Science.gov

Sample records for gauss distribution

  1. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions.

    PubMed

    Hou, Chieh; Ateshian, Gerard A

    2016-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation. PMID:26291492

  2. Noncoaxial Bessel-Gauss beams.

    PubMed

    Huang, Chaohong; Zheng, Yishu; Li, Hanqing

    2016-04-01

    We proposed a new family of noncoaxial Gauss-truncated Bessel beams through multiplying conventional symmetrical Bessel beams by a noncoaxial Gauss function. These beams can also be regarded as the exponential-truncated version of Bessel-Gauss beams since they can be transformed into the product of Bessel-Gauss beams and an exponential window function along a certain Cartesian axis. The closed-form solutions of the angular spectra and paraxial propagation of these beams were derived. These beams have asymmetrical intensity distributions and carry the same orbit angular momentum per photon as the corresponding Bessel-Gauss beams. While propagating along the z axis, the mth (m≠0) noncoaxial Bessel-Gauss beams rotate their intensity distributions and the mth-order vortex at the beam center has a transverse shift along the direction perpendicular to the offset axis. Depending on the product of the transverse scalar factor of the Bessel beams and the offset between the Gaussian window function and the center of the Bessel beams, the noncoaxial Bessel-Gauss beams can produce unit vortices with opposite signs in pairs during propagation. PMID:27140757

  3. Carl Friedrich Gauss

    ERIC Educational Resources Information Center

    Rice, Kathryn; Scott, Paul

    2005-01-01

    This article presents a brief biography of Johann Carl Friedrich Gauss. Gauss was born on April 30, 1777, in the German city of Braunschweig (Brunswick). He was the only child of Gebhard Dietrich Gauss and Dorothea Benze. Neither of Gauss's parents had much education, his father could read and write, but earned his living doing menial jobs such as…

  4. Stochastic Gauss equations

    NASA Astrophysics Data System (ADS)

    Pierret, Frédéric

    2016-02-01

    We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.

  5. Gauss Quadratures - the Keystone of Lattice Boltzmann Models

    NASA Astrophysics Data System (ADS)

    Piaud, Benjamin; Blanco, Stéphane; Fournier, Richard; Ambruş, Victor Eugen; Sofonea, Victor

    2014-01-01

    In this paper, we compare two families of Lattice Boltzmann (LB) models derived by means of Gauss quadratures in the momentum space. The first one is the HLB(N;Qx,Qy,Qz) family, derived by using the Cartesian coordinate system and the Gauss-Hermite quadrature. The second one is the SLB(N;K,L,M) family, derived by using the spherical coordinate system and the Gauss-Laguerre, as well as the Gauss-Legendre quadratures. These models order themselves according to the maximum order N of the moments of the equilibrium distribution function that are exactly recovered. Microfluidics effects (slip velocity, temperature jump, as well as the longitudinal heat flux that is not driven by a temperature gradient) are accurately captured during the simulation of Couette flow for Knudsen number (kn) up to 0.25.

  6. Nonzonal Expressions of GAUSS-KRÜGER Projection in Polar Regions

    NASA Astrophysics Data System (ADS)

    Li, Zhongmei; Bian, Shaofeng; Liu, Qiang; Li, Houpu; Chen, Cheng; Hu, Yanfeng

    2016-06-01

    With conformal colatitude introduced, based on the mathematical relationship between exponential and logarithmic functions by complex numbers, strict equation of complex conformal colatitude is derived, and then theoretically strict nonzonal expressions of Gauss projection in polar regions are carried out. By means of the computer algebra system, correctness of these expressions is verified, and sketches of Gauss-krüger projection without bandwidth restriction in polar regions are charted. In the Arctic or Antarctic region, graticule of nonzonal Gauss projection complies with people's reading habit and reflects real ground-object distribution. Achievements in this paper could perfect mathematical basis of Gauss projection and provide reference frame for polar surveying and photogrammetry.

  7. Colon Cancer Risk Assessment - Gauss Program

    Cancer.gov

    An executable file (in GAUSS) that projects absolute colon cancer risk (with confidence intervals) according to NCI’s Colorectal Cancer Risk Assessment Tool (CCRAT) algorithm. GAUSS is not needed to run the program.

  8. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  9. Gauss-Bonnet gravitational baryogenesis

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    In this letter we study some variant forms of gravitational baryogenesis by using higher order terms containing the partial derivative of the Gauss-Bonnet scalar coupled to the baryonic current. This scenario extends the well known theory that uses a similar coupling between the Ricci scalar and the baryonic current. One appealing feature of the scenario we study is that the predicted baryon asymmetry during a radiation domination era is non-zero. We calculate the baryon to entropy ratio for the Gauss-Bonnet term and by using the observational constraints we investigate which are the allowed forms of the R + F (G) gravity controlling the evolution. Also we briefly discuss some alternative higher order terms that can generate a non-zero baryon asymmetry, even in the conformal invariance limit.

  10. Crafting a Gauss Gun Demonstration

    NASA Astrophysics Data System (ADS)

    Blodgett, Matthew E.; Blodgett, E. D.

    2006-12-01

    A Gauss Gun launches a ferromagnetic projectile using a pulsed electromagnet. This demonstration provides a nice counterpoint to the popular Thompson's jumping ring demonstration, which launches a nonferromagnetic ring via repulsion of an induced current. The pulsed current must be short enough in duration so that the projectile is not retarded by lingering current in the launch solenoid, but also large enough to provide a suitably impressive velocity. This project involved an iterative design process, as we worked through balancing all the different design criteria. We recommend it as a very nice electronics design project which will produce a very portable and enjoyable demonstration. AAPT sponsor Earl Blodgett.

  11. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

    PubMed

    Kiselev, Aleksei P; Plachenov, Alexandr B

    2016-04-01

    The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given. PMID:27140777

  12. The Tortured History of Gauss's Law

    NASA Astrophysics Data System (ADS)

    Spencer, Ross

    2009-10-01

    American physics textbooks contain the following equation, which is called Gauss's law: E .d S = qenclosed ɛ0 It is odd, however, that biographies of Karl Friedrich Gauss (1777-1855) contain no mention of this law. A brief history of this important result will be presented in which it will be shown that what we call Gauss's law today was originally guessed at by Joseph Priestly (1733-1804) after he read a letter from Benjamin Franklin (1706-1790), then was derived, forgotten, and re-derived several times in two different contexts by many of the luminaries of physics in the eighteenth and nineteenth centuries.

  13. Structured eigenvalue problems for rational gauss quadrature

    NASA Astrophysics Data System (ADS)

    Fasino, Dario; Gemignani, Luca

    2007-08-01

    The connection between Gauss quadrature rules and the algebraic eigenvalue problem for a Jacobi matrix was first exploited in the now classical paper by Golub and Welsch (Math. Comput. 23(106), 221?230, 1969). From then on many computational problems arising in the construction of (polynomial) Gauss quadrature formulas have been reduced to solving direct and inverse eigenvalue problems for symmetric tridiagonals. Over the last few years (rational) generalizations of the classical Gauss quadrature formulas have been studied, i.e., formulas integrating exactly in spaces of rational functions. This paper wants to illustrate that stable and efficient procedures based on structured numerical linear algebra techniques can also be devised for the solution of the eigenvalue problems arising in the field of rational Gauss quadrature.

  14. TEACHING PHYSICS: Gauss's law - a forgotten tool?

    NASA Astrophysics Data System (ADS)

    Severn, John

    2000-07-01

    Gauss's law is a powerful tool that can be used to resolve symmetrical situations involving various fields, where traditional approaches would involve the use of integral calculus. Born out of the dynamics of fluids, its main teaching use has traditionally been largely in the area of electrostatic problems. However, in the area of gravitation its use is not so well known. This article starts by introducing Gauss's law with electrostatics, and then uses the law in the application of some simple gravitational problems.

  15. Efficient modelling of gravity effects due to topographic masses using the Gauss-FFT method

    NASA Astrophysics Data System (ADS)

    Wu, Leyuan

    2016-04-01

    We present efficient Fourier-domain algorithms for modelling gravity effects due to topographic masses. The well-known Parker's formula originally based on the standard fast Fourier transform (FFT) algorithm is modified by applying the Gauss-FFT method instead. Numerical precision of the forward and inverse Fourier transforms embedded in Parker's formula and its extended forms are significantly improved by the Gauss-FFT method. The topographic model is composed of two major aspects, the geometry and the density. Versatile geometric representations, including the mass line model, the mass prism model, the polyhedron model and smoother topographic models interpolated from discrete data sets using high-order splines or pre-defined by analytical functions, in combination with density distributions that vary both laterally and vertically in rather arbitrary ways following exponential or general polynomial functions, now can be treated in a consistent framework by applying the Gauss-FFT method. The method presented has been numerically checked by space-domain analytical and hybrid analytical/numerical solutions already established in the literature. Synthetic and real model tests show that both the Gauss-FFT method and the standard FFT method run much faster than space-domain solutions, with the Gauss-FFT method being superior in numerical accuracy. When truncation errors are negligible, the Gauss-FFT method can provide forward results almost identical to space-domain analytical or semi-numerical solutions in much less time.

  16. Comment on "Gauss-Bonnet inflation"

    NASA Astrophysics Data System (ADS)

    Hikmawan, Getbogi; Soda, Jiro; Suroso, Agus; Zen, Freddy P.

    2016-03-01

    Recently, an interesting inflationary scenario, named Gauss-Bonnet inflation, was proposed by Kanti et al. [Phys. Rev. D 92, 041302 (2015); Phys. Rev. D 92, 083524 (2015)]. In the model, there is no inflaton potential, but the inflaton couples to the Guass-Bonnet term. In the case of quadratic coupling, they find inflation occurs with a graceful exit. The scenario is attractive because of the natural setup. However, we show there exists a gradient instability in the tensor perturbations in this inflationary model. We further prove the no-go theorem for Gauss-Bonnet inflation without an inflaton potential.

  17. Characterizing curves satisfying the Gauss-Christoffel theorem

    NASA Astrophysics Data System (ADS)

    Berriochoa, E.; Cachafeiro, A.

    2009-12-01

    In this paper we obtain the reciprocal of the classical Gauss theorem for quadrature formulas. Indeed we characterize the support of the measures having quadrature formulas with the exactness given in the Gauss theorem.

  18. Kerr-Gauss-Bonnet black holes: Exact analytical solution

    SciTech Connect

    Alexeyev, S. Popov, N.; Startseva, M.; Barrau, A. Grain, J.

    2008-04-15

    Gauss-Bonnet gravity provides one of the most promising frameworks for studying curvature corrections to the Einstein action in supersymmetric string theories while avoiding ghosts and keeping second-order field equations. Although Schwarzschild-type solutions for Gauss-Bonnet black holes have been known for a long time, the Kerr-Gauss-Bonnet metric was missing. A five dimensional Gauss-Bonnet solution is obtained analytically for spinning black holes, and the related thermodynamical properties are briefly outlined.

  19. Galileo, Gauss, and the Green Monster

    ERIC Educational Resources Information Center

    Kalman, Dan; Teague, Daniel J.

    2013-01-01

    Galileo dropped cannonballs from the leaning tower of Pisa to demonstrate something about falling bodies. Gauss was a giant of mathematics and physics who made unparalleled contributions to both fields. More contemporary (and not a person), the Green Monster is the left-field wall at the home of the Boston Red Sox, Fenway Park. Measuring 37 feet…

  20. Experimental generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase holograms

    NASA Astrophysics Data System (ADS)

    Mellado-Villaseñor, Gabriel; Aguirre-Olivas, Dilia; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-08-01

    We generate Hermite-Gauss and Ince-Gauss beams by using kinoform phase holograms encoded onto a liquid crystal display. The phase transmittance of this holograms coincide with the phases of such beams. Scale versions of the desired beams appear at the Fourier domain of the KPHs. When an appropriated pupil size is employed, the method synthesizes HG and IG beams with relatively high accuracy and high efficiency. It is noted that experimental and numerical results are agreement with the theory.

  1. On Gautschi's conjecture for generalized Gauss-Radau and Gauss-Lobatto formulae

    NASA Astrophysics Data System (ADS)

    Joulak, Hédi; Beckermann, Bernhard

    2009-12-01

    Recently, Gautschi introduced so-called generalized Gauss-Radau and Gauss-Lobatto formulae which are quadrature formulae of Gaussian type involving not only the values but also the derivatives of the function at the endpoints. In the present note we show the positivity of the corresponding weights; this positivity has been conjectured already by Gautschi. As a consequence, we establish several convergence theorems for these quadrature formulae.

  2. Virtual source for a Laguerre-Gauss beam

    NASA Astrophysics Data System (ADS)

    Seshadri, S. R.

    2002-11-01

    A virtual source that generates a cylindrically symmetric Laguerre-Gauss wave of radial mode number n is introduced. An expression is derived for this Laguerre-Gauss wave that in the appropriate limit yields the corresponding Laguerre-Gauss beam. From the spectral representation of the Laguerre-Gauss wave, the first three orders of nonparaxial corrections for the paraxial Laguerre-Gauss beam are determined. On the beam axis, the number of orders of nonvanishing nonparaxial corrections is found to be equal to n.

  3. Volcano clustering determination: Bivariate Gauss vs. Fisher kernels

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, Edgardo

    2013-05-01

    Underlying many studies of volcano clustering is the implicit assumption that vent distribution can be studied by using kernels originally devised for distribution in plane surfaces. Nevertheless, an important change in topology in the volcanic context is related to the distortion that is introduced when attempting to represent features found on the surface of a sphere that are being projected into a plane. This work explores the extent to which different topologies of the kernel used to study the spatial distribution of vents can introduce significant changes in the obtained density functions. To this end, a planar (Gauss) and a spherical (Fisher) kernels are mutually compared. The role of the smoothing factor in these two kernels is also explored with some detail. The results indicate that the topology of the kernel is not extremely influential, and that either type of kernel can be used to characterize a plane or a spherical distribution with exactly the same detail (provided that a suitable smoothing factor is selected in each case). It is also shown that there is a limitation on the resolution of the Fisher kernel relative to the typical separation between data that can be accurately described, because data sets with separations lower than 500 km are considered as a single cluster using this method. In contrast, the Gauss kernel can provide adequate resolutions for vent distributions at a wider range of separations. In addition, this study also shows that the numerical value of the smoothing factor (or bandwidth) of both the Gauss and Fisher kernels has no unique nor direct relationship with the relevant separation among data. In order to establish the relevant distance, it is necessary to take into consideration the value of the respective smoothing factor together with a level of statistical significance at which the contributions to the probability density function will be analyzed. Based on such reference level, it is possible to create a hierarchy of

  4. Two-frequency-dependent Gauss quadrature rules

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Joong

    2005-02-01

    We construct two-frequency-dependent Gauss quadrature rules which can be applied for approximating the integration of the product of two oscillatory functions with different frequencies [beta]1 and [beta]2 of the forms,yi(x)=fi,1(x) cos([beta]ix)+fi,2(x) sin([beta]ix), i=1,2,where the functions fi,j(x) are smooth. A regularization procedure is presented to avoid the singularity of the Jacobian matrix of nonlinear system of equations which is induced as one frequency approaches the other frequency. We provide numerical results to compare the accuracy of the classical Gauss rule and one- and two-frequency-dependent rules.

  5. Entanglement temperature with Gauss-Bonnet term

    NASA Astrophysics Data System (ADS)

    Pal, Shesansu Sekhar; Panda, Sudhakar

    2015-09-01

    We compute the entanglement temperature using the first law-like of thermodynamics, ΔE =Tent ΔSEE, up to Gauss-Bonnet term in the Jacobson-Myers entropy functional in any arbitrary spacetime dimension. The computation is done when the entangling region is the geometry of a slab. We also show that such a Gauss-Bonnet term, which becomes a total derivative, when the co-dimension two hypersurface is four dimensional, does not contribute to the finite term in the entanglement entropy. We observe that the Weyl-squared term does not contribute to the entanglement entropy. It is important to note that the calculations are performed when the entangling region is very small and the energy is calculated using the normal Hamiltonian.

  6. Causal structures in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Izumi, Keisuke

    2014-08-01

    We analyze causal structures in Gauss-Bonnet gravity. It is known that Gauss-Bonnet gravity potentially has superluminal propagation of gravitons due to its noncanonical kinetic terms. In a theory with superluminal modes, an analysis of causality based on null curves makes no sense, and thus, we need to analyze them in a different way. In this paper, using the method of the characteristics, we analyze the causal structure in Gauss-Bonnet gravity. We have the result that, on a Killing horizon, gravitons can propagate in the null direction tangent to the Killing horizon. Therefore, a Killing horizon can be a causal edge as in the case of general relativity; i.e. a Killing horizon is the "event horizon" in the sense of causality. We also analyze causal structures on nonstationary solutions with (D-2)-dimensional maximal symmetry, including spherically symmetric and flat spaces. If the geometrical null energy condition, RABNANB≥0 for any null vector NA, is satisfied, the radial velocity of gravitons must be less than or equal to that of light. However, if the geometrical null energy condition is violated, gravitons can propagate faster than light. Hence, on an evaporating black hole where the geometrical null energy condition is expected not to hold, classical gravitons can escape from the "black hole" defined with null curves. That is, the causal structures become nontrivial. It may be one of the possible solutions for the information loss paradox of evaporating black holes.

  7. Scalar field evolution in Gauss-Bonnet black holes

    SciTech Connect

    Abdalla, E.; Konoplya, R.A.; Molina, C.

    2005-10-15

    It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant {lambda} and the Gauss-Bonnet coupling {alpha} is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on {alpha}, even though the black hole metric contains {alpha} as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.

  8. Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements.

    PubMed

    Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-10-01

    We discuss the generation of Hermite-Gauss and Ince-Gauss beams employing phase elements whose transmittances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted by marginal optical noise, at the element's Fourier domain. The motivation to perform this study is that, in the context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as a figure of merit. PMID:26479622

  9. Does the Gauss-Bonnet term stabilize wormholes?

    NASA Astrophysics Data System (ADS)

    Kokubu, Takafumi; Maeda, Hideki; Harada, Tomohiro

    2015-12-01

    The effect of the Gauss-Bonnet term on the existence and dynamical stability of thin-shell wormholes as negative tension branes is studied in the arbitrary-dimensional spherically, planar and hyperbolically symmetric spacetimes. We consider radial perturbations against the shell for the solutions that have the Z2 symmetry and admit the general relativistic limit. It is shown that the Gauss-Bonnet term shrinks the parameter region that admits static wormholes. The effect of the Gauss-Bonnet term on the stability depends on the spacetime symmetry. For planar symmetric wormholes, the Gauss-Bonnet term does not affect their stability. If the coupling constant is positive but small, the Gauss-Bonnet term tends to destabilize spherically symmetric wormholes, while it stabilizes hyperbolically symmetric wormholes. The Gauss-Bonnet term can destabilize hyperbolically symmetric wormholes as a non-perturbative effect, but spherically symmetric wormholes cannot be stable.

  10. Black holes in Gauss-Bonnet gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Faizal, Mir

    2015-08-01

    In this paper, we will generalize the Gauss-Bonnet gravity to an energy-dependent Gauss-Bonnet theory of gravity, which we shall call the Gauss-Bonnet gravity's rainbow. We will also couple this theory to a Maxwell's theory. We will analyze black hole solutions in this energy-dependent Gauss-Bonnet gravity's rainbow. We will calculate the modifications to the thermodynamics of black holes in the Gauss-Bonnet's gravity's rainbow. We will demonstrate that even though the thermodynamics of the black holes get modified in the Gauss-Bonnet gravity's rainbow, the first law of thermodynamics still holds for this modified thermodynamics. We will also comment on the thermal stability of the black hole solutions in this theory.

  11. Gauss Legendre Quadrature Formulae for Tetrahedra

    NASA Astrophysics Data System (ADS)

    Rathod, H. T.; Venkatesudu, B.; Nagaraja, K. V.

    2005-09-01

    In this paper we consider the Gauss Legendre quadrature method for numerical integration over the standard tetrahedron: {(x, y, z)|0 = x, y, z = 1, x + y + z = 1} in the Cartesian three-dimensional (x, y, z) space. The mathematical transformation from the (x, y, z) space to (?, ?, ?) space is described to map the standard tetrahedron in (x, y, z) space to a standard 2-cube: {(?, ?, ?)| - 1 = ?, ?,? = 1} in the (?, ?, ?) space. This overcomes the difficulties associated with the derivation of new weight co-efficients and sampling points. The effectiveness of the formulae is demonstrated by applying them to the integration of three nonpolynomial and three polynomial functions.

  12. Multivariate curve-fitting in GAUSS

    USGS Publications Warehouse

    Bunck, C.M.; Pendleton, G.W.

    1988-01-01

    Multivariate curve-fitting techniques for repeated measures have been developed and an interactive program has been written in GAUSS. The program implements not only the one-factor design described in Morrison (1967) but also includes pairwise comparisons of curves and rates, a two-factor design, and other options. Strategies for selecting the appropriate degree for the polynomial are provided. The methods and program are illustrated with data from studies of the effects of environmental contaminants on ducklings, nesting kestrels and quail.

  13. Higgs inflation in Gauss-Bonnet braneworld

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Guo, Zong-Kuan; Wang, Shao-Jiang

    2015-09-01

    The measured masses of the Higgs boson and top quark indicate that the effective potential of the standard model either develops an unstable electroweak vacuum or stands stable all the way up to the Planck scale. In the latter case in which the top quark mass is about 2 σ below its present central value, the Higgs boson can be the inflaton with the help of a large nonminimal coupling to curvature in four dimensions. We propose a scenario in which the Higgs boson can be the inflaton in a five-dimensional Gauss-Bonnet braneworld model to solve both the unitarity and stability problems which usually plague Higgs inflation. We find that in order for Higgs inflation to happen successfully in the Gauss-Bonnet regime, the extra dimension scale must appear roughly in the range between the TeV scale and the instability scale of standard model. At the tree level, our model can give rise to a naturally small nonminimal coupling ξ ˜O (1 ) for the Higgs quartic coupling λ ˜O (0.1 ) if the extra dimension scale lies at the TeV scale. At the loop level, the inflationary predictions at the tree level are preserved. Our model can be confronted with future experiments and observations from both particle physics and cosmology.

  14. Reheating in Gauss-Bonnet-coupled inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Longden, Chris; Dimopoulos, Konstantinos

    2016-07-01

    We investigate the feasibility of models of inflation with a large Gauss-Bonnet coupling at late times, which have been shown to modify and prevent the end of inflation. Despite the potential of Gauss-Bonnet models in predicting favorable power spectra, capable of greatly lowering the tensor-to-scalar ratio compared to now-disfavored models of standard chaotic inflation, it is important to also understand in what context it is possible for postinflationary (p)reheating to proceed and hence recover an acceptable late-time cosmology. We argue that in the previously studied inverse power law coupling case, reheating cannot happen due to a lack of oscillatory solutions for the inflaton, and that neither instant preheating nor gravitational particle production would avoid this problem due to the persistence of the inflaton's energy density, even if it were to partially decay. Hence we proceed to define a minimal generalization of the model which can permit perturbative reheating and study the consequences of this, including heavily modified dynamics during reheating and predictions of the power spectra.

  15. Electromagnetic modified Bessel-Gauss beams and waves.

    PubMed

    Seshadri, S R

    2008-01-01

    The transverse magnetic (TM) modified Bessel-Gauss beams and their full-wave generalizations are treated. Attention is paid to the spreading properties on propagation of the null in the radiation intensity pattern for the azimuthal mode numbers m=0 and 1. The rate of spreading of the null in the propagation direction is significantly less for the TM modified Bessel-Gauss waves than those for the corresponding TM Bessel-Gauss waves. The total power transported by the waves is determined and compared with that of the corresponding paraxial beam to estimate the quality of the paraxial beam approximation of the wave. The dependence of the quality of the paraxial beam approximation on the azimuthal mode number, the beam shape parameter, and the ratio of the beam waist to the wavelength has a regular pattern for the TM Bessel-Gauss wave and not for the TM modified Bessel-Gauss wave. PMID:18157205

  16. From entropy-maximization to equality-maximization: Gauss, Laplace, Pareto, and Subbotin

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2014-12-01

    The entropy-maximization paradigm of statistical physics is well known to generate the omnipresent Gauss law. In this paper we establish an analogous socioeconomic model which maximizes social equality, rather than physical disorder, in the context of the distributions of income and wealth in human societies. We show that-on a logarithmic scale-the Laplace law is the socioeconomic equality-maximizing counterpart of the physical entropy-maximizing Gauss law, and that this law manifests an optimized balance between two opposing forces: (i) the rich and powerful, striving to amass ever more wealth, and thus to increase social inequality; and (ii) the masses, struggling to form more egalitarian societies, and thus to increase social equality. Our results lead from log-Gauss statistics to log-Laplace statistics, yield Paretian power-law tails of income and wealth distributions, and show how the emergence of a middle-class depends on the underlying levels of socioeconomic inequality and variability. Also, in the context of asset-prices with Laplace-distributed returns, our results imply that financial markets generate an optimized balance between risk and predictability.

  17. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Dominguez, Alfredo E.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditions on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.

  18. Composite Gauss-Legendre Quadrature with Error Control

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  19. Strong gravitational lensing with Gauss-Bonnet correction

    SciTech Connect

    Sadeghi, J.; Vaez, H. E-mail: h.vaez@umz.ac.ir

    2014-06-01

    In this paper we investigate the strong gravitational lensing in a five dimensional background with Gauss-Bonnet gravity, so that in 4-dimensions the Gauss-Bonnet correction disappears. By considering the logarithmic term for deflection angle, we obtain the deflection angle α-circumflex and corresponding parameters ā and b-bar . Finally, we estimate some properties of relativistic images such as θ{sub ∞}, s and r{sub m}.

  20. Accelerating Airy-Gauss-Kummer localized wave packets

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi; Huang, Tingwen

    2014-01-01

    A general approach to generating three-dimensional nondiffracting spatiotemporal solutions of the linear Schrödinger equation with an Airy-beam time-dependence is reported. A class of accelerating optical pulses with the structure of Airy-Gauss-Kummer vortex beams is obtained. Our results demonstrate that the optical field contributions to the Airy-Gauss-Kummer accelerating optical wave packets of the cylindrical symmetry can be characterized by the radial and angular mode numbers.

  1. High-order generalized Gauss-Radau and Gauss-Lobatto formulae for Jacobi and Laguerre weight functions

    NASA Astrophysics Data System (ADS)

    Gautschi, Walter

    2009-06-01

    The generation of generalized Gauss-Radau and Gauss-Lobatto quadrature formulae by methods developed by us earlier breaks down in the case of Jacobi and Laguerre measures when the order of the quadrature rules becomes very large. The reason for this is underflow resp. overflow of the respective monic orthogonal polynomials. By rescaling of the polynomials, and other corrective measures, the problem can be circumvented, and formulae can be generated of orders as high as 1,000.

  2. NUT-charged black holes in Gauss-Bonnet gravity

    SciTech Connect

    Dehghani, M.H.; Mann, R.B.

    2005-12-15

    We investigate the existence of Taub-NUT (Newman-Unti-Tamburino) and Taub-bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter {alpha} goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield nonextremal NUT solutions to Einstein gravity having a curvature singularity at r=N in the limit {alpha}{yields}0. Indeed, we have nonextreme NUT solutions in 2+2k dimensions with nontrivial fibration only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a two-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two-dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.

  3. Black strings in Gauss-Bonnet theory are unstable

    NASA Astrophysics Data System (ADS)

    Giacomini, Alex; Oliva, Julio; Vera, Aldo

    2015-05-01

    We report the existence of unstable s-wave modes for black strings in Gauss-Bonnet theory (which is quadratic in the curvature) in seven dimensions. This theory admits analytic uniform black strings that are, in the transverse section, black holes of the same Gauss-Bonnet theory in six dimensions. All the components of the perturbation can be written in terms of a single component and its derivatives. For this, we find a master equation that admits bounded solutions provided the characteristic time of the exponential growth of the perturbation is related to the wave number along the extra direction, as in general relativity. It is known that these configurations suffer from a thermal instability; therefore, the results presented here provide evidence for the Gubser-Mitra conjecture in the context of Gauss-Bonnet theory. Because of the nontriviality of the curvature of the background, all of the components of the metric perturbation appear in the linearized equations. Similar to spherical black holes, the black strings should be obtained as the short-distance limit r ≪α1 /2 of the black-string solution of Einstein-Gauss-Bonnet theory (which is not known analytically), where α is the Gauss-Bonnet coupling.

  4. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  5. Braneworld dynamics in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki; Sahni, Varun; Shtanov, Yuri

    2007-11-15

    We discuss the cosmological evolution of a braneworld in five-dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be spacelike as well as timelike. The resulting equations of motion have the form of a cubic equation in the (H{sup 2},({rho}+{sigma}){sup 2}) plane, where {sigma} is the brane tension and {rho} is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantomlike so that w<-1. At late times, this branch approaches de Sitter space (w=-1) and avoids the big-rip singularities usually present in phantom models. For a timelike extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.

  6. Framed 4-graphs: Euler tours, Gauss circuits and rotating circuits

    SciTech Connect

    Il'yutko, Denis P

    2011-09-30

    We consider connected finite 4-valent graphs with the structure of opposite edges at each vertex (framed 4-graphs). For any of such graphs there exist Euler tours, in travelling along which at each vertex we turn from an edge to a nonopposite one (rotating circuits); and at the same time, it is not true that for any such graph there exists an Euler tour passing from an edge to the opposite one at each vertex (a Gauss circuit). The main result of the work is an explicit formula connecting the adjacency matrices of the Gauss circuit and an arbitrary Euler tour. This formula immediately gives us a criterion for the existence of a Gauss circuit on a given framed 4-graph. It turns out that the results are also valid for all symmetric matrices (not just for matrices realisable by a chord diagram). Bibliography: 24 titles.

  7. Framed 4-graphs: Euler tours, Gauss circuits and rotating circuits

    NASA Astrophysics Data System (ADS)

    Il'yutko, Denis P.

    2011-09-01

    We consider connected finite 4-valent graphs with the structure of opposite edges at each vertex (framed 4-graphs). For any of such graphs there exist Euler tours, in travelling along which at each vertex we turn from an edge to a nonopposite one (rotating circuits); and at the same time, it is not true that for any such graph there exists an Euler tour passing from an edge to the opposite one at each vertex (a Gauss circuit). The main result of the work is an explicit formula connecting the adjacency matrices of the Gauss circuit and an arbitrary Euler tour. This formula immediately gives us a criterion for the existence of a Gauss circuit on a given framed 4-graph. It turns out that the results are also valid for all symmetric matrices (not just for matrices realisable by a chord diagram). Bibliography: 24 titles.

  8. N+1 formalism in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Torii, Takashi; Shinkai, Hisa-aki

    2008-10-15

    Towards the investigation of the full dynamics in a higher-dimensional and/or a stringy gravitational model, we present the basic equations of the Einstein-Gauss-Bonnet gravity theory. We show the (N+1)-dimensional version of the Arnowitt-Deser-Misner decomposition including Gauss-Bonnet terms, which shall be the standard approach to treat the space-time as a Cauchy problem. Because of the quasilinear property of the Gauss-Bonnet gravity, we find that the evolution equations can be in a treatable form in numerics. We also show the conformally transformed constraint equations for constructing the initial data. We discuss how the constraints can be simplified by tuning the powers of conformal factors. Our equations can be used both for timelike and spacelike foliations.

  9. Interacting Ricci dark energy in scalar Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Pasqua, Antonio; Aly, Ayman A.

    2014-02-01

    This paper reports a study on the cosmological application of interacting Ricci Dark Energy (RDE) density in the scalar Gauss-Bonnet framework. The interacting holographic RDE model has been employed to obtain the equation of state (EoS) in a spatially flat universe. The main results of this paper are that the reconstructed potential of scalar Gauss-Bonnet gravity for the interacting RDE model decays with the evolution of the universe. However, it is an increasing function of the scalar field . Both the strong and weak energy conditions are violated. A phantom-like behavior of the EoS parameter has been obtained. The effective EoS parameter stays below -1 but tends to -1 with the evolution of the universe. However, it cannot cross the phantom boundary. Finally, the interacting RDE model in Gauss-Bonnet gravity gives accelerated expansion of the universe.

  10. Gauss-Green cubature and moment computation over arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Sommariva, Alvise; Vianello, Marco

    2009-09-01

    We have implemented in Matlab a Gauss-like cubature formula over arbitrary bivariate domains with a piecewise regular boundary, which is tracked by splines of maximum degree p (spline curvilinear polygons). The formula is exact for polynomials of degree at most 2n-1 using N~cmn2 nodes, 1<=c<=p, m being the total number of points given on the boundary. It does not need any decomposition of the domain, but relies directly on univariate Gauss-Legendre quadrature via Green's integral formula. Several numerical tests are presented, including computation of standard as well as orthogonal moments over a nonstandard planar region.

  11. Buchdahl's inequality in five dimensional Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Wright, Matthew

    2016-07-01

    The Buchdahl limit for static spherically symmetric isotropic stars is generalised to the case of five dimensional Gauss-Bonnet gravity. Our result depends on the sign of the Gauss-Bonnet coupling constant α . When α >0, we find, unlike in general relativity, that the bound is dependent on the stellar structure, in particular the central energy density and we find that stable stellar structures can exist arbitrarily close to the black hole horizon. Thus stable stars can exist with extra mass in this theory compared to five dimensional general relativity. For α <0 it is found that the Buchdahl bound is more restrictive than the general relativistic case.

  12. Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung; Zhou, Qiang

    2016-05-01

    Rolling element bearings are commonly used in machines to provide support for rotating shafts. Bearing failures may cause unexpected machine breakdowns and increase economic cost. To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults should be detected as early as possible. Because wavelet transform can be used to highlight impulses caused by localized bearing faults, wavelet transform has been widely investigated and proven to be one of the most effective and efficient methods for bearing fault diagnosis. In this paper, a new Gauss-Hermite integration based Bayesian inference method is proposed to estimate the posterior distribution of wavelet parameters. The innovations of this paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters is constructed to describe the relationship between wavelet parameters and hypothetical measurements. Secondly, the joint posterior probability density function of wavelet parameters and hypothetical measurements is assumed to follow a joint Gaussian distribution so as to generate Gaussian perturbations for the state space model. Thirdly, Gauss-Hermite integration is introduced to analytically predict and update moments of the joint Gaussian distribution, from which optimal wavelet parameters are derived. At last, an optimal wavelet filtering is conducted to extract bearing fault features and thus identify localized bearing faults. Two instances are investigated to illustrate how the proposed method works. Two comparisons with the fast kurtogram are used to demonstrate that the proposed method can achieve better visual inspection performances than the fast kurtogram.

  13. Accelerated expansion of the Universe in Gauss-Bonnet gravity

    SciTech Connect

    Dehghani, M.H.

    2004-09-15

    We show that in Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and without a cosmological constant, one can explain the acceleration of the expanding Universe. We first introduce a solution of the Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and no cosmological constant term in an empty (n+1)-dimensional bulk. This solution can generate a de Sitter spacetime with curvature n(n+1)/{l_brace}(n-2)(n-3) vertical bar {alpha} vertical bar {r_brace}. We show that an (n-1)-dimensional brane embedded in this bulk can have an expanding feature with acceleration. We also considered a four-dimensional brane world in a five-dimensional empty space with zero cosmological constant and obtain the modified Friedmann equations. The solution of these modified equations in matter-dominated era presents an expanding Universe with negative deceleration and positive jerk which is consistent with the recent cosmological data. We also find that for this solution, the 'n' th derivative of the scale factor with respect to time can be expressed only in terms of Hubble and deceleration parameters.

  14. An Exodus II specification for handling gauss points.

    SciTech Connect

    Thompson, David C.; Jortner, Jeffrey N.; Pebay, Philippe Pierre

    2007-11-01

    This report specifies the way in which Gauss points shall be named and ordered when storing them in an EXODUS II file so that they may be properly interpreted by visualization tools. This naming convention covers hexahedra and tetrahedra. Future revisions of this document will cover quadrilaterals, triangles, and shell elements.

  15. Understanding Gauss's Law Using Spreadsheets

    ERIC Educational Resources Information Center

    Baird, William H.

    2013-01-01

    Some of the results from the electrostatics portion of introductory physics are particularly difficult for students to understand and/or believe. For students who have yet to take vector calculus, Gauss's law is far from obvious and may seem more difficult than Coulomb's. When these same students are told that the minimum potential…

  16. Holographic vector superconductor in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Lu, Jun-Wang; Wu, Ya-Bo; Cai, Tuo; Liu, Hai-Min; Ren, Yin-Shuan; Liu, Mo-Lin

    2016-02-01

    In the probe limit, we numerically study the holographic p-wave superconductor phase transitions in the higher curvature theory. Concretely, we study the influences of Gauss-Bonnet parameter α on the Maxwell complex vector model (MCV) in the five-dimensional Gauss-Bonnet-AdS black hole and soliton backgrounds, respectively. In the two backgrounds, the improving Gauss-Bonnet parameter α and dimension of the vector operator Δ inhibit the vector condensate. In the black hole, the condensate quickly saturates a stable value at lower temperature. Moreover, both the stable value of condensate and the ratio ωg /Tc increase with α. In the soliton, the location of the second pole of the imaginary part increases with α, which implies that the energy of the quasiparticle excitation increases with the improving higher curvature correction. In addition, the influences of the Gauss-Bonnet correction on the MCV model are similar to the ones on the SU(2) p-wave model, which confirms that the MCV model is a generalization of the SU(2) Yang-Mills model even without the applied magnetic field to some extent.

  17. Propagation equation of Hermite-Gauss beams through a complex optical system with apertures and its application to focal shift.

    PubMed

    Peng, Sun; Jin, Guo; Tingfeng, Wang

    2013-07-01

    Based on the generalized Huygens-Fresnel diffraction integral (Collins' formula), the propagation equation of Hermite-Gauss beams through a complex optical system with a limiting aperture is derived. The elements of the optical system may be all those characterized by an ABCD ray-transfer matrix, as well as any kind of apertures represented by complex transmittance functions. To obtain the analytical expression, we expand the aperture transmittance function into a finite sum of complex Gaussian functions. Thus the limiting aperture is expressed as a superposition of a series of Gaussian-shaped limiting apertures. The advantage of this treatment is that we can treat almost all kinds of apertures in theory. As application, we define the width of the beam and the focal plane using an encircled-energy criterion and calculate the intensity distribution of Hermite-Gauss beams at the actual focus of an aperture lens. PMID:24323153

  18. Dark energy from Gauss-Bonnet and nonminimal couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Jimenez, D. F.

    2014-12-01

    We consider a scalar-tensor model of dark energy with Gauss-Bonnet and nonminimal couplings. Exact cosmological solutions were found in the absence of potential that give equations of state of dark energy consistent with current observational constraints, but with different asymptotic behaviors depending on the couplings of the model. A detailed reconstruction procedure is given for the scalar potential and the Gauss-Bonnet coupling for any given cosmological scenario. In particular we consider conditions for the existence of a variety of cosmological solutions with accelerated expansion, including quintessence, phantom, de Sitter, and Little Rip. For the case of quintessence and phantom we have found a scalar potential of the Albrecht-Skordis type, where the potential is an exponential with a polynomial factor.

  19. The Weyl-Cartan Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Haghani, Zahra; Khosravi, Nima; Shahidi, Shahab

    2015-11-01

    In this paper, we consider the generalized Gauss-Bonnet action in four-dimensional Weyl-Cartan spacetime. In this spacetime, the presence of a torsion tensor and Weyl vector implies that the generalized Gauss-Bonnet action will not be a total derivative in four-dimensional spacetime. It will be shown that the higher than two time derivatives can be removed from the action by choosing a suitable set of parameters. In the special case where only the trace part of the torsion remains, the model reduces to general relativity plus two vector fields, one of which is massless and the other is massive. We will then obtain the healthy region of the five-dimensional parameter space of the theory in some special cases.

  20. Laguerre-Gauss beams versus Bessel beams showdown: peer comparison.

    PubMed

    Mendoza-Hernández, Job; Arroyo-Carrasco, Maximino Luis; Iturbe-Castillo, Marcelo David; Chávez-Cerda, Sabino

    2015-08-15

    We present for the first time a comparison under similar circumstances between Laguerre-Gauss beams (LGBs) and Bessel beams (BB), and show that the former can be a better option for many applications in which BBs are currently used. By solving the Laguerre-Gauss differential equation in the asymptotic limit of a large radial index, we find the parameters to perform a peer comparison, showing that LGBs can propagate quasi-nondiffracting beams within the same region of space where the corresponding BBs do. We also demonstrate that LGBs, which have the property of self-healing, are more robust in the sense that they can propagate further than BBs under similar initial conditions. PMID:26274648

  1. Some new applications of truncated Gauss-Laguerre quadrature formulas

    NASA Astrophysics Data System (ADS)

    Mastroianni, G.; Monegato, G.

    2008-12-01

    We show how truncated Gauss-Laguerre quadrature formulas can be used to produce accurate approximations and high rates of convergence, also when they are applied to integrand functions having only an algebraic type decay to zero at infinity. The approach presented in the paper is proposed for the computation of integrals and for the construction of Nyström type interpolants for some second kind integral equations.

  2. Accelerating the Gauss-Seidel Power Flow Solver on a High Performance Reconfigurable Computer

    SciTech Connect

    Byun, Jong-Ho; Ravindran, Arun; Mukherjee, Arindam; Joshi, Bharat; Chassin, David P.

    2009-09-01

    The computationally intensive power flow problem determines the voltage magnitude and phase angle at each bus in a power system for hundreds of thousands of buses under balanced three-phase steady-state conditions. We report an FPGA acceleration of the Gauss-Seidel based power flow solver employed in the transmission module of the GridLAB-D power distribution simulator and analysis tool. The prototype hardware is implemented on an SGI Altix-RASC system equipped with a Xilinx Virtex II 6000 FPGA. Due to capacity limitations of the FPGA, only the bus voltage calculations of the power network are implemented on hardware while the branch current calculations are implemented in software. For a 200,000 bus system, the bus voltage calculation on the FPGA achieves a 48x speed-up with PQ buses and a 62 times for PV over an equivalent sequential software implementation. The average overall speed up of the FPGA-CPU implementation with 100 iterations of the Gauss-Seidel power solver is 2.6x over a software implementation, with the branch calculations on the CPU accounting for 85% of the total execution time. The FPGA-CPU implementation also shows linear scaling with increase in the size of the input power network.

  3. Orbital angular momentum density of a general Lorentz–Gauss vortex beam

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Ji, Zhiyue; Ru, Guoyun

    2016-07-01

    Based on the vectorial Rayleigh–Sommerfeld integral formulae, the analytical expression of a general Lorentz–Gauss vortex beam with an arbitrary topological charge is derived in free space. By using the analytical expressions of the electromagnetic field beyond the paraxial approximation, the orbital angular momentum density of a general Lorentz–Gauss vortex beam can be calculated. The effects of the linearly polarized angle and the topological charge on the three components of the orbital angular momentum density are investigated in the reference plane. The two transversal components of the orbital angular momentum are composed of two lobes with the same areas and opposite signs. The longitudinal component of the orbital angular momentum density is composed of four lobes with the same areas. The sign of the orbital angular momentum density in a pair of lobes is positive, and that of the orbital angular momentum density in the other pair of lobes is negative. Moreover, the negative magnitude of the orbital angular momentum density is larger than the positive magnitude of the orbital angular momentum density. The linearly polarized angle affects not only the shape and the location of the lobes, but also the magnitude of the three components of the orbital angular momentum density. With increasing the topological charge, the distribution of the orbital angular momentum density expands, the magnitude of the orbital angular momentum density increases, and the shape of the lobe also slightly changes.

  4. Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.

    1981-01-01

    Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.

  5. Flat Gauss illumination for the step-and-scan lithographic system

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Ying; Zeng, Aijun; Zhu, Jing; Yang, Baoxi; Huang, Huijie

    2016-08-01

    To meet the uniform dose exposure in optical lithography, it is desirable to get uniform illumination in the scanning direction on wafer for the step-and-scan lithographic system. We present a flat Gauss illumination for the step-and-scan lithographic system in this paper. Through flat Gauss illumination in scanning direction, pulse quantization effect could be reduced effectively. Correspondingly, the uniformity of the reticle and wafer is improved. Compared with the trapezoid illumination, flat Gauss illumination could keep the slit edge fixed, and pulse quantization effect will not be enhanced. Moreover flat Gauss illumination could be obtained directly without defocusing and blocking, which results in high energy efficiency and high throughput of the lithography. A design strategy for flat Gauss illumination is also proposed which offers high uniformity illumination, fixed slope and integral energy of flat Gauss illumination in different coherence factors. The strategy describes a light uniform device which contains first microlens array, second microlens array, one-dimensional Gauss diffuser and a Fourier lens. The device produces flat Gauss illumination directly at the scanning slit. The design and simulation results show that the uniformity of flat Gauss illumination in two directions satisfy the requirements of lithographic illumination system and the slope. In addition, slit edge of flat Gauss illumination does not change.

  6. Application of Gauss algorithm and Monte Carlo simulation to the identification of aquifer parameters

    USGS Publications Warehouse

    Durbin, Timothy J.

    1983-01-01

    The Gauss optimization technique can be used to identify the parameters of a model of a groundwater system for which the parameter identification problem is formulated as a least squares comparison between the response of the prototype and the response of the model. Unavoidable uncertainty in the true stress on the prototype and in the true response of the prototype to that stress will introduce errors into the parameter identification problem. A method for evaluating errors in the predictions of future water levels due to errors in recharge estimates was demonstrated. The method involves a Monte Carlo simulation of the parameter identification problem and of the prediction problem. The steps in the method are: (1) to prescribe the distribution of the recharge estimates; (2) to use this distribution to generate random sets of recharge estimates; (3) to use the Gauss optimization technique to identify the corresponding set of parameter estimates for each set of recharge estimates; (4) to make the corresponding set of hydraulic head predictions for each set of parameter estimates; and (5) to examine the distribution of hydraulic head predictions and to draw appropriate conclusions. Similarly, the method can be used independently or simultaneously to estimate the effect on hydraulic head predictions of errors in the measured water levels that are used in the parameter identification problem. The fit of the model to the data that are used to identify parameters is not a good indicator of these errors. A Monte Carlo simulation of the parameter identification problem can be used, however, to evaluate the effects on water level predictions of errors in the recharge (and pumpage) data used in the parameter identification problem. (Lantz-PTT)

  7. Self-similar propagation of Hermite-Gauss water-wave pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2016-01-01

    We demonstrate both theoretically and experimentally propagation dynamics of surface gravity water-wave pulses, having Hermite-Gauss envelopes. We show that these waves propagate self-similarly along an 18-m wave tank, preserving their general Hermite-Gauss envelopes in both the linear and the nonlinear regimes. The measured surface elevation wave groups enable observing the envelope phase evolution of both nonchirped and linearly frequency chirped Hermite-Gauss pulses, hence allowing us to measure Gouy phase shifts of high-order Hermite-Gauss pulses for the first time. Finally, when increasing pulse amplitude, nonlinearity becomes essential and the second harmonic of Hermite-Gauss waves was observed. We further show that these generated second harmonic bound waves still exhibit self-similar Hermite-Gauss shapes along the tank. PMID:26871174

  8. Fractional Hamiltonian monodromy from a Gauss-Manin monodromy

    SciTech Connect

    Sugny, D.; Jauslin, H. R.; Mardesic, P.; Pelletier, M.; Jebrane, A.

    2008-04-15

    Fractional Hamiltonian monodromy is a generalization of the notion of Hamiltonian monodromy, recently introduced by [Nekhoroshev, Sadovskii, and Zhilinskii, C. R. Acad. Sci. Paris, Ser. 1 335, 985 (2002); and Ann. Henri Poincare 7, 1099 (2006)] for energy-momentum maps whose image has a particular type of nonisolated singularities. In this paper, we analyze the notion of fractional Hamiltonian monodromy in terms of the Gauss-Manin monodromy of a Riemann surface constructed from the energy-momentum map and associated with a loop in complex space which bypasses the line of singularities. We also prove some propositions on fractional Hamiltonian monodromy for 1:-n and m:-n resonant systems.

  9. Extension of Gauss' method for the solution of Kepler's equation

    NASA Technical Reports Server (NTRS)

    Battin, R. H.; Fill, T. J.

    1978-01-01

    Gauss' method for solving Kepler's equation is extended to arbitrary epochs and orbital eccentricities. Although originally developed for near parabolic orbits in the vicinity of pericenter, a generalization of the method leads to a highly efficient algorithm which compares favorably to other methods in current use. A key virtue of the technique is that convergence is obtained by a method of successive substitutions with an initial approximation that is independent of the orbital parameters. The equations of the algorithm are universal, i.e., independent of the nature of the orbit whether elliptic, hyperbolic, parabolic or rectilinear.

  10. Gauss's law test of gravity at short range

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Paik, H. J.

    1993-01-01

    A null test of the gravitational inverse-square law can be performed by testing Gauss's law for the field. We have constructed a three-axis superconducting gravity gradiometer and carried out such a test. A lead pendulum weighing 1500 kg was used to produce a time-varying field. This experiment places a new (2-sigma) limit of alpha = (0.9 + or - 4.6) x 10 exp -4 at lambda of 1.5 m, where alpha and lambda are parameters for the generalized potential phi = -(GM/r)(l + alpha e exp -r/lambda).

  11. Gauss-Bonnet Brane World Gravity with a Scalar Field

    SciTech Connect

    Davis, Stephen C.

    2004-11-17

    The effective four-dimensional, linearised gravity of a brane world model with one extra dimension and a single brane is analysed. The model includes higher order curvature terms (such as the Gauss-Bonnet term) and a conformally coupled scalar field. Large and small distance gravitational laws are derived. In contrast to the corresponding Einstein gravity models, it is possible to obtain solutions with localised gravity which are compatible with observations. Solutions with non-standard large distance Newtonian potentials are also described.

  12. Controllable light capsules employing modified Bessel-Gauss beams

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-07-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms.

  13. Gauss-Bonnet modified gravity models with bouncing behavior

    NASA Astrophysics Data System (ADS)

    Escofet, Anna; Elizalde, Emilio

    2016-06-01

    The following issue is addressed: How the addition of a Gauss-Bonnet term (generically coming from most fundamental theories, as string and M theories), to a viable model, can change the specific properties, and even the physical nature, of the corresponding cosmological solutions? Specifically, brand new original dark energy models are obtained in this way with quite interesting properties, which exhibit, in a unified fashion, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence and ordinary matter, respectively. A model, in which the equation of state (EoS) parameter, w, is a function of time, is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with w = ‑1. Moreover, new Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are obtained and tested for the validity and stability of the corresponding solutions. They allow for a remarkably natural, unified description of a bouncing behavior at early times and accelerated expansion at present.

  14. Controllable light capsules employing modified Bessel-Gauss beams

    PubMed Central

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  15. Energy conditions in modified Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    García, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, José P.

    2011-05-01

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  16. Gauss-Newton method for DEM co-registration

    NASA Astrophysics Data System (ADS)

    Wang, Kunlun; Zhang, Tonggang

    2015-12-01

    Digital elevation model (DEM) co-registration is one of the hottest research problems, and it is the critical technology for multi-temporal DEM analysis, which has wide potential application in many fields, such as geological hazards. Currently, the least-squares principle is used in most DEM co-registration methods, in which the matching parameters are obtained by iteration; the surface co-registration is then accomplished. To improve the iterative convergence rate, a Gauss-Newton method for DEM co-registration (G-N) is proposed in this paper. A gradient formula based on a gridded discrete surface is derived in theory, and then the difficulty of applying the Gauss-Newton method to DEM matching is solved. With the G-N algorithm, the surfaces approach each other along the maximal gradient direction, and therefore the iterative convergence and the performance efficiency of the new method can be enhanced greatly. According to experimental results based on the simulated datasets, the average convergence rates of rotation and translation parameters of the G-N algorithm are increased by 40 and 15% compared to those of the ICP algorithm, respectively. The performance efficiency of the G-N algorithm is 74.9% better.

  17. Gauss-Bonnet black holes with nonconstant curvature horizons

    SciTech Connect

    Maeda, Hideki

    2010-06-15

    We investigate static and dynamical n({>=}6)-dimensional black holes in Einstein-Gauss-Bonnet gravity of which horizons have the isometries of an (n-2)-dimensional Einstein space with a condition on its Weyl tensor originally given by Dotti and Gleiser. Defining a generalized Misner-Sharp quasilocal mass that satisfies the unified first law, we show that most of the properties of the quasilocal mass and the trapping horizon are shared with the case with horizons of constant curvature. It is shown that the Dotti-Gleiser solution is the unique vacuum solution if the warp factor on the (n-2)-dimensional Einstein space is nonconstant. The quasilocal mass becomes constant for the Dotti-Gleiser black hole and satisfies the first law of the black-hole thermodynamics with its Wald entropy. In the non-negative curvature case with positive Gauss-Bonnet constant and zero cosmological constant, it is shown that the Dotti-Gleiser black hole is thermodynamically unstable. Even if it becomes locally stable for the nonzero cosmological constant, it cannot be globally stable for the positive cosmological constant.

  18. Energy conditions in modified Gauss-Bonnet gravity

    SciTech Connect

    Garcia, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, Jose P.

    2011-05-15

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  19. Controllable light capsules employing modified Bessel-Gauss beams.

    PubMed

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  20. Crossing of the phantom divide using tachyon-Gauss-Bonnet gravity

    SciTech Connect

    Sadeghi, J.; Banijamali, A.; Milani, F.; Setare, M. R.

    2009-06-15

    In this paper we consider two models. First, we study tachyon-Gauss-Bonnet gravity and obtain the condition of the equation of state crossing -1. Second, we discuss the modified Gauss-Bonnet gravity with the tachyon field and show the condition of {omega} crossing -1. Also, we plot figures for {omega} numerically in special potential and coupling function.

  1. The relationship of Carl Friedrich Gauss with his Hungarian scientist friends

    NASA Astrophysics Data System (ADS)

    Vargha, Magda

    Gauss had been in close contact with four Hungarian astronomers: Farkas Bolyai, Franz Xaver von Zach, János Pasquich and Pál Tittel. All these friendships were different from each other, if only because of the various ages and social standings in which these Hungarians lived. Gauss had always shown great interest in the latter. With the exception of Pasquich, all three friendships had started out as close, and in the end Gauss had repaid poorly what he received. His correspondence with Pasquich was quite different. Towards the end of his contact with Pasquich, Gauss had lifted himself above his usual indifference. With the help of his German astronomer friends, Gauss did everything he could to vindicate Pasquich, who had been accused in front of the whole astronomical community of publishing invented observations.

  2. Gauss-Manin Connection in Disguise: Calabi-Yau Threefolds

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung

    2016-05-01

    We describe a Lie Algebra on the moduli space of non-rigid compact Calabi-Yau threefolds enhanced with differential forms and its relation to the Bershadsky-Cecotti-Ooguri-Vafa holomorphic anomaly equation. In particular, we describe algebraic topological string partition functions {{F}g^alg, g ≥ 1} , which encode the polynomial structure of holomorphic and non-holomorphic topological string partition functions. Our approach is based on Grothendieck's algebraic de Rham cohomology and on the algebraic Gauss-Manin connection. In this way, we recover a result of Yamaguchi-Yau and Alim-Länge in an algebraic context. Our proofs use the fact that the special polynomial generators defined using the special geometry of deformation spaces of Calabi-Yau threefolds correspond to coordinates on such a moduli space. We discuss the mirror quintic as an example.

  3. Fractional Hamiltonian monodromy from a Gauss-Manin monodromy

    NASA Astrophysics Data System (ADS)

    Sugny, D.; Mardešić, P.; Pelletier, M.; Jebrane, A.; Jauslin, H. R.

    2008-04-01

    Fractional Hamiltonian monodromy is a generalization of the notion of Hamiltonian monodromy, recently introduced by [Nekhoroshev, Sadovskií, and Zhilinskií, C. R. Acad. Sci. Paris, Ser. 1 335, 985 (2002); Nekhoroshev, Sadovskií, and Zhilinskií, Ann. Henri Poincare 7, 1099 (2006)] for energy-momentum maps whose image has a particular type of nonisolated singularities. In this paper, we analyze the notion of fractional Hamiltonian monodromy in terms of the Gauss-Manin monodromy of a Riemann surface constructed from the energy-momentum map and associated with a loop in complex space which bypasses the line of singularities. We also prove some propositions on fractional Hamiltonian monodromy for 1:-n and m :-n resonant systems.

  4. Gauss-Manin Connection in Disguise: Calabi-Yau Threefolds

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung

    2016-06-01

    We describe a Lie Algebra on the moduli space of non-rigid compact Calabi-Yau threefolds enhanced with differential forms and its relation to the Bershadsky-Cecotti-Ooguri-Vafa holomorphic anomaly equation. In particular, we describe algebraic topological string partition functions {{F}g^alg, g ≥ 1}, which encode the polynomial structure of holomorphic and non-holomorphic topological string partition functions. Our approach is based on Grothendieck's algebraic de Rham cohomology and on the algebraic Gauss-Manin connection. In this way, we recover a result of Yamaguchi-Yau and Alim-Länge in an algebraic context. Our proofs use the fact that the special polynomial generators defined using the special geometry of deformation spaces of Calabi-Yau threefolds correspond to coordinates on such a moduli space. We discuss the mirror quintic as an example.

  5. Near infrared reflectance analysis by Gauss-Jordan linear algebra

    NASA Astrophysics Data System (ADS)

    Honigs, D. E.; Freelin, J. M.; Hieftje, G. M.

    1983-02-01

    Near-infrared reflectance analysis (NIRA) is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored.

  6. Error analysis in some Gauss-Turan-Radau and Gauss-Turan-Lobatto quadratures for analytic functions

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.

    2004-03-01

    We consider the generalized Gauss-Turan quadrature formulae of Radau and Lobatto type for approximating . The aim of this paper is to analyze the remainder term in the case when f is an analytic function in some region of the complex plane containing the interval [-1,1] in its interior. The remainder term is presented in the form of a contour integral over confocal ellipses (cf. SIAM J. Numer. Anal. 80 (1983) 1170). Sufficient conditions on the convergence for some of such quadratures, associated with the generalized Chebyshev weight functions, are found. Using some ideas from Hunter (BIT 35 (1995) 64) we obtain new estimates of the remainder term, which are very exact. Some numerical results and illustrations are shown.

  7. Quasispherical gravitational collapse in 5D Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Ghosh, Sushant G.; Jhingan, S.

    2010-07-15

    We obtain a general five-dimensional quasispherical collapsing solutions of irrotational dust in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms. These solutions are a generalization, to Einstein-Gauss-Bonnet gravity, of the five-dimensional quasispherical Szkeres like collapsing solutions in general relativity. It is found that the collapse proceeds in the same way as in the analogous spherical collapse, i.e., there exists regular initial data such that the collapse proceed to form naked singularities violating cosmic censorship conjecture. The effect of Gauss-Bonnet quadratic curvature terms on the formation and locations of the apparent horizon is deduced.

  8. On the remainder term of Gauss-Radau quadratures for analytic functions

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.; Pranic, Miroslav S.

    2008-09-01

    For analytic functions the remainder term of Gauss-Radau quadrature formulae can be represented as a contour integral with a complex kernel. We study the kernel on elliptic contours with foci at the points ±1 and a sum of semi-axes [varrho]>1 for the Chebyshev weight function of the second kind. Starting from explicit expressions of the corresponding kernels the location of their maximum modulus on ellipses is determined. The corresponding Gautschi's conjecture from [On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures, Rocky Mountain J. Math. 21 (1991), 209-226] is proved.

  9. Valuing option on the maximum of two assets using improving modified Gauss-Seidel method

    NASA Astrophysics Data System (ADS)

    Koh, Wei Sin; Muthuvalu, Mohana Sundaram; Aruchunan, Elayaraja; Sulaiman, Jumat

    2014-07-01

    This paper presents the numerical solution for the option on the maximum of two assets using Improving Modified Gauss-Seidel (IMGS) iterative method. Actually, this option can be governed by two-dimensional Black-Scholes partial differential equation (PDE). The Crank-Nicolson scheme is applied to discretize the Black-Scholes PDE in order to derive a linear system. Then, the IMGS iterative method is formulated to solve the linear system. Numerical experiments involving Gauss-Seidel (GS) and Modified Gauss-Seidel (MGS) iterative methods are implemented as control methods to test the computational efficiency of the IMGS iterative method.

  10. Holographic superconductors in Gauss-Bonnet gravity with Born-Infeld electrodynamics

    SciTech Connect

    Jing Jiliang; Wang Liancheng; Pan Qiyuan; Chen Songbai

    2011-03-15

    We investigate the holographic superconductors in Gauss-Bonnet gravity with Born-Infeld electrodynamics. We find that the Gauss-Bonnet constant, the model parameters, and the Born-Infeld coupling parameter will affect the formation of the scalar hair, the transition point of the phase transition from the second order to the first order, and the relation connecting the gap frequency in conductivity with the critical temperature. The combination of Gauss-Bonnet gravity and the Born-Infeld electrodynamics provides richer physics in the phase transition and the condensation of the scalar hair.

  11. Auxiliary functions for molecular integrals with Slater-type orbitals. II. Gauss transform methods

    NASA Astrophysics Data System (ADS)

    Ema, I.; López, R.; Fernández, J. J.; Ramírez, G.; Rico, J. F.

    The Gauss transform of Slater-type orbitals is used to express several types of molecular integrals involving these functions in terms of simple auxiliary functions. After reviewing this transform and the way it can be combined with the shift operator technique, a master formula for overlap integrals is derived and used to obtain multipolar moments associated to fragments of two-center distributions and overlaps of derivatives of Slater functions. Moreover, it is proved that integrals involving two-center distributions and irregular harmonics placed at arbitrary points (which determine the electrostatic potential, field and field gradient, as well as higher order derivatives of the potential) can be expressed in terms of auxiliary functions of the same type as those appearing in the overlap. The recurrence relations and series expansions of these functions are thoroughly studied, and algorithms for their calculation are presented. The usefulness and efficiency of this procedure are tested by developing two independent codes: one for the derivatives of the overlap integrals with respect to the centers of the functions, and another for derivatives of the potential (electrostatic field, field gradient, and so forth) at arbitrary points.0

  12. Holographic Schwinger effect in a confining background with Gauss-Bonnet corrections

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Jun; Abdalla, E.

    2016-05-01

    We study the effect of higher-derivative terms on holographic Schwinger effect by introducing the Gauss-Bonnet term in the gravity sector. Anti-de Sitter soliton background is considered which is dual to confining phase of the boundary field theory. By calculating the potential between the produced pair, we find that larger Gauss-Bonnet factor λ makes the pair lighter. We apply numerical method to calculate the production rate for various cases. The results show that the Gauss-Bonnet term enhances the production rate. The critical behaviors near the two critical values of the electric field are also investigated, and it is found that the two critical indexes are not affected by the Gauss-Bonnet term and thus suggests a possible universality.

  13. Parallel full-waveform inversion in the frequency domain by the Gauss-Newton method

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zhuang, Yuan

    2016-06-01

    In this paper, we investigate the full-waveform inversion in the frequency domain. We first test the inversion ability of three numerical optimization methods, i.e., the steepest-descent method, the Newton-CG method and the Gauss- Newton method, for a simple model. The results show that the Gauss-Newton method performs well and efficiently. Then numerical computations for a benchmark model named Marmousi model by the Gauss-Newton method are implemented. Parallel algorithm based on message passing interface (MPI) is applied as the inversion is a typical large-scale computational problem. Numerical computations show that the Gauss-Newton method has good ability to reconstruct the complex model.

  14. Intra-cavity generation of a superposition of Bessel-Gauss beams

    NASA Astrophysics Data System (ADS)

    Wong-Campos, Jaime D.; Hernandez-Aranda, Raul I.

    2012-10-01

    The generation of intra-cavity superpositions of Bessel-Gauss beams in an axicon resonator is studied numerically by means of a genetic algorithm. The coherent superposition of low order modes is induced by introducing crossed wires within the simulated cavity. Two different strategies are shown to be equivalent for the generation of the same superposition of two Bessel-Gauss beams with opposite azimuthal orders. In the first strategy the angle between a pair of cross-wires is varied for mode selection, the second consists on introducing a number of crosswires at equally spaced angles in which the number of wires corresponds exactly to the order of the superposed modes. Our results suggest a direct method for generating experimentally a coherent mode superposition of Bessel-Gauss beams using an axicon-based Bessel-Gauss resonator. These beams are relevant in areas such as optical trapping and micromanipulatio

  15. Higgs inflation with a Gauss-Bonnet term in the Jordan frame

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Longden, Chris

    2016-03-01

    We consider an extension of Higgs inflation in which the Higgs field is coupled to the Gauss-Bonnet term. Working solely in the Jordan frame, we first recover the standard predictions of field inflation without a Gauss-Bonnet term. We then calculate the power spectra for scalar and tensor perturbations in the presence of a coupling to a Gauss-Bonnet term. We show that generically the predictions of Higgs inflation are robust and the contributions to the power spectra coming from the Gauss-Bonnet term are negligible. We find, however, that the end of inflation can be strongly modified and that we hence expect the details of (p)reheating to be significantly altered, leading to some concerns over the feasibility of the model which require further investigation.

  16. Axial quasinormal modes of Einstein-Gauss-Bonnet-dilaton neutron stars

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; González-Romero, Luis Manuel; Kunz, Jutta; Mojica, Sindy; Navarro-Lérida, Francisco

    2016-01-01

    We investigate axial quasinormal modes of realistic neutron stars in Einstein-Gauss-Bonnet-dilaton gravity. We consider eight realistic equations of state containing nuclear, hyperonic, and hybrid matter. We focus on the fundamental curvature mode and compare the results with those of pure Einstein theory. We observe that the frequency of the modes is increased by the presence of the Gauss-Bonnet-dilaton, while the impact on the damping time is typically smaller. Interestingly, we obtain that universal relations valid in pure Einstein theory still hold for Einstein-Gauss-Bonnet-dilaton gravity, and we propose a method to use these phenomenological relations to constrain the value of the Gauss-Bonnet coupling.

  17. Isometric immersions via compensated compactness for slowly decaying negative Gauss curvature and rough data

    NASA Astrophysics Data System (ADS)

    Christoforou, Cleopatra; Slemrod, Marshall

    2015-12-01

    In this paper, the method of compensated compactness is applied to the problem of isometric immersion of a two-dimensional Riemannian manifold with negative Gauss curvature into three-dimensional Euclidean space. Previous applications of the method to this problem have required decay of order t -4 in the Gauss curvature. Here, we show that the decay of Hong (Commun Anal Geom 1:487-514, 1993) t -2- δ/2 where δ ∈ (0, 4) suffices.

  18. On the equivalence of Gaussian elimination and Gauss-Jordan reduction in solving linear equations

    NASA Technical Reports Server (NTRS)

    Tsao, Nai-Kuan

    1989-01-01

    A novel general approach to round-off error analysis using the error complexity concepts is described. This is applied to the analysis of the Gaussian Elimination and Gauss-Jordan scheme for solving linear equations. The results show that the two algorithms are equivalent in terms of our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be implemented with confidence if parallel computers are available.

  19. Black Hole Thermodynamic Products in Einstein Gauss Bonnet Gravity

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata

    2016-07-01

    By now, there are many hints from string theory that collective excitations of solitonic objects can be described by effective low energy theories. The entropy of general rotating black holes in five dimensions may be interpreted as an indication that, it derives from two independent microscopic contributions and each of these may be attributed to a gas of strings. In the present work, we consider a charged black hole in five dimensional Einstein Gauss Bonnet gravity. In spite of presenting the thermodynamic quantities' product as summation/ subtraction of two independent integers, our motive is to check whether the product of the same quantity for event horizon and Cauchy horizon is free of mass, i.e., global, or not. We derive the thermodynamic products of characteristic parameters to mark which are global. We further interpret the stability of the black holes by computing the specific heat for both horizons. Stable and unstable phases of horizons are pointed out. The phase transitions with respect to the charge in nature of specific heat are also observed. All these calculation might be helpful to understand the microscopic nature of such black holes.

  20. Thermodynamics of Gauss-Bonnet-dilaton Lifshitz black branes

    NASA Astrophysics Data System (ADS)

    Zangeneh, M. Kord; Dehghani, M. H.; Sheykhi, A.

    2015-09-01

    We explore an effective supergravity action in the presence of a massless gauge field which contains a Gauss-Bonnet term as well as a dilaton field. We construct a new class of black brane solutions of this theory with a Lifshitz asymptotic by fixing the parameters of the model such that the asymptotic Lifshitz behavior can be supported. Then we construct the well-defined finite action through the use of the counterterm method. We also obtain two independent constants along the radial coordinate by combining the equations of motion. Calculations of these two constants at infinity through the use of the large-r behavior of the metric functions show that our solution respects the no-hair theorem. Furthermore, we combine these two constants in order to get a constant C which is proportional to the energy of the black brane. We calculate this constant at the horizon in terms of the temperature and entropy and at large-r in terms of the geometrical mass. By calculating the value of the energy density through the use of the counterterm method, we obtain the relation between the energy density, the temperature, and the entropy. This relation is the generalization of the well-known Smarr formula for AdS black holes. Finally, we study the thermal stability of our black brane solution and show that it is stable under thermal perturbations.

  1. Charged black hole solutions in Gauss-Bonnet-massive gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.; Panah, B. Eslam

    2016-01-01

    Motivated by high interest in the close relation between string theory and black hole solutions, in this paper, we take into account the Einstein-Gauss-Bonnet Lagrangian in the context of massive gravity. We examine the possibility of black hole in this regard, and discuss the types of horizons. Next, we calculate conserved and thermodynamic quantities and check the validity of the first law of thermodynamics. In addition, we investigate the stability of these black holes in context of canonical ensemble. We show that number, type and place of phase transition points may be significantly affected by different parameters. Next, by considering cosmological constant as thermodynamical pressure, we will extend phase space and calculate critical values. Then, we construct thermodynamical spacetime by considering mass as thermodynamical potential. We study geometrical thermodynamics of these black holes in context of heat capacity and extended phase space. We show that studying heat capacity, geometrical thermodynamics and critical behavior in extended phase space lead to consistent results. Finally, we will employ a new method for obtaining critical values and show that the results of this method are consistent with those of other methods.

  2. Vainshtein mechanism in Gauss-Bonnet gravity and Galileon aether

    NASA Astrophysics Data System (ADS)

    Gannouji, Radouane; Sami, M.

    2012-01-01

    We derive field equations of Gauss-Bonnet gravity in four dimensions after dimensional reduction of the action and demonstrate that in this scenario the Vainshtein mechanism operates in the flat spherically symmetric background. We show that inside this Vainshtein sphere the fifth force is negligibly small compared to the gravitational force. We also investigate the stability of the spherically symmetric solution, and clarify the vocabulary used in the literature about the hyperbolicity of the equation and the ghost-Laplacian stability conditions. We find superluminal behavior of the perturbation of the field in the radial direction. However, because of the presence of the nonlinear terms, the structure of the space-time is modified and as a result the field does not propagate in the Minkowski metric but rather in an “aether” composed of the scalar field π(r). We thereby demonstrate that the superluminal behavior does not create time paradoxes thanks to the absence of causal closed curves. We also derive the stability conditions for a Friedmann universe in context with scalar and tensor perturbations and we study the cosmology of the model.

  3. Laguerre-Gauss basis functions in observer models

    NASA Astrophysics Data System (ADS)

    Burgess, Arthur E.

    2003-05-01

    Observer models based on linear classifiers with basis functions (channels) are useful for evaluation of detection performance with medical images. They allow spatial domain calculations with a covariance matrix of tractable size. The term "channelized Fisher-Hotelling observer" will be used here. It is also called the "channelized Hotelling observer" model. There are an infinite number of basis function (channel ) sets that could be employed. Examples of channel sets that have been used include: difference of Gaussian (DOG) filters, difference of Mesa (DOM) filters and Laguerre-Gauss (LG) basis functions. Another option, sums of LG functions (LGS), will also be presented here. This set has the advantage of having no DC response. The effect of the number of images used to estimate model observer performance will be described, for both filtered 1/f3 noise and GE digital mammogram backgrounds. Finite sample image sets introduce both bias and variance to the estimate. The results presented here agree with previous work on linear classifiers. The LGS basis set gives a small but statistically significant reduction in bias. However, this may not be of much practical benefit. Finally, the effect of varying the number of basis functions included in the set will be addressed. It was found that four LG bases or three LGS bases are adequate.

  4. Rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Mojica, Sindy; Zagermann, Marco

    2016-03-01

    We construct sequences of rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory, employing two equations of state for the nuclear matter. We analyze the dependence of the physical properties of these neutron stars on the Gauss-Bonnet coupling strength. For a given equation of state we determine the physically relevant domain of rapidly rotating neutron stars, which is delimited by the set of neutron stars rotating at the Kepler limit, the set of neutron stars along the secular instability line, and the set of static neutron stars. As compared to Einstein gravity, the presence of the Gauss-Bonnet term decreases this domain, leading to lower values for the maximum mass as well as to smaller central densities. The quadrupole moment is decreased by the Gauss-Bonnet term for rapidly rotating neutron stars, while it is increased for slowly rotating neutron stars. The universal relation between the quadrupole moment and the moment of inertia found in general relativity appears to extend to dilatonic Einstein-Gauss-Bonnet theory with very little dependence on the coupling strength of the Gauss-Bonnet term. The neutron stars carry a small dilaton charge.

  5. Dark matter relic density in Gauss-Bonnet braneworld cosmology

    NASA Astrophysics Data System (ADS)

    Meehan, Michael T.; Whittingham, Ian B.

    2014-12-01

    The relic density of symmetric and asymmetric dark matter in a Gauss-Bonnet (GB) modified Randall-Sundrum (RS) type II braneworld cosmology is investigated. The existing study of symmetric dark matter in a GB braneworld (Okada and Okada, 2009) found that the expansion rate was reduced compared to that in standard General Relativity (GR), thereby delaying particle freeze-out and resulting in relic abundances which are suppressed by up to Script O(10-2). This is in direct contrast to the behaviour observed in RS braneworlds where the expansion rate is enhanced and the final relic abundance boosted. However, this finding that relic abundances are suppressed in a GB braneworld is based upon a highly contrived situation in which the GB era evolves directly into a standard GR era, rather than passing through a RS era as is the general situation. This collapse of the RS era requires equating the mass scale mα of the GB modification and the mass scale mσ of the brane tension. However, if the GB contribution is to be considered as the lowest order correction from string theory to the RS action, we would expect mα > mσ. We investigate the effect upon the relic abundance of choosing more realistic values for the ratio Script Rm ≡ mα/mσ and find that the relic abundance can be either enhanced or suppressed by more than two orders of magnitude. However, suppression only occurs for a small range of parameter choices and, overwhelmingly, the predominant situation is that of enhancement as we recover the usual Randall-Sundrum type behaviour in the limit Script Rm gg 1. We use the latest observational bound ΩDMh2 = 0.1187 ± 0.0017 to constrain the various model parameters and briefly discuss the implications for direct/indirect dark matter detection experiments as well as dark matter particle models.

  6. P-T phase diagram of a holographic s+p model from Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Nie, Zhang-Yu; Zeng, Hui

    2015-10-01

    In this paper, we study the holographic s+p model in 5-dimensional bulk gravity with the Gauss-Bonnet term. We work in the probe limit and give the Δ-T phase diagrams at three different values of the Gauss-Bonnet coefficient to show the effect of the Gauss-Bonnet term. We also construct the P-T phase diagrams for the holographic system using two different definitions of the pressure and compare the results.

  7. Dark matter relic density in Gauss-Bonnet braneworld cosmology

    SciTech Connect

    Meehan, Michael T.; Whittingham, Ian B. E-mail: Ian.Whittingham@jcu.edu.au

    2014-12-01

    The relic density of symmetric and asymmetric dark matter in a Gauss-Bonnet (GB) modified Randall-Sundrum (RS) type II braneworld cosmology is investigated. The existing study of symmetric dark matter in a GB braneworld (Okada and Okada, 2009) found that the expansion rate was reduced compared to that in standard General Relativity (GR), thereby delaying particle freeze-out and resulting in relic abundances which are suppressed by up to O(10{sup −2}). This is in direct contrast to the behaviour observed in RS braneworlds where the expansion rate is enhanced and the final relic abundance boosted. However, this finding that relic abundances are suppressed in a GB braneworld is based upon a highly contrived situation in which the GB era evolves directly into a standard GR era, rather than passing through a RS era as is the general situation. This collapse of the RS era requires equating the mass scale m{sub α} of the GB modification and the mass scale m{sub σ} of the brane tension. However, if the GB contribution is to be considered as the lowest order correction from string theory to the RS action, we would expect m{sub α} > m{sub σ}. We investigate the effect upon the relic abundance of choosing more realistic values for the ratio R{sub m} ≡ m{sub α}/m{sub σ} and find that the relic abundance can be either enhanced or suppressed by more than two orders of magnitude. However, suppression only occurs for a small range of parameter choices and, overwhelmingly, the predominant situation is that of enhancement as we recover the usual Randall-Sundrum type behaviour in the limit R{sub m} >> 1. We use the latest observational bound Ω{sub DM}h{sup 2} = 0.1187 ± 0.0017 to constrain the various model parameters and briefly discuss the implications for direct/indirect dark matter detection experiments as well as dark matter particle models.

  8. Our best juniors still struggle with Gauss's Law: Characterizing their difficulties

    NASA Astrophysics Data System (ADS)

    Pepper, Rachel E.; Chasteen, Stephanie V.; Pollock, Steven J.; Perkins, Katherine K.

    2010-10-01

    We discuss student conceptual difficulties with Gauss's law observed in an upper-division Electricity and Magnetism (E&M) course. Difficulties at this level have been described in previous work; we present further quantitative and qualitative evidence that upper-division students still struggle with Gauss's law. This evidence is drawn from analysis of upper-division E&M conceptual post-tests, traditional exams, and formal student interviews. Examples of student difficulties include difficulty with the inverse nature of the problem, difficulty articulating complete symmetry arguments, and trouble recognizing that in situations without sufficient symmetry it is impossible (rather than "difficult") to calculate the electric field using Gauss's law. One possible explanation for some of these conceptual difficulties is that even students at the upper level may struggle to connect mathematical expressions to physical meanings.

  9. Gauss-bonnet black holes and possibilities for their experimental search

    SciTech Connect

    Alexeyev, S. O. Rannu, K. A.

    2012-03-15

    Corollaries of gravity models with second-order curvature corrections in the form of a Gauss-Bonnet term and possibilities (or impossibilities) for their experimental search or observations are discussed. The full version of the four-dimensional Schwarzschild-Gauss-Bonnet black hole solution and the constraint on the possible minimal black hole mass following from this model are considered. Using our solution as a model for the final stages of Hawking evaporation of black holes with a low initial mass (up to 10{sup 15} g) whose lifetime is comparable to that of our Universe, we have revealed differences in the patterns of evaporation: we have obtained high values of the emitted energy and showed the impossibility of an experimental search for primordial black holes by their evaporation products. Scenarios for the evaporation of Gauss-Bonnet black holes in multidimensional gravity models and possibilities for their experimental search are also discussed.

  10. Magnetic-field effects on p-wave phase transition in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Bo; Lu, Jun-Wang; Jin, Yong-Yi; Lu, Jian-Bo; Zhang, Xue; Wu, Si-Yu; Wang, Cui

    2014-07-01

    In the probe limit, we study the holographic p-wave phase transition in the Gauss-Bonnet gravity via numerical and analytical methods. Concretely, we study the influences of the external magnetic field on the Maxwell complex vector model in the five-dimensional Gauss-Bonnet-AdS black hole and soliton backgrounds, respectively. For the two backgrounds, the results show that the magnetic field enhances the superconductor phase transition in the case of the lowest Landau level, while the increasing Gauss-Bonnet parameter always hinders the vector condensate. Moreover, the Maxwell complex vector model is a generalization of the SU(2) Yang-Mills model all the time. In addition, the analytical results backup the numerical results. Furthermore, this model might provide a holographic realization for the QCD vacuum instability.

  11. A fast Gauss-Newton optimizer for estimating human body orientation.

    PubMed

    Lee, Jung Keun; Park, Edward J

    2008-01-01

    This paper presents a quaternion-based Gauss-Newton optimizer for tracking human body orientation using inertial/magnetic sensors. Since a computationally efficient and robust algorithm for estimating orientation is critical for low-cost and real-time ambulatory purposes, the optimizer is formulated using a virtual rotation concept in order to decrease the computing time. In addition, to guard against the effects of fast body motions and temporary ferromagnetic disturbances, a situational measurement vector selection procedure is adopted in conjunction with the Gauss-Newton optimizer. PMID:19163001

  12. An Alternative Realization of Gauss-Newton for Frequency-Domain Acoustic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, J.; Chi, B.; Dong, L.

    2014-12-01

    Since FWI was studied under the least-square misfit optimization proposed by Tarantola (1984) in time domain, it has been greatly improved by many researchers. Pratt (1998) developed FWI in frequency domain using a Gauss-Newton optimization. In recent years, FWI has been widely studied under the framework of adjoint-state methods, as summarized by Plessix (2006). Preconditioning and high order gradients are important for FWI. Many researches have focused on the Newton optimization, in which the calculation of inverse Hessian is the key problem. Pseudo Hessian such as the diagonal Hessian was firstly used to approximate inverse Hessian (Choi & Shin, 2007). Then Gauss-Newton or l-BFGS method was widely studied to iteratively calculate the inverse approximate Hessian Haor full Hessian (Sheen et al., 2006). Full Hessian is the base of the exact Newton optimization. Fichtner and Trampert (2011) presented an extension of the adjoint-state method to directly compute the full Hessian; Métivier et al. (2012) proposed a general second-order adjoint-state formula for Hessian-vector product to tackle Gauss-Newton and exact Newton. Liu et al. (2014) proposed a matrix-decomposition FWI (MDFWI) based on Born kernel. They used the Born Fréchet kernel to explicitly calculate the gradient of the objective function through matrix decomposition, no full Fréchet kernel being stored in memory beforehand. However, they didn't give a method to calculate the Gauss-Newton. In this paper, We propose a method based on Born Fréchet kernel to calculate the Gauss-Newton for acoustic full waveform inversion (FWI). The Gauss-Newton is iteratively constructed without needing to store the huge approximate Hessian (Ha) or Fréchet kernel beforehand, and the inverse of Ha is not need to be calculated either. This procedure can be efficiently accomplished through matrix decomposition. More resolved result and faster convergence are obtained when this Gauss-Newton is applied in FWI based on the Born

  13. Carl Friedrich Gauss - General Theory of Terrestrial Magnetism - a revised translation of the German text

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.-H.; Tsurutani, B. T.

    2014-02-01

    This is a translation of the Allgemeine Theorie des Erdmagnetismus published by Carl Friedrich Gauss in 1839 in the Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838. The current translation is based on an earlier translation by Elizabeth Juliana Sabine published in 1841. This earlier translation has been revised, corrected, and extended. Numerous biographical comments on the scientists named in the original text have been added as well as further information on the observational material used by Carl Friedrich Gauss. An attempt is made to provide a readable text to a wider scientific community, a text laying the foundation of today's understanding of planetary magnetic fields.

  14. Correspondence between entropy-corrected holographic and Gauss-Bonnet dark-energy models

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Jamil, Mubasher

    2010-11-01

    In the present work we investigate the cosmological implications of the entropy-corrected holographic dark-energy (ECHDE) density in the Gauss-Bonnet framework. This is motivated from the loop quantum gravity corrections to the entropy-area law. Assuming the two cosmological scenarios are valid simultaneously, we show that there is a correspondence between the ECHDE scenario in flat universe and the phantom dark-energy model in the framework of the Gauss-Bonnet theory with a potential. This correspondence leads consistently to an accelerating universe.

  15. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    NASA Astrophysics Data System (ADS)

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  16. Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave.

    PubMed

    Lin, Jiao; Dellinger, Jean; Genevet, Patrice; Cluzel, Benoit; de Fornel, Frederique; Capasso, Federico

    2012-08-31

    A new surface wave is introduced, the cosine-Gauss beam, which does not diffract while it propagates in a straight line and tightly bound to the metallic surface for distances up to 80 μm. The generation of this highly localized wave is shown to be straightforward and highly controllable, with varying degrees of transverse confinement and directionality, by fabricating a plasmon launcher consisting of intersecting metallic gratings. Cosine-Gauss beams have potential for applications in plasmonics, notably for efficient coupling to nanophotonic devices, opening up new design possibilities for next-generation optical interconnects. PMID:23002838

  17. Generation and self-healing of a radially polarized Bessel-Gauss beam

    NASA Astrophysics Data System (ADS)

    Wu, Gaofeng; Wang, Fei; Cai, Yangjian

    2014-04-01

    We report experimental generation of a radially polarized Bessel-Gauss (RPBG) beam of order 1 with the help of a spatial light modulator, a spiral phase plate, and a radial polarization converter. Furthermore, we carry out a comparative study of the self-healing properties of a RPBG beam and a linearly polarized Bessel-Gauss (LPBG) beam which are blocked by a sector-shaped opaque obstacle both experimentally and numerically. Our results clearly show that the self-healing ability of a RPBG beam indeed is superior to that of a LPBG beam, and some physical interpretations are given. Our results will be useful for particle trapping and microscopy.

  18. The Generation of Higher-order Laguerre-Gauss Optical Beams for High-precision Interferometry

    PubMed Central

    Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas

    2013-01-01

    Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry. PMID:23962813

  19. The Gauss and Ampere Laws: Different Laws but Similar Difficulties for Student Learning

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Almudi, Jose M.; Salinas, Julia; Zuza, Kristina; Ceberio, Mikel

    2008-01-01

    This study aims to analyse university students' reasoning regarding two laws of electromagnetism: Gauss's law and Ampere's law. It has been supposed that the problems seen in understanding and applying both laws do not spring from students' misconceptions. Students habitually use reasoning known in the literature as 'common sense' methodology that…

  20. Horizons of radiating black holes in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Ghosh, S. G.; Deshkar, D. W.

    2008-02-15

    A Vaidya-based model of a radiating black hole is studied in a 5-dimensional Einstein gravity with Gauss-Bonnet contribution of quadratic curvature terms. The structure and locations of the apparent and event horizons of the radiating black hole are determined.

  1. Radially polarized Bessel-Gauss beams: decentered Gaussian beam analysis and experimental verification.

    PubMed

    Schimpf, Damian N; Putnam, William P; Grogan, Michael D W; Ramachandran, Siddharth; Kärtner, Franz X

    2013-07-29

    We derive solutions for radially polarized Bessel-Gauss beams in free-space by superimposing decentered Gaussian beams with differing polarization states. We numerically show that the analytical result is applicable even for large semi-aperture angles, and we experimentally confirm the analytical expression by employing a fiber-based mode-converter. PMID:23938719

  2. An Alternative Method to Gauss-Jordan Elimination: Minimizing Fraction Arithmetic

    ERIC Educational Resources Information Center

    Smith, Luke; Powell, Joan

    2011-01-01

    When solving systems of equations by using matrices, many teachers present a Gauss-Jordan elimination approach to row reducing matrices that can involve painfully tedious operations with fractions (which I will call the traditional method). In this essay, I present an alternative method to row reduce matrices that does not introduce additional…

  3. Variation of the orbital elements for parabolic trajectories due to a small impulse using Gauss equations

    NASA Astrophysics Data System (ADS)

    Kamel, Osman M.; Ammar, M. K.

    2006-12-01

    Firstly we derive Gauss' perturbation equation for parabolic motion using Murray-Dermott and Kovalevsky procedures. Secondly, we easily deduce the variations of the orbital elements for the parabolic trajectories due to a small impulse at any point along the path and at the vertex of the parabola.

  4. On the geometry of the Gauss map of conformal foliations by lines

    NASA Astrophysics Data System (ADS)

    Burel, Jean-Marie; Gudmundsson, Sigmundur

    2004-01-01

    Let {cal F} be an oriented conformal foliation of connected, totally geodesic and 1-dimensional leaves in mathbb{R}(n+1) . We prove that if n≥ 3 then the Gauss map phi{:} U {->} S(n) of {cal F} is a non-constant n-harmonic morphism if and only if it is a radial projection.

  5. Tolman-Oppenheimer-Volkoff equations in modified Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Momeni, D.; Myrzakulov, R.

    2015-11-01

    Based on a stringy inspired Gauss-Bonnet (GB) modification of classical gravity, we constructed a model for neutron stars. We derived the modified forms of Tolman-Oppenheimer-Volkoff (TOV) equations for a generic function of f(G) gravity. The hydrostatic equations remained unchanged but the dynamical equations for metric functions are modified due to the effects of GB term.

  6. Comparisons between real and complex Gauss wavelet transform methods of three-dimensional shape reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Dan, Youquan; Wang, Qingyuan

    2015-10-01

    The continuous wavelet transform (CWT) introduces an expandable spatial and frequency window which can overcome the inferiority of localization characteristic in Fourier transform and windowed Fourier transform. The CWT method is widely applied in the non-stationary signal analysis field including optical 3D shape reconstruction with remarkable performance. In optical 3D surface measurement, the performance of CWT for optical fringe pattern phase reconstruction usually depends on the choice of wavelet function. A large kind of wavelet functions of CWT, such as Mexican Hat wavelet, Morlet wavelet, DOG wavelet, Gabor wavelet and so on, can be generated from Gauss wavelet function. However, so far, application of the Gauss wavelet transform (GWT) method (i.e. CWT with Gauss wavelet function) in optical profilometry is few reported. In this paper, the method using GWT for optical fringe pattern phase reconstruction is presented first and the comparisons between real and complex GWT methods are discussed in detail. The examples of numerical simulations are also given and analyzed. The results show that both the real GWT method along with a Hilbert transform and the complex GWT method can realize three-dimensional surface reconstruction; and the performance of reconstruction generally depends on the frequency domain appearance of Gauss wavelet functions. For the case of optical fringe pattern of large phase variation with position, the performance of real GWT is better than that of complex one due to complex Gauss series wavelets existing frequency sidelobes. Finally, the experiments are carried out and the experimental results agree well with our theoretical analysis.

  7. Analytical Limit Distributions from Random Power-Law Interactions

    NASA Astrophysics Data System (ADS)

    Zaid, Irwin; Mizuno, Daisuke

    2016-07-01

    Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated.

  8. Complete gravity field of an ellipsoidal prism by Gauss-Legendre quadrature

    NASA Astrophysics Data System (ADS)

    Roussel, C.; Verdun, J.; Cali, J.; Masson, F.

    2015-12-01

    The increasing availability of geophysical models of the Earth's lithosphere and mantle has generated renewed interest in computation of theoretical gravity effects at global and regional scales. At the same time, the increasing availability of gravity gradient anomalies derived from satellite measurements, such as those provided by GOCE satellite, requires mathematical methods that directly model the gravity gradient anomalies in the same reference frame as GOCE gravity gradients. Our main purpose is to interpret these anomalies in terms of source and density distribution. Numerical integration methods for calculating gravity gradient values are generally based on a mass discretization obtained by decomposing the Earth's layers into a finite number of elementary solid bodies. In order to take into account the curvature of the Earth, spherical prisms or `tesseroids' have been established unequivocally as accurate computation tools for determining the gravitational effects of large-scale structures. The question which then arises from, is whether gravity calculation methods using spherical prisms remain valid when factoring in the ellipticity of the Earth. In the paper, we outline a comprehensive method to numerically compute the complete gravity field with the help of the Gauss-Legendre quadrature involving ellipsoidal shaped prisms. The assessment of this new method is conducted by comparison between the gravity gradient values of simple sources obtained by means of numerical and analytical calculations, respectively. A comparison of the gravity gradients obtained from PREM and LITHO1.0 models using spherical- and ellipsoidal-prism-based methods is also presented. Numerical results indicate that the error on gravity gradients, caused by the use of the spherical prism instead of its ellipsoidal counterpart to describe an ellipsoidally shaped Earth, is useful for a joint analysis with those deduced from GOCE satellite measurements. Provided that a suitable scaling

  9. Rms characterization of Bessel Gauss beams: Correspondence between polar and Cartesian representations

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Gay, David; Piché, Michel

    2006-09-01

    A recent analysis [G. Rousseau, D. Gay and M. Piché, One-dimensional description of cylindrically symmetric laser beams: application to Bessel-type nondiffracting beams, J. Opt. Soc. Am. A, 22 (2005) 1274] has shown that any cylindrically symmetric laser beam can be synthesized from a single wave called a constituent wave. This representation allows the introduction of one-dimensional Cartesian root-mean-square (rms) parameters to describe the conical structure of cylindrically symmetric laser beams. In this paper, we compare the rms characterization of Bessel-Gauss beams in polar coordinates with that of their respective constituent waves in Cartesian coordinates. Numerical results reveal an asymptotic correspondence between polar and Cartesian rms parameters of Bessel-Gauss beams propagating in a nondiffracting regime. Such a correspondence eliminates misleading interpretations about the propagation factor and the Rayleigh range of nondiffracting Bessel-type beams characterized in terms of polar rms parameters.

  10. Conformal mass in Einstein-Gauss-Bonnet AdS gravity

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Kofinas, Georgios; Miskovic, Olivera; Olea, Rodrigo

    2015-05-01

    In this paper, we show that the physical information given by conserved charges for asymptotically AdS spacetimes in Einstein-Gauss-Bonnet AdS gravity is encoded in the electric part of the Weyl tensor. This result generalizes the conformal mass definition by Ashtekar-Magnon-Das (AMD) to a gravity theory with a Gauss-Bonnet term. This proof makes use of the Noether charges obtained from an action renormalized by the addition of counterterms which depend on the extrinsic curvature (Kounterterms). If the asymptotic fall-off behavior of the Weyl tensor is same as the one considered in the AMD method, then the Kounterterm charges and the AMD charges agree in any dimension.

  11. Excitation of high orbital angular momentum Rydberg states with Laguerre-Gauss beams

    NASA Astrophysics Data System (ADS)

    Rodrigues, J. D.; Marcassa, L. G.; Mendonça, J. T.

    2016-04-01

    We consider the excitation of Rydberg states through photons carrying an intrinsic orbital angular momentum degree of freedom. Laguerre-Gauss modes, with a helical wave-front structure, correspond to such a set of laser beams, which carry {{\\ell }}0 units of orbital angular momentum in their propagation direction, with ℓ 0 the winding number. We demonstrate that, in a proper geometry setting, this orbital angular momentum can be transferred to the internal degrees of freedom of the atoms, thus violating the standard dipole selection rules. Higher orbital angular momentum states become accessible through a single photon excitation process. We investigate how the spacial structure of the Laguerre-Gauss beam affects the radial coupling strength, assuming the simplest case of hydrogen-like wavefunctions. Finally we discuss a generalization of the angular momentum coupling, in order to include the effects of the fine and hyperfine splitting, in the context of the Wigner-Eckart theorem.

  12. A note on the bounds of the error of Gauss-Turan-type quadratures

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.

    2007-03-01

    This note is concerned with estimates for the remainder term of the Gauss-Turan quadrature formula,where is the Gori-Michelli weight function, with Un-1(t) denoting the (n-1)th degree Chebyshev polynomial of the second kind, and f is a function analytic in the interior of and continuous on the boundary of an ellipse with foci at the points +/-1 and sum of semiaxes [varrho]>1. The present paper generalizes the results in [G.V. Milovanovic, M.M. Spalevic, Bounds of the error of Gauss-Turan-type quadratures, J. Comput. Appl. Math. 178 (2005) 333-346], which is concerned with the same problem when s=1.

  13. Magnetic fields greater than 10 to the 20th power gauss. [in astrophysical systems

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Schramm, D. N.

    1977-01-01

    Zaumen (1976) found that spontaneous pair production in a uniform magnetic field should be a feasible process for field strengths at least of the order of 10 to the 20th power gauss. This note points out that a magnetic field of this order of magnitude is most unlikely to occur in realistic astrophysical situations because of the large dynamical and quantum-mechanical effects such a field would produce. It is suggested that Zaumen's calculation would probably have little bearing on the suspected evolution of astrophysical systems since other processes (either dynamical or quantum-mechanical) apparently limit the field strength before such high magnetic fields would be reached. An upper limit of about 10 to the 16th power gauss is obtained by considering the isotropy of the 3-K blackbody radiation, the formation of collapsed objects in very high magnetic fields, and magnetic bremsstrahlung processes in quantum electrodynamics.

  14. Gauss-Seidel Accelerated: Implementing Flow Solvers on Field Programmable Gate Arrays

    SciTech Connect

    Chassin, David P.; Armstrong, Peter R.; Chavarría-Miranda, Daniel; Guttromson, Ross T.

    2006-06-01

    Non-linear steady-state power flow solvers have typically relied on the Newton-Raphson method to efficiently compute solutions on today's computer systems. Field Programmable Gate Array (FPGA) devices, which have recently been integrated into high-performance computers by major computer system vendors, offer an opportunity to significantly increase the performance of power flow solvers. However, only some algorithms are suitable for an FPGA implementation. The Gauss-Seidel method of solving the AC power flow problem is an excellent example of such an opportunity. In this paper we discuss algorithmic design considerations, optimization, implementation, and performance results of the implementation of the Gauss-Seidel method running on a Silicon Graphics Inc. Altix-350 computer equipped with a Xilinx Virtex II 6000 FPGA.

  15. Area functional relation for 5D-Gauss-Bonnet-AdS black hole

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2016-08-01

    We present area (or entropy) functional relation for multi-horizons five dimensional (5D) Einstein-Maxwell-Gauss-Bonnet-AdS black hole. It has been observed by exact and explicit calculation that some complicated function of two or three horizons area is mass-independent whereas the entropy product relation is not mass-independent. We also study the local thermodynamic stability of this black hole. The phase transition occurs at certain condition. Smarr mass formula and first law of thermodynamics have been derived. This mass-independent relation suggests they could turn out to be an universal quantity and further helps us to understanding the nature of black hole entropy (both interior and exterior) at the microscopic level. In the "Appendix", we have derived the thermodynamic products for 5D Einstein-Maxwell-Gauss-Bonnet black hole with vanishing cosmological constant.

  16. Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.

    PubMed

    Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor

    2015-02-20

    Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude. PMID:25763946

  17. Numerical solution of first order initial value problem using 4-stage sixth order Gauss-Kronrod-Radau IIA method

    NASA Astrophysics Data System (ADS)

    Ying, Teh Yuan; Yaacob, Nazeeruddin

    2013-04-01

    In this paper, a new implicit Runge-Kutta method which based on a 4-point Gauss-Kronrod-Radau II quadrature formula is developed. The resulting implicit method is a 4-stage sixth order Gauss-Kronrod-Radau IIA method, or in brief as GKRM(4,6)-IIA. GKRM(4,6)-IIA requires four function of evaluations at each integration step and it gives accuracy of order six. In addition, GKRM(4,6)-IIA has stage order four and being L-stable. Numerical experiments compare the accuracy between GKRM(4,6)-IIA and the classical 3-stage sixth order Gauss-Legendre method in solving some test problems. Numerical results reveal that GKRM(4,6)-IIA is more accurate than the 3-stage sixth order Gauss-Legendre method because GKRM(4,6)-IIA has higher stage order.

  18. Numerical solution of first order initial value problem using 7-stage tenth order Gauss-Kronrod-Lobatto IIIA method

    NASA Astrophysics Data System (ADS)

    Ying, Teh Yuan; Yaacob, Nazeeruddin

    2013-04-01

    In this paper, a new implicit Runge-Kutta method which based on a 7-point Gauss-Kronrod-Lobatto quadrature formula is developed. The resulting implicit method is a 7-stage tenth order Gauss-Kronrod-Lobatto IIIA method, or in brief as GKLM(7,10)-IIIA. GKLM(7,10)-IIIA requires seven function of evaluations at each integration step and it gives accuracy of order ten. In addition, GKLM(7,10)-IIIA has stage order seven and being A-stable. Numerical experiments compare the accuracy between GKLM(7,10)-IIIA and the classical 5-stage tenth order Gauss-Legendre method in solving some test problems. Numerical results reveal that GKLM(7,10)-IIIA is more accurate than the 5-stage tenth order Gauss-Legendre method because GKLM(7,10)-IIIA has higher stage order.

  19. Extremal dyonic black holes in D=4 Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Gal'Tsov, Dmitri V.; Orlov, Dmitry G.

    2008-11-01

    We investigate extremal dyon black holes in the Einstein-Maxwell-dilaton theory with higher curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. In the same theory without the Gauss-Bonnet term the extremal dyon solutions exist only for discrete values of the dilaton coupling constant a. We show that the Gauss-Bonnet term acts as a dyon hair tonic enlarging the allowed values of a to continuous domains in the plane (a,qm) where qm is the magnetic charge. In the limit of the vanishing curvature coupling (a large magnetic charge) the dyon solutions obtained tend to the Reissner-Nordström solution but not to the extremal dyons of the Einstein-Maxwell-dilaton theory. Both solutions have the same dependence of the horizon radius in terms of charges. The entropy of new dyonic black holes interpolates between the Bekenstein-Hawking value in the limit of the large magnetic charge (equivalent to the vanishing Gauss-Bonnet coupling) and twice this value for the vanishing magnetic charge. Although an expression for the entropy can be obtained analytically using purely local near-horizon solutions, its interpretation as the black hole entropy is legitimate only once the global black hole solution is known to exist, and we obtain numerically the corresponding conditions on the parameters. Thus, a purely local analysis is insufficient to fully understand the entropy of the curvature-corrected black holes. We also find dyon solutions which are not asymptotically flat, but approach the linear dilaton background at infinity. They describe magnetic black holes on the electric linear dilaton background.

  20. Taub-NUT/bolt black holes in Gauss-Bonnet-Maxwell gravity

    SciTech Connect

    Dehghani, M.H.; Hendi, S. H.

    2006-04-15

    We present a class of higher-dimensional solutions to Gauss-Bonnet-Maxwell equations in 2k+2 dimensions with a U(1) fibration over a 2k-dimensional base space B. These solutions depend on two extra parameters, other than the mass and the Newman-Unti-Tamburino charge, which are the electric charge q and the electric potential at infinity V. We find that the form of metric is sensitive to geometry of the base space, while the form of electromagnetic field is independent of B. We investigate the existence of Taub-Newman-Unti-Tamburino/bolt solutions and find that in addition to the two conditions of uncharged Newman-Unti-Tamburino solutions, there exist two other conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizon of the black hole. We find that for all nonextremal Newman-Unti-Tamburino solutions of Einstein gravity having no curvature singularity at r=N, there exist Newman-Unti-Tamburino solutions in Gauss-Bonnet-Maxwell gravity. Indeed, we have nonextreme Newman-Unti-Tamburino solutions in 2+2k dimensions only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet-Maxwell gravity has extremal Newman-Unti-Tamburino solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet-Maxwell gravity with any base space. The only case for which one does not have black hole solutions is in the absence of a cosmological term with zero curvature base space.

  1. Experimental generation of Mathieu-Gauss beams with a phase-only spatial light modulator.

    PubMed

    Hernández-Hernández, R J; Terborg, R A; Ricardez-Vargas, I; Volke-Sepúlveda, K

    2010-12-20

    We present a novel method for the efficient generation of even, odd, and helical Mathieu-Gauss beams of arbitrary order and ellipticity by means of a phase-only spatial light modulator (SLM). Our method consists of displaying the phase of the desired beam in the SLM; the reconstructed field is obtained on-axis following a spatial filtering process with an annular aperture. The propagation invariance and topological properties of the generated beams are investigated numerically and experimentally. PMID:21173824

  2. Extremal dyonic black holes in D=4 Gauss-Bonnet gravity

    SciTech Connect

    Chen, C.-M.; Gal'tsov, Dmitri V.; Orlov, Dmitry G.

    2008-11-15

    We investigate extremal dyon black holes in the Einstein-Maxwell-dilaton theory with higher curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. In the same theory without the Gauss-Bonnet term the extremal dyon solutions exist only for discrete values of the dilaton coupling constant a. We show that the Gauss-Bonnet term acts as a dyon hair tonic enlarging the allowed values of a to continuous domains in the plane (a,q{sub m}) where q{sub m} is the magnetic charge. In the limit of the vanishing curvature coupling (a large magnetic charge) the dyon solutions obtained tend to the Reissner-Nordstroem solution but not to the extremal dyons of the Einstein-Maxwell-dilaton theory. Both solutions have the same dependence of the horizon radius in terms of charges. The entropy of new dyonic black holes interpolates between the Bekenstein-Hawking value in the limit of the large magnetic charge (equivalent to the vanishing Gauss-Bonnet coupling) and twice this value for the vanishing magnetic charge. Although an expression for the entropy can be obtained analytically using purely local near-horizon solutions, its interpretation as the black hole entropy is legitimate only once the global black hole solution is known to exist, and we obtain numerically the corresponding conditions on the parameters. Thus, a purely local analysis is insufficient to fully understand the entropy of the curvature-corrected black holes. We also find dyon solutions which are not asymptotically flat, but approach the linear dilaton background at infinity. They describe magnetic black holes on the electric linear dilaton background.

  3. Rational Gauss-Chebyshev quadrature formulas for complex poles outside [-1,1

    NASA Astrophysics Data System (ADS)

    Deckers, Karl; van Deun, Joris; Bultheel, Adhemar

    2008-06-01

    In this paper we provide an extension of the Chebyshev orthogonal rational functions with arbitrary real poles outside [-1,1] to arbitrary complex poles outside [-1,1] . The zeros of these orthogonal rational functions are not necessarily real anymore. By using the related para-orthogonal functions, however, we obtain an expression for the nodes and weights for rational Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary complex poles outside [-1,1] .

  4. Variable transformations and Gauss-Legendre quadrature for integrals with endpoint singularities

    NASA Astrophysics Data System (ADS)

    Sidi, Avram

    2009-09-01

    Gauss-Legendre quadrature formulas have excellent convergence properties when applied to integrals int^1_0f(x) dx with fin C^infty[0,1] . However, their performance deteriorates when the integrands f(x) are in C^infty(0,1) but are singular at x=0 and/or x=1 . One way of improving the performance of Gauss-Legendre quadrature in such cases is by combining it with a suitable variable transformation such that the transformed integrand has weaker singularities than those of f(x) . Thus, if x=psi(t) is a variable transformation that maps [0,1] onto itself, we apply Gauss-Legendre quadrature to the transformed integral int^1_{0}f(psi(t))psi'(t) dt , whose singularities at t=0 and/or t=1 are weaker than those of f(x) at x=0 and/or x=1 . In this work, we first define a new class of variable transformations we denote widetilde{mathcal{S}}_{p,q} , where p and q are two positive parameters that characterize it. We also give a simple and easily computable representative of this class. Next, by invoking some recent results by the author concerning asymptotic expansions of Gauss-Legendre quadrature approximations as the number of abscissas tends to infinity, we present a thorough study of convergence of the combined approximation procedure, with variable transformations from widetilde{mathcal{S}}_{p,q} . We show how optimal results can be obtained by adjusting the parameters p and q of the variable transformation in an appropriate fashion. We also give numerical examples that confirm the theoretical results.

  5. Nonlinear parameter identification: Ballistic range experience applicable to flight testing. [using Gauss-Newton method

    NASA Technical Reports Server (NTRS)

    Chapman, G.; Kirk, D.

    1974-01-01

    The parameter identification scheme being used is a differential correction least squares procedure (Gauss-Newton method). The position, orientation, and derivatives of these quantities with respect to the parameters of interest (i.e., sensitivity coefficients) are determined by digital integration of the equations of motion and the parametric differential equations. The application of this technique to three vastly different sets of data is used to illustrate the versatility of the method and to indicate some of the problems that still remain.

  6. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--September 1996

    SciTech Connect

    1998-12-31

    This document is a Final Technical Report that describes the results of the Geophex Airborne Unmanned Survey System (GAUSS) research project. The objectives were to construct a geophysical data acquisition system that uses a remotely operated unmanned aerial vehicle (UAV) and to evaluate its effectiveness for characterization of hazardous environmental sites. The GAUSS is a data acquisition system that mitigates the potential risk to personnel during geophysical characterization of hazardous or radioactive sites. The fundamental basis of the GAUSS is as follows: (1) an unmanned survey vehicle carries geophysical sensors into a hazardous location, (2) the pilot remains outside the hazardous site and operates the vehicle using radio control, (3) geophysical measurements and their spatial locations are processed by an automated data-acquisition system which displays data on an off-site monitor in real-time, and (4) the pilot uses the display to direct the survey vehicle for complete site coverage. The objective of our Phase I research was to develop a data acquisition and processing (DAP) subsystem and geophysical sensors suitable for UAV deployment. We integrated these two subsystems to produce an automated, hand-held geophysical surveying system. The objective of the Phase II effort was to modify the subsystems and integrate them into an airborne prototype. The completed GAUSS DAP system consists of a UAV platform, a laser tracking and ranging subsystem, a telemetry subsystem, light-weight geophysical sensors, a base-station computer (BC), and custom-written survey control software (SCS). We have utilized off-the-shelf commercial products, where possible, to reduce cost and design time.

  7. A comparison between Gauss-Newton and Markov chain Monte Carlo basedmethods for inverting spectral induced polarization data for Cole-Coleparameters

    SciTech Connect

    Chen, Jinsong; Kemna, Andreas; Hubbard, Susan S.

    2008-05-15

    We develop a Bayesian model to invert spectral induced polarization (SIP) data for Cole-Cole parameters using Markov chain Monte Carlo (MCMC) sampling methods. We compare the performance of the MCMC based stochastic method with an iterative Gauss-Newton based deterministic method for Cole-Cole parameter estimation through inversion of synthetic and laboratory SIP data. The Gauss-Newton based method can provide an optimal solution for given objective functions under constraints, but the obtained optimal solution generally depends on the choice of initial values and the estimated uncertainty information is often inaccurate or insufficient. In contrast, the MCMC based inversion method provides extensive global information on unknown parameters, such as the marginal probability distribution functions, from which we can obtain better estimates and tighter uncertainty bounds of the parameters than with the deterministic method. Additionally, the results obtained with the MCMC method are independent of the choice of initial values. Because the MCMC based method does not explicitly offer single optimal solution for given objective functions, the deterministic and stochastic methods can complement each other. For example, the stochastic method can first be used to obtain the means of the unknown parameters by starting from an arbitrary set of initial values and the deterministic method can then be initiated using the means as starting values to obtain the optimal estimates of the Cole-Cole parameters.

  8. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-18

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation. PMID:26722925

  9. Wake Numerical Simulation Based on the Park-Gauss Model and Considering Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Yang, Xiangsheng; Zhao, Ning; Tian, Linlin; Zhu, Jun

    2016-06-01

    In this paper, a new Park-Gauss model based on the assumption of the Park model and the Eddy-viscosity model is investigated to conduct the wake numerical simulation for solving a single wind turbine problem. The initial wake radius has been modified to improve the model’s numerical accuracy. Then the impact of the atmospheric stability based on the Park-Gauss model has been studied in the wake region. By the comparisons and the analyses of the test results, it turns out that the new Park-Gauss model could achieve better effects of the wind velocity simulation in the wake region. The wind velocity in the wake region recovers quickly under the unstable atmospheric condition provided the wind velocity is closest to the test result, and recovers slowly under stable atmospheric condition in case of the wind velocity is lower than the test result. Meanwhile, the wind velocity recovery falls in between the unstable and stable neutral atmospheric conditions.

  10. Asymptotically (anti)-de Sitter solutions in Gauss-Bonnet gravity without a cosmological constant

    SciTech Connect

    Dehghani, M.H.

    2004-09-15

    In this paper I show that one can have asymptotically de Sitter, anti-de Sitter (AdS), and flat solutions in Gauss-Bonnet gravity without a cosmological constant term in field equations. First, I introduce static solutions whose three surfaces at fixed r and t have constant positive (k=1), negative (k=-1), or zero (k=0) curvature. I show that for k={+-}1 one can have asymptotically de Sitter, AdS, and flat spacetimes, while for the case of k=0, one has only asymptotically AdS solutions. Some of these solutions present naked singularities, while some others are black hole or topological black hole solutions. I also find that the geometrical mass of these five-dimensional spacetimes is m+2{alpha}|k|, which is different from the geometrical mass m of the solutions of Einstein gravity. This feature occurs only for the five-dimensional solutions, and is not repeated for the solutions of Gauss-Bonnet gravity in higher dimensions. Second, I add angular momentum to the static solutions with k=0, and introduce the asymptotically AdS charged rotating solutions of Gauss-Bonnet gravity. Finally, I introduce a class of solutions which yields an asymptotically AdS spacetime with a longitudinal magnetic field, which presents a naked singularity, and generalize it to the case of magnetic rotating solutions with two rotation parameters.

  11. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses

    NASA Astrophysics Data System (ADS)

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-01

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

  12. State space orderings for Gauss-Seidel in Markov chains revisited

    SciTech Connect

    Dayar, T.

    1996-12-31

    Symmetric state space orderings of a Markov chain may be used to reduce the magnitude of the subdominant eigenvalue of the (Gauss-Seidel) iteration matrix. Orderings that maximize the elemental mass or the number of nonzero elements in the dominant term of the Gauss-Seidel splitting (that is, the term approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R is semi-convergent. On the other hand, there are semi-convergent symmetric state space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking Property-R is shown. An algorithm that orders the states of a Markov chain so as to increase the likelihood of satisfying Property-R is presented. The computational complexity of the ordering algorithm is less than that of a single Gauss-Seidel iteration (for sparse matrices). In doing all this, the aim is to gain an insight for faster converging orderings. Results from a variety of applications improve the confidence in the algorithm.

  13. The comparison of isotropic and anisotropic semivariogram for Gauss model

    NASA Astrophysics Data System (ADS)

    Sari, Rr. Kurnia Novita; Pasaribu, Udjianna S.

    2014-03-01

    Semivariogram is one of the models used to study the relationship between the sequence of random variables {Z(s),sɛR2} based on the location s. That model is a diagram of variance from the difference between the random variable that distance h, or γ(h) = Var[Z(s)-Z(s+h)]. Experimental variogram can be calculated through observations at several locations. One model that is chosen to be fitted to ̂γ(h) is the Gaussian. In application, ̂γ(h) often considered to depend on the direction (anisotropic semivariogram). This paper develop a nested Gaussian model by considering some angle intervals which is called geometric anisotropy semivariogram. For a case study, the distribution of Bradysia ocellaris insects at a Oyster Mushrooms cultivication is analyzed that the insects fly to follow the direction of light.

  14. Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions: Vacuum case

    NASA Astrophysics Data System (ADS)

    Pavluchenko, Sergey A.

    2016-07-01

    In this paper we perform a systematic study of vacuum spatially flat anisotropic [(3 +D )+1 ]-dimensional Einstein-Gauss-Bonnet cosmological models. We consider models that topologically are the product of two flat isotropic submanifolds with different scale factors. One of these submanifolds is three dimensional and represents our 3D space and the other is D dimensional and represents extra dimensions. We consider no Ansatz on the scale factors, which makes our results quite general. With both Einstein-Hilbert and Gauss-Bonnet contributions in play and with the symmetry involved, the cases with D =1 , D =2 , D =3 , and D ≥4 have different dynamics due to the different structures of the equations of motion. We analytically analyze equations of motion in all cases and describe all possible regimes. It appears that the only regimes with nonsingular future asymptotes are the Kasner regime in general relativity and exponential regimes. As of the past asymptotes, for a smooth transition only the Kasner regime in Gauss-Bonnet is an option. With this at hand, we are down to only two viable regimes: the "pure" Kasner regime [transition from a high-energy (Gauss-Bonnet) to a low-energy (general relativity) Kasner regime] and a transition from a high-energy Kasner regime to an anisotropic exponential solution. It appears that these regimes take place for different signs of the Gauss-Bonnet coupling α : the "pure" Kasner regime occurs for α >0 at low D and α <0 for high D ; the anisotropic exponential regime is reached only for α >0 . So if we restrain ourselves with α >0 solutions (which would be the case, say, if we identify α with inverse string tension in heterotic string theory), the only late-time regimes are Kasner for D =1 , 2 and anisotropic exponential for D ≥2 . Also, low-energy Kasner regimes [a (t )∝tp] have expansion rates for (3 +1 )-dimensional subspace ("our Universe") ranging from p =0.5 (D =1 ) to p =1 /√{3 }≈0.577 (D →∞ ), which

  15. Analytical and numerical study of Gauss-Bonnet holographic superconductors with Power-Maxwell field

    NASA Astrophysics Data System (ADS)

    Sheykhi, Ahmad; Salahi, Hamid Reza; Montakhab, Afshin

    2016-04-01

    We provide an analytical as well as a numerical study of the holographic s-wave superconductors in Gauss-Bonnet gravity with Power-Maxwell electrodynamics. We limit our study to the case where scalar and gauge fields do not have an effect on the background metric. We use a variational method, based on Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. Interestingly enough, we observe that unlike Born-Infeld-like nonlinear electrodynamics which decrease the critical temperature compared to the linear Maxwell field, the Power-Maxwell electrodynamics is able to increase the critical temperature of the holographic superconductors in the sublinear regime. We find that requiring the finite value for the gauge field on the asymptotic boundary r → ∞, restricts the power parameter, q, of the Power-Maxwell field to be in the range 1 /2 < q < ( d - 1) /2. Our study indicates that it is quite possible to make condensation easier as q decreases in its allowed range. We also find that for all values of q, the condensation can be affected by the Gauss-Bonnet coefficient α. However, the presence of the Gauss-Bonnet term makes the transition slightly harder. Finally, we obtain an analytic expression for the order parameter and thus obtain the associated critical exponent near the phase transition. We find that the critical exponent has its universal value of β = 1 /2 regardless of the parameters q, α as well as dimension d, consistent with mean-field values obtained in previous studies.

  16. Parallelization of Lower-Upper Symmetric Gauss-Seidel Method for Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jost, Gabriele; Chang, Sherry

    2005-01-01

    Development of technologies for exploration of the solar system has revived an interest in computational simulation of chemically reacting flows since planetary probe vehicles exhibit non-equilibrium phenomena during the atmospheric entry of a planet or a moon as well as the reentry to the Earth. Stability in combustion is essential for new propulsion systems. Numerical solution of real-gas flows often increases computational work by an order-of-magnitude compared to perfect gas flow partly because of the increased complexity of equations to solve. Recently, as part of Project Columbia, NASA has integrated a cluster of interconnected SGI Altix systems to provide a ten-fold increase in current supercomputing capacity that includes an SGI Origin system. Both the new and existing machines are based on cache coherent non-uniform memory access architecture. Lower-Upper Symmetric Gauss-Seidel (LU-SGS) relaxation method has been implemented into both perfect and real gas flow codes including Real-Gas Aerodynamic Simulator (RGAS). However, the vectorized RGAS code runs inefficiently on cache-based shared-memory machines such as SGI system. Parallelization of a Gauss-Seidel method is nontrivial due to its sequential nature. The LU-SGS method has been vectorized on an oblique plane in INS3D-LU code that has been one of the base codes for NAS Parallel benchmarks. The oblique plane has been called a hyperplane by computer scientists. It is straightforward to parallelize a Gauss-Seidel method by partitioning the hyperplanes once they are formed. Another way of parallelization is to schedule processors like a pipeline using software. Both hyperplane and pipeline methods have been implemented using openMP directives. The present paper reports the performance of the parallelized RGAS code on SGI Origin and Altix systems.

  17. Five-dimensional black strings in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Kobayashi, Tsutomu; Tanaka, Takahiro

    2005-04-15

    We consider black-string-type solutions in five-dimensional Einstein-Gauss-Bonnet gravity. Numerically constructed solutions under static, axially symmetric and translationally invariant metric ansatz are presented. The solutions are specified by two asymptotic charges: mass of a black string and a scalar charge associated with the radion part of the metric. Regular black string solutions are found if and only if the two charges satisfy a fine-tuned relation, and otherwise the spacetime develops a singular event horizon or a naked singularity. We can also generate bubble solutions from the black strings by using a double Wick rotation.

  18. Observational limits on Gauss-Bonnet and Randall-Sundrum gravities

    SciTech Connect

    Alexeyev, S. O. Rannu, K. A.; Dyadina, P. I.; Latosh, B. N.; Turyshev, S. G.

    2015-06-15

    We discuss the possibilities of experimental search for the new physics predicted by the Gauss-Bonnet and the Randall-Sundrum theories of gravity. The effective four-dimensional spherically symmetrical solutions of these theories are analyzed. We consider these solutions in the weak-field limit and in the process of the primordial black hole evaporation. We show that the predictions of the discussed models are the same as of general relativity. Hence, current experiments are not applicable for such search, and therefore different methods of observation and higher accuracy are required.

  19. Black hole initial data in Gauss-Bonnet gravity: Momentarily static case

    SciTech Connect

    Yoshino, Hirotaka

    2011-05-15

    We study the method for generating the initial data of black hole systems in Gauss-Bonnet gravity. The initial data are assumed to be momentarily static and conformally flat. Although the equation for the conformal factor is highly nonlinear, it is successfully solved by numerical relaxation for one-black-hole and two-black-hole systems. The common apparent horizon is studied in the two-black-hole initial data, and the result suggests that the Penrose inequalities are satisfied in this system. This is the first step for simulating black hole collisions in higher-curvature theories.

  20. Some exact solutions with torsion in 5D Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Canfora, F.; Giacomini, A.; Willison, S.

    2007-08-15

    Exact solutions with torsion in Einstein-Gauss-Bonnet gravity are derived. These solutions have a cross product structure of two constant curvature manifolds. The equations of motion give a relation for the coupling constants of the theory in order to have solutions with nontrivial torsion. This relation is not the Chern-Simons combination. One of the solutions has an AdS{sub 2}xS{sup 3} structure and is so the purely gravitational analogue of the Bertotti-Robinson space-time where the torsion can be seen as the dual of the covariantly constant electromagnetic field.

  1. The role of Lagrange multiplier in Gauss-Bonnet dark energy

    NASA Astrophysics Data System (ADS)

    Makarenko, Andrey N.

    2016-04-01

    We review accelerating cosmology in Gauss-Bonnet gravity with Lagrange multiplier constraint studied in [S. Capozziello, A. N. Makarenko and S. D. Odintsov, Phys. Rev. D 87 (2013) 084037, arXiv: 1302.0093 [gr-qc], S. Capozziello, M. Francaviglia and A. N. Makarenko, Astrophys. Space Sci. 349 (2014) 603-609, arXiv: 1304.5440 [gr-qc]. Several examples of dark energy universes are presented. We can get new dark energy solutions (with additional scalar) as well as certain limits to earlier found accelerating solutions.

  2. Small-displacement measurements using high-order Hermite-Gauss modes

    SciTech Connect

    Sun, Hengxin; Liu, Kui; Liu, Zunlong; Guo, Pengliang; Zhang, Junxiang; Gao, Jiangrui

    2014-03-24

    We present a scheme for small-displacement measurements using high-order Hermite-Gauss modes and balanced homodyne detection. We demonstrate its use with experimental results of displacement measurements using fundamental transverse mode TEM{sub 00} and first order transverse mode TEM{sub 10} as signal modes. The results show a factor of 1.41 improvement in measurement precision with the TEM{sub 10} mode compared with that with the TEM{sub 00} mode. This scheme has potential applications in precision metrology, atomic force microscopy, and optical imaging.

  3. Hydrodynamics dual to Einstein-Gauss-Bonnet gravity: all-order gradient resummation

    NASA Astrophysics Data System (ADS)

    Bu, Yanyan; Lublinsky, Michael; Sharon, Amir

    2015-06-01

    Relativistic hydrodynamics dual to Einstein-Gauss-Bonnet gravity in asymptotic AdS5 space is under study. To linear order in the amplitude of the fluid velocity and temperature, we derive the fluid's stress-energy tensor via an all-order resummation of the derivative terms. Each order is accompanied by new transport coefficients, which all together could be compactly absorbed into two functions of momenta, referred to as viscosity functions. Via inverse Fourier transform, these viscosities appear as memory functions in the constitutive relation between components of the stress-energy tensor.

  4. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    NASA Technical Reports Server (NTRS)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  5. GPU-accelerated Modeling and Element-free Reverse-time Migration with Gauss Points Partition

    NASA Astrophysics Data System (ADS)

    Zhen, Z.; Jia, X.

    2014-12-01

    Element-free method (EFM) has been applied to seismic modeling and migration. Compared with finite element method (FEM) and finite difference method (FDM), it is much cheaper and more flexible because only the information of the nodes and the boundary of the study area are required in computation. In the EFM, the number of Gauss points should be consistent with the number of model nodes; otherwise the accuracy of the intermediate coefficient matrices would be harmed. Thus when we increase the nodes of velocity model in order to obtain higher resolution, we find that the size of the computer's memory will be a bottleneck. The original EFM can deal with at most 81×81 nodes in the case of 2G memory, as tested by Jia and Hu (2006). In order to solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition (GPP), and utilize the GPUs to improve the computation efficiency. Considering the characteristics of the Gaussian points, the GPP method doesn't influence the propagation of seismic wave in the velocity model. To overcome the time-consuming computation of the stiffness matrix (K) and the mass matrix (M), we also use the GPUs in our computation program. We employ the compressed sparse row (CSR) format to compress the intermediate sparse matrices and try to simplify the operations by solving the linear equations with the CULA Sparse's Conjugate Gradient (CG) solver instead of the linear sparse solver 'PARDISO'. It is observed that our strategy can significantly reduce the computational time of K and Mcompared with the algorithm based on CPU. The model tested is Marmousi model. The length of the model is 7425m and the depth is 2990m. We discretize the model with 595x298 nodes, 300x300 Gauss cells and 3x3 Gauss points in each cell. In contrast to the computational time of the conventional EFM, the GPUs-GPP approach can substantially improve the efficiency. The speedup ratio of time consumption of computing K, M is 120 and the

  6. Kink-antikink, trapping bags and five-dimensional Gauss-Bonnet gravity

    SciTech Connect

    Giovannini, Massimo

    2006-10-15

    Five-dimensional Gauss-Bonnet gravity, with one warped extra-dimension, allows classes of solutions where two scalar fields combine either in a kink-antikink system or in a trapping-bag configuration. While the kink-antikink system can be interpreted as a pair of gravitating domain walls with opposite topological charges, the trapping-bag solution consists of a domain wall supplemented by a nontopological defect. In both classes of solutions, for large absolute values of the bulk coordinate (i.e. far from the core of the defects), the geometry is given by five-dimensional anti-de Sitter space.

  7. Gauss' law and nonlinear plane waves for Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Tsapalis, A.; Politis, E. P.; Maintas, X. N.; Diakonos, F. K.

    2016-04-01

    We investigate nonlinear plane-wave solutions of the classical Minkowskian Yang-Mills (YM) equations of motion. By imposing a suitable ansatz which solves Gauss' law for the SU(3) theory, we derive solutions which consist of Jacobi elliptic functions depending on an enumerable set of elliptic modulus values. The solutions represent periodic anharmonic plane waves which possess arbitrary nonzero mass and are exact extrema of the nonlinear YM action. Among them, a unique harmonic plane wave with a nontrivial pattern in phase, spin, and color is identified. Similar solutions are present in the SU(4) case, while they are absent from the SU(2) theory.

  8. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas.

    PubMed

    Winnerl, S; Zimmermann, B; Peter, F; Schneider, H; Helm, M

    2009-02-01

    We report on emission and detection of pulsed terahertz radiation of radial and azimuthal polarization by microstructured photoconductive antennas. To this end the electrode geometry of the emitter is inverse to the desired THz field pattern and a second periodic structure prevents destructive interference effects. Beam profiles of freely propagating THz waves are studied for divergent and refocused beams. They can be well described as the lowest order Bessel-Gauss modes with a divergence comparable to linearly polarized Gaussian beams. Additionally, mode sensitive detection is demonstrated for radially polarized radiation. PMID:19188986

  9. Black holes with scalar hair in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Brihaye, Y.; Ducobu, L.

    2016-05-01

    The Einstein-Gauss-Bonnet gravity in five dimensions is extended by scalar fields and the corresponding equations are reduced to a system of nonlinear differential equations. A large family of regular solutions of these equations is shown to exist. Generically, these solutions are spinning black holes with scalar hairs. They can be characterized (but not uniquely) by an horizon and an angular velocity on this horizon. Taking particular limits, the black holes approach boson star or become extremal, in any case the limiting configurations remain hairy.

  10. 5D radiating black holes in Einstein-Yang-Mills-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Ghosh, S. G.

    2011-10-01

    We derive nonstatic spherically symmetric solutions of a null fluid, in five dimension (5D), to Einstein-Yang-Mills (EYM) equations with the coupling of Gauss-Bonnet (GB) combination of quadratic curvature terms, namely, 5D EYMGB radiating black hole solution. It is shown that, in the limit, we can recover known radiating black hole solutions. The spherically symmetric known 5D static black hole solutions are also retrieved. The effect of the GB term and Yang-Mills (YM) gauge charge on the structure and location of horizons, of the 5D radiating black hole, is also discussed.

  11. The Newton-Gauss regularized method - Application to point-spread-function determination in CCD frames

    NASA Astrophysics Data System (ADS)

    Bendinelli, O.; Parmeggiani, G.; Piccioni, A.; Zavatti, F.

    1987-10-01

    Modification of the Newton-Gauss linearization method in the Tikhonov regularization sense is described. Its ability to give reliable estimates of a large number of parameters is shown by application to the PSF determination from CCD frames. Extension of the Van Altena and Auer star-image model using a weighted sum of two Gaussians, and explicitly taking its integration on the pixel into account, enables the authors to determine the PSF up to about 10 mag below the central value with an error fit in the range 0.01 - 0.03 mag arcsec-2.

  12. Uniqueness of the Gauss-Bonnet-Chern formula (after Gilkey-Park-Sekigawa)

    NASA Astrophysics Data System (ADS)

    Navarro, Alberto; Navarro, José

    2016-03-01

    On an oriented Riemannian manifold, the Gauss-Bonnet-Chern formula establishes that the Pfaffian of the metric represents, in de Rham cohomology, the Euler class of the tangent bundle. Hence, if the underlying manifold is compact, the integral of the Pfaffian is a topological invariant; namely, the Euler characteristic of the manifold. In this paper we refine a classical result, originally due to Gilkey, that characterizes this formula as the only (non-trivial) integral of a differential invariant that is independent of the underlying metric. To this end, we use some computations regarding dimensional identities of the curvature due to Gilkey-Park-Sekigawa (Gilkey, 2012; Navarro and Navarro, 2014).

  13. Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity

    SciTech Connect

    Nozari, Kourosh; Azizi, Tahereh; Setare, M.R. E-mail: t.azizi@umz.ac.ir

    2009-10-01

    We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition.

  14. Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity

    SciTech Connect

    Hu Yapeng; Sun Peng; Zhang Jianhui

    2011-06-15

    Using the AdS/CFT correspondence, we study the hydrodynamics with conserved current from the dual Maxwell-Gauss-Bonnet gravity. After constructing the perturbative solution to the first order based on the boosted black brane solution in the bulk Maxwell-Gauss-Bonnet gravity, we extract the stress tensor and conserved current of the dual conformal fluid on its boundary, and also find the effect of the Gauss-Bonnet term on the dual conformal fluid. Our results show that the Gauss-Bonnet term can affect the parameters such as the shear viscosity {eta}, entropy density s, thermal conductivity {kappa} and electrical conductivity {sigma}. However, it does not affect the so-called Wiedemann-Franz law which relates {kappa} to {sigma}, while it affects the ratio {eta}/s. In addition, another interesting result is that {eta}/s can also be affected by the bulk Maxwell field in our case, which is consistent with some previous results predicted through the Kubo formula. Moreover, the anomalous magnetic and vortical effects by adding the Chern-Simons term are also considered in our case in the Maxwell-Gauss-Bonnet gravity.

  15. Early-time cosmological solutions in Einstein-scalar-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Kanti, Panagiota; Gannouji, Radouane; Dadhich, Naresh

    2015-10-01

    In this work, we consider a generalized gravitational theory that contains the Einstein term, a scalar field, and the quadratic Gauss-Bonnet (GB) term. We focus on the early-universe dynamics, and demonstrate that a simple choice of the coupling function between the scalar field and the Gauss-Bonnet term and a simplifying assumption regarding the role of the Ricci scalar can lead to new, analytical, elegant solutions with interesting characteristics. We first argue, and demonstrate in the context of two different models, that the presence of the Ricci scalar in the theory at early times (when the curvature is strong) does not affect the actual cosmological solutions. By considering therefore a pure scalar-GB theory with a quadratic coupling function we derive a plethora of interesting, analytic solutions: for a negative coupling parameter, we obtain inflationary, de Sitter-type solutions or expanding solutions with a de Sitter phase in their past and a natural exit mechanism at later times; for a positive coupling function, we find instead singularity-free solutions with no big bang singularity. We show that the aforementioned solutions arise only for this particular choice of coupling function, a result that may hint at some fundamental role that this coupling function may hold in the context of an ultimate theory.

  16. Static and symmetric wormholes respecting energy conditions in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki; Nozawa, Masato

    2008-07-15

    Properties of n({>=}5)-dimensional static wormhole solutions are investigated in Einstein-Gauss-Bonnet gravity with or without a cosmological constant {lambda}. We assume that the spacetime has symmetries corresponding to the isometries of an (n-2)-dimensional maximally symmetric space with the sectional curvature k={+-}1, 0. It is also assumed that the metric is at least C{sup 2} and the (n-2)-dimensional maximally symmetric subspace is compact. Depending on the existence or absence of the general relativistic limit {alpha}{yields}0, solutions are classified into general relativistic (GR) and non-GR branches, respectively, where {alpha} is the Gauss-Bonnet coupling constant. We show that a wormhole throat respecting the dominant energy condition coincides with a branch surface in the GR branch, otherwise the null energy condition is violated there. In the non-GR branch, it is shown that there is no wormhole solution for k{alpha}{>=}0. For the matter field with zero tangential pressure, it is also shown in the non-GR branch with k{alpha}<0 and {lambda}{<=}0 that the dominant energy condition holds at the wormhole throat if the radius of the throat satisfies some inequality. In the vacuum case, a fine-tuning of the coupling constants is shown to be necessary and the radius of a wormhole throat is fixed. Explicit wormhole solutions respecting the energy conditions in the whole spacetime are obtained in the vacuum and dust cases with k=-1 and {alpha}>0.

  17. Thermodynamics of rotating solutions in Gauss-Bonnet-Maxwell gravity and the counterterm method

    SciTech Connect

    Dehghani, M. H.; Bordbar, G. H.; Shamirzaie, M.

    2006-09-15

    By a suitable transformation, we present the (n+1)-dimensional charged rotating solutions of Gauss-Bonnet gravity with a complete set of allowed rotation parameters which are real in the whole spacetime. We show that these charged rotating solutions present black hole solutions with two inner and outer event horizons, extreme black holes, or naked singularities provided the parameters of the solutions are chosen suitable. Using the surface terms that make the action well defined for Gauss-Bonnet gravity and the counterterm method for eliminating the divergences in action, we compute finite action of the solutions. We compute the conserved and thermodynamical quantities through the use of free energy and the counterterm method, and find that the two methods give the same results. We also find that these quantities satisfy the first law of thermodynamics. Finally, we perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable. This is commensurate with the fact that there is no Hawking-Page phase transition for black objects with zero curvature horizon.

  18. Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Mohammad Reza; Zangeneh, Mahdi Kord; Lobo, Francisco S. N.

    2015-04-01

    In this paper, we explore higher-dimensional asymptotically flat wormhole geometries in the framework of Gauss-Bonnet (GB) gravity and investigate the effects of the GB term, by considering a specific radial-dependent redshift function and by imposing a particular equation of state. This work is motivated by previous assumptions that wormhole solutions were not possible for the k =1 and α <0 case, where k is the sectional curvature of an (n -2 )-dimensional maximally symmetric space, and α is the Gauss-Bonnet coupling constant. However, we emphasize that this discussion is purely based on a nontrivial assumption that is only valid at the wormhole throat, and cannot be extended to the entire radial-coordinate range. In this work, we provide a counterexample to this claim, and find for the first time specific solutions that satisfy the weak energy condition throughout the entire spacetime, for k =1 and α <0 . In addition to this, we also present other wormhole solutions which alleviate the violation of the weak energy condition in the vicinity of the wormhole throat.

  19. Maximum of the modulus of kernels in Gauss-Turan quadratures

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.; Pranic, Miroslav S.

    2008-06-01

    We study the kernels K_{n,s}(z) in the remainder terms R_{n,s}(f) of the Gauss-Turan quadrature formulae for analytic functions on elliptical contours with foci at pm 1 , when the weight omega is a generalized Chebyshev weight function. For the generalized Chebyshev weight of the first (third) kind, it is shown that the modulus of the kernel \\vert K_{n,s}(z)\\vert attains its maximum on the real axis (positive real semi-axis) for each ngeq n_0, n_0Dn_0(rho,s) . It was stated as a conjecture in [Mathematics of Computation 72 (2003), 1855-1872]. For the generalized Chebyshev weight of the second kind, in the case when the number of the nodes n in the corresponding Gauss-Turan quadrature formula is even, it is shown that the modulus of the kernel attains its maximum on the imaginary axis for each ngeq n_0, n_0Dn_0(rho,s) . Numerical examples are included. Retrieve articles in all Journals with MSC (1991): [41]41A55, [42]65D30, [43]65D32

  20. Generalized Misner-Sharp quasilocal mass in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki; Nozawa, Masato

    2008-03-15

    We investigate properties of a quasilocal mass in a higher-dimensional spacetime having symmetries corresponding to the isomertries of an (n-2)-dimensional maximally symmetric space in Einstein-Gauss-Bonnet gravity in the presence of a cosmological constant. We assume that the Gauss-Bonnet coupling constant is non-negative. The quasilocal mass was recently defined by one of the authors as a counterpart of the Misner-Sharp quasilocal mass in general relativity. The quasilocal mass is found to be a quasilocal conserved charge associated with a locally conserved current constructed from the generalized Kodama vector and exhibits the unified first law corresponding to the energy-balance law. In the asymptotically flat case, it converges to the Arnowitt-Deser-Misner mass at spacelike infinity, while it converges to the Deser-Tekin and Padilla mass at infinity in the case of asymptotically anti-de Sitter. Under the dominant energy condition, we show the monotonicity of the quasilocal mass for any k, while the positivity on an untrapped hypersurface with a regular center is shown for k=1 and for k=0 with an additional condition, where k={+-}1, 0 is the constant sectional curvature of each spatial section of equipotential surfaces. Under a special relation between coupling constants, positivity of the quasilocal mass is shown for any k without assumptions above. We also classify all the vacuum solutions by utilizing the generalized Kodama vector. Lastly, several conjectures on further generalization of the quasilocal mass in Lovelock gravity are proposed.

  1. Topological black holes for Einstein-Gauss-Bonnet gravity with a nonminimal scalar field

    NASA Astrophysics Data System (ADS)

    Gaete, Moisés Bravo; Hassaïne, Mokhtar

    2013-11-01

    We consider the Einstein-Gauss-Bonnet gravity with a negative cosmological constant together with a source given by a scalar field nonminimally coupled in arbitrary dimension D. For a certain election of the cosmological and Gauss-Bonnet coupling constants, we derive two classes of AdS black hole solutions whose horizon is planar. The first family of black holes obtained for a particular value of the nonminimal coupling parameter only depends on a constant M, and the scalar field vanishes as M=0. The second class of solutions corresponds to a two-parametric (with constants M and A) black hole stealth configuration, which is a nontrivial scalar field with a black hole metric such that both sides (gravity and matter parts) of the Einstein equations vanish. In this case, in the vanishing M, the solution reduces to a stealth scalar field on the pure AdS metric. We note that the existence of these two classes of solutions is indicative of the particular choice of the coupling constants, and they cannot be promoted to spherical or hyperboloid black hole solutions in a standard fashion. In the last part, we add to the original action some exact (D-1) forms coupled to the scalar field. The direct benefit of introducing such extra fields is to obtain black hole solutions with a planar horizon for an arbitrary value of the nonminimal coupling parameter.

  2. Stability of thin-shell wormholes supported by normal matter in Einstein-Maxwell-Gauss-Bonnet gravity

    SciTech Connect

    Mazharimousavi, S. Habib; Halilsoy, M.; Amirabi, Z.

    2010-05-15

    Recently in [Phys. Rev. D 76, 087502 (2007) and Phys. Rev. D 77, 089903 (2008)] a thin-shell wormhole has been introduced in five-dimensional Einstein-Maxwell-Gauss-Bonnet gravity which was supported by normal matter. We wish to consider this solution and investigate its stability. Our analysis shows that for the Gauss-Bonnet parameter {alpha}<0, stability regions form for a narrow band of finely tuned mass and charge. For the case {alpha}>0, we iterate once more that no stable, normal matter thin-shell wormhole exists.

  3. Quasinormal modes and a new instability of Einstein-Gauss-Bonnet black holes in the de Sitter world

    NASA Astrophysics Data System (ADS)

    Cuyubamba, M. A.; Konoplya, R. A.; Zhidenko, A.

    2016-05-01

    Analysis of time-domain profiles for gravitational perturbations shows that Gauss-Bonnet black holes in a de Sitter world possess a new kind of dynamical instability which does not take place for asymptotically flat Einstein-Gauss-Bonnet black holes. The new instability is in the gravitational perturbations of the scalar type and is due to the nonvanishing cosmological constant. Analysis of the quasinormal spectrum in the stability sector shows that although the scalar type of gravitational perturbations alone does not obey Hod's conjectural bound, connecting the damping rate and the Hawking temperature, the vector and tensor types (and thereby the gravitational spectrum as a whole) do obey it.

  4. A spectral comparison of two methods of removing errors in Gauss` law in a 2-dimensional PIC plasma simulation

    SciTech Connect

    Mardahl, P.; Verboncoeur, J.; Birdsall, C.K.

    1995-12-31

    Non-charge conserving current collection algorithms for relativistic PIC plasma simulations can cause errors in Gauss` law. These errors arise from violations of the continuity equation. Two techniques for removing these errors are examined and compared, the Marder correction, a method which corrects electric fields locally and primarily affects short wavelengths, and a divergence correction, which uses a Poisson solve to correct the electric fields so that Gauss` law is enforced. The effect of each method on the spectrum of the error (short wavelengths vs. long) are examined. Computational efficiency and accuracy of the two techniques is compared.

  5. An analytic analysis of d-dimensional Gauss-Bonnet holographic superconductor in Born-Infeld electrodynamics

    NASA Astrophysics Data System (ADS)

    Guo, Xiong-Ying; Zhang, Li-Chun; Zhao, Ren

    2014-06-01

    We employ the simple analytic method and the variational method of the Strum-Liouville (S-L) eigenvalue problem to analytically study the holographic superconductor phase transition in Gauss-Bonnet gravity with Born-Infeld (BI) electrodynamics in the probe limit, respectively. We find that the scalar hair formation at low temperatures is indeed affected by the Gauss-Bonnet as well as the BI coupling parameters, but also by the scalar field mass and the spacetime dimensional. Our analytic result has been found in agreement with the numerical results.

  6. Is there a relation between the 2D Causal Set action and the Lorentzian Gauss-Bonnet theorem?

    NASA Astrophysics Data System (ADS)

    Benincasa, Dionigi M. T.

    2011-07-01

    We investigate the relation between the two dimensional Causal Set action, Script S, and the Lorentzian Gauss-Bonnet theorem (LGBT). We give compelling reasons why the answer to the title's question is no. In support of this point of view we calculate the causal set inspired action of causal intervals in some two dimensional spacetimes: Minkowski, the flat cylinder and the flat trousers.

  7. Thick braneworlds and the Gibbons-Kallosh-Linde no-go theorem in the Gauss-Bonnet framework

    NASA Astrophysics Data System (ADS)

    Dias, M.; Hoff da Silva, J. M.; da Rocha, Roldão

    2015-04-01

    The sum rules related to thick braneworlds are constructed in order to encompass Gauss-Bonnet terms. The generation of thick branes is hence proposed in a periodic extra dimension scenario, which circumvents the Gibbons-Kallosh-Linde no-go theorem in this context.

  8. Quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map in pseudo-Euclidean 4-space

    NASA Astrophysics Data System (ADS)

    Milousheva, Velichka; Turgay, Nurettin Cenk

    2016-08-01

    A Lorentz surface in the four-dimensional pseudo-Euclidean space with neutral metric is called quasi-minimal if its mean curvature vector is lightlike at each point. In the present paper we obtain the complete classification of quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map.

  9. Large non-gaussianity in a non-minimally coupled derivative inflationary model with Gauss-Bonnet correction

    NASA Astrophysics Data System (ADS)

    Nozari, Kourosh; Rashidi, Narges

    2016-06-01

    We study a nonminimal derivative inflationary model in the presence of the Gauss-Bonnet term. To have a complete treatment of the model, we consider a general form of the nonminimal derivative function and also the Gauss-Bonnet coupling term. By following the Arnowitt-Deser-Misner formalism, expanding the action up to the third order in the perturbations and using the correlation functions, we study the perturbation and its non-Gaussian feature in details. We also study the consistency relation that gets modified in the presence of the Gauss-Bonnet term in the action. We compare the results of our consideration in confrontation with Planck2015 observational data and find some constraints on the model's parameters. Our treatment shows that this model in some ranges of the parameters is consistent with the observational data. Also, in some ranges of model's parameters, the model predicts blue-tilted power spectrum. Finally, we show that nonminimal derivative model in the presence of the Gauss-Bonnet term has capability to have large non-Gaussianity.

  10. On the Fourier - Gauss transforms of some q-exponential and q-trigonometric functions

    NASA Astrophysics Data System (ADS)

    Atakishiyev, N. M.

    1996-11-01

    We examine the properties of q-exponential and q-trigonometric functions, recently introduced and discussed in the literature. It is shown that they are related to Jackson's q-analogues of the exponential and trigonometric functions by classical Fourier - Gauss transformations.

  11. Topological black holes in pure Gauss-Bonnet gravity and phase transitions

    NASA Astrophysics Data System (ADS)

    Aránguiz, Ligeia; Kuang, Xiao-Mei; Miskovic, Olivera

    2016-03-01

    We study charged, static, topological black holes in pure Gauss-Bonnet gravity in asymptotically AdS space. As in general relativity, the theory possesses a unique nondegenerate AdS vacuum. It also admits charged black hole solutions which asymptotically behave as the Reissner-Nordström AdS black hole. We discuss black hole thermodynamics of these black holes. Then we study phase transitions in a dual quantum field theory in four dimensions, with the Stückelberg scalar field as an order parameter. We find in the probe limit that the black hole can develop hair below some critical temperature, which suggests a phase transition. Depending on the scalar coupling constants, the phase transition can be first or second order. Analysis of the free energy reveals that, comparing the two solutions, the hairy state is energetically favorable, thus a phase transition will occur in a dual field theory.

  12. Slowly-Rotating Black Hole Solution in Einstein-Dilaton-Gauss-Bonnet Gravity

    NASA Astrophysics Data System (ADS)

    Ayzenberg, Dimitry; Yunes, Nicolas

    2015-04-01

    We present a stationary and axisymmetric black hole solution in Einstein-Dilaton-Gauss-Bonnet gravity to quadratic order in the ratio of the spin angular momentum to the black hole mass squared. This solution introduces new corrections to previously found nonspinning and linear-in-spin solutions. The location of the event horizon and the ergosphere are modified, as well as the quadrupole moment. The new solution is of Petrov type I, although lower order in spin solutions are of Petrov type D. There are no closed timelike curves or spacetime regions that violate causality outside of the event horizon in the new solution. We calculate the modifications to the binding energy, Kepler's third law, and properties of the innermost stable circular orbit. These modifications are important for determining how the electromagnetic properties of accretion disks around supermassive black holes are changed from those expected in general relativity.

  13. Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem

    SciTech Connect

    Cognola, Guido; Zerbini, Sergio; Elizalde, Emilio; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2006-04-15

    Dark energy cosmology is considered in a modified Gauss-Bonnet (GB) model of gravity where an arbitrary function of the GB invariant, f(G), is added to the general relativity action. We show that a theory of this kind is endowed with a quite rich cosmological structure: it may naturally lead to an effective cosmological constant, quintessence, or phantom cosmic acceleration, with a possibility for the transition from deceleration to acceleration. It is demonstrated in the paper that this theory is perfectly viable, since it is compliant with the solar system constraints. Specific properties of f(G) gravity in a de Sitter (dS) universe, such as dS and SdS solutions, their entropy, and its explicit one-loop quantization are studied. The issue of a possible solution of the hierarchy problem in modified gravities is also addressed.

  14. The role of Gauss curvature in a membrane phase separation problem

    NASA Astrophysics Data System (ADS)

    Gillmor, Susan; Lee, Jieun; Ren, Xiaofeng

    2011-12-01

    Consider a two-phase lipid vesicle. Below the transition temperature, the phases separate into non-connecting domains that coarsen into larger areas. The free energy of phase properties determines the length of the boundaries separating the regions. The two phases correspond to different lipid compositions, and in cells, this fluctuation in composition is a dynamic process vital to its function. We prove that a small patch of the minority lipids forms at a point of the membrane where the Gauss curvature attains a maximum. This patch has a round shape approximately and its boundary has a constant geodesic curvature. The proof consists of three steps. The construction of a family of good approximate solutions, an improvement of the approximate solutions so that their geodesic curvature is a constant modulo translation, and the identification of an exact solution from the family of the improved approximate solutions. Our theoretical results are supported by vesicle experiments.

  15. Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.

    PubMed

    Borrelli, Raffaele; Peluso, Andrea

    2016-03-21

    A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems. PMID:27004857

  16. Four-wave mixing in quantum wells using femtosecond pulses with Laguerre-Gauss modes

    NASA Astrophysics Data System (ADS)

    Persuy, Déborah; Ziegler, Marc; Crégut, Olivier; Kheng, Kuntheak; Gallart, Mathieu; Hönerlage, Bernd; Gilliot, Pierre

    2015-09-01

    We demonstrate theoretically and experimentally that four-wave mixing processes obey phase-matching conditions that determine not only the conservation of the photon energy and k-momentum but also the orbital angular momentum of light. We report on time-resolved four-wave mixing experiments performed on a CdTe/CdZnTe quantum well in both noncollinear and collinear configurations with Laguerre-Gauss beams. They demonstrate that the polarization wave which is induced in the material keeps memory of the excitation pulse orbital momentum. We show that in the collinear configuration, the large angular acceptance opens up new horizons for improving the spatial resolution in time-resolved experiments.

  17. Physical meaning of the radial index of Laguerre-Gauss beams

    NASA Astrophysics Data System (ADS)

    Plick, William N.; Krenn, Mario

    2015-12-01

    The Laguerre-Gauss modes are a class of fundamental and well-studied optical fields. These stable shape-invariant photons, exhibiting circular-cylindrical symmetry, are familiar from laser optics, micromechanical manipulation, quantum optics, communication, and foundational studies in both classical optics and quantum physics. They are characterized, chiefly, by two mode numbers: the azimuthal index indicating the orbital angular momentum of the beam, which itself has spawned a burgeoning and vibrant subfield, and the radial index, which up until recently has largely been ignored. In this paper we develop a differential operator formalism for dealing with the radial modes in both the position and momentum representations and, more importantly, give the meaning of this quantum number in terms of a well-defined physical parameter: the intrinsic hyperbolic momentum charge.

  18. Black hole solutions in string theory with Gauss-Bonnet curvature correction

    SciTech Connect

    Maeda, Kei-ichi; Ohta, Nobuyoshi; Sasagawa, Yukinori

    2009-11-15

    We present the black hole solutions and analyze their properties in the superstring effective field theory with the Gauss-Bonnet curvature correction terms. We find qualitative differences in our results from those obtained in the truncated model in the Einstein frame. The main difference in our model from the truncated one is that the existence of a turning point in the mass-area curve, the mass-entropy curve, and the mass-temperature curve in five and higher dimensions, where we expect a change of stability. We also find a mass gap in our model, where there is no black hole solution. In five dimensions, there exists a maximum black hole temperature and the temperature vanishes at the minimum mass, which is not found in the truncated model.

  19. Thermodynamic instability of topological black holes in Gauss-Bonnet gravity with a generalized electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.

    2014-12-01

    Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermodynamics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the Hessian matrix. Then, we focus on horizon-flat solutions with an anti-de Sitter (AdS) asymptote and produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermodynamics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear electrodynamics in canonical and grand canonical ensembles.

  20. Higher-Order Laguerre-Gauss Mode Generation and Interferometry for Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Granata, M.; Buy, C.; Ward, R.; Barsuglia, M.

    2010-12-01

    We report on the first experimental demonstration of higher-order Laguerre-Gauss (LGpℓ) mode generation and interferometry using a method scalable to the requirements of gravitational wave (GW) detection. GW detectors which use higher-order LGpℓ modes will be less susceptible to mirror thermal noise, which is expected to limit the sensitivity of all currently planned terrestrial detectors. We used a diffractive optic and a mode-cleaner cavity to convert a fundamental LG00 Gaussian beam into an LG33 mode with a purity of 98%. The ratio between the power of the LG00 mode of our laser and the power of the LG33 transmitted by the cavity was 36%. By measuring the transmission of our setup using the LG00, we inferred that the conversion efficiency specific to the LG33 mode was 49%. We illuminated a Michelson interferometer with the LG33 beam and achieved a visibility of 97%.

  1. A Gauss-Newton approach to joint image registration and intensity correction.

    PubMed

    Ebrahimi, Mehran; Lausch, Anthony; Martel, Anne L

    2013-12-01

    We develop a new efficient numerical methodology for automated simultaneous registration and intensity correction of images. The approach separates the intensity correction term from the images being registered in a regularized expression. Our formulation is consistent with the existing non-parametric image registration techniques, however, an extra additive intensity correction term is carried throughout. An objective functional is formed for which the corresponding Hessian and Jacobian is computed and employed in a multi-level Gauss-Newton minimization approach. In this paper, our experiments are based on elastic regularization on the transformation and total variation on the intensity correction. Validations on dynamic contrast enhanced MR abdominal images for both real and simulated data verified the efficacy of the model. The pursued approach is flexible in which we can exploit various forms of regularization on the transformation and the intensity correction. PMID:24075154

  2. Critical behavior of charged black holes in Gauss-Bonnet gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Panahiyan, Shahram; Eslam Panah, Behzad; Faizal, Mir; Momennia, Mehrab

    2016-07-01

    Following an earlier study regarding Gauss-Bonnet-Maxwell black holes in the presence of gravity's rainbow [S. H. Hendi and M. Faizal, Phys. Rev. D 92, 044027 (2015)], in this paper, we consider all constants as energy dependent ones. The geometrical and thermodynamical properties of this generalization is studied and the validation of the first law of thermodynamics is examined. Next, through the use of proportionality between the cosmological constant and the thermodynamical pressure, van der Waals-like behavior of these black holes in extended phase space is investigated. An interesting critical behavior for sets of rainbow functions in this case is reported. Also, the critical behavior of uncharged and charged solutions is analyzed and it is shown that the generalization to a charged case puts an energy dependent restriction on values of different parameters.

  3. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  4. [A Hyperspectral Imagery Anomaly Detection Algorithm Based on Gauss-Markov Model].

    PubMed

    Gao, Kun; Liu, Ying; Wang, Li-jing; Zhu, Zhen-yu; Cheng, Hao-bo

    2015-10-01

    With the development of spectral imaging technology, hyperspectral anomaly detection is getting more and more widely used in remote sensing imagery processing. The traditional RX anomaly detection algorithm neglects spatial correlation of images. Besides, it does not validly reduce the data dimension, which costs too much processing time and shows low validity on hyperspectral data. The hyperspectral images follow Gauss-Markov Random Field (GMRF) in space and spectral dimensions. The inverse matrix of covariance matrix is able to be directly calculated by building the Gauss-Markov parameters, which avoids the huge calculation of hyperspectral data. This paper proposes an improved RX anomaly detection algorithm based on three-dimensional GMRF. The hyperspectral imagery data is simulated with GMRF model, and the GMRF parameters are estimated with the Approximated Maximum Likelihood method. The detection operator is constructed with GMRF estimation parameters. The detecting pixel is considered as the centre in a local optimization window, which calls GMRF detecting window. The abnormal degree is calculated with mean vector and covariance inverse matrix, and the mean vector and covariance inverse matrix are calculated within the window. The image is detected pixel by pixel with the moving of GMRF window. The traditional RX detection algorithm, the regional hypothesis detection algorithm based on GMRF and the algorithm proposed in this paper are simulated with AVIRIS hyperspectral data. Simulation results show that the proposed anomaly detection method is able to improve the detection efficiency and reduce false alarm rate. We get the operation time statistics of the three algorithms in the same computer environment. The results show that the proposed algorithm improves the operation time by 45.2%, which shows good computing efficiency. PMID:26904830

  5. Emergent universe supported by chiral cosmological fields in 5D Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Chervon, S. V.; Maharaj, S. D.; Beesham, Aroonkumar; Kubasov, A. S.

    2014-07-01

    We propose the application of the chiral cosmological model (CCM) for the Einstein--Gauss--Bonnet (EGB) theory of gravitation with the aim of finding new models of the Emergent Universe (EmU) scenario. We analysed the EmU supported by two chiral cosmological fields for a spatially flat universe, while we have used three chiral fields when we investigated open and closed universes. To prove the validity of the EmU scenario we fixed the scale factor and found the exact solution by decomposition of EGB equations and solving the chiral field dynamics equation. To this end, we suggested the decomposition of the EGB equations in such a way that the first chiral field is responsible for the Einstein part of the model, while the second field, together with kinetic interaction term, is connected with the Gauss--Bonnet part of the theory. We proved that both fields are phantom ones under this decomposition, and that the model has a solution if the kinetic interaction between the fields equals a constant. We have presented the exact solution in terms of cosmic time. This was done for a spatially flat universe. In the case of open and closed universes we introduced the third chiral field (canonical for closed and phantom for open universe) which is responsible for the EGB and curvature parts. The solution of the third field equation is obtained in quadratures. Thus we have proved that the CCM is able to support EmU scenario in EGB gravity for spatially flat, open and closed universes.

  6. Thermodynamics of Taub-NUT/bolt-AdS black holes in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Khodam-Mohammadi, A.; Monshizadeh, M.

    2009-02-15

    We give a review of the existence of Taub-NUT/bolt solutions in Einstein Gauss-Bonnet gravity with the parameter {alpha} in six dimensions. Although the spacetime with base space S{sup 2}xS{sup 2} has a curvature singularity at r=N, which does not admit NUT solutions, we may proceed with the same computations as in the CP{sup 2} case. The investigation of thermodynamics of NUT/bolt solutions in six dimensions is carried out. We compute the finite action, mass, entropy, and temperature of the black hole. Then the validity of the first law of thermodynamics is demonstrated. It is shown that in NUT solutions all thermodynamic quantities for both base spaces are related to each other by substituting {alpha}{sup CP{sup k}}=[(k+1)/k]{alpha}{sup S{sup 2}}{sup xS{sup 2}}{sup x...S{sub k}{sup 2}}. So, no further information is given by investigating NUT solutions in the S{sup 2}xS{sup 2} case. This relation is not true for bolt solutions. A generalization of the thermodynamics of black holes to arbitrary even dimensions is made using a new method based on the Gibbs-Duhem relation and Gibbs free energy for NUT solutions. According to this method, the finite action in Einstein Gauss-Bonnet is obtained by considering the generalized finite action in Einstein gravity with an additional term as a function of {alpha}. Stability analysis is done by investigating the heat capacity and entropy in the allowed range of {alpha}, {lambda}, and N. For NUT solutions in d dimensions, there exists a stable phase at a narrow range of {alpha}. In six-dimensional bolt solutions, the metric is completely stable for B=S{sup 2}xS{sup 2} and is completely unstable for the B=CP{sup 2} case.

  7. Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl Teller Ginocchio potential wave functions

    NASA Astrophysics Data System (ADS)

    Michel, N.; Stoitsov, M. V.

    2008-04-01

    The fast computation of the Gauss hypergeometric function F12 with all its parameters complex is a difficult task. Although the F12 function verifies numerous analytical properties involving power series expansions whose implementation is apparently immediate, their use is thwarted by instabilities induced by cancellations between very large terms. Furthermore, small areas of the complex plane, in the vicinity of z=e, are inaccessible using F12 power series linear transformations. In order to solve these problems, a generalization of R.C. Forrey's transformation theory has been developed. The latter has been successful in treating the F12 function with real parameters. As in real case transformation theory, the large canceling terms occurring in F12 analytical formulas are rigorously dealt with, but by way of a new method, directly applicable to the complex plane. Taylor series expansions are employed to enter complex areas outside the domain of validity of power series analytical formulas. The proposed algorithm, however, becomes unstable in general when |a|, |b|, |c| are moderate or large. As a physical application, the calculation of the wave functions of the analytical Pöschl-Teller-Ginocchio potential involving F12 evaluations is considered. Program summaryProgram title: hyp_2F1, PTG_wf Catalogue identifier: AEAE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6839 No. of bytes in distributed program, including test data, etc.: 63 334 Distribution format: tar.gz Programming language: C++, Fortran 90 Computer: Intel i686 Operating system: Linux, Windows Word size: 64 bits Classification: 4.7 Nature of problem: The Gauss hypergeometric function F12, with all its parameters complex, is uniquely

  8. Identification of Molecular Fingerprints in Human Heat Pain Thresholds by Use of an Interactive Mixture Model R Toolbox (AdaptGauss).

    PubMed

    Ultsch, Alfred; Thrun, Michael C; Hansen-Goos, Onno; Lötsch, Jörn

    2015-01-01

    Biomedical data obtained during cell experiments, laboratory animal research, or human studies often display a complex distribution. Statistical identification of subgroups in research data poses an analytical challenge. Here were introduce an interactive R-based bioinformatics tool, called "AdaptGauss". It enables a valid identification of a biologically-meaningful multimodal structure in the data by fitting a Gaussian mixture model (GMM) to the data. The interface allows a supervised selection of the number of subgroups. This enables the expectation maximization (EM) algorithm to adapt more complex GMM than usually observed with a noninteractive approach. Interactively fitting a GMM to heat pain threshold data acquired from human volunteers revealed a distribution pattern with four Gaussian modes located at temperatures of 32.3, 37.2, 41.4, and 45.4 °C. Noninteractive fitting was unable to identify a meaningful data structure. Obtained results are compatible with known activity temperatures of different TRP ion channels suggesting the mechanistic contribution of different heat sensors to the perception of thermal pain. Thus, sophisticated analysis of the modal structure of biomedical data provides a basis for the mechanistic interpretation of the observations. As it may reflect the involvement of different TRP thermosensory ion channels, the analysis provides a starting point for hypothesis-driven laboratory experiments. PMID:26516852

  9. Performance of a channelized-ideal observer using Laguerre-Gauss channels for detecting a Gaussian signal at a known location in different lumpy backgrounds

    NASA Astrophysics Data System (ADS)

    Park, Subok; Clarkson, Eric; Barrett, Harrison H.; Kupinski, Matthew A.; Myers, Kyle J.

    2006-03-01

    The Bayesian ideal observer gives a measure for image quality since it uses all available statistical information for a given image data. A channelized-ideal observer (CIO), which reduces the dimensionality of integrals that need to be calculated for the ideal observer, has been introduced in the past. The goal of the CIO is to approximate the performance of the ideal observer in certain detection tasks. In this work, a CIO using Laguerre-Gauss (LG) channels is employed for detecting a rotationally symmetric Gaussian signal at a known location in the non-Gaussian distributed lumpy background. The mean number of lumps in the lumpy background is varied to see the impact of image statistics on the performance of this CIO and a channelized-Hotelling observer (CHO) using the same channels. The width parameter of LG channels is also varied to see its impact on observer performance. A Markov-chain Monte Carlo (MCMC) method is employed to determine the performance of the CIO using large numbers of LG channels. Simulation results show that the CIO is a better observer than the CHO for the task. The results also indicate that the performance of the CIO approaches that of the ideal observer as the mean number of lumps in the lumpy background decreases. This implies that LG channels may be efficient for the CIO to approximate the performance of the ideal observer in tasks using non-Gaussian distributed lumpy backgrounds.

  10. Universal slow fall-off to the unique AdS infinity in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki

    2008-08-15

    In this paper, the following two propositions are proven under the dominant energy condition for the matter field in the higher-dimensional spherically symmetric spacetime in Einstein-Gauss-Bonnet gravity in the presence of a cosmological constant {lambda}. First, for {lambda}{<=}0 and {alpha}{>=}0 without a fine-tuning to give a unique anti-de Sitter (AdS) vacuum, where {alpha} is the Gauss-Bonnet coupling constant, vanishing generalized Misner-Sharp mass is equivalent to the maximally symmetric spacetime. Under the fine-tuning, it is equivalent to the vacuum class I spacetime. Second, under the fine-tuning with {alpha}>0, the asymptotically AdS spacetime in the higher-dimensional Henneaux-Teitelboim sense is only a special class of the vacuum class I spacetime. This means the universal slow fall-off to the unique AdS infinity in the presence of physically reasonable matter.

  11. Generation of fast neturon spectra using an adaptive Gauss-Kronrod Quadrature algorithm

    NASA Astrophysics Data System (ADS)

    Triplett, Brian Scott

    A lattice physics calculation is often the first step in analyzing a nuclear reactor. This calculation condenses regions of the reactor into average parameters (i.e., group constants) that can be used in coarser full-core, time-dependent calculations. This work presents a high-fidelity deterministic method for calculating the neutron energy spectrum in an infinite medium. The spectrum resulting from this calculation can be used to generate accurate group constants. This method includes a numerical algorithm based on Gauss-Kronrod Quadrature to determine the neutron transfer source to a given energy while controlling numerical error. This algorithm was implemented in a pointwise transport solver program called Pointwise Fast Spectrum Generator (PWFSG). PWFSG was benchmarked against the Monte Carlo program MCNP and another pointwise spectrum generation program, CENTRM, for a set of fast reactor infinite medium example cases. PWFSG showed good agreement with MCNP, yielding coefficients of determination above 98% for all example cases. In addition, PWFSG had 6 to 8 times lower flux estimation error than CENTRM in the cases examined. With run-times comparable to CENTRM, PWFSG represents a robust set of methods for generation of fast neutron spectra with increased accuracy without increased computational cost.

  12. Subluminal group velocity and dispersion of Laguerre Gauss beams in free space

    PubMed Central

    Bareza, Nestor D.; Hermosa, Nathaniel

    2016-01-01

    That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein’s postulate in special relativity. This has been a basic assumption in light’s various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light’s group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam’s divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space. PMID:27231195

  13. A convergence rates result for an iteratively regularized Gauss-Newton-Halley method in Banach space

    NASA Astrophysics Data System (ADS)

    Kaltenbacher, B.

    2015-01-01

    The use of second order information on the forward operator often comes at a very moderate additional computational price in the context of parameter identification problems for differential equation models. On the other hand the use of general (non-Hilbert) Banach spaces has recently found much interest due to its usefulness in many applications. This motivates us to extend the second order method from Kaltenbacher (2014 Numer. Math. at press), (see also Hettlich and Rundell 2000 SIAM J. Numer. Anal. 37 587620) to a Banach space setting and analyze its convergence. We here show rates results for a particular source condition and different exponents in the formulation of Tikhonov regularization in each step. This includes a complementary result on the (first order) iteratively regularized Gauss-Newton method in case of a one-homogeneous data misfit term, which corresponds to exact penalization. The results clearly show the possible advantages of using second order information, which get most pronounced in this exact penalization case. Numerical simulations for an inverse source problem for a nonlinear elliptic PDE illustrate the theoretical findings.

  14. A Gauss-Seidel Iteration Scheme for Reference-Free 3-D Histological Image Reconstruction

    PubMed Central

    Daum, Volker; Steidl, Stefan; Maier, Andreas; Köstler, Harald; Hornegger, Joachim

    2015-01-01

    Three-dimensional (3-D) reconstruction of histological slice sequences offers great benefits in the investigation of different morphologies. It features very high-resolution which is still unmatched by in-vivo 3-D imaging modalities, and tissue staining further enhances visibility and contrast. One important step during reconstruction is the reversal of slice deformations introduced during histological slice preparation, a process also called image unwarping. Most methods use an external reference, or rely on conservative stopping criteria during the unwarping optimization to prevent straightening of naturally curved morphology. Our approach shows that the problem of unwarping is based on the superposition of low-frequency anatomy and high-frequency errors. We present an iterative scheme that transfers the ideas of the Gauss-Seidel method to image stacks to separate the anatomy from the deformation. In particular, the scheme is universally applicable without restriction to a specific unwarping method, and uses no external reference. The deformation artifacts are effectively reduced in the resulting histology volumes, while the natural curvature of the anatomy is preserved. The validity of our method is shown on synthetic data, simulated histology data using a CT data set and real histology data. In the case of the simulated histology where the ground truth was known, the mean Target Registration Error (TRE) between the unwarped and original volume could be reduced to less than 1 pixel on average after 6 iterations of our proposed method. PMID:25312918

  15. Constraints on modified Gauss-Bonnet gravity during big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Koh, Seoktae; Kim, K. S.; Cheoun, Myung-Ki

    2016-02-01

    Modified gravity is considered to be one of the possible explanations of the accelerated expansions of the present and the early universe. We study the effects of modified gravity on big bang nucleosynthesis (BBN). If the effects of modified gravity are significant during the BBN epoch, they should be observed as changes of primordial light element abundances. We assume a f (G ) term with the Gauss-Bonnet term G , during the BBN epoch. A power-law relation of d f /d G ∝tp where t is the cosmic time was assumed for the function f (G ) as an example case. We solve time evolutions of physical variables during BBN in the f (G ) gravity model numerically, and we analyzed the calculated results. It is found that a proper solution for the cosmic expansion rate can be lost in some parameter region. In addition, we show that calculated results of primordial light element abundances can be significantly different from observational data. Especially, observational limits on the primordial D abundance leads to the strongest constraint on the f (G ) gravity. We then derive constraints on parameters of the f (G ) gravity taking into account the existence of the solution of expansion rate and final light element abundances.

  16. Subluminal group velocity and dispersion of Laguerre Gauss beams in free space.

    PubMed

    Bareza, Nestor D; Hermosa, Nathaniel

    2016-01-01

    That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein's postulate in special relativity. This has been a basic assumption in light's various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light's group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam's divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space. PMID:27231195

  17. Subluminal group velocity and dispersion of Laguerre Gauss beams in free space

    NASA Astrophysics Data System (ADS)

    Bareza, Nestor D.; Hermosa, Nathaniel

    2016-05-01

    That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein’s postulate in special relativity. This has been a basic assumption in light’s various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light’s group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam’s divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space.

  18. Late cosmic acceleration in a vector-Gauss-Bonnet gravity model

    NASA Astrophysics Data System (ADS)

    Oliveros, A.; Solis, Enzo L.; Acero, Mario A.

    2016-12-01

    In this work, we study a general vector-tensor model of dark energy (DE) with a Gauss-Bonnet term coupled to a vector field and without explicit potential terms. Considering a spatially flat Friedmann-Robertson-Walker (FRW) type universe and a vector field without spatial components, the cosmological evolution is analyzed from the field equations of this model considering two sets of parameters. In this context, we have shown that it is possible to obtain an accelerated expansion phase of the universe since the equation state parameter w satisfies the restriction - 1 < w < -1/3 (for suitable values of model parameters). Further, analytical expressions for the Hubble parameter H, equation state parameter w and the invariant scalar ϕ are obtained. We also find that the square of the speed of sound is negative for all values of redshift, therefore, the model presented here shows a sign of instability under small perturbations. We finally perform an analysis using H(z) observational data and we find that for the free parameter ξ in the interval (-23.9,-3.46) × 10-5, at 99.73% C.L. (and fixing η = -1 and ω = 1/4), the model has a good fit to the data.

  19. Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation

    SciTech Connect

    Brihaye, Yves; Hartmann, Betti

    2011-10-15

    We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.

  20. Analytical Limit Distributions from Random Power-Law Interactions.

    PubMed

    Zaid, Irwin; Mizuno, Daisuke

    2016-07-15

    Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated. PMID:27472105

  1. The generation of arbitrary order, non-classical, Gauss-type quadrature for transport applications

    SciTech Connect

    Spence, Peter J.

    2015-09-01

    A method is presented, based upon the Stieltjes method (1884), for the determination of non-classical Gauss-type quadrature rules, and the associated sets of abscissae and weights. The method is then used to generate a number of quadrature sets, to arbitrary order, which are primarily aimed at deterministic transport calculations. The quadrature rules and sets detailed include arbitrary order reproductions of those presented by Abu-Shumays in [4,8] (known as the QR sets, but labelled QRA here), in addition to a number of new rules and associated sets; these are generated in a similar way, and we label them the QRS quadrature sets. The method presented here shifts the inherent difficulty (encountered by Abu-Shumays) associated with solving the non-linear moment equations, particular to the required quadrature rule, to one of the determination of non-classical weight functions and the subsequent calculation of various associated inner products. Once a quadrature rule has been written in a standard form, with an associated weight function having been identified, the calculation of the required inner products is achieved using specific variable transformations, in addition to the use of rapid, highly accurate quadrature suited to this purpose. The associated non-classical Gauss quadrature sets can then be determined, and this can be done to any order very rapidly. In this paper, instead of listing weights and abscissae for the different quadrature sets detailed (of which there are a number), the MATLAB code written to generate them is included as Appendix D. The accuracy and efficacy (in a transport setting) of the quadrature sets presented is not tested in this paper (although the accuracy of the QRA quadrature sets has been studied in [12,13]), but comparisons to tabulated results listed in [8] are made. When comparisons are made with one of the azimuthal QRA sets detailed in [8], the inherent difficulty in the method of generation, used there, becomes apparent

  2. Gauss-Bonnet assisted braneworld inflation in light of BICEP2 and Planck data

    NASA Astrophysics Data System (ADS)

    Neupane, Ishwaree P.

    2014-12-01

    Motivated by the idea that quantum gravity corrections usually suppress the power of the scalar primordial spectrum (E-mode) more than the power of the tensor primordial spectrum (B-mode), in this paper we construct a concrete gravitational theory in five-dimensions for which V (ϕ )∝ϕn -type inflation (n ≥1 ) generates an appropriate tensor-to-scalar ratio that may be compatible with the BICEP2 and Planck data together. The true nature of gravity is five-dimensional and described by the action S =∫d5x √{|g | }M3(-6 λ M2+R +α M-2R2) where M is the five-dimensional Planck mass and R2=R2-4 Ra bRa b+Ra b c dRa b c d is the Gauss-Bonnet (GB) term. The five-dimensional "bulk" spacetime is anti-de Sitter (λ <0 ) for which inflation ends naturally. The effects of R2 term on the magnitudes of scalar and tensor fluctuations and spectral indices are shown to be important at the energy scale of inflation. For GB-assisted m2ϕ2-inflation, inflationary constraints from BICEP2 and Planck, such as, ns≃0.9603 (±0.0073 ), r =0.16 (+0.06 -0.05 ) and V*1 /4≳1.5 ×1 016 GeV are all satisfied for (-λ α )≃(3 -300 )×1 0-5.

  3. Generalized second law of thermodynamics on the apparent horizon in modified Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, A.; Najafi, T.

    2016-01-01

    Modified gravity (MG) and generalized second law (GSL) of thermodynamics are interesting topics in the modern cosmology. In this regard, we investigate the GSL of gravitational thermodynamics in the framework of modified Gauss-Bonnet (GB) gravity or f(G)-gravity. We consider a spatially FRW universe filled with the pressureless matter and radiation enclosed by the dynamical apparent horizon with the Hawking temperature. For two viable f(G) models, we first numerically solve the set of differential equations governing the dynamics of f(G)-gravity. Then, we obtain the evolutions of the Hubble parameter, the GB curvature invariant term, the density and equation of state (EoS) parameters as well as the deceleration parameter. In addition, we check the energy conditions for both models and finally examine the validity of the GSL. For the selected f(G) models, we conclude that both models have a stable de Sitter attractor. The EoS parameters behave quite similar to those of the ΛCDM model in the radiation/matter dominated epochs, then they enter the phantom region before reaching the de Sitter attractor with ω = -1. The deceleration parameter starts from the radiation/matter dominated eras, then transits from a cosmic deceleration to acceleration and finally approaches a de Sitter regime at late times, as expected. Furthermore, the GSL is respected for both models during the standard radiation/matter dominated epochs. Thereafter when the universe becomes accelerating, the GSL is violated in some ranges of scale factor. At late times, the evolution of the GSL predicts an adiabatic behavior for the accelerated expansion of the universe.

  4. Linking the Gauss-Bonnet-Chern theorem, essential HOPF maps and membrane solitons with exotic spin and statistics

    SciTech Connect

    Tze, Chia-Hsiung . Dept. of Physics)

    1989-01-01

    By way of the Gauss-Bonnet-Chern theorem, we present a higher dimensional extension of Polyakov's regularization of Wilson loops of point solitons. Spacetime paths of extended objects become hyper-ribbons with self-linking, twisting and writhing numbers. specifically we discuss the exotic spin and statistical phase entanglements of geometric n-membrane solitons of D-dimensional KP{sub 1} {sigma}-models with an added Hopf-Chern-Simons term where (n, D, K) = (0, 3, C), (2, 7, H), (6, 15, {Omega}). They are uniquely linked to the complex and quaternion and octonion division algebras. 22 refs.

  5. Thermodynamics of static black objects in D dimensional Einstein-Gauss-Bonnet gravity with D-4 compact dimensions

    NASA Astrophysics Data System (ADS)

    Sahabandu, C.; Suranyi, P.; Vaz, C.; Wijewardhana, L. C.

    2006-02-01

    We investigate the thermodynamics of static black objects such as black holes, black strings and their generalizations to D dimensions (“black branes”) in a gravitational theory containing the four-dimensional Gauss-Bonnet term in the action, with D-4 dimensions compactified torus. The entropies of black holes and black branes are compared to obtain information on the stability of these objects and to find their phase diagrams. We demonstrate the existence of a critical mass, which depends on the scale of the compactified dimensions, below which the black hole entropy dominates over the entropy of the black membrane.

  6. Light bullets in three-dimensional complex Ginzburg-Landau equation with modulated Kummer-Gauss photonic lattice

    NASA Astrophysics Data System (ADS)

    Xu, Si-Liu; Belić, Milivoj R.

    2014-11-01

    We investigate the existence of spatiotemporal necklace vortex solitons or light bullets in the complex Ginzburg-Landau equation with the modulated Kummer-Gauss (KG) external lattice potential and the spiraling phase of vorticities S=0,1 , and 2. We find localized vortex necklaces in a three-dimensional nonlinear medium, trapped by the KG external potential with different orders of vorticity. Stable and quasi-stable solitons form from input pulses with embedded vorticity. The stability is established by calculating growth rates of the perturbed eigenmodes. We establish that spatiotemporal necklace solitons may coexist in a large domain of the parameter space.

  7. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    NASA Astrophysics Data System (ADS)

    Mišković, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  8. Extended phase space of AdS black holes in Einstein-Gauss-Bonnet gravity with a quadratic nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.; Momennia, M.

    2016-04-01

    In this paper, we consider quadratic Maxwell invariant as a correction to the Maxwell theory and study thermodynamic behavior of the black holes in Einstein and Gauss-Bonnet gravities. We consider cosmological constant as a thermodynamic pressure to extend phase space. Next, we obtain critical values in case of variation of nonlinearity and Gauss-Bonnet parameters. Although the general thermodynamical behavior of the black hole solutions is the same as usual Van der Waals system, we show that in special case of the nonlinear electromagnetic field, there will be a turning point for the phase diagrams and usual Van der Waals is not observed. This theory of nonlinear electromagnetic field provides two critical horizon radii. We show that this unusual behavior of phase diagrams is due to existence of second critical horizon radius. It will be pointed out that the power of the gravity and nonlinearity of the matter field modify the critical values. We generalize the study by considering the effects of dimensionality on critical values and make comparisons between our models with their special sub-classes. In addition, we examine the possibility of the existence of the reentrant phase transitions through two different methods.

  9. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    SciTech Connect

    Miskovic, Olivera; Olea, Rodrigo

    2011-01-15

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  10. Plasma Dispersion Function for the Kappa Distribution

    NASA Technical Reports Server (NTRS)

    Podesta, John J.

    2004-01-01

    The plasma dispersion function is computed for a homogeneous isotropic plasma in which the particle velocities are distributed according to a Kappa distribution. An ordinary differential equation is derived for the plasma dispersion function and it is shown that the solution can be written in terms of Gauss' hypergeometric function. Using the extensive theory of the hypergeometric function, various mathematical properties of the plasma dispersion function are derived including symmetry relations, series expansions, integral representations, and closed form expressions for integer and half-integer values of K.

  11. Gravitational force in weakly correlated particle spatial distributions.

    PubMed

    Gabrielli, Andrea; Masucci, Adolfo Paolo; Labini, Francesco Sylos

    2004-03-01

    We study the statistics of the gravitational (Newtonian) force in a particular class of weakly correlated spatial distributions of pointlike and unitary mass particles generated by the so-called Gauss-Poisson point processes. In particular we extend to these distributions the analysis that Chandrasekhar introduced for purely Poisson processes. In this way we can find the explicit asymptotic behavior of the probability density function of the force for both large and small values of the field as a generalization of the Holtzmark statistics. In particular, we show how the modifications at large fields depend on the density correlations introduced at small scales. The validity of the introduced approximations is positively tested through a direct comparison with the analysis of the statistics of the gravitational force in numerical simulations of Gauss-Poisson processes. PMID:15089268

  12. Some data on the characteristics of the geomagnetic field at the Gauss-Matuyama magnetic chron boundary from the Pirnuar section, West Turkmenistan

    NASA Astrophysics Data System (ADS)

    Gurarii, G. Z.

    2015-09-01

    Extremely scarce data have been published on the structure of the geomagnetic field during the Gauss and early Matuyama chrons until recently. Only a few papers contain information about the characteristics of the field during the Gauss-Matuyama reversal, derived by studying the terrestrial sediments. This motivated us to revisit the paleomagnetism of the sedimentary rocks of Akchagyl age in the section of the Pirnuar Valley in West Kopet Dag, for the first time studied by us in the late 1960s-early 1970s. These rocks are the analog of the top Piacenzian-bottom Gelasian and span the mentioned time interval. The reanalysis was conducted with the use of the state-of-the-art paleomagnetic techniques and modern magnetostratigraphic timescale. We have studied a number of the characteristics which enabled us to distinguish the rocks whose remanence is most likely to have a depositional origin. Based on the paleomagnetic characteristics of these rocks, we reconstructed the structure of the paleomagnetic field for the studied interval (~270 ka) of the initial stage of the Gauss-Matuyama reversal and revealed the excursions at the final and initial stages of the Gauss and Matuyama chrons. This analysis has significantly updated the time constraints of the rock sedimentation in the studied section and supported the locations of the virtual geomagnetic pole during the reversal, obtained previously.

  13. Vector Laguerre–Gauss beams with polarization-orbital angular momentum entanglement in a graded-index medium

    NASA Astrophysics Data System (ADS)

    Petrov, Nikolai I.

    2016-07-01

    It is shown that the vector-vortex Laguerre-Gauss modes with polarization-orbital angular momentum (OAM) entanglement are the vector solutions of the Maxwell equations in a graded-index medium. Focusing of linearly and circularly polarized vortex light beams with nonzero azimuthal and radial indices in a cylindrical graded-index medium is investigated. The wave shape variation with distance taking into account the spin-orbit and nonparaxial effects is analyzed. Effect of long-term periodical revival of wave packets due to mode interference in a graded-index cylindrical optical waveguide is demonstrated. High efficiency transfer of a strongly focused spot through an optical waveguide over large distances takes place with a period of revival.

  14. [Cartography in the "Universal Transverse Mercator" system (Gauss-Krüger projection) of sources shedding M. tuberculosis].

    PubMed

    Alexandrescu, D; Fonea, M; Sava, N

    1980-01-01

    The authors made use of maps prepared in the projection system known as the "Universal Transverse Mercator" (Gauss-Kruger projection) for the study of an epidemiometric indicator in tuberculosis, namely the instantaneous prevalence of bacili carriers on December 31 1978 in the Ilfov District. The representation allows to evaluate the density of sources of infection, and as a consequence, of areas in which antiepidemic measured have to be intensified. The extension of the study to other districts could provide data for assessing the epidemiologic potential in various territories, as well as comparisons and the dynamics of the potential. The method could also be used in the study of other epidemiometric indicators. PMID:6254131

  15. Second-order p-iterative solution of the Lambert/Gauss problem. [algorithm for efficient orbit determination

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1984-01-01

    An algorithm is presented for efficient p-iterative solution of the Lambert/Gauss orbit-determination problem using second-order Newton iteration. The algorithm is based on a universal transformation of Kepler's time-of-flight equation and approximate inverse solutions of this equation for short-way and long-way flight paths. The approximate solutions provide both good starting values for iteration and simplified computation of the second-order term in the iteration formula. Numerical results are presented which indicate that in many cases of practical significance (except those having collinear position vectors) the algorithm produces at least eight significant digits of accuracy with just two or three steps of iteration.

  16. Radion vacuum expectation value and graviton mass: a study in an Einstein-Gauss-Bonnet warped geometry scenario

    NASA Astrophysics Data System (ADS)

    Maitra, Ushoshi; Mukhopadhyaya, Biswarup; Sengupta, Soumitra

    2016-02-01

    In the usual 5-dimensional Randall-Sundrum scenario with warped geometry of the extra compact dimension, the Goldberger-Wise mechanism for stabilisation of the radius of compactification can lead to a scalar field called the radion. The radion can have implications in TeV-scale physics, which can be especially noticeable if its vacuum expectation value (vev) is not far above a TeV. However a large mass of the first graviton excitation, which seems to be suggested by recent search limit, tends to make the radion vev, far too large in the minimal model. We show that this is not the case if a Gauss-Bonnet term, containing higher powers of the curvature, is present in the 5-dimensional action. As a result, a radion with vev in the range 1.7-4.0 TeV can be consistent with the first graviton excitation mass well above the bound set by LHC experiments.

  17. Modified brane cosmologies with induced gravity, arbitrary matter content, and a Gauss-Bonnet term in the bulk

    SciTech Connect

    Apostolopoulos, Pantelis S.; Brouzakis, Nikolaos; Tetradis, Nikolaos; Tzavara, Eleftheria

    2007-10-15

    We extend the covariant analysis of the brane cosmological evolution in order to take into account, apart from a general matter content and an induced-gravity term on the brane, a Gauss-Bonnet term in the bulk. The gravitational effect of the bulk matter on the brane evolution can be described in terms of the total bulk mass as measured by a bulk observer at the location of the brane. This mass appears in the effective Friedmann equation through a term characterized as generalized dark radiation that induces mirage effects in the evolution. We discuss the normal and self-accelerating branches of the combined system. We also derive the Raychaudhuri equation that can be used in order to determine if the cosmological evolution is accelerating.

  18. Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Papallo, Giuseppe; Reall, Harvey S.

    2015-11-01

    Camanho, Edelstein, Maldacena and Zhiboedov have shown that gravitons can experience a negative Shapiro time delay, i.e. a time advance, in Einstein-Gauss-Bonnet theory. They studied gravitons propagating in singular "shock-wave" geometries. We study this effect for gravitons propagating in smooth black hole spacetimes. For a small enough black hole, we find that gravitons of appropriate polarisation, and small impact parameter, can experience time advance. Such gravitons can also exhibit a deflection angle less than π, characteristic of a repulsive short-distance gravitational interaction. We discuss problems with the suggestion that the time advance can be used to build a "time machine". In particular, we argue that a small black hole cannot be boosted to a speed arbitrarily close to the speed of light, as would be required in such a construction.

  19. On stability of exponential cosmological solutions with non-static volume factor in the Einstein-Gauss-Bonnet model

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.

    2016-08-01

    A (n+1)-dimensional gravitational model with Gauss-Bonnet term and a cosmological constant term is considered. When ansatz with diagonal cosmological metrics is adopted, the solutions with an exponential dependence of the scale factors, a_i ˜ exp { ( v^i t) }, i =1, dots , n , are analyzed for n > 3. We study the stability of the solutions with non-static volume factor, i.e. if K(v) = sum _{k = 1}n v^k ≠ 0. We prove that under a certain restriction R imposed solutions with K(v) > 0 are stable, while solutions with K(v) < 0 are unstable. Certain examples of stable solutions are presented. We show that the solutions with v^1 = v^2 =v^3 = H > 0 and zero variation of the effective gravitational constant are stable if the restriction R is obeyed.

  20. Modeling and prediction of surface roughness for running-in wear using Gauss-Newton algorithm and ANN

    NASA Astrophysics Data System (ADS)

    Hanief, M.; Wani, M. F.

    2015-12-01

    In this paper, surface roughness model for running-in and steady state of the wear process is proposed. In this work monotonously decreasing trend of surface roughness during running-in was assumed. The model was developed by considering the surface roughness as an explicit function of time during running-in, keeping other system parameters (velocity, load, hardness, etc.) constant. The proposed model being non-linear, optimal values of the model parameters were evaluated by Gauss-Newton (GN) algorithm. The experimental results adopted from the literature, for steel and Cu-Zn alloy specimens, were used for validation of the model. Artificial neural network (ANN) based model was also developed and was compared with the proposed model on the basis of statistical methods (coefficient of determination (R2), mean square error (MSE) and mean absolute percentage error (MAPE)).

  1. Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)

    1981-01-01

    The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.

  2. An attempt to determine the absolute geomagnetic field intensity in Southwestern Iceland during the Gauss-Matuyama reversal

    NASA Astrophysics Data System (ADS)

    Goguitchaichvili, Avto; Prévot, Michel; Thompson, John; Roberts, Neil

    1999-08-01

    We have measured the variation in the intensity of the geomagnetic field during the Gauss-Matuyama (N4-R3) polarity reversal by application of the Thelliers' method to specimens of lava flows from Hvalfjördur district in Western Iceland (Reynivallahals Mts.). Eleven lava flows all show very similar directions corresponding to an equatorial VGP (Plat=2.9°N, Plong=81.9°E, A95=4.2, K=119). Twenty-nine specimens from nine of the flows were pre-selected for palaeointensity determination on the basis that specimens from the same drill cores showed a single component of magnetisation upon thermal or AF demagnetisation, and possessed low magnetic viscosity and reversible susceptibility curves upon heating at 600-650°C. Observation that the directional data obtained in the course of the palaeointensity experiments occasionally showed substantial non-linearity indicates that a significant chemical remanent magnetization (CRM) can be acquired in the direction of the laboratory field during heating at T. For each double heating step we calculated the ratio of CRM( T) to the magnitude of the natural remanent magnetization (NRM( T)) in the direction of characteristic remanence (obtained independently from another specimen from the same core). When this ratio exceeded 15%, the paleointensity data was rejected. In addition, specimens for which the quality factor was less than 5 were rejected. Twelve reliable palaeointensity values were obtained from specimens representing five lava flows. The results confirm that the palaeointensity was substantially reduced during the N4-R3 reversal. The range of mean palaeointensity values obtained for the five flows is 8.8 to 20.5 and the overall mean is 14.8±4.6 μT. This corresponds to an equivalent VDM of 3.81±1.19 (10 22 A m 2). A comparison of all Thellier palaeointensity data from the R3 magnetozone in the Rayinivallahals Mts. area reveals a progressive although irregular increase in the palaeointensity between the Gauss

  3. Spontaneous Emission of a Two-Level Static Atom Coupling with Electromagnetic Vacuum Fluctuations Outside a High-Dimensional Einstein Gauss-Bonnet Black Hole

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Yang, Zhan-Ying; Yue, Rui-Hong

    2014-10-01

    Using the generalized formalism of Dalibard, Dupont-Roc and Cohen-Tannoudji we investigate the spontaneous excitation of a static atom interacting with electromagnetic vacuum fluctuations outside an Einstein Gauss-Bonnet black hole in d-dimensions. It shows that spontaneous excitation does not occur in a Boulware vacuum, while exists in an Unruh vacuum and Hartle-Hawking vacuum. As to the total rate of change of the atomic energy, it does not receive the contribution from the coupling constant of the Gauss-Bonnet term at spatial infinity only the dimensional parameter has the contribution to it. Near the event horizon, both the coupling constant and the dimension p contribute to the total rate of change of the atomic energy in all three kinds of vacuum. We discuss the contribution of the coupling constant and dimensional factor to the results in three different kinds of spacetime lastly.

  4. Implementation of a Gauss convoluted Pandel PDF for track reconstruction in neutrino telescopes

    NASA Astrophysics Data System (ADS)

    van Eijndhoven, N.; Fadiran, O.; Japaridze, G.

    2007-12-01

    A probability distribution function is presented which provides a realistic description of the detection of scattered photons. The resulting probabilities can be described analytically by means of a superposition of several special functions. These exact expressions can be evaluated numerically only for small distances and limited time residuals, due to computer accuracy limitations. In this report, we provide approximations for the exact expressions in different regions of the distance-time residual space, defined by the detector geometry and the space-time scale of an event. These approximations can be evaluated numerically with a relative error with respect to the exact expression at the boundaries of less than 10-3.

  5. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes

    SciTech Connect

    Pani, Paolo; Cardoso, Vitor

    2009-04-15

    It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.

  6. Higher-order Laguerre-Gauss interferometry for gravitational-wave detectors with in situ mirror defects compensation

    NASA Astrophysics Data System (ADS)

    Allocca, A.; Gatto, A.; Tacca, M.; Day, R. A.; Barsuglia, M.; Pillant, G.; Buy, C.; Vajente, G.

    2015-11-01

    The use of higher-order Laguerre-Gauss modes has been proposed to decrease the influence of thermal noise in future generation gravitational-wave interferometric detectors. The main obstacle for their implementation is the degeneracy of modes with same order, which highly increases the requirements on the mirror defects, beyond the state-of-the-art polishing and coating techniques. In order to increase the mirror surface quality, it is also possible to act in situ, using a thermal source, sent on the mirrors after a proper shaping. In this paper we present the results obtained on a tabletop Fabry-Pérot Michelson interferometer illuminated with a LG3 ,3 mode. We show how an incoherent light source can reduce the astigmatism of one of the mirrors, increasing the quality of the beam in one of the Fabry-Pérot cavities and then the contrast of the interferometer. The system has the potential to reduce more complex defects and also to be used in future gravitational-wave detectors using conventional Gaussian beams.

  7. Tensor Green's function evaluation in arbitrarily anisotropic, layered media using complex-plane Gauss-Laguerre quadrature.

    PubMed

    Sainath, Kamalesh; Teixeira, Fernando L

    2014-05-01

    We discuss the application of complex-plane Gauss-Laguerre quadrature (CGLQ) to efficiently evaluate two-dimensional Fourier integrals arising as the solution to electromagnetic fields radiated by elementary dipole antennas embedded within planar-layered media exhibiting arbitrary material parameters. More specifically, we apply CGLQ to the long-standing problem of rapidly and efficiently evaluating the semi-infinite length "tails" of the Fourier integral path while simultaneously and robustly guaranteeing absolute, exponential convergence of the field solution despite diversity in the doubly anisotropic layer parameters, source type (i.e., electric or equivalent magnetic dipole), source orientation, observed field type (magnetic or electric), (nonzero) frequency, and (nonzero) source-observer separation geometry. The proposed algorithm exhibits robustness despite unique challenges arising for the fast evaluation of such two-dimensional integrals. Herein we develop the mathematical treatment to rigorously evaluate the tail integrals using CGLQ, as well as discuss and address the specific issues posed to the CGLQ method when anisotropic, layered media are present. To empirically demonstrate the CGLQ algorithm's computational efficiency, versatility, and accuracy, we perform a convergence analysis along with two case studies related to modeling of electromagnetic resistivity tools employed in geophysical prospection of layered, anisotropic Earth media and validating the ability of isoimpedance substrates to enhance the radiation performance of planar antennas placed in close proximity to metallic ground planes. PMID:25353911

  8. Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation

    NASA Astrophysics Data System (ADS)

    Shao, Xinxing; Dai, Xiangjun; He, Xiaoyuan

    2015-08-01

    The inverse compositional Gauss-Newton (IC-GN) algorithm is one of the most popular sub-pixel registration algorithms in digital image correlation (DIC). The IC-GN algorithm, compared with the traditional forward additive Newton-Raphson (FA-NR) algorithm, can achieve the same accuracy in less time. However, there are no clear results regarding the noise robustness of IC-GN algorithm and the computational efficiency is still in need of further improvements. In this paper, a theoretical model of the IC-GN algorithm was derived based on the sum of squared differences correlation criterion and linear interpolation. The model indicates that the IC-GN algorithm has better noise robustness than the FA-NR algorithm, and shows no noise-induced bias if the gray gradient operator is chosen properly. Both numerical simulations and experiments show good agreements with the theoretical predictions. Furthermore, a seed point-based parallel method is proposed to improve the calculation speed. Compared with the recently proposed path-independent method, our model is feasible and practical, and it can maximize the computing speed using an improved initial guess. Moreover, we compared the computational efficiency of our method with that of the reliability-guided method using a four-point bending experiment, and the results show that the computational efficiency is greatly improved. This proposed parallel IC-GN algorithm has good noise robustness and is expected to be a practical option for real-time DIC.

  9. Behavior of Holographic Ricci Dark Energy in Scalar Gauss-Bonnet Gravity for Different Choices of the Scale Factor

    NASA Astrophysics Data System (ADS)

    Pasqua, Antonio; Chattopadhyay, Surajit; Khurshudyan, Martiros; Aly, Ayman A.

    2014-09-01

    In this paper, we studied the cosmological application of the interacting Ricci Dark Energy (RDE) model in the framework of the scalar Gauss-Bonnet modified gravity model. We studied the properties of the reconstructed potential , the Strong Energy Condition (SEC), the Weak Energy Condition (WEC) and the deceleration parameter q for three different models of scale factor, i.e. the emergent, the intermediate and the logamediate one. We obtained that , for the emergent scenario, has a decreasing behavior, while, for the logamediate scenario, the potential start with an increasing behavior then, for later times, it shows a slowly decreasing behavior. Finally, for the intermediate scenario, the potential has an initial increasing behavior, then for a time of t≈1.2, it starts to decrease. We also found that both SEC and WEC are violated for all the three scale factors considered. Finally, studying the plots of q, we derived that an accelerated universe can be achieved for the three models of scale factor considered.

  10. Downscaling of slip distribution for strong earthquakes

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Oya, S.; Kuzuha, Y.

    2013-12-01

    We intend to develop a downscaling model to enhance the earthquake slip distribution resolution. Slip distributions have been obtained by other researchers using various inversion methods. As a downscaling model, we are discussing fractal models that include mono-fractal models (fractional Brownian motion, fBm; fractional Lévy motion, fLm) and multi-fractal models as candidates. Log - log-linearity of k (wave number) versus E (k) (power spectrum) is the necessary condition for fractality: the slip distribution is expected to satisfy log - log-linearity described above if we can apply fractal model to a slip distribution as a downscaling model. Therefore, we conducted spectrum analyses using slip distributions of 11 earthquakes as explained below. 1) Spectrum analyses using one-dimensional slip distributions (strike direction) were conducted. 2) Averaging of some results of power spectrum (dip direction) was conducted. Results show that, from the viewpoint of log - log-linearity, applying a fractal model to slip distributions can be inferred as valid. We adopt the filtering method after Lavallée (2008) to generate fBm/ fLm. In that method, generated white noises (random numbers) are filtered using a power law type filter (log - log-linearity of the spectrum). Lavallée (2008) described that Lévy white noise that generates fLm is more appropriate than the Gaussian white noise which generates fBm. In addition, if the 'alpha' parameter of the Lévy law, which governs the degree of attenuation of tails of the probability distribution, is 2.0, then the Lévy distribution is equivalent to the Gauss distribution. We analyzed slip distributions of 11 earthquakes: the Tohoku earthquake (Wei et al., 2011), Haiti earthquake (Sladen, 2010), Simeulue earthquake (Sladen, 2008), eastern Sichuan earthquake (Sladen, 2008), Peru earthquake (Konca, 2007), Tocopilla earthquake (Sladen, 2007), Kuril earthquake (Sladen, 2007), Benkulu earthquake (Konca, 2007), and southern Java

  11. TOPICAL REVIEW: An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group

    NASA Astrophysics Data System (ADS)

    Kibler, Maurice R.

    2009-09-01

    The construction of unitary operator bases in a finite-dimensional Hilbert space is reviewed through a nonstandard approach combining angular momentum theory and representation theory of SU(2). A single formula for the bases is obtained from a polar decomposition of SU(2) and is analyzed in terms of cyclic groups, quadratic Fourier transforms, Hadamard matrices and generalized Gauss sums. Weyl pairs, generalized Pauli operators and their application to the unitary group and the Pauli group naturally arise in this approach. Dedicated to the memory of Yurii Fedorovich Smirnov.

  12. Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type

    NASA Astrophysics Data System (ADS)

    Gorbachev, D. V.; Ivanov, V. I.

    2015-08-01

    Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type, are established. They generalize quadrature formulae involving zeros of Bessel functions, which were first designed by Frappier and Olivier. Bessel quadratures correspond to the Fourier-Hankel integral transform. Some other examples, connected with the Jacobi integral transform, Fourier series in Jacobi orthogonal polynomials and the general Sturm-Liouville problem with regular weight are also given. Bibliography: 39 titles.

  13. Holographic s-wave condensation and Meissner-like effect in Gauss-Bonnet gravity with various non-linear corrections

    NASA Astrophysics Data System (ADS)

    Dey, Shirsendu; Lala, Arindam

    2015-03-01

    In this paper we have studied the onset of holographic s-wave condensate in the (4 + 1) dimensional planar Gauss-Bonnet-AdS black hole background with several non-linear corrections to the gauge field. In the probe limit, performing explicit analytic computations, with and without magnetic field, we found that these higher order corrections indeed affect various quantities characterizing the holographic superconductors. Also, performing a comparative study of the two non-linear electrodynamics it has been shown that the exponential electrodynamics has stronger effects on the formation of the scalar hair. We observe that our results agree well with those obtained numerically (Zhao et al., 2013).

  14. Final fate of spherically symmetric gravitational collapse of a dust cloud in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki

    2006-05-15

    We give a model of the higher-dimensional spherically symmetric gravitational collapse of a dust cloud including the perturbative effects of quantum gravity. The n({>=}5)-dimensional action with the Gauss-Bonnet term for gravity is considered and a simple formulation of the basic equations is given for the spacetime M{approx_equal}M{sup 2}xK{sup n-2} with a perfect fluid and a cosmological constant. This is a generalization of the Misner-Sharp formalism of the four-dimensional spherically symmetric spacetime with a perfect fluid in general relativity. The whole picture and the final fate of the gravitational collapse of a dust cloud differ greatly between the cases with n=5 and n{>=}6. There are two families of solutions, which we call plus-branch and the minus-branch solutions. A plus-branch solution can be attached to the outside vacuum region which is asymptotically anti-de Sitter in spite of the absence of a cosmological constant. Bounce inevitably occurs in the plus-branch solution for n{>=}6, and consequently singularities cannot be formed. Since there is no trapped surface in the plus-branch solution, the singularity formed in the case of n=5 must be naked. On the other hand, a minus-branch solution can be attached to the outside asymptotically flat vacuum region. We show that naked singularities are massless for n{>=}6, while massive naked singularities are possible for n=5. In the homogeneous collapse represented by the flat Friedmann-Robertson-Walker solution, the singularity formed is spacelike for n{>=}6, while it is ingoing-null for n=5. In the inhomogeneous collapse with smooth initial data, the strong cosmic censorship hypothesis holds for n{>=}10 and for n=9 depending on the parameters in the initial data, while a naked singularity is always formed for 5{<=}n{<=}8. These naked singularities can be globally naked when the initial surface radius of the dust cloud is fine-tuned, and then the weak cosmic censorship hypothesis is violated.

  15. Impact of model order and estimation window for indexing TerraSAR-X images using Gauss Markov random fields

    NASA Astrophysics Data System (ADS)

    Espinoza-Molina, Daniela; Datcu, Mihai

    2010-10-01

    TerraSAR-X is the Synthetic Aperture Radar (SAR) German satellite which provides a high diversity of information due to its high-resolution. TerraSAR-X acquires daily a volume of up to 100 GB of high complexity, multi-mode SAR images, i.e. SpotLight, StripMap, and ScanSAR data, with dual or quad-polarization, and with different look angles. The high and multiple resolutions of the instrument (1m, 3m or 10m) open perspectives for new applications, that were not possible with past lower resolution sensors (20-30m). Mainly the 1m and 3m modes we expect to support a broad range of new applications related to human activities with relevant structures and objects at the 1m scale. Thus, among the most interesting scenes are: urban, industrial, and rural data. In addition, the global coverage and the relatively frequent repeat pass will definitely help to acquire extremely relevant data sets. To analyze the available TerrrSAR-X data we rely on model based methods for feature extraction and despeckling. The image information content is extracted using model-based methods based on Gauss Markov Random Field (GMRF) and Bayesian inference approach. This approach enhances the local adaptation by using a prior model, which learns the image structure and enables to estimate the local description of the structures, acting as primitive feature extraction method. However, the GMRF model-based method uses as input parameters the Model Order (MO) and the size of Estimation Window (EW). The appropriated selection of these parameters allows us to improve the classification and indexing results due to the number of well separated classes could be determined by them. Our belief is that the selection of the MO depends on the kind of information that the image contains, explaining how well the model can recognize complex structures as objects, and according to the size of EW the accuracy of the estimation is determined. In the following, we present an evaluation of the impact of the model

  16. Investigating the links of internal and external reliability with the system conditionality in Gauss-Markov models with uncorrelated observations

    NASA Astrophysics Data System (ADS)

    Prószyński, Witold

    2013-12-01

    The relationship between internal response-based reliability and conditionality is investigated for Gauss-Markov (GM) models with uncorrelated observations. The models with design matrices of full rank and of incomplete rank are taken into consideration. The formulas based on the Singular Value Decomposition (SVD) of the design matrix are derived which clearly indicate that the investigated concepts are independent of each other. The methods are presented of constructing for a given design matrix the matrices equivalent with respect to internal response-based reliability as well as the matrices equivalent with respect to conditionality. To analyze conditionality of GM models, in general being inconsistent systems, a substitute for condition number commonly used in numerical linear algebra is developed, called a pseudo-condition^number. Also on the basis of the SVD a formula for external reliability is proposed, being the 2-norm of a vector of parameter distortions induced by minimal detectable error in a particular observation. For systems with equal nonzero singular values of the design matrix, the formula can be expressed in terms of the index of internal response-based reliability and the pseudo-condition^number. With these measures appearing in explicit form, the formula shows, although only for the above specific systems, the character of the impact of internal response-based reliability and conditionality of the model upon its external reliability. Proofs for complementary properties concerning the pseudo-condition^number and the 2-norm of parameter distortions in systems with minimal constraints are given in the Appendices. Numerical examples are provided to illustrate the theory. Badany jest związek między niezawodnością wewnętrzną bazującą na odpowiedziach modelu a uwarunkowaniem układu dla modeli Gaussa-Markova z obserwacjami nieskorelowanymi. Rozpatrywane są przy tym modele z macierzami projektu pełnego i niepełnego rzędu. Wzory wyprowadzone

  17. Control charts for non-Gaussian distributions

    NASA Astrophysics Data System (ADS)

    Babus, Florina; Kobi, Abdessamad; Tiplica, Th.; Bacivarov, Ioan; Bacivarov, Angelica

    2007-05-01

    Traditional statistical process control (SPC) techniques applied in the industrial processes field consider often that the distribution ofdata is Gaussian. The estimation ofparameters, the detection ofthe out oforder situations and the control of the followed characteristics are easy to achieve for the normal populations. In reality, whatever the origin of a characteristic (large series productions for components, mechanical parts of OE communication systems, etc. ) the curve of distributions of the measured values is generally far from being normal. The simple approximation to the Gauss distribution and the use of the classical control methods sometimes induces serious errors. In this paper, a study on the statistical control of non Gaussian populations is presented. Particularly we discuss the Rayleigh and the Weibull distribution as being representatives in (SPC for some category of data. The X control charts with variable limits are tested. Experimental simulations are presented for different parameters of the two distributions. The results confirm the methodology and encourage the research in the field of non Gaussian processes.

  18. Dielectric constant extraction of graphene nanostructured on SiC substrates from spectroscopy ellipsometry measurement using Gauss-Newton inversion method

    NASA Astrophysics Data System (ADS)

    Maulina, Hervin; Santoso, Iman; Subama, Emmistasega; Nurwantoro, Pekik; Abraha, Kamsul; Rusydi, Andrivo

    2016-04-01

    The extraction of the dielectric constant of nanostructured graphene on SiC substrates from spectroscopy ellipsometry measurement using the Gauss-Newton inversion (GNI) method has been done. This study aims to calculate the dielectric constant and refractive index of graphene by extracting the value of ψ and Δ from the spectroscopy ellipsometry measurement using GNI method and comparing them with previous result which was extracted using Drude-Lorentz (DL) model. The results show that GNI method can be used to calculate the dielectric constant and refractive index of nanostructured graphene on SiC substratesmore faster as compared to DL model. Moreover, the imaginary part of the dielectric constant values and coefficient of extinction drastically increases at 4.5 eV similar to that of extracted using known DL fitting. The increase is known due to the process of interband transition and the interaction between the electrons and electron-hole at M-points in the Brillouin zone of graphene.

  19. Embedded symmetric nested implicit Runge-Kutta methods of Gauss and Lobatto types for solving stiff ordinary differential equations and Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Kulikov, G. Yu.

    2015-06-01

    A technique for constructing nested implicit Runge-Kutta methods in the class of mono-implicit formulas of this type is studied. These formulas are highly efficient in practice, since the dimension of the original system of differential equations is preserved, which is not possible in the case of implicit multistage Runge-Kutta formulas of the general from. On the other hand, nested implicit Runge-Kutta methods inherit all major properties of general formulas of this form, such as A-stability, symmetry, and symplecticity in a certain sense. Moreover, they can have sufficiently high stage and classical orders and, without requiring high extra costs, can ensure dense output of integration results of the same accuracy as the order of the underlying method. Thus, nested methods are efficient when applied to the numerical integration of differential equations of various sorts, including stiff and nonstiff problems, Hamiltonian systems, and invertible equations. In this paper, previously proposed nested methods based on the Gauss quadrature formulas are generalized to Lobatto-type methods. Additionally, a unified technique for constructing all such methods is proposed. Its performance is demonstrated as applied to embedded examples of nested implicit formulas of various orders. All the methods constructed are supplied with tools for local error estimation and automatic variable-stepsize mesh generation based on an optimal stepsize selection. These numerical methods are verified by solving test problems with known solutions. Additionally, a comparative analysis of these methods with Matlab built-in solvers is presented.

  20. A novel flattop current regulated energy discharge type pulsed power supply and magnet yielding 4. 4 kGauss-meter for 6 milliseconds

    SciTech Connect

    Visser, A.T.

    1989-07-01

    Most energy discharge power supplies obtain their bursts of power from the energy stored in charged capacitors when it is suddenly released into a load. This note describes the design of a similar small 800 Joules energy discharge type power supply and magnet. The magnet gap is 2 in.{times}2 in.{times}25-1/2 in. long and produces about 4.4 kGauss-meters at a rate of 12 pulses per minute. Each pulse is current regulated at the top for a duration of 6 msec. and varies less than 0.6% of set value. Current regulation at flattop is obtained by switching a resistor in and out of the discharge circuit with an IGBT at a rate of about 5 kHz. Most energy discharge systems produce half sine wave pulses, and current regulation is obtained by controlling the charge voltage at the energy storage capacitor, resulting only in a controlled peak current value of the half sine wave pulse. The current value at the top changes substantially during 6 msec. depending on the operating frequency.

  1. A FORTRAN program to produce minimum relative entropy distributions

    NASA Astrophysics Data System (ADS)

    Woodbury, Allan D.

    2004-02-01

    Relative entropy minimization is a general approach of inferring a probability density function (pdf) from constraints which do not uniquely determine that density. In this paper, a general purpose computer program written in FORTRAN is provided that produces a univariate pdf from a series of constraints and a prior probability. Some guidelines for the selection of the prior are presented. The FORTRAN code is based on an algorithm that utilizes a Newton-Raphson approach. In addition, we use Gauss-Legendre quadrature for the determination of the integrals, Gauss elimination for matrix solution and a line search for the most optimal Newton step. We present examples of relative entropy minimization involving functions that are geometric moments of a variable x. With a uniform prior p( x), classic solutions of statistics are obtained. We also varied the nature of the prior for illustrative purposes. For the case where the constraints resemble powers of x and logarithmic transformations, minimum relative entropy produces the Gamma distribution.

  2. Implementation of a cell-wise Block-Gauss-Seidel iterative method for SN transport on a hybrid parallel computer architecture

    SciTech Connect

    Rosa, Massimiliano; Warsa, James S; Perks, Michael

    2010-12-14

    We have implemented a cell-wise, block-Gauss-Seidel (bGS) iterative algorithm, for the solution of the S{sub n} transport equations on the Roadrunner hybrid, parallel computer architecture. A compute node of this massively parallel machine comprises AMD Opteron cores that are linked to a Cell Broadband Engine{trademark} (Cell/B.E.). LAPACK routines have been ported to the Cell/B.E. in order to make use of its parallel Synergistic Processing Elements (SPEs). The bGS algorithm is based on the LU factorization and solution of a linear system that couples the fluxes for all S{sub n} angles and energy groups on a mesh cell. For every cell of a mesh that has been parallel decomposed on the higher-level Opteron processors, a linear system is transferred to the Cell/B.E. and the parallel LAPACK routines are used to compute a solution, which is then transferred back to the Opteron, where the rest of the computations for the S{sub n} transport problem take place. Compared to standard parallel machines, a hundred-fold speedup of the bGS was observed on the hybrid Roadrunner architecture. Numerical experiments with strong and weak parallel scaling demonstrate the bGS method is viable and compares favorably to full parallel sweeps (FPS) on two-dimensional, unstructured meshes when it is applied to optically thick, multi-material problems. As expected, however, it is not as efficient as FPS in optically thin problems.

  3. Precessional forcing of lacustrine sedimentation in the late Cenozoic Chemeron Basin, Central Kenya Rift, and calibration of the Gauss/Matuyama boundary

    USGS Publications Warehouse

    Deino, A.L.; Kingston, J.D.; Glen, J.M.; Edgar, R.K.; Hill, A.

    2006-01-01

    The fluviolacustrine sedimentary sequence of the Chemeron Formation exposed in the Barsemoi River drainage, Tugen Hills, Kenya, contains a package of five successive diatomite/fluvial cycles that record the periodic development of freshwater lakes within the axial portion of the Central Kenya Rift. The overwhelming abundance in the diatomite of planktonic species of the genera Aulacoseira and Stephanodiscus, and the virtual absence of benthic littoral diatoms and detrital material indicate areally extensive, deep lake systems. A paleomagnetic reversal stratigraphy has been determined and chronostratigraphic tie points established by 40Ar/39Ar dating of intercalated tuffs. The sequence spans the interval 3.1-2.35??Ma and bears a detailed record of the Gauss/Matuyama paleomagnetic transition. The 40Ar/39Ar age for this boundary of 2.589 ?? 0.003??Ma can be adjusted to concordance with the Astronomical Polarity Time Scale (APTS) on the basis of an independent calibration to 2.610??Ma, 29??kyr older than the previous APTS age. The diatomites recur at an orbital precessional interval of 23??kyr and are centered on a 400-kyr eccentricity maximum. It is concluded that these diatomite/fluvial cycles reflect a narrow interval of orbitally forced wet/dry climatic conditions that may be expressed regionally across East Africa. The timing of the lacustrine pulses relative to predicted insolation models favors origination of moisture from the northern Africa monsoon, rather than local circulation driven by direct equatorial insolation. This moisture event at 2.7-2.55??Ma, and later East African episodes at 1.9-1.7 and 1.1-0.9??Ma, are approximately coincident with major global climatic and oceanographic events. ?? 2006 Elsevier B.V. All rights reserved.

  4. Distributed processing; distributed functions?

    PubMed Central

    Fox, Peter T.; Friston, Karl J.

    2016-01-01

    After more than twenty years busily mapping the human brain, what have we learned from neuroimaging? This review (coda) considers this question from the point of view of structure–function relationships and the two cornerstones of functional neuroimaging; functional segregation and integration. Despite remarkable advances and insights into the brain’s functional architecture, the earliest and simplest challenge in human brain mapping remains unresolved: We do not have a principled way to map brain function onto its structure in a way that speaks directly to cognitive neuroscience. Having said this, there are distinct clues about how this might be done: First, there is a growing appreciation of the role of functional integration in the distributed nature of neuronal processing. Second, there is an emerging interest in data-driven cognitive ontologies, i.e., that are internally consistent with functional anatomy. We will focus this review on the growing momentum in the fields of functional connectivity and distributed brain responses and consider this in the light of meta-analyses that use very large data sets to disclose large-scale structure–function mappings in the human brain. PMID:22245638

  5. Ultra-high-Degree Surface Spherical Harmonic Analysis Using the Gauss-Legendre and the Driscoll/Healy Quadrature Theorem and Application to Planetary Topography Models of Earth, Mars and Moon

    NASA Astrophysics Data System (ADS)

    Rexer, Moritz; Hirt, Christian

    2015-11-01

    In geodesy and geophysics, spherical harmonic techniques are popular for modelling topography and potential fields with ever-increasing spatial resolution. For ultra-high-degree spherical harmonic modelling, i.e. degree 10,000 or more, classical algorithms need to be extended to avoid under- or overflow problems associated with the computation of associated Legendre functions (ALFs). In this work, two quadrature algorithms—the Gauss-Legendre (GL) quadrature and the quadrature following Driscoll/Healy (DH)—and their implementation for the purpose of ultra-high (surface) spherical harmonic analysis of spheroid functions are reviewed and modified for application to ultra-high degree. We extend the implementation of the algorithms in the SHTOOLS software package (v2.8) by (1) the X-number (or Extended Range Arithmetic) method for accurate computation of ALFs and (2) OpenMP directives enabling parallel processing within the analysis. Our modifications are shown to achieve feasible computation times and a very high precision: a degree-21,600 band-limited (=frequency limited) spheroid topographic function may be harmonically analysed with a maximum space-domain error of 3 × 10^{-5} and 5 × 10^{-5} m in 6 and 17 h using 14 CPUs for the GL and for the DH quadrature, respectively. While not being inferior in terms of precision, the GL quadrature outperforms the DH algorithm in terms of computation time. In the second part of the paper, we apply the modified quadrature algorithm to represent for—the first time—gridded topography models for Earth, Moon and Mars as ultra-high-degree series expansions comprising more than 2 billion coefficients. For the Earth's topography, we achieve a resolution of harmonic degree 43,200 (equivalent to 500 m in the space domain), for the Moon of degree 46,080 (equivalent to 120 m) and Mars to degree 23,040 (equivalent to 460 m). For the quality of the representation of the topographic functions in spherical harmonics, we use the

  6. A detailed record of paleomagnetic field change from Searles Lake, California: 1. Long-term secular variation bounding the Gauss/Matuyama polarity reversal

    NASA Astrophysics Data System (ADS)

    Glen, Jonathan M. G.; Liddicoat, Joseph C.; Coe, Robert S.

    1999-06-01

    More than 33 m of 2.5 Ma sediment from Searles Lake, California was studied in order to construct a record of secular variation (SV) across the Gauss/Matuyama (G/M) normal-to-reverse polarity transition. The behavior of the field preceding and following the reversal is considered here, while in a companion paper [Glen et al., this issue] the details of the transition are discussed. The record encompasses an interval of roughly 183,000 years beginning 50 kyr (9 m) before and extending more than 128 kyr (23 m) beyond the transition, while the main phase of the transition lasts for nearly 5 kyr (1 m). Because the core was rotary drilled, and declinations lost, SV was characterized by the inclination and its angular dispersion. Inclination-only statistics reveal that (1) the record displays overall higher than expected values of angular dispersion (normal S˜20°; reverse S˜19°; expected S˜15.5°), suggesting that the field proximal to transitions may be more noisy than the distal field. In addition, normal data from immediately before the transition display higher S than reverse data immediately following it, implying that the postransitional field is more stable than the pretransitional field. One of the most prominent features of this record is an excursion of the field occurring roughly 4 kyr prior to the onset of the reversal. A record of the G/M transition from Chinese loess (R. Zhu et al., submitted manuscript, 1999) displays a similar event (also occurring roughly 4 kyr before the transition). This and the fact that the event is associated with anomalously low intensities suggest that the disturbance may be global in nature. The fact that comparable features are associated with other transitions [Hartl and Tauxe, 1996; Clement, 1992] intimates that the field may commonly show signs of early instability. This precursory event is actually one of a sequence of oscillations (in inclination and intensity) preceding the transition. That these fluctuations occur at

  7. Three-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements, direct solvers and data space Gauss-Newton, parallelized on SMP computers

    NASA Astrophysics Data System (ADS)

    Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.

    2014-12-01

    We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic

  8. Estimation of primary productivity in Banda Sea using the vertical distribution model

    NASA Astrophysics Data System (ADS)

    Kemili, Putri; Putri, Mutiara R.

    2014-03-01

    To estimate Net Primary Productivity (NPP) which more represent nature condition, it is important to know both horizontal and vertical distribution. Carbon-based Productivity Model (CbPM) used to calculate NPP in 15 layers of depth. Gauss equation and Lambert Beer Law used to estimate chlorophyll-a and light intensity in each layer from satellite-derived data, whereas the temperature data obtained from model result of HAMburg Shelf Ocean Model (HAMSOM). This model is being applied to verified and describe how the NPP had been distributed in Banda Sea on 2006. Verification results show that CbPM algorithm has clearly give less error in data observation than what Vertically Generalized Production Model (VGPM) algorithm did, which stand on the error average approximately 33%. The results also show that the vertical distribution of NPP in Banda Sea indicate a seasonal variation.

  9. Distributed computing

    SciTech Connect

    Chambers, F.B.; Duce, D.A.; Jones, G.P.

    1984-01-01

    CONTENTS: The Dataflow Approach: Fundamentals of dataflow. Architecture and performance. Assembler level programming. High level dataflow programming. Declarative systems: Functional programming. Logic programming and prolog. The ''language first'' approach. Towards a successor to von Neumann. Loosely-coupled systems: Architectures. Communications. Distributed filestores. Mechanisms for distributed control. Distributed operating systems. Programming languages. Closely-coupled systems: Architecture. Programming languages. Run-time support. Development aids. Cyba-M. Polyproc. Modeling and verification: Using algebra for concurrency. Reasoning about concurrent systems. Each chapter includes references. Index.

  10. Distributed Intelligence.

    ERIC Educational Resources Information Center

    McLagan, Patricia A.

    2003-01-01

    Distributed intelligence occurs when people in an organization take responsibility for creating innovations, solving problems, and making decisions. Organizations that have it excel in their markets and the global environment. (Author/JOW)

  11. Distributed Leadership.

    ERIC Educational Resources Information Center

    Lashway, Larry

    2003-01-01

    School-reform efforts in recent years have stressed, and expanded, the leadership role of the principal. But in the view of many analysts, the task of transforming a school is too complex for one person to accomplish alone. Consequently, a new model of leadership is developing: distributed leadership. This Research Roundup summarizes five…

  12. Distributive Justice and Distributive Quality.

    ERIC Educational Resources Information Center

    Wexler, Jacqueline Grennan

    American higher education in this century has been almost schizophrenic in its development. As money and knowledge began to spread more distributively across the population, the population began to demand for its children a more equitable access into the world of the more privileged. Education and privilege were highly correlated. Greater access…

  13. Distributed Optimization

    NASA Technical Reports Server (NTRS)

    Macready, William; Wolpert, David

    2005-01-01

    We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.

  14. A New Linearization Method of Unbalanced Electrical Distribution Networks

    SciTech Connect

    Liu, Guodong; Xu, Yan; Ceylan, Oguzhan; Tomsovic, Kevin

    2014-01-01

    Abstract--- With increasing penetration of distributed generation in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. As DN control and operation strategies are mostly based on the linearized sensitivity coefficients between controlled variables (e.g., node voltages, line currents, power loss) and control variables (e.g., power injections, transformer tap positions), efficient and precise calculation of these sensitivity coefficients, i.e. linearization of DN, is of fundamental importance. In this paper, the derivation of the node voltages and power loss as functions of the nodal power injections and transformers' tap-changers positions is presented, and then solved by a Gauss-Seidel method. Compared to other approaches presented in the literature, the proposed method takes into account different load characteristics (e.g., constant PQ, constant impedance, constant current and any combination of above) of a generic multi-phase unbalanced DN and improves the accuracy of linearization. Numerical simulations on both IEEE 13 and 34 nodes test feeders show the efficiency and accuracy of the proposed method.

  15. Distributed Saturation

    NASA Technical Reports Server (NTRS)

    Chung, Ming-Ying; Ciardo, Gianfranco; Siminiceanu, Radu I.

    2007-01-01

    The Saturation algorithm for symbolic state-space generation, has been a recent break-through in the exhaustive veri cation of complex systems, in particular globally-asyn- chronous/locally-synchronous systems. The algorithm uses a very compact Multiway Decision Diagram (MDD) encoding for states and the fastest symbolic exploration algo- rithm to date. The distributed version of Saturation uses the overall memory available on a network of workstations (NOW) to efficiently spread the memory load during the highly irregular exploration. A crucial factor in limiting the memory consumption during the symbolic state-space generation is the ability to perform garbage collection to free up the memory occupied by dead nodes. However, garbage collection over a NOW requires a nontrivial communication overhead. In addition, operation cache policies become critical while analyzing large-scale systems using the symbolic approach. In this technical report, we develop a garbage collection scheme and several operation cache policies to help on solving extremely complex systems. Experiments show that our schemes improve the performance of the original distributed implementation, SmArTNow, in terms of time and memory efficiency.

  16. A detailed paleomagnetic record between 2.1 and 2.75 Ma at IODP Site U1314 in the North Atlantic: Geomagnetic excursions and the Gauss-Matuyama transition

    NASA Astrophysics Data System (ADS)

    Ohno, Masao; Hayashi, Tatsuya; Komatsu, Fumiki; Murakami, Fumi; Zhao, Meng; Guyodo, Yohan; Acton, Gary; Evans, Helen F.; Kanamatsu, Toshiya

    2012-05-01

    This study investigated the detailed geomagnetic field variation between 2.1 and 2.75 Ma from a sediment core (IODP Site U1314) with high sedimentation rate (≥10 cm/kyr) and good age control. Characteristic remanent magnetization directions were well resolved by stepwise alternating field demagnetization. As a proxy of relative paleointensity, natural remanent magnetization (NRM) normalized by anhysteretic remanent magnetization (ARM) was used after testing that the influence of magnetic interaction in ARM is negligible. As a result, the following features of the geomagnetic field in the studied period have been revealed. During the transition of the Gauss-Matuyama (G-M) reversal and the Réunion Subchron, the paleointensity decreased to the value lower than 20% of the average intensity in the whole studied interval. In addition to these lows, eight paleointensity lows were found associated with large directional changes that satisfy the definition of a geomagnetic excursion. Four of these have ages close to ages reported for geomagnetic excursions in prior studies, whereas the other four excursions have not previously been observed. In our results, we confirm that the G-M transition occurred in marine isotope stage 103 even if we consider the shift in depth due to the lock-in process of magnetic particles. The temporal variation in paleointensity showed asymmetric behavior associated with the G-M transition, with a gradual decrease prior to the transition and a rapid recovery after the transition.

  17. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    NASA Astrophysics Data System (ADS)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  18. Inverse distributed hydrological modelling of alpine catchments

    NASA Astrophysics Data System (ADS)

    Kunstmann, H.; Krause, J.; Mayr, S.

    2005-12-01

    Even in physically based distributed hydrological models, various remaining parameters must be estimated for each sub-catchment. This can involve tremendous effort, especially when the number of sub-catchments is large and the applied hydrological model is computationally expensive. Automatic parameter estimation tools can significantly facilitate the calibration process. Hence, we combined the nonlinear parameter estimation tool PEST with the distributed hydrological model WaSiM. PEST is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. WaSiM is a fully distributed hydrological model using physically based algorithms for most of the process descriptions. WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Germany, 710 km2) in a 100×100 m2 horizontal resolution. The catchment is heterogeneous in terms of geology, pedology and land use and shows a complex orography (the difference of elevation is around 1600 m). Using the developed PEST-WaSiM interface, the hydrological model was calibrated by comparing simulated and observed runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic year 1993. For each sub-catchment four parameters had to be calibrated: the recession constants of direct runoff and interflow, the drainage density, and the hydraulic conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated. Additional a priori information (e.g. from flood hydrograph analysis) narrowed the parameter space of the solutions and improved the non-uniqueness of the fitted values. A reasonable quality of fit was achieved. Discrepancies between modelled and observed runoff were also due to the small number of meteorological stations and corresponding interpolation artefacts in the orographically complex terrain. A detailed covariance analysis was performed

  19. Inverse distributed hydrological modelling of Alpine catchments

    NASA Astrophysics Data System (ADS)

    Kunstmann, H.; Krause, J.; Mayr, S.

    2006-06-01

    Even in physically based distributed hydrological models, various remaining parameters must be estimated for each sub-catchment. This can involve tremendous effort, especially when the number of sub-catchments is large and the applied hydrological model is computationally expensive. Automatic parameter estimation tools can significantly facilitate the calibration process. Hence, we combined the nonlinear parameter estimation tool PEST with the distributed hydrological model WaSiM. PEST is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. WaSiM is a fully distributed hydrological model using physically based algorithms for most of the process descriptions. WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Germany, 710 km2 in a 100×100 m2 horizontal resolution. The catchment is heterogeneous in terms of geology, pedology and land use and shows a complex orography (the difference of elevation is around 1600 m). Using the developed PEST-WaSiM interface, the hydrological model was calibrated by comparing simulated and observed runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic year 1993. For each sub-catchment four parameters had to be calibrated: the recession constants of direct runoff and interflow, the drainage density, and the hydraulic conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated. Additional a priori information (e.g. from flood hydrograph analysis) narrowed the parameter space of the solutions and improved the non-uniqueness of the fitted values. A reasonable quality of fit was achieved. Discrepancies between modelled and observed runoff were also due to the small number of meteorological stations and corresponding interpolation artefacts in the orographically complex terrain. Application of a 2-dimensional numerical

  20. Distributed visualization

    SciTech Connect

    Arnold, T.R.

    1991-12-31

    Within the last half decade or so, two technological evolutions have culminated in mature products of potentially great utility to computer simulation. One is the emergence of low-cost workstations with versatile graphics and substantial local CPU power. The other is the adoption of UNIX as a de facto ``standard`` operating system on at least some machines offered by virtually all vendors. It is now possible to perform transient simulations in which the number- crunching capability of a supercomputer is harnessed to allow both process control and graphical visualization on a workstation. Such a distributed computer system is described as it now exists: a large FORTRAN application on a CRAY communicates with the balance of the simulation on a SUN-3 or SUN-4 via remote procedure call (RPC) protocol. The hooks to the application and the graphics have been made very flexible. Piping of output from the CRAY to the SUN is nonselective, allowing the user to summon data and draw or plot at will. The ensemble of control, application, data handling, and graphics modules is loosely coupled, which further generalizes the utility of the software design.

  1. Distributed visualization

    SciTech Connect

    Arnold, T.R.

    1991-01-01

    Within the last half decade or so, two technological evolutions have culminated in mature products of potentially great utility to computer simulation. One is the emergence of low-cost workstations with versatile graphics and substantial local CPU power. The other is the adoption of UNIX as a de facto standard'' operating system on at least some machines offered by virtually all vendors. It is now possible to perform transient simulations in which the number- crunching capability of a supercomputer is harnessed to allow both process control and graphical visualization on a workstation. Such a distributed computer system is described as it now exists: a large FORTRAN application on a CRAY communicates with the balance of the simulation on a SUN-3 or SUN-4 via remote procedure call (RPC) protocol. The hooks to the application and the graphics have been made very flexible. Piping of output from the CRAY to the SUN is nonselective, allowing the user to summon data and draw or plot at will. The ensemble of control, application, data handling, and graphics modules is loosely coupled, which further generalizes the utility of the software design.

  2. Comparison of PCSK9 Inhibitor Evolocumab vs Ezetimibe in Statin-Intolerant Patients: Design of the Goal Achievement After Utilizing an Anti-PCSK9 Antibody in Statin-Intolerant Subjects 3 (GAUSS-3) Trial.

    PubMed

    Nissen, Steven E; Dent-Acosta, Ricardo E; Rosenson, Robert S; Stroes, Erik; Sattar, Naveed; Preiss, David; Mancini, G B John; Ballantyne, Christie M; Catapano, Alberico; Gouni-Berthold, Ioanna; Stein, Evan A; Xue, Allen; Wasserman, Scott M; Scott, Rob; Thompson, Paul D

    2016-03-01

    Statins are the accepted standard for lowering low-density lipoprotein cholesterol (LDL-C). However, 5% to 10% of statin-treated patients report intolerance, mostly due to muscle-related adverse effects. Challenges exist to objective identification of statin-intolerant patients. Evolocumab is a monoclonal antibody that binds proprotein convertase subtilisin/kexin type 9 (PCSK9), resulting in marked LDL-C reduction. We report the design of Goal Achievement After Utilizing an Anti-PCSK9 Antibody in Statin-Intolerant Subjects 3 (GAUSS-3), a phase 3, multicenter, randomized, double-blind, ezetimibe-controlled study to compare effectiveness of 24 weeks of evolocumab 420 mg monthly vs ezetimibe 10 mg daily in hypercholesterolemic patients unable to tolerate an effective statin dose. The study incorporates a novel atorvastatin-controlled, double-blind, crossover phase to objectively identify statin intolerance. Eligible patients had LDL-C above the National Cholesterol Education Project Adult Treatment Panel III target level for the appropriate coronary heart disease risk category and were unable to tolerate ≥3 statins or 2 statins (one of which was atorvastatin ≤10 mg/d) or had a history of marked creatine kinase elevation accompanied by muscle symptoms while on 1 statin. This trial has 2 co-primary endpoints: mean percent change from baseline in LDL-C at weeks 22 and 24 and percent change from baseline in LDL-C at week 24. Key secondary efficacy endpoints include change from baseline in LDL-C, percent of patients attaining LDL-C <70 mg/dL (1.81 mmol/L), and percent change from baseline in total cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B. Recruitment of 511 patients was completed on November 28, 2014. PMID:26946077

  3. General models for the distributions of electric field gradients in disordered solids

    NASA Astrophysics Data System (ADS)

    LeCaër, G.; Brand, R. A.

    1998-11-01

    Hyperfine studies of disordered materials often yield the distribution of the electric field gradient (EFG) or related quadrupole splitting (QS). The question of the structural information that may be extracted from such distributions has been considered for more than fifteen years. Experimentally most studies have been performed using Mössbauer spectroscopy, especially on 0953-8984/10/47/020/img5. However, NMR, NQR, EPR and PAC methods have also received some attention. The EFG distribution for a random distribution of electric charges was for instance first investigated by Czjzek et al [1] and a general functional form was derived for the joint (bivariate) distribution of the principal EFG tensor component 0953-8984/10/47/020/img6 and the asymmetry parameter 0953-8984/10/47/020/img7. The importance of the Gauss distribution for such rotationally invariant structural models was thus evidenced. Extensions of that model which are based on degenerate multivariate Gauss distributions for the elements of the EFG tensor were proposed by Czjzek. The latter extensions have been used since that time, more particularly in Mössbauer spectroscopy, under the name `shell models'. The mathematical foundations of all the previous models are presented and critically discussed as they are evidenced by simple calculations in the case of the EFG tensor. The present article only focuses on those aspects of the EFG distribution in disordered solids which can be discussed without explicitly looking at particular physical mechanisms. We present studies of three different model systems. A reference model directly related to the first model of Czjzek, called the Gaussian isotropic model (GIM), is shown to be the limiting case for many different models with a large number of independent contributions to the EFG tensor and not restricted to a point-charge model. The extended validity of the marginal distribution of 0953-8984/10/47/020/img7 in the GIM model is discussed. It is also shown

  4. Enhancement display of veins distribution based on binocular vision and image fusion technology

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Di, Si; Jin, Jian; Bai, Liping

    2014-11-01

    The capture and display of veins distribution is an important issue for some applications, such as medical diagnosis and identification. Therefore, it has become a popular topic in the field of biomedical imaging. Usually, people capture the veins distribution by infrared imaging, but the display result is similar with that of a gray picture and the color and details of skin cannot be remained. To some degree, it is unreal for doctors. In this paper, we develop a binocular vision system to carry out the enhancement display of veins under the condition of keeping actual skin color. The binocular system is consisted of two adjacent cameras. A visible band filter and an infrared band filter are placed in front of the two lenses, respectively. Therefore, the pictures of visible band and infrared band can be captured simultaneously. After that, a new fusion process is applied to the two pictures, which related to histogram mapping, principal component analysis (PCA) and modified bilateral filter fusion. The final results show that both the veins distribution and the actual skin color of the back of the hand can be clearly displayed. Besides, correlation coefficient, average gradient and average distortion are selected as the parameters to evaluate the image quality. By comparing the parameters, it is evident that our novel fusion method is prior to some popular fusion methods such as Gauss filter fusion, Intensity-hue-saturation (HIS) fusion and bilateral filter fusion.

  5. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2015-01-01

    In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.

  6. Gauss-Laguerre interval quadrature rule

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Cvetkovic, Aleksandar S.

    2005-10-01

    In this paper we prove the existence and uniqueness of the Gaussian interval quadrature formula with respect to the generalized Laguerre weight function. An algorithm for numerical construction has also investigated and some suitable solutions are proposed. A few numerical examples are included.

  7. Gram-Schmidt Orthogonalization by Gauss Elimination.

    ERIC Educational Resources Information Center

    Pursell, Lyle; Trimble, S. Y.

    1991-01-01

    Described is the hand-calculation method for the orthogonalization of a given set of vectors through the integration of Gaussian elimination with existing algorithms. Although not numerically preferable, this method adds increased precision as well as organization to the solution process. (JJK)

  8. Distributive Education. Physical Distribution. Instructor's Curriculum.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This distributive education performance-based instructional unit is designed to help students understand the system of physical distribution and to act as an aid to guiding students in preparing for future careers in the transportation industry dealing with the retail, wholesale, and service occupations. (Physical distribution involves the moving…

  9. Temperature-averaged and total free-free Gaunt factors for κ and Maxwellian distributions of electrons

    NASA Astrophysics Data System (ADS)

    de Avillez, Miguel A.; Breitschwerdt, Dieter

    2015-08-01

    Aims: Optically thin plasmas may deviate from thermal equilibrium and thus, electrons (and ions) are no longer described by the Maxwellian distribution. Instead they can be described by κ-distributions. The free-free spectrum and radiative losses depend on the temperature-averaged (over the electrons distribution) and total Gaunt factors, respectively. Thus, there is a need to calculate and make available these factors to be used by any software that deals with plasma emission. Methods: We recalculated the free-free Gaunt factor for a wide range of energies and frequencies using hypergeometric functions of complex arguments and the Clenshaw recurrence formula technique combined with approximations whenever the difference between the initial and final electron energies is smaller than 10-10 in units of z2Ry. We used double and quadruple precisions. The temperature-averaged and total Gaunt factors calculations make use of the Gauss-Laguerre integration with 128 nodes. Results: The temperature-averaged and total Gaunt factors depend on the κ parameter, which shows increasing deviations (with respect to the results obtained with the use of the Maxwellian distribution) with decreasing κ. Tables of these Gaunt factors are provided. Appendices are available in electronic form at http://www.aanda.org

  10. A Residuals Approach to Filtering, Smoothing and Identification for Static Distributed Systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1985-01-01

    An approach for state estimation and identification of spatially distributed parameters embedded in static distributed (elliptic) system models is advanced. The method of maximum likelihood is used to find parameter values that maximize a likelihood functional for the system model, or equivalently, that minimize the negative logarithm of this functional. To find the minimum, a Newton-Raphson search is conducted that from an initial estimate generates a convergent sequence of parameter estimates. For simplicity, a Gauss-Markov approach is used to approximate the Hessian in terms of products of first derivatives. The gradient and approximate Hessian are computed by first arranging the negative log likelihood functional into a form based on the square root factorization of the predicted covariance of the measurement process. The resulting data processing approach, referred to here by the new term of predicted data covariance square root filtering, makes the gradient and approximate Hessian calculations very simple. A closely related set of state estimates is also produced by the maximum likelihood method: smoothed estimates that are optimal in a conditional mean sense and filtered estimates that emerge from the predicted data covariance square root filter.

  11. Investigation of continuous-time quantum walk via spectral distribution associated with adjacency matrix

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Salimi, S.

    2007-05-01

    Using the spectral distribution associated with the adjacency matrix of graphs, we introduce a new method of calculation of amplitudes of continuous-time quantum walk on some rather important graphs, such as line, cycle graph Cn, complete graph Kn, graph Gn, finite path and some other finite and infinite graphs, where all are connected with orthogonal polynomials such as Hermite, Laguerre, Tchebichef, and other orthogonal polynomials. It is shown that using the spectral distribution, one can obtain the infinite time asymptotic behavior of amplitudes simply by using the method of stationary phase approximation (WKB approximation), where as an example, the method is applied to star, two-dimensional comb lattices, infinite Hermite and Laguerre graphs. Also by using the Gauss quadrature formula one can approximate the infinite graphs with finite ones and vice versa, in order to derive large time asymptotic behavior by WKB method. Likewise, using this method, some new graphs are introduced, where their amplitudes are proportional to the product of amplitudes of some elementary graphs, even though the graphs themselves are not the same as the Cartesian product of their elementary graphs. Finally, by calculating the mean end to end distance of some infinite graphs at large enough times, it is shown that continuous-time quantum walk at different infinite graphs belong to different universality classes which are also different from those of the corresponding classical ones.

  12. The effect of a dust size distribution on electrostatic sheaths in unmagnetized dusty plasmas

    SciTech Connect

    Benlemdjaldi, D.; Tahraoui, A.; Hugon, R.; Bougdira, J.

    2013-04-15

    In this work, the structure of plasma sheaths in presence of dust particles with different sizes is investigated numerically in a multifluid framework, where the dust size distribution is modeled by Gauss' law. For this, we have established a 1D, stationary, unmagnetized, and weakly collisional electronegative dusty plasma sheath model. The electrons and negative ions are considered in a local thermodynamic equilibrium, therefore, described by a Boltzmann distribution. On the other hand, positive ions and dust grains are described by fluid equations. The charging process is described by the orbit motion limited model. It is shown that taking into account dust grains with different sizes reduces considerably the sheath thickness. The behavior of dust surface potential is not affected, but the dust charge number is reduced, as well as the electrostatic force. It results in a decrease of layered structure. The presence of negative ions makes the structure of the electrostatic potential more oscillatory. The other physical parameters are also analyzed and discussed.

  13. The detection of the electric field vertical distribution underneath thundercloud: Principle and applications

    NASA Technical Reports Server (NTRS)

    Soula, Serge; Chauzy, Serge

    1991-01-01

    During the Florida 89 experiment at Kennedy Space Center, a new system was used in order to obtain the vertical distribution of the electric field underneath thunderstorms. It consists of a standard shutter field mill at ground level and five other field sensors suspended from a cable fastened to a tethered balloon located at an altitude of about 1000 meters. It also includes a reception station for telemetered information transmitted by sensors, a processing system in order to store data, and real time display on a screen to show the simultaneous field variations at each level along with the instantaneous electric field profile. The first results obtained show the great importance of the electric field vertical distribution. The field detected at a height of 600m reaches 65 kV/m while that at the surface does not exceed 5 kV/m. The field intensity in altitude is a better criterion for determining the right moment to launch a rocket devoted to flash triggering. Using Gauss's law, the simultaneous field variations at several levels are used in order to evaluate charge densities. Average values close to 1nC.m(-3) are calculated in layers up to 600 m. The calculation of different average charge densities leads to the characterization of the layer between cloud and ground just before the leader propagation in the case of cloud to ground flash.

  14. Development of a high dynamic range spectroscopic system for observation of neutral hydrogen atom density distribution in Large Helical Device core plasma

    SciTech Connect

    Fujii, K. Atsumi, S.; Watanabe, S.; Shikama, T.; Hasuo, M.; Goto, M.; Morita, S.

    2014-02-15

    We report development of a high dynamic range spectroscopic system comprising a spectrometer with 30% throughput and a camera with a low-noise fast-readout complementary metal-oxide semiconductor sensor. The system achieves a 10{sup 6} dynamic range (∼20 bit resolution) and an instrumental function approximated by a Voigt profile with Gauss and Lorentz widths of 31 and 0.31 pm, respectively, for 656 nm light. The application of the system for line profile observations of the Balmer-α emissions from high temperature plasmas generated in the Large Helical Device is also presented. In the observed line profiles, emissions are detected in far wings more than 1.0 nm away from the line center, equivalent to neutral hydrogen atom kinetic energies above 1 keV. We evaluate atom density distributions in the core plasma by analyzing the line profiles.

  15. Annual Coal Distribution

    EIA Publications

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  16. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 13149, as Cycle 20.

  17. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 12778, as Cycle 19.

  18. Distributed Data Management and Distributed File Systems

    NASA Astrophysics Data System (ADS)

    Girone, Maria

    2015-12-01

    The LHC program has been successful in part due to the globally distributed computing resources used for collecting, serving, processing, and analyzing the large LHC datasets. The introduction of distributed computing early in the LHC program spawned the development of new technologies and techniques to synchronize information and data between physically separated computing centers. Two of the most challenges services are the distributed file systems and the distributed data management systems. In this paper I will discuss how we have evolved from local site services to more globally independent services in the areas of distributed file systems and data management and how these capabilities may continue to evolve into the future. I will address the design choices, the motivations, and the future evolution of the computing systems used for High Energy Physics.

  19. Exponentiated power Lindley distribution.

    PubMed

    Ashour, Samir K; Eltehiwy, Mahmoud A

    2015-11-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

  20. Exponentiated power Lindley distribution

    PubMed Central

    Ashour, Samir K.; Eltehiwy, Mahmoud A.

    2014-01-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

  1. Cumulative Poisson Distribution Program

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert

    1990-01-01

    Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C.

  2. Doubly Distributed Transactions

    Energy Science and Technology Software Center (ESTSC)

    2014-08-25

    Doubly Distributed Transactions (D2T) offers a technique for managing operations from a set of parallel clients with a collection of distributed services. It detects and manages faults. Example code with a test harness is also provided

  3. Distributions in Spherical Coordinates with Applications to Classical Electrodynamics

    ERIC Educational Resources Information Center

    Gsponer, Andre

    2007-01-01

    A general and rigorous method to deal with singularities at the origin of a polar coordinate system is presented. Its power derives from a clear distinction between the radial distance and the radial coordinate variable, which makes that all delta functions and their derivatives are automatically generated, and ensures that the Gauss theorem is…

  4. Distributed Learning Metadata Standards

    ERIC Educational Resources Information Center

    McClelland, Marilyn

    2004-01-01

    Significant economies can be achieved in distributed learning systems architected with a focus on interoperability and reuse. The key building blocks of an efficient distributed learning architecture are the use of standards and XML technologies. The goal of plug and play capability among various components of a distributed learning system…

  5. Video Distribution Systems.

    ERIC Educational Resources Information Center

    Davoust, David

    1994-01-01

    Describes video distribution systems as a way of giving control of all monitors in a classroom to the teacher. Examples of their use are given, including distribution in language labs and distribution from a media lab to classrooms throughout a school building; and information about five vendors is included. (LRW)

  6. Apparent Susceptibility Contrast Distribution of Continental Lithosphere in China and Its Surroundings: Implications to Regional Tectonics

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Sun, S.; Zhang, Y.; Liang, Q.

    2015-12-01

    Lithospheric magnetic field characterizes response of magnetic properties of rocks, which are mainly dependent on mineral and temperature variations. Hence, lithospheric magnetic structure brings important information to understand tectonic and thermal processes in the crust and uppermost mantle. In particular, the reliable global geomagnetic field models with large-scales based on satellite magnetic measurements provide regional view of the lithospheric magnetic structure. Here, with smallest and flattest constraints we use the inversion method based on the single layer model to calculate the spatial distribution of apparent susceptibility of continental lithosphere in China and its surroundings. It should be noted that: (1) magnetic anomaly data we used has removed the effect of global oceanic remanent magnetization, (2) the error of magnetic anomaly data is estimated from statistical analysis among MF7, GRIMM_L120, CHAOS5 and CM5 models, (3) the magnetic layer is bounded by the bottom of sediment and the Moho from CRUST1.0 model and is discretized into ellipsoidal prisms with equal angles in latitude and longitude, and (4) an adaptive subdivision & Gauss-Legendre quadrature with fixed order is adopted to solve the forward problem and IGRF11 is utilized as inducing field model. Since the missing longest wavelength components in the lithospheric magnetic field models and the so-called magnetic annihilators, the Apparent Susceptibility Contrast (ASC) distribution is obtained. The ASC distribution has obvious variations and illustrates the mosaic continent with old blocks, orogenic belts, rework fragments and also earthquake regions/zones. Moreover, the ASC distribution provides new insights and evidences of the destruction of North China Craton and geodynamic processes of Tibetan plateau and Baikal rift etc. This study is supported by China Postdoctoral Science Foundation (Grant No.: 2015M572217) and Natural Science Fund of Hubei Province (Grant No.: 2015CFB361).

  7. Verification of LHS distributions.

    SciTech Connect

    Swiler, Laura Painton

    2006-04-01

    This document provides verification test results for normal, lognormal, and uniform distributions that are used in Sandia's Latin Hypercube Sampling (LHS) software. The purpose of this testing is to verify that the sample values being generated in LHS are distributed according to the desired distribution types. The testing of distribution correctness is done by examining summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chisquare test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. The overall results from the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is acceptable.

  8. FRIB cryogenic distribution system

    NASA Astrophysics Data System (ADS)

    Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D.; Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F.

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  9. Cubic-normal distribution

    NASA Astrophysics Data System (ADS)

    Peng, Gan Chew; Hin, Pooi Ah; Ho, C. K.

    2015-12-01

    The power-normal distribution given in Yeo and Johnson in year 2000 is a unimodal distribution with wide ranges of skewness and kurtosis. A shortcoming of the power-normal distribution is that the negative and positve parts of the underlying random variable have to be specified by two different expressions of the standard normal random variable. In this paper, we construct a new distribution, called the cubic-normal distribution, via a single polynomial expression in cubic root function. Apart from having the properties which are similar to those of the power-normal distribution, this cubic-normal distribution can be developed into a multivariate version which is more attractive from the theoretical and computational points of view.

  10. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  11. Bivariate extreme value distributions

    NASA Technical Reports Server (NTRS)

    Elshamy, M.

    1992-01-01

    In certain engineering applications, such as those occurring in the analyses of ascent structural loads for the Space Transportation System (STS), some of the load variables have a lower bound of zero. Thus, the need for practical models of bivariate extreme value probability distribution functions with lower limits was identified. We discuss the Gumbel models and present practical forms of bivariate extreme probability distributions of Weibull and Frechet types with two parameters. Bivariate extreme value probability distribution functions can be expressed in terms of the marginal extremel distributions and a 'dependence' function subject to certain analytical conditions. Properties of such bivariate extreme distributions, sums and differences of paired extremals, as well as the corresponding forms of conditional distributions, are discussed. Practical estimation techniques are also given.

  12. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  13. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  14. Statistical distribution sampling

    NASA Technical Reports Server (NTRS)

    Johnson, E. S.

    1975-01-01

    Determining the distribution of statistics by sampling was investigated. Characteristic functions, the quadratic regression problem, and the differential equations for the characteristic functions are analyzed.

  15. Distribution of Chinese names

    NASA Astrophysics Data System (ADS)

    Huang, Ding-wei

    2013-03-01

    We present a statistical model for the distribution of Chinese names. Both family names and given names are studied on the same basis. With naive expectation, the distribution of family names can be very different from that of given names. One is affected mostly by genealogy, while the other can be dominated by cultural effects. However, we find that both distributions can be well described by the same model. Various scaling behaviors can be understood as a result of stochastic processes. The exponents of different power-law distributions are controlled by a single parameter. We also comment on the significance of full-name repetition in Chinese population.

  16. A non-invasive Hall current distribution measurement system for Hall Effect thrusters

    NASA Astrophysics Data System (ADS)

    Mullins, Carl Raymond

    A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.

  17. Smart distribution systems

    DOE PAGESBeta

    Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin

    2016-04-19

    The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less

  18. Distribution and Marketing Syllabus.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The distributive education program for grades 7 to 12 is organized around three career education phases: the career education phase (grades 7-10), the distributive phase (grade 11), and the competency cluster phase (grade 12). The grade 11 syllabus provides a six-page introduction which covers scheduling, cooperative work experience, the school…

  19. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  20. Software distribution using xnetlib

    SciTech Connect

    Dongarra, J.J. |; Rowan, T.H.; Wade, R.C.

    1993-06-01

    Xnetlib is a new tool for software distribution. Whereas its predecessor netlib uses e-mail as the user interface to its large collection of public-domain mathematical software, xnetlib uses an X Window interface and socket-based communication. Xnetlib makes it easy to search through a large distributed collection of software and to retrieve requested software in seconds.

  1. Univariate Probability Distributions

    ERIC Educational Resources Information Center

    Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E.

    2012-01-01

    We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…

  2. Groundwater and Distribution Workbook.

    ERIC Educational Resources Information Center

    Ekman, John E.

    Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…

  3. The Concept of Distribution

    ERIC Educational Resources Information Center

    Wild, Chris

    2006-01-01

    This paper is a personal exploration of where the ideas of "distribution" that we are trying to develop in students come from and are leading to, how they fit together, and where they are important and why. We need to have such considerations in the back of our minds when designing learning experiences. The notion of "distribution" as a lens…

  4. Electrical Distribution Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program guide contains the standard electrical distribution curriculum for technical institutes in Georgia. The curriculum encompasses the minimum competencies required for entry-level workers in the electrical distribution field, and in job skills such as construction, maintenance, and repair of overhead and underground electrical…

  5. Metrics for Food Distribution.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of students interested in food distribution, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational…

  6. 24 CFR 203.423 - Distribution of distributive shares.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Distribution of distributive shares... and Distributive Shares § 203.423 Distribution of distributive shares. (a) The Commissioner may provide for the distribution to the mortgagor of a share of the participating reserve account if...

  7. 24 CFR 203.423 - Distribution of distributive shares.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Distribution of distributive shares... and Distributive Shares § 203.423 Distribution of distributive shares. (a) The Commissioner may provide for the distribution to the mortgagor of a share of the participating reserve account if...

  8. Distributed Propulsion Vehicles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  9. Distributional Learning of Appearance

    PubMed Central

    Griffin, Lewis D.; Wahab, M. Husni; Newell, Andrew J.

    2013-01-01

    Opportunities for associationist learning of word meaning, where a word is heard or read contemperaneously with information being available on its meaning, are considered too infrequent to account for the rate of language acquisition in children. It has been suggested that additional learning could occur in a distributional mode, where information is gleaned from the distributional statistics (word co-occurrence etc.) of natural language. Such statistics are relevant to meaning because of the Distributional Principle that ‘words of similar meaning tend to occur in similar contexts’. Computational systems, such as Latent Semantic Analysis, have substantiated the viability of distributional learning of word meaning, by showing that semantic similarities between words can be accurately estimated from analysis of the distributional statistics of a natural language corpus. We consider whether appearance similarities can also be learnt in a distributional mode. As grounds for such a mode we advance the Appearance Hypothesis that ‘words with referents of similar appearance tend to occur in similar contexts’. We assess the viability of such learning by looking at the performance of a computer system that interpolates, on the basis of distributional and appearance similarity, from words that it has been explicitly taught the appearance of, in order to identify and name objects that it has not been taught about. Our experiment tests with a set of 660 simple concrete noun words. Appearance information on words is modelled using sets of images of examples of the word. Distributional similarity is computed from a standard natural language corpus. Our computation results support the viability of distributional learning of appearance. PMID:23460927

  10. Technologies for Distributed Defense

    SciTech Connect

    Seiders, Barbara AB; Rybka, Anthony J.

    2002-07-01

    For Americans, the nature of warfare changed on September 11, 2001. Our national security henceforth will require distributed defense. One extreme of distributed defense is represented by fully deployed military troops responding to a threat from a hostile nation state. At the other extreme is a country of "citizen soldiers," with families and communities securing their common defense through heightened awareness, engagement as good neighbors, and local support of and cooperation with local law enforcement, emergency and health care providers. Technologies - for information exploitation, biological agent detection, health care surveillance, and security - will be critical to ensuring success in distributed defense.

  11. Distributed analysis at LHCb

    NASA Astrophysics Data System (ADS)

    Williams, Mike; Egede, Ulrik; Paterson, Stuart; LHCb Collaboration

    2011-12-01

    The distributed analysis experience to date at LHCb has been positive: job success rates are high and wait times for high-priority jobs are low. LHCb users access the grid using the GANGA job-management package, while the LHCb virtual organization manages its resources using the DIRAC package. This clear division of labor has benefitted LHCb and its users greatly; it is a major reason why distributed analysis at LHCb has been so successful. The newly formed LHCb distributed analysis support team has also proved to be a success.

  12. Ticks: Geographic Distribution

    MedlinePlus

    ... Atlas. Download this map [PDF - 1 page] Lone star tick ( Amblyomma americanum ) Where found: Widely distributed in ... is distinguished by a white dot or “lone star” on her back. Lone star tick saliva can ...

  13. DOLIB: Distributed Object Library

    SciTech Connect

    D`Azevedo, E.F.; Romine, C.H.

    1994-10-01

    This report describes the use and implementation of DOLIB (Distributed Object Library), a library of routines that emulates global or virtual shared memory on Intel multiprocessor systems. Access to a distributed global array is through explicit calls to gather and scatter. Advantages of using DOLIB include: dynamic allocation and freeing of huge (gigabyte) distributed arrays, both C and FORTRAN callable interfaces, and the ability to mix shared-memory and message-passing programming models for ease of use and optimal performance. DOLIB is independent of language and compiler extensions and requires no special operating system support. DOLIB also supports automatic caching of read-only data for high performance. The virtual shared memory support provided in DOLIB is well suited for implementing Lagrangian particle tracking techniques. We have also used DOLIB to create DONIO (Distributed Object Network I/O Library), which obtains over a 10-fold improvement in disk I/O performance on the Intel Paragon.

  14. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  15. Polygamy of distributed entanglement

    NASA Astrophysics Data System (ADS)

    Buscemi, Francesco; Gour, Gilad; Kim, Jeong San

    2009-07-01

    While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.

  16. Generic Distributed Simulation Architecture

    SciTech Connect

    Booker, C.P.

    1999-05-14

    A Generic Distributed Simulation Architecture is described that allows a simulation to be automatically distributed over a heterogeneous network of computers and executed with very little human direction. A prototype Framework is presented that implements the elements of the Architecture and demonstrates the feasibility of the concepts. It provides a basis for a future, improved Framework that will support legacy models. Because the Framework is implemented in Java, it may be installed on almost any modern computer system.

  17. Sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1988-01-01

    Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system.

  18. Sparse distributed memory

    SciTech Connect

    Kanerva, P.

    1988-01-01

    Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system. 63 refs.

  19. Distribution system simulator

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Kirkham, H.; Rahman, S.

    1986-01-01

    In a series of tests performed under the Department of Energy auspices, power line carrier propagation was observed to be anomalous under certain circumstances. To investigate the cause, a distribution system simulator was constructed. The simulator was a physical simulator that accurately represented the distribution system from below power frequency to above 50 kHz. Effects such as phase-to-phase coupling and skin effect were modeled. Construction details of the simulator, and experimental results from its use are presented.

  20. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis {11863} during Cycle 17.

  1. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2011-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis, Proposal 12416, as Cycle 18.

  2. Polygamy of distributed entanglement

    SciTech Connect

    Buscemi, Francesco; Gour, Gilad; Kim, Jeong San

    2009-07-15

    While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.

  3. Distributed generation hits market

    SciTech Connect

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  4. Distribution of perfusion.

    PubMed

    Glenny, Robb; Robertson, H Thomas

    2011-01-01

    Local driving pressures and resistances within the pulmonary vascular tree determine the distribution of perfusion in the lung. Unlike other organs, these local determinants are significantly influenced by regional hydrostatic and alveolar pressures. Those effects on blood flow distribution are further magnified by the large vertical height of the human lung and the relatively low intravascular pressures in the pulmonary circulation. While the distribution of perfusion is largely due to passive determinants such as vascular geometry and hydrostatic pressures, active mechanisms such as vasoconstriction induced by local hypoxia can also redistribute blood flow. This chapter reviews the determinants of regional lung perfusion with a focus on vascular tree geometry, vertical gradients induced by gravity, the interactions between vascular and surrounding alveolar pressures, and hypoxic pulmonary vasoconstriction. While each of these determinants of perfusion distribution can be examined in isolation, the distribution of blood flow is dynamically determined and each component interacts with the others so that a change in one region of the lung influences the distribution of blood flow in other lung regions. PMID:23737171

  5. 24 CFR 213.278 - Distribution of distributive share.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Distribution of distributive share. 213.278 Section 213.278 Housing and Urban Development Regulations Relating to Housing and Urban... Management Housing Insurance and Distributive Shares § 213.278 Distribution of distributive share. When...

  6. 24 CFR 213.278 - Distribution of distributive share.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Distribution of distributive share. 213.278 Section 213.278 Housing and Urban Development Regulations Relating to Housing and Urban... Management Housing Insurance and Distributive Shares § 213.278 Distribution of distributive share. When...

  7. The isotopic distribution conundrum.

    PubMed

    Valkenborg, Dirk; Mertens, Inge; Lemière, Filip; Witters, Erwin; Burzykowski, Tomasz

    2012-01-01

    Although access to high-resolution mass spectrometry (MS), especially in the field of biomolecular MS, is becoming readily available due to recent advances in MS technology, the accompanied information on isotopic distribution in high-resolution spectra is not used at its full potential, mainly because of lack of knowledge and/or awareness. In this review, we give an insight into the practical problems related to calculating the isotopic distribution for large biomolecules, and present an overview of methods for the calculation of the isotopic distribution. We discuss the key events that triggered the development of various algorithms and explain the rationale of how and why the various isotopic-distribution calculations were performed. The review is focused around the developmental stages as briefly outlined below, starting with the first observation of an isotopic distribution. The observations of Beynon in the field of organic MS that chlorine appeared in a mass spectrum as two variants with odds 3:1 lie at the basis of the first wave of algorithms for the calculation of the isotopic distribution, based on the atomic composition of a molecule. From here on, we explain why more complex biomolecules such as peptides exhibit a highly complex isotope pattern when assayed by MS, and we discuss how combinatorial difficulties complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight three methods, which were introduced in the 1980s. These are the stepwise procedure introduced by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion from Yergey. The next development was instigated by Rockwood, who suggested to decompose the isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we could claim that the term "aggregated" isotopic distribution is more appropriate. Due to the simplification of the isotopic distribution to its aggregated counterpart

  8. Vaginal drug distribution modeling.

    PubMed

    Katz, David F; Yuan, Andrew; Gao, Yajing

    2015-09-15

    This review presents and applies fundamental mass transport theory describing the diffusion and convection driven mass transport of drugs to the vaginal environment. It considers sources of variability in the predictions of the models. It illustrates use of model predictions of microbicide drug concentration distribution (pharmacokinetics) to gain insights about drug effectiveness in preventing HIV infection (pharmacodynamics). The modeling compares vaginal drug distributions after different gel dosage regimens, and it evaluates consequences of changes in gel viscosity due to aging. It compares vaginal mucosal concentration distributions of drugs delivered by gels vs. intravaginal rings. Finally, the modeling approach is used to compare vaginal drug distributions across species with differing vaginal dimensions. Deterministic models of drug mass transport into and throughout the vaginal environment can provide critical insights about the mechanisms and determinants of such transport. This knowledge, and the methodology that obtains it, can be applied and translated to multiple applications, involving the scientific underpinnings of vaginal drug distribution and the performance evaluation and design of products, and their dosage regimens, that achieve it. PMID:25933938

  9. Distributed replica dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Chill, Samuel T.; Henkelman, Graeme

    2015-11-01

    A distributed replica dynamics (DRD) method is proposed to calculate rare-event molecular dynamics using distributed computational resources. Similar to Voter's parallel replica dynamics (PRD) method, the dynamics of independent replicas of the system are calculated on different computational clients. In DRD, each replica runs molecular dynamics from an initial state for a fixed simulation time and then reports information about the trajectory back to the server. A simulation clock on the server accumulates the simulation time of each replica until one reports a transition to a new state. Subsequent calculations are initiated from within this new state and the process is repeated to follow the state-to-state evolution of the system. DRD is designed to work with asynchronous and distributed computing resources in which the clients may not be able to communicate with each other. Additionally, clients can be added or removed from the simulation at any point in the calculation. Even with heterogeneous computing clients, we prove that the DRD method reproduces the correct probability distribution of escape times. We also show this correspondence numerically; molecular dynamics simulations of Al(100) adatom diffusion using PRD and DRD give consistent exponential distributions of escape times. Finally, we discuss guidelines for choosing the optimal number of replicas and replica trajectory length for the DRD method.

  10. Distributed replica dynamics.

    PubMed

    Zhang, Liang; Chill, Samuel T; Henkelman, Graeme

    2015-11-01

    A distributed replica dynamics (DRD) method is proposed to calculate rare-event molecular dynamics using distributed computational resources. Similar to Voter's parallel replica dynamics (PRD) method, the dynamics of independent replicas of the system are calculated on different computational clients. In DRD, each replica runs molecular dynamics from an initial state for a fixed simulation time and then reports information about the trajectory back to the server. A simulation clock on the server accumulates the simulation time of each replica until one reports a transition to a new state. Subsequent calculations are initiated from within this new state and the process is repeated to follow the state-to-state evolution of the system. DRD is designed to work with asynchronous and distributed computing resources in which the clients may not be able to communicate with each other. Additionally, clients can be added or removed from the simulation at any point in the calculation. Even with heterogeneous computing clients, we prove that the DRD method reproduces the correct probability distribution of escape times. We also show this correspondence numerically; molecular dynamics simulations of Al(100) adatom diffusion using PRD and DRD give consistent exponential distributions of escape times. Finally, we discuss guidelines for choosing the optimal number of replicas and replica trajectory length for the DRD method. PMID:26547163

  11. Sparse distributed memory overview

    NASA Technical Reports Server (NTRS)

    Raugh, Mike

    1990-01-01

    The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.

  12. Distributed Wind Market Applications

    SciTech Connect

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

  13. Distributed data transmitter

    DOEpatents

    Brown, Kenneth Dewayne; Dunson, David

    2006-08-08

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  14. Distributed data transmitter

    DOEpatents

    Brown, Kenneth Dewayne; Dunson, David

    2008-06-03

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  15. On exchangeable multinomial distributions

    PubMed Central

    George, E. Olusegun; Cheon, Kyeongmi; Yuan, Yilian; Szabo, Aniko

    2016-01-01

    We derive an expression for the joint distribution of exchangeable multinomial random variables, which generalizes the multinomial distribution based on independent trials while retaining some of its important properties. Unlike de Finneti's representation theorem for a binary sequence, the exchangeable multinomial distribution derived here does not require that the finite set of random variables under consideration be a subset of an infinite sequence. Using expressions for higher moments and correlations, we show that the covariance matrix for exchangeable multinomial data has a different form from that usually assumed in the literature, and we analyse data from developmental toxicology studies. The proposed analyses have been implemented in R and are available on CRAN in the CorrBin package.

  16. Partonic Transverse Momentum Distributions

    SciTech Connect

    Rossi, Patrizia

    2010-08-04

    In recent years parton distributions have been generalized to account also for transverse degrees of freedom and new sets of more general distributions, Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions were introduced. Different experiments worldwide (HERMES, COMPASS, CLAS, JLab-Hall A) have measurements of TMDs in semi-inclusive DIS processes as one of their main focuses of research. TMD studies are also an important part of the present and future Drell-Yan experiments at RICH and JPARC and GSI, respectively, Studies of TMDs are also one of the main driving forces of the Jefferson Lab (JLab) 12 GeV upgrade project. Progress in phenomenology and theory is flourishing as well. In this talk an overview of the latest developments in studies of TMDs will be given and newly released results, ongoing activities, as well as planned near term and future measurements will be discussed.

  17. Mars elevation distribution

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Howington-Kraus, Annie E.; Ablin, Karyn K.

    1991-01-01

    A Digital Terrain Model (DTM) of Mars was derived with both Mercator and Sinusoidal Equal-Area projections from the global topographic map of Mars (scale 1:15 million, contour interval 1 km). Elevations on the map are referred to Mars' topographic datum that is defined by the gravity field at a 6.1-millibar pressure surface with respect to the center of mass of Mars. The DTM has a resolution at the equator of 1/59.226 degrees (exactly 1 km) per pixel. By using the DTM, the volumetric distribution of Mars topography above and below the datum has previously been calculated. Three types of elevation distributions of Mars' topography were calculated from the same DTM: (1) the frequency distribution of elevations at the pixel resolution; (2) average elevations in increments of 6 degrees in both longitude and latitude; and (3) average elevations in 36 separate blocks, each covering 30 degrees of latitude and 60 degrees of longitude.

  18. Discrete Pearson distributions

    SciTech Connect

    Bowman, K.O.; Shenton, L.R.; Kastenbaum, M.A.

    1991-11-01

    These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.

  19. High voltage distributed amplifier

    NASA Astrophysics Data System (ADS)

    Willems, D.; Bahl, I.; Wirsing, K.

    1991-12-01

    A high-voltage distributed amplifier implemented in GaAs MMIC technology has demonstrated good circuit performance over at least two octave bandwidth. This technique allows for very broadband amplifier operation with good efficiency in satellite, active-aperture radar, and battery-powered systems. Also, by increasing the number of FETs, the amplifier can be designed to match different voltage rails. The circuit does require a small amount of additional chip size over conventional distributed amplifiers but does not require power dividers or additional matching networks. This circuit configuration should find great use in broadband power amplifier design.

  20. Distributed Sensors Simulator

    SciTech Connect

    Brennan, Sean M.

    2003-08-30

    The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for distributed sensor networks without the commitment inherent in using hardware. The flexibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness, and scaling issues; explore arbitrary algorithms for DSNs; and is particularly useful as a proof-of-concept tool. The user provides data on node location and specifications, defines event phenomena, and plugs in the application(s) to run. DSS in turn provides the virtual environmental embedding — but exposed to the user like no true embedding could ever be.

  1. A distributed Tier-1

    NASA Astrophysics Data System (ADS)

    Fischer, L.; Grønager, M.; Kleist, J.; Smirnova, O.

    2008-07-01

    The Tier-1 facility operated by the Nordic DataGrid Facility (NDGF) differs significantly from other Tier-1s in several aspects: firstly, it is not located at one or a few premises, but instead is distributed throughout the Nordic countries; secondly, it is not under the governance of a single organization but instead is a meta-center built of resources under the control of a number of different national organizations. We present some technical implications of these aspects as well as the high-level design of this distributed Tier-1. The focus will be on computing services, storage and monitoring.

  2. Input distributions for VISA

    SciTech Connect

    Liebetrau, A.M.

    1983-10-01

    Work is underway at Pacific Northwest Laboratory (PNL) to improve the probabilistic analysis used to model pressurized thermal shock (PTS) incidents in reactor pressure vessels, and, further, to incorporate these improvements into the existing Vessel Integrity Simulation Analysis (VISA) code. Two topics related to work on input distributions in VISA are discussed in this paper. The first involves the treatment of flaw size distributions and the second concerns errors in the parameters in the (Guthrie) equation which is used to compute ..delta..RT/sub NDT/, the shift in reference temperature for nil ductility transition.

  3. Distributed Sensors Simulator

    Energy Science and Technology Software Center (ESTSC)

    2003-08-30

    The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for distributed sensor networks without the commitment inherent in using hardware. The flexibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness, and scaling issues; explore arbitrary algorithms for DSNs; and is particularly useful as a proof-of-concept tool. The user provides data on node location and specifications, defines event phenomena, and plugs in the application(s)more » to run. DSS in turn provides the virtual environmental embedding — but exposed to the user like no true embedding could ever be.« less

  4. THERMAL DISTRIBUTION SYSTEM EXPERIMENT

    SciTech Connect

    KRAJEWSKI,R.F.; ANDREWS,J.W.; WEI,G.

    1999-09-01

    A laboratory experiment has been conducted which tests for the effects of distribution system purging on system Delivery Effectiveness (DE) as defined in ASHRAE 152P. The experiment is described in its configuration, instrumentation, and data acquisition system. Data gathered in the experiment is given and discussed. The results show that purging of the distribution system alone does not offer any improvement of the system DE. Additional supporting tests were conducted regarding experimental simulations of buffer zones and bare pipe and are also discussed.

  5. Galactic distribution of pulsars

    NASA Technical Reports Server (NTRS)

    Seiradakis, J. H.

    1977-01-01

    The density distributions of pulsars in luminosity, period, Z-distance, and galactocentric distance were derived, using a uniform sample of pulsars detected during a 408-MHz pulsar survey at Jodrell Bank. There are indications of a fine-scale structure in the spatial distributions and evidence that there is a general correlation with other galactic populations and the overall spiral structure. The electron layer in our galaxy is shown to be wider than the pulsar layer and uniform on a large scale. The number of pulsars in the galaxy has been estimated and used to derive the pulsar birthrate.

  6. Galactic distribution of pulsars

    NASA Technical Reports Server (NTRS)

    Seiradakis, J. H.

    1976-01-01

    The density distributions of pulsars in luminosity, period, Z-distance, and galactocentric distance were derived using a uniform sample of pulsars detected during a 408 MHz pulsar survey at Jodrell Bank. There are indications of a fine scale structure in the spatial distribution and evidence that there is a general correlation with other galactic populations and the overall spiral structure. The electron layer in the galaxy is shown to be wider than the pulsar layer and uniform on a large scale. The number of pulsars in the galaxy was estimated and used to derive the pulsar birthrate.

  7. Program for standard statistical distributions

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1972-01-01

    Development of procedure to describe frequency distributions involved in statistical theory is discussed. Representation of frequency distributions by first order differential equation is presented. Classification of various types of distributions based on Pearson parameters is analyzed.

  8. Distributed Continuous Registration.

    ERIC Educational Resources Information Center

    Myers, Donald L.

    1981-01-01

    The development, implementation, and features of Northern Colorado's continuous registration system are described. The system is an online distributed processing system, written in COBOL for an IBM Series I under the CPS operating system. Course selection, permit to enroll, and drop/add forms are provided. (Author/MLW)

  9. Enabling distributed petascale science.

    SciTech Connect

    Baranovski, A.; Bharathi, S.; Bresnahan, J.; chervenak, A.; Foster, I.; Fraser, D.; Freeman, T.; Gunter, D.; Jackson, K.; Keahey, K.; Kesselman, C.; Konerding, D. E.; Leroy, N.; Link, M.; Livny, M.; Miller, N.; Miller, R.; Oleynik, G.; Pearlman, L.; Schopf, J. M.; Schuler, R.; Tierney, B.; Mathematics and Computer Science; FNL; Univ. of Southern California; Univ. of Chicago; LBNL; Univ. of Wisconsin

    2007-01-01

    Petascale science is an end-to-end endeavour, involving not only the creation of massive datasets at supercomputers or experimental facilities, but the subsequent analysis of that data by a user community that may be distributed across many laboratories and universities. The new SciDAC Center for Enabling Distributed Petascale Science (CEDPS) is developing tools to support this end-to-end process. These tools include data placement services for the reliable, high-performance, secure, and policy-driven placement of data within a distributed science environment; tools and techniques for the construction, operation, and provisioning of scalable science services; and tools for the detection and diagnosis of failures in end-to-end data placement and distributed application hosting configurations. In each area, we build on a strong base of existing technology and have made useful progress in the first year of the project. For example, we have recently achieved order-of-magnitude improvements in transfer times (for lots of small files) and implemented asynchronous data staging capabilities; demonstrated dynamic deployment of complex application stacks for the STAR experiment; and designed and deployed end-to-end troubleshooting services. We look forward to working with SciDAC application and technology projects to realize the promise of petascale science.

  10. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  11. Distribution of Childrearing Demands.

    ERIC Educational Resources Information Center

    Zimmerman, Judith D.; And Others

    The tools of economic analysis were applied to demographic data in order to develop a social indicator measuring the extent of inequality in the distribution of childrearing responsibility in households from 1940 to 1980. With data drawn from the Current Population Survey of the Bureau of the Census, a "demand intensity" measure was developed.…

  12. Age Distribution of Groundwater

    NASA Astrophysics Data System (ADS)

    Morgenstern, U.; Daughney, C. J.

    2012-04-01

    Groundwater at the discharge point comprises a mixture of water from different flow lines with different travel time and therefore has no discrete age but an age distribution. The age distribution can be assessed by measuring how a pulse shaped tracer moves through the groundwater system. Detection of the time delay and the dispersion of the peak in the groundwater compared to the tracer input reveals the mean residence time and the mixing parameter. Tritium from nuclear weapons testing in the early 1960s resulted in a peak-shaped tritium input to the whole hydrologic system on earth. Tritium is the ideal tracer for groundwater because it is an isotope of hydrogen and therefore is part of the water molecule. Tritium time series data that encompass the passage of the bomb tritium pulse through the groundwater system in all common hydrogeologic situations in New Zealand demonstrate a semi-systematic pattern between age distribution parameters and hydrologic situation. The data in general indicate high fraction of mixing, but in some cases also indicate high piston flow. We will show that still, 45 years after the peak of the bomb tritium, it is possible to assess accurately the parameters of age distributions by measuring the tail of the bomb tritium.

  13. Distributive Education. Selling. Curriculum.

    ERIC Educational Resources Information Center

    Lankford, Dave; Comte, Don

    Nineteen lesson plans on selling are presented in this performance-based curriculum unit for distributive education. This unit is self-contained and consists of the following components: introduction (provides overview of unit content and describes why mastery of the objectives is important); performance objectives; pre-assessment instrument…

  14. Prototyping distributed simulation networks

    NASA Technical Reports Server (NTRS)

    Doubleday, Dennis L.

    1990-01-01

    Durra is a declarative language designed to support application-level programming. The use of Durra is illustrated to describe a simple distributed application: a simulation of a collection of networked vehicle simulators. It is shown how the language is used to describe the application, its components and structure, and how the runtime executive provides for the execution of the application.

  15. Distributed analysis in ATLAS

    NASA Astrophysics Data System (ADS)

    Dewhurst, A.; Legger, F.

    2015-12-01

    The ATLAS experiment accumulated more than 140 PB of data during the first run of the Large Hadron Collider (LHC) at CERN. The analysis of such an amount of data is a challenging task for the distributed physics community. The Distributed Analysis (DA) system of the ATLAS experiment is an established and stable component of the ATLAS distributed computing operations. About half a million user jobs are running daily on DA resources, submitted by more than 1500 ATLAS physicists. The reliability of the DA system during the first run of the LHC and the following shutdown period has been high thanks to the continuous automatic validation of the distributed analysis sites and the user support provided by a dedicated team of expert shifters. During the LHC shutdown, the ATLAS computing model has undergone several changes to improve the analysis workflows, including the re-design of the production system, a new analysis data format and event model, and the development of common reduction and analysis frameworks. We report on the impact such changes have on the DA infrastructure, describe the new DA components, and include recent performance measurements.

  16. Schooling and Income Distribution

    ERIC Educational Resources Information Center

    Marin, Alan; Psacharopoulos, George

    1976-01-01

    Analyzes the relationship between years of schooling and income distribution, based on human capital theory. (Available from North-Holland Publishing Company, P.O. Box 211, Amsterdam, the Netherlands; $13.50 annually, plus $4.00 postage and handling) (JG)

  17. Industrial power distribution

    SciTech Connect

    Sorrells, M.A.

    1990-01-01

    This paper is a broad overview of industrial power distribution. Primary focus will be on selection of the various low voltage components to achieve the end product. Emphasis will be on the use of national standards to ensure a safe and well designed installation.

  18. Distributed Information Management.

    ERIC Educational Resources Information Center

    Pottenger, William M.; Callahan, Miranda R.; Padgett, Michael A.

    2001-01-01

    Reviews the scope and effects of distributed information management. Discusses cultural and social influences, including library and Internet culture, information and knowledge, electronic libraries, and social aspects of libraries; digital collections; indexing; permanent link systems; metadata; the Open Archives initiative; digital object…

  19. Small School Distributive Education.

    ERIC Educational Resources Information Center

    Barnes, Bill

    Information on an atypical 1966-67 Distributive Education pilot program in New Mexico was given. The program was unique since one instructor conducted this program in two schools which were in separate rural districts (Dexter and Hagerman). Since both communities were primarily agricultural, with small student populations, the cost of such a…

  20. Multiagent distributed watershed management

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.

    2012-04-01

    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing

  1. Photovoltaics support distribution feeder

    SciTech Connect

    Barker, P.P.; Bailey, B.; Peterson, A.J. Jr.

    1997-03-01

    The concept of supporting the transmission and distribution (T&D) system with a photovoltaic (PV) distributed energy source has gained increasing attention as the cost of PV energy has declined. Locating a PV system at a strategic point on the distribution feeder can enhance the overall T&D system performance and provide a source of renewable power generation. In such applications, the PV system peak output ranges from a few percent up to about 20 percent of the peak feeder load. A good example of one such project on a line supplied by the Pacific Gas & Electric Co.`s Kerman Substation near Fresno, California. Given the success of this and other projects, Niagara Mohawk Power Corp. (NMPC) will be testing a 100 kW ac output system interconnected with a 13.2 kV distribution feeder to demonstrate PV T&D support concepts in its service territory. The demonstration system construction and operation is to be funded by NMPC, Utility Photovoltaics Group (UPVG) and New York State Energy Research and Development Authority (NYSERDA). AWS Scientific will manage the site construction and be responsible for maintaining, operating and monitoring the performance of the system. As a prerequisite to construction of the system, the NMPC research and development department funded AWS Scientific Inc. (Albany, N.Y.) and Power Technologies Inc. (Schenectady, N.Y.) to investigate the use of PV energy for T&D support applications on its system. The study involved reviewing a large number of distribution circuits throughout NMPC`s service territory to find candidate locations for the 100 kW demonstration project. A key focus of the study was to find a feeder whereby the injection of PV energy provided maximum dispersed generation benefits.

  2. Distributed Experiment Automation System

    NASA Astrophysics Data System (ADS)

    Lebedev, Gennadi

    2003-03-01

    Module based distributed system for controlling and automation scientific experiments were developed. System divides in five main layers: 1. Data processing and presentation modules, 2. Controllers - support primary command evaluation, data analysis and synchronization between Device Drivers. 3. Data Server. Provide real time data storage and management. 4. Device Drivers, support communication, preliminary signals acquisitions and control of peripheral devices. 5. Utility - batch processing, login, errors of execution handling, experimental data persistent storage and management, modules and devices monitoring, alarm state, remote components messaging and notification processing. System used networking (DCOM protocol) for communication between distributed modules. Configuration, modules parameters, data and commands links defined in scripting file (XML format). This modular structure allows great flexibility and extensibility as modules can be added and configured as required without any extensive programming.

  3. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  4. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  5. Multipartite secure state distribution

    SciTech Connect

    Duer, W.; Briegel, H.-J.; Calsamiglia, J.

    2005-04-01

    We introduce the distribution of a secret multipartite entangled state in a real-world scenario as a quantum primitive. We show that in the presence of noisy quantum channels (and noisy control operations), any state chosen from the set of two-colorable graph states (Calderbank-Shor-Steane codewords) can be created with high fidelity while it remains unknown to all parties. This is accomplished by either blind multipartite entanglement purification, which we introduce in this paper, or by multipartite entanglement purification of enlarged states, which offers advantages over an alternative scheme based on standard channel purification and teleportation. The parties are thus provided with a secret resource of their choice for distributed secure applications.

  6. Distributed Agents for Autonomy

    NASA Astrophysics Data System (ADS)

    Blake, Rick; Amigoni, Francesco; Brambilla, Andrea; de la Rosa Steinz, Sonia; Lavagna, Michele; le Duc, Ian; Page, Jonathan; Page, Oliver; Steel, Robin; Wijnands, Quirien

    2010-08-01

    The Distributed Agents for Autonomy (DAFA) Study has been performed for ESA by SciSys UK Ltd, Vega GmbH and Politecnico di Milano. An analysis of past, present and future space missions has been conducted, structured around a set of three pre-defined mission scenarios: Formation Flying, Earth Observation and Planetary Exploration. This analysis led to the definition of a framework of use cases where the application of distributed autonomy seems necessary or appropriate, and a set of metrics that may be used to assess such deployments. Agent technology and architectures were extensively surveyed and the results used to elaborate each of the mission scenarios to the point where a software prototype could be constructed. Such a prototype was developed for a scenario based on the ExoMars mission and this has been used to highlight the advantages of a DAFA approach to the mission architecture.

  7. Towards heterogeneous distributed debugging

    SciTech Connect

    Damodaran-Kamal, S.K.

    1995-04-01

    Several years of research and development in parallel debugger design have given up several techniques, though implemented in a wide range of tools for an equally wide range of systems. This paper is an evaluation of these myriad techniques as applied to the design of a heterogeneous distributed debugger. The evaluation is based on what features users perceive as useful, as well as the ease of implementation of the features using the available technology. A preliminary architecture for such a heterogeneous tool is proposed. Our effort in this paper is significantly different from the other efforts at creating portable and heterogeneous distributed debuggers in that we concentrate on support for all the important issues in parallel debugging, instead of simply concentrating on portability and heterogeneity.

  8. Business size distributions

    NASA Astrophysics Data System (ADS)

    D'Hulst, R.; Rodgers, G. J.

    2001-10-01

    In a recent work, we introduced two models for the dynamics of customers trying to find the business that best corresponds to their expectation for the price of a commodity. In agreement with the empirical data, a power-law distribution for the business sizes was obtained, taking the number of customers of a business as a proxy for its size. Here, we extend one of our previous models in two different ways. First, we introduce a business aggregation rate that is fitness dependent, which allows us to reproduce a spread in empirical data from one country to another. Second, we allow the bankruptcy rate to take a different functional form, to be able to obtain a log-normal distribution with power-law tails for the size of the businesses.

  9. Properly Understanding the Impacts of Distributed Resources on Distribution Systems

    SciTech Connect

    Rizy, D Tom; Li, Fangxing; Li, Huijuan; Adhikari, Sarina; Kueck, John D

    2010-01-01

    The subject paper discusses important impacts of distributed resources on distribution networks and feeders. These include capacity, line losses, voltage regulation, and central system support (such as volt/var via central generators and substation) as the number, placement and penetration levels of distributed resources are varied. Typically, the impacts of distributed resources on the distribution system are studied by using steady-state rather than dynamic analysis tools. However, the response time and transient impacts of both system equipment (such as substation/feeder capacitors) and distributed resources needs to be taken into account and only dynamic analysis will provide the full impact results. ORNL is wrapping up a study of distributed resources interconnected to a large distribution system considering the above variables. A report of the study and its results will be condensed into a paper for this panel session. The impact of distributed resources will vary as the penetration level reaches the capacity of the distribution feeder/system. The question is how high of a penetration of distributed resource can be accommodated on the distribution feeder/system without any major changes to system operation, design and protection. The impacts most surely will vary depending upon load composition, distribution and level. Also, it is expected that various placement of distributed resources will impact the distribution system differently.

  10. Distributed Computerized Catalog System

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.; Wagner, David A.

    1995-01-01

    DarkStar Distributed Catalog System describes arbitrary data objects in unified manner, providing end users with versatile, yet simple search mechanism for locating and identifying objects. Provides built-in generic and dynamic graphical user interfaces. Design of system avoids some of problems of standard DBMS, and system provides more flexibility than do conventional relational data bases, or object-oriented data bases. Data-collection lattice partly hierarchical representation of relationships among collections, subcollections, and data objects.

  11. Distributed array radar

    NASA Astrophysics Data System (ADS)

    Heimiller, R. C.; Belyea, J. E.; Tomlinson, P. G.

    1983-11-01

    Distributed array radar (DAR) is a concept for efficiently accomplishing surveillance and tracking using coherently internetted mini-radars. They form a long baseline, very thinned array and are capable of very accurate location of targets. This paper describes the DAR concept. Factors involving two-way effective gain patterns for deterministic and random DAR arrays are analyzed and discussed. An analysis of factors affecting signal-to-noise ratio is presented and key technical and performance issues are briefly summarized.

  12. Symmetric generalized binomial distributions

    SciTech Connect

    Bergeron, H.; Curado, E. M. F.; Gazeau, J. P.; Rodrigues, Ligia M. C. S. E-mail: evaldo@cbpf.br E-mail: ligia@cbpf.br

    2013-12-15

    In two recent articles, we have examined a generalization of the binomial distribution associated with a sequence of positive numbers, involving asymmetric expressions of probabilities that break the symmetry win-loss. We present in this article another generalization (always associated with a sequence of positive numbers) that preserves the symmetry win-loss. This approach is also based on generating functions and presents constraints of non-negativeness, similar to those encountered in our previous articles.

  13. Distributed proximity sensor system

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1988-01-01

    The invention relates to sensors embedded on the surface of a robot hand, or other moving member. By distributing proximity sensors capable of detecting distances and angles to points on the surface of an object, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction, and distance, as well as the orientation of the object relative to the robot hand or other moving member.

  14. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  15. A distributable APSE

    NASA Technical Reports Server (NTRS)

    Taft, Tucker, S.

    1986-01-01

    A distributed Ada program library is a key element in a distributed Ada Program Support Environment (APSE). To implement this successfully, the program library universe as defined by the Ada Reference Manual must be broken up into independently manageable pieces. This in turn requires the support of a distributed database system, as well as a mechanism for identifying compilation units, linkable subprograms, and Ada types in a decentralized way, to avoid falling victim to the bottlenecks of a global database and/or global unique-identifier manager. It was found that the ability to decentralize Ada program library activity is a major advantage in the management of large Ada programs. Currently, there are 18 resource-catalog revision sets, each in its own Host Interface (HIF) partition, plus 18 partitions for testing each of these, plus 11 partitions for the top-level compiler/linker/program library manager components. Compiling and other development work can proceed in parallel in each of these partitions, without suffering the performance bottlenecks of global locks or global unique-identifier generation.

  16. INFERRING THE ECCENTRICITY DISTRIBUTION

    SciTech Connect

    Hogg, David W.; Bovy, Jo; Myers, Adam D.

    2010-12-20

    Standard maximum-likelihood estimators for binary-star and exoplanet eccentricities are biased high, in the sense that the estimated eccentricity tends to be larger than the true eccentricity. As with most non-trivial observables, a simple histogram of estimated eccentricities is not a good estimate of the true eccentricity distribution. Here, we develop and test a hierarchical probabilistic method for performing the relevant meta-analysis, that is, inferring the true eccentricity distribution, taking as input the likelihood functions for the individual star eccentricities, or samplings of the posterior probability distributions for the eccentricities (under a given, uninformative prior). The method is a simple implementation of a hierarchical Bayesian model; it can also be seen as a kind of heteroscedastic deconvolution. It can be applied to any quantity measured with finite precision-other orbital parameters, or indeed any astronomical measurements of any kind, including magnitudes, distances, or photometric redshifts-so long as the measurements have been communicated as a likelihood function or a posterior sampling.

  17. Inferring the Eccentricity Distribution

    NASA Astrophysics Data System (ADS)

    Hogg, David W.; Myers, Adam D.; Bovy, Jo

    2010-12-01

    Standard maximum-likelihood estimators for binary-star and exoplanet eccentricities are biased high, in the sense that the estimated eccentricity tends to be larger than the true eccentricity. As with most non-trivial observables, a simple histogram of estimated eccentricities is not a good estimate of the true eccentricity distribution. Here, we develop and test a hierarchical probabilistic method for performing the relevant meta-analysis, that is, inferring the true eccentricity distribution, taking as input the likelihood functions for the individual star eccentricities, or samplings of the posterior probability distributions for the eccentricities (under a given, uninformative prior). The method is a simple implementation of a hierarchical Bayesian model; it can also be seen as a kind of heteroscedastic deconvolution. It can be applied to any quantity measured with finite precision—other orbital parameters, or indeed any astronomical measurements of any kind, including magnitudes, distances, or photometric redshifts—so long as the measurements have been communicated as a likelihood function or a posterior sampling.

  18. Distributed instruction set computer

    SciTech Connect

    Wang, L.

    1989-01-01

    The Distributed Instruction Set Computer, or DISC for short, is an experimental computer system for fine-grained parallel processing. DISC employs a new parallel instruction set, an Early Binding and Scheduling data tagging scheme, and a distributed control mechanism to explore a software dataflow control method in a multiple-functional unit system. With zero system control overhead, multiple instructions are executed in parallel and/or out of order at the highest speed of n instructions/cycle, where n is the number of functional units. The quantitative simulation result indicates that a DISC system with 16 functional units can deliverer a maximal 7.7X performance speedup over a single functional-unit system at the same clock speed. Exploring a new parallel instruction set and distributed control mechanism, DISC represents three major breakthroughs in the domain of fine-grained parallel processing: (1) Fast multiple instruction issuing mechanism; (2) Parallel and/or out-of-order execution; (3) Software dataflow control scheme.

  19. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  20. Planning Systems for Distributed Operations

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.

    2002-01-01

    This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.

  1. Performance and Application of Parallel OVERFLOW Codes on Distributed and Shared Memory Platforms

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Rizk, Yehia M.

    1999-01-01

    The presentation discusses recent studies on the performance of the two parallel versions of the aerodynamics CFD code, OVERFLOW_MPI and _MLP. Developed at NASA Ames, the serial version, OVERFLOW, is a multidimensional Navier-Stokes flow solver based on overset (Chimera) grid technology. The code has recently been parallelized in two ways. One is based on the explicit message-passing interface (MPI) across processors and uses the _MPI communication package. This approach is primarily suited for distributed memory systems and workstation clusters. The second, termed the multi-level parallel (MLP) method, is simple and uses shared memory for all communications. The _MLP code is suitable on distributed-shared memory systems. For both methods, the message passing takes place across the processors or processes at the advancement of each time step. This procedure is, in effect, the Chimera boundary conditions update, which is done in an explicit "Jacobi" style. In contrast, the update in the serial code is done in more of the "Gauss-Sidel" fashion. The programming efforts for the _MPI code is more complicated than for the _MLP code; the former requires modification of the outer and some inner shells of the serial code, whereas the latter focuses only on the outer shell of the code. The _MPI version offers a great deal of flexibility in distributing grid zones across a specified number of processors in order to achieve load balancing. The approach is capable of partitioning zones across multiple processors or sending each zone and/or cluster of several zones into a single processor. The message passing across the processors consists of Chimera boundary and/or an overlap of "halo" boundary points for each partitioned zone. The MLP version is a new coarse-grain parallel concept at the zonal and intra-zonal levels. A grouping strategy is used to distribute zones into several groups forming sub-processes which will run in parallel. The total volume of grid points in each

  2. Estimating Dark Matter Distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Woodroofe, Michael; Walker, Matthew G.; Mateo, Mario; Olszewski, Edward

    2005-06-01

    Thanks to instrumental advances, new, very large kinematic data sets for nearby dwarf spheroidal (dSph) galaxies are on the horizon. A key aim of these data sets is to help determine the distribution of dark matter in these galaxies. Past analyses have generally relied on specific dynamical models or highly restrictive dynamical assumptions. We describe a new, nonparametric analysis of the kinematics of nearby dSph galaxies designed to take full advantage of the future large data sets. The method takes as input the projected positions and radial velocities of stars known to be members of the galaxies but does not use any parametric dynamical model or the assumption that the mass distribution follows that of the visible matter. The problem of estimating the radial mass distribution M(r) (the mass within the true radius r) is converted into a problem of estimating a regression function nonparametrically. From the Jeans equation we show that the unknown regression function is subject to fundamental shape restrictions, which we exploit in our analysis using statistical techniques borrowed from isotonic estimation and spline smoothing. Simulations indicate that M(r) can be estimated to within a factor of 2 or better with samples as small as 1000 stars over almost the entire radial range sampled by the kinematic data. The technique is applied to a sample of 181 stars in the Fornax dSph galaxy. We show that the galaxy contains a significant, extended dark halo some 10 times more massive than its baryonic component. Although applied here to dSph kinematics, this approach can be used in the analysis of any kinematically hot stellar system in which the radial velocity field is discretely sampled.

  3. Representation of orientation distributions

    SciTech Connect

    Wenk, H.R.; Kocks, U.F.

    1985-01-01

    This paper illustrates the principles presented with a particular experimental texture: from the surface layer of a copper polycrystal cold-rolled to 60% reduction in thickness. Four incomplete pole figures (200, 220, 222, and 113) were determined by x-ray diffraction in reflection geometry. The measured pole figures nearly exhibited orthorhombic symmetry (as expected), which was then strictly enforced by averaging the four quadrants of the pole figure. The orientation distribution function was obtained using the expansion in spherical harmonics (with only even-order coefficients up to l = 18).

  4. Distributed Optimization System

    DOEpatents

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  5. Distributed System Design Checklist

    NASA Technical Reports Server (NTRS)

    Hall, Brendan; Driscoll, Kevin

    2014-01-01

    This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.

  6. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  7. Vascular Distribution of Nanomaterials

    PubMed Central

    Stapleton, Phoebe A.; Nurkiewicz, Timothy R.

    2014-01-01

    Once considered primarily occupational, novel nanotechnology innovation and application has led to widespread domestic use and intentional biomedical exposures. With these exciting advances, the breadth and depth of toxicological considerations must also be expanded. The vascular system interacts with every tissue in the body, striving to homeostasis. Engineered nanomaterials (ENM) have been reported to distribute in many different organs and tissues. However, these observations have tended to use approaches requiring tissue homogenization and/or gross organ analyses. These techniques, while effective in establishing presence, preclude an exact determination of where ENM are deposited within a tissue. It is necessary to identify this exact distribution and deposition of ENM throughout the cardiovascular system, with respect to vascular hemodynamics and in vivo/ in vitro ENM modifications taken into account if nanotechnology is to achieve its full potential. Distinct levels of the vasculature will first be described as individual compartments. Then the vasculature will be considered as a whole. These unique compartments and biophysical conditions will be discussed in terms of their propensity to favor ENM deposition. Understanding levels of the vasculature will also be discussed. Ultimately, future studies must verify the mechanisms speculated on and presented herein. PMID:24777845

  8. Coping with distributed computing

    SciTech Connect

    Cormell, L.

    1992-09-01

    The rapid increase in the availability of high performance, cost-effective RISC/UNIX workstations has been both a blessing and a curse. The blessing of having extremely powerful computing engines available on the desk top is well-known to many users. The user has tremendous freedom, flexibility, and control of his environment. That freedom can, however, become the curse of distributed computing. The user must become a system manager to some extent, he must worry about backups, maintenance, upgrades, etc. Traditionally these activities have been the responsibility of a central computing group. The central computing group, however, may find that it can no longer provide all of the traditional services. With the plethora of workstations now found on so many desktops throughout the entire campus or lab, the central computing group may be swamped by support requests. This talk will address several of these computer support and management issues by providing some examples of the approaches taken at various HEP institutions. In addition, a brief review of commercial directions or products for distributed computing and management will be given.

  9. Automated Gas Distribution System

    NASA Astrophysics Data System (ADS)

    Starke, Allen; Clark, Henry

    2012-10-01

    The cyclotron of Texas A&M University is one of the few and prized cyclotrons in the country. Behind the scenes of the cyclotron is a confusing, and dangerous setup of the ion sources that supplies the cyclotron with particles for acceleration. To use this machine there is a time consuming, and even wasteful step by step process of switching gases, purging, and other important features that must be done manually to keep the system functioning properly, while also trying to maintain the safety of the working environment. Developing a new gas distribution system to the ion source prevents many of the problems generated by the older manually setup process. This developed system can be controlled manually in an easier fashion than before, but like most of the technology and machines in the cyclotron now, is mainly operated based on software programming developed through graphical coding environment Labview. The automated gas distribution system provides multi-ports for a selection of different gases to decrease the amount of gas wasted through switching gases, and a port for the vacuum to decrease the amount of time spent purging the manifold. The Labview software makes the operation of the cyclotron and ion sources easier, and safer for anyone to use.

  10. Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Bodden, Lee; Pease, Phil; Bedet, Jean-Jacques; Rosen, Wayne

    1993-01-01

    The Goddard Space Flight Center Version 0 Distributed Active Archive Center (GSFC V0 DAAC) is being developed to enhance and improve scientific research and productivity by consolidating access to remote sensor earth science data in the pre-EOS time frame. In cooperation with scientists from the science labs at GSFC, other NASA facilities, universities, and other government agencies, the DAAC will support data acquisition, validation, archive and distribution. The DAAC is being developed in response to EOSDIS Project Functional Requirements as well as from requirements originating from individual science projects such as SeaWiFS, Meteor3/TOMS2, AVHRR Pathfinder, TOVS Pathfinder, and UARS. The GSFC V0 DAAC has begun operational support for the AVHRR Pathfinder (as of April, 1993), TOVS Pathfinder (as of July, 1993) and the UARS (September, 1993) Projects, and is preparing to provide operational support for SeaWiFS (August, 1994) data. The GSFC V0 DAAC has also incorporated the existing data, services, and functionality of the DAAC/Climate, DAAC/Land, and the Coastal Zone Color Scanner (CZCS) Systems.

  11. Distributed Operations Planning

    NASA Technical Reports Server (NTRS)

    Fox, Jason; Norris, Jeffrey; Powell, Mark; Rabe, Kenneth; Shams, Khawaja

    2007-01-01

    Maestro software provides a secure and distributed mission planning system for long-term missions in general, and the Mars Exploration Rover Mission (MER) specifically. Maestro, the successor to the Science Activity Planner, has a heavy emphasis on portability and distributed operations, and requires no data replication or expensive hardware, instead relying on a set of services functioning on JPL institutional servers. Maestro works on most current computers with network connections, including laptops. When browsing down-link data from a spacecraft, Maestro functions similarly to being on a Web browser. After authenticating the user, it connects to a database server to query an index of data products. It then contacts a Web server to download and display the actual data products. The software also includes collaboration support based upon a highly reliable messaging system. Modifications made to targets in one instance are quickly and securely transmitted to other instances of Maestro. The back end that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  12. Atlas Distributed Analysis Tools

    NASA Astrophysics Data System (ADS)

    de La Hoz, Santiago Gonzalez; Ruiz, Luis March; Liko, Dietrich

    2008-06-01

    The ATLAS production system has been successfully used to run production of simulation data at an unprecedented scale. Up to 10000 jobs were processed in one day. The experiences obtained operating the system on several grid flavours was essential to perform a user analysis using grid resources. First tests of the distributed analysis system were then performed. In the preparation phase data was registered in the LHC File Catalog (LFC) and replicated in external sites. For the main test, few resources were used. All these tests are only a first step towards the validation of the computing model. The ATLAS management computing board decided to integrate the collaboration efforts in distributed analysis in only one project, GANGA. The goal is to test the reconstruction and analysis software in a large scale Data production using Grid flavors in several sites. GANGA allows trivial switching between running test jobs on a local batch system and running large-scale analyses on the Grid; it provides job splitting and merging, and includes automated job monitoring and output retrieval.

  13. Distribution and moments of radial error. [Rayleigh distribution - random variables

    NASA Technical Reports Server (NTRS)

    White, R. G.

    1975-01-01

    An investigation of the moments and probability distribution of the resultant of two normally distributed random variables is presented. This is the so-called generalized Rayleigh distribution which has many applications in the study of wind shear, random noise, and radar. The most general formula was derived, and two special cases were considered for which tables of the moments and probability distribution functions are included as an appendix. One of the special cases was generalized to n-dimensions.

  14. Distributed Wind Energy in Idaho

    SciTech Connect

    Gardner, John; Johnson, Kathryn; Haynes, Todd; Seifert, Gary

    2009-01-31

    This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho.

  15. Distributed charging of electrical assets

    DOEpatents

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  16. Efficiency of human and model observers for signal-detection tasks in non-Gaussian distributed lumpy backgrounds

    NASA Astrophysics Data System (ADS)

    Park, Subok; Clarkson, Eric; Kupinski, Matthew A.; Barrett, Harrison H.

    2005-04-01

    Efficiencies of the human observer and channelized-Hotelling observers (CHOs) relative to the ideal observer for signal-detection tasks are discussed. A CHO using Laguerre-Gauss channels, which we call an efficient CHO (eCHO), and a CHO adding a scanning scheme to the eCHO to include signal-location uncertainty, which we call a scanning eCHO (seCHO), are considered. Both signal-known-exactly (SKE) tasks and signal-known-statistically (SKS) tasks are considered. Signal location is uncertain for the SKS tasks, and lumpy backgrounds are used for background uncertainty in both the tasks. Markov-chain Monte Carlo methods are employed to determine ideal-observer performance on the detection tasks. Psychophysical studies are conducted to compute human-observer performance on the same tasks. A maximum-likelihood estimation method is employed to fit smooth psychometric curves with observer performance measurements. Efficiency is computed as the squared ratio of the detectabilities of the observer of interest to a standard observer. Depending on image statistics, the ideal observer or the Hotelling observer is used as the standard observer. The results show that the eCHO performs poorly in detecting signals with location uncertainty and the seCHO performs only slightly better while the ideal observer outperforms the human observer and CHOs for both the tasks. Human efficiencies are approximately less than 2.5% and 41%, respectively, for the SKE and SKS tasks, where the gray levels of the lumpy background are non-Gaussian distributed. These results also imply that human observers are not affected by signal-location uncertainty as much as the ideal observer. However, for the SKE tasks using Gaussian-distributed lumpy backgrounds, the human efficiency ranges between 28% and 42%. Three different simplified pinhole imaging systems are simulated and the humans and the model observers rank the systems in the same order for both the tasks.

  17. DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK

    DOEpatents

    Bell, P.R. Jr.

    1958-10-21

    An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.

  18. Process evaluation distributed system

    NASA Technical Reports Server (NTRS)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  19. Unstructured quantum key distribution

    NASA Astrophysics Data System (ADS)

    Coles, Patrick; Metodiev, Eric; Lutkenhaus, Norbert

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with a high degree of symmetry, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. In this work, we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ``unstructured'' protocols, i.e., those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which dramatically reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown.

  20. Protocols for distributive scheduling

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.; Fox, Barry

    1993-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of space shuttle mission planning.

  1. Distributed road assessment system

    SciTech Connect

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  2. Carotenoid Distribution in Nature.

    PubMed

    Alcaíno, Jennifer; Baeza, Marcelo; Cifuentes, Víctor

    2016-01-01

    Carotenoids are naturally occurring red, orange and yellow pigments that are synthesized by plants and some microorganisms and fulfill many important physiological functions. This chapter describes the distribution of carotenoid in microorganisms, including bacteria, archaea, microalgae, filamentous fungi and yeasts. We will also focus on their functional aspects and applications, such as their nutritional value, their benefits for human and animal health and their potential protection against free radicals. The central metabolic pathway leading to the synthesis of carotenoids is described as the three following principal steps: (i) the synthesis of isopentenyl pyrophosphate and the formation of dimethylallyl pyrophosphate, (ii) the synthesis of geranylgeranyl pyrophosphate and (iii) the synthesis of carotenoids per se, highlighting the differences that have been found in several carotenogenic organisms and providing an evolutionary perspective. Finally, as an example, the synthesis of the xanthophyll astaxanthin is discussed. PMID:27485217

  3. Sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.

  4. Nuclear Parton Distribution Functions

    SciTech Connect

    I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens

    2009-06-01

    We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a {chi}{sup 2} analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x{sub Bj}-dependent and Q{sup 2}-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x{sub Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.

  5. Distributed feedback lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Andrews, J. T.; Evans, G. A.

    1988-01-01

    A ridge waveguide distributed feedback laser was developed in InGaAsP. These devices have demonstrated CW output powers over 7 mW with threshold currents as low as 60 mA at 25 C. Measurements of the frequency response of these devices show a 3 dB bandwidth of about 2 GHz, which may be limited by the mount. The best devices have a single mode spectra over the entire temperature range tested with a side mode suppression of about 20 dB in both CW and pulsed modes. The design of this device, including detailed modeling of the ridge guide structure, effective index calculations, and a discussion of the grating configuration are presented. Also, the fabrication of the devices is presented in some detail, especially the fabrication of and subsequent growth over the grating. In addition, a high frequency fiber pigtailed package was designed and tested, which is a suitable prototype for a commercial package.

  6. Hail Size Distribution Mapping

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A 3-D weather radar visualization software program was developed and implemented as part of an experimental Launch Pad 39 Hail Monitor System. 3DRadPlot, a radar plotting program, is one of several software modules that form building blocks of the hail data processing and analysis system (the complete software processing system under development). The spatial and temporal mapping algorithms were originally developed through research at the University of Central Florida, funded by NASA s Tropical Rainfall Measurement Mission (TRMM), where the goal was to merge National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD) volume reflectivity data with drop size distribution data acquired from a cluster of raindrop disdrometers. In this current work, we adapted these algorithms to process data from a cluster of hail disdrometers positioned around Launch Pads 39A or 39B, along with the corresponding NWS radar data. Radar data from all NWS NEXRAD sites is archived at the National Climatic Data Center (NCDC). That data can be readily accessed at . 3DRadPlot plots Level III reflectivity data at four scan elevations (this software is available at Open Channel Software, ). By using spatial and temporal interpolation/extrapolation based on hydrometeor fall dynamics, we can merge the hail disdrometer array data coupled with local Weather Surveillance Radar-1988, Doppler (WSR-88D) radial velocity and reflectivity data into a 4-D (3-D space and time) picture of hail size distributions. Hail flux maps can then be generated and used for damage prediction and assessment over specific surfaces corresponding to structures within the disdrometer array volume. Immediately following a hail storm, specific damage areas and degree of damage can be identified for inspection crews.

  7. CMCC Data Distribution Centre

    NASA Astrophysics Data System (ADS)

    Aloisio, Giovanni; Fiore, Sandro; Negro, A.

    2010-05-01

    The CMCC Data Distribution Centre (DDC) is the primary entry point (web gateway) to the CMCC. It is a Data Grid Portal providing a ubiquitous and pervasive way to ease data publishing, climate metadata search, datasets discovery, metadata annotation, data access, data aggregation, sub-setting, etc. The grid portal security model includes the use of HTTPS protocol for secure communication with the client (based on X509v3 certificates that must be loaded into the browser) and secure cookies to establish and maintain user sessions. The CMCC DDC is now in a pre-production phase and it is currently used only by internal users (CMCC researchers and climate scientists). The most important component already available in the CMCC DDC is the Search Engine which allows users to perform, through web interfaces, distributed search and discovery activities by introducing one or more of the following search criteria: horizontal extent (which can be specified by interacting with a geographic map), vertical extent, temporal extent, keywords, topics, creation date, etc. By means of this page the user submits the first step of the query process on the metadata DB, then, she can choose one or more datasets retrieving and displaying the complete XML metadata description (from the browser). This way, the second step of the query process is carried out by accessing to a specific XML document of the metadata DB. Finally, through the web interface, the user can access to and download (partially or totally) the data stored on the storage device accessing to OPeNDAP servers and to other available grid storage interfaces. Requests concerning datasets stored in deep storage will be served asynchronously.

  8. The Saguaro distributed operating system

    NASA Astrophysics Data System (ADS)

    Andrews, Gregory R.; Schlichting, Richard D.

    1989-05-01

    The progress achieved over the final year of the Saguaro distributed operating system project is presented. The primary achievements were in related research, including SR distributed programming language, the MLP system for constructing distributed mixed-language programs, the Psync interprocess communication mechanism, a configurable operating system kernal called the x-kernal, and the development of language mechanisms for performing failure handling in distributed programming languages.

  9. Distributed transit compartments for arbitrary lifespan distributions in aging populations.

    PubMed

    Koch, Gilbert; Schropp, Johannes

    2015-09-01

    Transit compartment models (TCM) are often used to describe aging populations where every individual has its own lifespan. However, in the TCM approach these lifespans are gamma-distributed which is a serious limitation because often the Weibull or more complex distributions are realistic. Therefore, we extend the TCM concept to approximately describe any lifespan distribution and call this generalized concept distributed transit compartment models (DTCMs). The validity of DTCMs is obtained by convergence investigations. From the mechanistic perspective the transit rates are directly controlled by the lifespan distribution. Further, DTCMs could be used to approximate the convolution of a signal with a probability density function. As example a stimulatory effect of a drug in an aging population with a Weibull-distributed lifespan is presented where distribution and model parameters are estimated based on simulated data. PMID:26100181

  10. Correction of Distributed Optical Aberrations

    SciTech Connect

    Baker, K; Olivier, S; Carrano, C; Phillion, D

    2006-02-12

    The objective of this project was to demonstrate the use of multiple distributed deformable mirrors (DMs) to improve the performance of optical systems with distributed aberrations. This concept is expected to provide dramatic improvement in the optical performance of systems in applications where the aberrations are distributed along the optical path or within the instrument itself. Our approach used multiple actuated DMs distributed to match the aberration distribution. The project developed the algorithms necessary to determine the required corrections and simulate the performance of these multiple DM systems.

  11. Distributed visualization framework architecture

    NASA Astrophysics Data System (ADS)

    Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger

    2010-01-01

    An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this

  12. Vacillation Made Easy: Distribution, Re-distribution, and Un-distribution of DOPL-based Processing

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    1993-01-01

    Distributed Objects Protocol Layer, or DOPL, Provides a simple and general data communication abstraction that can support the distribution of C++ applications software functionality among an arbitrary collection of processors. The purposed of the abstraction is to minimize the cost of revising processing distribution decisions throughout the software development cycle, including after software has beed delivered to users.

  13. Intraplacental retinol distribution.

    PubMed

    Saunders, Cláudia; Leal, Maria Do Carmo; Flores, Hernando; Soares, Alexandre Gonçalves; De Lima, Ana Paula Pereira Thiapó; Leite, Paula Costa; Gomes, Mirian Martins; De Souza Júnior, Paulo Roberto Borges; Ramalho, Rejane Andréa

    2005-12-01

    With the objective of evaluating intraplacental vitamin A distribution, 234 placental samples were collected, corresponding to six samples from each of the placentas analyzed: two from the lateral maternal portion, one from the central maternal portion, two from the lateral fetal portion, and one from the central fetal portion. Samples were obtained from 39 adult puerperal mothers with low-risk pregnancies, without vitamin A deficiency or night blindness. Retinol content determination was achieved through spectrophotometry. Retinol values obtained for each region were correlated with the most probable value for each placenta (P < 0.001). Despite differences in retinol content between samples, statistical data analysis showed that intra-tissue variation had no influence on the conversion of data into information. Consequently, any portion of the placenta may be used for retinol level determination purposes, due to the correlation between all portions and the most probable value. The findings of the present study represent an advance for surveys intending to incorporate the collection and dosage of placental vitamin A levels into their analyses, thus increasing the arsenal of pre-pathological or subclinical vitamin A deficiency markers, which can allow for earlier intervention on the maternal-infant group. PMID:16638665

  14. The distribution sphere model

    SciTech Connect

    Myers, B.F.; Montgomery, F.C.; Morris, R.N.

    1993-08-01

    The equivalent sphere model, which is widely used in calculating the release of fission gases from nuclear fuel, is idealized. The model is based on the diffusion of fission products in and their escape from a homogeneous sphere of fuel; the fission products are generated at a constant rate and undergo radiodecay. The fuel is assumed to be a set of spherical particles with a common radius. The value of the radius is such that the surface-to-volume ratio, S/V, of the set of spherical particles is the same as the S/V of the fuel mass of interest. The release rate depends on the dimensionless quantity {lambda}a{sup 2}/D where {lambda} is the radiodecay constant, a, the equivalent sphere radius and D, the diffusion coefficient. In the limit {lambda}t {much_gt} 1, the steady-state fractional release for isotopes with half-lives less than about 5 d is given by the familiar relation R/B = 3{radical}D/{lambda}a{sup 2} (1). For the spherical particles, S/V = 3/a. However, in important cases, the assumption of a single value of a is inappropriate. Examples of configurations for which multiple values of a are appropriate include powders, hydrolyzed fuel kernels, normally configured HTR fuel particles and perhaps, fuel kernels alone. In the latter case, one can imagine a distribution of values of a whose mean yields the value appropriate for agreement of Eq. (1) with measurement.

  15. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.

  16. Fuel distribution valve

    SciTech Connect

    Halvorsen, R.M.; Hurst, J.B.

    1986-09-30

    This patent describes a fuel flow distribution valve for dividing and metering fuel flow from a fuel source to nozzles for supplying fuel to an engine comprising valve body means having an inlet and outlets, intermediate liner means forming a longitudinal valve bore in the valve body means. The intermediate liner means has a reference surface thereon, a valve slidably supported in the valve bore slidable longitudinally therein and having a close tolerance diametral fit therewith. The valve has a positioning surface engageable with the reference surface and movable to a spaced apart position therefrom, spring means for biasing the valve in a first direction with respect to the liner means to engage the positioning surface and reference surface. The valve also has a means for directing inlet pressure against the valve in opposition to the spring means, pairs of in line-machined flow metering ports in the liner means and value with the ports in each pair being congruent by virtue of being machined simultaneously with a common tool in the liner means and the valve when the valve is in a fixed position in the bore with the positioning surface spaced a preselected longitudinal distance from the reference surface to define spaced pairs of congruent flow metering ports.

  17. Distribution of contaminants

    SciTech Connect

    Dana, M.T.

    1980-01-01

    Current knowledge of the distribution of atmospheric contaminants is reviewed. Emphasis is placed on regional measurements (those made in areas largely unaffected by local sources). Three specific networks were discussed. The Electric Power Research Institute sponsored Sulfate Regional Experiment (SURE) and the Multi State Atmospheric Power Production Program Study (MAP3S) are networks with event sampling and focus on atmospheric research problems and model verification while the National Atmospheric Deposition Program (NADP) serves to monitor nationwide deposition and dustfall measurements. The MAP3S network was analyzed. No statistically significant trends in concentrations of acid precipitation related pollutants were obtained in the network wide data. Strong positive correlations between the concentrations of acid precipitation related pollutants were obtained from the inland northeast US sites. Midwestern and coastal sites had more complex chemistries which require further study. Several species exhibited seasonal variations: H and SO/sub 4/ had low winter and high summer concentrations; NH/sub 4/ exhibited less variation while NO/sub 3/ appeared constant throughout the year. As a result of differing seasonal trends, the NO/sub 3//SO/sub 4/ ratio varied from 0.3 in the summer to greater than 1 in the winter. 58 references. (MDF)

  18. Data distribution satellite

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Jorasch, Ronald E.; Wiskerchen, Michael J.

    1991-01-01

    A description is given of a data distribution satellite (DDS) system. The DDS would operate in conjunction with the tracking and data relay satellite system to give ground-based users real time, two-way access to instruments in space and space-gathered data. The scope of work includes the following: (1) user requirements are derived; (2) communication scenarios are synthesized; (3) system design constraints and projected technology availability are identified; (4) DDS communications payload configuration is derived, and the satellite is designed; (5) requirements for earth terminals and network control are given; (6) system costs are estimated, both life cycle costs and user fees; and (7) technology developments are recommended, and a technology development plan is given. The most important results obtained are as follows: (1) a satellite designed for launch in 2007 is feasible and has 10 Gb/s capacity, 5.5 kW power, and 2000 kg mass; (2) DDS features include on-board baseband switching, use of Ku- and Ka-bands, multiple optical intersatellite links; and (3) system user costs are competitive with projected terrestrial communication costs.

  19. Distributed ultrafast fibre laser

    PubMed Central

    Liu, Xueming; Cui, Yudong; Han, Dongdong; Yao, Xiankun; Sun, Zhipei

    2015-01-01

    A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency. PMID:25765454

  20. Distributed Merge Trees

    SciTech Connect

    Morozov, Dmitriy; Weber, Gunther

    2013-01-08

    Improved simulations and sensors are producing datasets whose increasing complexity exhausts our ability to visualize and comprehend them directly. To cope with this problem, we can detect and extract significant features in the data and use them as the basis for subsequent analysis. Topological methods are valuable in this context because they provide robust and general feature definitions. As the growth of serial computational power has stalled, data analysis is becoming increasingly dependent on massively parallel machines. To satisfy the computational demand created by complex datasets, algorithms need to effectively utilize these computer architectures. The main strength of topological methods, their emphasis on global information, turns into an obstacle during parallelization. We present two approaches to alleviate this problem. We develop a distributed representation of the merge tree that avoids computing the global tree on a single processor and lets us parallelize subsequent queries. To account for the increasing number of cores per processor, we develop a new data structure that lets us take advantage of multiple shared-memory cores to parallelize the work on a single node. Finally, we present experiments that illustrate the strengths of our approach as well as help identify future challenges.

  1. Distributed Deliberative Recommender Systems

    NASA Astrophysics Data System (ADS)

    Recio-García, Juan A.; Díaz-Agudo, Belén; González-Sanz, Sergio; Sanchez, Lara Quijano

    Case-Based Reasoning (CBR) is one of most successful applied AI technologies of recent years. Although many CBR systems reason locally on a previous experience base to solve new problems, in this paper we focus on distributed retrieval processes working on a network of collaborating CBR systems. In such systems, each node in a network of CBR agents collaborates, arguments and counterarguments its local results with other nodes to improve the performance of the system's global response. We describe D2ISCO: a framework to design and implement deliberative and collaborative CBR systems that is integrated as a part of jcolibritwo an established framework in the CBR community. We apply D2ISCO to one particular simplified type of CBR systems: recommender systems. We perform a first case study for a collaborative music recommender system and present the results of an experiment of the accuracy of the system results using a fuzzy version of the argumentation system AMAL and a network topology based on a social network. Besides individual recommendation we also discuss how D2ISCO can be used to improve recommendations to groups and we present a second case of study based on the movie recommendation domain with heterogeneous groups according to the group personality composition and a group topology based on a social network.

  2. LHCb distributed conditions database

    NASA Astrophysics Data System (ADS)

    Clemencic, M.

    2008-07-01

    The LHCb Conditions Database project provides the necessary tools to handle non-event time-varying data. The main users of conditions are reconstruction and analysis processes, which are running on the Grid. To allow efficient access to the data, we need to use a synchronized replica of the content of the database located at the same site as the event data file, i.e. the LHCb Tier1. The replica to be accessed is selected from information stored on LFC (LCG File Catalog) and managed with the interface provided by the LCG developed library CORAL. The plan to limit the submission of jobs to those sites where the required conditions are available will also be presented. LHCb applications are using the Conditions Database framework on a production basis since March 2007. We have been able to collect statistics on the performance and effectiveness of both the LCG library COOL (the library providing conditions handling functionalities) and the distribution framework itself. Stress tests on the CNAF hosted replica of the Conditions Database have been performed and the results will be summarized here.

  3. Voltage regulation in distribution networks with distributed generation

    NASA Astrophysics Data System (ADS)

    Blažič, B.; Uljanić, B.; Papič, I.

    2012-11-01

    The paper deals with the topic of voltage regulation in distribution networks with relatively high distributed energy resources (DER) penetration. The problem of voltage rise is described and different options for voltage regulation are given. The influence of DER on voltage profile and the effectiveness of the investigated solutions are evaluated by means of simulation in DIgSILENT. The simulated network is an actual distribution network in Slovenia with a relatively high penetration of distributed generation. Recommendations for voltage control in networks with DER penetration are given at the end.

  4. Constraining the double gluon distribution by the single gluon distribution

    NASA Astrophysics Data System (ADS)

    Golec-Biernat, Krzysztof; Lewandowska, Emilia; Serino, Mirko; Snyder, Zachary; Staśto, Anna M.

    2015-11-01

    We show how to consistently construct initial conditions for the QCD evolution equations for double parton distribution functions in the pure gluon case. We use to momentum sum rule for this purpose and a specific form of the known single gluon distribution function in the MSTW parameterization. The resulting double gluon distribution satisfies exactly the momentum sum rule and is parameter free. We also study numerically its evolution with a hard scale and show the approximate factorization into product of two single gluon distributions at small values of x, whereas at large values of x the factorization is always violated in agreement with the sum rule.

  5. Data distribution satellite

    NASA Technical Reports Server (NTRS)

    Stevens, Grady H.

    1992-01-01

    The Data Distribution Satellite (DDS), operating in conjunction with the planned space network, the National Research and Education Network and its commercial derivatives, would play a key role in networking the emerging supercomputing facilities, national archives, academic, industrial, and government institutions. Centrally located over the United States in geostationary orbit, DDS would carry sophisticated on-board switching and make use of advanced antennas to provide an array of special services. Institutions needing continuous high data rate service would be networked together by use of a microwave switching matrix and electronically steered hopping beams. Simultaneously, DDS would use other beams and on board processing to interconnect other institutions with lesser, low rate, intermittent needs. Dedicated links to White Sands and other facilities would enable direct access to space payloads and sensor data. Intersatellite links to a second generation ATDRS, called Advanced Space Data Acquisition and Communications System (ASDACS), would eliminate one satellite hop and enhance controllability of experimental payloads by reducing path delay. Similarly, direct access would be available to the supercomputing facilities and national data archives. Economies with DDS would be derived from its ability to switch high rate facilities amongst users needed. At the same time, having a CONUS view, DDS would interconnect with any institution regardless of how remote. Whether one needed high rate service or low rate service would be immaterial. With the capability to assign resources on demand, DDS will need only carry a portion of the resources needed if dedicated facilities were used. Efficiently switching resources to users as needed, DDS would become a very feasible spacecraft, even though it would tie together the space network, the terrestrial network, remote sites, 1000's of small users, and those few who need very large data links intermittently.

  6. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    Conroy, Michael; Mazzone, Rebecca; Little, William; Elfrey, Priscilla; Mann, David; Mabie, Kevin; Cuddy, Thomas; Loundermon, Mario; Spiker, Stephen; McArthur, Frank; Srey, Tate; Bonilla, Dennis

    2010-01-01

    The Distributed Observer network (DON) is a NASA-collaborative environment that leverages game technology to bring three-dimensional simulations to conventional desktop and laptop computers in order to allow teams of engineers working on design and operations, either individually or in groups, to view and collaborate on 3D representations of data generated by authoritative tools such as Delmia Envision, Pro/Engineer, or Maya. The DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3D visual environment. DON has been designed to enhance accessibility and user ability to observe and analyze visual simulations in real time. A variety of NASA mission segment simulations [Synergistic Engineering Environment (SEE) data, NASA Enterprise Visualization Analysis (NEVA) ground processing simulations, the DSS simulation for lunar operations, and the Johnson Space Center (JSC) TRICK tool for guidance, navigation, and control analysis] were experimented with. Desired functionalities, [i.e. Tivo-like functions, the capability to communicate textually or via Voice-over-Internet Protocol (VoIP) among team members, and the ability to write and save notes to be accessed later] were targeted. The resulting DON application was slated for early 2008 release to support simulation use for the Constellation Program and its teams. Those using the DON connect through a client that runs on their PC or Mac. This enables them to observe and analyze the simulation data as their schedule allows, and to review it as frequently as desired. DON team members can move freely within the virtual world. Preset camera points can be established, enabling team members to jump to specific views. This improves opportunities for shared analysis of options, design reviews, tests, operations, training, and evaluations, and improves prospects for verification of requirements, issues, and approaches among dispersed teams.

  7. Gauss-Codazzi thermodynamics on the timelike screen

    SciTech Connect

    Piazza, Federico

    2010-10-15

    It is a known result by Jacobson that the flux of energy matter through a local Rindler horizon is related with the expansion of the null generators in a way that mirrors the first law of thermodynamics. We extend such a result to a timelike screen of observers with finite acceleration. Since timelike curves have more freedom than null geodesics, the construction is more involved than Jacobson's and few geometrical constraints need to be imposed: the observers' acceleration has to be constant in time and everywhere orthogonal to the screen. Moreover, at any given time, the extrinsic curvature of the screen has to be flat. The latter requirement can be weakened by asking that the extrinsic curvature, if present at the beginning, evolves in time like on a cone and just rescales proportionally to the expansion.

  8. Distribution of tsunami interevent times

    USGS Publications Warehouse

    Geist, E.L.; Parsons, T.

    2008-01-01

    The distribution of tsunami interevent times is analyzed using global and site-specific (Hilo, Hawaii) tsunami catalogs. An empirical probability density distribution is determined by binning the observed interevent times during a period in which the observation rate is approximately constant. The empirical distributions for both catalogs exhibit non-Poissonian behavior in which there is an abundance of short interevent times compared to an exponential distribution. Two types of statistical distributions are used to model this clustering behavior: (1) long-term clustering described by a universal scaling law, and (2) Omori law decay of aftershocks and triggered sources. The empirical and theoretical distributions all imply an increased hazard rate after a tsunami, followed by a gradual decrease with time approaching a constant hazard rate. Examination of tsunami sources suggests that many of the short interevent times are caused by triggered earthquakes, though the triggered events are not necessarily on the same fault.

  9. Distribution system harmonic filter planning

    SciTech Connect

    Ortmeyer, T.H.; Hiyama, Takashi

    1996-10-01

    A planning methodology for distribution system harmonic filtering is proposed. The method is intended for use on radial distribution systems with no large harmonic sources. It is proposed that 60 hertz var planning be done first to allocate the var resources. Following this process, the harmonic filter planning can be readily accomplished. Characteristics of the distribution systems and the harmonic sources are exploited to provide a practical filter planning technique which is effective and efficient.

  10. Audio distribution and Monitoring Circuit

    NASA Technical Reports Server (NTRS)

    Kirkland, J. M.

    1983-01-01

    Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.

  11. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Thomason, Cindy; Anderson, Paul M.; Martin, James A.

    1990-01-01

    Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.

  12. Distribution of Clokey's Eggvetch

    SciTech Connect

    David C. Anderson

    1998-12-01

    monophylla), Utah juniper (Juniperus osteosperma), and big sagebrush (Artemisia tridentata ssp. tridentata). Overall, the populations of Clokey's eggvetch on the NTS appear to be vigorous and do not appear threatened. It is estimated that there are approximately 2300 plants on the NTS. It should be considered as a species of concern because of its localized distribution, but it does not appear to warrant protection under the ESA.

  13. Recoverable distributed shared virtual memory

    NASA Technical Reports Server (NTRS)

    Wu, Kun-Lung; Fuchs, W. Kent

    1990-01-01

    The problem of rollback recovery in distributed shared virtual environments, in which the shared memory is implemented in software in a loosely coupled distributed multicomputer system, is examined. A user-transparent checkpointing recovery scheme and a new twin-page disk storage management technique are presented for implementing recoverable distributed shared virtual memory. The checkpointing scheme can be integrated with the memory coherence protocol for managing the shared virtual memory. The twin-page disk design allows checkpointing to proceed in an incremental fashion without an explicit undo at the time of recovery. The recoverable distributed shared virtual memory allows the system to restart computation from a checkpoint without a global restart.

  14. Space platform utilities distribution study

    NASA Technical Reports Server (NTRS)

    Lefever, A. E.

    1980-01-01

    Generic concepts for the installation of power data and thermal fluid distribution lines on large space platforms were discussed. Connections with central utility subsystem modules and pallet interfaces were also considered. Three system concept study platforms were used as basepoints for the detail development. The tradeoff of high voltage low voltage power distribution and the impact of fiber optics as a data distribution mechanism were analyzed. Thermal expansion and temperature control of utility lines and ducts were considered. Technology developments required for implementation of the generic distribution concepts were identified.

  15. A four-way distribution amplifier for reference signal distribution

    NASA Technical Reports Server (NTRS)

    Lo, Y. V.

    1981-01-01

    A four way distribution amplifier with up to 100 dB isolation and with low phase noise of -140 dBc in a 1 Hz bandwidth 10 Hz from a 100 MHz signal was developed. It is to be used in the stabilized optical fiber distribution system to provide multiple outputs.

  16. Current Perspectives in Distributive Education.

    ERIC Educational Resources Information Center

    Klaurens, Mary K., Ed.; Trapnell, Gail, Ed.

    The volume on current perspectives in distributive education contains 29 individually authored articles organized into three sections. The first section on program conceptualization deals with the following subjects: the evolution of distributive education, program planning, advisory committees, placement services, postsecondary distributive…

  17. The Future of Distributed Leadership

    ERIC Educational Resources Information Center

    Gronn, Peter

    2008-01-01

    Purpose: This paper aims to assess the empirical utility and conceptual significance of distributed leadership. Design/methodology/approach: Three main sources of evidence are drawn on. The paper reviews some neglected commentary of an early generation of distributed leadership theorists. It also discusses a strand of social science writings on…

  18. Water Treatment Technology - Distribution Systems.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  19. Reduplication and Distributivity in Kannada

    ERIC Educational Resources Information Center

    Anderson, Janet Katherine

    2012-01-01

    Reduplication of numerals and pronouns in Kannada is shown to be subject to locality conditions similar to those constraining binding. This dissertation explores an account of distributivity which exploits the similarity to binding, arguing that the source of the distributive reading in Numeral Reduplication is a bound element. [The dissertation…

  20. Leadership in Partially Distributed Teams

    ERIC Educational Resources Information Center

    Plotnick, Linda

    2009-01-01

    Inter-organizational collaboration is becoming more common. When organizations collaborate they often do so in partially distributed teams (PDTs). A PDT is a hybrid team that has at least one collocated subteam and at least two subteams that are geographically distributed and communicate primarily through electronic media. While PDTs share many…

  1. Workload Distribution among Agriculture Teachers

    ERIC Educational Resources Information Center

    Torres, Robert M.; Ulmer, Jonathan D.; Aschenbrener, Mollie S.

    2008-01-01

    Teachers distribute their time in many ways. The study sought to determine how agriculture teachers distribute their time among 11 selected teacher activities (i.e., preparation for instruction; classroom/laboratory teaching; laboratory preparation and/or maintenance; grading/scoring students' work; administrative duties-program management;…

  2. Distributed Leadership: Friend or Foe?

    ERIC Educational Resources Information Center

    Harris, Alma

    2013-01-01

    Distributed leadership is now widely known and variously enacted in schools and school systems. Distributed leadership implies a fundamental re-conceptualisation of leadership as practice and challenges conventional wisdom about the relationship between formal leadership and organisational performance. There has been much debate, speculation and…

  3. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as Cycle 20 proposal 13128.

  4. Quality monitored distributed voting system

    DOEpatents

    Skogmo, D.

    1997-03-18

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.

  5. Quality monitored distributed voting system

    DOEpatents

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  6. Quasistationary distributions for autocatalytic reactions

    SciTech Connect

    Parsons, R.W.; Pollett, P.K.

    1987-01-01

    The authors provide simple conditions for the existence of quasistationary distributions that can be used to describe the long-term behavior of open autocatalytic reaction systems. They illustrate with reference to a particular example that the quasistationary distribution is close to the usual stationary diffusion approximation.

  7. GRBs Radiative Processes: Synchrotron and Synchrotron Self-Absorption From a Power Law Electrons Distribution with Finite Energy Range

    SciTech Connect

    Fouka, M.; Ouichaoui, S.

    2010-10-31

    Synchrotron emission behind relativistic magnetic internal-external shocks in gamma-ray bursts cosmological explosions is assumed to be the basic emission mechanism for prompt and afterglow emissions. Inverse Compton from relativistic electrons can also have appreciable effects by upscattering initial synchrotron or blackbody photons or other photons fields up to GeV-TeV energies. For extreme physical conditions such as high magnetic fields (e.g., B>10{sup 5} Gauss) self-absorption is not negligible and can hardly affect spectra at least for the low energy range. In this paper we present calculations of the synchrotron power, P{sub {nu}}, and their asymptotic forms, generated by a power law relativistic electron distribution of type N{sub e}({gamma}) = C{gamma}{sup -p} with {gamma}{sub 1}<{gamma}<{gamma}{sub 2}, especially for finite values of the higher limit {gamma}{sub 2}. For this aim we defined the dimensionless parametric function Z{sub p}(x,{eta}) with x = {nu}/{nu}{sub 1} and {eta} = {gamma}{sub 2}/{gamma}{sub 1} so that P{sub {nu}{proportional_to}Zp}({nu}/{nu}{sub 1},{eta}), with {nu}{sub 1} = (3/4{pi}){gamma}{sub 1}{sup 2}qBsin{theta}/mc({theta} being the pitch angle). Asymptotic forms of this later are derived for three different frequency ranges, i.e., x<<1, 1<>{eta}{sup 2}. These results are then used to calculate the absorption coefficient, {alpha}{sub {nu}}, and the source function, S{sub {nu}}, together with their asymptotic forms through the dimensionless parametric functions H{sub p}(x,{eta}) and Y{sub p}(x,{eta}), respectively. Further calculation details are also presented and discussed.

  8. 2014 Distributed Wind Market Report

    SciTech Connect

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  9. Power Law Distribution in Education

    NASA Astrophysics Data System (ADS)

    Gupta, Hari M.; Campanha, José R.; Chavarette, Fábio R.

    We studied the statistical distribution of student's performance, which is measured through their marks, in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) with respect to (i) period of study-day versus night period (ii) teaching conditions - private versus public school (iii) economical conditions - high versus low family income. We observed long ubiquitous power law tails in physical and biological sciences in all cases. The mean value increases with better study conditions followed by better teaching and economical conditions. In humanities, the distribution is close to normal distribution with very small tail. This indicates that these power law tails in science subjects are due to the nature of the subjects themselves. Further and better study, teaching and economical conditions are more important for physical and biological sciences in comparison to humanities at this level of study. We explain these statistical distributions through Gradually Truncated Power law distributions. We discuss the possible reason for this peculiar behavior.

  10. Size distribution of ring polymers

    NASA Astrophysics Data System (ADS)

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-06-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 ‑ d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5.

  11. Distribution System Voltage Regulation by Distributed Energy Resources

    SciTech Connect

    Ceylan, Oguzhan; Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2014-01-01

    This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

  12. Marketing and Distribution: Developing Career Interests in Distributive Education

    ERIC Educational Resources Information Center

    Searle, A. Gary

    1978-01-01

    The author discusses a variety of commercial interest inventories which may be used by the distributive education teacher-coordinator to guide students in exploring careers in the marketing cluster. ( MF)

  13. Lunar soil grain size distribution

    NASA Technical Reports Server (NTRS)

    Carrier, W. D., III

    1973-01-01

    A comprehensive review has been made of the currently available data for lunar grain size distributions. It has been concluded that there is little or no statistical difference among the large majority of the soil samples from the Apollo 11, 12, 14, and 15 missions. The grain size distribution for these soils has reached a steady state in which the comminution processes are balanced by the aggregation processes. The median particle size for the steady-state soil is 40 to 130 microns. The predictions of lunar grain size distributions based on the Surveyor television photographs have been found to be quantitatively in error and qualitatively misleading.

  14. Packing fraction of continuous distributions

    NASA Astrophysics Data System (ADS)

    Brouwers, Jos

    2014-03-01

    This study addresses the packing and void fraction of polydisperse particles with geometric and lognormal size distribution. It is demonstrated that a bimodal discrete particle distribution can be transformed into said continuous particle-size distributions. Furthermore, original and exact expressions are presented that predict the packing fraction of these particle assemblies. For a number of particle shapes and their packing modes (close, loose) the applicable parameters are given. The closed-form analytical expression governing the packing fractions are thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  15. Valence quark spin distribution functions

    SciTech Connect

    Nathan Isgur

    1998-09-01

    The hyperfine interactions of the constituent quark model provide a natural explanation for many nucleon properties, including the {Delta} - N splitting, the charge radius of the neutron, and the observation that the proton's quark distribution function ratio d(x)/u(x) {r_arrow} 0 as x {r_arrow} 1. The hyperfine-perturbed quark model also makes predictions for the nucleon spin-dependent distribution functions. Precision measurements of the resulting asymmetries A{sub 1}{sup p}(x) and A{sub 1}{sup n}(x) in the valence region can test this model and thereby the hypothesis that the valence quark spin distributions are ''normal''.

  16. Exploiting replication in distributed systems

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.; Joseph, T. A.

    1989-01-01

    Techniques are examined for replicating data and execution in directly distributed systems: systems in which multiple processes interact directly with one another while continuously respecting constraints on their joint behavior. Directly distributed systems are often required to solve difficult problems, ranging from management of replicated data to dynamic reconfiguration in response to failures. It is shown that these problems reduce to more primitive, order-based consistency problems, which can be solved using primitives such as the reliable broadcast protocols. Moreover, given a system that implements reliable broadcast primitives, a flexible set of high-level tools can be provided for building a wide variety of directly distributed application programs.

  17. A prototype Distributed Audit System

    SciTech Connect

    Banning, D.L.

    1993-08-01

    Security auditing systems are used to detect and assess unauthorized or abusive system usage. Historically, security audits were confined to a single computer system. Recent work examines ways of extending auditing to include heterogeneous groups of computers (distributed system). This paper describes the design and prototype development of a Distributed Audit System (DAS) which was developed with funding received from Lawrence Livermore Laboratory and through the Master`s thesis effort performed by the author at California State University, Long Beach. The DAS is intended to provide collection, transfer, and control of audit data on distributed, heterogeneous hosts.

  18. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  19. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment-distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  20. Wealth distribution on complex networks

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi

    2012-12-01

    We study the wealth distribution of the Bouchaud-Mézard model on complex networks. It is known from numerical simulations that this distribution depends on the topology of the network; however, no one has succeeded in explaining it. Using “adiabatic” and “independent” assumptions along with the central-limit theorem, we derive equations that determine the probability distribution function. The results are compared to those of simulations for various networks. We find good agreement between our theory and the simulations, except for the case of Watts-Strogatz networks with a low rewiring rate due to the breakdown of independent assumption.

  1. Dose distributions in regions containing beta sources: Irregularly shaped source distributions in homogeneous media

    SciTech Connect

    Werner, B.L. )

    1991-11-01

    Methods are introduced by which dose rate distributions due to nonuniform, irregularly shaped distributions of beta emitters can be calculated using dose rate distributions for uniform, spherical source distributions. The dose rate distributions can be written in the MIRD formalism.

  2. The Raid distributed database system

    NASA Technical Reports Server (NTRS)

    Bhargava, Bharat; Riedl, John

    1989-01-01

    Raid, a robust and adaptable distributed database system for transaction processing (TP), is described. Raid is a message-passing system, with server processes on each site to manage concurrent processing, consistent replicated copies during site failures, and atomic distributed commitment. A high-level layered communications package provides a clean location-independent interface between servers. The latest design of the package delivers messages via shared memory in a configuration with several servers linked into a single process. Raid provides the infrastructure to investigate various methods for supporting reliable distributed TP. Measurements on TP and server CPU time are presented, along with data from experiments on communications software, consistent replicated copy control during site failures, and concurrent distributed checkpointing. A software tool for evaluating the implementation of TP algorithms in an operating-system kernel is proposed.

  3. BESIII production with distributed computing

    NASA Astrophysics Data System (ADS)

    Zhang, X. M.; Yan, T.; Zhao, X. H.; Ma, Z. T.; Yan, X. F.; Lin, T.; Deng, Z. Y.; Li, W. D.; Belov, S.; Pelevanyuk, I.; Zhemchugov, A.; Cai, H.

    2015-12-01

    Distributed computing is necessary nowadays for high energy physics experiments to organize heterogeneous computing resources all over the world to process enormous amounts of data. The BESIII experiment in China, has established its own distributed computing system, based on DIRAC, as a supplement to local clusters, collecting cluster, grid, desktop and cloud resources from collaborating member institutes around the world. The system consists of workload management and data management to deal with the BESIII Monte Carlo production workflow in a distributed environment. A dataset-based data transfer system has been developed to support data movements among sites. File and metadata management tools and a job submission frontend have been developed to provide a virtual layer for BESIII physicists to use distributed resources. Moreover, the paper shows the experience to cope with lack of grid experience and low manpower among the BESIII community.

  4. Fact Program - distributed exhaust nozzle

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Futuristic Airframe Concepts & Technology (FACT): Distributed exhaust nozzle mounted in the Low Speed Aeroacoustic Wind Tunnel. Angle is zero degrees with respect to microphones. Photographed in the Low Speed Aeroacoustic Wind Tunnel, Jet Noise Lab, building 1221-A.

  5. Multiple complementary gas distribution assemblies

    DOEpatents

    Ng, Tuoh-Bin; Melnik, Yuriy; Pang, Lily L; Tuncel, Eda; Nguyen, Son T; Chen, Lu

    2016-04-05

    In one embodiment, an apparatus includes a first gas distribution assembly that includes a first gas passage for introducing a first process gas into a second gas passage that introduces the first process gas into a processing chamber and a second gas distribution assembly that includes a third gas passage for introducing a second process gas into a fourth gas passage that introduces the second process gas into the processing chamber. The first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of the processing chamber. The first gas passage is shaped as a first ring positioned within the processing chamber above the second gas passage that is shaped as a second ring positioned within the processing chamber. The gas distribution assemblies may be designed to have complementary characteristic radial film growth rate profiles.

  6. Distribution and flux of micrometeoroids

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.; Zinner, E.

    1977-01-01

    The mass distribution, flux, and distribution in space of the micrometeoroid complex at 1 AU are estimated on the basis of data from Apollo 17 rocks and recent calibrations of solar-flare track-production rates. It is found that the size frequency distribution of microcraters on lunar rocks suggests a bimodal mass distribution of micrometeoroids, but the precise form of the curve requires further definition, particularly insofar as the degree of depletion of particles producing craters 10 to 100 microns in diameter is concerned. Variations in slope with crater-diameter or particle-mass increments are shown to indicate that different processes affect one or more particle populations. Fluxes corresponding to varied lunar surface orientation and residence time are calculated, but no striking difference is observed between the flux of submicron-diameter particles with orbits in the plane of the ecliptic and fluxes of particles with orbits normal to the plane in the solar apex direction.

  7. 2013 Distributed Wind Market Report

    SciTech Connect

    Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.; Gagne, Matthew N.; Pro, Boyd H.; Foster, Nikolas AF

    2014-08-20

    The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.

  8. The Binomial Distribution in Shooting

    ERIC Educational Resources Information Center

    Chalikias, Miltiadis S.

    2009-01-01

    The binomial distribution is used to predict the winner of the 49th International Shooting Sport Federation World Championship in double trap shooting held in 2006 in Zagreb, Croatia. The outcome of the competition was definitely unexpected.

  9. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  10. Visualizing Spatially Varying Distribution Data

    NASA Technical Reports Server (NTRS)

    Kao, David; Luo, Alison; Dungan, Jennifer L.; Pang, Alex; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Box plot is a compact representation that encodes the minimum, maximum, mean, median, and quarters information of a distribution. In practice, a single box plot is drawn for each variable of interest. With the advent of more accessible computing power, we are now facing the problem of visual icing data where there is a distribution at each 2D spatial location. Simply extending the box plot technique to distributions over 2D domain is not straightforward. One challenge is reducing the visual clutter if a box plot is drawn over each grid location in the 2D domain. This paper presents and discusses two general approaches, using parametric statistics and shape descriptors, to present 2D distribution data sets. Both approaches provide additional insights compared to the traditional box plot technique

  11. Distributed processing for speech understanding

    SciTech Connect

    Bronson, E.C.; Siegel, L.

    1983-01-01

    Continuous speech understanding is a highly complex artificial intelligence task requiring extensive computation. This complexity precludes real-time speech understanding on a conventional serial computer. Distributed processing technique can be applied to the speech understanding task to improve processing speed. In the paper, the speech understanding task and several speech understanding systems are described. Parallel processing techniques are presented and a distributed processing architecture for speech understanding is outlined. 35 references.

  12. UNIX code management and distribution

    SciTech Connect

    Hung, T.; Kunz, P.F.

    1992-09-01

    We describe a code management and distribution system based on tools freely available for the UNIX systems. At the master site, version control is managed with CVS, which is a layer on top of RCS, and distribution is done via NFS mounted file systems. At remote sites, small modifications to CVS provide for interactive transactions with the CVS system at the master site such that remote developers are true peers in the code development process.

  13. Structure functions and parton distributions

    SciTech Connect

    Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1995-07-01

    The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed.

  14. Generalized parton distributions in nuclei

    SciTech Connect

    Vadim Guzey

    2009-12-01

    Generalized parton distributions (GPDs) of nuclei describe the distribution of quarks and gluons in nuclei probed in hard exclusive reactions, such as e.g. deeply virtual Compton scattering (DVCS). Nuclear GPDs and nuclear DVCS allow us to study new aspects of many traditional nuclear effects (nuclear shadowing, EMC effect, medium modifications of the bound nucleons) as well as to access novel nuclear effects. In my talk, I review recent theoretical progress in the area of nuclear GPDs.

  15. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {11891} during Cycle 17.

  16. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {12723} during Cycle 19.

  17. Modeling Nucleon Generalized Parton Distributions

    SciTech Connect

    Radyushkin, Anatoly V.

    2013-05-01

    We discuss building models for nucleon generalized parton distributions (GPDs) H and E that are based on the formalism of double distributions (DDs). We find that the usual "DD+D-term'' construction should be amended by an extra term, generated by GPD E(x,\\xi). Unlike the $D$-term, this function has support in the whole -1 < x< 1 region, and in general does not vanish at the border points|x|=\\xi.

  18. The ATLAS distributed analysis system

    NASA Astrophysics Data System (ADS)

    Legger, F.; Atlas Collaboration

    2014-06-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  19. Double distributions and evolution equations

    SciTech Connect

    A.V. Radyushkin

    1998-05-01

    Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual parton distributions for the case when long-distance information is accumulated in nonforward matrix elements < p{prime} {vert_bar}O(0,z){vert_bar}p > of quark and gluon light-cone operators. In their previous papers the authors used two types of nonperturbative functions parameterizing such matrix elements: double distributions F(x,y;t) and nonforward distribution functions F{sub {zeta}}(X;t). Here they discuss in more detail the double distributions (DD's) and evolution equations which they satisfy. They propose simple models for F(x,y;t=0) DD's with correct spectral and symmetry properties which also satisfy the reduction relations connecting them to the usual parton densities f(x). In this way, they obtain self-consistent models for the {zeta}-dependence of nonforward distributions. They show that, for small {zeta}, one can easily obtain nonforward distributions (in the X > {zeta} region) from the parton densities: F{sub {zeta}} (X;t=0) {approx} f(X{minus}{zeta}/2).

  20. Distribution functions of probabilistic automata

    NASA Technical Reports Server (NTRS)

    Vatan, F.

    2001-01-01

    Each probabilistic automaton M over an alphabet A defines a probability measure Prob sub(M) on the set of all finite and infinite words over A. We can identify a k letter alphabet A with the set {0, 1,..., k-1}, and, hence, we can consider every finite or infinite word w over A as a radix k expansion of a real number X(w) in the interval [0, 1]. This makes X(w) a random variable and the distribution function of M is defined as usual: F(x) := Prob sub(M) { w: X(w) < x }. Utilizing the fixed-point semantics (denotational semantics), extended to probabilistic computations, we investigate the distribution functions of probabilistic automata in detail. Automata with continuous distribution functions are characterized. By a new, and much more easier method, it is shown that the distribution function F(x) is an analytic function if it is a polynomial. Finally, answering a question posed by D. Knuth and A. Yao, we show that a polynomial distribution function F(x) on [0, 1] can be generated by a prob abilistic automaton iff all the roots of F'(x) = 0 in this interval, if any, are rational numbers. For this, we define two dynamical systems on the set of polynomial distributions and study attracting fixed points of random composition of these two systems.