Sample records for gauge theory action

  1. Nambu-Poisson gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-06-01

    We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model.

  2. Democratic superstring field theory: gauge fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, Michael

    2011-03-01

    We show that a partial gauge fixing of the NS sector of the democratic-picture superstring field theory leads to the non-polynomial theory. Moreover, by partially gauge fixing the Ramond sector we obtain a non-polynomial fully RNS theory at pictures 0 and 1/2 . Within the democratic theory and in the partially gauge fixed theory the equations of motion of both sectors are derived from an action. We also discuss a representation of the non-polynomial theory analogous to a manifestly two-dimensional representation of WZW theory and the action of bosonic pure-gauge solutions. We further demonstrate that one can consistently gauge fix the NS sector of the democratic theory at picture number -1. The resulting theory is new. It is a {mathbb{Z}_2} dual of the modified cubic theory. We construct analytical solutions of this theory and show that they possess the desired properties.

  3. Equivalence between the Lovelock-Cartan action and a constrained gauge theory

    NASA Astrophysics Data System (ADS)

    Junqueira, O. C.; Pereira, A. D.; Sadovski, G.; Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.

    2017-04-01

    We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1, 3) group with an additional BRST trivial part. The model is originally composed of a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant, while the gauge field is identified with the spin connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed.

  4. Yang-Mills gauge conditions from Witten's open string field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Haidong; Siegel, Warren

    2007-02-15

    We construct the Zinn-Justin-Batalin-Vilkovisky action for tachyons and gauge bosons from Witten's 3-string vertex of the bosonic open string without gauge fixing. Through canonical transformations, we find the off-shell, local, gauge-covariant action up to 3-point terms, satisfying the usual field theory gauge transformations. Perturbatively, it can be extended to higher-point terms. It also gives a new gauge condition in field theory which corresponds to the Feynman-Siegel gauge on the world-sheet.

  5. Progress in lattice gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creutz, M.

    1983-01-01

    These lectures first provide an overview of the current status of lattice gauge theory calculations. They then review some technical points on group integration, gauge fixing, and order parameters. Various Monte Carlo algorithms are discussed. Finally, alternatives to the Wilson action are considered in the context of universality for the continuum limit. 41 references.

  6. Nonquadratic gauge fixing and ghosts for gauge theories on the hypersphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, F. T.; McKeon, D. G. C.; Department of Mathematics and Computer Science, Algoma University, Sault St. Marie, Ontario P6A 2G4

    2011-10-15

    It has been suggested that using a gauge fixing Lagrangian that is not quadratic in a gauge fixing condition is most appropriate for gauge theories formulated on a hypersphere. We reexamine the appropriate ghost action that is to be associated with gauge fixing, applying a technique that has been used for ensuring that the propagator for a massless spin-two field is transverse and traceless. It is shown that this nonquadratic gauge fixing Lagrangian leads to two pair of complex Fermionic ghosts and two Bosonic real ghosts.

  7. Magnetic expansion of Nekrasov theory: The SU(2) pure gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Wei; Miao Yangang

    It is recently claimed by Nekrasov and Shatashvili that the N=2 gauge theories in the {Omega} background with {epsilon}{sub 1}=({h_bar}/2{pi}), {epsilon}{sub 2}=0 are related to the quantization of certain algebraic integrable systems. We study the special case of SU(2) pure gauge theory; the corresponding integrable model is the A{sub 1} Toda model, which reduces to the sine-Gordon quantum mechanics problem. The quantum effects can be expressed as the WKB series written analytically in terms of hypergeometric functions. We obtain the magnetic and dyonic expansions of the Nekrasov theory by studying the property of hypergeometric functions in the magnetic and dyonicmore » regions on the moduli space. We also discuss the relation between the electric-magnetic duality of gauge theory and the action-action duality of the integrable system.« less

  8. Highly effective action from large N gauge fields

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Seok

    2014-10-01

    Recently Schwarz put forward a conjecture that the world-volume action of a probe D3-brane in an AdS5×S5 background of type IIB superstring theory can be reinterpreted as the highly effective action (HEA) of four-dimensional N =4 superconformal field theory on the Coulomb branch. We argue that the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices are higher-dimensional NC U(1) gauge fields and the SW map is a local coordinate transformation eliminating U(1) gauge fields known as the Darboux theorem in symplectic geometry.

  9. Nonabelian noncommutative gauge theory via noncommutative extra dimensions

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2001-06-01

    The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.

  10. Canonical transformation path to gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.

    2017-06-01

    In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.

  11. Construction of non-Abelian gauge theories on noncommutative spaces

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Möller, L.; Schraml, S.; Schupp, P.; Wess, J.

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories.

  12. An almost trivial gauge theory in the limit of infinite gauge coupling constant.

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, S.

    A local SU(2) gauge theory with one multiplet of scalars in the adjoint representation is considered. In the limit of infinite gauge coupling constant Yang-Mills fields become auxiliary and the action possesses a larger invariance than the usual gauge invariance; hence, the system develops a richer structure of constraints. The constraint analysis is carried out.

  13. Democratic Superstring Field Theory and Its Gauge Fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, M.

    This work is my contribution to the proceedings of the conference``SFT2010 -- the third international conference on string field theory and related topics'' and it reflects my talk there, which described the democratic string field theory and its gauge fixing. The democratic string field theory is the only fully RNS string field theory to date. It lives in the large Hilbert space and includes all picture numbers. Picture changing amounts in this formalism to a gauge transformation. We describe the theory and its properties and show that when partially gauge fixed it can be reduced to the modified theory and to the non-polynomial theory. In the latter case we can even include the Ramond sector in the picture-fixed action. We also show that another partial gauge-fixing leads to a new consistent string field theory at picture number -1.

  14. Remarks on a New Possible Discretization Scheme for Gauge Theories

    NASA Astrophysics Data System (ADS)

    Magnot, Jean-Pierre

    2018-03-01

    We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.

  15. Remarks on a New Possible Discretization Scheme for Gauge Theories

    NASA Astrophysics Data System (ADS)

    Magnot, Jean-Pierre

    2018-07-01

    We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.

  16. Gauge Theory on a Space with Linear Lie Type Fuzziness

    NASA Astrophysics Data System (ADS)

    Khorrami, Mohammad; Fatollahi, Amir H.; Shariati, Ahmad

    2013-03-01

    The U(1) gauge theory on a space with Lie type noncommutativity is constructed. The construction is based on the group of translations in Fourier space, which in contrast to space itself is commutative. In analogy with lattice gauge theory, the object playing the role of flux of field strength per plaquette, as well as the action, is constructed. It is observed that the theory, in comparison with ordinary U(1) gauge theory, has an extra gauge field component. This phenomena is reminiscent of similar ones in formulation of SU(N) gauge theory in space with canonical noncommutativity, and also appearance of gauge field component in discrete direction of Connes' construction of the Standard Model.

  17. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  18. Weakly Isolated horizons: first order actions and gauge symmetries

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Reyes, Juan D.; Vukašinac, Tatjana

    2017-04-01

    The notion of Isolated Horizons has played an important role in gravitational physics, being useful from the characterization of the endpoint of black hole mergers to (quantum) black hole entropy. With an eye towards a canonical formulation we consider general relativity in terms of connection and vierbein variables and their corresponding first order actions. We focus on two main issues: (i) The role of the internal gauge freedom that exists, in the consistent formulations of the action principle, and (ii) the role that a 3  +  1 canonical decomposition has in the allowed internal gauge freedom. More concretely, we clarify in detail how the requirement of having well posed variational principles compatible with general weakly isolated horizons (WIHs) as internal boundaries does lead to a partial gauge fixing in the first order descriptions used previously in the literature. We consider the standard Hilbert-Palatini action together with the Holst extension (needed for a consistent 3  +  1 decomposition), with and without boundary terms at the horizon. We show in detail that, for the complete configuration space—with no gauge fixing—, while the Palatini action is differentiable without additional surface terms at the inner WIH boundary, the more general Holst action is not. The introduction of a surface term at the horizon—that renders the action for asymptotically flat configurations differentiable—does make the Holst action differentiable, but only if one restricts the configuration space and partially reduces the internal Lorentz gauge. For the second issue at hand, we show that upon performing a 3  +  1 decomposition and imposing the time gauge, there is a further gauge reduction of the Hamiltonian theory in terms of Ashtekar-Barbero variables to a U(1)-gauge theory on the horizon. We also extend our analysis to the more restricted boundary conditions of (strongly) isolated horizons as inner boundary. We show that even when the

  19. Connection dynamics of a gauge theory of gravity coupled with matter

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-10-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.

  20. Extended gauge theory and gauged free differential algebras

    NASA Astrophysics Data System (ADS)

    Salgado, P.; Salgado, S.

    2018-01-01

    Recently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials described by higher degree forms. In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy can be constructed from an algebraic structure known as free differential algebra. In other words, we show that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with p ≥ 2, can be obtained by gauging free differential algebras.

  1. Torsion in gauge theory

    NASA Astrophysics Data System (ADS)

    Nieh, H. T.

    2018-02-01

    The potential conflict between torsion and gauge symmetry in the Riemann-Cartan curved spacetime was noted by Kibble in his 1961 pioneering paper and has since been discussed by many authors. Kibble suggested that, to preserve gauge symmetry, one should forgo the covariant derivative in favor of the ordinary derivative in the definition of the field strength Fμ ν for massless gauge theories, while for massive vector fields, covariant derivatives should be adopted. This view was further emphasized by Hehl et al. in their influential 1976 review paper. We address the question of whether this deviation from normal procedure by forgoing covariant derivatives in curved spacetime with torsion could give rise to inconsistencies in the theory, such as the quantum renormalizability of a realistic interacting theory. We demonstrate in this paper the one-loop renormalizability of a realistic gauge theory of gauge bosons interacting with Dirac spinors, such as the SU(3) chromodynamics, for the case of a curved Riemann-Cartan spacetime with totally antisymmetric torsion. This affirmative confirmation is one step toward providing justification for the assertion that the flat-space definition of the gauge-field strength should be adopted as the proper definition.

  2. Noncommutative gauge theory for Poisson manifolds

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2000-09-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  3. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2002-08-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  4. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2005-11-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  5. On the generalized geometry origin of noncommutative gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2013-07-01

    We discuss noncommutative gauge theory from the generalized geometry point of view. We argue that the equivalence between the commutative and semiclassically noncommutative DBI actions is naturally encoded in the generalized geometry of D-branes.

  6. On gauge independence for gauge models with soft breaking of BRST symmetry

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Alexander

    2014-12-01

    A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field-antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang-Mills and gravity theories. The Gribov-Zwanziger action and the refined Gribov-Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.

  7. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond.

    PubMed

    Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-23

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

  8. Gauged U(1) clockwork theory

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Min

    2018-03-01

    We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.

  9. Bootstrapping non-commutative gauge theories from L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  10. Abelian gauge symmetries in F-theory and dual theories

    NASA Astrophysics Data System (ADS)

    Song, Peng

    In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by

  11. Tadpole-improved SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Shakespeare, Norman H.; Trottier, Howard D.

    1999-01-01

    A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in the Landau gauge. Simulations are done with spatial lattice spacings as in the range of about 0.1-0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/as (where at is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in the Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond the tree level.

  12. Digital lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  13. Noncommutative gauge theories and Kontsevich's formality theorem

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schupp, P.; Wess, J.

    2001-09-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a "Mini Seiberg-Witten map" that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor.

  14. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  15. Gauge theory for finite-dimensional dynamical systems.

    PubMed

    Gurfil, Pini

    2007-06-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently "disordered" flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.

  16. Antisymplectic gauge theories

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1998-02-01

    A general field-antifield BV formalism for antisymplectic first class constraints is proposed. It is as general as the corresponding symplectic BFV-BRST formulation and it is demonstrated to be consistent with a previously proposed formalism for antisymplectic second class constraints through a generalized conversion to corresponding first class constraints. Thereby the basic concept of gauge symmetry is extended to apply to quite a new class of gauge theories potentially possible to exist.

  17. Gauge theory for finite-dimensional dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-06-15

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differentialmore » equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.« less

  18. Holism and structuralism in U(1) gauge theory

    NASA Astrophysics Data System (ADS)

    Lyre, Holger

    After decades of neglect philosophers of physics have discovered gauge theories-arguably the paradigm of modern field physics-as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism-in the eyes of its proponents the best suited realist position towards modern physics-has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories-in particular U (1) gauge theory. In the first part of the paper the framework of fiber bundle gauge theories is briefly presented and the interpretation of local gauge symmetry will be examined. In the second part, an ontological underdetermination of gauge theories is carved out by considering the various kinds of non-locality involved in such typical effects as the Aharonov-Bohm effect. The analysis shows that the peculiar form of non-separability figuring in gauge theories is a variant of spatiotemporal holism and can be distinguished from quantum theoretic holism. In the last part of the paper the arguments for a gauge theoretic support of structural realism are laid out and discussed.

  19. Moyal deformations of Clifford gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Castro, Carlos

    2016-12-01

    A Moyal deformation of a Clifford Cl(3, 1) Gauge Theory of (Conformal) Gravity is performed for canonical noncommutativity (constant Θμν parameters). In the very special case when one imposes certain constraints on the fields, there are no first-order contributions in the Θμν parameters to the Moyal deformations of Clifford gauge theories of gravity. However, when one does not impose constraints on the fields, there are first-order contributions in Θμν to the Moyal deformations in variance with the previous results obtained by other authors and based on different gauge groups. Despite that the generators of U(2, 2),SO(4, 2),SO(2, 3) can be expressed in terms of the Clifford algebra generators this does not imply that these algebras are isomorphic to the Clifford algebra. Therefore one should not expect identical results to those obtained by other authors. In particular, there are Moyal deformations of the Einstein-Hilbert gravitational action with a cosmological constant to first-order in Θμν. Finally, we provide a mechanism which furnishes a plausible cancellation of the huge vacuum energy density.

  20. Three-dimensional gauge theories and gravitational instantons from string theory

    NASA Astrophysics Data System (ADS)

    Cherkis, Sergey Alexander

    Various realizations of gauge theories in string theory allow an identification of their spaces of vacua with gravitational instantons. Also, they provide a correspondence of vacua of gauge theories with nonabelian monopole configurations and solutions of a system of integrable equations called Nahm equations. These identifications make it possible to apply powerful techniques of differential and algebraic geometry to solve the gauge theories in question. In other words, it becomes possible to find the exact metrics on their moduli spaces of vacua with all quantum corrections included. As another outcome we obtain for the first time the description of a series of all Dk-type gravitational instantons.

  1. Entanglement of Distillation for Lattice Gauge Theories.

    PubMed

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B; Verstraete, Frank

    2016-09-23

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws-including a topological correction-emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  2. Wilson loops in supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.

  3. Perturbative Quantum Gravity from Gauge Theory

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph

    In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.

  4. Time evolution of complexity in Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro; Sugishita, Sotaro

    2017-12-01

    Quantum complexity is conjectured to probe inside of black hole horizons (or wormholes) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for Abelian pure gauge theories. For this purpose, we discretize the U (1 ) gauge group as ZN and also the continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories and to evaluate time evolutions of the complexities explicitly. We find that to achieve a large complexity ˜exp (entropy), which is one of the conjectured criteria necessary to have a dual black hole, the Abelian gauge theory needs to be maximally nonlocal.

  5. Hidden simplicity of gauge theory amplitudes

    NASA Astrophysics Data System (ADS)

    Drummond, J. M.

    2010-11-01

    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.

  6. Purely cubic action for string field theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  7. One-loop renormalization of Lee-Wick gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinstein, Benjamin; O'Connell, Donal

    2008-11-15

    We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theorymore » than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.« less

  8. Topological resolution of gauge theory singularities

    NASA Astrophysics Data System (ADS)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  9. Non-Abelian Gauge Theory in the Lorentz Violating Background

    NASA Astrophysics Data System (ADS)

    Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais

    2018-03-01

    In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.

  10. Milne boost from Galilean gauge theory

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Mukherjee, Pradip

    2018-03-01

    Physical origin of Milne boost invariance of the Newton Cartan spacetime is traced to the effect of local Galilean boosts in its metric structure, using Galilean gauge theory. Specifically, we do not require any gauge field to understand Milne boost invariance.

  11. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  12. Boundaries, mirror symmetry, and symplectic duality in 3d N = 4 gauge theory

    DOE PAGES

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; ...

    2016-10-20

    We introduce several families of N = (2, 2) UV boundary conditions in 3d N=4 gauge theories and study their IR images in sigma-models to the Higgs and Coulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respectively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studyingmore » two-dimensional compactifications of 3d N = 4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality $-$ an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.« less

  13. Topological resolution of gauge theory singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less

  14. The generic world-sheet action of irrational conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clubok, K.; Halpern, M.B.

    1995-05-01

    We review developments in the world-sheet action formulation of the generic irrational conformal field theory, including the non-linear and the linearized forms of the action. These systems form a large class of spin-two gauged WZW actions which exhibit exotic gravitational couplings. Integrating out the gravitational field, we also speculate on a connection with sigma models.

  15. Condition for confinement in non-Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Chaichian, Masud; Frasca, Marco

    2018-06-01

    We show that a criterion for confinement, based on the BRST invariance, holds in four dimensions, by solving a non-Abelian gauge theory with a set of exact solutions. The confinement condition we consider was obtained by Kugo and Ojima some decades ago. The current understanding of gauge theories permits us to apply the techniques straightforwardly for checking the validity of this criterion. In this way, we are able to show that the non-Abelian gauge theory is confining and that confinement is rooted in the BRST invariance and asymptotic freedom.

  16. Gauge-free gyrokinetic theory

    NASA Astrophysics Data System (ADS)

    Burby, Joshua; Brizard, Alain

    2017-10-01

    Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).

  17. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribovmore » copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.« less

  18. Strong dynamics and lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Schaich, David

    In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses

  19. Exact partition functions for gauge theories on Rλ3

    NASA Astrophysics Data System (ADS)

    Wallet, Jean-Christophe

    2016-11-01

    The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  20. Nonlattice simulation for supersymmetric gauge theories in one dimension.

    PubMed

    Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo

    2007-10-19

    Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In particular, our method can be used to investigate the gauge-gravity duality from first principles, and to simulate M theory based on the matrix theory conjecture.

  1. Gauge Gravity and Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Hestenes, David

    2008-09-01

    Reformulation of the Dirac equation in terms of the real Spacetime Algebra (STA) reveals hidden geometric structure, including a geometric role for the unit imaginary as generator of rotations in a spacelike plane. The STA and the real Dirac equation play essential roles in a new Gauge Theory Gravity (GTG) version of General Relativity (GR). Besides clarifying the conceptual foundations of GR and facilitating complex computations, GTG opens up new possibilities for a unified gauge theory of gravity and quantum mechanics, including spacetime geometry of electroweak interactions. The Weinberg-Salam model fits perfectly into this geometric framework, and a promising variant that replaces chiral states with Majorana states is formulated to incorporate zitterbewegung in electron states.

  2. N=2 gauge theories and degenerate fields of Toda theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro

    We discuss the correspondence between degenerate fields of the W{sub N} algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W{sub N} algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W{sub N} generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.

  3. Higgs mechanism in higher-rank symmetric U(1) gauge theories

    NASA Astrophysics Data System (ADS)

    Bulmash, Daniel; Barkeshli, Maissam

    2018-06-01

    We use the Higgs mechanism to investigate connections between higher-rank symmetric U(1 ) gauge theories and gapped fracton phases. We define two classes of rank-2 symmetric U(1 ) gauge theories: the (m ,n ) scalar and vector charge theories, for integer m and n , which respect the symmetry of the square (cubic) lattice in two (three) spatial dimensions. We further provide local lattice rotor models whose low-energy dynamics are described by these theories. We then describe in detail the Higgs phases obtained when the U(1 ) gauge symmetry is spontaneously broken to a discrete subgroup. A subset of the scalar charge theories indeed have X-cube fracton order as their Higgs phase, although we find that this can only occur if the continuum higher-rank gauge theory breaks continuous spatial rotational symmetry. However, not all higher-rank gauge theories have fractonic Higgs phases; other Higgs phases possess conventional topological order. Nevertheless, they yield interesting novel exactly solvable models of conventional topological order, somewhat reminiscent of the color code models in both two and three spatial dimensions. We also investigate phase transitions in these models and find a possible direct phase transition between four copies of Z2 gauge theory in three spatial dimensions and X-cube fracton order.

  4. Canonical field anticommutators in the extended gauged Rarita-Schwinger theory

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.; Henneaux, Marc; Pais, Pablo

    2017-10-01

    We reexamine canonical quantization of the gauged Rarita-Schwinger theory using the extended theory, incorporating a dimension 1/2 auxiliary spin-1/2 field Λ , in which there is an exact off-shell gauge invariance. In Λ =0 gauge, which reduces to the original unextended theory, our results agree with those found by Johnson and Sudarshan, and later verified by Velo and Zwanziger, which give a canonical Rarita-Schwinger field Dirac bracket that is singular for small gauge fields. In gauge covariant radiation gauge, the Dirac bracket of the Rarita-Schwinger fields is nonsingular, but does not correspond to a positive semidefinite anticommutator, and the Dirac bracket of the auxiliary fields has a singularity of the same form as found in the unextended theory. These results indicate that gauged Rarita-Schwinger theory is somewhat pathological, and cannot be canonically quantized within a conventional positive semidefinite metric Hilbert space. We leave open the questions of whether consistent quantizations can be achieved by using an indefinite metric Hilbert space, by path integral methods, or by appropriate couplings to conventional dimension 3/2 spin-1/2 fields.

  5. Marginal deformations of gauge theories and their dual description

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela

    Holography and its realization in string theory as the AdS/CFT correspondence, offers an equivalence between gauge theories and gravity that provides a means to explore the otherwise inaccessible large N and strong coupling region of SU(N) gauge theories. While considerable progress has been made in this area, a concrete method for specifying the gravitational background dual to a given gauge theory is still lacking. This is the question addressed in this thesis in the context of exactly marginal deformations of N = 4 SYM. First, a precise relation between the deformation of the superpotential and transverse space noncommutativity is established. In particular, the appropriate noncommutativity matrix theta is determined, relying solely on data from the gauge theory lagrangian and basic notions of the AdS/CFT correspondence. The set ( G , theta) of open string parameters, with G the metric of the transverse space, is then understood as a way to encode information pertaining to the moduli space of the gauge theory. It seems thus natural to expect that it may be possible to obtain the corresponding gravitational solution by mapping the open string fields ( G , theta) to the closed string ones (g, B). This hints at a purely algebraic method for constructing gravity duals to given conformal gauge theories. The idea is tested within the context of the beta-deformed theory where the dual gravity description is known and then used to construct the background for the rho-deformed theory up to third order in the deformation parameter rho. Discrepancy of the higher order in rho terms in the latter case is traced to the nonassociativity of the noncommutative matrix theta.

  6. Five-brane actions in double field theory

    NASA Astrophysics Data System (ADS)

    Blair, Chris D. A.; Musaev, Edvard T.

    2018-03-01

    We construct an action for NSNS 5-branes which is manifestly covariant under O( d, d). This is done by doubling d of the spacetime coordinates which appear in the worldvolume action. By formulating the DBI part of the action in a manner similar to a "gauged sigma model", only half the doubled coordinates genuinely appear. Our approach allows one to describe the full T-duality orbit of the IIB NS5 brane, the IIA KKM and their exotic relations in one formalism. Furthermore, by using ideas from double field theory, our action can be said to describe various aspects of non-geometric five-branes.

  7. Dual gauge field theory of quantum liquid crystals in two dimensions

    NASA Astrophysics Data System (ADS)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Liu, Ke; Slager, Robert-Jan; Nussinov, Zohar; Cvetkovic, Vladimir; Zaanen, Jan

    2017-04-01

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (;stress photons;), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, giving rise to the Anderson-Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this 'deconfined' mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Their special properties

  8. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  9. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE PAGES

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; ...

    2017-04-18

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  10. An /N=2 gauge theory and its supergravity dual

    NASA Astrophysics Data System (ADS)

    Brandhuber, A.; Sfetsos, K.

    2000-09-01

    We study flows on the scalar manifold of /N=8 gauged supergravity in five dimensions which are dual to certain mass deformations of /N=4 super Yang-Mills theory. In particular, we consider a perturbation of the gauge theory by a mass term for the adjoint hyper-multiplet, giving rise to an /N=2 theory. The exact solution of the 5-dim gauged supergravity equations of motion is found and the metric is uplifted to a ten-dimensional background of type-IIB supergravity. Using these geometric data and the AdS/CFT correspondence we analyze the spectra of certain operators as well as Wilson loops on the dual gauge theory side. The physical flows are parametrized by a single non-positive constant and describe part of the Coulomb branch of the /N=2 theory at strong coupling. We also propose a general criterion to distinguish between `physical' and `unphysical' curvature singularities. Applying it in many backgrounds arising within the AdS/CFT correspondence we find results that are in complete agreement with field theory expectations.

  11. Ward identity and basis tensor gauge theory at one loop

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.

    2018-06-01

    Basis tensor gauge theory (BTGT) is a reformulation of ordinary gauge theory that is an analog of the vierbein formulation of gravity and is related to the Wilson line formulation. To match ordinary gauge theories coupled to matter, the BTGT formalism requires a continuous symmetry that we call the BTGT symmetry in addition to the ordinary gauge symmetry. After classically interpreting the BTGT symmetry, we construct using the BTGT formalism the Ward identities associated with the BTGT symmetry and the ordinary gauge symmetry. For a way of testing the quantum stability and the consistency of the Ward identities with a known regularization method, we explicitly renormalize the scalar QED at one loop using dimensional regularization using the BTGT formalism.

  12. Thermalization and confinement in strongly coupled gauge theories

    NASA Astrophysics Data System (ADS)

    Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher

    2016-11-01

    Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the "abrupt quench" limit.

  13. Electric-magnetic dualities in non-abelian and non-commutative gauge theories

    NASA Astrophysics Data System (ADS)

    Ho, Jun-Kai; Ma, Chen-Te

    2016-08-01

    Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.

  14. Ultrastrong coupling in supersymmetric gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchel, Alex

    1999-10-04

    We study 'ultrastrong' coupling points in scale-invariant N=2 gauge theories. These are theories where, naively, the coupling becomes infinite, and is not related by S-duality to a weak coupling point. These theories have been somewhat of a mystery, since in the M-theory description they correspond to points where parallel M 5-branes coincide. Using the low-energy effective field theory arguments we relate these theories to other known N=2 CFT.

  15. Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natsuume, Makoto; Okamura, Takashi; Department of Physics, Kwansei Gakuin University, Sanda, Hyogo, 669-1337

    2008-03-15

    We study causal hydrodynamics (Israel-Stewart theory) of gauge theory plasmas from the AdS/CFT duality. Causal hydrodynamics requires new transport coefficients (relaxation times) and we compute them for a number of supersymmetric gauge theories including the N=4 super Yang-Mills theory. However, the relaxation times obtained from the 'shear mode' do not agree with the ones from the 'sound mode', which implies that the Israel-Stewart theory is not a sufficient framework to describe the gauge theory plasmas.

  16. Going Beyond QCD in Lattice Gauge Theory

    NASA Astrophysics Data System (ADS)

    Fleming, G. T.

    2011-01-01

    Strongly coupled gauge theories (SCGT's) have been studied theoretically for many decades using numerous techniques. The obvious motivation for these efforts stemmed from a desire to understand the source of the strong nuclear force: Quantum Chromo-dynamics (QCD). Guided by experimental results, theorists generally consider QCD to be a well-understood SCGT. Unfortunately, it is not clear how to extend the lessons learned from QCD to other SCGT's. Particularly urgent motivators for new studies of other SCGT's are the ongoing searches for physics beyond the standard model (BSM) at the Large Hadron Collider (LHC) and the Tevatron. Lattice gauge theory (LGT) is a technique for systematically-improvable calculations in many SCGT's. It has become the standard for non-perturbative calculations in QCD and it is widely believed that it may be useful for study of other SCGT's in the realm of BSM physics. We will discuss the prospects and potential pitfalls for these LGT studies, focusing primarily on the flavor dependence of SU(3) gauge theory.

  17. Hyperunified field theory and gravitational gauge-geometry duality

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  18. Gauge Theories and Spontaneous Symmetry Breaking.

    DTIC Science & Technology

    1980-11-01

    This report summarizes attempts to understand in what way spontaneous symmetry breaking arose in the context of guage field theories of elementary...gauge field theories. It was felt that the symmetry breaking used by the physicists (a procedure known as the Higgs mechanism) is not precisely a

  19. Perturbative Quantum Gravity and its Relation to Gauge Theory.

    PubMed

    Bern, Zvi

    2002-01-01

    In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on D -dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input the gravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.

  20. Strolling along gauge theory vacua

    NASA Astrophysics Data System (ADS)

    Seraj, Ali; Van den Bleeken, Dieter

    2017-08-01

    We consider classical, pure Yang-Mills theory in a box. We show how a set of static electric fields that solve the theory in an adiabatic limit correspond to geodesic motion on the space of vacua, equipped with a particular Riemannian metric that we identify. The vacua are generated by spontaneously broken global gauge symmetries, leading to an infinite number of conserved momenta of the geodesic motion. We show that these correspond to the soft multipole charges of Yang-Mills theory.

  1. Weak interactions and gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and itmore » takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)« less

  2. 5-brane webs for 5d N = 1 G 2 gauge theories

    NASA Astrophysics Data System (ADS)

    Hayashi, Hirotaka; Kim, Sung-Soo; Lee, Kimyeong; Yagi, Futoshi

    2018-03-01

    We propose 5-brane webs for 5d N = 1 G 2 gauge theories. From a Higgsing of the SO(7) gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure G 2 gauge theory using an O5-plane or an \\tilde{O5} -plane. Adding flavors to the 5-brane web for the pure G 2 gauge theory is also discussed. Based on the obtained 5-brane webs, we compute the partition functions for the 5d G 2 gauge theories using the recently suggested topological vertex formulation with an O5-plane, and we find agreement with known results.

  3. Foreign exchange market as a lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Young, K.

    1999-10-01

    A simple model of the foreign exchange market is exactly a lattice gauge theory. Exchange rates are the exponentials of gauge potentials defined on spatial links while interest rates are related to gauge potentials on temporal links. Arbitrage opportunities are given by nonzero values of the gauge-invariant field tensor or curvature defined on closed loops. Arbitrage opportunities involving cross-rates at one time are "magnetic fields," while arbitrage opportunities involving future contracts are "electric fields."

  4. Toward a gauge field theory of gravity.

    NASA Astrophysics Data System (ADS)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  5. String theory, gauge theory and quantum gravity. Proceedings. Trieste Spring School and Workshop on String Theory, Gauge Theory and Quantum Gravity, Trieste (Italy), 11 - 22 Apr 1994.

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The following topics were dealt with: string theory, gauge theory, quantum gravity, quantum geometry, black hole physics and information loss, second quantisation of the Wilson loop, 2D Yang-Mills theory, topological field theories, equivariant cohomology, superstring theory and fermion masses, supergravity, topological gravity, waves in string cosmology, superstring theories, 4D space-time.

  6. Origin of gauge invariance in string theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  7. Gauge and integrable theories in loop spaces

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Luchini, G.

    2012-05-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  8. Six-dimensional regularization of chiral gauge theories

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo

    2017-03-01

    We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.

  9. Semistrict higher gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2015-04-01

    We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.

  10. Gauge-invariant flow equation

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  11. Simple Z2 lattice gauge theories at finite fermion density

    NASA Astrophysics Data System (ADS)

    Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph

    2017-11-01

    Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.

  12. Nonperturbative β function of eight-flavor SU(3) gauge theory

    NASA Astrophysics Data System (ADS)

    Hasenfratz, Anna; Schaich, David; Veernala, Aarti

    2015-06-01

    We present a new lattice study of the discrete β function for SU(3) gauge theory with N f = 8 massless flavors of fermions in the fundamental representation. Using the gradient flow running coupling, and comparing two different nHYP-smeared staggered lattice actions, we calculate the 8-flavor step-scaling function at significantly stronger couplings than were previously accessible. Our continuum-extrapolated results for the discrete β function show no sign of an IR fixed point up to couplings of g 2 ≈ 14. At the same time, we find that the gradient flow coupling runs much more slowly than predicted by two-loop perturbation theory, reinforcing previous indications that the 8-flavor system possesses nontrivial strongly coupled IR dynamics with relevance to BSM phenomenology.

  13. Statistical effects in large N supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej Stanislaw

    This thesis discusses statistical simplifications arising in supersymmetric gauge theories in the limit of large rank. Applications involve the physics of black holes and the problem of predicting the low energy effective theory from a landscape of string vacua. The first part of this work uses the AdS/CFT correspondence to explain properties of black holes. We establish that in the large charge sector of toric quiver gauge theories there exists a typical state whose structure is closely mimicked by almost all other states. Then, working in the settings of the half-BPS sector of N = 4 super-Yang-Mills theory, we show that in the dual gravity theory semiclassical observations cannot distinguish a pair of geometries corresponding to two generic heavy states. Finally, we argue on general grounds that these conclusions are exponentially enhanced in quantum cosmological settings. The results establish that one may consistently account for the entropy of a black hole with heavy states in the dual field theory and suggest that the usual properties of black holes arise as artifacts of imposing a semiclassical description on a quantum system. In the second half we develop new tools to determine the infrared behavior of quiver gauge theories in a certain class. We apply the dynamical results to a toy model of the landscape of effective field theories defined at some high energy scale, and derive firm statistical predictions for the low energy effective theory.

  14. Poisson sigma models, reduction and nonlinear gauge theories

    NASA Astrophysics Data System (ADS)

    Signori, Daniele

    This dissertation comprises two main lines of research. Firstly, we study non-linear gauge theories for principal bundles, where the structure group is replaced by a Lie groupoid. We follow the approach of Moerdijk-Mrcun and establish its relation with the existing physics literature. In particular, we derive a new formula for the gauge transformation which closely resembles and generalizes the classical formulas found in Yang Mills gauge theories. Secondly, we give a field theoretic interpretation of the of the BRST (Becchi-Rouet-Stora-Tyutin) and BFV (Batalin-Fradkin-Vilkovisky) methods for the reduction of coisotropic submanifolds of Poisson manifolds. The generalized Poisson sigma models that we define are related to the quantization deformation problems of coisotropic submanifolds using homotopical algebras.

  15. BRST detour quantization: Generating gauge theories from constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherney, D.; Waldron, A.; Latini, E.

    2010-06-15

    We present the Becchi-Rouet-Stora-Tyutin (BRST) cohomologies of a class of constraint (super) Lie algebras as detour complexes. By interpreting the components of detour complexes as gauge invariances, Bianchi identities, and equations of motion, we obtain a large class of new gauge theories. The pivotal new machinery is a treatment of the ghost Hilbert space designed to manifest the detour structure. Along with general results, we give details for three of these theories which correspond to gauge invariant spinning particle models of totally symmetric, antisymmetric, and Kaehler antisymmetric forms. In particular, we give details of our recent announcement of a (p,q)-formmore » Kaehler electromagnetism. We also discuss how our results generalize to other special geometries.« less

  16. BFV-BRST analysis of equivalence between noncommutative and ordinary gauge theories

    NASA Astrophysics Data System (ADS)

    Dayi, O. F.

    2000-05-01

    Constrained hamiltonian structure of noncommutative gauge theory for the gauge group /U(1) is discussed. Constraints are shown to be first class, although, they do not give an Abelian algebra in terms of Poisson brackets. The related BFV-BRST charge gives a vanishing generalized Poisson bracket by itself due to the associativity of /*-product. Equivalence of noncommutative and ordinary gauge theories is formulated in generalized phase space by using BFV-BRST charge and a solution is obtained. Gauge fixing is discussed.

  17. Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Cantini, Luigi; Jurčo, Branislav

    2005-03-01

    Bundle gerbes are a higher version of line bundles, we present nonabelian bundle gerbes as a higher version of principal bundles. Connection, curving, curvature and gauge transformations are studied both in a global coordinate independent formalism and in local coordinates. These are the gauge fields needed for the construction of Yang-Mills theories with 2-form gauge potential.

  18. Supersymmetric Gauge Theories with Decoupled Operators and Chiral Ring Stability

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Giacomelli, Simone

    2017-12-01

    We propose a general way to complete supersymmetric theories with operators below the unitarity bound, adding gauge-singlet fields that enforce the decoupling of such operators. This makes it possible to perform all usual computations, and to compactify on a circle. We concentrate on a duality between an N =1 SU(2) gauge theory and the N =2 A3 Argyres-Douglas theory, mapping the moduli space and chiral ring of the completed N =1 theory to those of the A3 model. We reduce the completed gauge theory to 3D, finding a 3D duality with N =4 supersymmetric QED (SQED) with two flavors. The naive dimensional reduction is instead N =2 SQED. Crucial is a concept of chiral ring stability, which modifies the superpotential and allows for a 3D emergent global symmetry.

  19. Perturbative quantum gravity as a double copy of gauge theory.

    PubMed

    Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik

    2010-08-06

    In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.

  20. 3 d printing of 2 d N=(0,2) gauge theories

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Hasan, Azeem

    2018-05-01

    We introduce 3 d printing, a new algorithm for generating 2 d N=(0,2) gauge theories on D1-branes probing singular toric Calabi-Yau 4-folds using 4 d N=1 gauge theories on D3-branes probing toric Calabi-Yau 3-folds as starting points. Equivalently, this method produces brane brick models starting from brane tilings. 3 d printing represents a significant improvement with respect to previously available tools, allowing a straightforward determination of gauge theories for geometries that until now could only be tackled using partial resolution. We investigate the interplay between triality, an IR equivalence between different 2 d N=(0,2) gauge theories, and the freedom in 3 d printing given an underlying Calabi-Yau 4-fold. Finally, we present the first discussion of the consistency and reduction of brane brick models.

  1. Strong Coupling Gauge Theories in LHC ERA

    NASA Astrophysics Data System (ADS)

    Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.

    2011-01-01

    AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal

  2. U(1) Wilson lattice gauge theories in digital quantum simulators

    NASA Astrophysics Data System (ADS)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  3. Masslessness of ghosts in equivariantly gauge-fixed Yang-Mills theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golterman, Maarten; Zimmerman, Leah

    2005-06-01

    We show that the one-loop ghost self-energy in an equivariantly gauge-fixed Yang-Mills theory vanishes at zero momentum. A ghost mass is forbidden by equivariant BRST symmetry, and our calculation confirms this explicitly. The four-ghost self interaction which appears in the equivariantly gauge-fixed Yang-Mills theory is needed in order to obtain this result.

  4. Ambitwistor formulations of R 2 gravity and ( DF)2 gauge theories

    NASA Astrophysics Data System (ADS)

    Azevedo, Thales; Engelund, Oluf Tang

    2017-11-01

    We consider D-dimensional amplitudes in R 2 gravities (conformal gravity in D = 4) and in the recently introduced ( DF)2 gauge theory, from the perspective of the CHY formulae and ambitwistor string theory. These theories are related through the BCJ double-copy construction, and the ( DF)2 gauge theory obeys color-kinematics duality. We work out the worldsheet details of these theories and show that they admit a formulation as integrals on the support of the scattering equations, or alternatively, as ambitwistor string theories. For gravity, this generalizes the work done by Berkovits and Witten on conformal gravity to D dimensions. The ambitwistor is also interpreted as a D-dimensional generalization of Witten's twistor string (SYM + conformal supergravity). As part of our ambitwistor investigation, we discover another ( DF)2 gauge theory containing a photon that couples to Einstein gravity. This theory can provide an alternative KLT description of Einstein gravity compared to the usual Yang-Mills squared.

  5. Five-Dimensional Gauged Supergravity with Higher Derivatives

    NASA Astrophysics Data System (ADS)

    Hanaki, Kentaro

    This thesis summarizes the recent developments on the study of five-dimensional gauged supergravity with higher derivative terms, emphasizing in particular the application to understanding the hydrodynamic properties of gauge theory plasma via the AdS/CFT correspondence. We first review how the ungauged and gauged five-dimensional supergravity actions with higher derivative terms can be constructed using the off-shell superconformal formalism. Then we relate the gauged supergravity to four-dimensional gauge theory using the AdS/CFT correspondence and extract the physical quantities associated with gauge theory plasma from the dual classical supergravity computations. We put a particular emphasis on the discussion of the conjectured lower bound for the shear viscosity over entropy density ratio proposed by Kovtun, Son and Starinets, and discuss how higher derivative terms in supergravity and the introduction of chemical potential for the R-charge affect this bound.

  6. Gauge supergravity in D = 2 + 2

    NASA Astrophysics Data System (ADS)

    Castellani, Leonardo

    2017-10-01

    We present an action for chiral N = (1 , 0) supergravity in 2 + 2 dimensions. The fields of the theory are organized into an OSp(1|4) connection supermatrix, and are given by the usual vierbein V a , spin connection ω ab , and Majorana gravitino ψ. In analogy with a construction used for D = 10 + 2 gauge supergravity, the action is given by ∫STr( R 2 Γ), where R is the OSp(1|4) curvature supermatrix two-form, and Γ a constant supermatrix containing γ 5. It is similar, but not identical to the MacDowell-Mansouri action for D = 2 + 2 supergravity. The constant supermatrix breaks OSp(1|4) gauge invariance to a subalgebra OSp(1|2) ⊕ Sp(2), including a Majorana-Weyl supercharge. Thus half of the OSp(1|4) gauge supersymmetry survives. The gauge fields are the selfdual part of ω ab and the Weyl projection of ψ for OSp(1|2), and the antiselfdual part of ω ab for Sp(2). Supersymmetry transformations, being part of a gauge superalgebra, close off-shell. The selfduality condition on the spin connection can be consistently imposed, and the resulting "projected" action is OSp(1|2) gauge invariant.

  7. Scalar field collapse in gauge theory gravity

    NASA Astrophysics Data System (ADS)

    Harke, Richard Eugene

    A brief introduction to gravitational collapse in General Relativity is given. Then critical phenomena in the collapse of a massless scalar field as discovered by Choptuik are described. My own work in this area is described and some results are presented. Gauge Theory Gravity and its mathematical formalism, geometric algebra are introduced. Because geometric algebra is not widely known, a detailed and rigorous introduction to it is provided. The basic principles of Gauge Theory Gravity (GTG) are described and a derivation of the field equations is presented. An appropriate Lagrangian for the scalar field in GTG is introduced and the energy tensor is derived by the usual variational process. The equations of motion for the scalar field are derived for a spherically symmetric space. Finite difference approximations to these equations are constructed and simulations of gravitational collapse are run on a computer. Graphical results are presented. An unexpected phenomenon is found in which the passage of the scalar field leaves a persistent change in the gravitational gauge field.

  8. Spontaneous parity violation and SUSY strong gauge theory

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ohki, Hiroshi

    2012-07-01

    We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest new models. Our models show confinement, so that we try to understand them by using a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. This structure has several advantages compared to the MSSM. The scale of the Higgs mass (left-right breaking scale) and that of VEVs are different, so the SUSY little hierarchy problems are absent. The second model also induces spontaneous supersymmetry breaking [1].

  9. S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group

    NASA Astrophysics Data System (ADS)

    Schroers, B. J.; Bais, F. A.

    1998-12-01

    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.

  10. The energy-momentum tensor(s) in classical gauge theories

    DOE PAGES

    Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...

    2016-07-12

    We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.

  11. Perturbative Quantum Gauge Theories on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnev, Pavel; Reshetikhin, Nicolai

    2018-01-01

    This paper introduces a general perturbative quantization scheme for gauge theories on manifolds with boundary, compatible with cutting and gluing, in the cohomological symplectic (BV-BFV) formalism. Explicit examples, like abelian BF theory and its perturbations, including nontopological ones, are presented.

  12. Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges

    NASA Astrophysics Data System (ADS)

    Dedes, A.; Materkowska, W.; Paraskevas, M.; Rosiek, J.; Suxho, K.

    2017-06-01

    We assume that New Physics effects are parametrized within the Standard Model Effective Field Theory (SMEFT) written in a complete basis of gauge invariant operators up to dimension 6, commonly referred to as "Warsaw basis". We discuss all steps necessary to obtain a consistent transition to the spontaneously broken theory and several other important aspects, including the BRST-invariance of the SMEFT action for linear R ξ -gauges. The final theory is expressed in a basis characterized by SM-like propagators for all physical and unphysical fields. The effect of the non-renormalizable operators appears explicitly in triple or higher multiplicity vertices. In this mass basis we derive the complete set of Feynman rules, without resorting to any simplifying assumptions such as baryon-, lepton-number or CP conservation. As it turns out, for most SMEFT vertices the expressions are reasonably short, with a noticeable exception of those involving 4, 5 and 6 gluons. We have also supplemented our set of Feynman rules, given in an appendix here, with a publicly available Mathematica code working with the FeynRules package and producing output which can be integrated with other symbolic algebra or numerical codes for automatic SMEFT amplitude calculations.

  13. Cluster-enriched Yang-Baxter equation from SUSY gauge theories

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2018-04-01

    We propose a new generalization of the Yang-Baxter equation, where the R-matrix depends on cluster y-variables in addition to the spectral parameters. We point out that we can construct solutions to this new equation from the recently found correspondence between Yang-Baxter equations and supersymmetric gauge theories. The S^2 partition function of a certain 2d N=(2,2) quiver gauge theory gives an R-matrix, whereas its FI parameters can be identified with the cluster y-variables.

  14. Improved actions and asymptotic scaling in lattice Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langfeld, Kurt

    2007-11-01

    Improved actions in SU(2) and SU(3) lattice gauge theories are investigated with an emphasis on asymptotic scaling. A new scheme for tadpole improvement is proposed. The standard but heuristic tadpole improvement emerges from a mean field approximation from the new approach. Scaling is investigated by means of the large distance static quark potential. Both the generic and the new tadpole scheme yield significant improvements on asymptotic scaling when compared with loop improved actions. A study of the rotational symmetry breaking terms, however, reveals that only the new improvement scheme efficiently eliminates the leading irrelevant term from the action.

  15. Heavy-lifting of gauge theories by cosmic inflation

    NASA Astrophysics Data System (ADS)

    Kumar, Soubhik; Sundrum, Raman

    2018-05-01

    Future measurements of primordial non-Gaussianity can reveal cosmologically produced particles with masses of order the inflationary Hubble scale and their interactions with the inflaton, giving us crucial insights into the structure of fundamental physics at extremely high energies. We study gauge-Higgs theories that may be accessible in this regime, carefully imposing the constraints of gauge symmetry and its (partial) Higgsing. We distinguish two types of Higgs mechanisms: (i) a standard one in which the Higgs scale is constant before and after inflation, where the particles observable in non-Gaussianities are far heavier than can be accessed by laboratory experiments, perhaps associated with gauge unification, and (ii) a "heavy-lifting" mechanism in which couplings to curvature can result in Higgs scales of order the Hubble scale during inflation while reducing to far lower scales in the current era, where they may now be accessible to collider and other laboratory experiments. In the heavy-lifting option, renormalization-group running of terrestrial measurements yield predictions for cosmological non-Gaussianities. If the heavy-lifted gauge theory suffers a hierarchy problem, such as does the Standard Model, confirming such predictions would demonstrate a striking violation of the Naturalness Principle. While observing gauge-Higgs sectors in non-Gaussianities will be challenging given the constraints of cosmic variance, we show that it may be possible with reasonable precision given favorable couplings to the inflationary dynamics.

  16. A BRST gauge-fixing procedure for Yang Mills theory on sphere

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Deguchi, Shinichi

    2006-01-01

    A gauge-fixing procedure for the Yang-Mills theory on an n-dimensional sphere (or a hypersphere) is discussed in a systematic manner. We claim that Adler's gauge-fixing condition used in massless Euclidean QED on a hypersphere is not conventional because of the presence of an extra free index, and hence is unfavorable for the gauge-fixing procedure based on the BRST invariance principle (or simply BRST gauge-fixing procedure). Choosing a suitable gauge condition, which is proved to be equivalent to a generalization of Adler's condition, we apply the BRST gauge-fixing procedure to the Yang-Mills theory on a hypersphere to obtain consistent results. Field equations for the Yang-Mills field and associated fields are derived in manifestly O (n + 1) covariant or invariant forms. In the large radius limit, these equations reproduce the corresponding field equations defined on the n-dimensional flat space.

  17. An A{sub r} threesome: Matrix models, 2d conformal field theories, and 4dN=2 gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiappa, Ricardo; Wyllard, Niclas

    We explore the connections between three classes of theories: A{sub r} quiver matrix models, d=2 conformal A{sub r} Toda field theories, and d=4N=2 supersymmetric conformal A{sub r} quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions.

  18. Holographic studies of thermal gauge theories with flavour

    NASA Astrophysics Data System (ADS)

    Thomson, Rowan F. M.

    The AdS/CFT correspondence and its extensions to more general gauge/gravity dualities have provided a powerful framework for the study of strongly coupled gauge theories. This thesis explores properties of a large class of thermal strongly coupled gauge theories using the gravity dual. In order to bring the holographic framework closer to Quantum Chromodynamics (QCD), we study theories with matter in the fundamental representation. In particular, we focus on the holographic dual of SU ( N c ) supersymmetric Yang-Mills theory coupled to N f = N c flavours of fundamental matter at finite temperature, which is realised as N f Dq-brane probes in the near horizon (black hole) geometry of N c black Dp-branes. We explore many aspects of these Dp/Dq brane systems, often focussing on the D3/D7 brane system which is dual to a four dimensional gauge theory. We study the thermodynamics of the Dq-brane probes in the black hole geometry. At low temperature, the branes sit outside the black hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. At large N c and large 't Hooft coupling, we show that this phase transition is always first order. We calculate the free energy, entropy and energy densities, as well as the speed of sound in these systems. We compute the meson spectrum for brane embeddings outside the horizon and find that tachyonic modes appear where this phase is expected to be unstable from thermodynamic considerations. We study the system at non-zero baryon density n b and find that there is a line of phase transitions for small n b , terminating at a critical point with finite n b . We demonstrate that, to leading order in N f / N c , the viscosity to entropy density ratio in these theories saturates the conjectured universal bound e/ S >= 1/4p. Finally, we compute spectral functions and diffusion constants for

  19. Including gauge-group parameters into the theory of interactions: an alternative mass-generating mechanism for gauge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldaya, V.; Lopez-Ruiz, F. F.; Sanchez-Sastre, E.

    2006-11-03

    We reformulate the gauge theory of interactions by introducing the gauge group parameters into the model. The dynamics of the new 'Goldstone-like' bosons is accomplished through a non-linear {sigma}-model Lagrangian. They are minimally coupled according to a proper prescription which provides mass terms to the intermediate vector bosons without spoiling gauge invariance. The present formalism is explicitly applied to the Standard Model of electroweak interactions.

  20. Comment on 'Noncommutative gauge theories and Lorentz symmetry'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iorio, Alfredo

    2008-02-15

    We show that Lorentz symmetry is generally absent for noncommutative (Abelian) gauge theories and obtain a compact formula for the divergence of the Noether currents that allows a thorough study of this instance of symmetry violation. We use that formula to explain why the results of ''Noncommutative gauge theories and Lorentz symmetry'', Phys. Rev. D 70, 125004 (2004) by R. Banerjee, B. Chakraborty, and K. Kumar, interpreted there as new criteria for Lorentz invariance, are in fact just a particular case of the general expression for Lorentz violation obtained here. Finally, it is suggested that the divergence formula should holdmore » in a vast class of cases, such as, for instance, the standard model extension.« less

  1. Fusion basis for lattice gauge theory and loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Delcamp, Clement; Dittrich, Bianca; Riello, Aldo

    2017-02-01

    We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2 + 1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel'd double of the gauge group, and can be readily "fused" together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2 + 1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.

  2. Medium generated gap in gravity and a 3D gauge theory

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Older, Daniel

    2018-05-01

    It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.

  3. Planar zeros in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    Jiménez, Diego Medrano; Vera, Agustín Sabio; Vázquez-Mozo, Miguel Á.

    2016-09-01

    Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU( N) with N = 2 , 3 , 5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.

  4. The problems in quantum foundations in the light of gauge theories

    NASA Astrophysics Data System (ADS)

    Ne'Eman, Yuval

    1986-04-01

    We review the issues of nonseparability and seemingly acausal propagation of information in EPR, as displayed by experiments and the failure of Bell's inequalities. We show that global effects are in the very nature of the geometric structure of modern physical theories, occurring even at the classical level. The Aharonov-Bohm effect, magnetic monopoles, instantons, etc. result from the topology and homotopy features of the fiber bundle manifolds of gauge theories. The conservation of probabilities, a supposedly highly quantum effect, is also achieved through global geometry equations. The EPR observables all fit in such geometries, and space-time is a truncated representation and is not the correct arena for their understanding. Relativistic quantum field theory represents the global action of the measurement operators as the zero-momentum (and therefore spatially infinitely spread) limit of their wave functions (form factors). We also analyze the collapse of the state vector as a case of spontaneous symmetry breakdown in the apparatus-observed state interaction.

  5. Pair production processes and flavor in gauge-invariant perturbation theory

    NASA Astrophysics Data System (ADS)

    Egger, Larissa; Maas, Axel; Sondenheimer, René

    2017-12-01

    Gauge-invariant perturbation theory is an extension of ordinary perturbation theory which describes strictly gauge-invariant states in theories with a Brout-Englert-Higgs effect. Such gauge-invariant states are composite operators which have necessarily only global quantum numbers. As a consequence, flavor is exchanged for custodial quantum numbers in the Standard Model, recreating the fermion spectrum in the process. Here, we study the implications of such a description, possibly also for the generation structure of the Standard Model. In particular, this implies that scattering processes are essentially bound-state-bound-state interactions, and require a suitable description. We analyze the implications for the pair-production process e+e-→f¯f at a linear collider to leading order. We show how ordinary perturbation theory is recovered as the leading contribution. Using a PDF-type language, we also assess the impact of sub-leading contributions. To lowest order, we find that the result is mainly influenced by how large the contribution of the Higgs at large x is. This gives an interesting, possibly experimentally testable, scenario for the formal field theory underlying the electroweak sector of the Standard Model.

  6. On Painlevé/gauge theory correspondence

    NASA Astrophysics Data System (ADS)

    Bonelli, Giulio; Lisovyy, Oleg; Maruyoshi, Kazunobu; Sciarappa, Antonio; Tanzini, Alessandro

    2017-12-01

    We elucidate the relation between Painlevé equations and four-dimensional rank one N = 2 theories by identifying the connection associated with Painlevé isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlevé τ -functions in terms of magnetic and dyonic Nekrasov partition functions for N = 2 SQCD and Argyres-Douglas theories at self-dual Omega background ɛ _1 + ɛ _2 = 0 or equivalently in terms of c=1 irregular conformal blocks.

  7. Infrared fixed point of SU(2) gauge theory with six flavors

    NASA Astrophysics Data System (ADS)

    Leino, Viljami; Rummukainen, Kari; Suorsa, Joni; Tuominen, Kimmo; Tähtinen, Sara

    2018-06-01

    We compute the running of the coupling in SU(2) gauge theory with six fermions in the fundamental representation of the gauge group. We find strong evidence that this theory has an infrared stable fixed point at strong coupling and measure also the anomalous dimension of the fermion mass operator at the fixed point. This theory therefore likely lies close to the boundary of the conformal window and will display novel infrared dynamics if coupled with the electroweak sector of the Standard Model.

  8. Local subsystems in gauge theory and gravity

    DOE PAGES

    Donnelly, William; Freidel, Laurent

    2016-09-16

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedommore » are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Finally, our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.« less

  9. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  10. Topological charge and cooling scales in pure SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.; Clarke, David A.

    2018-03-01

    Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β =2.928 , size 6 04, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find that they become more reliable with increasing β values and lattice sizes. Continuum limit estimates of the topological susceptibility χ are obtained of which we favor χ1 /4/Tc=0.643 (12 ) , where Tc is the SU(2) deconfinement temperature. Differences between cooling length scales in different topological sectors turn out to be too small to be detectable within our statistical errors.

  11. Hadron masses in a gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rujula, A.; Georgi, H.; Glashow, S.L.

    1975-07-01

    We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb- like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced onmore » us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the $Sigma$-$lambda$ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons.« less

  12. Lattice gauge action suppressing near-zero modes of H{sub W}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi

    2006-11-01

    We propose a lattice action including unphysical Wilson fermions with a negative mass m{sub 0} of the order of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac operator H{sub W}(m{sub 0}) cannot appear and near-zero modes are strongly suppressed. By measuring the spectral density {rho}({lambda}{sub W}), we find a gap near {lambda}{sub W}=0 on the configurations generated with the standard and improved gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the overlap-Dirac operator by Hernandez, Jansen, and Luescher. Since the number of near-zero modes ismore » small, the numerical cost to calculate the matrix sign function of H{sub W}(m{sub 0}) is significantly reduced, and the simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge coupling renormalization due to the additional fields is then minimized. The topological charge measured through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field variables.« less

  13. Chern-Simons gauge theory on orbifolds: Open strings from three dimensions

    NASA Astrophysics Data System (ADS)

    Hořava, Petr

    1996-12-01

    Chern-Simons gauge theory is formulated on three-dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known to be related to two-dimensional (2D) conformal field theory (CFT) on closed-string surfaces; here it is shown that the theory on orbifolds is related to 2D CFT of unoriented closed- and open-string models, i.e. to worldsheet orbifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open-string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories.

  14. Surface operators, chiral rings and localization in N =2 gauge theories

    NASA Astrophysics Data System (ADS)

    Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; Gupta, V.; John, R. R.; Lerda, A.

    2017-11-01

    We study half-BPS surface operators in supersymmetric gauge theories in four and five dimensions following two different approaches. In the first approach we analyze the chiral ring equations for certain quiver theories in two and three dimensions, coupled respectively to four- and five-dimensional gauge theories. The chiral ring equations, which arise from extremizing a twisted chiral superpotential, are solved as power series in the infrared scales of the quiver theories. In the second approach we use equivariant localization and obtain the twisted chiral superpotential as a function of the Coulomb moduli of the four- and five-dimensional gauge theories, and find a perfect match with the results obtained from the chiral ring equations. In the five-dimensional case this match is achieved after solving a number of subtleties in the localization formulas which amounts to choosing a particular residue prescription in the integrals that yield the Nekrasov-like partition functions for ramified instantons. We also comment on the necessity of including Chern-Simons terms in order to match the superpotentials obtained from dual quiver descriptions of a given surface operator.

  15. Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories

    NASA Astrophysics Data System (ADS)

    Yonekura, Kazuya

    2015-07-01

    We consider general 5d SU( N ) quiver gauge theories whose nodes form an ADE Dynkin diagram of type G. Each node has SU( N i ) gauge group of general rank, Chern-Simons level κ i and additional w i fundamentals. When the total flavor number at each node is less than or equal to 2 N i - 2| κ i |, we give general rules under which the symmetries associated to instanton currents are enhanced to G × G or a subgroup of it in the UV 5d superconformal theory. When the total flavor number violates that condition at some of the nodes, further enhancement of flavor symmetries occurs. In particular we find a large class of gauge theories interpreted as S 1 compactification of 6d superconformal theories which are waiting for string/F-theory realization. We also consider hypermultiplets in (anti-)symmetric representation.

  16. Classical probes of string/gauge theory duality

    NASA Astrophysics Data System (ADS)

    Ishizeki, Riei

    The AdS/CFT correspondence has played an important role in the recent development of string theory. The reason is that it proposes a description of certain gauge theories in terms of string theory. It is such that simple string theory computations give information about the strong coupling regime of the gauge theory. Vice versa, gauge theory computations give information about string theory and quantum gravity. Although much is known about AdS/CFT, the precise map between the two sides of the correspondence is not completely understood. In the unraveling of such map classical string solutions play a vital role. In this thesis, several classical string solutions are proposed to help understand the AdS/CFT duality. First, rigidly rotating strings on a two-sphere are studied. Taking special limits of such solutions leads to two cases: the already known giant magnon solution, and a new solution which we call the single spike solution. Next, we compute the scattering phase shift of the single spike solutions and compare the result with the giant magnon solutions. Intriguingly, the results are the same up to non-logarithmic terms, indicating that the single spike solution should have the same rich spin chain structure as the giant magnon solution. Afterward, we consider open string solutions ending on the boundary of AdS5. The lines traced by the ends of such open strings can be viewed as Wilson loops in N = 4 SYM theory. After applying an inversion transformation, the open Wilson loops become closed Wilson loops whose expectation value is consistent with previously conjectured results. Next, several Wilson loops for N = 4 SYM in an AdS5 pp-wave background are considered and translated to the pure AdS 5 background and their interpretation as forward quark-gluon scattering is suggested. In the last part of this thesis, a class of classical solutions for closed strings moving in AdS3 x S 1 ⊂ AdS5 x S5 with energy E and spin S in AdS3 and angular momentum J and winding m

  17. Two-dimensional lattice gauge theories with superconducting quantum circuits

    PubMed Central

    Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.

    2014-01-01

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676

  18. Black hole attractors and gauge theories

    NASA Astrophysics Data System (ADS)

    Huang, Lisa Li Fang

    2007-12-01

    This thesis is devoted to the study of supersymmetric black holes that arise from string compactifications. We begin by studying the R 2 corrections to the entropy of two solutions of five dimensional supergravity, the supersymmetric black ring and the spinning black hole. Using Wald's formula we compute the R2 corrections to the entropy of the black ring and BMPV black hole. We study N D4-branes wrapping a 4 cycle and M DO-branes on the quintic. For N D4-branes, we resolve the naive mismatch between the moduli space of the Higgs branch of the gauge theory and the moduli of a degree N hypersurface which the D4-brane wraps. The degree N surface must admit a holomorphic divisor and is a determinantal variety. Adding a single DO brane to probe the deformed geometry, we recover the determinant equation from F and D flatness condition which was previously discovered from a classical geometry approach. We next generalize the qunitic story for Calabi-Yau manifolds arising from complete intersections in toric varieties. We recover the moduli space of N D4-branes in terms of the moduli space of a U( N) x U(N) gauge theory with bi-fundamentals com ing from a D6 - D6 system. We also recast the tachyon condensation of the D6 - D6 system in the language of open string gauged linear sigma model. We obtain the determinant equation from F-term constraints arising from a boundary coupling. We set out to understand the Ooguri-Strominger-Vafa conjecture directly in the D4-DO black hole attractor geometry. We show that the lift to the euclidean IIA attractor geometry gives a complexified M-theory geometry whose asymptotic boundary is a torus. Employing AdS3/CFT 2 duality, we argue that the string partition function computes the elliptic genus of the Maldacena-Strominger-Witten conformal field theory. We evaluate the IIA partition function using the Green-Schwarz formalism and show that it gives ZtopZ top, coming from instantons and anti-instantons respectively. Finally, we determine

  19. Quantization of higher abelian gauge theory in generalized differential cohomology

    NASA Astrophysics Data System (ADS)

    Szabo, R.

    We review and elaborate on some aspects of the quantization of certain classes of higher abelian gauge theories using techniques of generalized differential cohomology. Particular emphasis is placed on the examples of generalized Maxwell theory and Cheeger-Simons cohomology, and of Ramond-Ramond fields in Type II superstring theory and differential K-theory.

  20. Gauge backgrounds and zero-mode counting in F-theory

    NASA Astrophysics Data System (ADS)

    Bies, Martin; Mayrhofer, Christoph; Weigand, Timo

    2017-11-01

    Computing the exact spectrum of charged massless matter is a crucial step towards understanding the effective field theory describing F-theory vacua in four dimensions. In this work we further develop a coherent framework to determine the charged massless matter in F-theory compactified on elliptic fourfolds, and demonstrate its application in a concrete example. The gauge background is represented, via duality with M-theory, by algebraic cycles modulo rational equivalence. Intersection theory within the Chow ring allows us to extract coherent sheaves on the base of the elliptic fibration whose cohomology groups encode the charged zero-mode spectrum. The dimensions of these cohomology groups are computed with the help of modern techniques from algebraic geometry, which we implement in the software gap. We exemplify this approach in models with an Abelian and non-Abelian gauge group and observe jumps in the exact massless spectrum as the complex structure moduli are varied. An extended mathematical appendix gives a self-contained introduction to the algebro-geometric concepts underlying our framework.

  1. Supersymmetric solutions of the cosmological, gauged, ℂ magic model

    NASA Astrophysics Data System (ADS)

    Chimento, Samuele; Ortín, Tomás; Ruipérez, Alejandro

    2018-05-01

    We construct supersymmetric solutions of theories of gauged N = 1 , d = 5 supergravity coupled to vector multiplets with a U(1)R Abelian (Fayet-Iliopoulos) gauging and an independent SU(2) gauging associated to an SU(2) isometry group of the Real Special scalar manifold. These theories provide minimal supersymmetrizations of 5-dimensional SU(2) Einstein-Yang-Mills theories with negative cosmological constant. We consider a minimal model with these gauge groups and the "magic model" based on the Jordan algebra J 3 ℂ with gauge group SU(3) × U(1)R, which is a consistent truncation of maximal SO(6)-gauged supergravity in d = 5 and whose solutions can be embedded in Type IIB Superstring Theory. We find several solutions containing selfdual SU(2) instantons, some of which asymptote to AdS5 and some of which are very small, supersymmetric, deformations of AdS5. We also show how some of those solutions can be embedded in Romans' SU(2) × U(1)-gauged half-maximal supergravity, which was obtained by Lu, Pope and Tran by compactification of the Type IIB Superstring effective action. This provides another way of uplifting those solutions to 10 dimensions.

  2. Entanglement entropy for 2D gauge theories with matters

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya; Iizuka, Norihiro; Tamaoka, Kotaro; Yokoya, Tsuyoshi

    2017-08-01

    We investigate the entanglement entropy in 1 +1 -dimensional S U (N ) gauge theories with various matter fields using the lattice regularization. Here we use extended Hilbert space definition for entanglement entropy, which contains three contributions; (1) classical Shannon entropy associated with superselection sector distribution, where sectors are labeled by irreducible representations of boundary penetrating fluxes, (2) logarithm of the dimensions of their representations, which is associated with "color entanglement," and (3) EPR Bell pairs, which give "genuine" entanglement. We explicitly show that entanglement entropies (1) and (2) above indeed appear for various multiple "meson" states in gauge theories with matter fields. Furthermore, we employ transfer matrix formalism for gauge theory with fundamental matter field and analyze its ground state using hopping parameter expansion (HPE), where the hopping parameter K is roughly the inverse square of the mass for the matter. We evaluate the entanglement entropy for the ground state and show that all (1), (2), (3) above appear in the HPE, though the Bell pair part (3) appears in higher order than (1) and (2) do. With these results, we discuss how the ground state entanglement entropy in the continuum limit can be understood from the lattice ground state obtained in the HPE.

  3. Monopole operators and Hilbert series of Coulomb branches of 3 d = 4 gauge theories

    NASA Astrophysics Data System (ADS)

    Cremonesi, Stefano; Hanany, Amihay; Zaffaroni, Alberto

    2014-01-01

    This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.

  4. 2d affine XY-spin model/4d gauge theory duality and deconfinement

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Poppitz, Erich; Ünsal, Mithat

    2012-04-01

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2)/ {{Z}_2} gauge theories, compactified on a small spatial circle {{R}^{{^{{{1},{2}}}}}} × {{S}^{{^{{1}}}}} , and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on {{R}^{{^{{2}}}}} × {{T}^{{^{{2}}}}} . Similarly, thermal gauge theories of higher rank are dual to new families of "affine" XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU( N c ) gauge theories with n f ≥1 adjoint Weyl fermions.

  5. Heavy quark free energy in QCD and in gauge theories with gravity duals

    NASA Astrophysics Data System (ADS)

    Noronha, Jorge

    2010-09-01

    Recent lattice results in pure glue SU(3) theory at high temperatures have shown that the expectation value of the renormalized Polyakov loop approaches its asymptotic limit at high temperatures from above. We show that this implies that the “heavy quark free energy” obtained from the renormalized loop computed on the lattice does not behave like a true thermodynamic free energy. While this should be expected to occur in asymptotically free gauge theories such as QCD, we use the gauge/string duality to show that in a large class of strongly coupled gauge theories with nontrivial UV fixed points the Polyakov loop reaches its asymptotic value from above only if the dimension of the relevant operator used to deform the conformal field theory is greater than or equal to 3.

  6. FAST TRACK COMMUNICATION: Symmetry breaking, conformal geometry and gauge invariance

    NASA Astrophysics Data System (ADS)

    Ilderton, Anton; Lavelle, Martin; McMullan, David

    2010-08-01

    When the electroweak action is rewritten in terms of SU(2) gauge-invariant variables, the Higgs can be interpreted as a conformal metric factor. We show that asymptotic flatness of the metric is required to avoid a Gribov problem: without it, the new variables fail to be nonperturbatively gauge invariant. We also clarify the relations between this approach and unitary gauge fixing, and the existence of similar transformations in other gauge theories.

  7. Cascading gauge theory on dS4 and String Theory landscape

    NASA Astrophysics Data System (ADS)

    Buchel, Alex; Galante, Damián A.

    2014-06-01

    Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e., there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes. First, turning on fluxes on Calabi-Yau compactifications of type IIB string theory produces highly warped geometry with stabilized complex structure (but not Kähler) moduli of the compactification [3]; Next, including non-perturbative effects (which are under control given the unbroken supersymmetry), one obtains anti-de Sitter (AdS4) vacua with all moduli fixed; Finally, one uses anti-D3 branes of type IIB string theory to uplift AdS4 to de Sitter (dS4) vacua. As the last step of the construction completely breaks supersymmetry, it is much less controlled. In fact, in [4-7] it was argued that putting anti-D3 branes at the tip of the Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked singularity. Whether or not the resulting singularity is physical is subject to debates. When M4=dS4 and the chiral symmetry is unbroken, the D3 brane

  8. Surface operators in 5d gauge theories and duality relations

    NASA Astrophysics Data System (ADS)

    Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; Gupta, V.; John, R. R.; Lerda, A.

    2018-05-01

    We study half-BPS surface operators in 5d N = 1 gauge theories compactified on a circle. Using localization methods and the twisted chiral ring relations of coupled 3d/5d quiver gauge theories, we calculate the twisted chiral superpotential that governs the infrared properties of these surface operators. We make a detailed analysis of the localization integrand, and by comparing with the results from the twisted chiral ring equations, we obtain constraints on the 3d and 5d Chern-Simons levels so that the instanton partition function does not depend on the choice of integration contour. For these values of the Chern-Simons couplings, we comment on how the distinct quiver theories that realize the same surface operator are related to each other by Aharony-Seiberg dualities.

  9. Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group

    NASA Astrophysics Data System (ADS)

    Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.

    2016-11-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.

  10. Gauge theories with time dependent couplings and their cosmological duals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P.O. Box 43; Das, Sumit R.

    2009-02-15

    We consider the N=4 super Yang-Mills theory in flat 3+1-dimensional space-time with a time dependent coupling constant which vanishes at t=0, like g{sub YM}{sup 2}=t{sup p}. In an analogous quantum mechanics toy model we find that the response is singular. The energy diverges at t=0, for a generic state. In addition, if p>1 the phase of the wave function has a wildly oscillating behavior, which does not allow it to be continued past t=0. A similar effect would make the gauge theory singular as well, though nontrivial effects of renormalization could tame this singularity and allow a smooth continuation beyondmore » t=0. The gravity dual in some cases is known to be a time dependent cosmology which exhibits a spacelike singularity at t=0. Our results, if applicable in the gauge theory for the case of the vanishing coupling, imply that the singularity is a genuine sickness and does not admit a meaningful continuation. When the coupling remains nonzero and becomes small at t=0, the curvature in the bulk becomes of order string scale. The gauge theory now admits a time evolution beyond this point. In this case, a finite amount of energy is produced which possibly thermalizes and leads to a black hole in the bulk.« less

  11. Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.

    PubMed

    Andreev, Oleg

    2009-05-29

    We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature range.

  12. A study of how the particle spectra of SU(N) gauge theories with a fundamental Higgs emerge

    NASA Astrophysics Data System (ADS)

    Törek, Pascal; Maas, Axel; Sondenheimer, René

    2018-03-01

    In gauge theories, the physical, experimentally observable spectrum consists only of gauge-invariant states. In the standard model the Fröhlich-Morchio-Strocchi mechanism shows that these states can be adequately mapped to the gauge-dependent elementary W, Z, Higgs, and fermions. In theories with a more general gauge group and Higgs sector, appearing in various extensions of the standard model, this has not to be the case. In this work we determine analytically the physical spectrum of SU(N > 2) gauge theories with a Higgs field in the fundamental representation. We show that discrepancies between the spectrum predicted by perturbation theory and the observable physical spectrum arise. We confirm these analytic findings with lattice simulations for N = 3.

  13. The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    DOE PAGES

    Argyres, Philip C.; Uensal, Mithat

    2012-08-10

    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a massmore » gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle’s resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.« less

  14. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2018-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.

  15. Higgs compositeness in Sp(2N) gauge theories — The pure gauge model

    NASA Astrophysics Data System (ADS)

    Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide

    2018-03-01

    As a first step in the study of Sp(2N) composite Higgs models, we obtained a set of novel numerical results for the pure gauge Sp(4) lattice theory in 3+1 space-time dimensions. Results for the continuum extrapolations of the string tension and the glueball mass spectrum are presented and their values are compared with the same quantities in neighbouring SU(N) models.

  16. A remark on the phase transitions of modified action spin and gauge models

    NASA Astrophysics Data System (ADS)

    Seiberg, Nathan; Solomon, Sorin

    1983-06-01

    We consider the phase diagrams of modified action gauge and spin models and concentrate on their periphery - infinitely far from their origins (zero temperature - β-1 = 0). In this limit the exact positions of the phase transitions are found by looking for the global minimum of the single plaquette action (for a spin system - the single link energy). As the parameters of the model are varied, the position of such a global minimum is in general changed. When this changed is non-analytic, a phase transition takes place. The phase structure for finite β is clearly similar, but not identical to the infinite β one. We discuss several finite β corrections that should be applied to the exactly known infinite β picture. We confront our analysis for infinite β2 = ∑ iβ2i with the Monte Carlo simulations for two four-dimensional gauge systems: an SU(3) gauge model with action S=-Re∑ p( β1tr Up+ β2(tr Up) 2) and an SU(2) model with S=- Re Σ p[β 1{1}/{2}trU p+β 2( {1}/{2}trU p) 2+β 3( {1}/{2}trU p) 3] .

  17. Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries

    DOE PAGES

    Braun, Volker; Cvetič, Mirjam; Donagi, Ron; ...

    2017-07-26

    Here, we provide the first explicit example of Type IIB string theory compactication on a globally defined Calabi-Yau threefold with torsion which results in a fourdimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of Z 2 X Z 2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of secondmore » cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the four-dimensional theory.« less

  18. Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, Volker; Cvetič, Mirjam; Donagi, Ron

    Here, we provide the first explicit example of Type IIB string theory compactication on a globally defined Calabi-Yau threefold with torsion which results in a fourdimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of Z 2 X Z 2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of secondmore » cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the four-dimensional theory.« less

  19. Scalar formalism for non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostler, L.C.

    1986-09-01

    The gauge field theory of an N-italic-dimensional multiplet of spin- 1/2 particles is investigated using the Klein--Gordon-type wave equation )Pi x (1+i-italicsigma) x Pi+m-italic/sup 2/)Phi = 0, Pi/sub ..mu../equivalentpartial/partiali-italicx-italic/sub ..mu../-e-italicA-italic/sub ..mu../, investigated before by a number of authors, to describe the fermions. Here Phi is a 2 x 1 Pauli spinor, and sigma repesents a Lorentz spin tensor whose components sigma/sub ..mu..//sub ..nu../ are ordinary 2 x 2 Pauli spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are derived starting from the conventional field theory of the multiplet and converting it to the new description. Themore » equivalence of the new and the old formalism for arbitrary radiative processes is thereby established. The conversion to the scalar formalism is accomplished in a novel way by working in terms of the path integral representation of the generating functional of the vacuum tau-functions, tau(2,1, xxx 3 xxx)equivalent<0-chemically bondT-italic(Psi/sub in/(2) Psi-bar/sub in/(1) xxx A-italic/sub ..mu../(3)/sub in/ xxx S-italic)chemically bond0->, where Psi/sub in/ is a Heisenberg operator belonging to a 4N-italic x 1 Dirac wave function of the multiplet. The Feynman rules obtained generalize earlier results for the Abelian case of quantum electrodynamics.« less

  20. Numerical solution of open string field theory in Schnabl gauge

    NASA Astrophysics Data System (ADS)

    Arroyo, E. Aldo; Fernandes-Silva, A.; Szitas, R.

    2018-01-01

    Using traditional Virasoro L 0 level-truncation computations, we evaluate the open bosonic string field theory action up to level (10 , 30). Extremizing this level-truncated potential, we construct a numerical solution for tachyon condensation in Schnabl gauge. We find that the energy associated to the numerical solution overshoots the expected value -1 at level L = 6. Extrapolating the level-truncation data for L ≤ 10 to estimate the vacuum energies for L > 10, we predict that the energy reaches a minimum value at L ˜ 12, and then turns back to approach -1 asymptotically as L → ∞. Furthermore, we analyze the tachyon vacuum expectation value (vev), for which by extrapolating its corresponding level-truncation data, we predict that the tachyon vev reaches a minimum value at L ˜ 26, and then turns back to approach the expected analytical result as L → ∞.

  1. Gravitationally induced zero modes of the Faddeev-Popov operator in the Coulomb gauge for Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2010-08-01

    It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.

  2. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  3. Confinement Driven by Scalar Field in 4d Non Abelian Gauge Theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabab, Mohamed

    2007-01-12

    We review some of the most recent work on confinement in 4d gauge theories with a massive scalar field (dilaton). Emphasis is put on the derivation of confining analytical solutions to the Coulomb problem versus dilaton effective couplings to gauge terms. It is shown that these effective theories can be relevant to model quark confinement and may shed some light on confinement mechanism. Moreover, the study of interquark potential, derived from Dick Model, in the heavy meson sector proves that phenomenological investigation of tmechanism is more than justified and deserves more efforts.

  4. Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Kumar, K. V. Pavan

    2018-05-01

    Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].

  5. Gauge copies in the Landau-DeWitt gauge: A background invariant restriction

    NASA Astrophysics Data System (ADS)

    Dudal, David; Vercauteren, David

    2018-04-01

    The Landau background gauge, also known as the Landau-DeWitt gauge, has found renewed interest during the past decade given its usefulness in accessing the confinement-deconfinement transition via the vacuum expectation value of the Polyakov loop, describable via an appropriate background. In this Letter, we revisit this gauge from the viewpoint of it displaying gauge (Gribov) copies. We generalize the Gribov-Zwanziger effective action in a BRST and background invariant way; this action leads to a restriction on the allowed gauge fluctuations, thereby eliminating the infinitesimal background gauge copies. The explicit background invariance of our action is in contrast with earlier attempts to write down and use an effective Gribov-Zwanziger action. It allows to address certain subtleties arising in these earlier works, such as a spontaneous and thus spurious Lorentz symmetry breaking, something which is now averted.

  6. Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Shiu, Gary

    2018-05-01

    We show that the soft photon, gluon, and graviton theorems can be understood as the Ward-Takahashi identities of large gauge transformation, i.e., diffeomorphism that does not fall off at spatial infinity. We found infinitely many new identities which constrain the higher order soft behavior of the gauge bosons and gravitons in scattering amplitudes of gauge and gravity theories. Diagrammatic representations of these soft theorems are presented.

  7. Hamiltonian approach to second order gauge invariant cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  8. Existence of topological multi-string solutions in Abelian gauge field theories

    NASA Astrophysics Data System (ADS)

    Han, Jongmin; Sohn, Juhee

    2017-11-01

    In this paper, we consider a general form of self-dual equations arising from Abelian gauge field theories coupled with the Einstein equations. By applying the super/subsolution method, we prove that topological multi-string solutions exist for any coupling constant, which improves previously known results. We provide two examples for application: the self-dual Einstein-Maxwell-Higgs model and the gravitational Maxwell gauged O(3) sigma model.

  9. M2-brane surface operators and gauge theory dualities in Toda

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Le Floch, Bruno

    2016-04-01

    We give a microscopic two dimensional {N} = (2, 2) gauge theory description of arbitrary M2-branes ending on N f M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional {N} = 2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation {R} of SU( N f ), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including {N} = (2, 2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.

  10. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    PubMed

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  11. One-loop β-function for an infinite-parameter family of gauge theories

    NASA Astrophysics Data System (ADS)

    Krasnov, Kirill

    2015-03-01

    We continue to study an infinite-parametric family of gauge theories with an arbitrary function of the self-dual part of the field strength as the Lagrangian. The arising one-loop divergences are computed using the background field method. We show that they can all be absorbed by a local redefinition of the gauge field, as well as multiplicative renormalisations of the couplings. Thus, this family of theories is one-loop renormalisable. The infinite set of β-functions for the couplings is compactly stored in a renormalisation group flow for a single function of the curvature. The flow is obtained explicitly.

  12. Exact relativistic Toda chain eigenfunctions from Separation of Variables and gauge theory

    NASA Astrophysics Data System (ADS)

    Sciarappa, Antonio

    2017-10-01

    We provide a proposal, motivated by Separation of Variables and gauge theory arguments, for constructing exact solutions to the quantum Baxter equation associated to the N-particle relativistic Toda chain and test our proposal against numerical results. Quantum Mechanical non-perturbative corrections, essential in order to obtain a sensible solution, are taken into account in our gauge theory approach by considering codimension two defects on curved backgrounds (squashed S 5 and degenerate limits) rather than flat space; this setting also naturally incorporates exact quantization conditions and energy spectrum of the relativistic Toda chain as well as its modular dual structure.

  13. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  14. Gauged supergravities from M-theory reductions

    NASA Astrophysics Data System (ADS)

    Katmadas, Stefanos; Tomasiello, Alessandro

    2018-04-01

    In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.

  15. Local existence of N=1 supersymmetric gauge theory in four Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar, Fiki T.; Gunara, Bobby E.; Zen, Freddy P.

    2015-04-16

    In this paper, we shall prove the local existence of N=1 supersymmetry gauge theory in 4 dimension. We start from the Lagrangian for coupling chiral and vector multiplets with constant gauge kinetic function and only considering a bosonic part by setting all fermionic field to be zero at level equation of motion. We consider a U(n) model as isometry for scalar field internal geometry. And we use a nonlinear semigroup method to prove the local existence.

  16. Gauge engineering and propagators

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2017-03-01

    Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  17. Gauge choices and entanglement entropy of two dimensional lattice gauge fields

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Hung, Ling-Yan

    2018-03-01

    In this paper, we explore the question of how different gauge choices in a gauge theory affect the tensor product structure of the Hilbert space in configuration space. In particular, we study the Coulomb gauge and observe that the naive gauge potential degrees of freedom cease to be local operators as soon as we impose the Dirac brackets. We construct new local set of operators and compute the entanglement entropy according to this algebra in 2 + 1 dimensions. We find that our proposal would lead to an entanglement entropy that behave very similar to a single scalar degree of freedom if we do not include further centers, but approaches that of a gauge field if we include non-trivial centers. We explore also the situation where the gauge field is Higgsed, and construct a local operator algebra that again requires some deformation. This should give us some insight into interpreting the entanglement entropy in generic gauge theories and perhaps also in gravitational theories.

  18. Gauge symmetries of the free bosonic string field theory

    NASA Astrophysics Data System (ADS)

    Neveu, A.; Schwarz, J.; West, P. C.

    1985-12-01

    The gauge covariant local formulations of free bosonic string theories that contained a finite number of supplementary fields are extended to include an infinite number of supplementary fields. These new formulations allow the generators of the Virasoro algebra to appear on a more equal footing. Permanent address: King's College, Physics Department, London WC2R 2LS, UK.

  19. AGT relations for abelian quiver gauge theories on ALE spaces

    NASA Astrophysics Data System (ADS)

    Pedrini, Mattia; Sala, Francesco; Szabo, Richard J.

    2016-05-01

    We construct level one dominant representations of the affine Kac-Moody algebra gl̂k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution Xk of the Ak-1 toric singularity C2 /Zk. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl̂k, which proves the AGT correspondence for pure N = 2 U(1) gauge theory on Xk. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl̂k ≃ h ⊕sl̂k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h and primary fields of sl̂k. We use these operators to prove the AGT correspondence for N = 2 superconformal abelian quiver gauge theories on Xk.

  20. 4d $$ \\mathcal{N} $$=2 theories with disconnected gauge groups

    DOE PAGES

    Argyres, Philip C.; Martone, Mario

    2017-03-28

    In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1more » $$ \\mathcal{N} $$ = 2 SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 $$ \\mathcal{N} $$ = 2 SCFTs. The global symmetries that can be gauged involve a non-trivial combination of discrete subgroups of the U(1) R, low-energy EM duality group SL(2,Z), and the outer automorphism group of the flavor symmetry algebra, Out(F ). The theories that we construct are remarkable in many ways: (i) two of them have exceptional F 4 and G 2 flavor groups; (ii) they substantially complete the picture of the landscape of rank-1 $$ \\mathcal{N} $$ = 2 SCFTs as they realize all but one of the remaining consistent rank-1 Seiberg-Witten geometries that we previously constructed but were not associated to known SCFTs; and (iii) some of them have enlarged $$ \\mathcal{N} $$ = 3 SUSY, and have not been previously constructed. They are also examples of SCFTs which violate the ShapereTachikawa relation between the conformal central charges and the scaling dimension of the Coulomb branch vev. Here, we propose a modification of the formulas computing these central charges from the topologically twisted Coulomb branch partition function which correctly compute them for discretely gauged theories.« less

  1. Symplectic Quantization of a Vector-Tensor Gauge Theory with Topological Coupling

    NASA Astrophysics Data System (ADS)

    Barcelos-Neto, J.; Silva, M. B. D.

    We use the symplectic formalism to quantize a gauge theory where vectors and tensors fields are coupled in a topological way. This is an example of reducible theory and a procedure like of ghosts-of-ghosts of the BFV method is applied but in terms of Lagrange multipliers. Our final results are in agreement with the ones found in the literature by using the Dirac method.

  2. Five-dimensional gauge theory and compactification on a torus

    NASA Astrophysics Data System (ADS)

    Haghighat, Babak; Vandoren, Stefan

    2011-09-01

    We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkähler equipped with a metric with modular transformation properties. We determine the one-loop corrections to the metric and show that they can be interpreted as worldsheet and D1-brane instantons in type IIB string theory. Furthermore, we analyze instanton corrections coming from the solitonic BPS magnetic string wrapped over the torus. In particular, we show how to compute the path-integral for the zero-modes from the partition function of the M5 brane, or, using a 2d/4d correspondence, from the partition function of N=4 SYM theory on a Hirzebruch surface.

  3. Kaluza-Klein theories as a tool to find new gauge symmetries

    NASA Astrophysics Data System (ADS)

    Dolan, L.

    Non-abelian Kaluza-Klein theories are studied with respect to using the invariances of multi-dimensional general relativity to investigate hidden symmetry, such as Kac-Mody Lie algebras, of the four-dimensional Yang-Mills theory. Several properties of the affine transformations on the self-dual set are identified and are used to motivate the Kaluza-Klein analysis. In this context, a system of differential equations is derived for new symmetry transformations which may be extendable to the full gauge theory.

  4. Twofold symmetries of the pure gravity action

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2017-01-25

    Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less

  5. Twofold symmetries of the pure gravity action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Clifford; Remmen, Grant N.

    Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less

  6. Gerbes, M5-Brane Anomalies and E8 Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Jurco, Branislav

    2004-10-01

    Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general tilde OmegaE8, the central extension of the E8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.

  7. The QCD matter; perturbation and lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Saini, Abhilasha; Bhardwaj, Sudhir; Keswani, Bright

    2018-05-01

    In this review we are watching towards the probes of quark gluon plasma which provides the unique option to create such nuclear stuff at controlled laboratory conditions. The observables from hadronic and leptonic residues provide the required information. The other tool is the detailed rapidity and momentum spectra of hadrons. Here the information regarding the de-confined phase transition and chiral symmetry restoration is mentioned; also the perturbation and lattice gauge theory is described in short.

  8. Running coupling from gluon and ghost propagators in the Landau gauge: Yang-Mills theories with adjoint fermions

    NASA Astrophysics Data System (ADS)

    Bergner, Georg; Piemonte, Stefano

    2018-04-01

    Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.

  9. Cosmology and unified gauge theory

    NASA Astrophysics Data System (ADS)

    Oraifeartaigh, L.

    1981-09-01

    Theoretical points in common between cosmology and unified gauge theory (UGT) are reviewed, with attention given to areas of one which have proven useful for the other. The underlying principles for both theoretical frameworks are described, noting the differences in scale, i.e., 10 to the 25th cm in cosmology and 10 to the -15th cm for UGT. Cosmology has produced bounds on the number of existing neutrino species, and also on the mass of neutrinos, two factors of interest in particle physics. Electrons, protons, and neutrinos, having been spawned from the same massive leptons, each composed of three quarks, have been predicted to be present in equal numbers in the Universe by UGT, in line with necessities of cosmology. The Grand UGT also suggests specific time scales for proton decay, thus accounting for the observed baryon assymmetry.

  10. Strongly coupled gauge theories: What can lattice calculations teach us?

    NASA Astrophysics Data System (ADS)

    Hasenfratz, A.; Brower, R. C.; Rebbi, C.; Weinberg, E.; Witzel, O.

    2017-12-01

    The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light 0++ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the vev of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could be a generic feature of SU(3) gauge theories.

  11. Discrete symmetry breaking and baryon currents in U(N) and SU(N) gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucini, B.; Patella, A.

    2009-06-15

    In SU(N) gauge theories with fermions in the fundamental or in a two-index (either symmetric or antisymmetric) representation formulated on a manifold with at least one compact dimension with nontrivial holonomy the discrete symmetries C, P, and T are broken at small enough size of the compact direction(s) for certain values of N. We show that for those N in the broken phase a nonzero baryon current wrapping in the compact direction exists, which provides a measurable observable for the breaking of C, P, and T. We prove that in all cases where the current is absent there is nomore » breaking of those discrete symmetries. This includes the limit N{yields}{infinity} of the SU(N) gauge theory with symmetric or antisymmetric fermions and U(N) gauge theory at any value of N. We then argue that the component of the baryon current in the compact direction is the physical order parameter for C, P, and T breaking due to the breaking of Lorentz invariance.« less

  12. The first law of black hole mechanics for fields with internal gauge freedom

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik

    2017-02-01

    We derive the first law of black hole mechanics for physical theories based on a local, covariant and gauge-invariant Lagrangian where the dynamical fields transform non-trivially under the action of some internal gauge transformations. The theories of interest include General Relativity formulated in terms of tetrads, Einstein-Yang-Mills theory and Einstein-Dirac theory. Since the dynamical fields of these theories have some internal gauge freedom, we argue that there is no natural group action of diffeomorphisms of spacetime on such dynamical fields. In general, such fields cannot even be represented as smooth, globally well-defined tensor fields on spacetime. Consequently the derivation of the first law by Iyer and Wald cannot be used directly. Nevertheless, we show how such theories can be formulated on a principal bundle and that there is a natural action of automorphisms of the bundle on the fields. These bundle automorphisms encode both spacetime diffeomorphisms and internal gauge transformations. Using this reformulation we define the Noether charge associated to an infinitesimal automorphism and the corresponding notion of stationarity and axisymmetry of the dynamical fields. We first show that we can define certain potentials and charges at the horizon of a black hole so that the potentials are constant on the bifurcate Killing horizon, giving a generalised zeroth law for bifurcate Killing horizons. We further identify the gravitational potential and perturbed charge as the temperature and perturbed entropy of the black hole which gives an explicit formula for the perturbed entropy analogous to the Wald entropy formula. We then obtain a general first law of black hole mechanics for such theories. The first law relates the perturbed Hamiltonians at spatial infinity and the horizon, and the horizon contributions take the form of a ‘potential times perturbed charge’ term. We also comment on the ambiguities in defining a prescription for the total entropy

  13. Spontaneously broken topological SL(5,R) gauge theory with standard gravity emerging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.

    2011-02-15

    A completely metric-free sl(5,R) gauge framework is developed in four dimensions. After spontaneous symmetry breaking of the corresponding topological BF scheme, Einstein spaces with a tiny cosmological constant emerge, similarly as in (anti-)de Sitter gauge theories of gravity. The induced {Lambda} is related to the scale of the symmetry breaking. A ''background'' metric surfaces from a Higgs-like mechanism. The finiteness of such a topological scheme converts into asymptotic safeness after quantization of the spontaneously broken model.

  14. The anisotropic Wilson gauge action

    NASA Astrophysics Data System (ADS)

    Klassen, Timothy R.

    1998-11-01

    Anisotropic lattices, with a temporal lattice spacing smaller than the spatial one, allow precision Monte Carlo calculations of problems that are difficult to study otherwise: heavy quarks, glueballs, hybrids, and high temperature thermodynamics, for example. We here perform the first step required for such studies with the (quenched) Wilson gauge action, namely, the determination of the renormalized anisotropy Ξ as a function of the bare anisotropy Ξ0 and the coupling. By, essentially, comparing the finite-volume heavy quark potential where the quarks are separated along a spatial direction with that where they are separated along the time direction, we determine the relation between Ξ and Ξ0 to a fraction of 1% for weak and to 1% for strong coupling. We present a simple parameterization of this relation for 1 ⩽ Ξ ⩽ 6 and 5.5 ⩽ β ⩽ ∞, which incorporates the known one-loop result and reproduces our non-perturbative determinations within errors. Besides solving the problem of how to choose the bare anisotropies if one wants to take the continuum limit at fixed renormalized anisotropy, this parameterization also yields accurate estimates of the derivative {∂Ξ 0}/{∂Ξ} needed in thermodynamic studies.

  15. Double field theory at order α'

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2014-11-01

    We investigate α' corrections of bosonic strings in the framework of double field theory. The previously introduced "doubled α'-geometry" gives α'-deformed gauge transformations arising in the Green-Schwarz anomaly cancellation mechanism but does not apply to bosonic strings. These require a different deformation of the duality-covariantized Courant bracket which governs the gauge structure. This is revealed by examining the α' corrections in the gauge algebra of closed string field theory. We construct a four-derivative cubic double field theory action invariant under the deformed gauge transformations, giving a first glimpse of the gauge principle underlying bosonic string α' corrections. The usual metric and b-field are related to the duality covariant fields by non-covariant field redefinitions.

  16. A note on large gauge transformations in double field theory

    DOE PAGES

    Naseer, Usman

    2015-06-03

    Here, we give a detailed proof of the conjecture by Hohm and Zwiebach in double field theory. Our result implies that their proposal for large gauge transformations in terms of the Jacobian matrix for coordinate transformations is, as required, equivalent to the standard exponential map associated with the generalized Lie derivative along a suitable parameter.

  17. Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field

    NASA Astrophysics Data System (ADS)

    Figueroa, Daniel G.; Shaposhnikov, Mikhail

    2018-01-01

    Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U (1) gauge sector, a (x)FμνF˜μν, reproducing the continuum limit to order O (dxμ2) and obeying the following properties: (i) the system is gauge invariant and (ii) shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K =FμνF˜μν that admits a lattice total derivative representation K = Δμ+ Kμ, reproducing to order O (dxμ2) the continuum expression K =∂μKμ ∝ E → ṡ B → . If we consider a homogeneous field a (x) = a (t), the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern-Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. When a (x) = a (x → , t) is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O (dxμ2) accuracy). We discuss an iterative scheme allowing to overcome this difficulty.

  18. dRGT theory of massive gravity from spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Torabian, Mahdi

    2018-05-01

    In this note we propose a topological action for a Poincare times diffeomorphism invariant gauge theory. We show that there is Higgs phase where the gauge symmetry is spontaneous broken to a diagonal Lorentz subgroup and gives the Einstein-Hilbert action plus the dRGT potential terms. In this vacuum, there are five (three from Goldstone modes) propagating degrees of freedom which form polarizations of a massive spin 2 particle, an extra healthy heavy scalar (Higgs) mode and no Boulware-Deser ghost mode. We further show that the action can be derived in a limit from a topological de Sitter invariant gauge theory in 4 dimensions.

  19. Mass gap in the weak coupling limit of (2 +1 )-dimensional SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Anishetty, Ramesh; Sreeraj, T. P.

    2018-04-01

    We develop the dual description of (2 +1 )-dimensional SU(2) lattice gauge theory as interacting "Abelian-like" electric loops by using Schwinger bosons. "Point splitting" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.

  20. A Lie based 4-dimensional higher Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Zucchini, Roberto

    2016-05-01

    We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.

  1. Topological string, supersymmetric gauge theory and bps counting

    NASA Astrophysics Data System (ADS)

    Pan, Guang

    In this thesis we study the Donaldson-Thomas theory on the local curve geometry, which arises in the context of geometric engineering of supersymmetric gauge theory from type IIA string compactification. The topological A-model amplitude gives the F-term interaction of the compactified theory. In particular, it is related to the instanton partition function via Nekrasov conjecture. We will introduce ADHM sheaves on curve, as an alternative description of local Donaldson-Thomas theory. We derive the wallcrossing of ADHM invariants and their refinements. We show that it is equivalent to the semi-primitive wallcrossing from supergravity, and the Kontsevich-Soibelman wallcrossing formula. As an application, we discuss the connection between ADHM moduli space with Hitchin system. In particular we give a recursive formula for the Poincare polynomial of Hitchin system in terms of instanton partition function, from refined wallcrossing. We also introduce higher rank generalization of Donaldson-Thomas invariant in the context of ADHM sheaves. We study their wallcrossing and discuss their physical interpretation via string duality.

  2. Post-Colonial Theory and Action Research

    ERIC Educational Resources Information Center

    Parsons, Jim B.; Harding, Kelly J.

    2011-01-01

    This essay explores connections between post-colonial theory and action research. Post-colonial theory is committed to addressing the plague of colonialism. Action research, at its core, promises to problematize uncontested "colonial" hegemonies of any form. Both post-colonial theory and action research engage dialogic, critically reflective and…

  3. Deformed coset models from gauged WZW actions

    NASA Astrophysics Data System (ADS)

    Park, Q.-Han

    1994-06-01

    A general Lagrangian formulation of integrably deformed G/H-coset models is given. We consider the G/H-coset model in terms of the gauged Wess-Zumino-Witten action and obtain an integrable deformation by adding a potential energy term Tr(gTg -1overlineT) , where algebra elements T, overlineT belong to the center of the algebra h associated with the subgroup H. We show that the classical equation of motion of the deformed coset model can be identified with the integrability condition of certain linear equations which makes the use of the inverse scattering method possible. Using the linear equation, we give a systematic way to construct infinitely many conserved currents as well as soliton solutions. In the case of the parafermionic SU(2)/U(1)-coset model, we derive n-solitons and conserved currents explicitly.

  4. Radiation-like scalar field and gauge fields in cosmology for a theory with dynamical time

    NASA Astrophysics Data System (ADS)

    Benisty, David; Guendelman, E. I.

    2016-09-01

    Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spatial curvature of the universe. This is because only such k = 0 radiation solutions pose a homothetic Killing vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved spacetime, and there are no deviations from standard gauge field equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang-Mills equations, for more general spacetimes.

  5. Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    2012-07-01

    We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the {N=4} supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure {N=2} and the {N=2^*} supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional {N=2} superconformal gauge theory is treated similarly.

  6. Specific heat in the pure gauge SU(2) theory

    NASA Astrophysics Data System (ADS)

    Mitrjushkin, V. K.; Zadorozhny, A. M.

    1989-12-01

    We calculated the specific heat Cv in pure gauge SU(2) theory. Calculations were done on the 3·8 3 lattice in the vicinity of the phase transition temperature. It is shown that the dependence of its electric ( CEv) and magnetic ( CMV) compone nts differ drastically near the phase transition point. Their behaviour is in full agreement with our previous calculations of the electric and magnetic components of the internal energy density and pressure.

  7. On gauged maximal d  =  8 supergravities

    NASA Astrophysics Data System (ADS)

    Lasso Andino, Óscar; Ortín, Tomás

    2018-04-01

    We study the gauging of maximal d  =  8 supergravity using the embedding tensor formalism. We focus on SO(3) gaugings, study all the possible choices of gauge fields and construct explicitly the bosonic actions (including the complicated Chern–Simons terms) for all these choices, which are parametrized by a parameter associated to the 8-dimensional SL(2, {R}) duality group that relates all the possible choices which are, ultimately, equivalent from the purely 8-dimensional point of view. Our result proves that the theory constructed by Salam and Sezgin by Scherk–Schwarz compactification of d  =  11 supergravity and the theory constructed in Alonso-Alberca (2001 Nucl. Phys. B 602 329) by dimensional reduction of the so called ‘massive 11-dimensional supergravity’ proposed by Meessen and Ortín in (1999 Nucl. Phys. B 541 195) are indeed related by an SL(2, {R}) duality even though they have two completely different 11-dimensional origins.

  8. Gauge interaction as periodicity modulation

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-06-01

    The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

  9. Solving general gauge theories on inner product spaces

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1995-02-01

    By means of a generalized quartet mechanism we show in a model independent way that a BRST quantization on an inner product space leads to physical states of the form ph> = exp [ Q, ψ]ph> 0 where Q is the nilpotent BRST operator, ψ a hermitian fermionic gauge-fixing operator, and ph> o BRST invariant states determined by a hermitian set of BRST doublets in involution. ph> 0 does not belong to an inner product space although ph> does. Since the BRST quartets are split into two sets of hermitian BRST doublets there are two choices for ph> 0 and the corresponding ψ. When applied to general, both irreducible and reducible, gauge theories of arbitrary rank within the BFV formulation we find that ph> 0 are trivial BRST invariant states which only depend on the matter variables for one set of solutions, and for the other set ph> 0 are solutions of a Dirac quantization. This generalizes previous Lie group solutions obtained by means of a bigrading.

  10. Infrared singularities in Landau gauge Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkofer, Reinhard; Huber, Markus Q.; Schwenzer, Kai

    2010-05-15

    We present a more detailed picture of the infrared regime of Landau-gauge Yang-Mills theory. This is done within a novel framework that allows one to take into account the influence of finite scales within an infrared power counting analysis. We find that there are two qualitatively different infrared fixed points of the full system of Dyson-Schwinger equations. The first extends the known scaling solution, where the ghost dynamics is dominant and gluon propagation is strongly suppressed. It features in addition to the strong divergences of gluonic vertex functions in the previously considered uniform scaling limit, when all external momenta tendmore » to zero, also weaker kinematic divergences, when only some of the external momenta vanish. The second solution represents the recently proposed decoupling scenario where the gluons become massive and the ghosts remain bare. In this case we find that none of the vertex functions is enhanced, so that the infrared dynamics is entirely suppressed. Our analysis also provides a strict argument why the Landau-gauge gluon dressing function cannot be infrared divergent.« less

  11. Remarks on the BRST quantized gauged WZNW models and the Toda field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, N.

    In this paper it is shown that the quantum Hamiltonian reduction proposed by Bershadsky and Ooguri enables us to connect the gauged WZNW models with fractional levels to the quantum Toda field theories, and the coupling constants of the Toda field theories with the fractional levels. The BRST framework is applied to the SL ({ital n},R)-WZNW models.

  12. From 6D superconformal field theories to dynamic gauged linear sigma models

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.

    2017-09-01

    Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.

  13. Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?

    NASA Astrophysics Data System (ADS)

    Gasbarro, Andrew

    2018-03-01

    In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.

  14. The ϱ-ππ coupling constant in lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Gottlieb, Steven; MacKenzie, Paul B.; Thacker, H. B.; Weingarten, Don

    1984-01-01

    We present a method for studying hadronic transitions in lattice gauge theory which requires computer time comparable to that required by recent hadron spectrum calculations. This method is applied to a calculation of the decay ϱ-->ππ. On leave from the Department of Physics, Indiana University, Bloomington, IN 47405, USA. Address after September 1, 1983: IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.

  15. Argyres-Douglas theories and S-duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buican, Matthew; Giacomelli, Simone; Nishinaka, Takahiro

    We generalize S-duality to N=2 superconformal field theories (SCFTs) with Coulomb branch operators of non-integer scaling dimension. As simple examples, we find minimal generalizations of the S-dualities discovered in SU(2) gauge theory with four fundamental flavors by Seiberg and Witten and in SU(3) gauge theory with six fundamental flavors by Argyres and Seiberg. Our constructions start by weakly gauging diagonal SU(2) and SU(3) flavor symmetry subgroups of two copies of a particular rank-one Argyres-Douglas theory (along with sufficient numbers of hypermultiplets to guarantee conformality of the gauging). Here, as we explore the resulting conformal manifold of the SU(2) SCFT, wemore » find an action of S-duality on the parameters of the theory that is reminiscent of Spin(8) triality. On the other hand, as we explore the conformal manifold of the SU(3) theory, we find that an exotic rank-two SCFT emerges in a dual SU(2) description.« less

  16. 4d N = 1 quiver gauge theories and the An Bailey lemma

    NASA Astrophysics Data System (ADS)

    Brünner, Frederic; Spiridonov, Vyacheslav P.

    2018-03-01

    We study the integral Bailey lemma associated with the An-root system and identities for elliptic hypergeometric integrals generated thereby. Interpreting integrals as superconformal indices of four-dimensional N = 1 quiver gauge theories with the gauge groups being products of SU(n + 1), we provide evidence for various new dualities. Further confirmation is achieved by explicitly checking that the `t Hooft anomaly matching conditions holds. We discuss a flavour symmetry breaking phenomenon for supersymmetric quantum chromodynamics (SQCD), and by making use of the Bailey lemma we indicate its manifestation in a web of linear quivers dual to SQCD that exhibits full s-confinement.

  17. Remarks on worldsheet theories dual to free large N gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, Ofer; SITP, Department of Physics and SLAC, Stanford University, Stanford, California 94305; David, Justin R.

    2007-05-15

    We continue to investigate properties of the worldsheet conformal field theories (CFTs) which are conjectured to be dual to free large N gauge theories, using the mapping of Feynman diagrams to the worldsheet suggested in [R. Gopakumar, Phys. Rev. D 70, 025009 (2004); ibid.70, 025010 (2004); C. R. Physique 5, 1111 (2004); Phys. Rev. D 72, 066008 (2005)]. The modular invariance of these CFTs is shown to be built into the formalism. We show that correlation functions in these CFTs which are localized on subspaces of the moduli space may be interpreted as delta-function distributions, and that this can bemore » consistent with a local worldsheet description given some constraints on the operator product expansion coefficients. We illustrate these features by a detailed analysis of a specific four-point function diagram. To reliably compute this correlator, we use a novel perturbation scheme which involves an expansion in the large dimension of some operators.« less

  18. The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braguta, V. V., E-mail: braguta@mail.ru; Buividovich, P. V., E-mail: buividovich@itep.ru; Kalaydzhyan, T., E-mail: tigran.kalaydzhyan@desy.de

    2012-04-15

    We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Luescher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent {nu} = 1.6 {+-} 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations ofmore » the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect.« less

  19. Various Forms of BRST Symmetry in Abelian 2-FORM Gauge Theory

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    We derive the various forms of BRST symmetry using Batalin-Fradkin-Vilkovisky approach in the case of Abelian 2-form gauge theory. We show that the so-called dual BRST symmetry is not an independent symmetry but the generalization of BRST symmetry obtained from the canonical transformation in the bosonic and ghost sector. We further obtain the new forms of both BRST and dual-BRST symmetry by making a general transformation in the Lagrange multipliers of the bosonic and ghost sector of the theory.

  20. Holographic repulsion and confinement in gauge theory

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Kothawala, Dawood

    2013-02-01

    We show that for asymptotically anti-de Sitter (AdS) backgrounds with negative energy, such as the AdS soliton and regulated negative-mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (q \\bar{q}) potential can be interpreted as affine time along null geodesics on the minimal string worldsheet and that its intrinsic curvature provides a signature of transition to confinement phase. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity. Communicated by P R L V Moniz

  1. Gauge interactions theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zichichi, A.

    This volume brings together physicists from around the world to report and discuss the exciting advances made recently in theoretical and experimental aspects of gauge interactions. Following a presentation of the theoretical foundations of and recent developments in gauge fields, the contrib utors fogus on supersymmetry, the derivation of Higgs particles from gauge fields, and heavy leptons. Other chapters discuss the use of quantum chromodynamics in describing basic interactions among quarks and gluons, in predicting the existence of glueballs, and in application to heavy flavor production in strong interactions. The editor, Antonino Zichichi, provides a study of the multiparticle hadronicmore » systems produced in highenergy soft (pp) interactions. Other interesting chapters deal with photon scattering at very high energies and theoretical alternatives to the electroweak model, and the volume concludes with proposals for future experimental facilities for European physics.« less

  2. Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches

    NASA Astrophysics Data System (ADS)

    Antonowicz, Marek; Szczyrba, Wiktor

    1985-06-01

    We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.

  3. Update on SU(2) gauge theory with NF = 2 fundamental flavours.

    NASA Astrophysics Data System (ADS)

    Drach, Vincent; Janowski, Tadeusz; Pica, Claudio

    2018-03-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. This theory provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics, such as a minimal realization of composite Higgs models. We present an update on the status of the meson spectrum and decay constants based on increased statistics on our existing ensembles and the inclusion of new ensembles with lighter pion masses, resulting in a more reliable chiral extrapolation. Preprint: CP3-Origins-2017-048 DNRF90

  4. On non-BPS effective actions of string theory

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2018-05-01

    We discuss some physical prospective of the non-BPS effective actions of type IIA and IIB superstring theories. By dealing with all complete three and four point functions, including a closed Ramond-Ramond string (in terms of both its field strength and its potential), gauge (scalar) fields as well as a real tachyon and under symmetry structures, we find various restricted world volume and bulk Bianchi identities. The complete forms of the non-BPS scattering amplitudes including their Chan-Paton factors are elaborated. All the singularity structures of the non-BPS amplitudes, their all order α ' higher-derivative corrections, their contact terms and various modified Bianchi identities are derived. Finally, we show that scattering amplitudes computed in different super-ghost pictures are compatible when suitable Bianchi identities are imposed on the Ramond-Ramond fields. Moreover, we argue that the higher-derivative expansion in powers of the momenta of the tachyon is universal.

  5. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-15

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.

  6. A Deconstruction Lattice Description of the D1/D5 Brane World-Volume Gauge Theory

    DOE PAGES

    Giedt, Joel

    2011-01-01

    I genermore » alize the deconstruction lattice formulation of Endres and Kaplan to two-dimensional super-QCD with eight supercharges, denoted by (4,4), and bifundamental matter. I specialize to a particularly interesting (4,4) gauge theory, with gauge group U ( N c ) × U ( N f ) , and U ( N f ) being weakly gauged. It describes the infrared limit of the D1/D5 brane system, which has been studied extensively as an example of the AdS 3 /CFT 2 correspondence. The construction here preserves two supercharges exactly and has a lattice structure quite similar to that which has previously appeared in the deconstruction approach, that is, site, link, and diagonal fields with both the Bose and Fermi statistics. I remark on possible applications of the lattice theory that would test the AdS 3 /CFT 2 correspondence, particularly one that would exploit the recent worldsheet instanton analysis of Chen and Tong.« less

  7. Spiky strings and single trace operators in gauge theories

    NASA Astrophysics Data System (ADS)

    Kruczenski, Martin

    2005-08-01

    We consider single trace operators of the form Script Ol1...ln = Tr D+l1F...D+lnF which are common to all gauge theories. We argue that, when all li are equal and large, they have a dual description as strings with cusps, or spikes, one for each field F. In the case of Script N = 4 SYM, we compute the energy as a function of angular momentum by finding the corresponding solutions in AdS5 and compare with a 1-loop calculation of the anomalous dimension. As in the case of two spikes (twist two operators), there is agreement in the functional form but not in the coupling constant dependence. After that, we analyze the system in more detail and find an effective classical mechanics describing the motion of the spikes. In the appropriate limit, it is the same (up to the coupling constant dependence) as the coherent state description of linear combinations of the operators Script Ol1...ln such that all li are equal on average. This agreement provides a map between the operators in the boundary and the position of the spikes in the bulk. We further suggest that moving the spikes in other directions should describe operators with derivatives other than D+ indicating that these ideas are quite generic and should help in unraveling the string description of the large-N limit of gauge theories.

  8. Gauging hidden symmetries in two dimensions

    NASA Astrophysics Data System (ADS)

    Samtleben, Henning; Weidner, Martin

    2007-08-01

    We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine fraktur e9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of fraktur e9. This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of fraktur e9.

  9. Efficient Basis Formulation for (1 +1 )-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    NASA Astrophysics Data System (ADS)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-10-01

    We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  10. Low-energy effective worldsheet theory of a non-Abelian vortex in high-density QCD revisited: A regular gauge construction

    NASA Astrophysics Data System (ADS)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    2017-04-01

    Color symmetry is spontaneously broken in quark matter at high density as a consequence of di-quark condensations with exhibiting color superconductivity. Non-Abelian vortices or color magnetic flux tubes stably exist in the color-flavor locked phase at asymptotically high density. The effective worldsheet theory of a single non-Abelian vortex was previously calculated in the singular gauge to obtain the C P2 model [1,2]. Here, we reconstruct the effective theory in a regular gauge without taking a singular gauge, confirming the previous results in the singular gauge. As a byproduct of our analysis, we find that non-Abelian vortices in high-density QCD do not suffer from any obstruction for the global definition of a symmetry breaking.

  11. Multiloop amplitudes of light-cone gauge superstring field theory: odd spin structure contributions

    NASA Astrophysics Data System (ADS)

    Ishibashi, Nobuyuki; Murakami, Koichi

    2018-03-01

    We study the odd spin structure contributions to the multiloop amplitudes of light-cone gauge superstring field theory. We show that they coincide with the amplitudes in the conformal gauge with two of the vertex operators chosen to be in the pictures different from the standard choice, namely (-1, -1) picture in the type II case and -1 picture in the heterotic case. We also show that the contact term divergences can be regularized in the same way as in the amplitudes for the even structures and we get the amplitudes which coincide with those obtained from the first-quantized approach.

  12. Three dimensional finite temperature SU(3) gauge theory near the phase transition

    NASA Astrophysics Data System (ADS)

    Bialas, P.; Daniel, L.; Morel, A.; Petersson, B.

    2013-06-01

    We have measured the correlation function of Polyakov loops on the lattice in three dimensional SU(3) gauge theory near its finite temperature phase transition. Using a new and powerful application of finite size scaling, we furthermore extend the measurements of the critical couplings to considerably larger values of the lattice sizes, both in the temperature and space directions, than was investigated earlier in this theory. With the help of these measurements we perform a detailed finite size scaling analysis, showing that for the critical exponents of the two dimensional three state Potts model the mass and the susceptibility fall on unique scaling curves. This strongly supports the expectation that the gauge theory is in the same universality class. The Nambu-Goto string model on the other hand predicts that the exponent ν has the mean field value, which is quite different from the value in the abovementioned Potts model. Using our values of the critical couplings we also determine the continuum limit of the value of the critical temperature in terms of the square root of the zero temperature string tension. This value is very near to the prediction of the Nambu-Goto string model in spite of the different critical behaviour.

  13. Holographic complexity and noncommutative gauge theory

    NASA Astrophysics Data System (ADS)

    Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei

    2018-03-01

    We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.

  14. A gauge-theoretic approach to gravity.

    PubMed

    Krasnov, Kirill

    2012-08-08

    Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.

  15. A gauge-theoretic approach to gravity

    PubMed Central

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  16. Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections

    PubMed Central

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153

  17. Augmented superfield approach to gauge-invariant massive 2-form theory

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Krishna, S.

    2017-06-01

    We discuss the complete sets of the off-shell nilpotent (i.e. s^2_{(a)b} = 0) and absolutely anticommuting (i.e. s_b s_{ab} + s_{ab} s_b = 0) Becchi-Rouet-Stora-Tyutin (BRST) (s_b) and anti-BRST (s_{ab}) symmetries for the (3+1)-dimensional (4D) gauge-invariant massive 2-form theory within the framework of an augmented superfield approach to the BRST formalism. In this formalism, we obtain the coupled (but equivalent) Lagrangian densities which respect both BRST and anti-BRST symmetries on the constrained hypersurface defined by the Curci-Ferrari type conditions. The absolute anticommutativity property of the (anti-) BRST transformations (and corresponding generators) is ensured by the existence of the Curci-Ferrari type conditions which emerge very naturally in this formalism. Furthermore, the gauge-invariant restriction plays a decisive role in deriving the proper (anti-) BRST transformations for the Stückelberg-like vector field.

  18. Gauged Q-balls

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  19. Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets

    NASA Astrophysics Data System (ADS)

    Dupoyet, B.; Fiebig, H. R.; Musgrove, D. P.

    2010-01-01

    We report on initial studies of a quantum field theory defined on a lattice with multi-ladder geometry and the dilation group as a local gauge symmetry. The model is relevant in the cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive at a probability distribution of relative gains which matches the high frequency historical data of the NASDAQ stock exchange index.

  20. Classification of compactified su( N c ) gauge theories with fermions in all representations

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Vincent-Genod, Loïc

    2017-12-01

    We classify su( N c ) gauge theories on R^3× S^1 with massless fermions in higher representations obeying periodic boundary conditions along S^1 . In particular, we single out the class of theories that is asymptotically free and weakly coupled in the infrared, and therefore, is amenable to semi-classical treatment. Our study is conducted by carefully identifying the vacua inside the affine Weyl chamber using Verma bases and Frobenius formula techniques. Theories with fermions in pure representations are generally strongly coupled. The only exceptions are the four-index symmetric representation of su(2) and adjoint representation of su( N c ). However, we find a plethora of admissible theories with fermions in mixed representations. A sub-class of these theories have degenerate perturbative vacua separated by domain walls. In particular, su( N c ) theories with fermions in the mixed representations adjoint⊕fundamental and adjoint⊕two-index symmetric admit degenerate vacua that spontaneously break the parity P , charge conjugation C , and time reversal T symmetries. These are the first examples of strictly weakly coupled gauge theories on R^3× S^1 with spontaneously broken C , P , and T symmetries. We also compute the fermion zero modes in the background of monopole-instantons. The monopoles and their composites (topological molecules) proliferate in the vacuum leading to the confinement of electric charges. Interestingly enough, some theories have also accidental degenerate vacua, which are not related by any symmetry. These vacua admit different numbers of fermionic zero modes, and hence, different kinds of topological molecules. The lack of symmetry, however, indicates that such degeneracy might be lifted by higher order corrections. Finally, we study the general phase structure of adjoint⊕fundamental theories in the small circle and decompactification limits.

  1. No black holes: A gravitational gauge theory possibility

    NASA Astrophysics Data System (ADS)

    Chang, David B.; Johnson, Harold H.

    1980-06-01

    The most general lowest order lagrangian that can be formed from gauge-derived vierbein invariants is constrained by the hypothesis that the speed of light as measured by conventional rods and clocks of atomic constitution is independent of direction in a gravitational field. It is shown that the standard weak field observational tests of general relativity serve to eliminate all possible combinations of parameters in this constrained lagrangian except two. One parameter choice gives the isotropic Schwarzchild black hole metric of the general theory of relativity. The other allowable choice leads to an exponential metric of the class proposed by Yilmaz, corresponding in strong fields to large red shifts without black hole formation. Permanent address: Trinity College; Deerfield, Illinois.

  2. Adding gauge fields to Kaplan's fermions

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kärkkäinen, Leo

    1994-04-01

    We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U (1) gauge theory we use an inhomogenous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field.

  3. Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx; Manuel-Cabrera, J., E-mail: jmanuel@ifuap.buap.mx

    2015-10-15

    A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed.more » • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.« less

  4. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  5. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    PubMed

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  6. The zero-action hypothesis and high-temperature thermodynamics in the heterotic superstring theory

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    2005-07-01

    The effective action S for the Einstein theory of gravity coupled to massless scalar fields phi, spinor fields ψ and gauge vector fields Fij describing radiation, so that FijFij = 0, vanishes identically after substitution from the classical equations of motion, thus allowing a perfect fluid for which the energy density ρ and pressure p = (γ - 1)ρ are related by values of the adiabatic index throughout the range 4/3 <= γ <= 2. In the heterotic superstring theory, four-point gravitational interactions generate a tree-level quadratic, higher-derivative contribution to the Lagrangian, after reduction to four dimensions, whose form, unchanged at one-loop level, is {\\cal R}^2 = B(R^2 -R_{ij}R^{ij}) = {1 \\over 6} B (\\gamma-2)(\\gamma-1) \\kappa^4 \\rho^2 , where the constant B ap 1 for a three-generation Calabi Yau manifold, and which thus constitutes a type of anomaly. The zero-action hypothesis requires the theory to be free of such anomalies, and thus predicts that the Universe started off in the state p = ρ discussed by Zel'dovich, characterized by the maximum value γ = 2 consistent with causality. Applying classical thermodynamics to a perfect fluid, we find that ρ, p and hence also the Helmholtz free-energy density f ≡ -p, scale with temperature as Tγ/γ-1, leading to the prediction that f ~ T2, which is exactly verified by the calculation of Atick and Witten, valid at genus-one in the high-temperature limit T Gt TH, after Euclideanizing the time coordinate, where TH is the Hagedorn temperature. The response of the action to the operators T, C and P is also discussed, T-invariance requiring γ = 2 and hence S = 0, and P-invariance requiring S = 0, showing that the zero-action hypothesis can be understood in terms of these discrete symmetries.

  7. Singular gauge transformation and the Erler-Maccaferri solution in bosonic open string field theory

    NASA Astrophysics Data System (ADS)

    Miwa, Akitsugu; Sugita, Kazuhiro

    2017-09-01

    We study candidate multiple-brane solutions of bosonic open string field theory. They are constructed by performing a singular gauge transformation n times for the Erler-Maccaferri solution. We check the equation of motion in the strong sense, and find that it is satisfied only when we perform the gauge transformation once. We calculate the energy for that case and obtain a support that the solution is a multiple-brane solution. We also check the tachyon profile for a specific solution that we interpret as describing a D24-brane placed on a D25-brane.

  8. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    NASA Astrophysics Data System (ADS)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  9. Spin chains and string theory.

    PubMed

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  10. Phenomenology of strongly coupled chiral gauge theories

    DOE PAGES

    Bai, Yang; Berger, Joshua; Osborne, James; ...

    2016-11-25

    A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1)' gauge symmetry such that their bare masses are related to the U(1)'-breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of suchmore » models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z'γ resonance, where the Z' naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.« less

  11. Entanglement on linked boundaries in Chern-Simons theory with generic gauge groups

    NASA Astrophysics Data System (ADS)

    Dwivedi, Siddharth; Singh, Vivek Kumar; Dhara, Saswati; Ramadevi, P.; Zhou, Yang; Joshi, Lata Kh

    2018-02-01

    We study the entanglement for a state on linked torus boundaries in 3 d Chern-Simons theory with a generic gauge group and present the asymptotic bounds of Rényi entropy at two different limits: (i) large Chern-Simons coupling k, and (ii) large rank r of the gauge group. These results show that the Rényi entropies cannot diverge faster than ln k and ln r, respectively. We focus on torus links T (2 , 2 n) with topological linking number n. The Rényi entropy for these links shows a periodic structure in n and vanishes whenever n = 0 (mod p), where the integer p is a function of coupling k and rank r. We highlight that the refined Chern-Simons link invariants can remove such a periodic structure in n.

  12. Re-Visioning Action: Participatory Action Research and Indigenous Theories of Change

    ERIC Educational Resources Information Center

    Tuck, Eve

    2009-01-01

    This article observes that participatory action research (PAR), by nature of being collaborative, necessitates making explicit theories of change that may have otherwise gone unseen or unexamined. The article explores the limits of the reform/revolution paradox on actions and theories of change in PAR. Citing examples from two recent youth PAR…

  13. The massive fermion phase for the U(N) Chern-Simons gauge theory in D=3 at large N

    DOE PAGES

    Bardeen, William A.

    2014-10-07

    We explore the phase structure of fermions in the U(N) Chern-Simons Gauge theory in three dimensions using the large N limit where N is the number of colors and the fermions are taken to be in the fundamental representation of the U(N) gauge group. In the large N limit, the theory retains its classical conformal behavior and considerable attention has been paid to possible AdS/CFT dualities of the theory in the conformal phase. In this paper we present a solution for the massive phase of the fermion theory that is exact to the leading order of ‘t Hooft’s large Nmore » expansion. We present evidence for the spontaneous breaking of the exact scale symmetry and analyze the properties of the dilaton that appears as the Goldstone boson of scale symmetry breaking.« less

  14. Entanglement entropy in (3 + 1)-d free U(1) gauge theory

    NASA Astrophysics Data System (ADS)

    Soni, Ronak M.; Trivedi, Sandip P.

    2017-02-01

    We consider the entanglement entropy for a free U(1) theory in 3+1 dimensions in the extended Hilbert space definition. By taking the continuum limit carefully we obtain a replica trick path integral which calculates this entanglement entropy. The path integral is gauge invariant, with a gauge fixing delta function accompanied by a Faddeev -Popov determinant. For a spherical region it follows that the result for the logarithmic term in the entanglement, which is universal, is given by the a anomaly coefficient. We also consider the extractable part of the entanglement, which corresponds to the number of Bell pairs which can be obtained from entanglement distillation or dilution. For a spherical region we show that the coefficient of the logarithmic term for the extractable part is different from the extended Hilbert space result. We argue that the two results will differ in general, and this difference is accounted for by a massless scalar living on the boundary of the region of interest.

  15. Infrared problem in non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Y.

    1976-03-22

    I extend the Bloch--Nordsieck idea to show that in the lowest nontrivial order of radiative correction the fermion--fermion and gauge-meson--fermion scattering rates are finite, provided that they are averaged over the initial and summed over the final internal spin states. Questions of the physical gauge coupling and infrared slavery are discussed. (AIP)

  16. Expanding the Bethe/Gauge dictionary

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz

    2017-11-01

    We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.

  17. The SU(3)/Z3 QCD(adj) deconfinement transition via the gauge theory/"affine" XY-model duality

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Collier, Scott; Poppitz, Erich

    2013-01-01

    Earlier, two of us and M. Ünsal [1] showed that a class of 4d gauge theories, when compactified on a small spatial circle of size L and considered at temperatures β-1 near the deconfinement transition, are dual to 2d "affine" XY-spin models. We exploit this duality to study the deconfinement phase transition in SU(3)/{{{Z}}_3} gauge theories with n f > 1 massless adjoint Weyl fermions, QCD(adj) on {{{R}}^2}× {S}_{β}^1× {S}_L^1 . The dual "affine" XY-model describes two "spins" — compact scalars taking values in the SU(3) root lattice. The spins couple via nearest-neighbor interactions and are subject to an "external field" perturbation preserving the topological {Z}_3^t and a discrete {Z}_3^{{{d_{\\upchi}}}} subgroup of the anomaly-free chiral symmetry of the 4d gauge theory. The equivalent Coulomb gas representation of the theory exhibits electric-magnetic duality, which is also a high-/low-temperature duality. A renormalization group analysis suggests — but is not convincing, due to the onset of strong coupling — that the self-dual point is a fixed point, implying a continuous deconfinement transition. Here, we study the nature of the transition via Monte Carlo simulations. The {Z}_3^t× {Z}_3^{{{d_{\\upchi}}}} order parameter, its susceptibility, the vortex density, the energy per spin, and the specific heat are measured over a range of volumes, temperatures, and "external field" strengths (in the gauge theory, these correspond to magnetic bion fugacities). The finite-size scaling of the susceptibility and specific heat we find is characteristic of a first-order transition. Furthermore, for sufficiently large but still smaller than unity bion fugacity (as can be achieved upon an increase of the {S}_L^1 size), at the critical temperature we find two distinct peaks of the energy probability distribution, indicative of a first-order transition, as has been seen in earlier simulations of the full 4d QCD(adj) theory. We end with discussions of the global

  18. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    DOE PAGES

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    2018-02-15

    We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less

  19. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less

  20. Global Gauge Anomalies in Two-Dimensional Bosonic Sigma Models

    NASA Astrophysics Data System (ADS)

    Gawȩdzki, Krzysztof; Suszek, Rafał R.; Waldorf, Konrad

    2011-03-01

    We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.

  1. Gauged twistor spinors and symmetry operators

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2017-03-01

    We consider gauged twistor spinors which are supersymmetry generators of supersymmetric and superconformal field theories in curved backgrounds. We show that the spinor bilinears of gauged twistor spinors satisfy the gauged conformal Killing-Yano equation. We prove that the symmetry operators of the gauged twistor spinor equation can be constructed from ordinary conformal Killing-Yano forms in constant curvature backgrounds. This provides a way to obtain gauged twistor spinors from ordinary twistor spinors.

  2. Nilpotent symmetries and Curci-Ferrari-type restrictions in 2D non-Abelian gauge theory: Superfield approach

    NASA Astrophysics Data System (ADS)

    Srinivas, N.; Malik, R. P.

    2017-11-01

    We derive the off-shell nilpotent symmetries of the two (1 + 1)-dimensional (2D) non-Abelian 1-form gauge theory by using the theoretical techniques of the geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. For this purpose, we exploit the augmented version of superfield approach (AVSA) and derive theoretically useful nilpotent (anti-)BRST, (anti-)co-BRST symmetries and Curci-Ferrari (CF)-type restrictions for the self-interacting 2D non-Abelian 1-form gauge theory (where there is no interaction with matter fields). The derivation of the (anti-)co-BRST symmetries and all possible CF-type restrictions are completely novel results within the framework of AVSA to BRST formalism where the ordinary 2D non-Abelian theory is generalized onto an appropriately chosen (2, 2)-dimensional supermanifold. The latter is parametrized by the superspace coordinates ZM = (xμ,𝜃,𝜃¯) where xμ (with μ = 0, 1) are the bosonic coordinates and a pair of Grassmannian variables (𝜃,𝜃¯) obey the relationships: 𝜃2 = 𝜃¯2 = 0, 𝜃𝜃¯ + 𝜃¯𝜃 = 0. The topological nature of our 2D theory allows the existence of a tower of CF-type restrictions.

  3. The foundation of Piaget's theories: mental and physical action.

    PubMed

    Beilin, H; Fireman, G

    1999-01-01

    Piaget's late theory of action and action implication was the realization of a long history of development. A review of that history shows the central place of action in all of his theoretical assertions, despite the waxing and waning of other important features of his theories. Action was said to be the primary source of knowledge with perception and language in secondary roles. Action is for the most part not only organized but there is logic in action. Action, which is at first physical, becomes internalized and transformed into mental action and mental representation, largely in the development of the symbolic or semiotic function in the sensorimotor period. A number of alternative theories of cognitive development place primary emphasis on mental representation. Piaget provided it with an important place as well, but subordinated it to mental action in the form of operations. In this, as Russell claims, he paralleled Schopenhauer's distinction between representation and will. Piaget's theory of action was intimately related to the gradual development of intentionality in childhood. Intentions were tied to actions by way of the conscious awareness of goals and the means to achieve them. Mental action, following the sensorimotor period, was limited in its logical form to semilogical or one-way functions. These forms were said by Piaget to lack logical reversibility, which was achieved only in the sixth or seventh year, in concrete operations. Mental action was not to be fully realized until the development of formal operations, with hypothetical reasoning, in adolescence, according to the classical Piagetian formulation. This view of the child's logical development, which relied heavily on truth-table (extensional) logic, underwent a number of changes. First from the addition of other logics: category theory and the theory of functions among them. In his last theory, however, an even more radical change occurred. With the collaboration of R. Garcia, he proposed

  4. Pure connection action principle for general relativity.

    PubMed

    Krasnov, Kirill

    2011-06-24

    It has already been known for two decades that general relativity can be reformulated as a certain gauge theory, so that the only dynamical field is an SO(3) connection and the spacetime metric appears as a derived object. However, no simple action principle realizing these ideas has been available. A new elegant action principle for such a "pure connection" formulation of GR is described.

  5. Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2018-05-01

    In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.

  6. Effective field theory analysis on μ problem in low-scale gauge mediation

    NASA Astrophysics Data System (ADS)

    Zheng, Sibo

    2012-02-01

    Supersymmetric models based on the scenario of gauge mediation often suffer from the well-known μ problem. In this paper, we reconsider this problem in low-scale gauge mediation in terms of effective field theory analysis. In this paradigm, all high energy input soft mass can be expressed via loop expansions. If the corrections coming from messenger thresholds are small, as we assume in this letter, then all RG evaluations can be taken as linearly approximation for low-scale supersymmetric breaking. Due to these observations, the parameter space can be systematically classified and studied after constraints coming from electro-weak symmetry breaking are imposed. We find that some old proposals in the literature are reproduced, and two new classes are uncovered. We refer to a microscopic model, where the specific relations among coefficients in one of the new classes are well motivated. Also, we discuss some primary phenomenologies.

  7. Gauge fields at finite temperatures—"Thermo field dynamics" and the KMS condition and their extension to gauge theories

    NASA Astrophysics Data System (ADS)

    Ojima, Izumi

    1981-11-01

    "Thermo field dynamics," allowing the Feynman diagram method to be applied to real-time causal Green's functions at finite temperatures ( not temperature Green's functions with imaginary times) expressed in the form of "vacuum" expectation values, is reconsidered in light of its connection with the algebraic formulation of statical machanics based upon the KMS condition. On the basis of so-obtained general basic formulae, the formalism is extended to the case of gauge theories, where the subsidiary condition specifying physical states, the notion of observables, and the structure of the physical subspace at finite temperatures are clarified.

  8. Towards an M5-brane model I: A 6d superconformal field theory

    NASA Astrophysics Data System (ADS)

    Sämann, Christian; Schmidt, Lennart

    2018-04-01

    We present an action for a six-dimensional superconformal field theory containing a non-abelian tensor multiplet. All of the ingredients of this action have been available in the literature. We bring these pieces together by choosing the string Lie 2-algebra as a gauge structure, which we motivated in previous work. The kinematical data contains a connection on a categorified principal bundle, which is the appropriate mathematical description of the parallel transport of self-dual strings. Our action can be written down for each of the simply laced Dynkin diagrams, and each case reduces to a four-dimensional supersymmetric Yang-Mills theory with corresponding gauge Lie algebra. Our action also reduces nicely to an M2-brane model which is a deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) model. While this action is certainly not the desired M5-brane model, we regard it as a key stepping stone towards a potential construction of the (2, 0)-theory.

  9. Program package for multicanonical simulations of U(1) lattice gauge theory-Second version

    NASA Astrophysics Data System (ADS)

    Bazavov, Alexei; Berg, Bernd A.

    2013-03-01

    A new version STMCMUCA_V1_1 of our program package is available. It eliminates compatibility problems of our Fortran 77 code, originally developed for the g77 compiler, with Fortran 90 and 95 compilers. New version program summaryProgram title: STMC_U1MUCA_v1_1 Catalogue identifier: AEET_v1_1 Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html Programming language: Fortran 77 compatible with Fortran 90 and 95 Computers: Any capable of compiling and executing Fortran code Operating systems: Any capable of compiling and executing Fortran code RAM: 10 MB and up depending on lattice size used No. of lines in distributed program, including test data, etc.: 15059 No. of bytes in distributed program, including test data, etc.: 215733 Keywords: Markov chain Monte Carlo, multicanonical, Wang-Landau recursion, Fortran, lattice gauge theory, U(1) gauge group, phase transitions of continuous systems Classification: 11.5 Catalogue identifier of previous version: AEET_v1_0 Journal Reference of previous version: Computer Physics Communications 180 (2009) 2339-2347 Does the new version supersede the previous version?: Yes Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory (or other continuous systems) close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors. Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars. Reasons for the new version: The previous version was developed for the g77 compiler Fortran 77 version. Compiler errors were encountered with Fortran 90 and Fortran 95 compilers (specified below). Summary of revisions: epsilon=one/10**10 is replaced by epsilon/10.0D10 in the parameter statements of the subroutines u1_bmha.f, u1_mucabmha.f, u1wl

  10. Bv and Bfv Formulation of a Gauge Theory of Quadratic Lie Algebras in 2d and a Construction of W3 Topological Gravity

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.

    The recently proposed generalized field method for solving the master equation of Batalin and Vilkovisky is applied to a gauge theory of quadratic Lie algebras in two dimensions. The charge corresponding to BRST symmetry derived from this solution in terms of the phase space variables by using the Noether procedure, and the one found due to the BFV-method are compared and found to coincide. W3-algebra, formulated in terms of a continuous variable is exploit in the mentioned gauge theory to construct a W3 topological gravity. Moreover, its gauge fixing is briefly discussed.

  11. A superstring field theory for supergravity

    NASA Astrophysics Data System (ADS)

    Reid-Edwards, R. A.; Riccombeni, D. A.

    2017-09-01

    A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.

  12. Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction

    NASA Astrophysics Data System (ADS)

    Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.

    2018-04-01

    Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.

  13. PREFACE: Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009 Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009

    NASA Astrophysics Data System (ADS)

    Uranga, A. M.

    2009-11-01

    This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other

  14. Novel symmetries in Weyl-invariant gravity with massive gauge field

    NASA Astrophysics Data System (ADS)

    Abhinav, K.; Shukla, A.; Panigrahi, P. K.

    2016-11-01

    The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stückelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stückelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity.

  15. Origin of Abelian gauge symmetries in heterotic/F-theory duality

    DOE PAGES

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; ...

    2016-04-07

    Here, we study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, and also derive both the Calabi-Yau geometry and the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in theirmore » low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. And while the number of geometrically massless U(1)'s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)'s is found by taking into account a Stuckelberg mechanism in the lower-dimensional effective theory. Finally, in geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.« less

  16. Quantization of gauge fields, graph polynomials and graph homology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less

  17. Relevance Theory, Action Theory and Second Language Communication Strategies

    ERIC Educational Resources Information Center

    Foster-Cohen, Susan H.

    2004-01-01

    The discussion in this article offers a comparison between Relevance Theory as an account of human communication and Herbert Clark's (1996) sociocognitive Action Theory approach. It is argued that the differences are fundamental and impact analysis of all kinds of naturally occurring communicative data, including that produced by non-native…

  18. Effect of curvature squared corrections to gravitational action on viscosity-to-entropy ratio of the dual gauge theory

    NASA Astrophysics Data System (ADS)

    Petrov, Pavel

    In this thesis we study the properties of strongly-coupled large-N conformal field theories (CFT's) using AdS/CFT correspondence. Chapter 1 serves as an introduction. In Chapter 2 we study the shear viscosity of strongly-coupled large-N conformal field theories. We find that it is affected by R2 corrections to the AdS action and present an example of 4D theory in which the the conjectured universal lower bound on viscosity-to-entropy ratio η/s > 1/4π is violated by 1/N corrections. This fact proves that there is no universal lower bound of 1/4π on viscosity-to-entropy ratio and may be relevant for the studies of QCD quark-gluon plasma for which this ratio is experimentally found to be close to 1/4π. In Chapter 3 we study the formation of the electron star in 4D AdS space. We show that in a gravity theory with charged fermions a layer of charged fermion fluid may form at a finite distance from the charged black hole. We show that these “electron stars” are candidate gravity duals for strongly interacting fermion systems at finite density and finite temperature. Entropy density for such systems scales as s ˜ T2/z at low temperatures as expected from IR criticality of electron stars solutions.

  19. Towards weakly constrained double field theory

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon

    2016-08-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  20. Cosmology from a gauge induced gravity

    NASA Astrophysics Data System (ADS)

    Falciano, F. T.; Sadovski, G.; Sobreiro, R. F.; Tomaz, A. A.

    2017-09-01

    The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with { SO}(m,n) such that m+n=5 and m\\in {0,1,2} as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inönü-Wigner contraction in its infrared sector. As a consequence, the { SO}(m,n) algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a Λ CDM model. We argue that { SO}(m,n) induced gravities are promising effective theories to describe the early phase of the universe.

  1. Note on tachyon actions in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Headrick, Matthew

    2009-02-15

    A number of spacetime fields in string theory (notably the metric, dilaton, bosonic and type 0 bulk closed-string tachyon, and bosonic open-string tachyon) have the following property: whenever the spacetime field configuration factorizes in an appropriate sense, the matter sector of the world-sheet theory factorizes into a tensor product of two decoupled theories. Since the beta functions for such a product theory necessarily also factorize, this property strongly constrains the form of the spacetime action encoding those beta functions. We show that this constraint alone--without needing actually to compute any of the beta functions--is sufficient to fix the form ofmore » the two-derivative action for the metric-dilaton system, as well as the potential for the bosonic open-string tachyon. We also show that no action consistent with this constraint exists for the closed-string tachyon coupled to the metric and dilaton.« less

  2. Second-order Boltzmann equation: gauge dependence and gauge invariance

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Pitrou, Cyril; Koyama, Kazuya; Sasaki, Misao

    2013-08-01

    In the context of cosmological perturbation theory, we derive the second-order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: (i) the polarization of light is incorporated in this formalism by using a tensor-valued distribution function; (ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; (iii) we perform a separation between temperature and spectral distortion, both for the intensity and polarization for the first time; (iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature.

  3. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-14

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  4. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  5. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2017-12-18

    Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  6. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-06-28

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  7. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  8. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2017-12-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  9. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-02-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  10. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-24

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher

  11. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2018-04-27

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.

  12. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  13. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  14. On the spectrum of gauge/gravity duals with reduced supersymmetry

    NASA Astrophysics Data System (ADS)

    Solovyov, Alexander

    The topic of the present thesis is the study of some examples in gauge/string duality. We carefully study the orbifold gauge theory and orbifold string theory and show that the known integrability in AdS/CFT extends to the general supersymmetric orbifolds of AdS5 x S5. There is an interesting interplay between the two descriptions of the orbifold gauge theory. Another interesting example is the Klebanov-Strassler (KS) background. We find the exhaustive list of the supergravity excitations in the I -odd sector of the KS theory. These comprise the three j = 1/2 massive supermultiplets each consisting of a (possibly pseudo) scalar, two fermions and a vector, and the two j = 1 supermultiplets whose bosonic content is a vector and a pseudovector. Surprisingly, the spectrum of the excitations which fit into the pure gauge sector strongly resembles the results obtained from the numeric studies in lattice gauge theory.

  15. Symbolic Interactionism and Social Action Theory

    ERIC Educational Resources Information Center

    Morrione, Thomas J.

    1975-01-01

    An explanation and elaboration of existing theory on interaction, this article describes a point of convergence between Parsons' Voluntaristic Theory of Action and Blumer's conceptualization of Symbolic Interactionism and develops specific problems of divergence in these normative and interpretive models of interaction. (JC)

  16. Gauge invariance for a whole Abelian model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Soares, W.

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is themore » effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.« less

  17. Lattice Gauge Theories Within and Beyond the Standard Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelzer, Zechariah John

    The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involvingmore » $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($$B \\to \\pi \\ell \

  18. Gauging away a big bang

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  19. Strong Coupling Expansion of the Generating Functional for Gauge Systems on a Lattice with Arbitrary Sources

    NASA Astrophysics Data System (ADS)

    Hoek, Jaap

    1983-02-01

    A set of programs to calculate algebraically the generating functional (free energy) of a gauge system with arbitrary external sources on a lattice has been developed. It makes use of the strong coupling expansion. For theories with the standard Tr(UUU †U †) action results have been obtained up to fourth order.

  20. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  1. Global Equity Gauge Alliance: reflections on early experiences.

    PubMed

    McCoy, David; Bambas, Lexi; Acurio, David; Baya, Banza; Bhuiya, Abbas; Chowdhury, A Mushtaque R; Grisurapong, Siriwan; Liu, Yuanli; Ngom, Pierre; Ngulube, Thabale J; Ntuli, Antoinette; Sanders, David; Vega, Jeanette; Shukla, Abhay; Braveman, Paula A

    2003-09-01

    The paper traces the evolution and working of the Global Equity Gauge Alliance (GEGA) and its efforts to promote health equity. GEGA places health equity squarely within a larger framework of social justice, linking findings on socioeconomic and health inequalities with differentials in power, wealth, and prestige in society. The Alliance's 11 country-level partners, called Equity Gauges, share a common action-based vision and framework called the Equity Gauge Strategy. An Equity Gauge seeks to reduce health inequities through three broad spheres of action, referred to as the 'pillars' of the Equity Gauge Strategy, which define a set of interconnected and overlapping actions. Measuring and tracking the inequalities and interpreting their ethical import are pursued through the Assessment and Monitoring pillar. This information provides an evidence base that can be used in strategic ways for influencing policy-makers through actions in the Advocacy pillar and for supporting grassroots groups and civil society through actions in the Community Empowerment pillar. The paper provides examples of strategies for promoting pro-equity policy and social change and reviews experiences and lessons, both in terms of technical success of interventions and in relation to the conceptual development and refinement of the Equity Gauge Strategy and overall direction of the Alliance. To become most effective in furthering health equity at both national and global levels, the Alliance must now reach out to and involve a wider range of organizations, groups, and actors at both national and international levels. Sustainability of this promising experiment depends, in part, on adequate resources but also on the ability to attract and develop talented leadership.

  2. Effective actions for bosonic topological defects

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1990-01-01

    A gauge field theory is considered which admits p-dimensional topological defects, expanding the equations of motion in powers of the defect thickness. In this way an effective action and effective equation of motion is derived for the defect in terms of the coordinates of the p-dimensional worldsurface defined by the history of the core of the defect.

  3. Characteristic classes of gauge systems

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2004-12-01

    We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.

  4. National Computational Infrastructure for Lattice Gauge Theory SciDAC-2 Closeout Report Indiana University Component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottlieb, Steven Arthur; DeTar, Carleton; Tousaint, Doug

    This is the closeout report for the Indiana University portion of the National Computational Infrastructure for Lattice Gauge Theory project supported by the United States Department of Energy under the SciDAC program. It includes information about activities at Indian University, the University of Arizona, and the University of Utah, as those three universities coordinated their activities.

  5. Nash Equilibria in Theory of Reasoned Action

    NASA Astrophysics Data System (ADS)

    Almeida, Leando; Cruz, José; Ferreira, Helena; Pinto, Alberto Adrego

    2009-08-01

    Game theory and Decision Theory have been applied to many different areas such as Physics, Economics, Biology, etc. In its application to Psychology, we introduce, in the literature, a Game Theoretical Model of Planned Behavior or Reasoned Action by establishing an analogy between two specific theories. In this study we take in account that individual decision-making is an outcome of a process where group decisions can determine individual probabilistic behavior. Using Game Theory concepts, we describe how intentions can be transformed in behavior and according to the Nash Equilibrium, this process will correspond to the best individual decision/response taking in account the collective response. This analysis can be extended to several examples based in the Game Theoretical Model of Planned Behavior or Reasoned Action.

  6. Soft thermal contributions to 3-loop gauge coupling

    NASA Astrophysics Data System (ADS)

    Laine, M.; Schicho, P.; Schröder, Y.

    2018-05-01

    We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O({α}s^{3/2}) . We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.

  7. Chern-Simons-Rozansky-Witten topological field theory

    NASA Astrophysics Data System (ADS)

    Kapustin, Anton; Saulina, Natalia

    2009-12-01

    We construct and study a new topological field theory in three dimensions. It is a hybrid between Chern-Simons and Rozansky-Witten theory and can be regarded as a topologically-twisted version of the N=4d=3 supersymmetric gauge theory recently discovered by Gaiotto and Witten. The model depends on a gauge group G and a hyper-Kähler manifold X with a tri-holomorphic action of G. In the case when X is an affine space, we show that the model is equivalent to Chern-Simons theory whose gauge group is a supergroup. This explains the role of Lie superalgebras in the construction of Gaiotto and Witten. For general X, our model appears to be new. We describe some of its properties, focusing on the case when G is simple and X is the cotangent bundle of the flag variety of G. In particular, we show that Wilson loops are labeled by objects of a certain category which is a quantum deformation of the equivariant derived category of coherent sheaves on X.

  8. Poincaré gauge gravity: An emergent scenario

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2017-04-01

    The Poincaré gauge gravity (PGG) with the underlying vector fields of tetrads and spin-connections is perhaps the best theory candidate for gravitation to be unified with the other three elementary forces of nature. There is a clear analogy between the local frame in PGG and the local internal symmetry space in the Standard Model. As a result, the spin-connection fields, gauging the local frame Lorentz symmetry group S O (1 ,3 )LF , appear in PGG much as photons and gluons appear in SM. We propose that such an analogy may follow from their common emergent nature allowing us to derive PGG in the same way as conventional gauge theories. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are proposed to belong, respectively, to the adjoint (Aμi j) and vector (eμi) representations of the starting global Lorentz symmetry. We show that if these prototype vector fields are covariantly constrained, Aμi jAij μ=±MA2 and eμieiμ=±Me2 , thus causing a spontaneous violation of the accompanying global symmetries (MA ,e are their proposed violation scales), then the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  9. Hidden simplicity of the gravity action

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2017-09-01

    We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simplymore » proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.« less

  10. Hidden simplicity of the gravity action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Clifford; Remmen, Grant N.

    We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simplymore » proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.« less

  11. EDITORIAL: Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, 21 25 January 2008

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Orlando, D.; Uranga, A.

    2008-11-01

    This special issue is devoted to the proceedings of the conference 'RTN Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, on the 21 25 January 2008. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous ones have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next one will again take place at CERN, in February 2009. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years is the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti-de Sitter spacetimes with gauge theories. The duality relates the weak coupling regime of one system to the strongly coupled regime of the other, and is therefore very non-trivial to test beyond the supersymmetry-protected BPS sector. One of the key ideas to quantitatively match several quantities on both sides is the use of integrability, both in the gauge theory and the string side. The lecture notes by Nick Dorey provide a pedagogical introduction to the fascinating topic of integrability in AdS/CFT. On the string theory side, progress has

  12. Exact results in 3d N = 2 Spin(7) gauge theories with vector and spinor matters

    NASA Astrophysics Data System (ADS)

    Nii, Keita

    2018-05-01

    We study three-dimensional N = 2 Spin(7) gauge theories with N S spinorial matters and with N f vectorial matters. The quantum Coulomb branch on the moduli space of vacua is one- or two-dimensional depending on the matter contents. For particular values of ( N f , N S ), we find s-confinement phases and derive exact superpotentials. The 3d dynamics of Spin(7) is connected to the 4d dynamics via KK-monopoles. Along the Higgs branch of the Spin(7) theories, we obtain 3d N = 2 G 2 or SU(4) theories and some of them lead to new s-confinement phases. As a check of our analysis we compute superconformal indices for these theories.

  13. Numerical algebraic geometry: a new perspective on gauge and string theories

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.

    2012-07-01

    There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.

  14. Gauge fixing in higher-derivative gravity

    NASA Astrophysics Data System (ADS)

    Bartoli, A.; Julve, J.; Sánchez, E. J.

    1999-07-01

    Linearized 4-derivative gravity with a general gauge-fixing term is considered. By a Legendre transform and a suitable diagonalization procedure it is cast into a second-order equivalent form where the nature of the physical degrees of freedom, the gauge ghosts, the Weyl ghosts and the intriguing `third ghosts', characteristic to higher-derivative theories, is made explicit. The symmetries of the theory and the structure of the compensating Faddeev-Popov ghost sector exhibit non-trivial peculiarities. The unitarity breaking negative-norm Weyl ghosts, already present in the diff-invariant theory, are out of the reach of the ghost cancellation BRST mechanism.

  15. Gauge-invariant variables and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Agarwal, Abhishek; Karabali, Dimitra; Nair, V. P.

    2017-12-01

    The entanglement entropy (EE) of gauge theories in three spacetime dimensions is analyzed using manifestly gauge-invariant variables defined directly in the continuum. Specifically, we focus on the Maxwell, Maxwell-Chern-Simons (MCS), and non-Abelian Yang-Mills theories. Special attention is paid to the analysis of edge modes and their contribution to EE. The contact term is derived without invoking the replica method and its physical origin is traced to the phase space volume measure for the edge modes. The topological contribution to the EE for the MCS case is calculated. For all the Abelian cases, the EE presented in this paper agrees with known results in the literature. The EE for the non-Abelian theory is computed in a gauge-invariant Gaussian approximation, which incorporates the dynamically generated mass gap. A formulation of the contact term for the non-Abelian case is also presented.

  16. Geometric low-energy effective action in a doubled spacetime

    NASA Astrophysics Data System (ADS)

    Ma, Chen-Te; Pezzella, Franco

    2018-05-01

    The ten-dimensional supergravity theory is a geometric low-energy effective theory and the equations of motion for its fields can be obtained from string theory by computing β functions. With d compact dimensions, an O (d , d ; Z) geometric structure can be added to it giving the supergravity theory with T-duality manifest. In this paper, this is constructed through the use of a suitable star product whose role is the one to implement the weak constraint on the fields and the gauge parameters in order to have a closed gauge symmetry algebra. The consistency of the action here proposed is based on the orthogonality of the momenta associated with fields in their triple star products in the cubic terms defined for d ≥ 1. This orthogonality holds also for an arbitrary number of star products of fields for d = 1. Finally, we extend our analysis to the double sigma model, non-commutative geometry and open string theory.

  17. Towards gauge coupling unification in left-right symmetric SU (3 )c×SU (3 )L×SU (3 )R×U (1 )X theories

    NASA Astrophysics Data System (ADS)

    Hati, Chandan; Patra, Sudhanwa; Reig, Mario; Valle, José W. F.; Vaquera-Araujo, C. A.

    2017-07-01

    We consider the possibility of gauge coupling unification within the simplest realizations of the SU (3 )c×SU (3 )L×SU (3 )R×U (1 )X gauge theory. We present a first exploration of the renormalization group equations governing the "bottom-up" evolution of the gauge couplings in a generic model with free normalization for the generators. Interestingly, we find that for a SU (3 )c×SU (3 )L×SU (3 )R×U (1 )X symmetry breaking scale MX as low as a few TeV one can achieve unification in the presence of leptonic octets. We briefly comment on possible grand unified theory frameworks which can embed the SU (3 )c×SU (3 )L×SU (3 )R×U (1 )X model as well as possible implications, such as lepton flavor violating physics at the LHC.

  18. On the gauge chosen by the bosonic open string

    NASA Astrophysics Data System (ADS)

    Pesando, Igor

    2017-05-01

    String theory gives S matrix elements from which is not possible to read any gauge information. Using factorization we go off shell in the simplest and most naive way and we read which are the vertices suggested by string. To compare with the associated Effective Field Theory it is natural to use color ordered vertices. The α‧ = 0 color ordered vertices suggested by string theory are more efficient than the usual ones since the three gluon color ordered vertex has three terms instead of six and the four gluon one has one term instead of three. They are written in the so called Gervais-Neveu gauge. The full Effective Field Theory is in a generalization of the Gervais-Neveu gauge with α‧ corrections. Moreover a field redefinition is required to be mapped to the field used by string theory. We also give an intuitive way of understanding why string choose this gauge in terms of the minimal number of couplings necessary to reproduce the non-abelian amplitudes starting from color ordered ones.

  19. Functional Requirements and the Theory of Action.

    ERIC Educational Resources Information Center

    Hills, R. Jean

    1982-01-01

    Responding to Willower's earlier questioning of the concept of systems' functional requirements, the author outlines the Parsonian theory of action, discussing action systems' components (values, norms, organizations, and facilities) and their functional imperatives or requirements (pattern maintenance, integration, goal attainment, and…

  20. Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardeen, William A.

    2015-09-24

    I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 0t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.

  1. Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardeen, William

    2014-10-24

    I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 1t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.

  2. Generalization of Faddeev-Popov rules in Yang-Mills theories: N = 3,4 BRST symmetries

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Alexander

    2018-01-01

    The Faddeev-Popov rules for a local and Poincaré-covariant Lagrangian quantization of a gauge theory with gauge group are generalized to the case of an invariance of the respective quantum actions, S(N), with respect to N-parametric Abelian SUSY transformations with odd-valued parameters λp, p = 1,…,N and generators sp: spsq + sqsp = 0, for N = 3, 4, implying the substitution of an N-plet of ghost fields, Cp, instead of the parameter, ξ, of infinitesimal gauge transformations: ξ = Cpλ p. The total configuration spaces of fields for a quantum theory of the same classical model coincide in the N = 3 and N = 4 symmetric cases. The superspace of N = 3 SUSY irreducible representation includes, in addition to Yang-Mills fields 𝒜μ, (3 + 1) ghost odd-valued fields Cp, B̂ and 3 even-valued Bpq for p, q = 1, 2, 3. To construct the quantum action, S(3), by adding to the classical action, S0(𝒜), of an N = 3-exact gauge-fixing term (with gauge fermion), a gauge-fixing procedure requires (1 + 3 + 3 + 1) additional fields, Φ¯(3): antighost C¯, 3 even-valued Bp, 3 odd-valued B̂pq and Nakanishi-Lautrup B fields. The action of N = 3 transformations on new fields as N = 3-irreducible representation space is realized. These transformations are the N = 3 BRST symmetry transformations for the vacuum functional, Z3(0) =∫dΦ(3)dΦ¯(3)exp{(ı/ℏ)S(3)}. The space of all fields (Φ(3),Φ¯(3)) proves to be the space of an irreducible representation of the fields Φ(4) for N = 4-parametric SUSY transformations, which contains, in addition to 𝒜μ the (4 + 6 + 4 + 1) ghost-antighost, Cr = (Cp,C¯), even-valued, Brs = -Bsr = (Bpq,Bp4 = Bp), odd-valued B̂r = (B̂,B̂pq) and B fields. The quantum action is constructed by adding to S0(𝒜) an N = 4-exact gauge-fixing term with a gauge boson, F(4). The N = 4 SUSY transformations are by N = 4 BRST transformations for the vacuum functional, Z4(0) =∫dΦ(4)exp{(ı/ℏ)S(4)}. The procedures are valid for

  3. Entanglement renormalization and gauge symmetry

    NASA Astrophysics Data System (ADS)

    Tagliacozzo, L.; Vidal, G.

    2011-03-01

    A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z2 lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16×16 sites (162×2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.

  4. Scalar quantum electrodynamics via Duffin-Kemmer-Petiau gauge theory in the Heisenberg picture: Vacuum polarization

    NASA Astrophysics Data System (ADS)

    Beltran, J.; Maia, N. T.; Pimentel, B. M.

    2018-04-01

    Scalar Quantum Electrodynamics is investigated in the Heisenberg picture via the Duffin-Kemmer-Petiau gauge theory. On this framework, a perturbative method is used to compute the vacuum polarization tensor and its corresponding induced current for the case of a charged scalar field in the presence of an external electromagnetic field. Charge renormalization is brought into discussion for the interpretation of the results for the vacuum polarization.

  5. The model for self-dual chiral bosons as a Hodge theory

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker; Mandal, Bhabani Prasad

    2011-09-01

    We consider (1+1) dimensional theory for a single self-dual chiral boson as a classical model for gauge theory. Using the Batalin-Fradkin-Vilkovisky (BFV) technique, the nilpotent BRST and anti-BRST symmetry transformations for this theory have been studied. In this model other forms of nilpotent symmetry transformations like co-BRST and anti-co-BRST, which leave the gauge-fixing part of the action invariant, are also explored. We show that the nilpotent charges for these symmetry transformations satisfy the algebra of the de Rham cohomological operators in differential geometry. The Hodge decomposition theorem on compact manifold is also studied in the context of conserved charges.

  6. PyR@TE. Renormalization group equations for general gauge theories

    NASA Astrophysics Data System (ADS)

    Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.

    2014-03-01

    Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer

  7. Unification of gauge and Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Abdalgabar, Ammar; Khojali, Mohammed Omer; Cornell, Alan S.; Cacciapaglia, Giacomo; Deandrea, Aldo

    2018-01-01

    The unification of gauge and top Yukawa couplings is an attractive feature of gauge-Higgs unification models in extra-dimensions. This feature is usually considered difficult to obtain based on simple group theory analyses. We reconsider a minimal toy model including the renormalisation group running at one loop. Our results show that the gauge couplings unify asymptotically at high energies, and that this may result from the presence of an UV fixed point. The Yukawa coupling in our toy model is enhanced at low energies, showing that a genuine unification of gauge and Yukawa couplings may be achieved.

  8. BF actions for the Husain-Kuchař model

    NASA Astrophysics Data System (ADS)

    Barbero G., J. Fernando; Villaseñor, Eduardo J.

    2001-04-01

    We show that the Husain-Kuchař model can be described in the framework of BF theories. This is a first step towards its quantization by standard perturbative quantum field theory techniques or the spin-foam formalism introduced in the space-time description of general relativity and other diff-invariant theories. The actions that we will consider are similar to the ones describing the BF-Yang-Mills model and some mass generating mechanisms for gauge fields. We will also discuss the role of diffeomorphisms in the new formulations that we propose.

  9. Action theory within the structural view.

    PubMed

    Rangell, L

    1989-01-01

    This paper presents a summary of a cohesive theme coursing through a group of selected papers written by the author over four decades. Purpose, intention, choice and decision are seen as firmly anchored within structural metapsychological theory. These constitute a cohesive and operative psychoanalytic theory of action, which Hartmann stated did not exist within psychoanalytic theory. The exposure and inclusion of this unconscious series of intrapsychic events obviates the need for many alternative theories which have been erected to give a place to these very functions. Unconscious decision, ego will and volition, the unconscious initiation and execution of action, operate during waking life, with as complete and complex secondary process mentation as secondary revision organizes the final shape and contents of a dream during sleep. These conceptual changes and advances have important psychosociolegal implications. Man not only does not know why he acts; he also does not always know that he acts. The mainstream itself is not monolithic and has also resisted the development of many of these advances. Factors responsible for this lag or block are adduced, which include anti-scientism or intellectuality, as well as, most importantly, a resistance to an increase of responsibility and accountability.

  10. A string realisation of Ω-deformed Abelian N =2* theory

    NASA Astrophysics Data System (ADS)

    Angelantonj, Carlo; Antoniadis, Ignatios; Samsonyan, Marine

    2017-10-01

    The N =2* supersymmetric gauge theory is a massive deformation of N = 4, in which the adjoint hypermultiplet gets a mass. We present a D-brane realisation of the (non-)Abelian N =2* theory, and compute suitable topological amplitudes, which are expressed as a double series expansion. The coefficients determine couplings of higher-dimensional operators in the effective supergravity action that involve powers of the anti-self-dual N = 2 chiral Weyl superfield and of self-dual gauge field strengths superpartners of the D5-brane coupling modulus. In the field theory limit, the result reproduces the Nekrasov partition function in the two-parameter Ω-background, in agreement with a recent proposal.

  11. Cartan gravity, matter fields, and the gauge principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westman, Hans F., E-mail: hwestman74@gmail.com; Zlosnik, Tom G., E-mail: t.zlosnik@imperial.ac.uk

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top ofmore » it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are

  12. Gauge equivalence of two different IAnsaaumlItze Rfor non-Abelian charged vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, S.K.

    1987-05-15

    Recently the existence of non-Abelian charged vortices has been established by taking two different Ansa$uml: tze in SU(2) gauge theories. We point out that these two Ansa$uml: tze are in two topologically equivalent prescriptions. We show that they are gauge equivalent only at infinity. We also show that this gauge equivalence is not possible for Z/sub N/ vortices in SU(N) gauge theories for Ngreater than or equal to3.

  13. An exact elliptic superpotential for N=1 ∗ deformations of finite N=2 gauge theories

    NASA Astrophysics Data System (ADS)

    Dorey, Nick; Hollowood, Timothy J.; Kumar, S. Prem

    2002-03-01

    We study relevant deformations of the N=2 superconformal theory on the world-volume of N D3-branes at an Ak-1 singularity. In particular, we determine the vacuum structure of the mass-deformed theory with N=1 supersymmetry and show how the different vacua are permuted by an extended duality symmetry. We then obtain exact, modular covariant formulae (for all k, N and arbitrary gauge couplings) for the holomorphic observables in the massive vacua in two different ways: by lifting to M-theory, and by compactification to three dimensions and subsequent use of mirror symmetry. In the latter case, we find an exact superpotential for the model which coincides with a certain combination of the quadratic Hamiltonians of the spin generalization of the elliptic Calogero-Moser integrable system.

  14. Differentiating between precursor and control variables when analyzing reasoned action theories.

    PubMed

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin; Brown, Larry; Diclemente, Ralph; Romer, Daniel; Valois, Robert; Vanable, Peter A; Carey, Michael P; Salazar, Laura

    2010-02-01

    This paper highlights the distinction between precursor and control variables in the context of reasoned action theory. Here the theory is combined with structural equation modeling to demonstrate how age and past sexual behavior should be situated in a reasoned action analysis. A two wave longitudinal survey sample of African-American adolescents is analyzed where the target behavior is having vaginal sex. Results differ when age and past behavior are used as control variables and when they are correctly used as precursors. Because control variables do not appear in any form of reasoned action theory, this approach to including background variables is not correct when analyzing data sets based on the theoretical axioms of the Theory of Reasoned Action, the Theory of Planned Behavior, or the Integrative Model.

  15. Differentiating Between Precursor and Control Variables When Analyzing Reasoned Action Theories

    PubMed Central

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin; Brown, Larry; DiClemente, Ralph; Romer, Daniel; Valois, Robert; Vanable, Peter A.; Carey, Michael P.; Salazar, Laura

    2010-01-01

    This paper highlights the distinction between precursor and control variables in the context of reasoned action theory. Here the theory is combined with structural equation modeling to demonstrate how age and past sexual behavior should be situated in a reasoned action analysis. A two wave longitudinal survey sample of African-American adolescents is analyzed where the target behavior is having vaginal sex. Results differ when age and past behavior are used as control variables and when they are correctly used as precursors. Because control variables do not appear in any form of reasoned action theory, this approach to including background variables is not correct when analyzing data sets based on the theoretical axioms of the Theory of Reasoned Action, the Theory of Planned Behavior, or the Integrative Model PMID:19370408

  16. On the origin of Poincaré gauge gravity

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2017-06-01

    We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij) and vector (eμi) representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, Aμij Aijμ = ±MA2 and eμi eiμ = ±Me2 , that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales). It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  17. Gauge assisted quadratic gravity: A framework for UV complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Donoghue, John F.; Menezes, Gabriel

    2018-06-01

    We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the J =2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.

  18. The universal character of Zwanziger's horizon function in Euclidean Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Capri, M. A. L.; Dudal, D.; Guimaraes, M. S.; Pereira, A. D.; Mintz, B. W.; Palhares, L. F.; Sorella, S. P.

    2018-06-01

    In light of the recently established BRST invariant formulation of the Gribov-Zwanziger theory, we show that Zwanziger's horizon function displays a universal character. More precisely, the correlation functions of local BRST invariant operators evaluated with the Yang-Mills action supplemented with a BRST invariant version of the Zwanziger's horizon function and quantized in an arbitrary class of covariant, color invariant and renormalizable gauges which reduce to the Landau gauge when all gauge parameters are set to zero, have a unique, gauge parameters independent result, corresponding to that of the Landau gauge when the restriction to the Gribov region Ω in the latter gauge is imposed. As such, thanks to the BRST invariance, the cut-off at the Gribov region Ω acquires a gauge independent meaning in the class of the physical correlators.

  19. Exact partition functions for the Ω-deformed {N}={2}^{ast } SU(2) gauge theory

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Macorini, Guido

    2016-07-01

    We study the low energy effective action of the Ω-deformed {N}={2}^{ast } SU(2) gauge theory. It depends on the deformation parameters ɛ 1, ɛ 2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane (m/ɛ_1,ɛ_2/ɛ_1) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ɛ 2 → 0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  20. Rescriptive and Descriptive Gauge Symmetry in Finite-Dimensional Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-02-07

    Gauge theories in physics constitute a fundamental tool for modeling interactions among electromagnetic, weak and strong forces. They have been used in a myriad of fields, ranging from sub-atomic physics to cosmology. The basic mathematical tool generating the gauge theories is that of symmetry, i.e. a redundancy in the description of the system. Although symmetries have long been recognized as a fundamental tool for solving ordinary differential equations, they have not been formally categorized as gauge theories. In this paper, we show how simple systems described by ordinary differential equations are prone to exhibit gauge symmetry, and discuss a fewmore » practical applications of this approach. In particular, we utilize the notion of gauge symmetry to question some common engineering misconceptions of chaotic and stochastic phenomena, and show that seemingly 'disordered' (deterministic) or 'random' (stochastic) behaviors can be 'ordered'. This brings into play the notion of observation; we show that temporal observations may be misleading when used for chaos detection. From a practical standpoint, we use gauge symmetry to considerably mitigate the numerical truncation error of numerical integrations.« less

  1. Yangian Symmetry and Integrability of Planar N=4 Supersymmetric Yang-Mills Theory.

    PubMed

    Beisert, Niklas; Garus, Aleksander; Rosso, Matteo

    2017-04-07

    In this Letter, we establish Yangian symmetry of planar N=4 supersymmetric Yang-Mills theory. We prove that the classical equations of motion of the model close onto themselves under the action of Yangian generators. Moreover, we propose an off-shell extension of our statement, which is equivalent to the invariance of the action and prove that it is exactly satisfied. We assert that our relationship serves as a criterion for integrability in planar gauge theories by explicitly checking that it applies to the integrable Aharony-Bergman-Jafferis-Maldacena theory but not to the nonintegrable N=1 supersymmetric Yang-Mills theory.

  2. Gauge-flation and cosmic no-hair conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleknejad, A.; Sheikh-Jabbari, M.M.; Soda, Jiro, E-mail: azade@ipm.ir, E-mail: jabbari@theory.ipm.ac.ir, E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2012-01-01

    Gauge-flation, inflation from non-Abelian gauge fields, was introduced in [1, 2]. In this work, we study the cosmic no-hair conjecture in gauge-flation. Starting from Bianchi-type I cosmology and through analytic and numeric studies we demonstrate that the isotropic FLRW inflation is an attractor of the dynamics of the theory and that the anisotropies are damped within a few e-folds, in accord with the cosmic no-hair conjecture.

  3. Action and entanglement in gravity and field theory.

    PubMed

    Neiman, Yasha

    2013-12-27

    In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions.

  4. Diffractive Scattering and Gauge/String Duality

    ScienceCinema

    Tan, Chung-I

    2018-05-11

    High-energy diffractive scattering will be discussed based on Gauge/String duality. As shown by Brower, Polchinski, Strassler and Tan, the ubiquitous Pomeron emerges naturally in gauge theories with string-theoretical descriptions. Its existence is intimately tied to gluons, and also to the energy-momentum tensor. With a confining dual background metric, the Pomeron can be interpreted as a 'massive graviton'. In a single unified step, both its infrared and ultraviolet properties are dealt with, reflecting confinement and conformal symmetry respectively. An effective field theory for high-energy scattering can be constructed. Applications based on this approach will also be described.

  5. Global Constraints on Anomalous Triple Gauge Couplings in the Effective Field Theory Approach.

    PubMed

    Falkowski, Adam; González-Alonso, Martín; Greljo, Admir; Marzocca, David

    2016-01-08

    We present a combined analysis of LHC Higgs data (signal strengths) together with LEP-2 WW production measurements. To characterize possible deviations from the standard model (SM) predictions, we employ the framework of an effective field theory (EFT) where the SM is extended by higher-dimensional operators suppressed by the mass scale of new physics Λ. The analysis is performed consistently at the order Λ(-2) in the EFT expansion keeping all the relevant operators. While the two data sets suffer from flat directions, together they impose stringent model-independent constraints on the anomalous triple gauge couplings.

  6. Beginning and Becoming: Hannah Arendt's Theory of Action and Action Research in Education

    ERIC Educational Resources Information Center

    Rogers, Carrie

    2014-01-01

    This paper demonstrates the importance and implications of Hannah Arendt's theory of action for action research. Using examples from my teaching experience I demonstrate the relevance of her ideas in understanding the purpose and aims of action research in the classroom.

  7. SL(2, C) group action on cohomological field theories

    NASA Astrophysics Data System (ADS)

    Basalaev, Alexey

    2018-01-01

    We introduce the S} (2,C) group action on a partition function of a cohomological field theory via a certain Givental's action. Restricted to the small phase space we describe the action via the explicit formulae on a CohFT genus g potential. We prove that applied to the total ancestor potential of a simple-elliptic singularity the action introduced coincides with the transformation of Milanov-Ruan changing the primitive form (cf. Milanov and Ruan in Gromov-Witten theory of elliptic orbifold P1 and quasi-modular forms, arXiv:1106.2321 , 2011).

  8. Higgs compositeness in Sp(2N) gauge theories - Determining the low-energy constants with lattice calculations

    NASA Astrophysics Data System (ADS)

    Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide

    2018-03-01

    As a first step towards a quantitative understanding of the SU(4)/Sp(4) composite Higgs model through lattice calculations, we discuss the low energy effective field theory resulting from the SU(4) → Sp(4) global symmetry breaking pattern. We then consider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representation on a lattice, which provides a concrete example of the microscopic realisation of the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programme of numerical simulations aiming at the determination of the low-energy constants of the effective field theory and we test the method on the quenched theory. We also report early results from dynamical simulations, focussing on the phase structure of the lattice theory and a calculation of the lowest-lying meson spectrum at coarse lattice spacing. Combined contributions of B. Lucini (e-mail: b.lucini@swansea.ac.uk) and J.-W. Lee (e-mail: wlee823@pusan.ac.kr).

  9. New BCJ representations for one-loop amplitudes in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    He, Song; Schlotterer, Oliver; Zhang, Yong

    2018-05-01

    We explain a procedure to manifest the Bern-Carrasco-Johansson duality between color and kinematics in n-point one-loop amplitudes of a variety of supersymmetric gauge theories. Explicit amplitude representations are constructed through a systematic reorganization of the integrands in the Cachazo-He-Yuan formalism. Our construction holds for any nonzero number of supersymmetries and does not depend on the number of spacetime dimensions. The cancellations from supersymmetry multiplets in the loop as well as the resulting power counting of loop momenta is manifested along the lines of the corresponding superstring computations. The setup is used to derive the one-loop version of the Kawai-Lewellen-Tye formula for the loop integrands of gravitational amplitudes.

  10. The IR obstruction to UV completion for Dante’s Inferno model with higher-dimensional gauge theory origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuuchi, Kazuyuki; Koyama, Yoji

    We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place inmore » the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.« less

  11. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  12. Lopsided gauge mediation

    NASA Astrophysics Data System (ADS)

    de Simone, Andrea; Franceschini, Roberto; Giudice, Gian Francesco; Pappadopulo, Duccio; Rattazzi, Riccardo

    2011-05-01

    It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called μ- B μ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of B μ and of the other Higgs-sector soft masses, as predicted in models where both μ and B μ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of tan β. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of new interactions between the Higgs and the messenger superfields, the theory can remain perturbative up to very large scales, thus retaining gauge coupling unification.

  13. Unified gauge theories with right-handed currents and heavy fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohapatra, R.N.

    Gauge models with heavy fermions and right-handed currents are discussed based on the gauge groups SU(2)/subA/ x U(1) x SU(4) ', SU(2)/subA/ x SU(2)/subB/ x SU(4) ', and SU(4) x SU(4) ' and are constructed so as to lead to the $delta$I = 1/2 rule. SU(4) x SU(4) ' is advocated as the ultimate unifying gauge group of nature, and it is shown how at various stages of spontaneous breakdown both the SU(2)/subA/ x SU(2)/subB/ x SU(4) ' and SU(2)/subA/ x U(1) x SU(4) ' groups manifest themselves. It is also shown that CP violation takes an interesting complexion inmore » these models and leads to exactly the relations eta/sub +//sub -/ approx. = eta$sub 00$ in K/subL/ $Yields$ 2$pi$ decays. Furthermore, it is shown that the magnitude of CP violation is related to gauge interactions that violate the heavy quark degeneracy. (AIP)« less

  14. Infrared propagators of Yang-Mills theory from perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tissier, Matthieu; Wschebor, Nicolas

    2010-11-15

    We show that the correlation functions of ghosts and gluons for the pure Yang-Mills theory in Landau gauge can be accurately reproduced for all momenta by a one-loop calculation. The key point is to use a massive extension of the Faddeev-Popov action. The agreement with lattice simulation is excellent in d=4. The one-loop calculation also reproduces all the characteristic features of the lattice simulations in d=3 and naturally explains the peculiarities of the propagators in d=2.

  15. A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Macarena; Baker, Tessa; Ferreira, Pedro G.

    We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and ''Beyond Horndeski'' theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbationsmore » that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (à la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic actions for perturbations, and the number of free parameters that need to be defined, to cosmologically characterize these two broad classes of theories.« less

  16. Gaugeon formalism for the second-rank antisymmetric tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Aochi, Masataka; Endo, Ryusuke; Miura, Hikaru

    2018-02-01

    We present a BRST symmetric gaugeon formalism for the second-rank antisymmetric tensor gauge fields. A set of vector gaugeon fields is introduced as a quantum gauge freedom. One of the gaugeon fields satisfies a higher-derivative field equation; this property is necessary to change the gauge-fixing parameter of the antisymmetric tensor gauge field. A naive Lagrangian for the vector gaugeon fields is itself invariant under a gauge transformation for the vector gaugeon field. The Lagrangian of our theory includes the gauge-fixing terms for the gaugeon fields and corresponding Faddeev-Popov ghost terms.

  17. A note on the sphere free energy of p-form gauge theory and Hodge duality

    NASA Astrophysics Data System (ADS)

    Raj, Himanshu

    2017-12-01

    We consider a free p-form gauge theory on a d-dimensional sphere of radius R and calculate its free energy. We perform the calculation for generic values of p and obtain the free energy as a function of d, p and R. The result contains a \\renewcommand{\\r}ρ \\renewcommand{\\l}λ log R term with a coefficient proportional to \\renewcommand{\\r}ρ \\renewcommand{\\l}λ (2p+2-d) , which is consistent with lack of conformal invariance for p form theories in dimensions other than 2p+2 . We also compare the result for p-form and (d-p-2) -form theory which are classically Hodge dual to each other in d dimensions and find that they agree for odd values of d. Also, for even d, we find that the results disagree by an amount that is consistent with the reported values in the literature.

  18. A highly optimized vectorized code for Monte Carlo simulations of SU(3) lattice gauge theories

    NASA Technical Reports Server (NTRS)

    Barkai, D.; Moriarty, K. J. M.; Rebbi, C.

    1984-01-01

    New methods are introduced for improving the performance of the vectorized Monte Carlo SU(3) lattice gauge theory algorithm using the CDC CYBER 205. Structure, algorithm and programming considerations are discussed. The performance achieved for a 16(4) lattice on a 2-pipe system may be phrased in terms of the link update time or overall MFLOPS rates. For 32-bit arithmetic, it is 36.3 microsecond/link for 8 hits per iteration (40.9 microsecond for 10 hits) or 101.5 MFLOPS.

  19. Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, Lisa; Murray, Scott H.; Sati, Hisham

    For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions andmore » 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.« less

  20. The Schwarzian theory — origins

    NASA Astrophysics Data System (ADS)

    Mertens, Thomas G.

    2018-05-01

    In this paper we further study the 1d Schwarzian theory, the universal low-energy limit of Sachdev-Ye-Kitaev models, using the link with 2d Liouville theory. We provide a path-integral derivation of the structural link between both theories, and study the relation between 3d gravity, 2d Jackiw-Teitelboim gravity, 2d Liouville and the 1d Schwarzian. We then generalize the Schwarzian double-scaling limit to rational models, relevant for SYK-type models with internal symmetries. We identify the holographic gauge theory as a 2d BF theory and compute correlators of the holographically dual 1d particle-on-a-group action, decomposing these into diagrammatic building blocks, in a manner very similar to the Schwarzian theory.

  1. On the formulation of D=11 supergravity and the composite nature of its three-form gauge field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandos, Igor A.; Institute for Theoretical Physics, NSC 'Kharkov Institute of Physics and Technology', UA61108, Kharkov; Azcarraga, Jose A. de

    2005-05-01

    The underlying gauge group structure of the D=11 Cremmer-Julia-Scherk supergravity becomes manifest when its three-form field A{sub 3} is expressed through a set of one-form gauge fields, B1a1a2, B1a1...a5, {eta}{sub 1{alpha}}, and E{sup a}, {psi}{sup {alpha}}. These are associated with the generators of the elements of a family of enlarged supersymmetry algebras E-bar (528 vertical bar 32+32)(s) parametrized by a real number s. We study in detail the composite structure of A{sub 3} extending previous results by D'Auria and Fre, stress the equivalence of the above problem to the trivialization of a standard supersymmetry algebra E(11 vertical bar 32) cohomologymore » four-cocycle on the enlarged E-bar (528 vertical bar 32+32)(s) superalgebras, and discuss its possible dynamical consequences. To this aim we consider the properties of the first order supergravity action with a composite A{sub 3} field and find the set of extra gauge symmetries that guarantee that the field theoretical degrees of freedom of the theory remain the same as with a fundamental A{sub 3}. The extra gauge symmetries are also present in the so-called rheonomic treatment of the first order D=11 supergravity action when A{sub 3} is composite. Our considerations on the composite structure of A{sub 3} provide one more application of the idea that there exists an extended superspace coordinates/fields correspondence. They also suggest that there is a possible embedding of D=11 supergravity into a theory defined on the enlarged superspace {sigma}-bar (528 vertical bar 32+32)(s)« less

  2. Politicising Action Research through Queer Theory

    ERIC Educational Resources Information Center

    Filax, Gloria

    2006-01-01

    Queer theory and action research together offer possibilities for exposing the deep injustice of both homophobia and heterosexism. Underpinning identity categories of sexuality and gender, these forms of social injustice lurk in schools, families, religions, communities, and nation-states. For educators and educational researchers, addressing…

  3. Adventures in Topological Field Theory

    NASA Astrophysics Data System (ADS)

    Horne, James H.

    1990-01-01

    This thesis consists of 5 parts. In part I, the topological Yang-Mills theory and the topological sigma model are presented in a superspace formulation. This greatly simplifies the field content of the theories, and makes the Q-invariance more obvious. The Feynman rules for the topological Yang -Mills theory are derived. We calculate the one-loop beta-functions of the topological sigma model in superspace. The lattice version of these theories is presented. The self-duality constraints of both models lead to spectrum doubling. In part II, we show that conformally invariant gravity in three dimensions is equivalent to the Yang-Mills gauge theory of the conformal group in three dimensions, with a Chern-Simons action. This means that conformal gravity is finite and exactly soluble. In part III, we derive the skein relations for the fundamental representations of SO(N), Sp(2n), Su(m| n), and OSp(m| 2n). These relations can be used recursively to calculate the expectation values of Wilson lines in three-dimensional Chern-Simons gauge theory with these gauge groups. A combination of braiding and tying of Wilson lines completely describes the skein relations. In part IV, we show that the k = 1 two dimensional gravity amplitudes at genus 3 agree precisely with the results from intersection theory on moduli space. Predictions for the genus 4 intersection numbers follow from the two dimensional gravity theory. In part V, we discuss the partition function in two dimensional gravity. For the one matrix model at genus 2, we use the partition function to derive a recursion relation. We show that the k = 1 amplitudes completely determine the partition function at arbitrary genus. We present a conjecture for the partition function for the arbitrary topological field theory coupled to topological gravity.

  4. Learning, Action and Solutions in Action Learning: Investigation of Facilitation Practice Using the Concept of Living Theories

    ERIC Educational Resources Information Center

    Sanyal, Chandana

    2018-01-01

    This paper explores the practice of action learning (AL) facilitation in supporting AL set members to address their 'messy' problems through a self-reflexive approach using the concept of 'living theory' [Whitehead, J., and J. McNiff. 2006. "Action Research Living Theory." London: Sage]. The facilitation practice is investigated through…

  5. Conformal higher spin theory and twistor space actions

    NASA Astrophysics Data System (ADS)

    Hähnel, Philipp; McLoughlin, Tristan

    2017-12-01

    We consider the twistor description of conformal higher spin theories and give twistor space actions for the self-dual sector of theories with spin greater than two that produce the correct flat space-time spectrum. We identify a ghost-free subsector, analogous to the embedding of Einstein gravity with cosmological constant in Weyl gravity, which generates the unique spin-s three-point anti-MHV amplitude consistent with Poincaré invariance and helicity constraints. By including interactions between the infinite tower of higher-spin fields we give a geometric interpretation to the twistor equations of motion as the integrability condition for a holomorphic structure on an infinite jet bundle. Finally, we conjecture anti-self-dual interaction terms which give an implicit definition of a twistor action for the full conformal higher spin theory.

  6. (3+1)-Dimensional topologically massive 2-form gauge theory: geometrical superfield approach

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Mukhopadhyay, Debmalya

    2018-06-01

    We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations corresponding to the combined "scalar" and "vector" gauge symmetry transformations for the (3+1)-dimensional (4D) topologically massive non-Abelian (B \\wedge F) theory with the help of geometrical superfield formalism. For this purpose, we use three horizontality conditions (HCs). The first HC produces the (anti-)BRST transformations for the 1-form gauge field and corresponding (anti-)ghost fields whereas the second HC yields the (anti-)BRST transformations for 2-form field and associated (anti-)ghost fields. The integrability of second HC produces third HC. The latter HC produces the (anti-)BRST symmetry transformations for the compensating auxiliary vector field and corresponding ghosts. We obtain five (anti-)BRST invariant Curci-Ferrari (CF)-type conditions which emerge very naturally as the off-shoots of superfield formalism. Out of five CF-type conditions, two are fermionic in nature. These CF-type conditions play a decisive role in providing the absolute anticommutativity of the (anti-)BRST transformations and also responsible for the derivation of coupled but equivalent (anti-)BRST invariant Lagrangian densities. Furthermore, we capture the (anti-)BRST invariance of the coupled Lagrangian densities in terms of the superfields and translation generators along the Grassmannian directions θ and \\bar{θ }.

  7. Improved results for the mass spectrum of N = 1 supersymmetric SU(3) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Ali, Sajid; Bergner, Georg; Gerber, Henning; Giudice, Pietro; Kuberski, Simon; Münster, Gernot; Montvay, István; Piemonte, Stefano; Scior, Philipp

    2018-03-01

    This talk summarizes the results of the DESY-Münster collaboration for N = 1 supersymmetric Yang-Mills theory with the gauge group SU(3). It is an updated status report with respect to our preliminary data presented at the last conference. In order to control the lattice artefacts we have now considered a clover improved fermion action and different values of the gauge coupling.

  8. Magnetic catalysis and inverse magnetic catalysis in (2 +1 )-dimensional gauge theories from holographic models

    NASA Astrophysics Data System (ADS)

    Rodrigues, Diego M.; Capossoli, Eduardo Folco; Boschi-Filho, Henrique

    2018-06-01

    We study the deconfinement phase transition in (2 +1 )-dimensional holographic S U (N ) gauge theories in the presence of an external magnetic field from the holographic hard and soft wall models. We obtain exact solutions for the critical temperature of the deconfinement transition for any range of magnetic field. As a consequence, we find a critical magnetic field (Bc), in which the critical temperature (Tc) vanishes; for B Bc we have a magnetic catalysis.

  9. Measurement Models for Reasoned Action Theory.

    PubMed

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin

    2012-03-01

    Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach.

  10. Measurement Models for Reasoned Action Theory

    PubMed Central

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin

    2012-01-01

    Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach. PMID:23243315

  11. Geometric Lagrangian approach to the physical degree of freedom count in field theory

    NASA Astrophysics Data System (ADS)

    Díaz, Bogar; Montesinos, Merced

    2018-05-01

    To circumvent some technical difficulties faced by the geometric Lagrangian approach to the physical degree of freedom count presented in the work of Díaz, Higuita, and Montesinos [J. Math. Phys. 55, 122901 (2014)] that prevent its direct implementation to field theory, in this paper, we slightly modify the geometric Lagrangian approach in such a way that its resulting version works perfectly for field theory (and for particle systems, of course). As in previous work, the current approach also allows us to directly get the Lagrangian constraints, a new Lagrangian formula for the counting of the number of physical degrees of freedom, the gauge transformations, and the number of first- and second-class constraints for any action principle based on a Lagrangian depending on the fields and their first derivatives without performing any Dirac's canonical analysis. An advantage of this approach over the previous work is that it also allows us to handle the reducibility of the constraints and to get the off-shell gauge transformations. The theoretical framework is illustrated in 3-dimensional generalized general relativity (Palatini and Witten's exotic actions), Chern-Simons theory, 4-dimensional BF theory, and 4-dimensional general relativity given by Palatini's action with a cosmological constant.

  12. Actionable Postcolonial Theory in Education. Postcolonial Studies in Education

    ERIC Educational Resources Information Center

    Andreotti, Vanessa

    2011-01-01

    "Actionable Postcolonial Theory in Education" illustrates how postcolonial theory can be put to work in education. It offers an accessible and handy overview and comparison of postcolonial theory and other theoretical debates related to critiques of Western ethnocentrism and hegemony. It also offers examples that illustrate how a discursive strand…

  13. Non-Abelian gauge preheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Giblin, John T.; Weiner, Zachary J.

    2017-12-01

    We study preheating in models where a scalar inflaton is directly coupled to a non-Abelian S U (2 ) gauge field. In particular, we examine m2ϕ2 inflation with a conformal, dilatonlike coupling to the non-Abelian sector. We describe a numerical scheme that combines lattice gauge theory with standard finite difference methods applied to the scalar field. We show that a significant tachyonic instability allows for efficient preheating, which is parametrically suppressed by increasing the non-Abelian self-coupling. Additionally, we comment on the technical implementation of the evolution scheme and setting initial conditions.

  14. Intention, emotion, and action: a neural theory based on semantic pointers.

    PubMed

    Schröder, Tobias; Stewart, Terrence C; Thagard, Paul

    2014-06-01

    We propose a unified theory of intentions as neural processes that integrate representations of states of affairs, actions, and emotional evaluation. We show how this theory provides answers to philosophical questions about the concept of intention, psychological questions about human behavior, computational questions about the relations between belief and action, and neuroscientific questions about how the brain produces actions. Our theory of intention ties together biologically plausible mechanisms for belief, planning, and motor control. The computational feasibility of these mechanisms is shown by a model that simulates psychologically important cases of intention. © 2013 Cognitive Science Society, Inc.

  15. An Alternative to the Gauge Theoretic Setting

    NASA Astrophysics Data System (ADS)

    Schroer, Bert

    2011-10-01

    The standard formulation of quantum gauge theories results from the Lagrangian (functional integral) quantization of classical gauge theories. A more intrinsic quantum theoretical access in the spirit of Wigner's representation theory shows that there is a fundamental clash between the pointlike localization of zero mass (vector, tensor) potentials and the Hilbert space (positivity, unitarity) structure of QT. The quantization approach has no other way than to stay with pointlike localization and sacrifice the Hilbert space whereas the approach built on the intrinsic quantum concept of modular localization keeps the Hilbert space and trades the conflict creating pointlike generation with the tightest consistent localization: semiinfinite spacelike string localization. Whereas these potentials in the presence of interactions stay quite close to associated pointlike field strengths, the interacting matter fields to which they are coupled bear the brunt of the nonlocal aspect in that they are string-generated in a way which cannot be undone by any differentiation. The new stringlike approach to gauge theory also revives the idea of a Schwinger-Higgs screening mechanism as a deeper and less metaphoric description of the Higgs spontaneous symmetry breaking and its accompanying tale about "God's particle" and its mass generation for all the other particles.

  16. To gauge or not to gauge?

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan; Milekhin, Alexey

    2018-04-01

    The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.

  17. Emergent gauge theories and supersymmetry: A QED primer

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2013-04-01

    We argue that a generic trigger for photon and other gauge fields to emerge as massless Nambu-Goldstone modes could be spontaneously broken supersymmetry rather than physically manifested Lorentz violation. We consider supersymmetric QED model extended by an arbitrary polynomial potential of vector superfield that induces the spontaneous SUSY violation in the visible sector. As a consequence, massless photon appears as a companion of massless photino being Goldstone fermion state in tree approximation. Remarkably, the photon masslessness appearing at tree level is further protected against radiative corrections due to the simultaneously generated special gauge invariance in the broken SUSY phase. Meanwhile, photino being mixed with another goldstino appearing from a spontaneous SUSY violation in the hidden sector largely turns into light pseudo-goldstino whose physics seems to be of special interest.

  18. Communication as a predictor of willingness to donate one's organs: an addition to the Theory of Reasoned Action.

    PubMed

    Jeffres, Leo W; Carroll, Jeanine A; Rubenking, Bridget E; Amschlinger, Joe

    2008-12-01

    Fishbein and Ajzen's theory of reasoned action has been used by many researchers, particularly in regard to health communication, to predict behavioral intentions and behavior. According to that theory, one's intention is the best predictor that one will engage in a behavior, and attitudes and social norms predict behavioral intentions. Other researchers have added different variables to the postulates of attitudes and social norms that Fishbein and Ajzen maintain are the best predictors of behavioral intention. Here we draw on data from a 2006 telephone survey (N = 420) gauging the awareness of an organ donation campaign in Northeast Ohio to examine the impact of communication on people's intentions. The current study supports the hypothesis that those who communicate with others are more likely to express a greater willingness to become an organ donor, but it expands the range of communication contexts. With demographics and attitudes toward organ donation controlled for, this study shows that communication with others about organ donation increases the willingness of individuals to have favorable attitudes about being an organ donor.

  19. Noether’s second theorem and Ward identities for gauge symmetries

    DOE PAGES

    Avery, Steven G.; Schwab, Burkhard U. W.

    2016-02-04

    Recently, a number of new Ward identities for large gauge transformations and large diffeomorphisms have been discovered. Some of the identities are reinterpretations of previously known statements, while some appear to be genuinely new. We present and use Noether’s second theorem with the path integral as a powerful way of generating these kinds of Ward identities. We reintroduce Noether’s second theorem and discuss how to work with the physical remnant of gauge symmetry in gauge fixed systems. We illustrate our mechanism in Maxwell theory, Yang-Mills theory, p-form field theory, and Einstein-Hilbert gravity. We comment on multiple connections between Noether’s secondmore » theorem and known results in the recent literature. Finally, our approach suggests a novel point of view with important physical consequences.« less

  20. Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories

    NASA Astrophysics Data System (ADS)

    Nohle, Joshua David

    In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at

  1. Sequestered gravity in gauge mediation.

    PubMed

    Antoniadis, Ignatios; Benakli, Karim; Quiros, Mariano

    2016-01-01

    We present a novel mechanism of supersymmetry breaking embeddable in string theory and simultaneously sharing the main advantages of (sequestered) gravity and gauge mediation. It is driven by a Scherk-Schwarz deformation along a compact extra dimension, transverse to a brane stack supporting the supersymmetric extension of the Standard Model. This fixes the magnitude of the gravitino mass, together with that of the gauginos of a bulk gauge group, at a scale as high as [Formula: see text] GeV. Supersymmetry breaking is mediated to the observable sector dominantly by gauge interactions using massive messengers transforming non-trivially under the bulk and Standard Model gauge groups and leading to a neutralino LSP as dark matter candidate. The Higgsino mass [Formula: see text] and soft Higgs-bilinear [Formula: see text] term could be generated at the same order of magnitude as the other soft terms by effective supergravity couplings as in the Giudice-Masiero mechanism.

  2. A first class constraint generates not a gauge transformation, but a bad physical change: The case of electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, J. Brian, E-mail: jbp25@cam.ac.uk

    In Dirac–Bergmann constrained dynamics, a first-class constraint typically does not alone generate a gauge transformation. By direct calculation it is found that each first-class constraint in Maxwell’s theory generates a change in the electric field E{sup →} by an arbitrary gradient, spoiling Gauss’s law. The secondary first-class constraint p{sup i},{sub i}=0 still holds, but being a function of derivatives of momenta (mere auxiliary fields), it is not directly about the observable electric field (a function of derivatives of A{sub μ}), which couples to charge. Only a special combination of the two first-class constraints, the Anderson–Bergmann–Castellani gauge generator G, leaves E{supmore » →} unchanged. Likewise only that combination leaves the canonical action invariant—an argument independent of observables. If one uses a first-class constraint to generate instead a canonical transformation, one partly strips the canonical coordinates of physical meaning as electromagnetic potentials, vindicating the Anderson–Bergmann Lagrangian orientation of interesting canonical transformations. The need to keep gauge-invariant the relation q-dot −(δH)/(δp) =−E{sub i}−p{sup i}=0 supports using the gauge generator and primary Hamiltonian rather than the separate first-class constraints and the extended Hamiltonian. Partly paralleling Pons’s criticism, it is shown that Dirac’s proof that a first-class primary constraint generates a gauge transformation, by comparing evolutions from identical initial data, cancels out and hence fails to detect the alterations made to the initial state. It also neglects the arbitrary coordinates multiplying the secondary constraints inside the canonical Hamiltonian. Thus the gauge-generating property has been ascribed to the primaries alone, not the primary–secondary team G. Hence the Dirac conjecture about secondary first-class constraints as generating gauge transformations rests upon a false

  3. Precision lattice test of the gauge/gravity duality at large N

    DOE PAGES

    Berkowitz, Evan; Rinaldi, Enrico; Hanada, Masanori; ...

    2016-11-03

    We perform a systematic, large-scale lattice simulation of D0-brane quantum mechanics. The large-N and continuum limits of the gauge theory are taken for the first time at various temperatures 0.4≤T≤1.0. As a way to test the gauge/gravity duality conjecture we compute the internal energy of the black hole as a function of the temperature directly from the gauge theory. We obtain a leading behavior that is compatible with the supergravity result E/N 2=7.41T 14/5: the coefficient is estimated to be 7.4±0.5 when the exponent is fixed and stringy corrections are included. This is the first confirmation of the supergravity predictionmore » for the internal energy of a black hole at finite temperature coming directly from the dual gauge theory. As a result, we also constrain stringy corrections to the internal energy.« less

  4. PREFACE: Gauge-string duality and integrability: progress and outlook Gauge-string duality and integrability: progress and outlook

    NASA Astrophysics Data System (ADS)

    Kristjansen, C.; Staudacher, M.; Tseytlin, A.

    2009-06-01

    The AdS/CFT correspondence, proposed a little more than a decade ago, has become a major subject of contemporary theoretical physics. One reason is that it suggests the exact identity of a certain ten-dimensional superstring theory, and a specific supersymmetric four-dimensional gauge field theory. This indicates that string theory, often thought of as a generalization of quantum field theory, can also lead to an alternative and computationally advantageous reformulation of gauge theory. This establishes the direct, down-to-earth relevance of string theory beyond loftier ideas of finding a theory of everything. Put differently, strings definitely lead to a theory of something highly relevant: a non-abelian gauge theory in a physical number of dimensions! A second reason for recent excitement around AdS/CFT is that it uncovers surprising novel connections between otherwise increasingly separate subdisciplines of theoretical physics, such as high energy physics and condensed matter theory. This collection of review articles concerns precisely such a link. About six years ago evidence was discovered showing that the AdS/CFT string/gauge system might actually be an exactly integrable model, at least in the so-called planar limit. Its spectrum appears to be described by (a generalization of) a Bethe ansatz, first proposed as an exact solution for certain one-dimensional magnetic spin chains in the early days of quantum mechanics. The field has been developing very rapidly, and a collection of fine review articles is needed. This special issue is striving to provide precisely that. The first article of the present collection, by Nick Dorey, is a pedagogical introduction to the subject. The second article, by Adam Rej, based on the translation of the author's PhD thesis, describes important techniques for analysing and interpreting the integrable structure of AdS/CFT, mostly from the point of view of the gauge theory. The third contribution, by Gleb Arutyunov and Sergey

  5. Dependence of the propagators on the sampling of Gribov copies inside the first Gribov region of Landau gauge

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2017-12-01

    Beyond perturbation theory the number of gauge copies drastically increases due to the Gribov-Singer ambiguity. Any way of treating them defines, in principle, a new, non-perturbative gauge, and the gauge-dependent correlation functions can vary between them. Herein various such gauges will be constructed as completions of the Landau gauge inside the first Gribov region. The dependence of the propagators and the running coupling on these gauges will be studied for SU(2) Yang-Mills theory in two, three, and four dimensions using lattice gauge theory, and for a wide range of lattice parameters. While the gluon propagator is rather insensitive to the choice, the ghost propagator and the running coupling show a stronger dependence. It is also found that the influence of lattice artifacts is larger than in minimal Landau gauge.

  6. Interaction of non-Abelian tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Savvidy, George

    2018-01-01

    The non-Abelian tensor gauge fields take value in extended Poincaré algebra. In order to define the invariant Lagrangian we introduce a vector variable in two alternative ways: through the transversal representation of the extended Poincaré algebra and through the path integral over the auxiliary vector field with the U(1) Abelian action. We demonstrate that this allows to fix the unitary gauge and derive scattering amplitudes in spinor representation.

  7. Gauge fixing and BFV quantization

    NASA Astrophysics Data System (ADS)

    Rogers, Alice

    2000-01-01

    Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.

  8. Gauged BPS baby Skyrmions with quantized magnetic flux

    NASA Astrophysics Data System (ADS)

    Adam, C.; Wereszczynski, A.

    2017-06-01

    A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.

  9. A recipe for constructing frustration-free Hamiltonians with gauge and matter fields in one and two dimensions

    NASA Astrophysics Data System (ADS)

    Bernabé Ferreira, Miguel Jorge; Ibieta Jimenez, Juan Pablo; Padmanabhan, Pramod; Teôtonio Sobrinho, Paulo

    2015-12-01

    State sum constructions, such as Kuperberg’s algorithm, give partition functions of physical systems, like lattice gauge theories, in various dimensions by associating local tensors or weights with different parts of a closed triangulated manifold. Here we extend this construction by including matter fields to build partition functions in both two and three space-time dimensions. The matter fields introduce new weights to the vertices and they correspond to Potts spin configurations described by an {A}-module with an inner product. Performing this construction on a triangulated manifold with a boundary we obtain transfer matrices which are decomposed into a product of local operators acting on vertices, links and plaquettes. The vertex and plaquette operators are similar to the ones appearing in the quantum double models (QDMs) of Kitaev. The link operator couples the gauge and the matter fields, and it reduces to the usual interaction terms in known models such as {{{Z}}}2 gauge theory with matter fields. The transfer matrices lead to Hamiltonians that are frustration-free and are exactly solvable. According to the choice of the initial input, that of the gauge group and a matter module, we obtain interesting models which have a new kind of ground state degeneracy that depends on the number of equivalence classes in the matter module under gauge action. Some of the models have confined flux excitations in the bulk which become deconfined at the surface. These edge modes are protected by an energy gap provided by the link operator. These properties also appear in ‘confined Walker-Wang’ models which are 3D models having interesting surface states. Apart from the gauge excitations there are also excitations in the matter sector which are immobile and can be thought of as defects like in the Ising model. We only consider bosonic matter fields in this paper.

  10. Cartan gravity, matter fields, and the gauge principle

    NASA Astrophysics Data System (ADS)

    Westman, Hans F.; Zlosnik, Tom G.

    2013-07-01

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang-Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a 'contact vector' VA which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being 'rolled' on top of it, and (2) a gauge connection AμAB, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan's geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy-momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy-momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang-Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as open questions.

  11. Differential calculus and gauge transformations on a deformed space

    NASA Astrophysics Data System (ADS)

    Wess, Julius

    2007-08-01

    We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.

  12. The Fock-Schwinger gauge in the BFV formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcelos-Neto, J.; Galvao, C.A.P.; Gaete, P.

    1991-06-07

    The authors consider the implementation of a properly modified form of the Fock-Schwinger gauge condition in a general non-Abelian gauge theory in the context of the BFV formalism. In this paper arguments are presented to justify the necessity of modifying the original Fock-Schwinger condition. The free field propagator and the general Ward identity are also calculated.

  13. 2PI effective action for the SYK model and tensor field theories

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario; Gurau, Razvan

    2018-05-01

    We discuss the two-particle irreducible (2PI) effective action for the SYK model and for tensor field theories. For the SYK model the 2PI effective action reproduces the bilocal reformulation of the model without using replicas. In general tensor field theories the 2PI formalism is the only way to obtain a bilocal reformulation of the theory, and as such is a precious instrument for the identification of soft modes and for possible holographic interpretations. We compute the 2PI action for several models, and push it up to fourth order in the 1 /N expansion for the model proposed by Witten in [1], uncovering a one-loop structure in terms of an auxiliary bilocal action.

  14. Effective description of higher-order scalar-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langlois, David; Mancarella, Michele; Vernizzi, Filippo

    Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initialmore » Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called 'beyond Horndeski' theories. We also discuss Lorentz-breaking models inspired by Horava gravity.« less

  15. Complexity-action duality of the shock wave geometry in a massive gravity theory

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Zhao, Long

    2018-01-01

    On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.

  16. Calculating the jet quenching parameter in the plasma of noncommutative Yang-Mills theory from gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Chakraborty, Somdeb; Roy, Shibaji

    2012-02-01

    A particular decoupling limit of the nonextremal (D1, D3) brane bound state system of type IIB string theory is known to give the gravity dual of space-space noncommutative Yang-Mills theory at finite temperature. We use a string probe in this background to compute the jet quenching parameter in a strongly coupled plasma of hot noncommutative Yang-Mills theory in (3+1) dimensions from gauge/gravity duality. We give expressions for the jet quenching parameter for both small and large noncommutativity. For small noncommutativity, we find that the value of the jet quenching parameter gets reduced from its commutative value. The reduction is enhanced with temperature as T7 for fixed noncommutativity and fixed ’t Hooft coupling. We also give an estimate of the correction due to noncommutativity at the present collider energies like in RHIC or in LHC and find it too small to be detected. We further generalize the results for noncommutative Yang-Mills theories in diverse dimensions.

  17. Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation

    NASA Astrophysics Data System (ADS)

    Burzlaff, Jürgen

    1984-11-01

    We study finite-energy configurations in SO( N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.

  18. Coordinate transformations and gauges in the relativistic astronomical reference systems

    NASA Astrophysics Data System (ADS)

    Tao, J.-H.; Huang, T.-Y.; Han, C.-H.

    2000-11-01

    This paper applies a fully post-Newtonian theory (Damour et al. 1991, 1992, 1993, 1994) to the problem of gauge in relativistic reference systems. Gauge fixing is necessary when the precision of time measurement and application reaches 10-16 or better. We give a general procedure for fixing the gauges of gravitational potentials in both the global and local coordinate systems, and for determining the gauge functions in all the coordinate transformations. We demonstrate that gauge fixing in a gravitational N-body problem can be solved by fixing the gauge of the self-gravitational potential of each body and the gauge function in the coordinate transformation between the global and local coordinate systems. We also show that these gauge functions can be chosen to make all the coordinate systems harmonic or any as required, no matter what gauge is chosen for the self-gravitational potential of each body.

  19. Tree-level S-matrix of Pohlmeyer reduced form of AdS 5 × S 5 superstring theory

    NASA Astrophysics Data System (ADS)

    Hoare, B.; Tseytlin, A. A.

    2010-02-01

    With a motivation to find a 2-d Lorentz-invariant solution of the AdS 5 × S 5 superstring we continue the study of the Pohlmeyer-reduced form of this theory. The reduced theory is constructed from currents of the superstring sigma model and is classically equivalent to it. Its action is that of G/ H = Sp(2, 2) × Sp(4)/[SU(2)]4 gauged WZW model deformed by an integrable potential and coupled to fermions. This theory is UV finite and is conjectured to be related to the superstring theory also at the quantum level. Expanded near the trivial vacuum it has the same elementary excitations (8+8 massive bosonic and fermionic 2-d degrees of freedom) as the AdS 5 × S 5 superstring in the S 5 light-cone gauge or near plane-wave expansion. In contrast to the superstring case, the interaction terms in the reduced action are manifestly 2-d Lorentz invariant. Since the theory is integrable, its S-matrix should be effectively determined by the two-particle scattering. Here we explicitly compute the tree-level two-particle S-matrix for the elementary excitations of the reduced theory. We find that this S-matrix has the same index structure and group factorization properties as the superstring S-matrix computed in hep-th/0611169 but has simpler coefficients, depending only on the difference of two rapidities. While the gauge-fixed form of the reduced action has only the bosonic [SU(2)]4 part of the PSU(2|2) × PSU(2|2) symmetry of the light-cone superstring spectrum as its manifest symmetry we conjecture that it should also have a hidden fermionic symmetry that effectively interchanges bosons and fermions and which should guide us towards understanding the relation between the two S-matrices.

  20. Parallel software for lattice N = 4 supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Schaich, David; DeGrand, Thomas

    2015-05-01

    We present new parallel software, SUSY LATTICE, for lattice studies of four-dimensional N = 4 supersymmetric Yang-Mills theory with gauge group SU(N). The lattice action is constructed to exactly preserve a single supersymmetry charge at non-zero lattice spacing, up to additional potential terms included to stabilize numerical simulations. The software evolved from the MILC code for lattice QCD, and retains a similar large-scale framework despite the different target theory. Many routines are adapted from an existing serial code (Catterall and Joseph, 2012), which SUSY LATTICE supersedes. This paper provides an overview of the new parallel software, summarizing the lattice system, describing the applications that are currently provided and explaining their basic workflow for non-experts in lattice gauge theory. We discuss the parallel performance of the code, and highlight some notable aspects of the documentation for those interested in contributing to its future development.

  1. Action Learning and Constructivist Grounded Theory: Powerfully Overlapping Fields of Practice

    ERIC Educational Resources Information Center

    Rand, Jane

    2013-01-01

    This paper considers the shared characteristics between action learning (AL) and the research methodology constructivist grounded theory (CGT). Mirroring Edmonstone's [2011. "Action Learning and Organisation Development: Overlapping Fields of Practice." "Action Learning: Research and Practice" 8 (2): 93-102] article, which…

  2. Parental Involvement in the Habilitation Process Following Children's Cochlear Implantation: An Action Theory Perspective

    ERIC Educational Resources Information Center

    Zaidman-Zait, Anat; Young, Richard A.

    2008-01-01

    Action theory and the qualitative action-project method are used in this study to address and illustrate the complexity of parenting children who have received cochlear implants (CIs) as well as the intentionality of parents engaged in that process. "Action" refers to individual and joint goal-directed and intentional behaviors. Action theory has…

  3. On the Nature of the Semiotic Structure of the Didactic Action: The Joint Action Theory in Didactics within a Comparative Approach

    ERIC Educational Resources Information Center

    Sensevy, Gérard; Gruson, Brigitte; Forest, Dominique

    2015-01-01

    In this paper, we first sketch the joint action theory paradigm from a general viewpoint in sciences of culture. Then we specify this generic description by focusing on the joint action theory in didactics (JATD). We elaborate on three currently developed elements of the theory: the reticence-expression dialectics; the contract-milieu dialectics,…

  4. Managing in the interprofessional environment: a theory of action perspective.

    PubMed

    Rogers, Tim

    2004-08-01

    Managers of multidisciplinary teams face difficult dilemmas in managing competing interests, diverse perspectives and interpersonal conflicts. This paper illustrates the potential of the theory of action methodology of Argyris and Schön (1974, 1996) to illuminate these problems and contribute to their resolution. An empirical example of a depth-investigation with one multidisciplinary community health care team leader in Australia demonstrates that the theory of action offers a more accurate account of the causal dimensions of her dilemmas and provides more scope for effective intervention than her lay explanation will allow. It also provides a more satisfactory analysis of her difficulties with two common problems identified in the literature: defining the appropriate level of autonomy for team members and developing constructive dialogue across perceived discipline-based differences of opinion. Consequently the theory of action appears to offer enormous promise to managers of multidisciplinary teams wanting to understand and resolve their problems and develop a rigorous reflective practice. Further research on the viability of the theory to facilitate a self-correcting system that can promote learning even under conditions of stress and conflict is suggested and implications for learning and teaching for the multidisciplinary environment are briefly discussed.

  5. Irreversibility and higher-spin conformal field theory

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2000-08-01

    I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.

  6. N =1 Lagrangians for generalized Argyres-Douglas theories

    NASA Astrophysics Data System (ADS)

    Agarwal, Prarit; Sciarappa, Antonio; Song, Jaewon

    2017-10-01

    We find N = 1 Lagrangian gauge theories that flow to generalized ArgyresDouglas theories with N = 2 supersymmetry. We find that certain SU quiver gauge theories flow to generalized Argyres-Douglas theories of type ( A k-1 , A mk-1) and ( I m,km , S). We also find quiver gauge theories of SO/Sp gauge groups flowing to the ( A 2 m-1 , D 2 mk+1), ( A 2 m , D 2 m( k-1)+ k ) and D m(2 k + 2) m(2 k + 2) [ m] theories.

  7. Local and gauge invariant observables in gravity

    NASA Astrophysics Data System (ADS)

    Khavkine, Igor

    2015-09-01

    It is well known that general relativity (GR) does not possess any non-trivial local (in a precise standard sense) and diffeomorphism invariant observable. We propose a generalized notion of local observables, which retain the most important properties that follow from the standard definition of locality, yet is flexible enough to admit a large class of diffeomorphism invariant observables in GR. The generalization comes at a small price—that the domain of definition of a generalized local observable may not cover the entire phase space of GR and two such observables may have distinct domains. However, the subset of metrics on which generalized local observables can be defined is in a sense generic (its open interior is non-empty in the Whitney strong topology). Moreover, generalized local gauge invariant observables are sufficient to separate diffeomorphism orbits on this admissible subset of the phase space. Connecting the construction with the notion of differential invariants gives a general scheme for defining generalized local gauge invariant observables in arbitrary gauge theories, which happens to agree with well-known results for Maxwell and Yang-Mills theories.

  8. Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir

    2017-06-01

    We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbationsmore » such as in DBI inflation.« less

  9. From fractals to wormholes via string theory

    NASA Astrophysics Data System (ADS)

    Felce, Andrew George

    The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibits critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view. The

  10. Adiabatic regularization for gauge fields and the conformal anomaly

    NASA Astrophysics Data System (ADS)

    Chu, Chong-Sun; Koyama, Yoji

    2017-03-01

    Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.

  11. Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizalde, Emilio; Odintsov, Sergei D.; Pozdeeva, Ekaterina O.

    2016-02-01

    The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of finite gauge models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameter values. The inflationary models thus obtained are seen to be in good agreement with the most recent and accurate observational data. More specifically, the values of the relevant inflationary parameters, n{sub s} and r, are close to the corresponding ones in the R{sup 2} and Higgs-driven inflationmore » scenarios. It is shown that the model here constructed and Higgs-driven inflation belong to the same class of cosmological attractors.« less

  12. Action Regulation Theory and Career Self-Management

    ERIC Educational Resources Information Center

    Raabe, Babette; Frese, Michael; Beehr, Terry A.

    2007-01-01

    Much of the responsibility for managing careers is shifting from employers to adaptive and proactive employees. A career management intervention based on action regulation theory trained 205 white collar employees to engage actively in their own career building by increasing their self-knowledge, career goal commitment, and career plan quality. As…

  13. Lattice field theory applications in high energy physics

    NASA Astrophysics Data System (ADS)

    Gottlieb, Steven

    2016-10-01

    Lattice gauge theory was formulated by Kenneth Wilson in 1974. In the ensuing decades, improvements in actions, algorithms, and computers have enabled tremendous progress in QCD, to the point where lattice calculations can yield sub-percent level precision for some quantities. Beyond QCD, lattice methods are being used to explore possible beyond the standard model (BSM) theories of dynamical symmetry breaking and supersymmetry. We survey progress in extracting information about the parameters of the standard model by confronting lattice calculations with experimental results and searching for evidence of BSM effects.

  14. Spinning particle and gauge theories as integrability conditions

    NASA Astrophysics Data System (ADS)

    Eisenberg, Yeshayahu

    1992-02-01

    Starting from a new four dimensional spinning point particle we obtain new representations of the standard four dimensional gauge field equations in terms of a generalized space (Minkowski + light cone). In terms of this new formulation we define linear systems whose integrability conditions imply the massive Dirac-Maxwell and the Yang-Mills equations. Research supported by the Rothschild Fellowship.

  15. Instantons on a non-commutative T4 from twisted (2,0) and little string theories

    NASA Astrophysics Data System (ADS)

    Cheung, Yeuk-Kwan E.; Ganor, Ori J.; Krogh, Morten; Mikhailov, Andrei Yu.

    We show that the moduli space of the (2,0) and little-string theories compactified on T3 with R-symmetry twists is equal to the moduli space of U(1) instantons on a non-commutative T4. The moduli space of U( q) instantons on a non-commutative T4 is obtained from little-string theories of NS5-branes at Aq-1 singularities with twists. A large class of gauge theories with N=4 SUSY in 2+1D and N=2 SUSY in 3+1D are limiting cases of these theories. Hence, the moduli spaces of these gauge theories can be read off from the moduli spaces of instantons on non-commutative tori. We study the phase transitions in these theories and the action of T-duality. On the purely mathematical side, we give a prediction for the moduli space of two U(1) instantons on a non-commutative T4.

  16. Gauge-origin dependence in electronic g-tensor calculations

    NASA Astrophysics Data System (ADS)

    Glasbrenner, Michael; Vogler, Sigurd; Ochsenfeld, Christian

    2018-06-01

    We present a benchmark study on the gauge-origin dependence of the electronic g-tensor using data from unrestricted density functional theory calculations with the spin-orbit mean field ansatz. Our data suggest in accordance with previous studies that g-tensor calculations employing a common gauge-origin are sufficiently accurate for small molecules; however, for extended molecules, the introduced errors can become relevant and significantly exceed the basis set error. Using calculations with the spin-orbit mean field ansatz and gauge-including atomic orbitals as a reference, we furthermore show that the accuracy and reliability of common gauge-origin approaches in larger molecules depends strongly on the locality of the spin density distribution. We propose a new pragmatic ansatz for choosing the gauge-origin which takes the spin density distribution into account and gives reasonably accurate values for molecules with a single localized spin center. For more general cases like molecules with several spatially distant spin centers, common gauge-origin approaches are shown to be insufficient for consistently achieving high accuracy. Therefore the computation of g-tensors using distributed gauge-origin methods like gauge-including atomic orbitals is considered as the ideal approach and is recommended for larger molecular systems.

  17. On low-energy effective action in three-dimensional = 2 and = 4 supersymmetric electrodynamics

    NASA Astrophysics Data System (ADS)

    Buchbinder, I. L.; Merzlikin, B. S.; Samsonov, I. B.

    2013-11-01

    We discuss general structure of low-energy effective actions in = 2 and = 4 three-dimensional supersymmetric electrodynamics (SQED) in gauge superfield sector. There are specific terms in the effective action having no four-dimensional analogs. Some of these terms are responsible for the moduli space metric in the Coulomb branch of the theory. We find two-loop quantum corrections to the moduli space metric in the = 2 SQED and show that in the = 4 SQED the moduli space does not receive two-loop quantum corrections.

  18. Non-Abelian sigma models from Yang-Mills theory compactified on a circle

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2018-06-01

    We consider SU(N) Yang-Mills theory on R 2 , 1 ×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang-Mills action reduces to the action of a sigma model on R 2 , 1 whose target space is a 2 (N - 1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU (N) ×SU (N) /ZN. The latter is the direct product of SU(N) and its Langlands dual SU (N) /ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group.

  19. Action Mechanisms for Social Cognition: Behavioral and Neural Correlates of Developing Theory of Mind

    ERIC Educational Resources Information Center

    Bowman, Lindsay C.; Thorpe, Samuel G.; Cannon, Erin N.; Fox, Nathan A.

    2017-01-01

    Many psychological theories posit foundational links between two fundamental constructs: (1) our ability to produce, perceive, and represent action; and (2) our ability to understand the meaning and motivation behind the action (i.e. Theory of Mind; ToM). This position is contentious, however, and long-standing competing theories of…

  20. Gauge Invariance and the Goldstone Theorem

    NASA Astrophysics Data System (ADS)

    Guralnik, Gerald S.

    This paper was originally created for and printed in the "Proceedings of seminar on unified theories of elementary particles" held in Feldafing, Germany from July 5 to 16, 1965 under the auspices of the Max-Planck-Institute for Physics and Astrophysics in Munich. It details and expands upon the 1964 Guralnik, Hagen, and Kibble paper demonstrating that the Goldstone theorem does not require physical zero mass particles in gauge theories.

  1. Aspects of Superconformal Field Theories

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit

    Recently, a lot of progress has been made towards understanding the strongly coupled supersymmetric quantum gauge theories. The problem of strong coupling for SU(N) gauge theories can be formulated in two separate regimes of interest, one at finite N and the other at large N in 't Hooft limit. In the first case electric/magnetic duality also called S-duality and in the second, AdS/CFT duality map the strongly coupled problem to a weakly coupled one. Both of the dualities have been well understood in the maximally supersymmetric 4 d gauge theory, the N = 4 super Yang-Mills. In this thesis, as a natural next step, we focus on the strong coupling behavior in N = 2 supersymmetric gauge theories.

  2. Dualities and emergent gravity: Gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    de Haro, Sebastian

    2017-08-01

    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on

  3. Local gauge symmetry on optical lattices?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuzhi; Meurice, Yannick; Tsai, Shan-Wen

    2012-11-01

    The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model andmore » SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.« less

  4. Possible higher order phase transition in large-N gauge theory at finite temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi

    2017-08-07

    We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically differentmore » behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical« less

  5. Black hole perturbation under a 2 +2 decomposition in the action

    NASA Astrophysics Data System (ADS)

    Ripley, Justin L.; Yagi, Kent

    2018-01-01

    Black hole perturbation theory is useful for studying the stability of black holes and calculating ringdown gravitational waves after the collision of two black holes. Most previous calculations were carried out at the level of the field equations instead of the action. In this work, we compute the Einstein-Hilbert action to quadratic order in linear metric perturbations about a spherically symmetric vacuum background in Regge-Wheeler gauge. Using a 2 +2 splitting of spacetime, we expand the metric perturbations into a sum over scalar, vector, and tensor spherical harmonics, and dimensionally reduce the action to two dimensions by integrating over the two sphere. We find that the axial perturbation degree of freedom is described by a two-dimensional massive vector action, and that the polar perturbation degree of freedom is described by a two-dimensional dilaton massive gravity action. Varying the dimensionally reduced actions, we rederive covariant and gauge-invariant master equations for the axial and polar degrees of freedom. Thus, the two-dimensional massive vector and massive gravity actions we derive by dimensionally reducing the perturbed Einstein-Hilbert action describe the dynamics of a well-studied physical system: the metric perturbations of a static black hole. The 2 +2 formalism we present can be generalized to m +n -dimensional spacetime splittings, which may be useful in more generic situations, such as expanding metric perturbations in higher dimensional gravity. We provide a self-contained presentation of m +n formalism for vacuum spacetime splittings.

  6. Heavy-quark meson spectrum tests of the Oktay–Kronfeld action

    DOE PAGES

    Bailey, Jon A.; DeTar, Carleton; Jang, Yong -Chull; ...

    2017-11-15

    The Oktay-Kronfeld (OK) action extends the Fermilab improvement program for massive Wilson fermions to higher order in suitable power-counting schemes. It includes dimension-six and -seven operators necessary for matching to QCD through ordermore » $${\\mathrm{O}}(\\Lambda^3/m_Q^3)$$ in HQET power counting, for applications to heavy-light systems, and $${\\mathrm{O}}(v^6)$$ in NRQCD power counting, for applications to quarkonia. In the Symanzik power counting of lattice gauge theory near the continuum limit, the OK action includes all $${\\mathrm{O}}(a^2)$$ and some $${\\mathrm{O}}(a^3)$$ terms. To assess whether the theoretical improvement is realized in practice, we study combinations of heavy-strange and quarkonia masses and mass splittings, designed to isolate heavy-quark discretization effects. We find that, with one exception, the results obtained with the tree-level-matched OK action are significantly closer to the continuum limit than the results obtained with the Fermilab action. The exception is the hyperfine splitting of the bottom-strange system, for which our statistical errors are too large to draw a firm conclusion. Lastly, these studies are carried out with data generated with the tadpole-improved Fermilab and OK actions on 500 gauge configurations from one of MILC's $$a\\approx0.12$$~fm, $$N_f=2+1$$-flavor, asqtad-staggered ensembles.« less

  7. Heavy-quark meson spectrum tests of the Oktay–Kronfeld action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Jon A.; DeTar, Carleton; Jang, Yong -Chull

    The Oktay-Kronfeld (OK) action extends the Fermilab improvement program for massive Wilson fermions to higher order in suitable power-counting schemes. It includes dimension-six and -seven operators necessary for matching to QCD through ordermore » $${\\mathrm{O}}(\\Lambda^3/m_Q^3)$$ in HQET power counting, for applications to heavy-light systems, and $${\\mathrm{O}}(v^6)$$ in NRQCD power counting, for applications to quarkonia. In the Symanzik power counting of lattice gauge theory near the continuum limit, the OK action includes all $${\\mathrm{O}}(a^2)$$ and some $${\\mathrm{O}}(a^3)$$ terms. To assess whether the theoretical improvement is realized in practice, we study combinations of heavy-strange and quarkonia masses and mass splittings, designed to isolate heavy-quark discretization effects. We find that, with one exception, the results obtained with the tree-level-matched OK action are significantly closer to the continuum limit than the results obtained with the Fermilab action. The exception is the hyperfine splitting of the bottom-strange system, for which our statistical errors are too large to draw a firm conclusion. Lastly, these studies are carried out with data generated with the tadpole-improved Fermilab and OK actions on 500 gauge configurations from one of MILC's $$a\\approx0.12$$~fm, $$N_f=2+1$$-flavor, asqtad-staggered ensembles.« less

  8. Individual eigenvalue distributions of crossover chiral random matrices and low-energy constants of SU(2) × U(1) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Nishigaki, Shinsuke M.

    2018-02-01

    We compute individual distributions of low-lying eigenvalues of a chiral random matrix ensemble interpolating symplectic and unitary symmetry classes by the Nyström-type method of evaluating the Fredholm Pfaffian and resolvents of the quaternion kernel. The one-parameter family of these distributions is shown to fit excellently the Dirac spectra of SU(2) lattice gauge theory with a constant U(1) background or dynamically fluctuating U(1) gauge field, which weakly breaks the pseudoreality of the unperturbed SU(2) Dirac operator. The observed linear dependence of the crossover parameter with the strength of the U(1) perturbations leads to precise determination of the pseudo-scalar decay constant, as well as the chiral condensate in the effective chiral Lagrangian of the AI class.

  9. On the existence of topological dyons and dyonic black holes in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik

    2018-05-01

    Here we study the global existence of "hairy" dyonic black hole and dyon solutions to four-dimensional, anti-de Sitter Einstein-Yang-Mills theories for a general simply connected and semisimple gauge group G, for the so-called topologically symmetric systems, concentrating here on the regular case. We generalise here cases in the literature which considered purely magnetic spherically symmetric solutions for a general gauge group and topological dyonic solutions for s u (N ) . We are able to establish the global existence of non-trivial solutions to all such systems, both near existing embedded solutions and as |Λ| → ∞. In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the s u (N ) case proved important to stability. We believe that these are the most general analytically proven solutions in 4D anti-de Sitter Einstein-Yang-Mills systems to date.

  10. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    discussion in Section 2.2) cs2≡{P}/{P+2XP}. Finding K-inflation actions P(φ,X) which are well-motivated and consistently embedded in high-energy theories is the main challenge of this class of models [9]. Nonetheless, DBI inflation is a special kind of K-inflation, which is well-motivated from string theory with the action [15] S=∫d4x√{-g}[{R}/{2}-{1}/{f(φ)}((√{D}-1)+V(φI))], where D=1-2f(φ)X. In the presence of another natural cutoff Λ in the model, smallness or largeness of the inflaton field should be compared to Λ; Λ could be sub-Planckian and in general Λ≲M. For a discussion on this see [10,11].

  11. Infant Attention to Intentional Action Predicts Preschool Theory of Mind

    ERIC Educational Resources Information Center

    Wellman, Henry M.; Lopez-Duran, Sarah; LaBounty, Jennifer; Hamilton, Betsy

    2008-01-01

    This research examines whether there are continuities between infant social attention and later theory of mind. Forty-five children were studied as infants and then again as 4-year-olds. Measures of infant social attention (decrement of attention during habituation to displays of intentional action) significantly predicted later theory of mind…

  12. Prototypes reflect normative perceptions: implications for the development of reasoned action theory.

    PubMed

    Hennessy, Michael; Bleakley, Amy; Ellithorpe, Morgan

    2018-03-01

    The reasoned action approach is one of the most successful behavioral theories in the history of social psychology. This study outlines the theoretical principles of reasoned action and considers when it is appropriate to augment it with a new variable. To demonstrate, we use survey data collected from a 4 to 17 year old U.S. adolescents to test how the 'prototype' variables fit into reasoned action approach. Through confirmatory factor analysis, we find that the prototype measures are normative pressure measures and when treated as a separate theoretical construct, prototype identity is not completely mediated by the proximal predictors of behavioral intention. We discuss the assumptions of the two theories and finally consider the distinction between augmenting a specific theory versus combining measures derived from different theoretical perspectives.

  13. Prototypes Reflect Normative Perceptions: Implications for the Development of Reasoned Action Theory

    PubMed Central

    Hennessy, Michael; Bleakley, Amy; Ellithorpe, Morgan

    2017-01-01

    The reasoned action approach is one of the most successful behavioral theories in the history of social psychology. This study outlines the theoretical principles of reasoned action and considers when it is appropriate to augment it with a new variable. To demonstrate, we use survey data collected from a 4–17 year old U.S. adolescents to test how the “prototype” variables fit into reasoned action approach. Through confirmatory factor analysis, we find that the prototype measures are normative pressure measures and when treated as a separate theoretical construct, prototype identity is not completely mediated by the proximal predictors of behavioral intention. We discuss the assumptions of the two theories and finally consider the distinction between augmenting a specific theory versus combining measures derived from different theoretical perspectives. PMID:28612624

  14. Wilson lines in the MHV action

    DOE PAGES

    Kotko, P.; Stasto, A. M.

    2017-09-12

    The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off-shell continuations of the MHV amplitudes. We show that the solution to the field transformation expressing one of the new fields in terms of the Yang-Mills field is a certain type of the Wilson line. More precisely, it is a straight infinite gauge link with a slope extending to the light-cone minus and the transverse direction. One of the consequences ofmore » that fact is that certain MHV vertices reduced partially on-shell are gauge invariant — a fact discovered before using conventional light-front perturbation theory. We also analyze the diagrammatic content of the field transformations leading to the MHV action. We found that the diagrams for the solution to the transformation (given by the Wilson line) and its inverse differ only by light-front energy denominators. Further, we investigate the coordinate space version of the inverse solution to the one given by the Wilson line. We find an explicit expression given by a power series in fields. We also give a geometric interpretation to it by means of a specially defined vector field. Finally, we discuss the fact that the Wilson line solution to the transformation is directly related to the all-like helicity gluon wave function, while the inverse functional is a generating functional for solutions of self-dual Yang-Mills equations.« less

  15. Wilson lines in the MHV action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotko, P.; Stasto, A. M.

    The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off-shell continuations of the MHV amplitudes. We show that the solution to the field transformation expressing one of the new fields in terms of the Yang-Mills field is a certain type of the Wilson line. More precisely, it is a straight infinite gauge link with a slope extending to the light-cone minus and the transverse direction. One of the consequences ofmore » that fact is that certain MHV vertices reduced partially on-shell are gauge invariant — a fact discovered before using conventional light-front perturbation theory. We also analyze the diagrammatic content of the field transformations leading to the MHV action. We found that the diagrams for the solution to the transformation (given by the Wilson line) and its inverse differ only by light-front energy denominators. Further, we investigate the coordinate space version of the inverse solution to the one given by the Wilson line. We find an explicit expression given by a power series in fields. We also give a geometric interpretation to it by means of a specially defined vector field. Finally, we discuss the fact that the Wilson line solution to the transformation is directly related to the all-like helicity gluon wave function, while the inverse functional is a generating functional for solutions of self-dual Yang-Mills equations.« less

  16. Action mechanisms for social cognition: behavioral and neural correlates of developing Theory of Mind

    PubMed Central

    Bowman, Lindsay C.; Thorpe, Samuel G.; Cannon, Erin N.; Fox, Nathan A.

    2016-01-01

    Many psychological theories posit foundational links between two fundamental constructs: (1) our ability to produce, perceive, and represent action; and (2) our ability to understand the meaning and motivation behind the action (i.e. Theory of Mind; ToM). This position is contentious, however, and long-standing competing theories of social-cognitive development debate roles for basic action-processing in ToM. Developmental research is key to investigating these hypotheses, but whether individual differences in neural and behavioral measures of motor action relate to social-cognitive development is unknown. We examined 3- to 5-year-old children’s (N = 26) EEG mu-desynchronization during production of object-directed action, and explored associations between mu-desynchronization and children’s behavioral motor skills, behavioral action-representation abilities, and behavioral ToM. For children with high (but not low) mu-desynchronization, motor skill related to action-representation abilities, and action-representation mediated relations between motor skill and ToM. Results demonstrate novel foundational links between action-processing and ToM, suggesting that basic motor action may be a key mechanism for social-cognitive development, thus shedding light on the origins and emergence of higher social cognition. PMID:27573916

  17. Chern-Simons Term: Theory and Applications.

    NASA Astrophysics Data System (ADS)

    Gupta, Kumar Sankar

    1992-01-01

    We investigate the quantization and applications of Chern-Simons theories to several systems of interest. Elementary canonical methods are employed for the quantization of abelian and nonabelian Chern-Simons actions using ideas from gauge theories and quantum gravity. When the spatial slice is a disc, it yields quantum states at the edge of the disc carrying a representation of the Kac-Moody algebra. We next include sources in this model and their quantum states are shown to be those of a conformal family. Vertex operators for both abelian and nonabelian sources are constructed. The regularized abelian Wilson line is proved to be a vertex operator. The spin-statistics theorem is established for Chern-Simons dynamics using purely geometrical techniques. Chern-Simons action is associated with exotic spin and statistics in 2 + 1 dimensions. We study several systems in which the Chern-Simons action affects the spin and statistics. The first class of systems we study consist of G/H models. The solitons of these models are shown to obey anyonic statistics in the presence of a Chern-Simons term. The second system deals with the effect of the Chern -Simons term in a model for high temperature superconductivity. The coefficient of the Chern-Simons term is shown to be quantized, one of its possible values giving fermionic statistics to the solitons of this model. Finally, we study a system of spinning particles interacting with 2 + 1 gravity, the latter being described by an ISO(2,1) Chern-Simons term. An effective action for the particles is obtained by integrating out the gauge fields. Next we construct operators which exchange the particles. They are shown to satisfy the braid relations. There are ambiguities in the quantization of this system which can be exploited to give anyonic statistics to the particles. We also point out that at the level of the first quantized theory, the usual spin-statistics relation need not apply to these particles.

  18. Understanding Nature-Related Behaviors among Children through a Theory of Reasoned Action Approach

    ERIC Educational Resources Information Center

    Gotch, Chad; Hall, Troy

    2004-01-01

    The Theory of Reasoned Action has proven to be a valuable tool for predicting and understanding behavior and, as such, provides a potentially important basis for environmental education program design. This study used a Theory of Reasoned Action approach to examine a unique type of behavior (nature-related activities) and a unique population…

  19. First Law for fields with Internal Gauge Freedom

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik

    2016-03-01

    We extend the analysis of Iyer and Wald to derive the First Law of blackhole mechanics in the presence of fields charged under an `internal gauge group'. We treat diffeomorphisms and gauge transformations in a unified way by formulating the theory on a principal bundle. The first law then relates the energy and angular momentum at infinity to a potential times charge term at the horizon. The gravitational potential and charge give a notion of temperature and entropy respectively.

  20. Gauge transformations for twisted spectral triples

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Martinetti, Pierre

    2018-05-01

    It is extended to twisted spectral triples the fluctuations of the metric as bounded perturbations of the Dirac operator that arises when a spectral triple is exported between Morita equivalent algebras, as well as gauge transformations which are obtained by the action of the unitary endomorphisms of the module implementing the Morita equivalence. It is firstly shown that the twisted-gauged Dirac operators, previously introduced to generate an extra scalar field in the spectral description of the standard model of elementary particles, in fact follow from Morita equivalence between twisted spectral triples. The law of transformation of the gauge potentials turns out to be twisted in a natural way. In contrast with the non-twisted case, twisted fluctuations do not necessarily preserve the self-adjointness of the Dirac operator. For a self-Morita equivalence, conditions are obtained in order to maintain self-adjointness that are solved explicitly for the minimal twist of a Riemannian manifold.

  1. A skin friction gauge for impulsive flows

    NASA Technical Reports Server (NTRS)

    Goyne, C. P.; Paull, A.; Stalker, R. J.

    1995-01-01

    A new skin friction gauge has been designed for use in impulsive facilities. The gauge was tested in the T4 free piston shock tunnel, at the University of Queensland, using a 1.5 m long plate that formed one of the inner walls of a rectangular duct. The test gas was fair and the test section free stream flow had a stagnation enthalpy of 4.7 MJ/kg. Measurements were conducted in a laminar and turbulent boundary layer. The measurements compared well with laminar and turbulent analytical theory.

  2. Enhanced gauge symmetry in type II and F-theory compactifications: Dynkin diagrams from polyhedra

    NASA Astrophysics Data System (ADS)

    Perevalov, Eugene; Skarke, Harald

    1997-02-01

    We explain the observation by Candelas and Font that the Dynkin diagrams of non-abelian gauge groups occurring in type IIA and F-theory can be read off from the polyhedron Δ ∗ that provides the toric description of the Calabi-Yau manifold used for compactification. We show how the intersection pattern of toric divisors corresponding to the degeneration of elliptic fibers follows the ADE classification of singularities and the Kodaira classification of degenerations. We treat in detail the cases of elliptic K3 surfaces and K3 fibered threefolds where the fiber is again elliptic. We also explain how even the occurrence of monodromy and non-simply laced groups in the latter case is visible in the toric picture. These methods also work in the fourfold case.

  3. Combinatorial quantization of the Hamiltonian Chern-Simons theory II

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.

  4. Chern-Simons-matter dualities with SO and USp gauge groups

    DOE PAGES

    Aharony, Ofer; Benini, Francesco; Hsin, Po -Shen; ...

    2017-02-14

    In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N) k Chern-Simons theories coupled to N f real scalars in the fundamental representation, and SO(k)- N+N f /2 coupled to N f real (Majorana) fermions in the fundamental. For N f = 0 these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us tomore » propose new gapped boundary states of topological insulators and superconductors. As a result, for k = 1 we get an interesting low-energy duality between N f free Majorana fermions and an SO( N) 1 Chern-Simons theory coupled to N f scalar fields (with N f ≤ N-2).« less

  5. Electroweak theory based on S U (4 )L⊗U (1 )X gauge group

    NASA Astrophysics Data System (ADS)

    Long, H. N.; Hue, L. T.; Loi, D. V.

    2016-07-01

    This paper includes two main parts. In the first part, we present generalized gauge models based on the S U (3 )C⊗S U (4 )L⊗U (1 )X (3-4-1) gauge group with arbitrary electric charges of exotic leptons. The mixing matrix of neutral gauge bosons is analyzed, and the eigenmasses and eigenstates are obtained. The anomaly-free as well as matching conditions are discussed precisely. In the second part, we present a new development of the original 3-4-1 model [R. Foot, H. N. Long, and T. A. Tran, Phys. Rev. D 50, R34 (1994), F. Pisano and V. Pleitez, Phys. Rev. D 51, 3865 (1995).]. Different from previous works, in this paper the neutrinos, with the help of the scalar decuplet H , get the Dirac masses at the tree level. The vacuum expectation value (VEV) of the Higgs boson field in the decuplet H acquiring the VEV responsible for neutrino Dirac mass leads to mixing in separated pairs of singly charged gauge bosons, namely the Standard Model (SM) W boson and K , the new gauge boson acting in the right-handed lepton sector, as well as the singly charged bileptons X and Y . Due to the mixing, there occurs a right-handed current carried by the W boson. From the expression of the electromagnetic coupling constant, ones get the limit of the sine-squared of the Weinberg angle, sin2θW<0.25 , and a constraint on electric charges of extra leptons. In the limit of lepton number conservation, the Higgs sector contains all massless Goldstone bosons for massive gauge bosons and the SM-like Higgs boson. Some phenomenology is discussed.

  6. Toward electroweak scale cold dark matter with local dark gauge symmetry and beyond the DM EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Pyungwon, E-mail: pko@kias.re.kr

    2016-06-21

    In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of dark gauge theories. Compared with the usual phenomenological dark matter models (including DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark gauge bosons, dark Higgs bosons and sometimes excited dark matter. And dynamics among these fields are completely fixed by local gauge principle. The idea of singletmore » portals including the Higgs portal can thermalize these hidden sector dark matter very efficiently, so that these DM could be easily thermal DM. I also discuss the limitation of the usual DM effective field theory or simplified DM models without the full SM gauge symmetry, and emphasize the importance of the full SM gauge symmetry and renormalizability especially for collider searches for DM.« less

  7. Gauge symmetries of the free supersymmetric string field theories

    NASA Astrophysics Data System (ADS)

    Neveu, A.; West, P. C.

    1985-12-01

    The gauge covariant local formulations of the free supersymmetric strings that contained a finite number of supplementary fields are extended so as to place all the generators of the Ramond-Neveu-Schwarz algebra on a more equal footing. Permanent address: King's College, Mathematics Department, London WC2R 2LS, UK.

  8. Covariant effective action for a Galilean invariant quantum Hall system

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2016-09-01

    We construct effective field theories for gapped quantum Hall systems coupled to background geometries with local Galilean invariance i.e. Bargmann spacetimes. Along with an electromagnetic field, these backgrounds include the effects of curved Galilean spacetimes, including torsion and a gravitational field, allowing us to study charge, energy, stress and mass currents within a unified framework. A shift symmetry specific to single constituent theories constraints the effective action to couple to an effective background gauge field and spin connection that is solved for by a self-consistent equation, providing a manifestly covariant extension of Hoyos and Son's improvement terms to arbitrary order in m.

  9. Covariant effective action for a Galilean invariant quantum Hall system

    DOE PAGES

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2016-09-16

    Here, we construct effective field theories for gapped quantum Hall systems coupled to background geometries with local Galilean invariance i.e. Bargmann spacetimes. Along with an electromagnetic field, these backgrounds include the effects of curved Galilean spacetimes, including torsion and a gravitational field, allowing us to study charge, energy, stress and mass currents within a unified framework. A shift symmetry specific to single constituent theories constraints the effective action to couple to an effective background gauge field and spin connection that is solved for by a self-consistent equation, providing a manifestly covariant extension of Hoyos and Son’s improvement terms to arbitrarymore » order in m.« less

  10. Dimensional reduction as a method to obtain dual theories for massive spin two in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Khoudeir, A.; Montemayor, R.; Urrutia, Luis F.

    2008-09-01

    Using the parent Lagrangian method together with a dimensional reduction from D to (D-1) dimensions, we construct dual theories for massive spin two fields in arbitrary dimensions in terms of a mixed symmetry tensor TA[A1A2…AD-2]. Our starting point is the well-studied massless parent action in dimension D. The resulting massive Stueckelberg-like parent actions in (D-1) dimensions inherit all the gauge symmetries of the original massless action and can be gauge fixed in two alternative ways, yielding the possibility of having a parent action with either a symmetric or a nonsymmetric Fierz-Pauli field eAB. Even though the dual sector in terms of the standard spin two field includes only the symmetrical part e{AB} in both cases, these two possibilities yield different results in terms of the alternative dual field TA[A1A2…AD-2]. In particular, the nonsymmetric case reproduces the Freund-Curtright action as the dual to the massive spin two field action in four dimensions.

  11. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  12. Non Abelian T-duality in Gauged Linear Sigma Models

    NASA Astrophysics Data System (ADS)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  13. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE PAGES

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; ...

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  14. F-theoretic vs microscopic description of a conformal mathcal{N} = 2 SYM theory

    NASA Astrophysics Data System (ADS)

    Billò, Marco; Gallot, Laurent; Lerda, Alberto; Pesando, Igor

    2010-11-01

    The F-theory background of four D7 branes in a type I' orientifold was conjectured to be described by the Seiberg-Witten curve for the superconformal SU(2) gauge theory with four flavors. This relation was explained by considering in this background a probe D3 brane, which supports this theory with SU(2) realized as Sp(1). Here we explicitly compute the non-perturbative corrections to the D7/D3 system in type I' due to D-instantons. This computation provides both the quartic effective action on the D7 branes and the quadratic effective action on the D3 brane; the latter agrees with the F-theoretic prediction. The action obtained in this way is related to the one derived from the usual instanton calculus à la Nekrasov (or from its AGT realization in terms of Liouville conformal blocks) by means of a non-perturbative redefinition of the coupling constant. We also point out an intriguing relation between the four-dimensional theory on the probe D3 brane with SO(8) flavor symmetry and the eight-dimensional dynamics on the D7 branes. On the latter, SO(8) represents a gauge group and the flavor masses correspond to the vacuum expectation values of an adjoint scalar field m: what we find is that the exact effective coupling in four dimensions is obtained from its perturbative part by taking into account in its mass dependence the full quantum dynamics of the field m in eight dimensions.

  15. Chern-Simons theory and S-duality

    NASA Astrophysics Data System (ADS)

    Dimofte, Tudor; Gukov, Sergei

    2013-05-01

    We study S-dualities in analytically continued SL(2) Chern-Simons theory on a 3-manifold M. By realizing Chern-Simons theory via a compactification of a 6d five-brane theory on M, various objects and symmetries in Chern-Simons theory become related to objects and operations in dual 2d, 3d, and 4d theories. For example, the space of flat SL(2 , {C} ) connections on M is identified with the space of supersymmetric vacua in a dual 3d gauge theory. The hidden symmetry [InlineMediaObject not available: see fulltext.] of SL(2) Chern-Simons theory can be identified as the S-duality transformation of {N}=4 super-Yang-Mills theory (obtained by compactifying the five-brane theory on a torus); whereas the mapping class group action in Chern-Simons theory on a three-manifold M with boundary C is realized as S-duality in 4d {N}=2 super-Yang-Mills theory associated with the Riemann surface C. We illustrate these symmetries by considering simple examples of 3-manifolds that include knot complements and punctured torus bundles, on the one hand, and mapping cylinders associated with mapping class group transformations, on the other. A generalization of mapping class group actions further allows us to study the transformations between several distinguished coordinate systems on the phase space of Chern-Simons theory, the SL(2) Hitchin moduli space.

  16. Aspects of effective supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Tziveloglou, Panteleimon

    This work consists of two parts. In the first part we construct the complete extension of the Minimal Supersymmetric Standard Model by higher dimensional effective operators and then study its phenomenology. These operators encapsulate the effects on LHC physics of any kind of new degrees of freedom at the multiTeV scale. The effective analysis includes the case where the multiTeV physics is the supersymmetry breaking sector itself. In that case the appropriate framework is nonlinear supersymmetry. We choose to realize the nonlinear symmetry by the method of constrained superfields. Beyond the new effective couplings, the analysis suggests an interpretation of the 'little hierarchy problem' as an indication of new physics at multiTeV scale. In the second part we explore the power of constrained superfields in extended supersymmetry. It is known that in N = 2 supersymmetry the gauge kinetic function cannot depend on hypermultiplet scalars. However, it is also known that the low energy effective action of a D-brane in an N = 2 supersymmetric bulk includes the DBI action, where the gauge kinetic function does depend on the dilaton. We show how the nonlinearization of the second SUSY (imposed by the presence of the D-brane) opens this possibility, by constructing the global N = 1 linear + 1 nonlinear invariant coupling of a hypermultiplet with a gauge multiplet. The constructed theory enjoys interesting features, including a novel super-Higgs mechanism without gravity.

  17. Human action classification using procrustes shape theory

    NASA Astrophysics Data System (ADS)

    Cho, Wanhyun; Kim, Sangkyoon; Park, Soonyoung; Lee, Myungeun

    2015-02-01

    In this paper, we propose new method that can classify a human action using Procrustes shape theory. First, we extract a pre-shape configuration vector of landmarks from each frame of an image sequence representing an arbitrary human action, and then we have derived the Procrustes fit vector for pre-shape configuration vector. Second, we extract a set of pre-shape vectors from tanning sample stored at database, and we compute a Procrustes mean shape vector for these preshape vectors. Third, we extract a sequence of the pre-shape vectors from input video, and we project this sequence of pre-shape vectors on the tangent space with respect to the pole taking as a sequence of mean shape vectors corresponding with a target video. And we calculate the Procrustes distance between two sequences of the projection pre-shape vectors on the tangent space and the mean shape vectors. Finally, we classify the input video into the human action class with minimum Procrustes distance. We assess a performance of the proposed method using one public dataset, namely Weizmann human action dataset. Experimental results reveal that the proposed method performs very good on this dataset.

  18. Sequestering the Gravitino: Neutralino Dark Matter in Gauge Mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Nathaniel J.; /Stanford U., Dept. Phys.; Green, Daniel

    2008-08-15

    In conventional models of gauge-mediated supersymmetry breaking, the lightest supersymmetric particle (LSP) is invariably the gravitino. However, if the supersymmetry breaking sector is strongly coupled, conformal sequestering may raise the mass of the gravitino relative to the remaining soft supersymmetry-breaking masses. In this letter, we demonstrate that such conformal dynamics in gauge-mediated theories may give rise to satisfactory neutralino dark matter while simultaneously solving the flavor and {mu}/B{mu} problems.

  19. Renormalization in Coulomb-gauge QCD within the Lagrangian formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niegawa, A.

    2006-08-15

    We study renormalization of Coulomb-gauge QCD within the Lagrangian, second-order, formalism. We derive a Ward identity and the Zinn-Justin equation, and, with the help of the latter, we give a proof of algebraic renormalizability of the theory. Through diagrammatic analysis, we show that, in the strict Coulomb gauge, g{sup 2}D{sup 00} is invariant under renormalization. (D{sup 00} is the time-time component of the gluon propagator.)

  20. Using the theory of reasoned action to predict organizational misbehavior.

    PubMed

    Vardi, Yoav; Weitz, Ely

    2002-12-01

    A review of literature on organizational behavior and management on predicting work behavior indicated that most reported studies emphasize positive work outcomes, e.g., attachment, performance, and satisfaction, while job related misbehaviors have received relatively less systematic research attention. Yet, forms of employee misconduct in organizations are pervasive and quite costly for both individuals and organizations. We selected two conceptual frameworks for the present investigation: Vardi and Wiener's model of organizational misbehavior and Fishbein and Ajzen's Theory of Reasoned Action. The latter views individual behavior as intentional, a function of rationally based attitudes toward the behavior, and internalized normative pressures concerning such behavior. The former model posits that different (normative and instrumental) internal forces lead to the intention to engage in job-related misbehavior. In this paper we report a scenario based quasi-experimental study especially designed to test the utility of the Theory of Reasoned Action in predicting employee intentions to engage in self-benefitting (Type S), organization-benefitting (Type O, or damaging (Type D) organizational misbehavior. Results support the Theory of Reasoned Action in predicting negative workplace behaviors. Both attitude and subjective norm are useful in explaining organizational misbehavior. We discuss some theoretical and methodological implications for the study of misbehavior intentions in organizations.

  1. Ideal walking dynamics via a gauged NJL model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  2. Ideal walking dynamics via a gauged NJL model

    DOE PAGES

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    2017-07-25

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  3. The Process of Developing Theories-in-Action with OELEs: A Qualitative Study.

    ERIC Educational Resources Information Center

    Land, Susan M.; Hannafin, Michael J.

    Open-ended learning environments (OELEs) like microworlds have been touted as one approach for blending learning theory and emerging technology to support the building of student-centered understanding. The learning process involves developing a theory-in-action--an intuitive theory that is generated and changed by learners as they reflect upon…

  4. Critical solutions of topologically gauged = 8 CFTs in three dimensions

    NASA Astrophysics Data System (ADS)

    Nilsson, Bengt E. W.

    2014-04-01

    In this paper we discuss some special (critical) background solutions that arise in topological gauged = 8 three-dimensional CFTs with SO(N) gauge group. Depending on how many scalar fields are given a VEV the theory has background solutions for certain values of μl, where μ and l are parameters in the TMG Lagrangian. Apart from Minkowski, chiral round AdS 3 and null-warped AdS 3 (or Schrödinger( z = 2)) we identify also a more exotic solution recently found in TMG by Ertl, Grumiller and Johansson. We also discuss the spectrum, symmetry breaking pattern and the supermultiplet structure in the various backgrounds and argue that some properties are due to their common origin in a conformal phase. Some of the scalar fields, including all higgsed ones, turn out to satisfy three-dimensional field equations similar to those of the singleton. Finally, we note that topologically gauged = 6 ABJ(M) theories have a similar, but more restricted, set of background solutions.

  5. Pure gauge spin-orbit couplings

    NASA Astrophysics Data System (ADS)

    Shikakhwa, M. S.

    2017-01-01

    Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.

  6. Fortran code for SU(3) lattice gauge theory with and without MPI checkerboard parallelization

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.; Wu, Hao

    2012-10-01

    We document plain Fortran and Fortran MPI checkerboard code for Markov chain Monte Carlo simulations of pure SU(3) lattice gauge theory with the Wilson action in D dimensions. The Fortran code uses periodic boundary conditions and is suitable for pedagogical purposes and small scale simulations. For the Fortran MPI code two geometries are covered: the usual torus with periodic boundary conditions and the double-layered torus as defined in the paper. Parallel computing is performed on checkerboards of sublattices, which partition the full lattice in one, two, and so on, up to D directions (depending on the parameters set). For updating, the Cabibbo-Marinari heatbath algorithm is used. We present validations and test runs of the code. Performance is reported for a number of currently used Fortran compilers and, when applicable, MPI versions. For the parallelized code, performance is studied as a function of the number of processors. Program summary Program title: STMC2LSU3MPI Catalogue identifier: AEMJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26666 No. of bytes in distributed program, including test data, etc.: 233126 Distribution format: tar.gz Programming language: Fortran 77 compatible with the use of Fortran 90/95 compilers, in part with MPI extensions. Computer: Any capable of compiling and executing Fortran 77 or Fortran 90/95, when needed with MPI extensions. Operating system: Red Hat Enterprise Linux Server 6.1 with OpenMPI + pgf77 11.8-0, Centos 5.3 with OpenMPI + gfortran 4.1.2, Cray XT4 with MPICH2 + pgf90 11.2-0. Has the code been vectorised or parallelized?: Yes, parallelized using MPI extensions. Number of processors used: 2 to 11664 RAM: 200 Mega bytes per process. Classification: 11

  7. Renormalization of composite operators in Yang-Mills theories using a general covariant gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, J.C.; Scalise, R.J.

    Essential to QCD applications of the operator product expansion, etc., is a knowledge of those operators that mix with gauge-invariant operators. A standard theorem asserts that the renormalization matrix is triangular: Gauge-invariant operators have alien'' gauge-variant operators among their counterterms, but, with a suitably chosen basis, the necessary alien operators have only themselves as counterterms. Moreover, the alien operators are supposed to vanish in physical matrix elements. A recent calculation by Hamberg and van Neerven apparently contradicts these results. By explicit calculations with the energy-momentum tensor, we show that the problems arise because of subtle infrared singularities that appear whenmore » gluonic matrix elements are taken on shell at zero momentum transfer.« less

  8. In and of the City: Theory of Action and the NYU Partnership School Program

    ERIC Educational Resources Information Center

    McDonald, Joseph P.; Domingo, Myrrh; Jeffery, Jill V.; Pietanza, Rosa Riccio; Pignatosi, Frank

    2013-01-01

    This article explores the theory of action underlying New York University's (NYU's) Partnership Schools Program--explaining in the process what a theory of action is, and how it can be constructed for other innovations in other contexts. NYU's Partnership Program involves 23 schools, K-12, spanning several of New York City's most economically…

  9. Triality in little string theories

    NASA Astrophysics Data System (ADS)

    Bastian, Brice; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2018-02-01

    We study a class of eight-supercharge little string theories (LSTs) on the world volume of N M5-branes with transverse space S1×(C2/ZM). These M-brane configurations compactified on a circle are dual to M D5-branes intersecting N NS5-branes on T2×R7 ,1 as well as to F-theory compactified on a toric Calabi-Yau threefold XN ,M. We argue that the Kähler cone of XN ,M admits three regions associated with weakly coupled quiver gauge theories of gauge groups [U (N )]M,[U (M )]N, and [U (N/M k )]k where k =gcd (N ,M ). These provide low-energy descriptions of different LSTs. The duality between the first two gauge theories is well known and is a consequence of the S-duality between D5- and NS5-branes or the T-duality of the LSTs. The triality involving the third gauge theory is new, and we demonstrate it using several examples. We also discuss implications of this triality for the W-algebras associated with the Alday-Gaiotto-Tachikawa dual theories.

  10. Gauge coupling unification and light exotica in string theory.

    PubMed

    Raby, Stuart; Wingerter, Akin

    2007-08-03

    In this Letter we consider the consequences for the CERN Large Hadron Collider of light vectorlike exotica with fractional electric charge. It is shown that such states are found in orbifold constructions of the heterotic string. Moreover, these exotica are consistent with gauge coupling unification at one loop, even though they do not come in complete multiplets of SU(5).

  11. Localization of effective actions in open superstring field theory

    NASA Astrophysics Data System (ADS)

    Maccaferri, Carlo; Merlano, Alberto

    2018-03-01

    We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.

  12. Gauge/Gravity Duality

    ScienceCinema

    Polchinski, Joseph

    2017-12-22

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  13. Low-energy electron-phonon effective action from symmetry analysis

    NASA Astrophysics Data System (ADS)

    Cabra, D. C.; Grandi, N. E.; Silva, G. A.; Sturla, M. B.

    2013-07-01

    Based on a detailed symmetry analysis, we state the general rules to build up the effective low-energy field theory describing a system of electrons weakly interacting with the lattice degrees of freedom. The basic elements in our construction are what we call the “memory tensors,” which keep track of the microscopic discrete symmetries into the coarse-grained action. The present approach can be applied to lattice systems in arbitrary dimensions and in a systematic way to any desired order in derivatives. We apply the method to the honeycomb lattice and reobtain the by-now well-known effective action of Dirac fermions coupled to fictitious gauge fields. As a second example, we derive the effective action for electrons in the kagome lattice, where our approach allows us to obtain in a simple way the low-energy electron-phonon coupling terms.

  14. Wormholes, emergent gauge fields, and the weak gravity conjecture

    DOE PAGES

    Harlow, Daniel

    2016-01-20

    This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the ormhole dual to the thermo field double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. Here, I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. Imore » also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. Furthermore, this contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.« less

  15. Locality and Unitarity of Scattering Amplitudes from Singularities and Gauge Invariance

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Rodina, Laurentiu; Trnka, Jaroslav

    2018-06-01

    We conjecture that the leading two-derivative tree-level amplitudes for gluons and gravitons can be derived from gauge invariance together with mild assumptions on their singularity structure. Assuming locality (that the singularities are associated with the poles of cubic graphs), we prove that gauge invariance in just n -1 particles together with minimal power counting uniquely fixes the amplitude. Unitarity in the form of factorization then follows from locality and gauge invariance. We also give evidence for a stronger conjecture: assuming only that singularities occur when the sum of a subset of external momenta go on shell, we show in nontrivial examples that gauge invariance and power counting demand a graph structure for singularities. Thus, both locality and unitarity emerge from singularities and gauge invariance. Similar statements hold for theories of Goldstone bosons like the nonlinear sigma model and Dirac-Born-Infeld by replacing the condition of gauge invariance with an appropriate degree of vanishing in soft limits.

  16. Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory

    NASA Astrophysics Data System (ADS)

    Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.

    2018-04-01

    We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.

  17. Gauge boson exchange in AdS d+1

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Freedman, Daniel Z.

    1999-04-01

    We study the amplitude for exchange of massless gauge bosons between pairs of massive scalar fields in anti-de Sitter space. In the AdS/CFT correspondence this amplitude describes the contribution of conserved flavor symmetry currents to 4-point functions of scalar operators in the boundary conformal theory. A concise, covariant, Y2K compatible derivation of the gauge boson propagator in AdS d + 1 is given. Techniques are developed to calculate the two bulk integrals over AdS space leading to explicit expressions or convenient, simple integral representations for the amplitude. The amplitude contains leading power and sub-leading logarithmic singularities in the gauge boson channel and leading logarithms in the crossed channel. The new methods of this paper are expected to have other applications in the study of the Maldacena conjecture.

  18. Five-dimensional fermionic Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Bak, Dongsu; Gustavsson, Andreas

    2018-02-01

    We study 5d fermionic CS theory with a fermionic 2-form gauge potential. This theory can be obtained from 5d maximally supersymmetric YM theory by performing the maximal topological twist. We put the theory on a five-manifold and compute the partition function. We find that it is a topological quantity, which involves the Ray-Singer torsion of the five-manifold. For abelian gauge group we consider the uplift to the 6d theory and find a mismatch between the 5d partition function and the 6d index, due to the nontrivial dimensional reduction of a selfdual two-form gauge field on a circle. We also discuss an application of the 5d theory to generalized knots made of 2d sheets embedded in 5d.

  19. Is scale-invariance in gauge-Yukawa systems compatible with the graviton?

    NASA Astrophysics Data System (ADS)

    Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron

    2017-10-01

    We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.

  20. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    DOE PAGES

    Mueller, Niklas; Venugopalan, Raju

    2018-03-21

    Here, we outline a novel chiral kinetic theory framework for systematic computations of the Chiral Magnetic Effect (CME) in ultrarelativistic heavy-ion collisions. The real part of the fermion determinant in the QCD effective action is expressed as a supersymmetric world-line action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. Berry’s phase is obtained in a consistent non-relativistic adiabatic limit. The chiral anomaly, in contrast, arises from the phase of the fermion determinant; its topological properties are therefore distinct from those of the Berry phase.more » We show that the imaginary contribution to the fermion determinant too can be expressed as a point particle world-line path integral and derive the corresponding anomalous axial vector current. Our results can be used to derive a covariant relativistic chiral kinetic theory including the effects of topological fluctuations that has overlap with classical-statistical simulations of the CME at early times and anomalous hydrodynamics at late times.« less

  1. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Niklas; Venugopalan, Raju

    Here, we outline a novel chiral kinetic theory framework for systematic computations of the Chiral Magnetic Effect (CME) in ultrarelativistic heavy-ion collisions. The real part of the fermion determinant in the QCD effective action is expressed as a supersymmetric world-line action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. Berry’s phase is obtained in a consistent non-relativistic adiabatic limit. The chiral anomaly, in contrast, arises from the phase of the fermion determinant; its topological properties are therefore distinct from those of the Berry phase.more » We show that the imaginary contribution to the fermion determinant too can be expressed as a point particle world-line path integral and derive the corresponding anomalous axial vector current. Our results can be used to derive a covariant relativistic chiral kinetic theory including the effects of topological fluctuations that has overlap with classical-statistical simulations of the CME at early times and anomalous hydrodynamics at late times.« less

  2. A Gas Pressure Scale Based on Primary Standard Piston Gauges

    PubMed Central

    Olson, Douglas A.; Driver, R. Greg; Bowers, Walter J.

    2010-01-01

    The National Institute of Standards and Technology (NIST) has redefined its gas pressure scale, up to 17 MPa, based on two primary standard piston gauges. The primary standard piston gauges are 35.8 mm in diameter and operate from 20 kPa to 1 MPa. Ten secondary standard piston gauges, two each of five series of the Ruska 2465 type, with successively smaller diameters form the scale extending up to 17 MPa. Six of the piston gauges were directly compared to the primary standards to determine their effective area and expanded (k = 2) uncertainty. Two piston gauges operating to 7 MPa were compared to the 1.4 MPa gauges, and two piston gauges operating to 17 MPa were compared to the 7 MPa gauges. Distortion in the 7 MPa piston gauges was determined by comparing those gauges to a DH Instruments PG7601 type piston gauge, whose distortion was calculated using elasticity theory. The relative standard uncertainties achieved by the primary standards range from 3.0 × 10−6 to 3.2 × 10−6. The relative standard uncertainty of the secondary standards is as low as 4.2 × 10−6 at 300 kPa. The effective areas and uncertainties were validated by comparison to standards of other National Metrology Institutes (NMIs). Results show agreement in all cases to better than the expanded (k = 2) uncertainty of the difference between NIST and the other NMIs, and in most cases to better than the standard (k = 1) uncertainty of the difference. PMID:27134793

  3. Dualities and Topological Field Theories from Twisted Geometries

    NASA Astrophysics Data System (ADS)

    Markov, Ruza

    I will present three studies of string theory on twisted geometries. In the first calculation included in this dissertation we use gauge/gravity duality to study the Coulomb branch of an unusual type of nonlocal field theory, called Puff Field Theory. On the gravity side, this theory is given in terms of D3-branes in type IIB string theory with a geometric twist. While the field theory description, available in the IR limit, is a deformation of Yang-Mills gauge theory by an order seven operator which we here compute. In the rest of this dissertation we explore N = 4 super Yang-Mills (SYM) theory compactied on a circle with S-duality and R-symmetry twists that preserve N = 6 supersymmetry in 2 + 1D. It was shown that abelian theory on a flat manifold gives Chern-Simons theory in the low-energy limit and here we are interested in the non-abelian counterpart. To that end, we introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a two-torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory. The last result discussed in this dissertation demonstrates a connection between gravitational Chern-Simons theory and N = 4 four-dimensional SYM theory compactified on a circle twisted by S-duality where the remaining three-manifold is not flat starting with the explicit geometric realization of S-duality in terms of (2, 0) theory.

  4. Advancing urban sustainability theory and action: Challenges and opportunities

    Treesearch

    Daniel L. Childers; Steward T.A. Pickett; J. Morgan Grove; Laura Ogden; Alison Whitmer

    2014-01-01

    Urban ecology and its theories are increasingly poised to contribute to urban sustainability, through both basic understanding and action. We present a conceptual framework that expands the Industrial → Sanitary → Sustainable City transition to include non-sanitary cities, "new cities", and various permutations of transition options for...

  5. Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viennot, David

    We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field inmore » order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection.« less

  6. BPS/CFT Correspondence III: Gauge Origami Partition Function and qq-Characters

    NASA Astrophysics Data System (ADS)

    Nekrasov, Nikita

    2018-03-01

    We study generalized gauge theories engineered by taking the low energy limit of the Dp branes wrapping {X × {T}^{p-3}}, with X a possibly singular surface in a Calabi-Yau fourfold Z. For toric Z and X the partition function can be computed by localization, making it a statistical mechanical model, called the gauge origami. The random variables are the ensembles of Young diagrams. The building block of the gauge origami is associated with a tetrahedron, whose edges are colored by vector spaces. We show the properly normalized partition function is an entire function of the Coulomb moduli, for generic values of the {Ω} -background parameters. The orbifold version of the theory defines the qq-character operators, with and without the surface defects. The analytic properties are the consequence of a relative compactness of the moduli spaces M({ěc n}, k) of crossed and spiked instantons, demonstrated in "BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem".

  7. Universal consistent truncation for 6d/7d gauge/gravity duals

    NASA Astrophysics Data System (ADS)

    Passias, Achilleas; Rota, Andrea; Tomasiello, Alessandro

    2015-10-01

    Recently, AdS7 solutions of IIA supergravity have been classified; there are infinitely many of them, whose expression is known analytically, and with internal space of S 3 topology. Their field theory duals are six-dimensional (1,0) SCFT's. In this paper we show that for each of these AdS7 solutions there exists a consistent truncation from massive IIA supergravity to minimal gauged supergravity in seven dimensions. This theory has an SU(2) gauge group, and a single scalar, whose value is related to a certain distortion of the internal S 3. This explains the universality observed in recent work on AdS5 and AdS4 solutions dual to compactifications of the (1, 0) SCFT6's. Thanks to previous work on the minimal gauged supergravity, the truncation also implies the existence of holographic RG-flows connecting those solutions to the AdS7 vacuum, as well as new classes of IIA AdS3 solutions.

  8. The Theory of Quantized Fields. II

    DOE R&D Accomplishments Database

    Schwinger, J.

    1951-01-01

    The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.

  9. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

    PubMed Central

    Yang, Shixuan; Lu, Nanshu

    2013-01-01

    Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed. PMID:23881128

  10. Exciting gauge field and gravitons in brane-antibrane annihilation.

    PubMed

    Mazumdar, Anupam; Stoica, Horace

    2009-03-06

    In this Letter we point out the inevitability of an explosive production of gauge field and gravity wave during an open string tachyon condensation in a cosmological setting, in an effective field theory model. We will be particularly studying a toy model of brane-antibrane inflation in a warped throat where inflation ends via tachyon condensation. We point out that a tachyonic instability helps fragmenting the homogeneous tachyon and excites gauge field and contributes to the stress-energy tensor which also feeds into the gravity waves.

  11. Chiral primordial blue tensor spectra from the axion-gauge couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obata, Ippei, E-mail: obata@tap.scphys.kyoto-u.ac.jp

    We suggest the new feature of primordial gravitational waves sourced by the axion-gauge couplings, whose forms are motivated by the dimensional reduction of the form field in the string theory. In our inflationary model, as an inflaton we adopt two types of axion, dubbed the model-independent axion and the model-dependent axion, which couple with two gauge groups with different sign combination each other. Due to these forms both polarization modes of gauge fields are amplified and enhance both helicies of tensor modes during inflation. We point out the possibility that a primordial blue-tilted tensor power spectra with small chirality aremore » provided by the combination of these axion-gauge couplings, intriguingly both amplitudes and chirality are potentially testable by future space-based gravitational wave interferometers such as DECIGO and BBO project.« less

  12. Gauge invariance of excitonic linear and nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Alireza; Pedersen, T. G.

    2018-05-01

    We study the equivalence of four different approaches to calculate the excitonic linear and nonlinear optical response of multiband semiconductors. These four methods derive from two choices of gauge, i.e., length and velocity gauges, and two ways of computing the current density, i.e., direct evaluation and evaluation via the time-derivative of the polarization density. The linear and quadratic response functions are obtained for all methods by employing a perturbative density-matrix approach within the mean-field approximation. The equivalence of all four methods is shown rigorously, when a correct interaction Hamiltonian is employed for the velocity gauge approaches. The correct interaction is written as a series of commutators containing the unperturbed Hamiltonian and position operators, which becomes equivalent to the conventional velocity gauge interaction in the limit of infinite Coulomb screening and infinitely many bands. As a case study, the theory is applied to hexagonal boron nitride monolayers, and the linear and nonlinear optical response found in different approaches are compared.

  13. Integrating Geospatial Technologies, Action Research, and Curriculum Theory to Promote Ecological Literacy

    ERIC Educational Resources Information Center

    Agnello, Mary Frances; Carpenter, Penny

    2010-01-01

    Purpose: The purpose of this paper is to examine and report on the impact of integrating geospatial technology and ecological literacy into an educational leadership Master's class block comprised of action research and curriculum theory. Design/methodology/approach: Action and teacher research informed by environmental issues framed an action…

  14. Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-06-01

    We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for 3lesssim mQlesssim 4, where mQ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio Bh/P2h, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large mQ regions of the parameter space, whereas the power spectrum constrains small mQ regions.

  15. Motor cognition-motor semantics: action perception theory of cognition and communication.

    PubMed

    Pulvermüller, Friedemann; Moseley, Rachel L; Egorova, Natalia; Shebani, Zubaida; Boulenger, Véronique

    2014-03-01

    A new perspective on cognition views cortical cell assemblies linking together knowledge about actions and perceptions not only as the vehicles of integrated action and perception processing but, furthermore, as a brain basis for a wide range of higher cortical functions, including attention, meaning and concepts, sequences, goals and intentions, and even communicative social interaction. This article explains mechanisms relevant to mechanistic action perception theory, points to concrete neuronal circuits in brains along with artificial neuronal network simulations, and summarizes recent brain imaging and other experimental data documenting the role of action perception circuits in cognition, language and communication. © 2013 Published by Elsevier Ltd.

  16. Exploring multiple intelligences theory in the context of science education: An action research approach

    NASA Astrophysics Data System (ADS)

    Goodnough, Karen Catherine

    2000-10-01

    Since the publication of Frames of Mind: The Theory in Practice, multiple intelligences, theory (Gardner, 1983) has been used by practitioners in a variety of ways to make teaching and learning more meaningful. However, little attention has been focused on exploring the potential of the theory for science teaching and learning. Consequently, this research study was designed to: (1) explore Howard Gardner's theory of multiple intelligences (1983) and its merit for making science teaching and learning more meaningful; (2) provide a forum for teachers to engage in critical self-reflection about their theory and practice in science education; (3) study the process of action research in the context of science education; and (4) describe the effectiveness of collaborative action research as a framework for teacher development and curriculum development. The study reports on the experiences of four teachers (two elementary teachers, one junior high teacher, and one high school teacher) and myself, a university researcher-facilitator, as we participated in a collaborative action research project. The action research group held weekly meetings over a five-month period (January--May, 1999). The inquiry was a qualitative case study (Stake, 1994) that aimed to understand the perspectives of those directly involved. This was achieved by using multiple methods to collect data: audiotaped action research meetings, fieldnotes, semi-structured interviews, journal writing, and concept mapping. All data were analysed on an ongoing basis. Many positive outcomes resulted from the study in areas such as curriculum development, teacher development, and student learning in science. Through the process of action research, research participants became more reflective about their practice and thus, enhanced their pedagogical content knowledge (Shulman, 1987) in science. Students became more engaged in learning science, gained a greater understanding of how they learn, and experienced a

  17. Higgsed Gauge-flation

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Sfakianakis, Evangelos I.

    2017-08-01

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. We work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ < 2, where γ = g 2 ψ 2/ H 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density fluctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wave spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at inflationary energy scales well below the GUT scale.

  18. Fluxes, holography and twistors: String theory paths to four dimensions

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2007-12-01

    string theories by the inclusion of flux. Hence gauged supergravity is a robust framework for studying flux vacua even when these stringy effects are taken into account. The mechanisms which protect the gauged isometries are different in the two theories. Then we switch to the understanding of SL(2, Z ) duality transformations in asymptotically AdS4 x S7 spacetime with an Abelian gauge theory. The bulk duality acts non-trivially on the three-dimensional SCFT of coincident M2-branes on the conformal boundary. We develop a systematic method to holographically obtain the deformations of the boundary CFT manifested by generalized boundary conditions and show how SL(2, Z ) duality relates different deformations of the conformal vacuum. We analyze in detail marginal deformations and deformations by dimension 4 operators. In the case of massive deformations, the RG flow induces a Legendre transform as well as S-duality. Correlation functions in the CFT are computed by differentiating with respect to magnetic bulk sources, whereas correlation functions in the Legendre dual CFT are computed using electric bulk sources. Under massive deformations, the boundary effective action is generically minimized by massive self-dual configurations of the U(1) gauge field. We show that a massive and self-dual boundary condition corresponds to the unique self-dual topologically massive gauge theory in three dimensions. Thus, self-duality in three dimensions can be understood as a consequence of SL(2, Z ) invariance in the bulk of AdS4. We discuss various implications for understanding the strongly interacting worldvolume theory of M2-branes and more general dualities of the maximally supersymmetric AdS4 supergravity theory. Finally we study the twistor string theory whose D-instanton expansion gives the perturbative expansion of marginally deformed N = 4 super-Yang-Mills theories. More precisely this string theory is a topological B-model with both open and closed string sectors with target

  19. Non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    -orbit coupling (Rashba and Dresselhaus couplings), familiar from AMO and condensed matter physics. They lead to yet another variety of fascinating phenomena such as the quantum spin Hall effect, three-dimensional topological insulators, topological superconductors and superfluids of various kinds. One also expects here the appearance of excitations in a form of topological edge states that can support robust transport, or entangled Majorana fermions in the case of topological superconductors or superfluids. Again, while many kinds of topological insulators have been realized in condensed matter systems, a controlled way of creating them in AMO systems and studying quantum phase transitions between various kinds of them is obviously very appealing and challenging. The various systems listed so far correspond to static gauge fields, which are externally imposed by the experimentalists. Even more fascinating is the possibility of generating synthetically dynamical gauge fields, i.e. gauge fields that evolve in time according to an interacting gauge theory, e.g., a full lattice gauge theory (LGT). These dynamical gauge fields can also couple to matter fields, allowing the quantum simulation of such complex systems (notoriously hard to simulate using 'traditional' computers), which are particularly relevant for modern high-energy physics. So far, most of the theoretical proposals concern the simulation of Abelian gauge theories, however, several groups have recently proposed extensions to the non-Abelian scenarios. The scope of the present focused issue of Journal of Physics B is to cover all of these developments, with particular emphasis on the non-Abelian gauge fields. The 14 papers in this issue include contributions from the leading theory groups working in this field; we believe that this collection will provide the reference set for quantum simulations of gauge fields. Although the special issue contains exclusively theoretical proposals and studies, it should be stressed that

  20. Duality for massive spin two theories in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    González, B.; Khoudeir, A.; Montemayor, R.; Urrutia, L. F.

    2008-09-01

    Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions D. This is achieved in terms of a mixed symmetry tensor TA[B1B2...BD-2], without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.