns and pulmonary complications are the most common problems encountered in the patient immersed in gasoline. Our patient demonstrated a 46-percent total-body-surface area, partial-thickness chemical burn. Although he did not develop bronchitis or pneumonitis, he did display persistent atelectasis, laryngeal edema, and subsequent upper airway obstruction. This had not previously been reported in gasoline inhalation injuries. Hydrocarbon hepatitis secondary to the vascular endothelial damage is apparently a reversible lesion with no reported long-term sequelae. Gasoline immersion injuries may be a series multisystem injury and require the burn surgeon to take a multisystem approach to its diagnosis and treatment.

  7. Genetically engineered plants in the product development pipeline in India.

    PubMed

    Warrier, Ranjini; Pande, Hem

    2016-01-01

    In order to proactively identify emerging issues that may impact the risk assessment and risk management functions of the Indian biosafety regulatory system, the Ministry of Environment, Forests and Climate Change sought to understand the nature and diversity of genetically engineered crops that may move to product commercialization within the next 10 y. This paper describes the findings from a questionnaire designed to solicit information about public and private sector research and development (R&D) activities in plant biotechnology. It is the first comprehensive overview of the R&D pipeline for GE crops in India. PMID:26954729

  8. Improving Nutritional Quality of Plant Proteins Through Genetic Engineering.

    PubMed

    Le, Dung Tien; Chu, Ha Duc; Le, Ngoc Quynh

    2016-06-01

    Humans and animals are unable to synthesize essential amino acids such as branch chain amino acids methionine (Met), lysine (Lys) and tryptophan (Trp). Therefore, these amino acids need to be supplied through the diets. Several essential amino acids are deficient or completely lacking among crops used for human food and animal feed. For example, soybean is deficient in Met; Lys and Trp are lacking in maize. In this mini review, we will first summarize the roles of essential amino acids in animal nutrition. Next, we will address the question: "What are the amino acids deficient in various plants and their biosynthesis pathways?" And: "What approaches are being used to improve the availability of essential amino acids in plants?" The potential targets for metabolic engineering will also be discussed, including what has already been done and what remains to be tested. PMID:27252589

  9. Soil stability and plant diversity in eco-engineering

    NASA Astrophysics Data System (ADS)

    Böll, Albert; Gerber, Werner; Rickli, Christian; Graf, Frank

    2010-05-01

    Slopes affected by superficial sliding and subsequently re-stabilised with eco-engineering measures were investigated, particularly related to soil stability and plant diversity. The sites are situated in three different areas of beech-fir-spruce forest associations of the higher montane zone of Switzerland. Climatic and site characteristics, in paraticular soil properties after the sliding event, of the three investigation areas are very similar. However, the number of species (shrubs and trees) used for the initial planting as well as the year of application of the eco-engineering measures differ substantially. In the investigation area Dallenwil-Wirzweli the biological measures taken in 1981 were restricted to one tree species, namely White Alder (Alnus incana). In Klosters, where measures were taken in 1983 as well as in the Arieschbach valley, where eco-engineering was applied in 1998, the initial planting consisted of 15 species either. Investigations in 2005/2006 revealed neither obvious differences among the three areas nor distinct correlations related to the diversity of the initial planting on the on hand and the development of the vegetation cover and soil stability on the other hand. During the available time of development, the soil aggregate stability increased by 30 to 39%. Compared to the corresponding climax association, the relative values of soil aggregate stability varied between 90 and 120%. Concurrently, the dry unit weight decreased between 1.1 and 3.1 kN/m3. The cumulative vegetation cover varied from 110 to 150%. Due to processes of soil development a distinct shift in the grain size distribution was noticed, from a well sorted gravel with clay and sand (GW-GC) to a silty gravel with sand (GM) in Dallenwil-Wirzweli and a silty to clayey gravel with sand (GC-GM) in Klosters and the Arieschbach valley. Furthermore, in all three investigation areas succession processes were observed that are comparable to average rates of natural secondary

  10. Engineering plants to reflect light: strategies for engineering water-efficient plants to adapt to a changing climate.

    PubMed

    Zamft, Bradley M; Conrado, Robert J

    2015-09-01

    Population growth and globally increasing standards of living have put a significant strain on the energy-food-water nexus. Limited water availability particularly affects agriculture, as it accounts for over 70% of global freshwater withdrawals (Aquastat). This study outlines the fundamental nature of plant water consumption and suggests a >50% reduction in renewable freshwater demand is possible by engineering more reflective crops. Furthermore, the decreased radiative forcing resulting from the greater reflectivity of crops would be equivalent to removing 10-50 ppm CO2 from the atmosphere. Recent advances in engineering optical devices and a greater understanding of the mechanisms of biological reflectance suggest such a strategy may now be viable. Here we outline the challenges involved in such an effort and suggest three potential approaches that could enable its implementation. While the local benefits may be straightforward, determining the global externalities will require careful modelling efforts and gradually scaled field trials. PMID:25923193

  11. Gasoline-induced mucositis

    SciTech Connect

    Hoffman, D.L.; Swanson, B.Z. Jr.; Lutins, N.D.

    1980-02-01

    Gasoline-induced mucositis may become more common because of fuel shortages or increased fuel cost. Dentists should, therefore, consider this oral irritant in the differential diagnosis of oral lesions.

  12. Ducted fan type gas turbine engine power plants

    SciTech Connect

    Balzer, R.L.

    1992-02-25

    This patent describes a ducted fan type power plant which is cable of generating reverse thrust. It comprises: a gas turbine engine; a fan driven by the engine; an elongated bypass duct which is open at its front and rear ends and surrounds the fan, the bypass duct having a fixed forward section and a rear section which can be translated away from the fixed section as the pitch of the fan blades is reversed to reverse the flow of air through the bypass duct and generate a thrust directed from the front toward the rear of the power plant, thereby allowing air to be induced into the bypass duct through the downstream end thereof and also through the annular gap between the fixed and translated, rear sections of the bypass duct; means for generating a supply of high velocity fluid; means for injecting the high velocity fluid into the bypass duct from a locus to the rear means for delivering the high velocity fluid from the generating means to the injecting means.

  13. Standby Gasoline Rationing Plan

    SciTech Connect

    1980-06-01

    The final rules adopted by the President for a Standby Gasoline Rationing Plan are presented. The plan provides that eligibility for ration allotments will be determined primarily on the basis of motor vehicle registrations, taking into account historical differences in the use of gasoline among states. The regulations also provide authority for supplemental allotments to firms so that their allotment will equal a specified percentage of gasoline use during a base period. Priority classifications, i.e., agriculture, defense, etc., are established to assure adequate gasoline supplies for designated essential services. Ration rights must be provided by end-users to their suppliers for each gallon sold. DOE will regulate the distribution of gasoline at the wholesale level according to the transfer by suppliers of redeemed ration rights and the gasoline allocation regulations. Ration rights are transferable. A ration banking system is created to facilitate transfers of ration rights. Each state will be provided with a reserve of ration rights to provide for hardship needs and to alleviate inequities. (DC)

  14. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    SciTech Connect

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  15. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    SciTech Connect

    Williams, Ben; Ewart, Paul; Wang, Xiaowei; Stone, Richard; Ma, Hongrui; Walmsley, Harold; Cracknell, Roger; Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different

  16. Molecular Response of Crop Plants to Engineered Nanomaterials.

    PubMed

    Pagano, Luca; Servin, Alia D; De La Torre-Roche, Roberto; Mukherjee, Arnab; Majumdar, Sanghamitra; Hawthorne, Joseph; Marmiroli, Marta; Maestri, Elena; Marra, Robert E; Isch, Susan M; Dhankher, Om Parkash; White, Jason C; Marmiroli, Nelson

    2016-07-01

    Functional toxicology has enabled the identification of genes involved in conferring tolerance and sensitivity to engineered nanomaterial (ENM) exposure in the model plant Arabidopsis thaliana (L.) Heynh. Several genes were found to be involved in metabolic functions, stress response, transport, protein synthesis, and DNA repair. Consequently, analysis of physiological parameters, metal content (through ICP-MS quantification), and gene expression (by RT-qPCR) of A. thaliana orthologue genes were performed across different plant species of agronomic interest to highlight putative biomarkers of exposure and effect related to ENMs. This approach led to the identification of molecular markers in Solanum lycopersicum L. and Cucurbita pepo L. (tomato and zucchini) that might not only indicate exposure to ENMs (CuO, CeO2, and La2O3) but also provide mechanistic insight into response to these materials. Through Gene Ontology (GO) analysis, the target genes were mapped in complex interatomic networks representing molecular pathways, cellular components, and biological processes involved in ENM response. The transcriptional response of 38 (out of 204) candidate genes studied varied according to particle type, size, and plant species. Importantly, some of the genes studied showed potential as biomarkers of ENM exposure and effect and may be useful for risk assessment in foods and in the environment. PMID:27301997

  17. High temperature solar photon engines. [heat engines for terrestrial and space-based solar power plants

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Decher, R.; Mattick, A. T.; Lau, C. V.

    1978-01-01

    High temperature heat engines designed to make maximum use of the thermodynamic potential of concentrated solar radiation are described. Plasmas between 2000 K and 4000 K can be achieved by volumetric absorption of radiation in alkali metal vapors, leading to thermal efficiencies up to 75% for terrestrial solar power plants and up to 50% for space power plants. Two machines capable of expanding hot plasmas using practical technology are discussed. A binary Rankine cycle uses fluid mechanical energy transfer in a device known as the 'Comprex' or 'energy exchanger.' The second machine utilizes magnetohydrodynamics in a Brayton cycle for space applications. Absorption of solar energy and plasma radiation losses are investigated for a solar superheater using potassium vapor.

  18. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model

    SciTech Connect

    Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.; Fleming, Paul A.; Wingerden, Jan-Willem van

    2015-08-14

    Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.

  19. A survey of mortality at two automotive engine manufacturing plants.

    PubMed

    Park, R M; Mirer, F E

    1996-12-01

    Mortality at two engine plants was analyzed using proportional mortality and logistic regression models of mortality odds ratios to expand previous observations of increased cancers of the stomach, pancreas, and bladder, and cirrhosis of the liver among workers exposed to machining fluids. Causes of death and work histories were available for 1,870 decendents. There was a significant excess of deaths coded as diabetes for white men in both plants (PMR = 25/16.7 = 1.5, 95% CI = 1.02, 2.20), and a deficit of respiratory diseases. Black men had fewer than expected diabetes deaths and more emphysema deaths. Elevated PMRs for cancers of the stomach, pancreas, prostate, bladder, and kidney were not statistically significant in plantwide populations. However, stomach cancer mortality increased with duration in camshaft and crankshaft production at Plant 1 (OR = 5.1, 95% CI = 1.6, 17; at mean duration of exposed cases), and among tool room workers (OR = 6.3, 95% CI = 1.3, 31), but these results were based on five cases. Nitrosamines were probably present in camshaft and crankshaft grinding at Plant 1. Pancreas cancer risk increased among workers at both plants ever employed in inspection (OR = 2.5, 16), in machining with straight oil (OR = 3.6, 95% CI = 1.04, 12), or in skilled trades (OR = 2.9, 95% CI = 1.1, 7.5). Lung cancer increased in cylinder head machining (OR = 3.9, 95% CI = 1.4, 11), millwright work (OR = 3.8, 95% CI = 1.6, 9.0), and in Plant 2 generally (OR = 1.45, 95% CI = 0.97, 2.2). Potential lung carcinogens included heat treatment emissions, chlorinated oils, and coal tar fumes (millwrights). Bladder cancer increased with duration among workers grinding in straight oil MF (OR = 3.0, 95% CI = 1.15, 7.8) and in machining/heat-treat operations (OR = 2.9, 95% CI = 1.14, 7.2). PMID:8914713

  20. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  1. 33. Photocopy of photograph. STEEL PLANT, 1800HORSEPOWER CORLISS STEAM ENGINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photocopy of photograph. STEEL PLANT, 1800-HORSEPOWER CORLISS STEAM ENGINE AND FLYWEEL FOR 22-INCH MILL, 1910. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  2. RNAi-mediated resistance to viruses in genetically engineered plants.

    PubMed

    Ibrahim, Abdulrazak B; Aragão, Francisco J L

    2015-01-01

    RNA interference (RNAi) has emerged as a leading technology in designing genetically modified crops engineered to resist viral infection. The last decades have seen the development of a large number of crops whose inherent posttranscriptional gene silencing mechanism has been exploited to target essential viral genes through the production of dsRNA that triggers an endogenous RNA-induced silencing complex (RISC), leading to gene silencing in susceptible viruses conferring them with resistance even before the onset of infection. Selection and breeding events have allowed for establishing this highly important agronomic trait in diverse crops. With improved techniques and the availability of new data on genetic diversity among several viruses, significant progress is being made in engineering plants using RNAi with the release of a number of commercially available crops. Biosafety concerns with respect to consumption of RNAi crops, while relevant, have been addressed, given the fact that experimental evidence using miRNAs associated with the crops shows that they do not pose any health risk to humans and animals. PMID:25740357

  3. Desulfurization of gasoline.

    PubMed Central

    Berger, J E

    1975-01-01

    Although gasoline blending streams exhibit widely varying sulfur concentrations, significant quantities of low-sulfur motor gasoline cannot be manufactured by reallocation of existing components without substantial sacrifices in the useful properties of the remaining fuels having normal sulfur levels. To meet the anticipated demand for low-sulfur unleaded gasoline which may be required for catalyst-equipped automobiles it will be necessary to install process equipment based on known hydrotreating technology. The effects which this construction program would exert on the activities, abilities and needs of one petroleum refiner are sketched for two degrees of sulfur removal. The impacts of installing the process facilities which would be necessary are discussed in terms of time requirements, capital needs, and added energy expenditures. PMID:1157782

  4. 40 CFR 63.11089 - What requirements must I meet for equipment leak inspections if my facility is a bulk gasoline...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment leak inspections if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station... Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities Emission... if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station, or...

  5. Neurotoxic effects of gasoline and gasoline constituents

    SciTech Connect

    Burbacher, T.M.

    1993-12-01

    This overview was developed as part of a symposium on noncancer end points of gasoline and key gasoline components. The specific components included are methyl tertiary butyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, butadiene, benzene, xylene, toluene, methyl alcohol, and ethyl alcohol. The overview focuses on neurotoxic effects related to chronic low-level exposures. A few general conclusions and recommendations can be made based on the results of the studies to date. (a) All the compounds reviewed are neuroactive and, as such, should be examined for their neurotoxicity. (b) For most of the compounds, there is a substantial margin of safety between the current permissible exposure levels and levels that would be expected to cause overt signs of neurotoxicity in humans. This is not the case for xylene, toluene, and methanol, however, where neurologic effects are observed at or below the current Threshold Limit Value. (c) For most of the compounds, the relationship between chronic low-level exposure and subtle neurotoxic effects has not been studied. Studies therefore should focus on examining the dose-response relationship between chronic low-level exposure and subtle changes in central nervous system function. 96 refs., 7 tabs.

  6. How to modify your car to run on alcohol fuel: guidelines for converting gasoline engines with specific instructions for air-cooled volkswagens

    SciTech Connect

    Lippman, R.

    1982-04-01

    It is simple to run an engine on alcohol, but doing it right is more complex. In converting an engine, it is important to obtain good fuel economy and driveability while minimizing exhaust emissions and engine wear. This manual describes significant properties of alcohol and explains the engine changes which must consequently be made, as well as providing step-by-step instructions. Engine modification procedures are presented for the amateur and professional mechanic. Conversion involves modifying the carburetor, intake manifold, and ignition system; installing a cold starting system; and raising the compression ratio. If one can tune up an engine, overhaul a carburetor, replace a cylinder head, and follow directions carefully, he is well qualified to convert his car to run on alcohol. The process will take three or four days, and the cost to the do-it-yourselfer will be $250 to $300.

  7. Chemistry Impacts in Gasoline HCCI

    SciTech Connect

    Szybist, James P; Bunting, Bruce G

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  8. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S Appendix S to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants General Information This...

  9. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S Appendix S to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants General Information This...

  10. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S Appendix S to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants General Information This...

  11. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  12. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  13. Gasoline Composition in 2008

    EPA Science Inventory

    Gasoline composition in the U.S is determined by factors related to crude oil source, refinery capacity, geography and regulatory factors. Major regulation derived from the Clean Air Act and its amendments determines the benzene and former oxygenate requirements for reformulated...

  14. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 17. Plant section 2500 - Plant and Instrument Air

    SciTech Connect

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 17 which reports the design of Plant Section 2500 - Plant and Instrument Air. The plant and instrument air system is designed to provide dry, compressed air for a multitude of uses in plant operations and maintenance. A single centrifugal air compressor provides the total plant and instrument air requirements. An air drying system reduces the dew point of the plant and instrument air. Plant Section 2500 is designed to provide air at 100/sup 0/F and 100 psig. Both plant and instrument air are dried to a -40/sup 0/F dew point. Normal plant and instrument air requirements total 1430 standard cubic feet per minute.

  15. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  16. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    NASA Astrophysics Data System (ADS)

    Logan, B. G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to $12.5 billion to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at $8/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway.

  17. Motor gasoline assessment, Spring 1997

    SciTech Connect

    1997-07-01

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  18. 40 CFR 80.28 - Liability for violations of gasoline volatility controls and prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....27 is detected at a refinery that is not an ethanol blending plant or at an importer's facility, the... refiner (if he is not an ethanol blender) at whose refinery the gasoline was produced or the importer at...; (3) The ethanol blender (if any) at whose ethanol blending plant the gasoline was produced, except...

  19. 40 CFR 80.28 - Liability for violations of gasoline volatility controls and prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....27 is detected at a refinery that is not an ethanol blending plant or at an importer's facility, the... refiner (if he is not an ethanol blender) at whose refinery the gasoline was produced or the importer at...; (3) The ethanol blender (if any) at whose ethanol blending plant the gasoline was produced, except...

  20. 40 CFR 80.28 - Liability for violations of gasoline volatility controls and prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....27 is detected at a refinery that is not an ethanol blending plant or at an importer's facility, the... refiner (if he is not an ethanol blender) at whose refinery the gasoline was produced or the importer at...; (3) The ethanol blender (if any) at whose ethanol blending plant the gasoline was produced, except...

  1. Production of reformulated gasoline

    SciTech Connect

    Schmidt, R.J.; Raghuram, S.

    1992-08-04

    This patent describes a process combination for producing a gasoline component from a naphtha feedstock. It comprises: contacting the naphtha feedstock in a reforming zone at reforming conditions with a reforming catalyst comprising a Group VIII metal on a refractory support to produce a reformate and a hydrogen-rich gas; separating the reformate, in a first separation zone, into a light hydrocarbon product and a heavy reformate; separating the heavy reformate, in a second separation zone, into a low-octane paraffin fraction and an aromatic-rich fraction; contacting a low-octane paraffin fraction in a paraffin-isomerization zone at primary isomerization conditions with a paraffin-isomerizing catalyst to produce an isomerized heavy-paraffin product; and, combining at least a portion of each of the aromatic-rich fraction and the isomerized heavy-paraffin product to produce the gasoline component.

  2. Economic and engineering evaluation of plant oils as a diesel fuel. Final report

    SciTech Connect

    Engler, C.R.; LePori, W.A.; Johnson, L.A.; Griffin, R.C.; Diehl, K.C.; Moore, D.S.; Lacewell, R.D.; Coble, C.G.; Lusas, E.W.; Hiler, E.A.

    1982-04-15

    The annual total yield of plant oils in the US is about 3.7 billion gallons. Diesel use by agriculture is about 2.0 billion gallons annually and is growing rapidly relative to gasoline use. Based on these amounts, plant oils could satisfy agriculture's diesel fuel requirements during the near future. However, diversion of large quantities of plant oils for such purposes would have dramatic impacts on plant oil prices and be reflected in numerous adjustments throughout agriculture and other sectors of the economy. The competitive position of sunflowers for plant oil production in Texas was analyzed. In those regions with a cotton alternative, sunflowers were not, for the most part, economically competitive. However, sunflower production is competitive with grain sorghum in certain cases. To develop a meaningful production base for oilseed crops in Texas, yields need to be improved or increases in oilseed prices relative to cotton must take place. This implies some limitations for the potential of Texas to produce large quantities of plant oils.

  3. Genetic engineering of novel flower colors in floricultural plants: recent advances via transgenic approaches.

    PubMed

    Nishihara, Masahiro; Nakatsuka, Takashi

    2010-01-01

    Since the first successful genetic engineering of flower color in petunia, several new techniques have been developed and applied to modify flower color not only in model plants but also in floricultural plants. A typical example is the commercial violet-flowered carnation "Moondust series" developed by Suntry Ltd. and Florigene Ltd. More recently, blue-flowered roses have been successfully produced and are expected to be commercially available in the near future. In recent years, successful modification of flower color by sophisticated regulation of flower-pigment metabolic pathways has become possible. In this chapter, we review recent advances in flower color modification by genetic engineering, especially focusing on the methodology. We have included our own recent results on successful production of flower-color-modified transgenic plants in a model plant, tobacco and an ornamental plant, gentian. Based on these results, genetic engineering of flower color for improvement of floricultural plants is discussed. PMID:20099113

  4. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  5. Detailed Kinetic Modeling of Gasoline Surrogate Mixtures

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-03-09

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  6. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Gasoline; special rules for gasoline blendstocks..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline...

  7. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    SciTech Connect

    Ryu, Jun-hyung

    2013-07-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  8. Engine wear and lubricating oil contamination from plant oil fuels

    SciTech Connect

    Darcey, C.L.; LePori, W.A.; Yarbrough, C.M.

    1982-12-01

    Engine disassembly with wear measurements, and lubricating oil analysis were used to determine wear rates on a one cylinder diesel engine. Results are reported from short duration tests on the wear rates of various levels of processed sunflower oil, a 25% blend with diesel fuel, and processed cottonseed oil.

  9. Feasibility demonstration of a road vehicle fueled with hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.; Dowdy, M. W.

    1974-01-01

    Evaluation of the concept of using hydrogen-enriched gasoline in a modified internal combustion engine in order to make possible the burning of ultralean mixtures. The use of such an engine in a road vehicle demonstrated that the addition of small quantities of gaseous hydrogen to gasoline resulted in significant reductions in exhaust emissions of carbon monoxide and nitrogen oxides as well as in thermal efficiency improvements of the engine performance.

  10. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    PubMed

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. PMID:24556196

  11. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-01-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  12. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Astrophysics Data System (ADS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-08-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  13. Genetic Engineering for Disease Resistance in Ornamental Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This symposium is intended to facilitate communication between researchers in Hungary, Romania, and other countries who are interested in micropropagation of ornamental plants. Some of the work that has been done in the Floral and Nursery Plants Research Unit that involves micropropagation is descr...

  14. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline.

    PubMed

    Magaril, Elena; Magaril, Romen

    2016-09-01

    The operation of modern vehicles requires the introduction of package of fuel additives to ensure the required level of operating characteristics, some of which cannot be achieved by current oil refining methods. The use of additives allows flexibility of impact on the properties of the fuel at minimal cost, increasing the efficiency and environmental safety of vehicles. Among the wide assortment of additives available on the world market, many are surfactants. It has been shown that the introduction of some surfactants into gasoline concurrently reduces losses from gasoline evaporation, improves the mixture formation during injection of gasoline into the engine and improves detergent and anticorrosive properties. The surfactant gasoline additive that provides significant improvement in the quality of gasoline used and environmental and operating characteristics of vehicles has been developed and thoroughly investigated. The results of studies confirming the efficiency of the gasoline additive application are herein presented. PMID:27206755

  15. Economic and environmental benefits of higher-octane gasoline.

    PubMed

    Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H

    2014-06-17

    We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline. PMID:24870412

  16. Data on Ethanol in Gasoline

    EPA Science Inventory

    Gasoline composition varies for technical, market and regulatory reasons. Knowledge of any one of these is insufficient for understanding the chemical composition of gasoline at any specific location in the U.S. Historical data collected by the National Institute of Petroleum ...

  17. Toxicological profile for automotive gasoline

    SciTech Connect

    1995-06-01

    This Statement was prepared to give you information about gasoline and to empahsize the human health effects that may result from exposure to it. The Environmental Protection Agency (EPA) has identified 1,397 sites on its National Priorities List (NPL). Gasoline has been found in at least 23 of these sites.

  18. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    SciTech Connect

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants.

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  20. Assessment of ISLOCA risk-methodology and application to a combustion engineering plant

    SciTech Connect

    Kelly, D.L.; Auflick, J.L.; Haney, L.N.

    1992-04-01

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISOLOCA core damage frequency and risk. This report presents a detailed of description of the application of this analysis methodology to a Combustion Engineering plant.

  1. The elimination of lead in gasoline

    SciTech Connect

    Thomas, V.M.

    1995-11-01

    Due to the health consequences of lead exposure, as well as to the introduction of catalytic converters, many countries have reduced or eliminate use of lead additives in motor gasolines. But in many other countries, leaded gasoline remains the norm. In these countries there is often confusion about the health significance of gasoline lead, the ability of cars to use unleaded gasoline, and the costs of unleaded gasoline. This chapter shows that leaded gasoline is a major source of human lead exposure. All cars, with or without catalytic converters, and with or without hardened exhaust valve seats, can use unleaded gasoline exclusively. Unleaded gasoline typically costs on the order of $0.01 more per liter than leaded gasoline to produce. Recent concerns about benzene exposure from unleaded gasoline have been addressed through choice of gasoline formulation and other measures. 115 refs., 4 figs., 1 tab.

  2. Omics Approaches for the Engineering of Pathogen Resistant Plants.

    PubMed

    Gomez-Casati, Diego F; Pagani, María A; Busi, María V; Bhadauria, Vijai

    2016-01-01

    The attack of different pathogens, such as bacteria, fungi and viruses has a negative impact on crop production. In counter such attacks, plants have developed different strategies involving the modification of gene expression, activation of several metabolic pathways and post-translational modification of proteins, which culminate into the accumulation of primary and secondary metabolites implicated in plant defense responses. The recent advancement in omics techniques allows the increase coverage of plants transcriptomes, proteomes and metabolomes during pathogen attack, and the modulation of the response after the infection. Omics techniques also allow us to learn more about the biological cycle of the pathogens in addition to the identification of novel virulence factors in pathogens and their host targets. Both approaches become important to decipher the mechanism underlying pathogen attacks and to develop strategies for improving disease-resistant plants. In this review, we summarize some of the contribution of genomics, transcriptomics, proteomics, metabolomics and metallomics in devising the strategies to obtain plants with increased resistance to pathogens. These approaches constitute important research tools in the development of new technologies for the protection against diseases and increase plant production. PMID:26363625

  3. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) If your gasoline storage tank is subject to, and complies with, the control requirements of 40 CFR... Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities Emission Limitations and Management...

  4. Effective hydrogen generator testing for on-site small engine

    NASA Astrophysics Data System (ADS)

    Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.

    2009-07-01

    We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.

  5. Comparison of hecter fuel with export aviation gasoline

    NASA Technical Reports Server (NTRS)

    Dickinson, H C; Gage, V R; Sparrow, S W

    1921-01-01

    Among the fuels which will operate at compression ratios up to at least 8.0 without preignition or "pinking" is hecter fuel, whence a careful determination of its performance is of importance. For the test data presented in this report the hecter fuel used was a mixture of 30 per cent benzol and 70 per cent cyclohexane, having a low freezing point, and distilling from first drop to 90 per cent at nearly a constant temperature, about 20 degrees c. below the average distillation temperature ("mean volatility") of the x gasoline (export grade). The results of these experiments show that the power developed by hecter fuel is the same as that developed by export aviation gasoline at about 1,800 r.p.m. at all altitudes. At lower speeds differences in the power developed by the fuels become evident. Comparisons at ground level were omitted to avoid any possibility of damaging the engine by operating with open throttle on gasoline at so high a compression. The fuel consumption per unit power based on weight, not volume, averaged more than 10 per cent greater with hecter than with x gasoline. The thermal efficiency of the engine when using hecter is less than when using gasoline, particularly at higher speeds. A generalization of the difference for all altitudes and speeds being 8 per cent. A general deduction from these facts is that more hecter is exhausted unburnt. Hecter can withstand high compression pressures and temperature without preignition. (author)

  6. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  7. . . . While Others Conserve Cash by Converting from Gasoline to Propane.

    ERIC Educational Resources Information Center

    Rasmussen, Scott A.

    1988-01-01

    Since 1983, when the David Douglas Public Schools (Portland, Oregon) converted 30 buses to propane fuel, the district has saved $75,000 in fuel and maintenance costs. Propane is priced consistently lower than gasoline and burns cleaner. Since propane engines do not require a carburetor, there are fewer maintenance problems. (MLH)

  8. Method of reducing NOx emissions in gasoline vehicles

    SciTech Connect

    Gwyn, J.E.

    1993-08-10

    An unleaded fuel composition is described comprising a major amount of a hydrocarbon base fuel of the gasoline boiling range containing an amount effective to reduce NO[sub x] emissions from electronic port fuel injected engines of an ammonium compound selected from the group consisting of ammonium formate, ammonium propionate, ammonium dicitrate, ammonium carbamate, ammonium carbonate, ammonium acetate, and admixtures thereof.

  9. Plant Metabolic Modeling: Achieving New Insight into Metabolism and Metabolic Engineering

    PubMed Central

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-01-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. PMID:25344492

  10. Growing Plants to Power Our Engines and Feed the World

    SciTech Connect

    Sayre Dick

    2015-12-15

    Photosynthesis uses light from the sun and carbon dioxide from the air to make chemicals that can be converted into energy-rich biofuels. Plants, however, transform less than five percent of the solar energy they capture into harvestable chemical energy. The New Mexico Consortium and Los Alamos National Laboratory are working on strategies to improve the energy yield in algae and plant systems, resulting in more fuel in our tanks and more food on our plates, without releasing additional carbon into the atmosphere.

  11. Underground Coal Gasification (UCG) gas to methanol and MTG-gasoline: An economic and sensitivity study, task B

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The technical and economic aspects of the production of methanol and gasoline using gas from an underground coal gasification (UCG) facility are discussed. The economics of producing gasoline is studied as well as a number of other aspects of the economics of upgrading UCG gas. Capital and operating costs for three different capacities of gasoline plants are presented. These are 1600 barrels per day (BPD), 4800 BPD, and 9600 BPD. These capacities are equivalent to fuel grade methanol plants having capacities of 4000 BPD, 12,000 BPD, and 24,000 BPD - the methanol capacities considered in the previous studies. The economics of the gasoline plant were developed using published information and the best estimate of the processing steps in the gasoline process. Several sensitivity studies were undertaken to examine the sensitivity of both methanol and gasoline product costs to changes in technical and economic parameters.

  12. Fundamentals of power plant performance for utility engineers

    SciTech Connect

    Not Available

    1984-01-01

    This three-volume, looseleaf text reviews power plant components and their operation from a performance perspective and presents the basics of performance testing. It provides the background to develop performance monitoring programs that improve component performance and provide operators with performance feedback and maintenance planning information.

  13. Effects of ethanol-blended gasoline on air pollutant emissions from motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng; Chiang, Hung-Lung

    2009-09-15

    The effect of ethanol-gasoline blends on criteria air pollutant emissions was investigated in a four-stroke motorcycle. The ethanol was blended with unleaded gasoline in four percentages (3, 10, 15, and 20% v/v) and controlled at a constant research octane number, RON (95), to accurately represent commercial gasoline. CO, THC, and NOx emissions were evaluated using the Economic Commission for Europe cycle on the chassis dynamometers. The results of the ethanol-gasoline blends were compared to those of commercial unleaded gasoline with methyl tert-butyl ether as the oxygenated additive. In general, the exhaust CO and NOx emissions decreased with increasing oxygen content in fuels. In contrast, ethanol added in the gasoline did not reduce the THC emissions for a constant RON gasoline. The 15% ethanol blend had the highest emission reductions relative to the reference fuel. The high ethanol-gasoline blend ratio (20%) resulted in a less emission reduction than those of low ratio blends (<15%). This may be attributed to the changes in the combustion conditions in the carburetor engine with 20% ethanol addition. Furthermore, the influence of ethanol-gasoline blends on the reduction of exhaust emissions was observed at different driving modes, especially at 15km/h cruising speed for CO and THC and acceleration stages for NOx. PMID:19595441

  14. Magnetohydrodynamics MHD Engineering Test Facility ETF 200 MWe power plant. Conceptual Design Engineering Report CDER. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The estimated plant capital cost for a coal fired 200 MWE electric generating plant with open cycle magnetohydrodynamics is divided into principal accounts based on Federal Energy Regulatory Commision account structure. Each principal account is defined and its estimated cost subdivided into identifiable and major equipment systems. The cost data sources for compiling the estimates, cost parameters, allotments, assumptions, and contingencies, are discussed. Uncertainties associated with developing the costs are quantified to show the confidence level acquired. Guidelines established in preparing the estimated costs are included. Based on an overall milestone schedule related to conventional power plant scheduling experience and starting procurement of MHD components during the preliminary design phase there is a 6 1/2-year construction period. The duration of the project from start to commercial operation is 79 months. The engineering phase of the project is 4 1/2 years; the construction duration following the start of the man power block is 37 months.

  15. Understanding and manipulating plant lipid composition: Metabolic engineering leads the way.

    PubMed

    Napier, Johnathan A; Haslam, Richard P; Beaudoin, Frederic; Cahoon, Edgar B

    2014-06-01

    The manipulation of plant seed oil composition so as to deliver enhanced fatty acid compositions suitable for feed or fuel has long been a goal of metabolic engineers. Recent advances in our understanding of the flux of acyl-changes through different key metabolic pools such as phosphatidylcholine and diacylglycerol have allowed for more targeted interventions. When combined in iterative fashion with further lipidomic analyses, significant breakthroughs in our capacity to generate plants with novel oils have been achieved. Collectively these studies, working at the interface between metabolic engineering and synthetic biology, demonstrate the positive fundamental and applied outcomes derived from such research. PMID:24809765

  16. Understanding and manipulating plant lipid composition: Metabolic engineering leads the way

    PubMed Central

    Napier, Johnathan A; Haslam, Richard P; Beaudoin, Frederic; Cahoon, Edgar B

    2014-01-01

    The manipulation of plant seed oil composition so as to deliver enhanced fatty acid compositions suitable for feed or fuel has long been a goal of metabolic engineers. Recent advances in our understanding of the flux of acyl-changes through different key metabolic pools such as phosphatidylcholine and diacylglycerol have allowed for more targeted interventions. When combined in iterative fashion with further lipidomic analyses, significant breakthroughs in our capacity to generate plants with novel oils have been achieved. Collectively these studies, working at the interface between metabolic engineering and synthetic biology, demonstrate the positive fundamental and applied outcomes derived from such research. PMID:24809765

  17. 2005 Plant Metabolic Engineering Gordon Conference - July 10-15, 2005

    SciTech Connect

    Eleanore T. Wurtzel

    2006-06-30

    The post-genomic era presents new opportunities for manipulating plant chemistry for improvement of plant traits such as disease and stress resistance and nutritional qualities. This conference will provide a setting for developing multidisciplinary collaborations needed to unravel the dynamic complexity of plant metabolic networks and advance basic and applied research in plant metabolic engineering. The conference will integrate recent advances in genomics, with metabolite and gene expression analyses. Research discussions will explore how biosynthetic pathways interact with regard to substrate competition and channeling, plasticity of biosynthetic enzymes, and investigate the localization, structure, and assembly of biosynthetic metabolons in native and nonnative environments. The meeting will develop new perspectives for plant transgenic research with regard to how transgene expression may influence cellular metabolism. Incorporation of spectroscopic approaches for metabolic profiling and flux analysis combined with mathematical modeling will contribute to the development of rational metabolic engineering strategies and lead to the development of new tools to assess temporal and subcellular changes in metabolite pools. The conference will also highlight new technologies for pathway engineering, including use of heterologous systems, directed enzyme evolution, engineering of transcription factors and application of molecular/genetic techniques for controlling biosynthetic pathways.

  18. Industrial Education. "Small Engines".

    ERIC Educational Resources Information Center

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  19. Theta13 Neutrino Experiment at the Diablo Canyon Power Plant, LBNL Engineering Summary Report

    SciTech Connect

    Oshatz, Daryl

    2004-03-12

    This summary document describes the results of conceptual design and cost estimates performed by LBNL Engineering staff between October 10, 2003 and March 12, 2004 for the proposed {theta}{sub 13} neutrino experiment at the Diablo Canyon Power Plant (DCPP). This document focuses on the detector room design concept and mechanical engineering issues associated with the neutrino detector structures. Every effort has been made not to duplicate information contained in the last LBNL Engineering Summary Report dated October 10, 2003. Only new or updated information is included in this document.

  20. Comparison of advanced engines for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Bowyer, J. M.; Gajanana, B. C.

    1980-01-01

    A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.

  1. Biofiltration of gasoline and ethanol-amended gasoline vapors.

    PubMed

    Soares, Marlene; Woiciechowski, Adenise L; Kozliak, Evguenii I; Paca, Jan; Soccol, Carlos R

    2012-01-01

    Assuming the projected increase in use of ethanol as a biofuel, the current study was conducted to compare the biofiltration efficiencies for plain and 25% ethanol-containing gasoline. Two biofilters were operated in a downflow mode for 7 months, one of them being compost-based whereas the other using a synthetic packing material, granulated tire rubber, inoculated with gasoline-degrading microorganisms. Inlet concentrations measured as total hydrocarbon (TH) ranged from 1.9 to 5.8 g m(-3) at a constant empty bed retention time of 6.84 min. Contrary to the expectations based on microbiological considerations, ethanol-amended gasoline was more readily biodegraded than plain hydrocarbons, with the respective steady state elimination capacities of 26-43 and 14-18 gTH m(-3) h(-1) for the compost biofilter. The efficiency of both biofilters significantly declined upon the application of higher loads of plain gasoline, yet immediately recovering when switched back to ethanol-blended gasoline. The unexpected effect of ethanol in promoting gasoline biodegradation was explained by increasing hydrocarbon partitioning into the aqueous phase, with mass transfer being rate limiting for the bulk of components. The tire rubber biofilter, after a long acclimation, surpassed the compost biofilter in performance, presumably due to the 'buffering' effect of this packing material increasing the accessibility of gasoline hydrocarbons to the biofilm. With improved substrate mass transfer, biodegradable hydrocarbons were removed in the tire rubber biofilter's first reactor stage, with most of the remaining poorly degradable smaller-size hydrocarbons being degraded in the second stage. PMID:22486670

  2. Nitinol Heat Engine power plant system installation and cost optimization

    SciTech Connect

    Cady, E.C.; McNichols, J.L.

    1984-08-01

    Nitinol Heat Engines (NHE) use a shape memory alloy of nickel and titanium to directly convert the thermal energy in hot water to mechanical power (and, through a generator, to electricity). The authors designed a commercial version of a NHE based on the thermoturbine configuration developed in prototype form under contract to the Department of Energy in 1978-1980. The operation and cost of various forms of NHE have been described previously, but the penalties and costs associated with integrating the complete NHE system into installations supplying the thermal energy have not previously been determined. They found that these costs are most important, as they will often exceed the costs of the NHE proper. However, the total installed costs are quite low and result in very economical power from waste-heat or geothermal hot-water sources.

  3. Legionnaires' disease outbreak in an automobile engine manufacturing plant.

    PubMed

    Fry, Alicia M; Rutman, Miai; Allan, Terry; Scaife, Heidi; Salehi, Ellen; Benson, Robert; Fields, Barry; Nowicki, Scott; Parrish, Mary Kay; Carpenter, Joseph; Brown, Ellen; Lucas, Claressa; Horgan, Timothy; Koch, Elizabeth; Besser, Richard E

    2003-03-15

    We investigated 4 cases of legionnaires' disease (LD) reported among workers at an Ohio automotive plant in March 2001. A "confirmed" case of LD was defined as x-ray-confirmed pneumonia and a confirmatory laboratory test. A "possible" case of LD was defined as elevated titers of antibody and respiratory symptoms. Legionella pneumophila serogroup 1 (LP1) was isolated from 1 case patient. Legionella was isolated from 18 (9%) of 197 environmental samples; 3 isolates were LP1 but did not match the case isolate. We conducted a case-control study; 17 case patients with confirmed or possible LD and 86 control subjects (workers with low antibody titers and without symptoms) were enrolled. Visiting a specific cleaning line (odds ratio, [OR], 7.29; 95% confidence interval [CI], 2.31-23.00) and working in the cleaning region of the plant (OR, 3.22; 95% CI, 1.11-9.38) were associated with LD. LD can be transmitted in industrial settings in which aerosols are produced. Clinicians should consider LD when treating persons from these settings for pneumonia. PMID:12660949

  4. Engineered plant biomass particles coated with biological agents

    DOEpatents

    Dooley, James H.; Lanning, David N.

    2014-06-24

    Plant biomass particles coated with a biological agent such as a bacterium or seed, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  5. Engineered plant biomass particles coated with bioactive agents

    SciTech Connect

    Dooley, James H; Lanning, David N

    2013-07-30

    Plant biomass particles coated with a bioactive agent such as a fertilizer or pesticide, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  6. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. PMID:26654885

  7. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    EPA Science Inventory

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  8. The pipeline oil pumping engineering based on the Plant Wide Control technology

    NASA Astrophysics Data System (ADS)

    Starikov, D. P.; Rybakov, E. A.; Gromakov, E. I.

    2015-04-01

    This article provides recommendations for the use technology Plant Wide Control to control the pumping of oil through the pipeline. The proposed engineering using pipeline management in general (Pipe Wide Control) will reduce the loss of electric power at the expense of the balance of pumping stations located along the pipeline route.

  9. Silencing of meiosis-critical genes for engineering male sterility in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Engineering sterile traits in plants through the tissue-specific expression of a cytotoxic gene provides an effective way for containing transgene flow; however, the microbial origin of cytotoxic genes has raised concerns. In an attempt to develop a safe alternative, we have chosen the meiosis-crit...

  10. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering

    SciTech Connect

    Jansson, C.; Wullschleger, S.D.; Kalluri, U.C.; Tuskan, G.A.

    2010-07-15

    Photosynthetic assimilation of atmospheric carbon dioxide by land plants offers the underpinnings for terrestrial carbon (C) sequestration. A proportion of the C captured in plant biomass is partitioned to roots, where it enters the pools of soil organic C and soil inorganic C and can be sequestered for millennia. Bioenergy crops serve the dual role of providing biofuel that offsets fossil-fuel greenhouse gas (GHG) emissions and sequestering C in the soil through extensive root systems. Carbon captured in plant biomass can also contribute to C sequestration through the deliberate addition of biochar to soil, wood burial, or the use of durable plant products. Increasing our understanding of plant, microbial, and soil biology, and harnessing the benefits of traditional genetics and genetic engineering, will help us fully realize the GHG mitigation potential of phytosequestration.

  11. 75 FR 11915 - Chrysler LLC; Trenton Engine Plant, Including On-Site Leased Workers From Caravan Knight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... to workers of Chrysler, LLC, Trenton Engine Plant, Trenton, Michigan. The notice was published in the Federal Register on January 14, 2009 (74 FR 2137). At the request of the State Agency, the Department... Employment and Training Administration Chrysler LLC; Trenton Engine Plant, Including On-Site Leased...

  12. 76 FR 22729 - Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plant #1, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... December 18, 2008 (73 FR 77067). In order to avoid an overlap in worker group coverage, the Department is... Employment and Training Administration Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plant 1..., LLC, Power Train Division, Mack Avenue Engine Plant 1, including on-site leased workers of...

  13. 75 FR 26791 - Chrysler, LLC, Trenton Engine Plant, Including On-Site Leased Workers from Caravan Knight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Federal Register on March 12, 2010 (75 FR 11915). At the request of the State agency, the Department... Employment and Training Administration Chrysler, LLC, Trenton Engine Plant, Including On-Site Leased Workers..., 2010, applicable to workers of Chrysler, LLC, Trenton Engine Plant, including on-site leased...

  14. Production of engineered long-life and male sterile Pelargonium plants

    PubMed Central

    2012-01-01

    Background Pelargonium is one of the most popular garden plants in the world. Moreover, it has a considerable economic importance in the ornamental plant market. Conventional cross-breeding strategies have generated a range of cultivars with excellent traits. However, gene transfer via Agrobacterium tumefaciens could be a helpful tool to further improve Pelargonium by enabling the introduction of new genes/traits. We report a simple and reliable protocol for the genetic transformation of Pelargonium spp. and the production of engineered long-life and male sterile Pelargonium zonale plants, using the pSAG12::ipt and PsEND1::barnase chimaeric genes respectively. Results The pSAG12::ipt transgenic plants showed delayed leaf senescence, increased branching and reduced internodal length, as compared to control plants. Leaves and flowers of the pSAG12::ipt plants were reduced in size and displayed a more intense coloration. In the transgenic lines carrying the PsEND1::barnase construct no pollen grains were observed in the modified anther structures, which developed instead of normal anthers. The locules of sterile anthers collapsed 3–4 days prior to floral anthesis and, in most cases, the undeveloped anther tissues underwent necrosis. Conclusion The chimaeric construct pSAG12::ipt can be useful in Pelargonium spp. to delay the senescence process and to modify plant architecture. In addition, the use of engineered male sterile plants would be especially useful to produce environmentally friendly transgenic plants carrying new traits by preventing gene flow between the genetically modified ornamentals and related plant species. These characteristics could be of interest, from a commercial point of view, both for pelargonium producers and consumers. PMID:22935247

  15. Biological and Abiotic Transformations of Ethylene Dibromide and 1,2-Dichloroethane in Ground Water at Leaded Gasoline Spill Sites

    EPA Science Inventory

    Tetra-ethyl lead was widely used in leaded automobile gasoline from 1923 until 1987. To prevent lead deposits from fouling the engine, 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were added to the gasoline to act as lead scavengers. The Maximum Contaminant Levels...

  16. Gasoline risk management: a compendium of regulations, standards, and industry practices.

    PubMed

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    This paper is part of a special series of publications regarding gasoline toxicology testing and gasoline risk management; this article covers regulations, standards, and industry practices concerning gasoline risk management. Gasoline is one of the highest volume liquid fuel products produced globally. In the U.S., gasoline production in 2013 was the highest on record (API, 2013). Regulations such as those pursuant to the Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) and many others provide the U.S. federal government with extensive authority to regulate gasoline composition, manufacture, storage, transportation and distribution practices, worker and consumer exposure, product labeling, and emissions from engines and other sources designed to operate on this fuel. The entire gasoline lifecycle-from manufacture, through distribution, to end-use-is subject to detailed, complex, and overlapping regulatory schemes intended to protect human health, welfare, and the environment. In addition to these legal requirements, industry has implemented a broad array of voluntary standards and best management practices to ensure that risks from gasoline manufacturing, distribution, and use are minimized. PMID:24995590

  17. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    SciTech Connect

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  18. Implications of Transitioning from De Facto to Engineered Water Reuse for Power Plant Cooling.

    PubMed

    Barker, Zachary A; Stillwell, Ashlynn S

    2016-05-17

    Thermoelectric power plants demand large quantities of cooling water, and can use alternative sources like treated wastewater (reclaimed water); however, such alternatives generate many uncertainties. De facto water reuse, or the incidental presence of wastewater effluent in a water source, is common at power plants, representing baseline conditions. In many cases, power plants would retrofit open-loop systems to cooling towers to use reclaimed water. To evaluate the feasibility of reclaimed water use, we compared hydrologic and economic conditions at power plants under three scenarios: quantified de facto reuse, de facto reuse with cooling tower retrofits, and modeled engineered reuse conditions. We created a genetic algorithm to estimate costs and model optimal conditions. To assess power plant performance, we evaluated reliability metrics for thermal variances and generation capacity loss as a function of water temperature. Applying our analysis to the greater Chicago area, we observed high de facto reuse for some power plants and substantial costs for retrofitting to use reclaimed water. Conversely, the gains in reliability and performance through engineered reuse with cooling towers outweighed the energy investment in reclaimed water pumping. Our analysis yields quantitative results of reclaimed water feasibility and can inform sustainable management of water and energy. PMID:27077957

  19. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    PubMed

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology. PMID:22357585

  20. LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapour pressure specifications. The main blending components of alkylate, cracked gasoline and reformate have different octane and vapour pressure...

  1. Gasoline Composition Regulations Affecting LUST Sites

    EPA Science Inventory

    Passage of the Clean Air Act Amendments in 1990 imposed requirements on gasoline composition in the United States. Impacts to ground water are affected by the provisions that required oxygenated additives and limited benzene concentration. Reformulated and oxygenated gasoline w...

  2. LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    Most petroleum refineries are facing the challenge of producing gasoline, which contains the desirable properties and complies with the ever-increasing environmental regulations and health restrictions. The impact of gasoline on the environment is directly related to its composit...

  3. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes--current status and future opportunities.

    PubMed

    Lange, B Markus; Ahkami, Amirhossein

    2013-02-01

    Terpenoids (a.k.a. isoprenoids) represent the most diverse class of natural products found in plants, with tens of thousands of reported structures. Plant-derived terpenoids have a multitude of pharmaceutical and industrial applications, but the natural resources for their extraction are often limited and, in many cases, synthetic routes are not commercially viable. Some of the most valuable terpenoids are not accumulated in model plants or crops, and genetic resources for breeding of terpenoid natural product traits are thus poorly developed. At present, metabolic engineering, either in the native producer or a heterologous host, is the only realistic alternative to improve yield and accessibility. In this review article, we will evaluate the state of the art of modulating the biosynthetic pathways for the production of mono-, sesqui- and diterpenes in plants. PMID:23171352

  4. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production. PMID:24679262

  5. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  6. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  7. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  8. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  9. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  10. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  11. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  12. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  13. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) This section specifies test fuel properties for gasoline with ethanol (low-level blend only) and for gasoline without ethanol. Note that the “fuel type” for the fuels specified in paragraphs (b) and (c) of this section is considered to be gasoline. In contrast, fuels with higher...

  14. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  15. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  16. Towards the development of better crops by genetic transformation using engineered plant chromosomes.

    PubMed

    Dhar, Manoj K; Kaul, Sanjana; Kour, Jasmeet

    2011-05-01

    Plant Biotechnology involves manipulation of genetic material to develop better crops. Keeping in view the challenges being faced by humanity in terms of shortage of food and other resources, we need to continuously upgrade the genomic technologies and fine tune the existing methods. For efficient genetic transformation, Agrobacterium-mediated as well as direct delivery methods have been used successfully. However, these methods suffer from many disadvantages especially in terms of transfer of large genes, gene complexes and gene silencing. To overcome these problems, recently, some efforts have been made to develop genetic transformation systems based on engineered plant chromosomes called minichromosomes or plant artificial chromosomes. Two approaches namely, "top-down" or "bottom-up" have been used for minichromosomes. The former involves engineering of the existing chromosomes within a cell and the latter de novo assembling of chromosomes from the basic constituents. While some success has been achieved using these chromosomes as vectors for genetic transformation in maize, however, more studies are needed to extend this technology to crop plants. The present review attempts to trace the genesis of minichromosomes and discusses their potential of development into plant artificial chromosome vectors. The use of these vectors in genetic transformation will greatly ameliorate the food problem and help to achieve the UN Millennium development goals. PMID:21249368

  17. Assessment of engineering plant analyzer with Peach Bottom 2 stability tests

    SciTech Connect

    Rohatgi, U.S.; Mallen, A.N.; Cheng, H.S.; Wulff, W.

    1992-01-01

    Engineering Plant Analyzer (EPA) has been developed to simulate plant transients for Boiling Water Reactor (BWR). Recently, this code has been used to simulate LaSalle-2 instability event which was initiated by a failure in the feed water heater. The simulation was performed for the scram conditions and for the postulated failure in the scram. In order to assess the capability of the EPA to simulate oscillatory flows as observed in the LaSalle event, EPA has been benchmarked with the available data from the Peach Bottom 2 (PB2) Instability tests PT1, PT2, and PT4. This document provides a description of these tests.

  18. Assessment of engineering plant analyzer with Peach Bottom 2 stability tests

    SciTech Connect

    Rohatgi, U.S.; Mallen, A.N.; Cheng, H.S.; Wulff, W.

    1992-08-01

    Engineering Plant Analyzer (EPA) has been developed to simulate plant transients for Boiling Water Reactor (BWR). Recently, this code has been used to simulate LaSalle-2 instability event which was initiated by a failure in the feed water heater. The simulation was performed for the scram conditions and for the postulated failure in the scram. In order to assess the capability of the EPA to simulate oscillatory flows as observed in the LaSalle event, EPA has been benchmarked with the available data from the Peach Bottom 2 (PB2) Instability tests PT1, PT2, and PT4. This document provides a description of these tests.

  19. Current status and biotechnological advances in genetic engineering of ornamental plants.

    PubMed

    Azadi, Pejman; Bagheri, Hedayat; Nalousi, Ayoub Molaahmad; Nazari, Farzad; Chandler, Stephen F

    2016-11-01

    Cut flower markets are developing in many countries as the international demand for cut flowers is rapidly growing. Developing new varieties with modified characteristics is an important aim in floriculture. Production of transgenic ornamental plants can shorten the time required in the conventional breeding of a cultivar. Biotechnology tools in combination with conventional breeding methods have been used by cut flower breeders to change flower color, plant architecture, post-harvest traits, and disease resistance. In this review, we describe advances in genetic engineering that have led to the development of new cut flower varieties. PMID:27396521

  20. Retrofit of Soederberg smelter at Alusaf Bayside plant. Part 1: Conceptual design and engineering

    SciTech Connect

    Vogelsang, D.; Droste, C.; Segatz, M.; Eick, I.

    1996-10-01

    A main objective of the Bayside Smelter modernization at Alusaf Pty. is the retrofit of the Soederberg pots operating at 120 kA to prebake cells with a current load of 165 kA. The complete design and engineering of this modernization project was done by VAW. Based on computer simulations a tailor-made concept for the retrofit project was developed. A pilot plant trial was conducted successfully in 1994. This paper presents the retrofit concept with details of the magneto-hydrodynamic and thermo-electric calculations. Plant measurements demonstrate the good agreement with computer simulations. Some highlights of the detailed engineering for the modernized pots elucidate concepts of integrating existing and new hardware.

  1. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants.

    PubMed

    Nishihara, Masahiro; Nakatsuka, Takashi

    2011-03-01

    Recent advances in genetic transformation techniques enable the production of desirable and novel flower colors in some important floricultural plants. Genetic engineering of novel flower colors is now a practical technology as typified by commercialization of a transgenic blue rose and blue carnation. Many researchers exploit knowledge of flavonoid biosynthesis effectively to obtain unique flower colors. So far, the main pigments targeted for flower color modification are anthocyanins that contribute to a variety of colors such as red, pink and blue, but recent studies have also utilized colorless or faint-colored compounds. For example, chalcones and aurones have been successfully engineered to produce yellow flowers, and flavones and flavonols used to change flower color hues. In this review, we summarize examples of successful flower color modification in floricultural plants focusing on recent advances in techniques. PMID:21053046

  2. Engineering evaluation of plant oils as diesel fuel. Final report. Vol. I

    SciTech Connect

    Engler, C.R.; Johnson, L.A.; Lepori, W.A.; Yarbrough, C.M.

    1983-09-13

    This project includes evaluations of cottonseed oils and sunflower oil ethyl esters in both direct injection and precombustion chamber design diesel engines. It is one part of a major research program at Texas A and M University to study the technical feasibility of using plant oils or animal fats as alternative diesel fuels. Goals for the overall program are to define physical and chemical characteristics and optimum processing methods required for high quality alternative diesel fuels from plant or animal oils and to investigate effects of engine design on alternative fuel performance. This report describes work done under the current contract which includes evaluations of cottonseed oils and sunflower oil interesterified with ethanol as alternative diesel fuels. 15 figures, 18 tables.

  3. Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends

    SciTech Connect

    Szybist, James P; Youngquist, Adam D; Wagner, Robert M; Moore, Wayne; Foster, Matthew; Confer, Keith

    2010-01-01

    Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for

  4. The ABC's required for establishing a practical computerized plant engineering management data base system

    NASA Technical Reports Server (NTRS)

    Maiocco, F. R.; Hume, J. P.

    1976-01-01

    A system's approach is outlined in the paper to assist facility and Plant Engineers improve their organization's data management system. The six basic steps identified may appear somewhat simple; however, adequate planning, proper resources, and the involvement of management will determine the success of a computerized facility management data base. Helpful suggestions are noted throughout the paper to insure the development of a practical computerized data management system.

  5. Systems Engineering of Chemical Hydrogen Storage, Pressure Vessel and Balance of Plant for Onboard Hydrogen Storage

    SciTech Connect

    Brooks, Kriston P.; Simmons, Kevin L.; Weimar, Mark R.

    2014-09-02

    This is the annual report for the Hydrogen Storage Engineering Center of Excellence project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done with cryo-sorbent based and chemical-based hydrogen storage materials. Balance of plant components were developed, proof-of-concept testing performed, system costs estimated, and transient models validated as part of this work.

  6. Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin.

    PubMed

    Lin, Ku-Feng; Lee, Tian-Ren; Tsai, Ping-Hsing; Hsu, Ming-Pin; Chen, Ching-San; Lyu, Ping-Chiang

    2007-08-01

    The structure of a novel plant defensin isolated from the seeds of the mung bean, Vigna radiate, has been determined by (1)H nuclear magnetic resonance spectroscopy. The three-dimensional structure of VrD2, the V. radiate plant defensin 2 protein, comprises an alpha-helix and one triple-stranded anti-parallel beta-sheet stabilized by four disulfide bonds. This protein exhibits neither insecticidal activity nor alpha-amylase inhibitory activity in spite of showing a similar global fold to that of VrD1, an insecticidal plant defensin that has been suggested to function by inhibiting insect alpha-amylase. Our previous study proposed that loop L3 of plant defensins is important for this inhibition. Structural analyses and surface charge comparisons of VrD1 and VrD2 revealed that the charged residues of L3 correlate with the observed difference in inhibitory activities of these proteins. A VrD2 chimera that was produced by transferring the proposed functional loop of VrD1 onto the structurally equivalent loop of VrD2 supported this hypothesis. The VrD2 chimera, which differs by only five residues compared with VrD2, showed obvious activity against Tenebrio molitor alpha-amylase. These results clarify the mode of alpha-amylase inhibition of plant defensins and also represent a possible approach for engineering novel alpha-amylase inhibitors. Plant defensins are important constituents of the innate immune system of plants, and thus the application of protein engineering to this protein family may provide an efficient method for protecting against crop losses. PMID:17444520

  7. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    PubMed

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. PMID:23190163

  8. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  9. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  10. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  11. Refiner upgrades to meet world`s toughest gasoline specs

    SciTech Connect

    Rhodes, A.K.

    1996-09-23

    Ultramar Inc. has completed a $300 million upgrade of its refinery at Wilmington, California, near Los Angeles. The three-step program enables the refinery to produce reformulated gasolines meeting federal and California standards. The upgrade was done in three steps: Step 1 included a new naphtha hydrotreater (NHT) for sulfur reduction and a splitter for benzene reduction, these additions enabled Ultramar to produce the reformulated gasoline (RFG) required by the US Environmental Protection Agency (EPA) beginning in January 1995; Step 2 included an olefin treater for gasoline from the fluid catalytic cracking (FCC) unit (cat gasoline), a hydrotreated naphtha rerun tower, and modifications to the FCC unit (FCCU) main fractionator and debutanizer, to support the changes made in Steps 2 and 3, Ultramar expanded utilities, sulfur handling, and hydrogen production facilities during Step 2; Step 3 comprised a new, 48,000 b/d gas oil hydrotreater (GOH) which started up in mid-March. This was a discretionary project driven by an expected return on investment. Step 3 enabled Ultramar to produce more alkylate, which the general manager of engineering and support services for Ultramar, calls the ultimate clean fuel.

  12. Legacy of earthworms' engineering effects enlarges the actual effects of earthworms on plants

    NASA Astrophysics Data System (ADS)

    Mudrák, Obdřej; Frouz, Jan

    2015-04-01

    Earthworms were recognized as key factor responsible for changes from early to late successional plant communities. They incorporate organic matter into the soil and creates there persistent structures, which improves conditions for plant growth. Earthworm activity might be therefore expected to be more important in early stages of the succession, when earthworm colonization of previously earthworm free soil starts, than in the late stages of the succession, where the soil was previously modified by earthworms. However, earthworms affect plants also via other effects such as increase of nutrient availability. The relative importance of soil structure modification and other earthworm effects on plants is poorly known, despite it is important for both theoretical and applied ecology. To test the effect of earthworms (Lumbricus rubellus and Aporrectodea caliginosa) on plants we performed microcosm laboratory experiment, where earthworms were affecting early successional (Poa compressa, Medicago lupulina, and Daucus carota) and late successional (Arrhenatherum elatius, Lotus corniculatus, and Plantago laceolata) plat species in soil previously unaffected by earthworms and in soil with previous long term effect of earthworms. These soils were taken from the early and late successional monitoring sites of the Sokolov coal mining district with known history. Earthworms increased plant biomass proportionally more in late successional soil. It was mainly because they increased availability of nutrients (nitrate and potassium) and plants get higher advantage out of this in late successional soil. Earthworms increased plant biomass of both early and late successional species, but late successional species suppressed early successional species in competition. This suppression was more intensive in presence of earthworms and in late successional soil. We therefore found multiplicative effect between earthworm soil engineering activity and their other effects, which might be

  13. Agrochemical control of plant water use using engineered abscisic acid receptors.

    PubMed

    Park, Sang-Youl; Peterson, Francis C; Mosquna, Assaf; Yao, Jin; Volkman, Brian F; Cutler, Sean R

    2015-04-23

    Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement. PMID:25652827

  14. Sorption of trace organics and engineered nanomaterials onto wetland plant material.

    PubMed

    Sharif, Fariya; Westerhoff, Paul; Herckes, Pierre

    2013-01-01

    Wastewater treatment plant (WWTP) effluents are sources for emerging pollutants, including organic compounds and engineered nanomaterials (ENMs), which then flow into aquatic systems. In this article, natural attenuation of pollutants by constructed wetland plants was investigated using lab-scale microcosm and batch sorption studies. The microcosms were operated at varying hydraulic residence times (HRTs) and contained decaying plant materials. Representative organic compounds and ENMs were simultaneously spiked into the microcosm influent, along with a conservative tracer (bromide), and then monitored in the effluent over time. It was observed that a more hydrophobic compound-natural estrogen achieved better removal than a polar organic compound – para-chlorobenzoic acid (pCBA), which mimics the behaviour of the tracer. Batch sorption experiments showed that estrogen has higher sorption affinity than pCBA, highlighting the importance of sorption to the plant materials as a removal process for the organic contaminants in the microcosms. Wetland plants were also found a potential sorbent for ENMs. Two different ENMs (nano-silver and aqueous fullerenes) were included in this study, both of which experienced comparable removal in the microcosms. Relative to the tracer, the highest removal of ENMs and trace organics was 60% and 70%, respectively. A more than two-fold increase in HRT increased the removal efficiency of the contaminants in the range of 20–60%. The outcome of this study supports that plant materials of wetlands can play an important role in removing emerging pollutants from WWTP effluent. PMID:24592444

  15. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    DOE PAGESBeta

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  16. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  17. Plant artificial chromosome technology and its potential application in genetic engineering.

    PubMed

    Yu, Weichang; Yau, Yuan-Yeu; Birchler, James A

    2016-05-01

    Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first-generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands. PMID:26369910

  18. Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering

    PubMed Central

    Pourcel, Lucille; Moulin, Michael; Fitzpatrick, Teresa B.

    2013-01-01

    Thiamin (vitamin B1) is made by plants and microorganisms but is an essential micronutrient in the human diet. All organisms require it as a cofactor in its form as thiamin pyrophosphate (TPP) for the activity of key enzymes of central metabolism. In humans, deficiency is widespread particularly in populations where polished rice is a major component of the diet. Considerable progress has been made on the elucidation of the biosynthesis pathway within the last few years enabling concrete strategies for biofortification purposes to be devised, with a particular focus here on genetic engineering. Furthermore, the vitamin has been shown to play a role in both abiotic and biotic stress responses. The precursors for de novo biosynthesis of thiamin differ between microorganisms and plants. Bacteria use intermediates derived from purine and isoprenoid biosynthesis, whereas the pathway in yeast involves the use of compounds from the vitamin B3 and B6 groups. Plants on the other hand use a combination of the bacterial and yeast pathways and there is subcellular partitioning of the biosynthesis steps. Specifically, thiamin biosynthesis occurs in the chloroplast of plants through the separate formation of the pyrimidine and thiazole moieties, which are then coupled to form thiamin monophosphate (TMP). Phosphorylation of thiamin to form TPP occurs in the cytosol. Therefore, thiamin (or TMP) must be exported from the chloroplast to the cytosol for the latter step to be executed. The regulation of biosynthesis is mediated through riboswitches, where binding of the product TPP to the pre-mRNA of a biosynthetic gene modulates expression. Here we examine and hypothesize on genetic engineering approaches attempting to increase the thiamin content employing knowledge gained with the model plant Arabidopsis thaliana. We will discuss the regulatory steps that need to be taken into consideration and can be used a prerequisite for devising such strategies in crop plants. PMID:23755056

  19. Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering.

    PubMed

    Pourcel, Lucille; Moulin, Michael; Fitzpatrick, Teresa B

    2013-01-01

    Thiamin (vitamin B1) is made by plants and microorganisms but is an essential micronutrient in the human diet. All organisms require it as a cofactor in its form as thiamin pyrophosphate (TPP) for the activity of key enzymes of central metabolism. In humans, deficiency is widespread particularly in populations where polished rice is a major component of the diet. Considerable progress has been made on the elucidation of the biosynthesis pathway within the last few years enabling concrete strategies for biofortification purposes to be devised, with a particular focus here on genetic engineering. Furthermore, the vitamin has been shown to play a role in both abiotic and biotic stress responses. The precursors for de novo biosynthesis of thiamin differ between microorganisms and plants. Bacteria use intermediates derived from purine and isoprenoid biosynthesis, whereas the pathway in yeast involves the use of compounds from the vitamin B3 and B6 groups. Plants on the other hand use a combination of the bacterial and yeast pathways and there is subcellular partitioning of the biosynthesis steps. Specifically, thiamin biosynthesis occurs in the chloroplast of plants through the separate formation of the pyrimidine and thiazole moieties, which are then coupled to form thiamin monophosphate (TMP). Phosphorylation of thiamin to form TPP occurs in the cytosol. Therefore, thiamin (or TMP) must be exported from the chloroplast to the cytosol for the latter step to be executed. The regulation of biosynthesis is mediated through riboswitches, where binding of the product TPP to the pre-mRNA of a biosynthetic gene modulates expression. Here we examine and hypothesize on genetic engineering approaches attempting to increase the thiamin content employing knowledge gained with the model plant Arabidopsis thaliana. We will discuss the regulatory steps that need to be taken into consideration and can be used a prerequisite for devising such strategies in crop plants. PMID:23755056

  20. 40 CFR 63.11089 - What requirements must I meet for equipment leak inspections if my facility is a bulk gasoline...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment leak inspections if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station, or pipeline pumping station? 63.11089 Section 63.11089 Protection of Environment ENVIRONMENTAL... Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities...

  1. 40 CFR 63.11089 - What requirements must I meet for equipment leak inspections if my facility is a bulk gasoline...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment leak inspections if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station, or pipeline pumping station? 63.11089 Section 63.11089 Protection of Environment ENVIRONMENTAL... Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities...

  2. 40 CFR 63.11089 - What requirements must I meet for equipment leak inspections if my facility is a bulk gasoline...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment leak inspections if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station, or pipeline pumping station? 63.11089 Section 63.11089 Protection of Environment ENVIRONMENTAL... Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities...

  3. 40 CFR 63.11089 - What requirements must I meet for equipment leak inspections if my facility is a bulk gasoline...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment leak inspections if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station, or pipeline pumping station? 63.11089 Section 63.11089 Protection of Environment ENVIRONMENTAL... if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station, or...

  4. Evaluation of processes for producing gasoline from wood. Final report

    SciTech Connect

    1980-05-01

    Three processes for producing gasoline from wood by pyrolysis have been investigated. Technical and economic comparisons among the processes have been made, based on a hypothetical common plant size of 2000 tons per day green wood chip feedstock. In order to consider the entire fuel production process, the energy and cost inputs for producing and delivering the feedstock were included in the analysis. In addition, perspective has been provided by comparisons of the wood-to-gasoline technologies with other similar systems, including coal-to-methanol and various biomass-to-alcohol systems. Based on several assumptions that were required because of the candidate processes' information gaps, comparisons of energy efficiency were made. Several descriptors of energy efficiency were used, but all showed that methanol production from wood, with or without subsequent processing by the Mobil route to gasoline, appears most promising. It must be emphasized, however, that the critical wood-to-methanol system remains conceptual. Another observation was that the ethanol production systems appear inferior to the wood-to-gasoline processes. Each of the processes investigated requires further research and development to answer the questions about their potential contributions confidently. The processes each have so many unknowns that it appears unwise to pursue any one while abandoning the others.

  5. Toward the development of Raman spectroscopy as a nonperturbative online monitoring tool for gasoline adulteration.

    PubMed

    Tan, Khay M; Barman, Ishan; Dingari, Narahara C; Singh, Gajendra P; Chia, Tet F; Tok, Wee L

    2013-02-01

    There is a critical need for a real-time, nonperturbative probe for monitoring the adulteration of automotive gasoline. Running on adulterated fuel leads to a substantive increase in air pollution, because of increased tailpipe emissions of harmful pollutants, as well as a reduction in engine performance. Consequently, both classification of the gasoline type and quantification of the adulteration content are of great significance for quality control. Gasoline adulteration detection is currently carried out in the laboratory with gas chromatography, which is time-consuming and costly. Here, we propose the application of Raman spectroscopic measurements for on-site rapid detection of gasoline adulteration. In this proof-of-principle report, we demonstrate the effectiveness of Raman spectra, in conjunction with multivariate analysis methods, in classifying the base oil types and simultaneously detecting the adulteration content in a wide range of commercial gasoline mixtures, both in their native states and spiked with different adulterants. In particular, we show that Raman spectra acquired with an inexpensive noncooled detector provides adequate specificity to clearly discriminate between the gasoline samples and simultaneously characterize the specific adulterant content with a limit of detection below 5%. Our promising results in this study illustrate, for the first time, the capability and the potential of Raman spectroscopy, together with multivariate analysis, as a low-cost, powerful tool for on-site rapid detection of gasoline adulteration and opens substantive avenues for applications in related fields of quality control in the oil industry. PMID:23259604

  6. Influence of MTBE addition into gasoline on automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Poulopoulos, S.; Philippopoulos, C.

    The effect of methyl-t-butyl ether (MTBE) addition into gasoline on the exhaust emissions from internal combustion engines was studied. A four-cylinder OPEL 1.6 l engine equipped with a hydraulic brake dynamometer was used in all the experiments. Fuels containing 0.0-11.0% MTBE were used in a wide range of engine operations, and the exhaust gases were analyzed for CO, HC (total unburned hydrocarbons, methane, ethylene) and MTBE, before and after their catalytic treatment by a three-way catalytic converter. The addition of MTBE into gasoline resulted in a decrease in CO and HC emissions only at high engine loading. During cold-start up of the engine, MTBE, HC, CO emissions were significant and increased with MTBE addition into fuel. At the catalytic converter outlet MTBE was detected when its concentration in fuels was greater than 8% and only as long as the catalytic converter operates at low temperatures. Methane and ethylene emissions were comparable for all fuels tested at engine outlet, but methane emissions remained almost at the same level while ethylene emissions were significantly decreased by the catalytic converter.

  7. Optimization of gasoline hydrocarbon compositions for reducing exhaust emissions.

    PubMed

    Shen, Yitao; Shuai, Shijin; Wang, Jianxin; Xiao, Jianhua

    2009-01-01

    Effects of hydrocarbon compositions on raw exhaust emissions and combustion processes were studied on an engine test bench. The optimization of gasoline hydrocarbon composition was discussed. As olefins content increased from 10.0% to 25.0% in volume, the combustion duration was shortened by about 2 degree crank angle (degrees CA), and the engine-out THC emission was reduced by about 15%. On the other hand, as aromatics content changed from 35.0% to 45.0%, the engine-out NOx emissions increased by 4%. An increment in olefins content resulted in a slight increase in engine-out CO emission, while the aromatics content had little effect on engine-out total hydrocarbon (THC) and CO emissions. Over the new European driving cycle (NEDC), the THC, NOx and CO emissions of fuel with 25.0% olefins and 35.0% aromatics were about 45%, 21% and 19% lower than those of fuel with 10.0% olefins and 40.0% aromatics, respectively. The optimized gasoline compositions for new engines and new vehicles have low aromatics and high olefins contents. PMID:19999967

  8. When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts

    PubMed Central

    Trantas, Emmanouil A.; Koffas, Mattheos A. G.; Xu, Peng; Ververidis, Filippos

    2015-01-01

    As a result of the discovery that flavonoids are directly or indirectly connected to health, flavonoid metabolism and its fascinating molecules that are natural products in plants, have attracted the attention of both the industry and researchers involved in plant science, nutrition, bio/chemistry, chemical bioengineering, pharmacy, medicine, etc. Subsequently, in the past few years, flavonoids became a top story in the pharmaceutical industry, which is continually seeking novel ways to produce safe and efficient drugs. Microbial cell cultures can act as workhorse bio-factories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a selective flavonoid. Furthermore, metabolic engineering methodology is used to reinforce what nature does best by correcting the inadequacies and dead-ends of a metabolic pathway. Combinatorial biosynthesis techniques led to the discovery of novel ways of producing natural and even unnatural plant flavonoids, while, in addition, metabolic engineering provided the industry with the opportunity to invest in synthetic biology in order to overcome the currently existing restricted diversification and productivity issues in synthetic chemistry protocols. In this review, is presented an update on the rationalized approaches to the production of natural or unnatural flavonoids through biotechnology, analyzing the significance of combinatorial biosynthesis of agricultural/pharmaceutical compounds produced in heterologous organisms. Also mentioned are strategies and achievements that have so far thrived in the area of synthetic biology, with an emphasis on metabolic engineering targeting the cellular optimization of microorganisms and plants that produce flavonoids, while stressing the advances in flux dynamic control and optimization. Finally, the involvement of the rapidly increasing numbers of assembled genomes that contribute to the gene- or pathway-mining in order to identify

  9. Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane.

    PubMed

    Mena-Benitez, Gilda L; Gandia-Herrero, Fernando; Graham, Stuart; Larson, Tony R; McQueen-Mason, Simon J; French, Christopher E; Rylott, Elizabeth L; Bruce, Neil C

    2008-07-01

    Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum 'Xanthi') plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater. PMID:18467461

  10. Tri-State Synfuels Project Review: Volume 9A. Subcontract information. [Proposed Henderson, Kentucky coal to gasoline plant; water supply and civil engineering subcontracts

    SciTech Connect

    Not Available

    1982-06-01

    Volume 9A considers subcontract work done at the site involving hydrogeological studies with respect to water supply and geotechnical work with respect to the building foundations necessary based on boreholes drilled and the lithology of the area. (LTN)

  11. Tri-State Synfuels Project Review: Volume 11B. Process development studies. [Proposed Henderson, Kentucky coal to gasoline plant; alternative engineering studies; also Kentucky vs Wyoming coal

    SciTech Connect

    Not Available

    1982-06-01

    During the course of the Tri-State/Fluor Management Meeting held in Irvine on October 1, 1981, Fluor was requested to prepare additional process alternate studies. Discussions held on October 2 resulted in the definition of the eight cases described in this report. The scope for these eight cases were reviewed and approved during a meeting held in Houston on October 12. During the October 12 meeting Tri-State requested the preparation of an additional four cases reflecting the use of a typical Powder River basin coal. Cases 9 thru 12 issued with Revision 1 of this report reflect results of this work.

  12. Persulfate Oxidation of Gasoline Compounds

    NASA Astrophysics Data System (ADS)

    Sra, K.; Thomson, N.; Barker, J.

    2009-05-01

    In situ chemical oxidation (ISCO) using persulfate is a promising remediation technology that can be potentially applied to a wide range of organic contaminants. Gasoline compounds are of particular interest because they extensively impact the soil and groundwater, and are highly persistent and toxic. In this investigation, destruction of specific gasoline compounds (benzene, toluene, ethylbenzenes, xylenes, trimethylbenzenes (TMBs) and naphthalene), and fractions (F1 and F2) by activated and inactivated persulfate was studied at the bench-scale. Aqueous phase batch reactors (25 mL) for inactivated systems employed persulfate at two concentrations (1 or 20 g/L), and activated systems were conducted with a persulfate concentration of 20 g/L. In the activated systems, the ability of hydrogen peroxide or chelated-ferrous as an activator was examined at two experimental conditions (peroxide molar ratio 0.1 and 1.0 with respect to persulfate; and citric acid chelated ferrous at 150 and 600 mg/L). All treatments and controls contained an initial gasoline concentration of approximately 25 mg/L and were run in triplicate. Sampling for gasoline compounds was conducted over <28 day reaction period. The controls showed insignificant degradation for all the gasoline compounds and fractions examined while inactivated persulfate at 1 g/L showed little (<10%) decrease in the concentration of gasoline compounds over the 28 day reaction period. Inactivated persulfate at 20 g/L demonstrated a significant decrease in the aqueous concentration of BTEX (>99%), TMB (>94%) and naphthalene (>71%). Oxidation of the F1 fraction (>94%) was more pronounced than the F2 fraction (>80%), and >93% TPH was oxidized. Use of peroxide as an activator at a molar ratio of 0.1 improved the destruction of TMBs (>99%) and naphthalene (>85%) while maintaining the high removal of BTEX (>99%) compounds. Increase in activator strength (molar ratio 1.0) decreased the destruction of xylenes (>86%) and TMBs (>81

  13. Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase.

    PubMed

    Abe, Ikuro; Oguro, Satoshi; Utsumi, Yoriko; Sano, Yukie; Noguchi, Hiroshi

    2005-09-14

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones). Here we describe an octaketide-producing novel plant-specific type III PKS from aloe (Aloe arborescens) sharing 50-60% amino acid sequence identity with other plant CHS-superfamily enzymes. A recombinant enzyme expressed in Escherichia coli catalyzed seven successive decarboxylative condensations of malonyl-CoA to yield aromatic octaketides SEK4 and SEK4b, the longest polyketides known to be synthesized by the structurally simple type III PKS. Surprisingly, site-directed mutagenesis revealed that a single residue Gly207 (corresponding to the CHS's active site Thr197) determines the polyketide chain length and product specificity. Small-to-large substitutions (G207A, G207T, G207M, G207L, G207F, and G207W) resulted in loss of the octaketide-forming activity and concomitant formation of shorter chain length polyketides (from triketide to heptaketide) including a pentaketide chromone, 2,7-dihydroxy-5-methylchromone, and a hexaketide pyrone, 6-(2,4-dihydroxy-6-methylphenyl)-4-hydroxy-2-pyrone, depending on the size of the side chain. Notably, the functional diversity of the type III PKS was shown to evolve from simple steric modulation of the chemically inert single residue lining the active-site cavity accompanied by conservation of the Cys-His-Asn catalytic triad. This provided novel strategies for the engineered biosynthesis of pharmaceutically important plant polyketides. PMID:16144421

  14. A Systems Engineering Framework for Design, Construction and Operation of the Next Generation Nuclear Plant

    SciTech Connect

    Edward J. Gorski; Charles V. Park; Finis H. Southworth

    2004-06-01

    Not since the International Space Station has a project of such wide participation been proposed for the United States. Ten countries, the European Union, universities, Department of Energy (DOE) laboratories, and industry will participate in the research and development, design, construction and/or operation of the fourth generation of nuclear power plants with a demonstration reactor to be built at a DOE site and operational by the middle of the next decade. This reactor will be like no other. The Next Generation Nuclear Plant (NGNP) will be passively safe, economical, highly efficient, modular, proliferation resistant, and sustainable. In addition to electrical generation, the NGNP will demonstrate efficient and cost effective generation of hydrogen to support the President’s Hydrogen Initiative. To effectively manage this multi-organizational and technologically complex project, systems engineering techniques and processes will be used extensively to ensure delivery of the final product. The technological and organizational challenges are complex. Research and development activities are required, material standards require development, hydrogen production, storage and infrastructure requirements are not well developed, and the Nuclear Regulatory Commission may further define risk-informed/performance-based approach to licensing. Detailed design and development will be challenged by the vast cultural and institutional differences across the participants. Systems engineering processes must bring the technological and organizational complexity together to ensure successful product delivery. This paper will define the framework for application of systems engineering to this $1.5B - $1.9B project.

  15. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    SciTech Connect

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  16. Compatible Solute Engineering in Plants for Abiotic Stress Tolerance - Role of Glycine Betaine

    PubMed Central

    Wani, Shabir Hussain; Singh, Naorem Brajendra; Haribhushan, Athokpam; Mir, Javed Iqbal

    2013-01-01

    Abiotic stresses collectively are responsible for crop losses worldwide. Among these, drought and salinity are the most destructive. Different strategies have been proposed for management of these stresses. Being a complex trait, conventional breeding approaches have resulted in less success. Biotechnology has emerged as an additional and novel tool for deciphering the mechanism behind these stresses. The role of compatible solutes in abiotic stress tolerance has been studied extensively. Osmotic adjustment, at the physiological level, is an adaptive mechanism involved in drought or salinity tolerance, which permits the maintenance of turgor under conditions of water deficit, as it can counteract the effects of a rapid decline in leaf water potential. Increasing evidence from a series of in vivo and in vitro studies of the physiology, biochemistry, genetics, and molecular biology of plants suggest strongly that Glycine Betaine (GB) performs an important function in plants subjected to environmental stresses. It plays an adaptive role in mediating osmotic adjustment and protecting the sub-cellular structures in stressed plants, protection of the transcriptional and translational machineries and intervention as a molecular chaperone in the refolding of enzymes. Many important crops like rice do not accumulate glycinebetaine under stress conditions. Both the exogenous application of GB and the genetically engineered biosynthesis of GB in such crops is a promising strategy to increase stress tolerance. In this review we will discuss the importance of GB for abiotic stress tolerance in plants. Further, strategies like exogenic application and transgenic development of plants accumulating GB will be also be discussed. Work done on exogenic application and genetically engineered biosynthesis of GB will be listed and its advantages and limitations will be described. PMID:24179438

  17. A comparative study of emission motorcycle with gasoline and CNG fuel

    NASA Astrophysics Data System (ADS)

    Sasongko, M. N.; Wijayanti, W.; Rahardja, R. A.

    2016-03-01

    A comparison of the exhaust emissions of the engine running gasoline and Compressed Natural Gas have been performed in this study. A gasoline engine 4 stroke single-cylinder with volume of 124.8 cc and compression ratio of 9.3:1 was converted to a CNG gaseous engine. The fuel injector was replaced with a solenoid valve system for injecting CNG gas to engine. The concentrations of CO, CO2, O2 and HC in the exhaust gas of engine were measured over the range of fuel flow rate from 25.32 mg/s to 70.22 mg/s and wide range of Air Fuel Ratio. The comparative analysis of this study showed that CNG engine has a lower HC, CO2 and CO emission at the stoichiometry mixture of fuel and air combustion. The emissions increased when the Air-Fuel ratio was switched from the stoichiometry condition. Moreover, CNG engine produced a lower HC and CO emission compared to the gasoline for difference air flow rate. The average of HC and CO emissions of the CNG was 92 % and 78 % lower than that of the gasoline

  18. Engineering strategies for the fermentative production of plant alkaloids in yeast

    PubMed Central

    Trenchard, Isis J.; Smolke, Christina D.

    2015-01-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 µg/L stylopine, 548 µg/L cis-N-methylstylopine, 252 µg/L protopine, and 80 µg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. PMID:25981946

  19. Development of Small-Scale CHP Plant with a Wood Powder-Fueled Stirling Engine

    NASA Astrophysics Data System (ADS)

    Sato, Katsura; Ohiwa, Norio; Ishikawa, Akira; Shimojima, Hidetoshi; Nishiyama, Akio; Moriya, Yoichi

    Small-scale biomass CHP (combined heat and power) plants are in demand for environmental reasons - particularly systems fueled by wood waste, which are simple to operate and require no maintenance while having high thermal efficiency similar to oil-fired units. A 55kWe Stirling engine CHP system, combined with a simplified biomass combustion process that uses pulverized wood powder has been developed to meet these requirements. Wood powder of less than 500 μm was mainly used in these tests, and a combustion chamber length of 3 m was applied. Under these conditions, the air ratio can be reduced to 1.1 without increasing CO emissions by less than 10 ppm, and with combustion efficiency of 99.9%. Under the same conditions, NOx emissions are estimated to be less than 120 ppm (on the basis of 6% O2). Wood powder was confirmed to have excellent properties as a fuel for Stirling engines. The 55 kWe Stirling engine performance test was carried out to optimize the operating condition of wood powder burners. The status of Stirling engine operation at a full load with 55 kWe was stable, and start-up and shut -down operations were easy to perform. Operational status was evaluated as being excellent, except for an ash fouling problem in the Stirling engine heater tubes. Ash fouling characteristics were considered in the final stage of the demonstration test. This paper summarizes the wood powder combustion test and Stirling engine performance test. Furthermore, the ash fouling data is shown and the mechanism of ash fouling in heater tubes is discussed.

  20. The Role of Plants as Ecosystem Engineers in Resilience to Climate Change

    NASA Astrophysics Data System (ADS)

    Shachak, Moshe; Arbel, Shmuel; Boeken, Bertrand; Segoli, Moran; Ungar, Eugene; Zaady, Eli

    2010-05-01

    continues to function as a sink because the roots function as tubes that channel the water to deeper soil. The patch continues to function as a shrub patch even though the shrub has been decimated. The enriched patch prevents crust encroachment and stimulates regrowth of the shrub. In this case there isn't a transformation from shrub land to crust land and the recovery rate is rapid. Based on the two case studies we present a general model on state changes in shrub lands due to climate change. We demonstrate that a main factor in gauging state transition due to climate change is the mode by which plants engineer their environment.

  1. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Overall system efficiency and performance of a Beech Model 20 Duke aircraft was studied to provide analytical representations of an aircraft piston engine system, including all essential components required for onboard hydrogen generation. Lower emission levels and a 20% reduction in fuel consumption may be obtained by using a catalytic hydrogen generator, incorporated as part of the air induction system, to generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen is then mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultra lean fuel/air ratios, resulting in higher efficiencies.

  2. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field.

    PubMed

    Robert, Christelle Aurélie Maud; Erb, Matthias; Hiltpold, Ivan; Hibbard, Bruce Elliott; Gaillard, Mickaël David Philippe; Bilat, Julia; Degenhardt, Jörg; Cambet-Petit-Jean, Xavier; Turlings, Ted Christiaan Joannes; Zwahlen, Claudia

    2013-06-01

    Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above- and below ground. The transformation, which resulted in the constitutive emission of (E)-β-caryophyllene and α-humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)-β-caryophyllene-synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)-β-caryophyllene and α-humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies. PMID:23425633

  3. The production of human glucocerebrosidase in glyco-engineered Nicotiana benthamiana plants.

    PubMed

    Limkul, Juthamard; Iizuka, Sayoko; Sato, Yohei; Misaki, Ryo; Ohashi, Takao; Ohashi, Toya; Fujiyama, Kazuhito

    2016-08-01

    For the production of therapeutic proteins in plants, the presence of β1,2-xylose and core α1,3-fucose on plants' N-glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down-regulate the endogenous N-acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco-engineered line (NbGNTI-RNAi) showed a strong reduction of plant-specific N-glycans, with the result that as much as 90.9% of the total N-glycans were of high-mannose type. Therefore, this NbGNTI-RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The NbGNTI-RNAi plant was cross-pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N-glycan structures that were presented on all of the four occupied N-glycosylation sites of recombinant GC in NbGNTI-RNAi plants (GC(gnt1) ) showed that the majority (ranging from 73.3% up to 85.5%) of the N-glycans had mannose-type structures lacking potential immunogenic β1,2-xylose and α1,3-fucose epitopes. Moreover, GC(gnt1) could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the NbGNTI-RNAi line, producing GC, was stable and the NbGNTI-RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N-glycan structures. PMID:26868756

  4. Meeting the challenge of reformulated gasoline

    SciTech Connect

    Schmidt, R.J.; Gilsdorf, N.L. . Process and Systems Development Dept.); Bogdan, P.L. )

    1993-02-01

    The need to include oxygenates in motor fuel in certain areas of the United States and the effect of government-mandated aromatics and endpoint reduction will dramatically change gasoline composition and processing technology. The refinery product that boils in the range of 350-450 F will be particularly difficult for a refiner to blend into gasoline if the gasoline endpoint or 90% point (T90) specifications are reduced. The UOP I-Forming process selectively cracks naphtha, kerosene, or both to generate high yields of isobutane. It can offer a cost-effective solution to some of the requirements of reformulated gasoline (RFG). Isobutane is used for the manufacture of methyl tert-butyl ether (MTBE) (after dehydrogenation to isobutene) or the production of gasoline alkylate. This article describes reformulated gasoline; the I-Forming process; and process variables.

  5. DETERMINATION OF GOOD-ENGINEERING-PRACTICE STACK HEIGHT: A FLUID MODE DEMONSTRATION STUDY FOR A POWER PLANT

    EPA Science Inventory

    A study using fluid modeling to determine good-engineering-practice (GEP) stack height for a power plant installation is discussed. Measurements are presented to describe the simulated boundary layer structure, plume dispersion characteristics in the absence of the model plant bu...

  6. Direct Air Capture of CO2 - an Overview of Carbon Engineering's Technology and Pilot Plant Development

    NASA Astrophysics Data System (ADS)

    Holmes, G.; Corless, A.

    2014-12-01

    At Carbon Engineering, we are developing and commercializing technology to scrub CO2 directly from atmospheric air at industrial scale. By providing atmospheric CO2 for use in fuel production, we can enable production of transportation fuels with ultra-low carbon intensities, which command price premiums in the growing set of constrained fuels markets such as California's LCFS. We are a Calgary based startup founded in 2009 with 10 employees, and we are considered a global leader in the direct air capture (DAC) field. We will review CE's DAC technology, based on a wet-scrubbing "air contactor" which absorbs CO2 into aqueous solution, and a chemical looping "regeneration" component, which liberates pure CO2 from this aqueous solution while re-making the original absorption chemical. CE's DAC tecnology exports purified atmospheric CO2, combined with the combustion CO2 from plant energy usage, as the end product. We will also discuss CE's 2014-2015 end-to-end Pilot Demonstration Unit. This is a $7M technology demonstration plant that CE is building with the help of key industrial partners and equipment vendors. Vendor design and engineering requirements have been used to specify the pilot air contactor, pellet reactor, calciner, and slaker modules, as well as auxiliary systems. These modules will be run for several months to obtain the engineering and performance data needed for subsequent commercial plant design, as well as to test the residual integration risks associated with CE's process. By the time of the AGU conference, the pilot is expected to be in late stages of fabrication or early stages of site installation.

  7. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect

    Pihl, Josh A; Toops, Todd J; Fisher, Galen; West, Brian H

    2014-01-01

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  8. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-02-13

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  9. Learning from nature: new approaches to the metabolic engineering of plant defense pathways.

    PubMed

    Jirschitzka, Jan; Mattern, Derek Joseph; Gershenzon, Jonathan; D'Auria, John Charles

    2013-04-01

    Biotechnological manipulation of plant defense pathways can increase crop resistance to herbivores and pathogens while also increasing yields of medicinal, industrial, flavor and fragrance compounds. The most successful achievements in engineering defense pathways can be attributed to researchers striving to imitate natural plant regulatory mechanisms. For example, the introduction of transcription factors that control several genes in one pathway is often a valuable strategy to increase flux in that pathway. The use of multi-gene cassettes which mimic natural gene clusters can facilitate coordinated regulation of a pathway and speed transformation efforts. The targeting of defense pathway genes to organs and tissues in which the defensive products are typically made and stored can also increase yield as well as defensive potential. PMID:23141769

  10. Energy engineering analysis study report, Milan Army Ammunition Plant, Milan, Tennessee: Executive summary. Final report

    SciTech Connect

    1982-09-01

    This report is a summary of the Energy Engineering Analysis for the Milan Army Ammunition Plant (MAAP) in Milan, Tennessee. It includes the recommendations for the development of a Basewide Energy Plan consisting of energy conservation projects and other recommendations for reduction of the installation`s 1985 source energy consumption. Milan Army Ammunition Plant, containing 22,541 acres, is situated in both Gibson and Carroll Counties, Tennessee, and is approximately equally divided longitudinally into the two counties. The Milan area experiences typically short mild winters and long warm summers. With the exception of a few modernized facilities, the overwhelming majority of buildings at MAAP were constructed for World War II ammunition production.

  11. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    PubMed

    Nakata, Paul A

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants. PMID:26517544

  12. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense

    PubMed Central

    Nakata, Paul A.

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants. PMID:26517544

  13. Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol

    PubMed Central

    Jeandet, Philippe; Delaunois, Bertrand; Aziz, Aziz; Donnez, David; Vasserot, Yann; Cordelier, Sylvain; Courot, Eric

    2012-01-01

    Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines. PMID:22654481

  14. Standard technical specifications: Combustion engineering plants. Volume 1, Revision 1: Specifications

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Combustion Engineering Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS.

  15. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35...

  16. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35...

  17. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35...

  18. ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE

    EPA Science Inventory

    The contributions of three major gasoline blending components (reformate, alkylate and cracked gasoline) to potential environmental impacts are assessed. This study estimates losses of the gasoline blending components due to evaporation and leaks through their life cycle, from pe...

  19. Engineering methods for the assessment of ductile fracture margin in nuclear power plant piping

    SciTech Connect

    Ranganath, S.; Mehta, H.S.

    1981-10-01

    When a crack is discovered during inspection of a piping component in a nuclear power plant, the decision on replacement is dependent on the available design margin of the pipe in the presence of the crack. This paper describes the development of engineering methods to assess the design margin in cracked pipes. Procedures are outlined to evaluate cracks in piping, using methods consistent with the American Society of Mechanical Engineers (ASME) Code design basis, and to develop failure diagrams for piping. A criterion based on net section collapse is shown to predict adequately the load capability of piping with cracks. The predictions of the net section collapse approach are shown to be consistent with results from elastic-plastic fracture analysis based on J-integral and R-curve methods. Finally, the methodology is used to recommend acceptance criteria for flaws in power plant piping. The proposed criteria assure that the minimum safety margins inherent in the ASME Code are preserved during operation. Since allowable flaw sizes can be determined using information already available in piping stress reports, the proposed criteria offer a simple conservative method for assessing flaws in piping.

  20. Accelerator production of tritium plant design and supporting engineering development and demonstration work

    SciTech Connect

    Lisowski, P.W.

    1997-11-01

    Tritium is an isotope of hydrogen with a half life of 12.3 years. Because it is essential for US thermonuclear weapons to function, tritium must be periodically replenished. Since K reactor at Savannah River Site stopped operating in 1988, tritium has been recycled from dismantled nuclear weapons. This process is possible only as long as many weapons are being retired. Maintaining the stockpile at the level called for in the present Strategic Arms Reduction Treaty (START-I) will require the Department of Energy to have an operational tritium production capability in the 2005--2007 time frame. To make the required amount of tritium using an accelerator based system (APT), neutrons will be produced through high energy proton reactions with tungsten and lead. Those neutrons will be moderated and captured in {sup 3}He to make tritium. The APT plant design will use a 1,700 MeV linear accelerator operated at 100 mA. In preparation for engineering design, starting in October 1997 and subsequent construction, a program of engineering development and demonstration is underway. That work includes assembly and testing of the first 20 MeV of the low energy plant linac at 100 mA, high-energy linac accelerating structure prototyping, radiofrequency power system improvements, neutronic efficiency measurements, and materials qualifications.

  1. Reformulated gasoline study, executive summary

    SciTech Connect

    Cunningham, R.E.; Michalski, G.W.; Baron, R.E.; Lyons, J.M.

    1994-10-01

    The feasibility of adopting alternative standards for reformulated gasoline (RFG) in New York State has been studied for the New York State Energy Research and Development Authority (the Energy Authority). In addition to Federal RFG (EPA 1) and EPA II, California Air Resources Board RFG (CARB 2) and a modified Federal low sulfur RFG (LS-EPA II) were investigated. The effects of these alternative RFGs on petroleum refinery gasoline production costs, gasoline distribution costs, New York State air quality and the New York State economy were considered. New York has already adopted the California low emission vehicle (LEV) and other emission control programs that will affect vehicles and maintenance. From 1998 to 2012 without the introduction of any type of RFG, these programs are estimated to reduce New York State mobile source summer emissions by 341 tons per day (or 40%) of non-methane hydrocarbons (NMHC) and by 292 tons per day (or 28%) of nitrogen oxides (NO{sub x}), and to reduce winter emissions of carbon monoxide (CO) by 3,072 tons per day (or 39%). By 2012, the planned imposition of Federal RFG will produce further reductions (percent of 1998 levels) of 10 %, 4 % and 11%, respectively, for NMHC, NO{sub x} and CO. If New York State goes beyond EPA II and adopts CARB 2 specifications, further reductions achieved in 2012 are estimated to be very small, equaling 2% or less of 1998 levels of NMHC and NO{sub x} emissions, while CO emissions would actually increase by about 2%. When compared to EPA II over the same time frame, LS-EPA II would produce negligible (less than 1%) reductions in each of the above emissions categories.

  2. A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis

    SciTech Connect

    Gondolf, Vibe M.; Stoppel, Rhea; Ebert, Berit; Rautengarten, Carsten; Liwanag, April J.M.; Loqué, Dominique; Scheller, Henrik V.

    2014-12-10

    Background: Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose. Results: First it was tested if overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls. Conclusions: This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in

  3. A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis

    DOE PAGESBeta

    Gondolf, Vibe M.; Stoppel, Rhea; Ebert, Berit; Rautengarten, Carsten; Liwanag, April J.M.; Loqué, Dominique; Scheller, Henrik V.

    2014-12-10

    Background: Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose. Results: First it was tested ifmore » overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls. Conclusions: This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in fiber cells while

  4. The EPA National Fuels Surveillance Network. I. Trace constituents in gasoline and commercial gasoline fuel additives.

    PubMed

    Jungers, R H; Lee, R E; von Lehmden, D J

    1975-04-01

    A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783

  5. The EPA National Fuels Surveillance Network. I. Trace constituents in gasoline and commercial gasoline fuel additives.

    PubMed Central

    Jungers, R H; Lee, R E; von Lehmden, D J

    1975-01-01

    A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783

  6. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.

    PubMed

    Steinert, Jeannette; Schiml, Simon; Fauser, Friedrich; Puchta, Holger

    2015-12-01

    The application of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system of Streptococcus pyogenes (SpCas9) is currently revolutionizing genome engineering in plants. However, synthetic plant biology will require more complex manipulations of genomes and transcriptomes. The simultaneous addressing of different specific genomic sites with independent enzyme activities within the same cell is a key to this issue. Such approaches can be achieved by the adaptation of additional bacterial orthologues of the CRISPR/Cas system for use in plant cells. Here, we show that codon-optimised Cas9 orthologues from Streptococcus thermophilus (St1Cas9) and Staphylococcus aureus (SaCas9) can both be used to induce error-prone non-homologous end-joining-mediated targeted mutagenesis in the model plant Arabidopsis thaliana at frequencies at least comparable to those that have previously been reported for the S. pyogenes CRISPR/Cas system. Stable inheritance of the induced targeted mutations of the ADH1 gene was demonstrated for both St1Cas9- and SaCas9-based systems at high frequencies. We were also able to demonstrate that the SaCas9 and SpCas9 proteins enhance homologous recombination via the induction of double-strand breaks only in the presence of their species-specific single guide (sg) RNAs. These proteins are not prone to inter-species interference with heterologous sgRNA expression constructs. Thus, the CRISPR/Cas systems of S. pyogenes and S. aureus should be appropriate for simultaneously addressing different sequence motifs with different enzyme activities in the same plant cell. PMID:26576927

  7. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.

    PubMed

    Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P

    2012-04-01

    Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described. PMID:22291131

  8. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  9. Historical Gasoline Composition Data 1976 - 2010

    EPA Science Inventory

    Gasoline composition varies for technical, market and regulatory reasons. Knowledge of any one of these is insufficient for understanding the chemical composition of gasoline at any specific location in the U.S. Historical data collected by the National Institute of Petroleum ...

  10. Gasoline Prices and Motor Vehicle Fatalities

    ERIC Educational Resources Information Center

    Grabowski, David C.; Morrisey, Michael A.

    2004-01-01

    Fatal motor vehicle crashes per capita remained relatively stable over the 1990s, in spite of new traffic safety laws and vehicle innovations. One explanation for this stability is that the price of gasoline declined, which resulted in more vehicle miles traveled and potentially more fatalities. By using 1983-2000 monthly gasoline price and…

  11. What Drives U.S. Gasoline Prices?

    EIA Publications

    2014-01-01

    This analysis provides context for considering the impact of rising domestic light crude oil production on the price that U.S. consumers pay for gasoline, and provides a framework to consider how changes to existing U.S. crude oil export restrictions might affect gasoline prices.

  12. MAPPING GASOLINE REQUIREMENTS, APPLICABLE REGULATIONS AND BANS

    EPA Science Inventory

    Federal and State regulations play an important role in understanding gasoline composition around the United States. Multiple sources of information on these programs were used to develop reliable, up-to-date maps showing gasoline requirements imposed by various regulations. Th...

  13. EVALUATION OF THE CARCINOGENICITY OF UNLEADED GASOLINE

    EPA Science Inventory

    In the document the likelihood that unleaded gasoline vapors are carcinogenic to humans is evaluated. From carcinogenicity data in animals, an estimate is made of the magnitude of cancer risk a person would experience, under the assumption that gasoline vapors are carcinogenic. A...

  14. Mechanisms and Determinants of RNA Turnover: Plant IRESs and Polycistrons for Metabolic Engineering

    SciTech Connect

    Richard B. Meagher

    2002-08-01

    There is a strong need for tools that allow multiple transgenes to be expressed in genetically engineered plants. For the last 30 years it has been believed that nearly all eukaryotic mRNAs were monocistronic, with ribosomes entering at the 5' end and scanning through the 5'UTR to the first AUG codon. It is now clear that perhaps 3% of vertebrate and yeast mRNAs utilize IRESs (Internal Ribosome Entry Sites) within their 5'UTRs to promote the internal entry of ribosomes to mRNAs and subsequent translation of protein without scanning. The working hypothesis behind this proposal is that IRES sequences function in plants and can be used to engineer the efficient co-expression of multiple proteins from polycistronic transcripts. Our goal was to translate multiple proteins from single polycistroic mRNAs. We cloned four IRESs from the following sources: CrTMV (plant virus), EMCV (human encephalomyocarditis virus), eIF4G (human), and c-myc (human). All four IRES were cloned into a specially designed test vector with the strong constitutive ACT2 actin regulatory sequences and flanked by multicloning sites for two reporter genes. These four IRESs were tested in three different test systems with strong paired reporter activities: two fluorescent proteins, two mercury resistance enzymes, and two biosynthetic enzymes making thiolpeptides. All of the four IRES constructs with the fluorescent protein reporter genes were tested for transient expression after particle gun bombardment of tobacco BY2 cells. Three of the IRESs gave reasonable activity (10%-40%) for the second cistron fluorescent reporter (DsRFP) relative to the first cistron reporter (GFP). As a control, translational blocking sequence placed at the 5' end of duplicate constructs had little effect on activity from the second cistron, but blocked the first cistron. These initial positive data lead us to examine the four IRES constructs with three pairs of reporters in hundreds of transgenic Arabidopsis plants. All

  15. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi.

    PubMed

    Navarro, Enrique; Baun, Anders; Behra, Renata; Hartmann, Nanna B; Filser, Juliane; Miao, Ai-Jun; Quigg, Antonietta; Santschi, Peter H; Sigg, Laura

    2008-07-01

    Developments in nanotechnology are leading to a rapid proliferation of new materials that are likely to become a source of engineered nanoparticles (ENPs) to the environment, where their possible ecotoxicological impacts remain unknown. The surface properties of ENPs are of essential importance for their aggregation behavior, and thus for their mobility in aquatic and terrestrial systems and for their interactions with algae, plants and, fungi. Interactions of ENPs with natural organic matter have to be considered as well, as those will alter the ENPs aggregation behavior in surface waters or in soils. Cells of plants, algae, and fungi possess cell walls that constitute a primary site for interaction and a barrier for the entrance of ENPs. Mechanisms allowing ENPs to pass through cell walls and membranes are as yet poorly understood. Inside cells, ENPs might directly provoke alterations of membranes and other cell structures and molecules, as well as protective mechanisms. Indirect effects of ENPs depend on their chemical and physical properties and may include physical restraints (clogging effects), solubilization of toxic ENP compounds, or production of reactive oxygen species. Many questions regarding the bioavailability of ENPs, their uptake by algae, plants, and fungi and the toxicity mechanisms remain to be elucidated. PMID:18461442

  16. The first crop plant genetically engineered to release an insect pheromone for defence.

    PubMed

    Bruce, Toby J A; Aradottir, Gudbjorg I; Smart, Lesley E; Martin, Janet L; Caulfield, John C; Doherty, Angela; Sparks, Caroline A; Woodcock, Christine M; Birkett, Michael A; Napier, Johnathan A; Jones, Huw D; Pickett, John A

    2015-01-01

    Insect pheromones offer potential for managing pests of crop plants. Volatility and instability are problems for deployment in agriculture but could be solved by expressing genes for the biosynthesis of pheromones in the crop plants. This has now been achieved by genetically engineering a hexaploid variety of wheat to release (E)-β-farnesene (Eβf), the alarm pheromone for many pest aphids, using a synthetic gene based on a sequence from peppermint with a plastid targeting amino acid sequence, with or without a gene for biosynthesis of the precursor farnesyl diphosphate. Pure Eβf was produced in stably transformed wheat lines with no other detectable phenotype but requiring targeting of the gene produced to the plastid. In laboratory behavioural assays, three species of cereal aphids were repelled and foraging was increased for a parasitic natural enemy. Although these studies show considerable potential for aphid control, field trials employing the single and double constructs showed no reduction in aphids or increase in parasitism. Insect numbers were low and climatic conditions erratic suggesting the need for further trials or a closer imitation, in the plant, of alarm pheromone release. PMID:26108150

  17. Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores

    PubMed Central

    Glas, Joris J.; Schimmel, Bernardus C. J.; Alba, Juan M.; Escobar-Bravo, Rocío; Schuurink, Robert C.; Kant, Merijn R.

    2012-01-01

    Glandular trichomes are specialized hairs found on the surface of about 30% of all vascular plants and are responsible for a significant portion of a plant’s secondary chemistry. Glandular trichomes are an important source of essential oils, i.e., natural fragrances or products that can be used by the pharmaceutical industry, although many of these substances have evolved to provide the plant with protection against herbivores and pathogens. The storage compartment of glandular trichomes usually is located on the tip of the hair and is part of the glandular cell, or cells, which are metabolically active. Trichomes and their exudates can be harvested relatively easily, and this has permitted a detailed study of their metabolites, as well as the genes and proteins responsible for them. This knowledge now assists classical breeding programs, as well as targeted genetic engineering, aimed to optimize trichome density and physiology to facilitate customization of essential oil production or to tune biocide activity to enhance crop protection. We will provide an overview of the metabolic diversity found within plant glandular trichomes, with the emphasis on those of the Solanaceae, and of the tools available to manipulate their activities for enhancing the plant’s resistance to pests. PMID:23235331

  18. The first crop plant genetically engineered to release an insect pheromone for defence

    PubMed Central

    Bruce, Toby J.A.; Aradottir, Gudbjorg I.; Smart, Lesley E.; Martin, Janet L.; Caulfield, John C.; Doherty, Angela; Sparks, Caroline A.; Woodcock, Christine M.; Birkett, Michael A.; Napier, Johnathan A.; Jones, Huw D.; Pickett, John A.

    2015-01-01

    Insect pheromones offer potential for managing pests of crop plants. Volatility and instability are problems for deployment in agriculture but could be solved by expressing genes for the biosynthesis of pheromones in the crop plants. This has now been achieved by genetically engineering a hexaploid variety of wheat to release (E)-β-farnesene (Eβf), the alarm pheromone for many pest aphids, using a synthetic gene based on a sequence from peppermint with a plastid targeting amino acid sequence, with or without a gene for biosynthesis of the precursor farnesyl diphosphate. Pure Eβf was produced in stably transformed wheat lines with no other detectable phenotype but requiring targeting of the gene produced to the plastid. In laboratory behavioural assays, three species of cereal aphids were repelled and foraging was increased for a parasitic natural enemy. Although these studies show considerable potential for aphid control, field trials employing the single and double constructs showed no reduction in aphids or increase in parasitism. Insect numbers were low and climatic conditions erratic suggesting the need for further trials or a closer imitation, in the plant, of alarm pheromone release. PMID:26108150

  19. Application of EPRI risk-based inservice inspection procedure to combustion engineering design of nuclear power plant

    SciTech Connect

    Lubin, B.T.; Fourgerousse, R.

    1996-12-01

    The EPRI developed risk-based inservice inspection procedure is used to select the elements for inservice inspection on a section of the high pressure safety injection system of the Entergy Operations ANO2 nuclear plant. This plant is the pilot plant in a six utility-eleven plant EPRI tailored collaboration program to apply the general EPRI procedures to Combustion Engineering NSSS designs. The procedure results in a reduction of candidate inspection locations from 14, based on current ASME Section XI rules for B-J welds to 3, based on the risk-based selection criteria.

  20. Acute toxicity of gasoline and some additives

    SciTech Connect

    Reese, E.; Kimbrough, R.D.

    1993-12-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. 128 refs., 7 tabs.

  1. Acute toxicity of gasoline and some additives.

    PubMed Central

    Reese, E; Kimbrough, R D

    1993-01-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. PMID:8020435

  2. Selection of composite stabilizer for automotive gasolines

    SciTech Connect

    Golubeva, I.A.; Klinaeva, E.V.; Kharitonov, V.V.

    1995-03-01

    An important and very promising approach in expanding the volume of automotive gasoline production is the incorporation of products from secondary processes, namely, pyrolysis, coking, catalytic cracking and thermal cracking. Naturally, the addition of such components gives a very sharp reduction of the gasoline`s oxidation resistance. To stabilize this sort of blended gasoline, new and highly efficient antioxidants, are required. The selection of antioxidants for this purpose is hampered by the lack of information on the mechanisms of mixed-fuel oxidation and the action of stabilizers under these conditions. Since the investigation of oxidation processes involves extended test periods, it becomes important to obtain an objective evaluation of stabilizer efficiency by standard methods, and to improve these methods. The work reported here was aimed at finding and evaluating (by standard methods) a new stabilizer for A-76 automotive gasoline containing unstable catalytic naphtha; the work was also aimed at improving the standard methods. This program consisted of several stages.

  3. Silencing of meiosis-critical genes for engineering male sterility in plants.

    PubMed

    Wang, Xiping; Singer, Stacy D; Liu, Zongrang

    2012-04-01

    The potential for pollen-mediated transgene flow into wild or closely related species has provoked unease in terms of transgenic modification of agricultural plant species. One approach to remedy this situation in species whose seeds and fruits are not of particular value is to engineer male sterility into the transgenic lines. In this study, three meiosis-critical genes, namely AHP2, AtRAD51C and SWITCH1 (SWI), were chosen as silencing targets to test the feasibility of incorporating sterility into plants using an RNAi-based approach. Our results indicated that the silencing of each of these genes via hairpin RNA (termed AHPi, RAD51Ci and SWIi lines) in Arabidopsis thaliana yielded a proportion of transgenic plants exhibiting a similar 'partially sterile' phenotype in which less than 50% of pollen was viable. In addition, a 'sterile' phenotype was also evident in a minority of RAD51Ci and SWIi, but not AHPi, lines in which plants yielded no seeds and either produced inviable pollen (RAD51Ci lines) or displayed a complete absence of pollen (SWIi lines). This suggests that AtRAD51C and SWI may function at distinct stages of meiosis. Further analyses of SWIi lines demonstrated that the 'sterile' phenotype was associated with a substantial reduction in the level of targeted gene transcript in floral tissues and resulted from sterility of the male, but not female gametes. This work demonstrates that generating male sterility through the silencing of key genes involved in the regulation of meiosis is feasible, and its advantages and potential applications for transgene containment are discussed. PMID:22120011

  4. Engineering and expression of a RhoA peptide against respiratory syncytial virus infection in plants.

    PubMed

    Ortega-Berlanga, Benita; Musiychuk, Konstantin; Shoji, Yoko; Chichester, Jessica A; Yusibov, Vidadi; Patiño-Rodríguez, Omar; Noyola, Daniel E; Alpuche-Solís, Ángel G

    2016-02-01

    MAIN CONCLUSION : A RhoA-derived peptide fused to carrier molecules from plants showed enhanced biological activity of in vitro assays against respiratory syncytial virus compared to the RhoA peptide alone or the synthetic RhoA peptide. A RhoA-derived peptide has been reported for over a decade as a potential inhibitor of respiratory syncytial virus (RSV) infection both in vitro and in vivo and is anticipated to be a promising alternative to monoclonal antibody-based therapy against RSV infection. However, there are several challenges to furthering development of this antiviral peptide, including improvement in the peptide’s bioavailability, development of an efficient delivery system and identification of a cost-effective production platform. In this study, we have engineered a RhoA peptide as a genetic fusion to two carrier molecules, either lichenase (LicKM) or the coat protein (CP) of Alfalfa mosaic virus. These constructs were introduced into Nicotiana benthamiana plants using a tobacco mosaic virus-based expression vector and targets purified. The results demonstrated that the RhoA peptide fusion proteins were efficiently expressed in N. benthamiana plants, and that two of the resulting fusion proteins, RhoA-LicKM and RhoA2-FL-d25CP, inhibited RSV growth in vitro by 50 and 80 %, respectively. These data indicate the feasibility of transient expression of this biologically active antiviral RhoA peptide in plants and the advantage of using a carrier molecule to enhance target expression and efficacy. PMID:26474991

  5. Genetic engineering of plants for improved crop production. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the use of genetic engineering to improve crop production. Genetic alterations of plants to provide insect protection, herbicide resistance, disease resistance, improved quality, and higher yield are discussed. Methods used to develop environmentally tolerant crops that are able to withstand extremes of temperature, reduced water consumption, and reduced fertilizer requirements are examined. Genetic engineering of microorganisms that are beneficial to plants is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  6. Automated small scale oil seed processing plant for production of fuel for diesel engines

    SciTech Connect

    Thompson, J.C.; Peterson, C.L.

    1982-01-01

    University of Idaho seed processing research is centered about a CeCoCo oil expeller. A seed preheater-auger, seed bin, meal auger, and oil pump have been constructed to complete the system, which is automated and instrumented. The press, preheater, cake removal auger, and oil transfer pump are tied into a central panel where energy use is measured and the process controlled. Extracted oil weight, meal weight, process temperature, and input energy are all recorded during operation. The oil is transferred to tanks where it settles for 48 hours or more. It is then pumped through a filtering system and stored ready to be used as an engine fuel. The plant has processed over 11,000 kg of seed with an average extraction efficiency of 78 percent. 5 tables.

  7. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    PubMed

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C). PMID:24758145

  8. 76 FR 9013 - Agency Information Collection Activities; Proposed Collection; Comment Request; Detergent Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... the use of special characters, any form of encryption, and be free of any defects or viruses. For... information technology, e.g., permitting electronic submission of responses. In particular, EPA is requesting...: Gasoline combustion results in the formation of engine deposits that contribute to increased...

  9. Persulfate injection into a gasoline source zone

    NASA Astrophysics Data System (ADS)

    Sra, Kanwartej S.; Thomson, Neil R.; Barker, Jim F.

    2013-07-01

    One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O82 -, SO42 -, Na+, dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for > 10 months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in M indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M increased by > 100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone.

  10. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA.

    PubMed

    Ruiz-Lopez, Noemi; Usher, Sarah; Sayanova, Olga V; Napier, Johnathan A; Haslam, Richard P

    2015-01-01

    Omega-3 fatty acids are characterized by a double bond at the third carbon atom from the end of the carbon chain. Latterly, long chain polyunsaturated omega-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexanoic acid (DHA; 22:6 Δ4,7,10,13,16,19), which typically only enter the human diet via the consumption of oily fish, have attracted much attention. The health benefits of the omega-3 LC-PUFAs EPA and DHA are now well established. Given the desire for a sustainable supply of omega-LC-PUFA, efforts have focused on enhancing the composition of vegetable oils to include these important fatty acids. Specifically, EPA and DHA have been the focus of much study, with the ultimate goal of producing a terrestrial plant-based source of these so-called fish oils. Over the last decade, many genes encoding the primary LC-PUFA biosynthetic activities have been identified and characterized. This has allowed the reconstitution of the LC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate omega-3 LC-PUFA to levels similar to that found in fish oil. In this review, we will describe the most recent developments in this field and the challenges of overwriting endogenous seed lipid metabolism to maximize the accumulation of these important fatty acids. PMID:25417743

  11. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    PubMed

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  12. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    PubMed

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system. PMID:25706640

  13. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves

    PubMed Central

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-01-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  14. Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants

    SciTech Connect

    O, J.M.; Higgins, J.; Stephen Fleger - NRC

    2011-09-19

    The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.

  15. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: III. Components of diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions driving non-cancer biological responses in rodents.

    PubMed

    Mauderly, Joe L; Seilkop, Steven K

    2014-09-01

    An approach to identify causal components of complex air pollution mixtures was explored. Rats and mice were exposed by inhalation 6 h daily for 1 week or 6 months to dilutions of simulated downwind coal emissions, diesel and gasoline exhausts and wood smoke. Organ weights, hematology, serum chemistry, bronchoalveolar lavage, central vascular and respiratory allergic responses were measured. Multiple additive regression tree (MART) analysis of the combined database ranked 45 exposure (predictor) variables for importance to models best fitting 47 significant responses. Single-predictor concentration-response data were examined for evidence of single response functions across all exposure groups. Replication of the responses by the combined influences of the two most important predictors was tested. Statistical power was limited by inclusion of only four mixtures, albeit in multiple concentrations each and with particles removed for some groups. Results gave suggestive or strong evidence of causation of 19 of the 47 responses. The top two predictors of the 19 responses included only 12 organic and 6 inorganic species or classes. An increase in red blood cell count of rats by ammonia and pro-atherosclerotic vascular responses of mice by inorganic gases yielded the strongest evidence for causation and the best opportunity for confirmation. The former was a novel finding; the latter was consistent with other results. The results demonstrated the plausibility of identifying putative causal components of highly complex mixtures, given a database in which the ratios of the components are varied sufficiently and exposures and response measurements are conducted using a consistent protocol. PMID:25162720

  16. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: II. Comparison of responses to diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions.

    PubMed

    Mauderly, J L; Barrett, E G; Day, K C; Gigliotti, A P; McDonald, J D; Harrod, K S; Lund, A K; Reed, M D; Seagrave, J C; Campen, M J; Seilkop, S K

    2014-09-01

    The NERC Program conducted identically designed exposure-response studies of the respiratory and cardiovascular responses of rodents exposed by inhalation for up to 6 months to diesel and gasoline exhausts (DE, GE), wood smoke (WS) and simulated downwind coal emissions (CE). Concentrations of the four combustion-derived mixtures ranged from near upper bound plausible to common occupational and environmental hotspot levels. An "exposure effect" statistic was created to compare the strengths of exposure-response relationships and adjustments were made to minimize false positives among the large number of comparisons. All four exposures caused statistically significant effects. No exposure caused overt illness, neutrophilic lung inflammation, increased circulating micronuclei or histopathology of major organs visible by light microscopy. DE and GE caused the greatest lung cytotoxicity. WS elicited the most responses in lung lavage fluid. All exposures reduced oxidant production by unstimulated alveolar macrophages, but only GE suppressed stimulated macrophages. Only DE retarded clearance of bacteria from the lung. DE before antigen challenge suppressed responses of allergic mice. CE tended to amplify allergic responses regardless of exposure order. GE and DE induced oxidant stress and pro-atherosclerotic responses in aorta; WS and CE had no such effects. No overall ranking of toxicity was plausible. The ranking of exposures by number of significant responses varied among the response models, with each of the four causing the most responses for at least one model. Each exposure could also be deemed most or least toxic depending on the exposure metric used for comparison. The database is available for additional analyses. PMID:25162719

  17. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics

    PubMed Central

    Antonelli, Alexandre; Zizka, Alexander; Silvestro, Daniele; Scharn, Ruud; Cascales-Miñana, Borja; Bacon, Christine D.

    2015-01-01

    Understanding the processes that have generated the latitudinal biodiversity gradient and the continental differences in tropical biodiversity remains a major goal of evolutionary biology. Here we estimate the timing and direction of range shifts of extant flowering plants (angiosperms) between tropical and non-tropical zones, and into and out of the major tropical regions of the world. We then calculate rates of speciation and extinction taking into account incomplete taxonomic sampling. We use a recently published fossil calibrated phylogeny and apply novel bioinformatic tools to code species into user-defined polygons. We reconstruct biogeographic history using stochastic character mapping to compute relative numbers of range shifts in proportion to the number of available lineages through time. Our results, based on the analysis of c. 22,600 species and c. 20 million geo-referenced occurrence records, show no significant differences between the speciation and extinction of tropical and non-tropical angiosperms. This suggests that at least in plants, the latitudinal biodiversity gradient primarily derives from other factors than differential rates of diversification. In contrast, the outstanding species richness found today in the American tropics (the Neotropics), as compared to tropical Africa and tropical Asia, is associated with significantly higher speciation and extinction rates. This suggests an exceedingly rapid evolutionary turnover, i.e., Neotropical species being formed and replaced by one another at unparalleled rates. In addition, tropical America stands out from other continents by having “pumped out” more species than it received through most of the last 66 million years. These results imply that the Neotropics have acted as an engine for global plant diversity. PMID:25904934

  18. Suppression Subtractive Hybridization Versus Next-Generation Sequencing in Plant Genetic Engineering: Challenges and Perspectives.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Azizi, Parisa; Hakim, Abdul; Ashkani, Sadegh; Abiri, Rambod

    2015-10-01

    Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics. PMID:26271955

  19. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics.

    PubMed

    Antonelli, Alexandre; Zizka, Alexander; Silvestro, Daniele; Scharn, Ruud; Cascales-Miñana, Borja; Bacon, Christine D

    2015-01-01

    Understanding the processes that have generated the latitudinal biodiversity gradient and the continental differences in tropical biodiversity remains a major goal of evolutionary biology. Here we estimate the timing and direction of range shifts of extant flowering plants (angiosperms) between tropical and non-tropical zones, and into and out of the major tropical regions of the world. We then calculate rates of speciation and extinction taking into account incomplete taxonomic sampling. We use a recently published fossil calibrated phylogeny and apply novel bioinformatic tools to code species into user-defined polygons. We reconstruct biogeographic history using stochastic character mapping to compute relative numbers of range shifts in proportion to the number of available lineages through time. Our results, based on the analysis of c. 22,600 species and c. 20 million geo-referenced occurrence records, show no significant differences between the speciation and extinction of tropical and non-tropical angiosperms. This suggests that at least in plants, the latitudinal biodiversity gradient primarily derives from other factors than differential rates of diversification. In contrast, the outstanding species richness found today in the American tropics (the Neotropics), as compared to tropical Africa and tropical Asia, is associated with significantly higher speciation and extinction rates. This suggests an exceedingly rapid evolutionary turnover, i.e., Neotropical species being formed and replaced by one another at unparalleled rates. In addition, tropical America stands out from other continents by having "pumped out" more species than it received through most of the last 66 million years. These results imply that the Neotropics have acted as an engine for global plant diversity. PMID:25904934

  20. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.

  1. Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper provides recommendations on experimental design for early-tier laboratory studies used in the risk assessment process to evaluate potential adverse impacts of arthropod-resistant genetically-engineered plants on non-target arthropods. While we rely heavily on the currently used proteins f...

  2. Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of...

  3. 76 FR 27366 - Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plants #1 And #2, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... notice was published in the Federal Register on April 22, 2011 (76 FR 22731). The notice was amended on..., 2011 (76 FR 22729). At the request of a company official, the Department reviewed the certification for... Employment and Training Administration Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plants...

  4. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  5. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  6. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  7. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  8. Re-engineering of carbon fixation in plants - challenges for plant biotechnology to improve yields in a high-CO2 world.

    PubMed

    Peterhansel, Christoph; Offermann, Sascha

    2012-04-01

    Source and sink strength control plant carbon gain and yield. Source strength was recently engineered by modifying the large subunit of Rubisco, replacing the small subunit, and creating improved thermostable Rubisco activases. This technological breakthrough makes Rubisco engineering feasible at last. Enhancement of leaf transitory starch synthesis or induction of artificial sinks in leaves increased biomass and yield. Importantly, such approaches also had a positive feedback on source strength. In addition, novel targets for the improvement of carbon gain in crops have been identified that are especially relevant in the light of climate change. PMID:22261558

  9. Review of the carcinogenic potential of gasoline.

    PubMed Central

    Raabe, G K

    1993-01-01

    This review examines the animal, human, and mechanistic studies that precede the new studies reported in this volume. Wholly vaporized unleaded gasoline was found to produce a dose-dependent increase in renal carcinoma in male rats and an excess above background incidence of hepatocellular tumors in female mice in the high-dose group. Mechanistic studies suggest that gasoline is not mutagenic and that the probable mechanism for the male rat renal tumors involves a rat-specific protein, alpha 2u-globulin, whose binding with highly branched aliphatic compounds results in renal tubule cell death and, in turn, a proliferative sequence that increases renal tubule tumors. Human evidence generated predominantly from studies of refinery workers does not support a kidney or liver cancer risk in humans. The current epidemiologic database is inadequate to access leukemia risk from low-level benzene exposure from gasoline. Studies of gasoline-exposed workers that incorporate quantitative exposure information are needed. PMID:8020448

  10. Review of the carcinogenic potential of gasoline.

    PubMed

    Raabe, G K

    1993-12-01

    This review examines the animal, human, and mechanistic studies that precede the new studies reported in this volume. Wholly vaporized unleaded gasoline was found to produce a dose-dependent increase in renal carcinoma in male rats and an excess above background incidence of hepatocellular tumors in female mice in the high-dose group. Mechanistic studies suggest that gasoline is not mutagenic and that the probable mechanism for the male rat renal tumors involves a rat-specific protein, alpha 2u-globulin, whose binding with highly branched aliphatic compounds results in renal tubule cell death and, in turn, a proliferative sequence that increases renal tubule tumors. Human evidence generated predominantly from studies of refinery workers does not support a kidney or liver cancer risk in humans. The current epidemiologic database is inadequate to access leukemia risk from low-level benzene exposure from gasoline. Studies of gasoline-exposed workers that incorporate quantitative exposure information are needed. PMID:8020448

  11. Tested Demonstrations. Gasoline Vapor: An Invisible Pollutant

    ERIC Educational Resources Information Center

    Stephens, Edgar R.

    1977-01-01

    Describes a demonstration concerning the air pollution aspects of gasoline vapor which provides an estimation of the vapor pressure of test fuel, the molecular weight of the vapor, and illustrates a method of controlling the pollution. (SL)

  12. Reformulated Gasoline Market Affected Refiners Differently, 1995

    EIA Publications

    1996-01-01

    This article focuses on the costs of producing reformulated gasoline (RFG) as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate.

  13. Survey of American (USA) gasolines (2008).

    PubMed

    Hetzel, Susan S

    2015-01-01

    The regulations for gasoline's content vary depending on the time of year and physical location within the United States while the refinery and distribution system mixes product batches; this results in variability of content. ASTM E1618 requires both the aromatic and alkane EIP patterns of gasoline to compare with references. A survey was conducted by collecting gasoline from Florida to Oregon, from 85 to 93 octane. Samples were analyzed in accordance with ASTM E1618 in various states of evaporation. The range of differences found in the 90% evaporated alkane EIPs is presented and showed a continuum of response when the n-alkane response was compared with the branched alkane response. Similarly, the ratio of the alkane EIP to the aromatic EIP also showed a continuum of response at the 90% evaporated state. Gasoline samples with unusual characteristics are also discussed. PMID:25288158

  14. Petroleum fingerprinting: Dating a gasoline release

    SciTech Connect

    Johnson, M.D.; Morrison, R.D.

    1996-09-01

    Dating a gasoline releases is particularly important in situations involving a contaminated gasoline service station. Often the station begins under the control of a major oil company, and as it ages and deteriorates it may be operated by a series of smaller operators. When facing a claim for contamination, often operators blame former operators. Fingerprinting is one of several successful methods used to date petroleum releases on contaminated sites. The topics covered in this article are inventory reconciliation; reverse groundwater modeling; hydrocarbon fingerprinting.

  15. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants.

    PubMed

    Huang, Junchao; Zhong, Yujuan; Sandmann, Gerhard; Liu, Jin; Chen, Feng

    2012-08-01

    β-Carotene ketolase (BKT) catalyzes the rate-limiting steps for the biosynthesis of astaxanthin. Several bkt genes have been isolated and explored to modify plant carotenoids to astaxanthin with limited success. In this study, five algal BKT cDNAs were isolated and characterized for the engineering of high-yield astaxanthin in plants. The products of the cDNAs showed high similarity in sequence and enzymatic activity of converting β-carotene into canthaxanthin. However, the enzymes exhibited extremely different activities in converting zeaxanthin into astaxanthin. Chlamydomonas reinhardtii BKT showed the highest conversion rate (ca 85%), whereas, Neochloris wimmeri BKT exhibited very poor activity of ketolating zeaxanthin. Expression of C. reinhardtii BKT in tobacco led to a twofold increase of total carotenoids in the leaves with astaxanthin being the predominant. The bkt genes described here provide a valuable resource for metabolic engineering of plants as cell factories for astaxanthin production. PMID:22526507

  16. Genetically engineered foods

    MedlinePlus

    ... plants or animals) inserted into their genetic codes. Genetic engineering can be done with plants, animals, or bacteria ... have been genetically engineering plants since the 1990s. Genetic engineering allows scientists to speed this process up by ...

  17. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics

    NASA Astrophysics Data System (ADS)

    Fenkl, Michael; Pechout, Martin; Vojtisek, Michal

    2016-03-01

    The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.

  18. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement. PMID:26556131

  19. Chemical fingerprinting of unevaporated automotive gasoline samples.

    PubMed

    Sandercock, P M L; Du Pasquier, E

    2003-06-24

    The comparison of two or more samples of liquid gasoline (petrol) to establish a common origin is a difficult problem in the forensic investigation of arsons and suspicious fires. A total of 35 randomly collected samples of unevaporated gasoline, covering three different grades (regular unleaded, premium unleaded and lead replacement), were examined. The high-boiling fraction of the gasoline was targeted with a view to apply the techniques described herein to evaporated gasoline samples in the future.A novel micro solid phase extraction (SPE) technique using activated alumina was developed to isolate the polar compounds and the polycyclic aromatic hydrocarbons (PAHs) from a 200microl sample of gasoline. Samples were analysed using full-scan gas chromatography-mass spectrometry (GC-MS) and potential target compounds identified. Samples were then re-analysed directly, without prior treatment, using GC-MS in selected ion monitoring (SIM) mode for target compounds that exhibited variation between gasoline samples. Principal component analysis (PCA) was applied to the chromatographic data. The first two principal components (PCs) accounted for 91.5% of the variation in the data. Linear discriminant analysis (LDA) performed on the PCA results showed that the 35 samples tested could be classified into 32 different groups. PMID:12842350

  20. Alternative-engine-fuels demonstration and materials test

    SciTech Connect

    Thimsen, D.

    1981-01-01

    A portable demonstration was constructed to measure peak power and specific fuel consumption of a gasoline engine burning gasoline and ethanol, and a diesel engine burning No. 2 diesel and sunflower oil. The demonstrations were given at farm field days. Several metals were subjected to wet ethanol fuels to measure corrosion.

  1. Reid vapor-pressure regulation of gasoline, 1987-1990. Master's thesis

    SciTech Connect

    Butters, R.A.

    1990-09-30

    Although it is generally only a summertime problem, smog, as represented by its criteria pollutant, ozone, is currently the number one air pollution problem in the United States. Major contributors to smog formation are the various Volatile Organic Compounds (VOC's) which react with other chemicals in the atmosphere to form the ozone and other harmful chemicals known as smog. Gasoline is a major source of VOC's, not only as it is burned in car engines, but as it evaporates. Gasoline evaporates in storage tanks, as it is transferred during loading and refueling operations, and in automobiles, both while they are running and while parked in the driveway. In 1987, the United States Environmental Protection Agency began an almost unprecedented effort to reduce the evaporative quality of commercial gasolines by mandating reductions in its Reid Vapor Pressure (RVP).

  2. Refining economics of U.S. gasoline: octane ratings and ethanol content.

    PubMed

    Hirshfeld, David S; Kolb, Jeffrey A; Anderson, James E; Studzinski, William; Frusti, James

    2014-10-01

    Increasing the octane rating of the U.S. gasoline pool (currently ∼ 93 Research Octane Number (RON)) would enable higher engine efficiency for light-duty vehicles (e.g., through higher compression ratio), facilitating compliance with federal fuel economy and greenhouse gas (GHG) emissions standards. The federal Renewable Fuels Standard calls for increased renewable fuel use in U.S. gasoline, primarily ethanol, a high-octane gasoline component. Linear programming modeling of the U.S. refining sector was used to assess the effects on refining economics, CO2 emissions, and crude oil use of increasing average octane rating by increasing (i) the octane rating of refinery-produced hydrocarbon blendstocks for oxygenate blending (BOBs) and (ii) the volume fraction (Exx) of ethanol in finished gasoline. The analysis indicated the refining sector could produce BOBs yielding finished E20 and E30 gasolines with higher octane ratings at modest additional refining cost, for example, ∼ 1¢/gal for 95-RON E20 or 97-RON E30, and 3-5¢/gal for 95-RON E10, 98-RON E20, or 100-RON E30. Reduced BOB volume (from displacement by ethanol) and lower BOB octane could (i) lower refinery CO2 emissions (e.g., ∼ 3% for 98-RON E20, ∼ 10% for 100-RON E30) and (ii) reduce crude oil use (e.g., ∼ 3% for 98-RON E20, ∼ 8% for 100-RON E30). PMID:25224603

  3. The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes

    SciTech Connect

    Cracknell, R.F.; McAllister, L.J.; Norton, M.; Walmsley, H.L.; Andrae, J.C.G.

    2009-05-15

    Experimental octane measurements are presented for a standard gasoline to which has been added various quantities of nitromethane, nitroethane and 1-nitropropane. The addition of nitroalkanes was found to suppress the Motor Octane Number to a much greater extent than the Research Octane Number. In other words addition of nitroalkanes increases the octane sensitivity of gasoline. Density Functional Theory was used to model the equilibrium thermodynamics and the barrier heights for reactions leading to the break-up of nitroethane. These results were used to develop a chemical kinetic scheme for nitroalkanes combined with a surrogate gasoline (for which a mechanism has been developed previously). Finally the chemical kinetic simulations were combined with a quasi-dimensional engine model in order to predict autoignition in octane rating tests. Our results suggest that the chemical origin of octane sensitivity in gasoline/nitroalkane blends cannot be fully explained on the conventional basis of the extent to which NTC behaviour is absent. Instead we have shown that the contribution of the two pathways leading to autoignition in gasoline containing nitroalkanes becomes much more significant under the more severe conditions of the Motor Octane method than the Research Octane method. (author)

  4. Evaluation of combustion by-products of MTBE as a component of reformulated gasoline.

    PubMed

    Franklin, P M; Koshland, C P; Lucas, D; Sawyer, R F

    2001-01-01

    Methyl tertiary-butyl ether (MTBE) is a gasoline oxygenate that is widely used throughout the US and Europe as an octane-booster and as a means of reducing automotive carbon monoxide (CO) emissions. The combustion by-products of pure MTBE have been evaluated in previous laboratory studies, but little attention has been paid to the combustion by-products of MTBE as a component of gasoline. MTBE is often used in reformulated gasoline (RFG), which has chemical and physical characteristics distinct from conventional gasoline. The formation of MTBE by-products in RFG is not well-understood, especially under "worst-case" vehicle emission scenarios such as fuel-rich operations, cold-starts or malfunctioning emission control systems, conditions which have not been studied extensively. Engine-out automotive dynamometer studies have compared RFG with MTBE to non-oxygenated RFG. Their findings suggest that adding MTBE to reformulated gasoline does not impact the high temperature flame chemistry in cylinder combustion processes. Comparison of tailpipe and exhaust emission studies indicate that reactions in the catalytic converter are quite effective in destroying most hydrocarbon MTBE by-product species. Since important reaction by-products are formed in the post-flame region, understanding changes in this region will contribute to the understanding of fuel-related changes in emissions. PMID:11219713

  5. Vast potential for using the piggyBac transposon to engineer transgenic plants at specific genomic locations.

    PubMed

    Johnson, Eric T; Owens, Jesse B; Moisyadi, Stefan

    2016-01-01

    The acceptance of bioengineered plants by some nations is hampered by a number of factors, including the random insertion of a transgene into the host genome. Emerging technologies, such as site-specific nucleases, are enabling plant scientists to promote recombination or mutations at specific plant loci. Off target activity of these nucleases may limit widespread use. Insertion of transgenes by transposases engineered with a specific DNA binding domain has been accomplished in a number of organisms, but not in plants. The piggyBac transposon system, originally isolated from an insect, has been utilized to transform a variety of organisms. The piggyBac transposase is amendable to structural modifications, and was able to insert a transgene at a specific human locus through fusion of a DNA binding domain to its N-terminus. Recent developments demonstrating the activity of piggyBac transposase in plants is an important first step toward the potential use of engineered versions of piggyBac transposase for site-specific transgene insertion in plants. PMID:26930269

  6. Engineered Biosynthesis of Plant Polyketides: Structure-Based and Precursor-Directed Approach

    NASA Astrophysics Data System (ADS)

    Abe, Ikuro

    benzoyl-CoA as a starter substrate. These results suggested that the engineered biosynthesis of plant polyketides by combination of the structure-based and the precursor-directed approach would lead to further production of chemically and structurally divergent unnatural novel polyketides.

  7. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    PubMed Central

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  8. Engineering the ABA Plant Stress Pathway for Regulation of Induced Proximity

    PubMed Central

    Liang, Fu-Sen; Ho, Wen Qi; Crabtree, Gerald R.

    2011-01-01

    Chemically induced proximity (CIP) systems use small molecules and engineered proteins to control and study biological processes. However, small molecule–based systems for controlling protein abundance or activities have been limited by toxicity, instability, cost, and slow clearance of the small molecules in vivo. To address these problems, we modified proteins of the plant abscisic acid (ABA) stress response pathway to control the proximity of cellular proteins and showed that the system could be used to regulate transcription, signal transduction, and subcellular localization of proteins in response to exogenously applied ABA. We also showed that the ABA CIP system can be combined with other CIP systems to simultaneously control multiple processes. We found that, when given to mice, ABA was orally available and had a 4-hour half-life. These properties, along with its lack of toxicity and low cost, suggest that ABA may be well suited for therapeutic applications and as an experimental tool to control diverse cellular activities in vivo. PMID:21406691

  9. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant

    NASA Astrophysics Data System (ADS)

    Walser, Tobias; Limbach, Ludwig K.; Brogioli, Robert; Erismann, Esther; Flamigni, Luca; Hattendorf, Bodo; Juchli, Markus; Krumeich, Frank; Ludwig, Christian; Prikopsky, Karol; Rossier, Michael; Saner, Dominik; Sigg, Alfred; Hellweg, Stefanie; Günther, Detlef; Stark, Wendelin J.

    2012-08-01

    More than 100 million tonnes of municipal solid waste are incinerated worldwide every year. However, little is known about the fate of nanomaterials during incineration, even though the presence of engineered nanoparticles in waste is expected to grow. Here, we show that cerium oxide nanoparticles introduced into a full-scale waste incineration plant bind loosely to solid residues from the combustion process and can be efficiently removed from flue gas using current filter technology. The nanoparticles were introduced either directly onto the waste before incineration or into the gas stream exiting the furnace of an incinerator that processes 200,000 tonnes of waste per year. Nanoparticles that attached to the surface of the solid residues did not become a fixed part of the residues and did not demonstrate any physical or chemical changes. Our observations show that although it is possible to incinerate waste without releasing nanoparticles into the atmosphere, the residues to which they bind eventually end up in landfills or recovered raw materials, confirming that there is a clear environmental need to develop degradable nanoparticles.

  10. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant.

    PubMed

    Walser, Tobias; Limbach, Ludwig K; Brogioli, Robert; Erismann, Esther; Flamigni, Luca; Hattendorf, Bodo; Juchli, Markus; Krumeich, Frank; Ludwig, Christian; Prikopsky, Karol; Rossier, Michael; Saner, Dominik; Sigg, Alfred; Hellweg, Stefanie; Günther, Detlef; Stark, Wendelin J

    2012-08-01

    More than 100 million tonnes of municipal solid waste are incinerated worldwide every year. However, little is known about the fate of nanomaterials during incineration, even though the presence of engineered nanoparticles in waste is expected to grow. Here, we show that cerium oxide nanoparticles introduced into a full-scale waste incineration plant bind loosely to solid residues from the combustion process and can be efficiently removed from flue gas using current filter technology. The nanoparticles were introduced either directly onto the waste before incineration or into the gas stream exiting the furnace of an incinerator that processes 200,000 tonnes of waste per year. Nanoparticles that attached to the surface of the solid residues did not become a fixed part of the residues and did not demonstrate any physical or chemical changes. Our observations show that although it is possible to incinerate waste without releasing nanoparticles into the atmosphere, the residues to which they bind eventually end up in landfills or recovered raw materials, confirming that there is a clear environmental need to develop degradable nanoparticles. PMID:22609690

  11. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens.

    PubMed

    Gharajehdaghipour, Tazarve; Roth, James D; Fafard, Paul M; Markham, John H

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  12. Prediction analysis of effluent removal in a septic sludge treatment plant: a biomimetics engineering approach.

    PubMed

    Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani

    2014-09-20

    Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique. PMID:25005632

  13. The healthy worker survivor effect and mortality at two automotive engine manufacturing plants.

    PubMed

    Park, R M

    1996-12-01

    Attributes such as time since hire or length of followup may be important in occupational mortality due to the "healthy worker survivor effect." In a regression analysis of mortality odds ratios at two automotive engine plants, strong effects of overall employment duration (latency weighted) were observed in addition to effects for (similarly weighted) cumulative exposures. The duration effects were negative for several cancer and noncancer outcomes, and confounded exposure effects. The lung cancer odds ratio declined to 0.68 (95% CI = 0.51, 0.90) at the mean duration of employment. With control for employment duration, adjusted lung cancer odds ratios for work as millwrights increased from 3.0 to 3.8, and for work in cylinder head production, from 3.3 to 3.9. Several causes of death with strong duration effects were smoking-related, suggesting diminished smoking risk factors with increasing employment duration. Similarly, trends for cirrhosis of the liver mortality suggested the alcohol risk factor is smaller in long-duration workers. If personal risk factors are an important component of the healthy worker survivor effect, they could be powerful negative confounders of exposure-response for related outcomes. Including a term for employment duration in regression models appears to partially correct for healthy worker survivor bias. PMID:8914712

  14. Energy engineering analysis, Iowa Army Ammunition Plant, Burlington, Iowa. Summary report

    SciTech Connect

    Jonik, D.M.

    1982-06-22

    This Energy Engineering Analysis consists of the main report, three appendices, and a summary of annual energy consumption on a per-building basis. The main report identifies the purpose of the study, describes the existing and anticipated energy use trends, and defines and summarizes specific energy conservation projects recommended to achieve the goals stated in the Army Facilities Energy Plan. Appendices I, II and III, and the Annual Energy Consumption Summary include building information, weather data, cost data, and detailed computer-generated and manual calculations for each individual project. The analysis will enable ammunition plant personnel to identify energy conservation measures and meet Army energy reduction goals. The report includes: Energy consumption by fuel type Energy consumption trends ECAM projects Other potential projects Quick-fix management form Description of analyzed buildings In addition, the Analysis is a detailed data base consisting of: An analysis of building energy use Energy Conservation Measures applied to each analyzed building to be improved A set of marked-up prints from the survey indicating the conditions when surveyed.

  15. Energy engineering analysis Iowa Army Ammunition Plant Burlington, Iowa. Final report

    SciTech Connect

    1983-05-10

    This Energy Engineering Analysis consists of the main report, three appendices, and a summary of annual energy consumption on a `per building` basis. The main report identifies the purpose of the study, describes the existing and anticipated energy use trends, and defines and summarizes specific energy conservation projects recommended to achieve the goals stated in the Army Facilities Energy Plan. Appendices I, II and III, and the Annual Energy Consumption Summary include building information, weather data, cost data, and detailed computer-generated and manual calculations for each individual project. The analysis will enable ammunition plant personnel to identify energy conservation measures and meet Army energy reduction goals. The report includes: Energy consumption by fuel type Energy consumption trends ECAM projects other potential projects Quick-fix management form Description of analyzed buildings. In addition-, the Analysis is a detailed data base consisting of: An analysis of building energy use Energy Conservation Measures applied to each analyzed building to be improved A set of marked-up prints from the survey indicating the conditions when surveyed.

  16. Toxicological Assessments of Rats Exposed Prenatally to Inhaled Vapors of Gasoline and Gasoline-Ethanol Blends

    EPA Science Inventory

    The primary alternative to petroleum-based fuels is ethanol, which is blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ...

  17. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject...

  18. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject...

  19. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject...

  20. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject...

  1. Dynamic behavior of gasoline fuel cell electric vehicles

    NASA Astrophysics Data System (ADS)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  2. The potential for low petroleum gasoline

    SciTech Connect

    Hadder, G.R.; Webb, G.M.; Clauson, M.

    1996-06-01

    The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

  3. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultralean fuel/air ratios, resulting in higher efficiencies and hence less fuel consumption. This paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.

  4. Balance of plant for SOFC experiences with the planning, engineering, construction and testing of a 10 kW planar SOFC pilot plant

    SciTech Connect

    Klov, K.; Sundal, P.; Monsen, T.; Vik, A.

    1996-12-31

    The Statoil Solide Oxide Fuel Cell Research Program was started in January 1991. Some results from this Program were presented to the 1994 Fuel Cell Seminar in San Diego. The final technical milestone for the program was to design, engineer, construct and test a 10 kW pilot plant. From the very beginning, the importance of coordination and integration in the development of components, subsystems and systems, combined with basic research on cell and stack performance, were established as the guidelines for the program. In this way the progress towards the final goal was not a matter of making the best individual cell, the best stack or a superior balance of plant, but to build an efficient, reliable and operative pilot plant system, and thus make a further step towards a verification of commercial SOFC system technology.

  5. Chemical fingerprinting of gasoline. 2. Comparison of unevaporated and evaporated automotive gasoline samples.

    PubMed

    Sandercock, P M L; Du Pasquier, E

    2004-02-10

    Analysis of the C(0)- to C(2)-naphthalene compounds present in automotive gasoline using gas chromatography-mass spectrometry with selected ion monitoring (GC-MS (SIM)) and principal component analysis (PCA) was used to discriminate between different samples of gasoline. Phase one of this study explored the ability of this method to differentiate gasoline samples at different levels of evaporation. A total of 35 random samples of unevaporated gasoline, covering three different grades (regular unleaded, premium unleaded and lead replacement), were collected in Sydney, Australia and examined. The high-boiling C(0)- to C(2)-naphthalene compounds present in the gasoline were used to chemically fingerprint each sample at different levels of evaporation. Samples of 25, 50, 75 and 90% evaporated gasoline (by weight) were generated from the 35 samples of unevaporated gasoline. Analysis of the data by PCA followed by linear discriminant analysis (LDA) showed that the 35 samples formed 18 unique groups, irrespective of the level of evaporation. Good discrimination between gasoline samples that were collected on the same day was obtained. Phase two of this study examined the change in gasoline samples over time. The C(0)- to C(2)-naphthalene composition in 96 samples of gasoline collected from three service stations over a 16-week period was examined using the method described. In most cases, it was found that the C(0)- to C(2)-naphthalene profile changed from week to week, and from station to station. In a comparison of all 96 samples together it was found that the majority could be differentiated from one another. The application of the method to forensic casework is discussed. PMID:15013165

  6. Gasoline marketing: Octane mislabeling in New York City

    SciTech Connect

    Not Available

    1987-01-01

    The problem of octane mislabeling at gasoline stations in New York City has grown - from 46 or fewer citations in 1981 to 171 citations in 1986. No single source of octane mislabeling exists but the city has found both gasoline station operators and fuel distributors to blame. The problem does not seem to be unique to any one type of gasoline station but 57 percent of the 171 citations issued involved gasoline sold under the name of a major refiner; the rest involved unbranded gasoline. Octane cheating can be lucrative in New York City. A station intentionally mislabeling its gasoline could realize amounts many times the city's maximum $500 fine for cheating.

  7. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering.

    PubMed

    Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A

    2012-03-01

    Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect

  8. Does mycorrhizal inoculation benefit plant survival, plant development and small-scale soil fixation? Results from a perennial eco-engineering field experiment in the Swiss Alps.

    NASA Astrophysics Data System (ADS)

    Bast, Alexander; Grimm, Maria; Graf, Frank; Baumhauer, Roland; Gärtner, Holger

    2015-04-01

    In mountain environments superficial slope failures on coarse grained, vegetation-free slopes are common processes and entail a certain risk for humans and socio-economic structures. Eco-engineering measures can be applied to mitigate slope instabilities. In this regard, limited plant survival and growth can be supported by mycorrhizal inoculation, which was successfully tested in laboratory studies. However, related studies on a field scale are lacking. Furthermore, mycorrhizae are known to enhance soil aggregation, which is linked to soil physics such as shear strength, and hence it is a useful indicator for near-surface soil/slope stability. The overall objective of our contribution was to test whether mycorrhizal inoculation can be used to promote eco-engineering measures in steep alpine environments based on a five-year field experiment. We hypothesized that mycorrhizal inoculation (i) enhances soil aggregation, (ii) stimulate plant survival and fine root development, (iii) effects plant performance, (iv) the stimulated root development in turn influences aggregate stability, and (v) that climatic variations play a major role in fine-root development. We established mycorrhizal and non-mycorrhizal treated eco-engineered research plots (hedge layers mainly consisting of Alnus spp. and Salix spp.) on a field experimental scale. The experimental site is in the eastern Swiss Alps at an erosion-prone slope where many environmental conditions can be seen as homogeneous. Soil aggregation, fine root development and plant survival was quantified at the end of four growing seasons (2010, '11, '12, '14). Additionally, growth properties of Alnus spp. and Salix spp. were measured and their biomass estimated. Meteorological conditions, soil temperature and soil water content were recorded. (i) The introduced eco-engineering measures enhanced aggregate stability significantly. In contrast to published greenhouse and laboratory studies, mycorrhizal inoculation delayed soil

  9. Catalytic conversion of pyrolysis gasoline and toluene

    SciTech Connect

    Syunyakova, Z.F.; Valitov, R.B.; Shmelev, A.S.; Mazitov, M.F.; Faskhutdinova, R.A.; Sokolova, G.P.

    1984-11-01

    A basic process for production of benzene from petroleum, along with catalytic reforming, is processing of liquid pyrolysis products and toluene. The conversion of pyrolysis gasoline and toluene on an iron-chromium oxide catalyst in a medium of steam and hydrogen at atmospheric pressure was investigated. Catalytic conversion of the pyrolysis gasoline was carried out in a medium of steam in a gradientless spherical reactor made of Kh23N18T steel under the following conditions: temperature 750 to 840/sup 0/C; steam pyrolysis gasoline weight ratio 1:1; pyrolysis gasoline feed rate 1 g per g catalyst per hour; experiment time 1 hour; catalyst volume 8 cm/sup 3/. Hydrodealkylation of toluene was also studied with the goal of producing benzene. In contrast to the conversion of pyrolysis gasoline in a medium of steam, hydrodealkylation was accomplished in a medium of steam and hydrogen. The preliminary tests showed that higher selectivity for formation of benzene is achieved in the presence of hydrogen. 11 references, 4 tables.

  10. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  11. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria.

    PubMed

    Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2014-08-01

    On-board measurements of unit emissions of CO, HC, NOx and CO₂ were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. PMID:25108721

  12. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  13. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... refiners subject to the standards at § 80.240, and gasoline designated as GPA gasoline under § 80.219(a... this paragraph (d)(2) apply to gasoline designated as GPA gasoline under § 80.219(a). (v)...

  14. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits

    PubMed Central

    Schoelynck, Jonas; Bouma, Tjeerd J.; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species—known as ecosystem engineers—are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance

  15. Automating gene library synthesis by structure-based combinatorial protein engineering: examples from plant sesquiterpene synthases.

    PubMed

    Dokarry, Melissa; Laurendon, Caroline; O'Maille, Paul E

    2012-01-01

    Structure-based combinatorial protein engineering (SCOPE) is a homology-independent recombination method to create multiple crossover gene libraries by assembling defined combinations of structural elements ranging from single mutations to domains of protein structure. SCOPE was originally inspired by DNA shuffling, which mimics recombination during meiosis, where mutations from parental genes are "shuffled" to create novel combinations in the resulting progeny. DNA shuffling utilizes sequence identity between parental genes to mediate template-switching events (the annealing and extension of one parental gene fragment on another) in PCR reassembly reactions to generate crossovers and hence recombination between parental genes. In light of the conservation of protein structure and degeneracy of sequence, SCOPE was developed to enable the "shuffling" of distantly related genes with no requirement for sequence identity. The central principle involves the use of oligonucleotides to encode for crossover regions to choreograph template-switching events during PCR assembly of gene fragments to create chimeric genes. This approach was initially developed to create libraries of hybrid DNA polymerases from distantly related parents, and later developed to create a combinatorial mutant library of sesquiterpene synthases to explore the catalytic landscapes underlying the functional divergence of related enzymes. This chapter presents a simplified protocol of SCOPE that can be integrated with different mutagenesis techniques and is suitable for automation by liquid-handling robots. Two examples are presented to illustrate the application of SCOPE to create gene libraries using plant sesquiterpene synthases as the model system. In the first example, we outline how to create an active-site library as a series of complex mixtures of diverse mutants. In the second example, we outline how to create a focused library as an array of individual clones to distil minimal combinations of

  16. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  17. Motor Gasoline Market Spring 2007 and Implications for Spring 2008

    EIA Publications

    2008-01-01

    This report focuses on the major factors that drove the widening difference between wholesale gasoline and crude oil prices in 2007 and explores how those factors might impact gasoline prices in 2008.

  18. Motor Gasoline Market Model documentation report

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level.

  19. Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car.

    PubMed

    Gidney, Jeremy T; Twigg, Martyn V; Kittelson, David B

    2010-04-01

    Particle size measurements were performed on the exhaust of a car operating on a chassis dynamometer fueled with standard gasoline and gasoline containing low levels of Pb, Fe, and Mn organometallic additives. When additives were present there was a distinct nucleation mode consisting primarily of sub-10 nm nanoparticles. At equal molar dosing Mn and Fe gave similar nanoparticle concentrations at the tailpipe, whereas Pb gave a considerably lower concentration. A catalytic stripper was used to remove the organic component of these particles and revealed that they were mainly solid and, because of their association with inorganic additives, presumably inorganic. Solid nucleation mode nanoparticles of similar size and concentration to those observed here from a gasoline engine with Mn and Fe additives have also been observed from modern heavy-duty diesel engines without aftertreatment at idle, but these solid particles are a small fraction of the primarily volatile nucleation mode particles emitted. The solid nucleation mode particles emitted by the diesel engines are likely derived from metal compounds in the lubrication oil, although carbonaceous particles cannot be ruled out. Significantly, most of these solid nanoparticles emitted by both engine types fall below the 23 nm cutoff of the PMP number regulation. PMID:20192164

  20. Engineering strategies for the design of plant nutrient delivery systems for use in space: approaches to countering microbiological contamination

    NASA Technical Reports Server (NTRS)

    Gonzales, A. A.; Schuerger, A. C.; Barford, C.; Mitchell, R.

    1996-01-01

    Microbiological contamination of crops within space-based plant growth research chambers has been postulated as a potentially significant problem. Microbial infestations; fouling of Nutrient Delivery System (NDS) fluid loops; and the formation of biofilms have been suggested as the most obvious and important manifestations of the problem. Strict sanitation and quarantine procedures will reduce, but not eliminate, microbial species introduced into plant growth systems in space habitats. Microorganisms transported into space most likely will occur as surface contaminants on spacecraft components, equipment, the crew, and plant-propagative materials. Illustrations of the potential magnitude of the microbiological contamination issue will be drawn from the literature and from documentation of laboratory and commercial field experience. Engineering strategies for limiting contamination and for the development of countermeasures will be described. Microbiological control technologies and NDS hardware will be discussed. Configurations appropriate for microgravity research facilities, as well as anticipated bio-regenerative life support system implementations, will be explored. An efficiently designed NDS, capable of adequately meeting the environmental needs of crop plants in space, is considered to be critical in both the research and operational domains. Recommended experiments, tests, and technology developments, structured to allow the development of prudent engineering solutions also will be presented.