Science.gov

Sample records for gauss precise time

  1. The Generation of Higher-order Laguerre-Gauss Optical Beams for High-precision Interferometry

    PubMed Central

    Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas

    2013-01-01

    Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry. PMID:23962813

  2. GPU-accelerated Modeling and Element-free Reverse-time Migration with Gauss Points Partition

    NASA Astrophysics Data System (ADS)

    Zhen, Z.; Jia, X.

    2014-12-01

    Element-free method (EFM) has been applied to seismic modeling and migration. Compared with finite element method (FEM) and finite difference method (FDM), it is much cheaper and more flexible because only the information of the nodes and the boundary of the study area are required in computation. In the EFM, the number of Gauss points should be consistent with the number of model nodes; otherwise the accuracy of the intermediate coefficient matrices would be harmed. Thus when we increase the nodes of velocity model in order to obtain higher resolution, we find that the size of the computer's memory will be a bottleneck. The original EFM can deal with at most 81×81 nodes in the case of 2G memory, as tested by Jia and Hu (2006). In order to solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition (GPP), and utilize the GPUs to improve the computation efficiency. Considering the characteristics of the Gaussian points, the GPP method doesn't influence the propagation of seismic wave in the velocity model. To overcome the time-consuming computation of the stiffness matrix (K) and the mass matrix (M), we also use the GPUs in our computation program. We employ the compressed sparse row (CSR) format to compress the intermediate sparse matrices and try to simplify the operations by solving the linear equations with the CULA Sparse's Conjugate Gradient (CG) solver instead of the linear sparse solver 'PARDISO'. It is observed that our strategy can significantly reduce the computational time of K and Mcompared with the algorithm based on CPU. The model tested is Marmousi model. The length of the model is 7425m and the depth is 2990m. We discretize the model with 595x298 nodes, 300x300 Gauss cells and 3x3 Gauss points in each cell. In contrast to the computational time of the conventional EFM, the GPUs-GPP approach can substantially improve the efficiency. The speedup ratio of time consumption of computing K, M is 120 and the

  3. Early-time cosmological solutions in Einstein-scalar-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Kanti, Panagiota; Gannouji, Radouane; Dadhich, Naresh

    2015-10-01

    In this work, we consider a generalized gravitational theory that contains the Einstein term, a scalar field, and the quadratic Gauss-Bonnet (GB) term. We focus on the early-universe dynamics, and demonstrate that a simple choice of the coupling function between the scalar field and the Gauss-Bonnet term and a simplifying assumption regarding the role of the Ricci scalar can lead to new, analytical, elegant solutions with interesting characteristics. We first argue, and demonstrate in the context of two different models, that the presence of the Ricci scalar in the theory at early times (when the curvature is strong) does not affect the actual cosmological solutions. By considering therefore a pure scalar-GB theory with a quadratic coupling function we derive a plethora of interesting, analytic solutions: for a negative coupling parameter, we obtain inflationary, de Sitter-type solutions or expanding solutions with a de Sitter phase in their past and a natural exit mechanism at later times; for a positive coupling function, we find instead singularity-free solutions with no big bang singularity. We show that the aforementioned solutions arise only for this particular choice of coupling function, a result that may hint at some fundamental role that this coupling function may hold in the context of an ultimate theory.

  4. PRECISION TIME-DELAY GENERATOR

    DOEpatents

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  5. Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation

    SciTech Connect

    Brihaye, Yves; Hartmann, Betti

    2011-10-15

    We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.

  6. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  7. Fundamental limits of scintillation detector timing precision.

    PubMed

    Derenzo, Stephen E; Choong, Woon-Seng; Moses, William W

    2014-07-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A(-1/2) more than any other factor, we tabulated the parameter B, where R = BA(-1/2). An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons ns(-1). A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons ns(-1). PMID:24874216

  8. Fundamental Limits of Scintillation Detector Timing Precision

    PubMed Central

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2014-01-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A−1/2 more than any other factor, we tabulated the parameter B, where R = BA−1/2. An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons/ns. A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons/ns. PMID:24874216

  9. Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Papallo, Giuseppe; Reall, Harvey S.

    2015-11-01

    Camanho, Edelstein, Maldacena and Zhiboedov have shown that gravitons can experience a negative Shapiro time delay, i.e. a time advance, in Einstein-Gauss-Bonnet theory. They studied gravitons propagating in singular "shock-wave" geometries. We study this effect for gravitons propagating in smooth black hole spacetimes. For a small enough black hole, we find that gravitons of appropriate polarisation, and small impact parameter, can experience time advance. Such gravitons can also exhibit a deflection angle less than π, characteristic of a repulsive short-distance gravitational interaction. We discuss problems with the suggestion that the time advance can be used to build a "time machine". In particular, we argue that a small black hole cannot be boosted to a speed arbitrarily close to the speed of light, as would be required in such a construction.

  10. Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem

    SciTech Connect

    Cognola, Guido; Zerbini, Sergio; Elizalde, Emilio; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2006-04-15

    Dark energy cosmology is considered in a modified Gauss-Bonnet (GB) model of gravity where an arbitrary function of the GB invariant, f(G), is added to the general relativity action. We show that a theory of this kind is endowed with a quite rich cosmological structure: it may naturally lead to an effective cosmological constant, quintessence, or phantom cosmic acceleration, with a possibility for the transition from deceleration to acceleration. It is demonstrated in the paper that this theory is perfectly viable, since it is compliant with the solar system constraints. Specific properties of f(G) gravity in a de Sitter (dS) universe, such as dS and SdS solutions, their entropy, and its explicit one-loop quantization are studied. The issue of a possible solution of the hierarchy problem in modified gravities is also addressed.

  11. The role of precise time in IFF

    NASA Technical Reports Server (NTRS)

    Bridge, W. M.

    1982-01-01

    The application of precise time to the identification of friend or foe (IFF) problem is discussed. The simple concept of knowing when to expect each signal is exploited in a variety of ways to achieve an IFF system which is hard to detect, minimally exploitable and difficult to jam. Precise clocks are the backbone of the concept and the various candidates for this role are discussed. The compact rubidium-controlled oscillator is the only practical candidate.

  12. Precise timing when hitting falling balls

    PubMed Central

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B. J.

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball. PMID:24904380

  13. Precise timing when hitting falling balls.

    PubMed

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B J

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball. PMID:24904380

  14. Precise time dissemination via portable atomic clocks

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1982-01-01

    The most precise operational method of time dissemination over long distances presently available to the Precise Time and Time Interval (PTTI) community of users is by means of portable atomic clocks. The Global Positioning System (GPS), the latest system showing promise of replacing portable clocks for global PTTI dissemination, was evaluated. Although GPS has the technical capability of providing superior world-wide dissemination, the question of present cost and future accessibility may require a continued reliance on portable clocks for a number of years. For these reasons a study of portable clock operations as they are carried out today was made. The portable clock system that was utilized by the U.S. Naval Observatory (NAVOBSY) in the global synchronization of clocks over the past 17 years is described and the concepts on which it is based are explained. Some of its capabilities and limitations are also discussed.

  15. Carl Friedrich Gauss

    ERIC Educational Resources Information Center

    Rice, Kathryn; Scott, Paul

    2005-01-01

    This article presents a brief biography of Johann Carl Friedrich Gauss. Gauss was born on April 30, 1777, in the German city of Braunschweig (Brunswick). He was the only child of Gebhard Dietrich Gauss and Dorothea Benze. Neither of Gauss's parents had much education, his father could read and write, but earned his living doing menial jobs such as…

  16. Precision timing measurements for high energy photons

    SciTech Connect

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  17. Precision timing measurements for high energy photons

    NASA Astrophysics Data System (ADS)

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2015-07-01

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium-yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  18. Precise time transfer using MKIII VLBI technology

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.; Buisson, J. A.; Lister, M. J.; Oaks, O. J.; Spencer, J. H.; Waltman, W. B.; Elgered, G.; Lundqvist, G.; Rogers, A. E. E.; Clark, T. A.

    1984-01-01

    It is well known that Very Long Baseline Interferometry (VLBI) is capable of precise time synchronization at subnanosecond levels. This paper deals with a demonstration of clock synchronization using the MKIII VBLI system. The results are compared with clock synchronization by traveling cesium clocks and GPS. The comparison agrees within the errors of the portable clocks (+ 5 ns) and GPS(+ or - 30 ns) systems. The MKIII technology appears to be capable of clock synchronization at subnanosecond levels and appears to be very good benchmark system against which future time synchronization systems can be evaluated.

  19. Precise time and time interval data handling and reduction

    NASA Technical Reports Server (NTRS)

    Fisher, L. C.

    1973-01-01

    In the past year, the increase in Precise Time And Time Interval data to be reduced to the U.S. Naval Observatory Master Clock and the requirement for its quick dissemination has necessitated development of more efficient methods of data handling and reduction. An outline of the data involved and of the Time Service computerization of these functions is presented.

  20. Precision Pulsar Timing at the DSN

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.

    2015-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We have developed a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations scheduled later this year.This research was performed at the Jet Propulsion Laboratory,California Institute of Technology, under the Research and TechnologyDevelopment Program, under a contract with the National Aeronautics andSpace Administration.

  1. Precision Pulsar Timing at the DSN

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.

    2016-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We have developed and are now commissioning a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system is capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations scheduled over the next few years.

  2. Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-07-01

    In this paper we demonstrate that with vacuum F(G) gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the F(G) description is no, since the resulting power spectrum is not scale invariant, in contrast to the F(R) description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum F(G) gravity, the evolution is not compatible with the observational data, in contrast to the F(R) gravity description of the same cosmological evolution.

  3. Precise time and time interval applications to electric power systems

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1992-01-01

    There are many applications of precise time and time interval (frequency) in operating modern electric power systems. Many generators and customer loads are operated in parallel. The reliable transfer of electrical power to the consumer partly depends on measuring power system frequency consistently in many locations. The internal oscillators in the widely dispersed frequency measuring units must be syntonized. Elaborate protection and control systems guard the high voltage equipment from short and open circuits. For the highest reliability of electric service, engineers need to study all control system operations. Precise timekeeping networks aid in the analysis of power system operations by synchronizing the clocks on recording instruments. Utility engineers want to reproduce events that caused loss of service to customers. Precise timekeeping networks can synchronize protective relay test-sets. For dependable electrical service, all generators and large motors must remain close to speed synchronism. The stable response of a power system to perturbations is critical to continuity of electrical service. Research shows that measurement of the power system state vector can aid in the monitoring and control of system stability. If power system operators know that a lightning storm is approaching a critical transmission line or transformer, they can modify operating strategies. Knowledge of the location of a short circuit fault can speed the re-energizing of a transmission line. One fault location technique requires clocks synchronized to one microsecond. Current research seeks to find out if one microsecond timekeeping can aid and improve power system control and operation.

  4. Kerr-Gauss-Bonnet black holes: Exact analytical solution

    SciTech Connect

    Alexeyev, S. Popov, N.; Startseva, M.; Barrau, A. Grain, J.

    2008-04-15

    Gauss-Bonnet gravity provides one of the most promising frameworks for studying curvature corrections to the Einstein action in supersymmetric string theories while avoiding ghosts and keeping second-order field equations. Although Schwarzschild-type solutions for Gauss-Bonnet black holes have been known for a long time, the Kerr-Gauss-Bonnet metric was missing. A five dimensional Gauss-Bonnet solution is obtained analytically for spinning black holes, and the related thermodynamical properties are briefly outlined.

  5. Efficient modelling of gravity effects due to topographic masses using the Gauss-FFT method

    NASA Astrophysics Data System (ADS)

    Wu, Leyuan

    2016-04-01

    We present efficient Fourier-domain algorithms for modelling gravity effects due to topographic masses. The well-known Parker's formula originally based on the standard fast Fourier transform (FFT) algorithm is modified by applying the Gauss-FFT method instead. Numerical precision of the forward and inverse Fourier transforms embedded in Parker's formula and its extended forms are significantly improved by the Gauss-FFT method. The topographic model is composed of two major aspects, the geometry and the density. Versatile geometric representations, including the mass line model, the mass prism model, the polyhedron model and smoother topographic models interpolated from discrete data sets using high-order splines or pre-defined by analytical functions, in combination with density distributions that vary both laterally and vertically in rather arbitrary ways following exponential or general polynomial functions, now can be treated in a consistent framework by applying the Gauss-FFT method. The method presented has been numerically checked by space-domain analytical and hybrid analytical/numerical solutions already established in the literature. Synthetic and real model tests show that both the Gauss-FFT method and the standard FFT method run much faster than space-domain solutions, with the Gauss-FFT method being superior in numerical accuracy. When truncation errors are negligible, the Gauss-FFT method can provide forward results almost identical to space-domain analytical or semi-numerical solutions in much less time.

  6. Precision timing in ocean sensor systems

    NASA Astrophysics Data System (ADS)

    del Río, Joaquín; Toma, Daniel; Shariat-Panahi, Shahram; Mànuel, Antoni; Geirinhas Ramos, Helena

    2012-02-01

    This paper discusses the use of the IEEE 1588 standard in ocean observatories. The performance result of prototype implementations of this standard in an Ethernet Marine Sensor Network (MSN) is presented. The performance tests emulate an underwater-cabled observatory with a Master Clock synchronized with GPS, located in an on-shore station, and with underwater instruments requiring high-precision PPS (pulse s-1) signals for synchronization purposes. These signals will be provided to the underwater station by an IEEE 1588 GPS Emulator connected to the observatory's Local Area Network (LAN). The experimental setup emulates the underwater-cabled observatory OBSEA where this technology will be installed due to synchronization requirements of marine instruments such as ocean bottom seismometers.

  7. Precision Timing Calorimeter for High Energy Physics

    DOE PAGESBeta

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  8. The Tortured History of Gauss's Law

    NASA Astrophysics Data System (ADS)

    Spencer, Ross

    2009-10-01

    American physics textbooks contain the following equation, which is called Gauss's law: E .d S = qenclosed ɛ0 It is odd, however, that biographies of Karl Friedrich Gauss (1777-1855) contain no mention of this law. A brief history of this important result will be presented in which it will be shown that what we call Gauss's law today was originally guessed at by Joseph Priestly (1733-1804) after he read a letter from Benjamin Franklin (1706-1790), then was derived, forgotten, and re-derived several times in two different contexts by many of the luminaries of physics in the eighteenth and nineteenth centuries.

  9. Millisecond Precision Spike Timing Shapes Tactile Perception

    PubMed Central

    Mackevicius, Emily L.; Best, Matthew D.; Saal, Hannes P.

    2012-01-01

    In primates, the sense of touch has traditionally been considered to be a spatial modality, drawing an analogy to the visual system. In this view, stimuli are encoded in spatial patterns of activity over the sheet of receptors embedded in the skin. We propose that the spatial processing mode is complemented by a temporal one. Indeed, the transduction and processing of complex, high-frequency skin vibrations have been shown to play an important role in tactile texture perception, and the frequency composition of vibrations shapes the evoked percept. Mechanoreceptive afferents innervating the glabrous skin exhibit temporal patterning in their responses, but the importance and behavioral relevance of spike timing, particularly for naturalistic stimuli, remains to be elucidated. Based on neurophysiological recordings from Rhesus macaques, we show that spike timing conveys information about the frequency composition of skin vibrations, both for individual afferents and for afferent populations, and that the temporal fidelity varies across afferent class. Furthermore, the perception of skin vibrations, measured in human subjects, is better predicted when spike timing is taken into account, and the resolution that predicts perception best matches the optimal resolution of the respective afferent classes. In light of these results, the peripheral representation of complex skin vibrations draws a powerful analogy with the auditory and vibrissal systems. PMID:23115169

  10. Precision timing calorimeter for high energy physics

    NASA Astrophysics Data System (ADS)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  11. Ultracold atoms and precise time standards.

    PubMed

    Campbell, Gretchen K; Phillips, William D

    2011-10-28

    Experimental techniques of laser cooling and trapping, along with other cooling techniques, have produced gaseous samples of atoms so cold that they are, for many practical purposes, in the quantum ground state of their centre-of-mass motion. Such low velocities have virtually eliminated effects such as Doppler shifts, relativistic time dilation and observation-time broadening that previously limited the performance of atomic frequency standards. Today, the best laser-cooled, caesium atomic fountain, microwave frequency standards realize the International System of Units (SI) definition of the second to a relative accuracy of ≈3×10(-16). Optical frequency standards, which do not realize the SI second, have even better performance: cold neutral atoms trapped in optical lattices now yield relative systematic uncertainties of ≈1×10(-16), whereas cold-trapped ions have systematic uncertainties of 9×10(-18). We will discuss the current limitations in the performance of neutral atom atomic frequency standards and prospects for the future. PMID:21930566

  12. Scalar field evolution in Gauss-Bonnet black holes

    SciTech Connect

    Abdalla, E.; Konoplya, R.A.; Molina, C.

    2005-10-15

    It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant {lambda} and the Gauss-Bonnet coupling {alpha} is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on {alpha}, even though the black hole metric contains {alpha} as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.

  13. Stochastic Gauss equations

    NASA Astrophysics Data System (ADS)

    Pierret, Frédéric

    2016-02-01

    We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.

  14. Microsecond-Scale Timing Precision in Rodent Trigeminal Primary Afferents

    PubMed Central

    Bale, Michael R.; Campagner, Dario; Erskine, Andrew

    2015-01-01

    Communication in the nervous system occurs by spikes: the timing precision with which spikes are fired is a fundamental limit on neural information processing. In sensory systems, spike-timing precision is constrained by first-order neurons. We found that spike-timing precision of trigeminal primary afferents in rats and mice is limited both by stimulus speed and by electrophysiological sampling rate. High-speed video of behaving mice revealed whisker velocities of at least 17,000°/s, so we delivered an ultrafast “ping” (>50,000°/s) to single whiskers and sampled primary afferent activity at 500 kHz. Median spike jitter was 17.4 μs; 29% of neurons had spike jitter < 10 μs. These results indicate that the input stage of the trigeminal pathway has extraordinary spike-timing precision and very high potential information capacity. This timing precision ranks among the highest in biology. PMID:25878266

  15. A monolithic time stretcher for precision time recording

    SciTech Connect

    Varner, Gary S.

    2007-04-20

    Identifying light mesons which contain only up/down quarks (pions) from those containing a strange quark (kaons) over the typical meter length scales of a particle physics detector requires instrumentation capable of measuring flight times with a resolution on the order of 20ps. In the last few years a large number of inexpensive, multi-channel Time-to-Digital Converter (TDC) chips have become available. These devices typically have timing resolution performance in the hundreds of ps regime. A technique is presented that is a monolithic version of ``time stretcher'' solution adopted for the Belle Time-Of-Flight system to address this gap between resolution need and intrinsic multi-hit TDC performance.

  16. Precision frequency synthesizing sources with excellent time/frequency performances

    NASA Technical Reports Server (NTRS)

    Zhou, Liren; Lin, Hai

    1994-01-01

    Precision frequency synthesizing sources are needed in the time / frequency measuring system, atomic frequency standards, telemetry, communication, and radar systems. This kind of frequency synthesizing source possesses high frequency accuracy and excellent long term and short term frequency stability. Several precision frequency synthesizing sources developed by Beijing Institute of Radio Metrology and Measurement (BIRMM) which have been successfully applied to the time / frequency measuring system, atomic frequency standards system, and radar system are described. In addition, the working principle, implementation approach, and the main technical specifications of the frequency synthesizing sources are also given.

  17. Distributed high-precision time transfer through passive optical networks

    NASA Astrophysics Data System (ADS)

    Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping

    2014-09-01

    We propose a one-point to multipoint distributed time transfer through passive optical networks using a time division multiple access (TDMA) based two-way time transfer. The clock at each clock user node is, in turn, compared with the high-precision reference clock at a master node by a two-way time transfer during assigned subperiods. The corresponding TDMA control protocol and time transfer units for the proposed scheme are designed and implemented. A 1×8 experimental system with a 20 km single-mode fiber in each subpath is demonstrated. The results show that a standard deviation of <60 ps can be reached in each comparison subperiod.

  18. GHS Clock, a New Device for Precise Timing

    NASA Astrophysics Data System (ADS)

    Hayamizu, Tsutomu; Geshiro, Hiroyuki; Sôma, Mitsuru

    2000-12-01

    The Japanese shortwave time signals JJY will be shut down on 2001 March 31st. Astronomers who have been using JJY are seeking alternative methods for precise timing. The authors designed equipment, called the GHS Clock, that can be used with inexpensive GPS receivers to produce both an LED flash and a pip sound at the beginning of each second. Tests show that this device is accurate to about a microsecond.

  19. A precise GPS-based time and frequency system

    NASA Technical Reports Server (NTRS)

    Mcnabb, Jack; Fossler, Earl

    1993-01-01

    An approach to implementing a compact, highly reliable and precise Master Time and Frequency subsystem usable in a variety of applications is described. These applications include, among others, Satellite Ground Terminals, Range Timing Stations, Communications Terminals, and Power Station Timing subsystems. All time and frequency output signals are locked to Universal Time via the GPS Satellite system. The system provides for continued output of precise signals in the event of GPS signal interruption from antenna or lead-in breakage or other causes. Cost/performance tradeoffs affecting system accuracy over the short, medium, and long term are discussed. A unique approach to redundant system design provides an architecture with the reliability advantage of triple-redundant majority voting and the cost advantages of dual-redundant elements. The system can be configured to output a variety of precise time and frequency signals and the design can be tailored to output as few, or as many, types and quantities of signals as are required by the application.

  20. (abstract) Precision Time and Frequency Transfer Utilizing SONET OC-3

    NASA Technical Reports Server (NTRS)

    Stein, Sam; Calhoun, Malcom; Kuhnle, Paul; Sydnor, Richard; Gifford, Al

    1996-01-01

    An innovative method of distributing precise time and reference frequency to users located several kilometers from a frequency standard and master clock has been developed by the Timing Solutions Corporation of Boulder, CO. The Optical Two-Way Time Transfer System (OTWTTS) utilizes a commercial SONET OC-3 facility interface to physically connect a master unit to multiple slave units at remote locations. Optical fiber is a viable alternative to standard copper cable and microwave transmission. This paper discusses measurements of frequency and timing stability over the OTWTTS.

  1. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  2. Department of Defense Precise Time and Time Interval program improvement plan

    NASA Technical Reports Server (NTRS)

    Bowser, J. R.

    1981-01-01

    The United States Naval Observatory is responsible for ensuring uniformity in precise time and time interval operations including measurements, the establishment of overall DOD requirements for time and time interval, and the accomplishment of objectives requiring precise time and time interval with minimum cost. An overview of the objectives, the approach to the problem, the schedule, and a status report, including significant findings relative to organizational relationships, current directives, principal PTTI users, and future requirements as currently identified by the users are presented.

  3. Proceedings of the Fourth Precise Time and Time Interval Planning Meeting

    NASA Technical Reports Server (NTRS)

    Acrivos, H. N. (Compiler); Wardrip, S. C. (Compiler)

    1972-01-01

    The proceedings of a conference on Precise Time and Time Interval Planning are presented. The subjects discussed include the following: (1) satellite timing techniques, precision frequency sources, and very long baseline interferometry, (2) frequency stabilities and communications, and (3) very low frequency and ultrahigh frequency propagation and use. Emphasis is placed on the accuracy of time discrimination obtained with time measuring equipment and specific applications of time measurement to military operations and civilian research projects.

  4. Precise inhibition is essential for microsecond interaural time difference coding

    NASA Astrophysics Data System (ADS)

    Brand, Antje; Behrend, Oliver; Marquardt, Torsten; McAlpine, David; Grothe, Benedikt

    2002-05-01

    Microsecond differences in the arrival time of a sound at the two ears (interaural time differences, ITDs) are the main cue for localizing low-frequency sounds in space. Traditionally, ITDs are thought to be encoded by an array of coincidence-detector neurons, receiving excitatory inputs from the two ears via axons of variable length (`delay lines'), to create a topographic map of azimuthal auditory space. Compelling evidence for the existence of such a map in the mammalian lTD detector, the medial superior olive (MSO), however, is lacking. Equally puzzling is the role of a-temporally very precise-glycine-mediated inhibitory input to MSO neurons. Using in vivo recordings from the MSO of the Mongolian gerbil, we found the responses of ITD-sensitive neurons to be inconsistent with the idea of a topographic map of auditory space. Moreover, local application of glycine and its antagonist strychnine by iontophoresis (through glass pipette electrodes, by means of an electric current) revealed that precisely timed glycine-controlled inhibition is a critical part of the mechanism by which the physiologically relevant range of ITDs is encoded in the MSO. A computer model, simulating the response of a coincidence-detector neuron with bilateral excitatory inputs and a temporally precise contralateral inhibitory input, supports this conclusion.

  5. Development of a new device for precise timing

    NASA Astrophysics Data System (ADS)

    Hayamizu, Tsutomu; Soma, Mitsuru; Geshiro, Hiroyuki; Hashiguchi, Takashi

    2001-09-01

    The Japanese shortwave time signals JJY were shut down on 2001 March 31st. Astronomers who have been using JJY are seeking alternative methods for precise timing. We designed equipment, called the GHS Clock, that can be used with inexpensive GPS receivers to produce both an LED flash and a pip sound at the beginning of each second. According to the GPS receiver manual, this device has an accuracy better than 500 nano-seconds, and our tests show that it usually has an accuracy better than 200 nano-seconds.

  6. On the precision of automated activation time estimation

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.

    1988-01-01

    We examined how the assignment of local activation times in epicardial and endocardial electrograms is affected by sampling rate, ambient signal-to-noise ratio, and sinx/x waveform interpolation. Algorithms used for the estimation of fiducial point locations included dV/dtmax, and a matched filter detection algorithm. Test signals included epicardial and endocardial electrograms overlying both normal and infarcted regions of dog myocardium. Signal-to-noise levels were adjusted by combining known data sets with white noise "colored" to match the spectral characteristics of experimentally recorded noise. For typical signal-to-noise ratios and sampling rates, the template-matching algorithm provided the greatest precision in reproducibly estimating fiducial point location, and sinx/x interpolation allowed for an additional significant improvement. With few restrictions, combining these two techniques may allow for use of digitization rates below the Nyquist rate without significant loss of precision.

  7. Proceedings of the Eleventh Annual Precise Time and Time Interval (PTTI) Application and Planning Meeting. [conference

    NASA Technical Reports Server (NTRS)

    Wardrip, S. C. (Editor)

    1979-01-01

    Thirty eight papers are presented addressing various aspects of precise time and time interval applications. Areas discussed include: past accomplishments; state of the art systems; new and useful applications, procedures, and techniques; and fruitful directions for research efforts.

  8. High-Precision Timing of Several Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Ferdman, R. D.; Stairs, I. H.; Backer, D. C.; Ramachandran, R.; Demorest, P.; Nice, D. J.; Lyne, A. G.; Kramer, M.; Lorimer, D.; McLaughlin, M.; Manchester, D.; Camilo, F.; D'Amico, N.; Possenti, A.; Burgay, M.; Joshi, B. C.; Freire, P. C.

    2004-12-01

    The highest precision pulsar timing is achieved by reproducing as accurately as possible the pulse profile as emitted by the pulsar, in high signal-to-noise observations. The best profile reconstruction can be accomplished with several-bit voltage sampling and coherent removal of the dispersion suffered by pulsar signals as they traverse the interstellar medium. The Arecibo Signal Processor (ASP) and its counterpart the Green Bank Astronomical Signal Processor (GASP) are flexible, state-of-the-art wide-bandwidth observing systems, built primarily for high-precision long-term timing of millisecond and binary pulsars. ASP and GASP are in use at the 300-m Arecibo telescope in Puerto Rico and the 100-m Green Bank Telescope in Green Bank, West Virginia, respectively, taking advantage of the enormous sensitivities of these telescopes. These instruments result in high-precision science through 4 and 8-bit sampling and perform coherent dedispersion on the incoming data stream in real or near-real time. This is done using a network of personal computers, over an observing bandwidth of 64 to 128 MHz, in each of two polarizations. We present preliminary results of timing and polarimetric observations with ASP/GASP for several pulsars, including the recently-discovered relativistic double-pulsar binary J0737-3039. These data are compared to simultaneous observations with other pulsar instruments, such as the new "spigot card" spectrometer on the GBT and the Princeton Mark IV instrument at Arecibo, the precursor timing system to ASP. We also briefly discuss several upcoming observations with ASP/GASP.

  9. Proceedings of the 7th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Proceedings contain the papers presented at the Seventh Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting and the edited record of the discussion period following each paper. This meeting provided a forum to promote more effective, efficient, economical and skillful applications of PTTI technology to the many problem areas to which PTTI offers solutions. Specifically the purpose of the meeting is to: disseminate, coordinate, and exchange practical information associated with precise time and frequency; acquaint systems engineers, technicians and managers with precise time and frequency technology and its applications; and review present and future requirements for PTTI.

  10. Local troposphere augmentation for real-time precise point positioning

    NASA Astrophysics Data System (ADS)

    Shi, Junbo; Xu, Chaoqian; Guo, Jiming; Gao, Yang

    2014-12-01

    The IGS real-time service (RTS) enables real-time precise point positioning (PPP) at a global scale. A long convergence time however is still a challenging factor. In order to reduce the convergence time, external troposphere corrections could be introduced to remove the troposphere effects on the coordinate solution. This paper proposes the use of a local troposphere model to augment real-time PPP. First, undifferenced observations from a network of multiple stations are processed to estimate the station-based troposphere zenith wet delay (ZWD). A set of local troposphere fitting coefficients are then derived using a proposed optimal fitting model. Finally, the determined troposphere fitting coefficients are broadcast to users to reduce the convergence time in the user solution. A continuous operating reference station (CORS) network is utilized to assess the performance of the proposed approach under quiet and active troposphere conditions. The numerical results show that the overall fitting precisions of the local troposphere model can reach 1.42 and 1.05 cm under the two troposphere conditions. The convergence time of the positioning solutions, especially the height solution, can be greatly reduced using the local troposphere model. The horizontal accuracy of 9.2 cm and the vertical accuracy of 10.1 cm are obtainable under the quiet troposphere condition after 20 min of initialization time, compared to the 14.7 cm horizontal and 21.5 cm vertical accuracies in the conventional troposphere estimation approach. Moreover, the horizontal accuracies of 13.0 cm and the vertical accuracies of 12.4 cm have also been obtained after 20 min under the active troposphere condition.

  11. Precise Time Synchronisation and Ranging in Nano-Satellite Swarms

    NASA Astrophysics Data System (ADS)

    Laabs, Martin; Plettemeier, Dirk

    2015-04-01

    Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at

  12. National Ignition Campaign (NIC) Precision Tuning Series Shock Timing Experiments

    SciTech Connect

    Robey, H F; Celliers, P M

    2011-07-19

    A series of precision shock timing experiments have been performed on NIF. These experiments continue to adjust the laser pulse shape and employ the adjusted cone fraction (CF) in the picket (1st 2 ns of the laser pulse) as determined from the re-emit experiment series. The NIF ignition laser pulse is precisely shaped and consists of a series of four impulses, which drive a corresponding series of shock waves of increasing strength to accelerate and compress the capsule ablator and fuel layer. To optimize the implosion, they tune not only the strength (or power) but also, to sub-nanosecond accuracy, the timing of the shock waves. In a well-tuned implosion, the shock waves work together to compress and heat the fuel. For the shock timing experiments, a re-entrant cone is inserted through both the hohlraum wall and the capsule ablator allowing a direct optical view of the propagating shocks in the capsule interior using the VISAR (Velocity Interferometer System for Any Reflector) diagnostic from outside the hohlraum. To emulate the DT ice of an ignition capsule, the inside of the cone and the capsule are filled with liquid deuterium.

  13. Coherence times of precise depth controlled NV centers in diamond

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Zhang, Wenlong; Zhang, Jian; You, Jie; Li, Yan; Guo, Guoping; Feng, Fupan; Song, Xuerui; Lou, Liren; Zhu, Wei; Wang, Guanzhong

    2016-03-01

    We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precise depth control using oxidative etching at 580 °C in air. By successive nanoscale etching, NV centers could be brought close to the diamond surface step by step, which enabled us to track the evolution of the number of NV centers remaining in the chip and to study the depth dependence of coherence times of NV centers with diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in the last about 22 nm before they finally disappeared, which revealed a critical depth for the influence of a rapid fluctuating surface spin bath. Moreover, by using the slow etching method combined with low-energy nitrogen implantation, NV centers with depths shallower than the initially implanted depths can be generated, which are preferred for detecting external spins with higher sensitivity.

  14. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of

  15. Real-time precision concentration measurement for flowing liquid solutions

    NASA Astrophysics Data System (ADS)

    Krishna, V.; Fan, C. H.; Longtin, J. P.

    2000-10-01

    The precise, real-time measurement of liquid concentration is important in fundamental research, chemical analysis, mixing processes, and manufacturing, e.g., in the food and semiconductor industries. This work presents a laser-based, noninvasive technique to measure concentration changes of flowing liquids in real time. The essential components in the system include a 5 mW laser diode coupled to a single-mode optical fiber, a triangular optical cell, and a high-resolution beam position sensor. The instrument provides a large range of concentration measurement, typically 0%-100% for binary liquid mixtures, while providing a resolution on the order of 0.05% concentration or better. The experimental configuration is small, reliable, and inexpensive. Results are presented for NaCl and MgCl2 aqueous solutions with concentrations ranging from 0% to 25%, with very good agreement found between measured and true concentrations.

  16. The 26th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard (Editor)

    1995-01-01

    This document is a compilation of technical papers presented at the 26th Annual PTTI Applications and Planning Meeting. Papers are in the following categories: (1) Recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; (2) International and transnational applications of Precise Time and Time Interval technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; (3) Applications of Precise Time and Time Interval technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; (4) Applications of PTTI technology to evolving military communications and navigation systems; and (5) Dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.

  17. Noncoaxial Bessel-Gauss beams.

    PubMed

    Huang, Chaohong; Zheng, Yishu; Li, Hanqing

    2016-04-01

    We proposed a new family of noncoaxial Gauss-truncated Bessel beams through multiplying conventional symmetrical Bessel beams by a noncoaxial Gauss function. These beams can also be regarded as the exponential-truncated version of Bessel-Gauss beams since they can be transformed into the product of Bessel-Gauss beams and an exponential window function along a certain Cartesian axis. The closed-form solutions of the angular spectra and paraxial propagation of these beams were derived. These beams have asymmetrical intensity distributions and carry the same orbit angular momentum per photon as the corresponding Bessel-Gauss beams. While propagating along the z axis, the mth (m≠0) noncoaxial Bessel-Gauss beams rotate their intensity distributions and the mth-order vortex at the beam center has a transverse shift along the direction perpendicular to the offset axis. Depending on the product of the transverse scalar factor of the Bessel beams and the offset between the Gaussian window function and the center of the Bessel beams, the noncoaxial Bessel-Gauss beams can produce unit vortices with opposite signs in pairs during propagation. PMID:27140757

  18. The 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    SciTech Connect

    Sydnor, R.L.

    1990-05-01

    Papers presented at the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are compiled. The following subject areas are covered: Rb, Cs, and H-based frequency standards and cryogenic and trapped-ion technology; satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunications; telecommunications, power distribution, platform positioning, and geophysical survey industries; military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MIL<550>STAR, LORAN, and synchronous communication satellites.

  19. The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1994-01-01

    Papers in the following categories are presented: recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; international and transnational applications of precise time and time interval (PTTI) technology with emphasis on satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunication; applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; application of PTTI technology to evolving military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.

  20. The 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1990-01-01

    Papers presented at the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are compiled. The following subject areas are covered: Rb, Cs, and H-based frequency standards and cryogenic and trapped-ion technology; satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunications; telecommunications, power distribution, platform positioning, and geophysical survey industries; military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communication satellites.

  1. Proceedings of the 8th Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Proceedings contain the papers presented at the Eight Annual Precise Time and Tme Interval PTTI Applications and Planning Meeting. The edited record of the discussions following the papers and the panel discussions are also included. This meeting provided a forum for the exchange of information on precise time and frequency technology among members of the scientific community and persons with program applications. The 282 registered attendees came from various U.S. Government agencies, private industry, universities and a number of foreign countries were represented. In this meeting, papers were presented that emphasized: (1) definitions and international regulations of precise time sources and users, (2) the scientific foundations of Hydrogen Maser standards, the current developments in this field and the application experience, and (3) how to measure the stability performance properties of precise standards. As in the previous meetings, update and new papers were presented on system applications with past, present and future requirements identified.

  2. Investigating MAI's Precision: Single Interferogram and Time Series Filtering

    NASA Astrophysics Data System (ADS)

    Bechor Ben Dov, N.; Herring, T.

    2010-12-01

    Multiple aperture InSAR (MAI) is a technique to obtain along-track displacements from InSAR phase data. Because InSAR measurements are insensitive to along-track displacements, it is only possible to retrieve them using none-interferometric approaches, either pixel-offset tracking or using data from different orbital configurations and assuming continuity/ displacement model. These approaches are limited by precision and data acquisition conflicts, respectively. MAI is promising in this respect as its precision is better than the former and its data is available whether additional acquisitions are there or not. Here we study the MAI noise and develop a filter to reduce it. We test the filtering with empirical noise and simulated signal data. Below we describe the filtered results single interferogram precision, and a Kalman filter approach for MAI time series. We use 14 interferograms taken over the larger Los Angeles/San Gabrial Mountains area in CA. The interferograms include a variety of decorrelation sources, both terrain-related (topographic variations, vegetation and agriculture), and imaging-related (spatial and temporal baselines of 200-500m and 1-12 months, respectively). Most of the pixels are in the low to average coherence range (below 0.7). The data were collected by ESA and made available by the WInSAR consortium. We assume the data contain “zero” along-track signal (less then the theoretical 4 cm for our coherence range), and use the images as 14 dependent realizations of the MAI noise. We find a wide distribution of phase values σ = 2-3 radians (wrapped). We superimpose a signal on our MAI noise interferograms using along-track displacement (-88 - 143 cm) calculated for the 1812 Wrightwood earthquake. To analyze single MAI interferograms, we design an iterative quantile-based filter and test it on the noise+signal MAI interferograms. The residuals reveal the following MAI noise characteristics: (1) a constant noise term, up to 90 cm (2) a

  3. Precision Pulsar Timing with NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Majid, Walid; Lazio, Joseph; Teitelbaum, Lawrence

    2015-08-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We have developed a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations over the next few years.

  4. Developing Precision Pulsar Timing Capability for the DSN

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.; Kuiper, T. B.; Lazio, J.; Monroe, R.; Preston, R. A.; Spolaor, S.; Teitelbaum, L.; Trinh, J.

    2014-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We are currently developing a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for pilot observations scheduled later this year. This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under the Research and Technology Development Program, under a contract with the National Aeronautics and Space Administration.

  5. Proceedings of the Sixteenth Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The effects of ionospheric and tropospheric propagation on time and frequency transfer, advances in the generation of precise time and frequency, time transfer techniques and filtering and modeling were among the topics emphasized. Rubidium and cesium frequency standard, crystal oscillators, masers, Kalman filters, and atomic clocks were discussed.

  6. Precision cosmology with time delay lenses: high resolution imaging requirements

    NASA Astrophysics Data System (ADS)

    Meng, Xiao-Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtotpropto r-γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of

  7. Precision cosmology with time delay lenses: High resolution imaging requirements

    SciTech Connect

    Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  8. Compact, Low-power and Precision Timing Photodetector Readout

    SciTech Connect

    Varner, Gary S.; Ruckman, Larry L.; Schwiening, Jochen; Vavra, Jaroslav; /SLAC

    2011-06-14

    Photodetector readout for next generation high event rate particle identification and single-photon detection requires a digitizer capable of integrated recording of dense arrays of sensor elements with high analog bandwidth (precision timing) and large record depth, in a cost-effective, compact and low-power way. Simply stated, one cannot do better than having a high-fidelity 'oscilloscope on a chip' for every sensor channel. A firs version of the Buffered Large Analog Bandwidth (BLAB1) ASIC has been designed based upon the lessons learned from the development of the Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (LABRADOR) ASIC. While this LABRADOR ASIC has been very successful and forms the readout basis of a generation of new, large-scale radio neutrino detectors, its limited sampling depth is a major drawback. To address this shortcoming, a prototype intended for photodetector readout has been designed and fabricated with 64k deep sampling at multi-GSa/s operation. An evaluation system has been constructed for instrumentation of Time-Of-Propagation (TOP) and focusing DIRC prototypes and test results will be reported.

  9. Accelerating Airy-Gauss-Kummer localized wave packets

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi; Huang, Tingwen

    2014-01-01

    A general approach to generating three-dimensional nondiffracting spatiotemporal solutions of the linear Schrödinger equation with an Airy-beam time-dependence is reported. A class of accelerating optical pulses with the structure of Airy-Gauss-Kummer vortex beams is obtained. Our results demonstrate that the optical field contributions to the Airy-Gauss-Kummer accelerating optical wave packets of the cylindrical symmetry can be characterized by the radial and angular mode numbers.

  10. Optical timing receiver for the NASA laser ranging system. Part 2: High precision time interval digitizer

    NASA Technical Reports Server (NTRS)

    Leskovar, B.; Turko, B.

    1977-01-01

    The development of a high precision time interval digitizer is described. The time digitizer is a 10 psec resolution stop watch covering a range of up to 340 msec. The measured time interval is determined as a separation between leading edges of a pair of pulses applied externally to the start input and the stop input of the digitizer. Employing an interpolation techniques and a 50 MHz high precision master oscillator, the equivalent of a 100 GHz clock frequency standard is achieved. Absolute accuracy and stability of the digitizer are determined by the external 50 MHz master oscillator, which serves as a standard time marker. The start and stop pulses are fast 1 nsec rise time signals, according to the Nuclear Instrument means of tunnel diode discriminators. Firing level of the discriminator define start and stop points between which the time interval is digitized.

  11. Proceedings of the 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1992-01-01

    A compilation of technical papers, from the 23rd annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, is presented. Papers were given in the following categories: (1) developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; (2) international and transnational applications of PTTI technology with emphasis on satellite laser tracking networks, GLONASS timing, comparison of national time scales and international communications; (3) applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; (4) applications of PTTI technology to evolving military communications and navigation systems; and (5) dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, Loran, and synchronous communications satellites.

  12. The 24th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L.

    1993-01-01

    A compilation of technical papers presented at the 24th Precise Time and Time Interval (PTTI) Applications and Planning Meeting held in Dec. 1992 is presented. Papers are in the following categories: recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; international and transnational applications of PTTI technology with emphasis on satellite laser tracking networks, GLONASS timing, intercomparison of national time scales, and international telecommunications; applications of PTTI technology to the telecommunications, power distribution, and platform positioning, and geophysical survey industries; applications of PTTI technology to evolving military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, Loran, and synchronous communications satellites.

  13. Proceedings of the 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    SciTech Connect

    Sydnor, R.L.

    1992-07-01

    A compilation of technical papers, from the 23rd annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, is presented. Papers were given in the following categories: (1) developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; (2) international and transnational applications of PTTI technology with emphasis on satellite laser tracking networks, GLONASS timing, comparison of national time scales and international communications; (3) applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; (4) applications of PTTI technology to evolving military communications and navigation systems; and (5) dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, Loran, and synchronous communications satellites.

  14. Proceedings of the 30th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A. (Editor)

    1999-01-01

    This document is a compilation of technical papers presented at the 30th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting held 1-3 December 1998 at the Hyatt Regency Hotel at Reston Town Center, Reston, Virginia. Papers are in the following categories: 1) Recent developments in rubidium, cesium, and hydrogen-based atomic frequency standards, and in trapped-ion and space clock technology; 2) National and international applications of PTTI technology with emphasis on GPS and GLONASS timing, atomic time scales, and telecommunications; 3) Applications of PTTI technology to evolving military navigation and communication systems; geodesy; aviation; and pulsars; and 4) Dissemination of precise time and frequency by means of GPS, geosynchronous communication satellites, computer networks, WAAS, and LORAN.

  15. 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1996-01-01

    This document is a compilation of technical papers presented at the 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, held November 29 - December 1, 1995 at San Diego, CA. Papers are in the following categories: Recent developments in rubidium, cesium, and hydrogen-based frequency standards; and in cryogenic and trapped-ion technology; International and transnational applications of PTTI technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; Applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; Applications of PTTI technology to evolving military communications and navigation systems; and Dissemination of precise time and frequency by means of Global Positioning System (GPS), Global Satellite Navigation System (GLONASS), MILSTAR, LORAN, and synchronous communications satellites.

  16. Proceedings of the Thirteenth Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Wardrip, S. C.

    1982-01-01

    Proceedings of an annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are summarized. A transparent view of the state-of-the-art, an opportunity to express needs, a view of important future trends, and a review of relevant past accomplishments were considered for PTTI managers, systems engineers, and program planner. Specific aims were: to provide PTTI users with new and useful applications, procedures, and techniques; to allow the PTTI researcher to better assess fruitful directions for research efforts.

  17. Multi-GNSS real-time precise orbit/clock/UPD products and precise positioning service at GFZ

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Liu, Yang; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2016-04-01

    The rapid development of multi-constellation GNSSs (Global Navigation Satellite Systems, e.g., BeiDou, Galileo, GLONASS, GPS) and the IGS (International GNSS Service) Multi-GNSS Experiment (MGEX) bring great opportunities and challenges for real-time precise positioning service. In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) data streams including stations all over the world. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70%, while the positioning accuracy is improved by about 25%. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeters are still achievable in the horizontal components even with 40° elevation cutoff.

  18. Colon Cancer Risk Assessment - Gauss Program

    Cancer.gov

    An executable file (in GAUSS) that projects absolute colon cancer risk (with confidence intervals) according to NCI’s Colorectal Cancer Risk Assessment Tool (CCRAT) algorithm. GAUSS is not needed to run the program.

  19. Self-similar propagation of Hermite-Gauss water-wave pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2016-01-01

    We demonstrate both theoretically and experimentally propagation dynamics of surface gravity water-wave pulses, having Hermite-Gauss envelopes. We show that these waves propagate self-similarly along an 18-m wave tank, preserving their general Hermite-Gauss envelopes in both the linear and the nonlinear regimes. The measured surface elevation wave groups enable observing the envelope phase evolution of both nonchirped and linearly frequency chirped Hermite-Gauss pulses, hence allowing us to measure Gouy phase shifts of high-order Hermite-Gauss pulses for the first time. Finally, when increasing pulse amplitude, nonlinearity becomes essential and the second harmonic of Hermite-Gauss waves was observed. We further show that these generated second harmonic bound waves still exhibit self-similar Hermite-Gauss shapes along the tank. PMID:26871174

  20. A COMPARISON OF COLLAPSING AND PRECISE ARRIVAL-TIME MAPPING OF MICROSEISMICITY

    SciTech Connect

    RUTLEDGE, JAMES T.; JONES, ROB H.

    2007-01-05

    In this paper they compare the improvements in microseismic location images obtained using precise arrival times with that obtained by the collapsing technique. They first collapse the initial locations for a hydraulic-fracture data set from the Carthage Cotton Valley gas field, they then use the precise-arrival-time locations as measure for the effectiveness of the collapsing. Finally, they examine the changes when applying collapsing to the precise-arrival-time locations.

  1. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  2. Braneworld dynamics in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki; Sahni, Varun; Shtanov, Yuri

    2007-11-15

    We discuss the cosmological evolution of a braneworld in five-dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be spacelike as well as timelike. The resulting equations of motion have the form of a cubic equation in the (H{sup 2},({rho}+{sigma}){sup 2}) plane, where {sigma} is the brane tension and {rho} is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantomlike so that w<-1. At late times, this branch approaches de Sitter space (w=-1) and avoids the big-rip singularities usually present in phantom models. For a timelike extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.

  3. Real-time precision measuring device of tree diameter growth

    NASA Astrophysics Data System (ADS)

    Guo, Mingming; Chen, Aijun; Li, Dongsheng; Liu, Nan; Yao, Jingyuan

    2016-01-01

    DBH(diameter at breast height) is an important factor to reflect of the quality of plant growth, also an important parameter indispensable in forest resources inventory and forest carbon sink, the accurate measurement of DBH or not is directly related to the research of forest resources inventory and forest carbon sink. In this paper, the principle and the mathematical model of DBH measurement device were introduced, the fixture measuring device and the hardware circuit for this tree diameter were designed, the measurement software programs were compiled, and the precision measuring device of tree diameter growth was developed. Some experiments with Australia fir were conducted. Based on experiment data, the correlations among the DBH variation of Australian fir, the environment temperature, air humility and PAR(photosynthetically active radiation) were obtained. The effects of environmental parameters (environment temperature, air humility and PAR) on tree diameter were analyzed. Experimental results show that there is a positive correlation between DBH variation of Australian fir and environment temperature, a negative correlation between DBH variation of Australian fir and air humility , so is PAR.

  4. Gauss-Bonnet gravitational baryogenesis

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    In this letter we study some variant forms of gravitational baryogenesis by using higher order terms containing the partial derivative of the Gauss-Bonnet scalar coupled to the baryonic current. This scenario extends the well known theory that uses a similar coupling between the Ricci scalar and the baryonic current. One appealing feature of the scenario we study is that the predicted baryon asymmetry during a radiation domination era is non-zero. We calculate the baryon to entropy ratio for the Gauss-Bonnet term and by using the observational constraints we investigate which are the allowed forms of the R + F (G) gravity controlling the evolution. Also we briefly discuss some alternative higher order terms that can generate a non-zero baryon asymmetry, even in the conformal invariance limit.

  5. Black strings in Gauss-Bonnet theory are unstable

    NASA Astrophysics Data System (ADS)

    Giacomini, Alex; Oliva, Julio; Vera, Aldo

    2015-05-01

    We report the existence of unstable s-wave modes for black strings in Gauss-Bonnet theory (which is quadratic in the curvature) in seven dimensions. This theory admits analytic uniform black strings that are, in the transverse section, black holes of the same Gauss-Bonnet theory in six dimensions. All the components of the perturbation can be written in terms of a single component and its derivatives. For this, we find a master equation that admits bounded solutions provided the characteristic time of the exponential growth of the perturbation is related to the wave number along the extra direction, as in general relativity. It is known that these configurations suffer from a thermal instability; therefore, the results presented here provide evidence for the Gubser-Mitra conjecture in the context of Gauss-Bonnet theory. Because of the nontriviality of the curvature of the background, all of the components of the metric perturbation appear in the linearized equations. Similar to spherical black holes, the black strings should be obtained as the short-distance limit r ≪α1 /2 of the black-string solution of Einstein-Gauss-Bonnet theory (which is not known analytically), where α is the Gauss-Bonnet coupling.

  6. Precise GPS ephemerides from DMA and NGS tested by time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine

    1992-01-01

    It was shown that the use of the Defense Mapping Agency's (DMA) precise ephemerides brings a significant improvement to the accuracy of GPS time transfer. At present a new set of precise ephemerides produced by the National Geodetic Survey (NGS) has been made available to the timing community. This study demonstrates that both types of precise ephemerides improve long-distance GPS time transfer and remove the effects of Selective Availability (SA) degradation of broadcast ephemerides. The issue of overcoming SA is also discussed in terms of the routine availability of precise ephemerides.

  7. Precise space–time positioning for entanglement harvesting

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo; Sanders, Barry C.

    2016-04-01

    We explore the crucial role of relative space–time positioning between the two detectors in an operational two-party entanglement-harvesting protocol. Specifically we show that the protocol is robust if imprecision in spatial positioning and clock synchronization are much smaller than the spatial separation between the detectors and its light-crossing time thereof. This in principle guarantees robustness if the imprecision is comparable to a few times the size of the detectors, which suggests entanglement harvesting could be explored for tabletop experiments. On the other hand, keeping the effects of this imprecision under control would be demanding on astronomical scales.

  8. GPS navigation experiment using high precision GPS timing receivers

    NASA Technical Reports Server (NTRS)

    Buisson, J. A.; Oaks, O. J.; Lister, M. J.; Wardrip, S. C.; Leschiutta, S.; Galliano, P. G.; Cordara, D.; Pettiti, V.; Detoma, E.; Dachel, P.

    1985-01-01

    Global Positioning System (GPS) Time Transfer receivers were developed by the Naval Research Laboratory (NRL) to provide synchronization for the NASA Global Laser Tracking Network (GLTN). The capabilities of the receiver are being expanded mainly through software modification to: Demonstrate the position location capabilities of a single channel receiver unsign the GPS C/A code; and Demonstrate the time/navigation capability of the receiver onboard a moving platform, by sequential tracking of GPS satellites.

  9. Reheating in Gauss-Bonnet-coupled inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Longden, Chris; Dimopoulos, Konstantinos

    2016-07-01

    We investigate the feasibility of models of inflation with a large Gauss-Bonnet coupling at late times, which have been shown to modify and prevent the end of inflation. Despite the potential of Gauss-Bonnet models in predicting favorable power spectra, capable of greatly lowering the tensor-to-scalar ratio compared to now-disfavored models of standard chaotic inflation, it is important to also understand in what context it is possible for postinflationary (p)reheating to proceed and hence recover an acceptable late-time cosmology. We argue that in the previously studied inverse power law coupling case, reheating cannot happen due to a lack of oscillatory solutions for the inflaton, and that neither instant preheating nor gravitational particle production would avoid this problem due to the persistence of the inflaton's energy density, even if it were to partially decay. Hence we proceed to define a minimal generalization of the model which can permit perturbative reheating and study the consequences of this, including heavily modified dynamics during reheating and predictions of the power spectra.

  10. Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability

    ERIC Educational Resources Information Center

    von Oertzen, Timo; Boker, Steven M.

    2010-01-01

    This paper investigates the precision of parameters estimated from local samples of time dependent functions. We find that "time delay embedding," i.e., structuring data prior to analysis by constructing a data matrix of overlapping samples, increases the precision of parameter estimates and in turn statistical power compared to standard…

  11. Framed 4-graphs: Euler tours, Gauss circuits and rotating circuits

    SciTech Connect

    Il'yutko, Denis P

    2011-09-30

    We consider connected finite 4-valent graphs with the structure of opposite edges at each vertex (framed 4-graphs). For any of such graphs there exist Euler tours, in travelling along which at each vertex we turn from an edge to a nonopposite one (rotating circuits); and at the same time, it is not true that for any such graph there exists an Euler tour passing from an edge to the opposite one at each vertex (a Gauss circuit). The main result of the work is an explicit formula connecting the adjacency matrices of the Gauss circuit and an arbitrary Euler tour. This formula immediately gives us a criterion for the existence of a Gauss circuit on a given framed 4-graph. It turns out that the results are also valid for all symmetric matrices (not just for matrices realisable by a chord diagram). Bibliography: 24 titles.

  12. N+1 formalism in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Torii, Takashi; Shinkai, Hisa-aki

    2008-10-15

    Towards the investigation of the full dynamics in a higher-dimensional and/or a stringy gravitational model, we present the basic equations of the Einstein-Gauss-Bonnet gravity theory. We show the (N+1)-dimensional version of the Arnowitt-Deser-Misner decomposition including Gauss-Bonnet terms, which shall be the standard approach to treat the space-time as a Cauchy problem. Because of the quasilinear property of the Gauss-Bonnet gravity, we find that the evolution equations can be in a treatable form in numerics. We also show the conformally transformed constraint equations for constructing the initial data. We discuss how the constraints can be simplified by tuning the powers of conformal factors. Our equations can be used both for timelike and spacelike foliations.

  13. Framed 4-graphs: Euler tours, Gauss circuits and rotating circuits

    NASA Astrophysics Data System (ADS)

    Il'yutko, Denis P.

    2011-09-01

    We consider connected finite 4-valent graphs with the structure of opposite edges at each vertex (framed 4-graphs). For any of such graphs there exist Euler tours, in travelling along which at each vertex we turn from an edge to a nonopposite one (rotating circuits); and at the same time, it is not true that for any such graph there exists an Euler tour passing from an edge to the opposite one at each vertex (a Gauss circuit). The main result of the work is an explicit formula connecting the adjacency matrices of the Gauss circuit and an arbitrary Euler tour. This formula immediately gives us a criterion for the existence of a Gauss circuit on a given framed 4-graph. It turns out that the results are also valid for all symmetric matrices (not just for matrices realisable by a chord diagram). Bibliography: 24 titles.

  14. Improved measurement precision in decay time-based phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Abou Nada, F.; Knappe, C.; Aldén, M.; Richter, M.

    2016-06-01

    This study comprises a continuation of the previous efforts of the authors to characterize different sources of errors in phosphor thermometry based on the determination of luminescence decays from thermographic phosphors. Whereas earlier investigations focused on point detectors utilizing different sensor technology, this work presents a comparison of four PMTs that are identical in terms of their product type. These detectors are supposedly identical, but the investigations revealed that their response is strictly individual. This study also shows a linear excitation energy dependence for the decay time of cadmium tungstate (CdWO4), the phosphor being used in this work. In addition, the potential influence of the intense and short fluorescence peak preceding the weaker and longer exponential decay in some phosphor materials was investigated using the electrical signal gating capability of the PMT. Finally, the evaluated decay time also appeared to be affected by the oscilloscope settings used when recording the phosphorescence signals. The presented results indicate that all operating parameters from the calibration measurement need to be rigorously reproduced in order to avoid systematic temperature errors in phosphor thermometry experiments that are based on reproducible measurements of the decay time. These results should be of more general interest also outside the phosphor community as the findings, presented herein, in principal concern all kinds of measurements that are dependent on reproducible measurements of signal shapes or time transients.

  15. Precise Real-Time Low Earth Orbitor Navigation With GPS

    NASA Technical Reports Server (NTRS)

    Bertiger, W.; Haines, B.; Kuang, D.; Lough, M.; Lichten, S.; Muellerschoen, R. J.; Vigue, Y.; Wu, S.

    1998-01-01

    Technology is currently available to support real-time on-board knowledge of the position of a low earth orbitor at the 5-15 meter level using the civilian broadcast GPS signal with sophisticated models and filtering techniques onboard the spacecraft.

  16. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  17. A General and Efficient Method for Incorporating Precise Spike Times in Globally Time-Driven Simulations

    PubMed Central

    Hanuschkin, Alexander; Kunkel, Susanne; Helias, Moritz; Morrison, Abigail; Diesmann, Markus

    2010-01-01

    Traditionally, event-driven simulations have been limited to the very restricted class of neuronal models for which the timing of future spikes can be expressed in closed form. Recently, the class of models that is amenable to event-driven simulation has been extended by the development of techniques to accurately calculate firing times for some integrate-and-fire neuron models that do not enable the prediction of future spikes in closed form. The motivation of this development is the general perception that time-driven simulations are imprecise. Here, we demonstrate that a globally time-driven scheme can calculate firing times that cannot be discriminated from those calculated by an event-driven implementation of the same model; moreover, the time-driven scheme incurs lower computational costs. The key insight is that time-driven methods are based on identifying a threshold crossing in the recent past, which can be implemented by a much simpler algorithm than the techniques for predicting future threshold crossings that are necessary for event-driven approaches. As run time is dominated by the cost of the operations performed at each incoming spike, which includes spike prediction in the case of event-driven simulation and retrospective detection in the case of time-driven simulation, the simple time-driven algorithm outperforms the event-driven approaches. Additionally, our method is generally applicable to all commonly used integrate-and-fire neuronal models; we show that a non-linear model employing a standard adaptive solver can reproduce a reference spike train with a high degree of precision. PMID:21031031

  18. High Precision Pulsar Timing: Effects of ISM Correction Schemes

    NASA Astrophysics Data System (ADS)

    Kunert, Willie; Verbiest, J. P. W.; Shannon, R.; Stinebring, D.

    2012-01-01

    Pulsar timing arrays are one of the leading methods in the search for gravitational waves (GWs). However a significant issue facing this method is the effect of the interstellar medium (ISM). There are multiple methodologies being used to correct for these effects but their efficacy has not been carefully studied. We conducted an initial study of biases induced by correcting for the interstellar medium. We simulated times of arrival (TOAs) with white noise and added ISM delays. We measure the ISM effects as is done with normal data, and created a model of these effects using polynomial fitting. This modeling method is most commonly used in the European Pulsar Timing Array. We then remove these measured ISM effects and compare final and initial TOAs. Ideally they should be the same; however, the differences between the 'corrected' TOAs and original TOAs reveal the weaknesses of this method. In preliminary results we concluded that the higher order polynomials do a better job, yet there is a limit as to how high an order one can use. We also found no significant systematic parameter bias induced by using this method. However, it is clear that certain parameters are more affected by this process of correction. The parameters most affected were the frequency and frequency derivative of the pulsar, but biases in these parameters are not important because the power due to them gets removed in the standard timing analysis. We are continuing this research by comparing and contrasting ISM correction schemes, as well as studying the actual behavior of the ISM in more detail. This research is supported by an NSF-PIRE and an NSF-AST grant.

  19. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2001-01-01

    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results

  20. Crafting a Gauss Gun Demonstration

    NASA Astrophysics Data System (ADS)

    Blodgett, Matthew E.; Blodgett, E. D.

    2006-12-01

    A Gauss Gun launches a ferromagnetic projectile using a pulsed electromagnet. This demonstration provides a nice counterpoint to the popular Thompson's jumping ring demonstration, which launches a nonferromagnetic ring via repulsion of an induced current. The pulsed current must be short enough in duration so that the projectile is not retarded by lingering current in the launch solenoid, but also large enough to provide a suitably impressive velocity. This project involved an iterative design process, as we worked through balancing all the different design criteria. We recommend it as a very nice electronics design project which will produce a very portable and enjoyable demonstration. AAPT sponsor Earl Blodgett.

  1. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

    PubMed

    Kiselev, Aleksei P; Plachenov, Alexandr B

    2016-04-01

    The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given. PMID:27140777

  2. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    NASA Astrophysics Data System (ADS)

    Desvignes, G.; Caballero, R. N.; Lentati, L.; Verbiest, J. P. W.; Champion, D. J.; Stappers, B. W.; Janssen, G. H.; Lazarus, P.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Mingarelli, C. M. F.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.

    2016-05-01

    We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 yr. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TEMPONEST yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semimajor axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler. However, we measure an average uncertainty of 80 per cent (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600-3053 and J1918-0642, implying pulsar and companion masses m_p=1.22_{-0.35}^{+0.5} M_{⊙}, m_c = 0.21_{-0.04}^{+0.06} M_{⊙} and m_p=1.25_{-0.4}^{+0.6} M_{⊙}, m_c = 0.23_{-0.05}^{+0.07} M_{⊙}, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909-3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600-3053 and J1909-3744.

  3. A real-time surface inspection system for precision steel balls based on machine vision

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s‑1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  4. The research of precision timing measurement in application of TDC_GP2 in laser ranging

    NASA Astrophysics Data System (ADS)

    Song, Bo; Zheng, Wei

    2013-09-01

    Laser ranging could measure the distance between laser range finder and detection target by calculate the flight time of laser. The laser of laser range finder adopt semiconductor pump laser of 1064nm, PerkinElmer C30659 APD was used in photoelectric detection circuit, STC89C52 MCU and the FPGA of XC3S400 were used as the core of control system. High precision time interval measurement is one of the most important techniques in laser ranging. In this paper, we adopt a high precision time interval measurement time to digital converter chip of ACAM corporation in Germany. TDC_GP2 is the next generation of Acam general-purpose TDCs, higher resolution and smaller package size make it ideal for cost sensitive industrial applications. We select the measurement range 2 of the TDC_GP2, and the maximum time resolution is 65ps. Digital TDCs use internal propagation delays of signals through gates to measure time intervals with very high precision. Through researching the working principle of TDC_GP2, hardware circuit diagram of TDC_GP2、measurement time diagram of TDC_GP2、the system software design of TDC_GP2, and applying in the different measuring distances and different time measurement temperatures, research shows that the precision of time measurement lies on the different measuring distances and different time measurement temperatures. In the end, we make some suggestions of improving the precision of time measurement.

  5. Accelerated expansion of the Universe in Gauss-Bonnet gravity

    SciTech Connect

    Dehghani, M.H.

    2004-09-15

    We show that in Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and without a cosmological constant, one can explain the acceleration of the expanding Universe. We first introduce a solution of the Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and no cosmological constant term in an empty (n+1)-dimensional bulk. This solution can generate a de Sitter spacetime with curvature n(n+1)/{l_brace}(n-2)(n-3) vertical bar {alpha} vertical bar {r_brace}. We show that an (n-1)-dimensional brane embedded in this bulk can have an expanding feature with acceleration. We also considered a four-dimensional brane world in a five-dimensional empty space with zero cosmological constant and obtain the modified Friedmann equations. The solution of these modified equations in matter-dominated era presents an expanding Universe with negative deceleration and positive jerk which is consistent with the recent cosmological data. We also find that for this solution, the 'n' th derivative of the scale factor with respect to time can be expressed only in terms of Hubble and deceleration parameters.

  6. A Time Projection Chamber for precision 239Pu(n,f) cross section measurement

    SciTech Connect

    Heffner, M

    2008-01-14

    High precision measurements of the {sup 239}Pu(n,f) cross section have been identified as important for the Global Nuclear Energy Partnership (GNEP) and other programs. Currently the uncertainty on this cross section is of the order 2-3% for neutron energies below 14 MeV and the goal is to reduce this to less than 1%. The Time Projection Chamber (TPC) has been identified as a possible tool to make this high precision measurement.

  7. What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

    PubMed

    Akolkar, Himanshu; Meyer, Cedric; Clady, Zavier; Marre, Olivier; Bartolozzi, Chiara; Panzeri, Stefano; Benosman, Ryad

    2015-03-01

    This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical

  8. Quartic - a Precise Time-Of Counter for the Atlas Forward Physics Project

    NASA Astrophysics Data System (ADS)

    Pinfold, James L.

    2010-04-01

    Precise ToF counters are employed by AFP to reduce pile-up background in the forward proton spectrometers. It is expected that at the highest LHC luminosity up to ~35 interactions occur at the same bunch crossing in ATLAS. A precision of the order of few mm (~10 ps) or better is required to adequately distinguish the vertex of interest - from which the unbroken scattered protons originate - from other pile-up vertices, with good efficiency. The development and testing of the QUARTIC precision ToF detector and its readout is described. This detector utilizes fused-silica radiators readout by Micro-Channel Plates Photomultipliers. The frontend readout electronics is based on the High Precision Time to Digital Converter (HPTDC).

  9. Dichotomy in perceptual learning of interval timing: calibration of mean accuracy and precision differ in specificity and time course.

    PubMed

    Sohn, Hansem; Lee, Sang-Hun

    2013-01-01

    Our brain is inexorably confronted with a dynamic environment in which it has to fine-tune spatiotemporal representations of incoming sensory stimuli and commit to a decision accordingly. Among those representations needing constant calibration is interval timing, which plays a pivotal role in various cognitive and motor tasks. To investigate how perceived time interval is adjusted by experience, we conducted a human psychophysical experiment using an implicit interval-timing task in which observers responded to an invisible bar drifting at a constant speed. We tracked daily changes in distributions of response times for a range of physical time intervals over multiple days of training with two major types of timing performance, mean accuracy and precision. We found a decoupled dynamics of mean accuracy and precision in terms of their time course and specificity of perceptual learning. Mean accuracy showed feedback-driven instantaneous calibration evidenced by a partial transfer around the time interval trained with feedback, while timing precision exhibited a long-term slow improvement with no evident specificity. We found that a Bayesian observer model, in which a subjective time interval is determined jointly by a prior and likelihood function for timing, captures the dissociative temporal dynamics of the two types of timing measures simultaneously. Finally, the model suggested that the width of the prior, not the likelihoods, gradually shrinks over sessions, substantiating the important role of prior knowledge in perceptual learning of interval timing. PMID:23076112

  10. Some aspects of improving Multi-GNSS real-time precise point positioning services

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ge, Maorong; Li, Xingxing; Schuh, Harald

    2016-04-01

    Multi-GNSS is expected to achieve a real-time precise point positioning service with better accuracy and reliability than GPS-only service. In this contribution, we address several critical challenges in implementing a GPS+GLONASS+BeiDou+Galileo service to provide global users with centimeter-level positioning in real-time based on the software system developed at GFZ. The specific issues of improving GLONASS orbit quality by resolving ambiguity over long baselines, estimation of inter-system/frequency biases, ambiguity resolution in real-time clock estimation and positioning, and computation efficiency are discussed and investigated in detail. Experimental validation is carried out based on the data streams of the IGS/MGEX network. The real-time orbit and clock products are assessed by comparison with the IGS/MGEX final products, and orbits are also assessed by overlapping day boundaries and satellite laser ranging. The phase bias (uncalibrated phase delay) products are evaluated by comparison with the post-processing results. It is demonstrated that multi-GNSS can contribute significantly to improving the global real-time precise point positioning service in terms of convergence time and accuracy. Keywords: Multi-GNSS, Real-Time, Precise Orbit Determination, Precise Point Positioning, Ambiguity Resolution, Inter-System/Frequency Bias, Algorithm Efficiency

  11. GPS/GLONASS time offset monitoring based on combined Precise Point Positioning (PPP) approach

    NASA Astrophysics Data System (ADS)

    Huang, G.; Zhang, Q.; Fu, W.; Guo, H.

    2015-06-01

    A new strategy is proposed to monitor GPS/GLONASS time offsets for common navigation users using a combined GPS/GLONASS Precise Point Positioning (PPP) method based on the orbit and clock products of different time scales. The results of the inter-system GPS/GLONASS time offset, the user time offset and the inter-system device delay difference were obtained using the proposed method. The properties of these results were analyzed in terms of the stability, precision and variation characteristics. Moreover, the practicality of the time offset results in an actual navigation application was tested and demonstrated. The results indicate that the monitoring and prediction of the user time offset, but not the inter-system time offset, has important values for navigation users.

  12. Structured eigenvalue problems for rational gauss quadrature

    NASA Astrophysics Data System (ADS)

    Fasino, Dario; Gemignani, Luca

    2007-08-01

    The connection between Gauss quadrature rules and the algebraic eigenvalue problem for a Jacobi matrix was first exploited in the now classical paper by Golub and Welsch (Math. Comput. 23(106), 221?230, 1969). From then on many computational problems arising in the construction of (polynomial) Gauss quadrature formulas have been reduced to solving direct and inverse eigenvalue problems for symmetric tridiagonals. Over the last few years (rational) generalizations of the classical Gauss quadrature formulas have been studied, i.e., formulas integrating exactly in spaces of rational functions. This paper wants to illustrate that stable and efficient procedures based on structured numerical linear algebra techniques can also be devised for the solution of the eigenvalue problems arising in the field of rational Gauss quadrature.

  13. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    PubMed

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering. PMID:21125324

  14. TEACHING PHYSICS: Gauss's law - a forgotten tool?

    NASA Astrophysics Data System (ADS)

    Severn, John

    2000-07-01

    Gauss's law is a powerful tool that can be used to resolve symmetrical situations involving various fields, where traditional approaches would involve the use of integral calculus. Born out of the dynamics of fluids, its main teaching use has traditionally been largely in the area of electrostatic problems. However, in the area of gravitation its use is not so well known. This article starts by introducing Gauss's law with electrostatics, and then uses the law in the application of some simple gravitational problems.

  15. Precise time technology for selected Air Force systems: Present status and future requirements

    NASA Technical Reports Server (NTRS)

    Yannoni, N. F.

    1981-01-01

    Precise time and time interval (PTTI) technology is becoming increasingly significant to Air Force operations as digital techniques find expanded utility in military missions. Timing has a key role in the function as well as in navigation. A survey of the PTTI needs of several Air Force systems is presented. Current technology supporting these needs was reviewed and new requirements are emphasized for systems as they transfer from initial development to final operational deployment.

  16. MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times

    NASA Technical Reports Server (NTRS)

    Grampp, S.; Majumdar, S.; Jergas, M.; Lang, P.; Gies, A.; Genant, H. K.

    1995-01-01

    The effective transverse relaxation time T2* is influenced by the presence of trabecular bone, and can potentially provide a measure of bone density as well as bone structure. We determined the in vivo precision of T2* in repeated bone marrow measurements. The T2* measurements of the bone marrow of the distal radius were performed twice within 2 weeks in six healthy young volunteers using a modified water-presaturated 3D Gradient-Recalled Acquisition at Steady State (GRASS) sequence with TE 7, 10, 12, 20, and 30; TR 67; flip angle (FA) 90 degrees. An axial volume covering a length of 5.6 cm in the distal radius was measured. Regions of interest (ROIs) were determined manually and consisted of the entire trabecular bone cross-section extending proximally from the radial subchondral endplate. Reproducibility of T2* and area measurements was expressed as the absolute precision error (standard deviation [SD] in ms or mm2) or as the relative precision error (SD/mean x 100, or coefficient of variation [CV] in %) between the two-point measurements. Short-term precision of T2* and area measurements varied depending on section thickness and location of the ROI in the distal radius. Absolute precision errors for T2* times were between 1.3 and 2.9 ms (relative precision errors 3.8-9.5 %) and for area measurements between 20 and 55 mm2 (relative precision errors 5.1-16.4%). This MR technique for quantitative assessment of trabecular bone density showed reasonable reproducibility in vivo and is a promising future tool for the assessment of osteoporosis.

  17. Spike timing precision changes with spike rate adaptation in the owl's auditory space map.

    PubMed

    Keller, Clifford H; Takahashi, Terry T

    2015-10-01

    Spike rate adaptation (SRA) is a continuing change of responsiveness to ongoing stimuli, which is ubiquitous across species and levels of sensory systems. Under SRA, auditory responses to constant stimuli change over time, relaxing toward a long-term rate often over multiple timescales. With more variable stimuli, SRA causes the dependence of spike rate on sound pressure level to shift toward the mean level of recent stimulus history. A model based on subtractive adaptation (Benda J, Hennig RM. J Comput Neurosci 24: 113-136, 2008) shows that changes in spike rate and level dependence are mechanistically linked. Space-specific neurons in the barn owl's midbrain, when recorded under ketamine-diazepam anesthesia, showed these classical characteristics of SRA, while at the same time exhibiting changes in spike timing precision. Abrupt level increases of sinusoidally amplitude-modulated (SAM) noise initially led to spiking at higher rates with lower temporal precision. Spike rate and precision relaxed toward their long-term values with a time course similar to SRA, results that were also replicated by the subtractive model. Stimuli whose amplitude modulations (AMs) were not synchronous across carrier frequency evoked spikes in response to stimulus envelopes of a particular shape, characterized by the spectrotemporal receptive field (STRF). Again, abrupt stimulus level changes initially disrupted the temporal precision of spiking, which then relaxed along with SRA. We suggest that shifts in latency associated with stimulus level changes may differ between carrier frequency bands and underlie decreased spike precision. Thus SRA is manifest not simply as a change in spike rate but also as a change in the temporal precision of spiking. PMID:26269555

  18. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    NASA Astrophysics Data System (ADS)

    Wermuth, M.; Hauschild, A.; Montenbruck, O.; Kahle, R.

    2012-09-01

    For active and future Earth observation missions, the availability of near real-time precise orbit information is becoming more and more important. The latency and quality of precise orbit determination results is mainly driven by the availability of precise GPS ephemerides and clocks. In order to have high-quality GPS ephemerides and clocks available at real-time, the German Space Operations Center (GSOC) has developed the real-time clock estimation system RETICLE. The system receives data streams with GNSS observations from the global tracking network of the International GNSS Service (IGS) in real-time. Using the known station position, RETICLE estimates precise GPS satellite clock offsets and drifts based on the most recent available ultra rapid predicted orbits provided by the IGS. The clock offset estimates have an accuracy of better than 0.3 ns and are globally valid. The latency of the estimated clocks is approximately 7 s after the observation epoch. Another limiting factor is the frequency of satellite downlinks and the latency of the data transfer from the ground station to the operations center. Therefore a near real-time scenario using GPS observation data from the TerraSAR-X mission is examined in which the satellite has about one ground station contact per orbit or respectively one contact in 90 min. This test campaign shows that precise orbits can be obtained in near real-time. With the use of estimated clocks an orbit accuracy of better than 10 cm (3D-RMS) can be obtained. The evaluation of satellite laser ranging (SLR) observations shows residuals of 2.1 cm (RMS) for orbits using RECTICLE and residuals of 4.2 cm (RMS) for orbits using the IGS ultra rapid ephemerides and clocks products. Hence the use of estimated clocks improves the orbit determination accuracy significantly (˜factor 2) compared to using predicted clocks.

  19. Delay times of a LiDAR-guided precision sprayer control system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate flow control systems in triggering sprays against detected targets are needed for precision variable-rate sprayer development. System delay times due to the laser-sensor data buffer, software operation, and hydraulic-mechanical component response were determined for a control system used fo...

  20. Real-Time IGS products verification in the context of their use in Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Hadas, Tomasz; Bosy, Jaroslaw; Kaplon, Jan; Sierny, Jan

    2013-04-01

    Precise Point Positioning (PPP) is a positioning technique of single GNSS receiver which applies high quality products from permanent GNSS observations to utilize the computational potential of global network analysis. Estimated satellite orbits and clocks corrections are introduced into equation system as known parameters. PPP requires the application of precise products, since their quality directly reflects the positioning accuracy. In June 2007 IGS Real-time Pilot Project has started in order to satisfy real-time users, which is especially important for Precise Point Positioning. Currently available streams including precise orbits, clocks and code biases are standardized on RTCM-SC 104 formats and may be used as a substitute for ultra-rapid products. The target combination product performances are 0.3ns for satellite clock accuracy and orbit accuracy at the level of the IGS Ultra predictions with maximum latency of 10s. This study presents the quality assessment of currently available Real-Time IGS products. Long-term test include comparisons of disseminated information with final and high-rate products, stability assessment over time, as well as latency validation of available RTCM streams.

  1. The Weyl-Cartan Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Haghani, Zahra; Khosravi, Nima; Shahidi, Shahab

    2015-11-01

    In this paper, we consider the generalized Gauss-Bonnet action in four-dimensional Weyl-Cartan spacetime. In this spacetime, the presence of a torsion tensor and Weyl vector implies that the generalized Gauss-Bonnet action will not be a total derivative in four-dimensional spacetime. It will be shown that the higher than two time derivatives can be removed from the action by choosing a suitable set of parameters. In the special case where only the trace part of the torsion remains, the model reduces to general relativity plus two vector fields, one of which is massless and the other is massive. We will then obtain the healthy region of the five-dimensional parameter space of the theory in some special cases.

  2. Laguerre-Gauss beams versus Bessel beams showdown: peer comparison.

    PubMed

    Mendoza-Hernández, Job; Arroyo-Carrasco, Maximino Luis; Iturbe-Castillo, Marcelo David; Chávez-Cerda, Sabino

    2015-08-15

    We present for the first time a comparison under similar circumstances between Laguerre-Gauss beams (LGBs) and Bessel beams (BB), and show that the former can be a better option for many applications in which BBs are currently used. By solving the Laguerre-Gauss differential equation in the asymptotic limit of a large radial index, we find the parameters to perform a peer comparison, showing that LGBs can propagate quasi-nondiffracting beams within the same region of space where the corresponding BBs do. We also demonstrate that LGBs, which have the property of self-healing, are more robust in the sense that they can propagate further than BBs under similar initial conditions. PMID:26274648

  3. Axial quasinormal modes of Einstein-Gauss-Bonnet-dilaton neutron stars

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; González-Romero, Luis Manuel; Kunz, Jutta; Mojica, Sindy; Navarro-Lérida, Francisco

    2016-01-01

    We investigate axial quasinormal modes of realistic neutron stars in Einstein-Gauss-Bonnet-dilaton gravity. We consider eight realistic equations of state containing nuclear, hyperonic, and hybrid matter. We focus on the fundamental curvature mode and compare the results with those of pure Einstein theory. We observe that the frequency of the modes is increased by the presence of the Gauss-Bonnet-dilaton, while the impact on the damping time is typically smaller. Interestingly, we obtain that universal relations valid in pure Einstein theory still hold for Einstein-Gauss-Bonnet-dilaton gravity, and we propose a method to use these phenomenological relations to constrain the value of the Gauss-Bonnet coupling.

  4. A 7.5 ps single-shot precision integrated time counter with segmented delay line

    NASA Astrophysics Data System (ADS)

    Klepacki, K.; Szplet, R.; Pelka, R.

    2014-03-01

    This paper describes the design and test results of time interval counter featuring the single-shot precision of 7.5 ps root mean square (rms) and measurement range of 1 ms. These parameters have been achieved by combining direct counting method with a two-stage interpolation within a single clock period. Both stages of interpolation are based on the use of tapped delay lines stabilized by delay locked loop mechanism. In the first stage, a coarse resolution is obtained with the aid of high frequency multiphase clock, while in the second stage a sub-gate delay resolution is achieved with the use of differential delay line. To reduce the nonlinearities of conversion and to improve the precision of measurement, a novel segmented delay line is proposed. An important feature of this segmented delay line is partial overlapping of measurement range and resulting enhancement of both resolution and precision of time interval counter. The maximum integral nonlinearity error of the fine-stage interpolators does not exceed 16 ps and 14 ps in START and STOP interpolators, respectively. These errors have been identified by statistical calibration procedure and corrected to achieve single-shot precision better than 7.5 ps (rms). The time counter is integrated in a single ASIC (Application Specific Integrated Circuit) chip using a standard cost-effective 0.35 μm CMOS (Complementary Metal Oxide Semiconductor) process.

  5. Precise Point Positioning technique for short and long baselines time transfer

    NASA Astrophysics Data System (ADS)

    Lejba, Pawel; Nawrocki, Jerzy; Lemanski, Dariusz; Foks-Ryznar, Anna; Nogas, Pawel; Dunst, Piotr

    2013-04-01

    In this work the clock parameters determination of several timing receivers TTS-4 (AOS), ASHTECH Z-XII3T (OP, ORB, PTB, USNO) and SEPTENTRIO POLARX4TR (ORB, since February 11, 2012) by use of the Precise Point Positioning (PPP) technique were presented. The clock parameters were determined for several time links based on the data delivered by time and frequency laboratories mentioned above. The computations cover the period from January 1 to December 31, 2012 and were performed in two modes with 7-day and one-month solution for all links. All RINEX data files which include phase and code GPS data were recorded in 30-second intervals. All calculations were performed by means of Natural Resource Canada's GPS Precise Point Positioning (GPS-PPP) software based on high-quality precise satellite coordinates and satellite clock delivered by IGS as the final products. The used independent PPP technique is a very powerful and simple method which allows for better control of antenna positions in AOS and a verification of other time transfer techniques like GPS CV, GLONASS CV and TWSTFT. The PPP technique is also a very good alternative for calibration of a glass fiber link PL-AOS realized at present by AOS. Currently PPP technique is one of the main time transfer methods used at AOS what considerably improve and strengthen the quality of the Polish time scales UTC(AOS), UTC(PL), and TA(PL). KEY-WORDS: Precise Point Positioning, time transfer, IGS products, GNSS, time scales.

  6. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    NASA Astrophysics Data System (ADS)

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  7. Proceedings of the 14th Annual Precise Time and Time Interval (PTTI) Applications Planning Meeting

    NASA Technical Reports Server (NTRS)

    Wardrip, S. C. (Editor)

    1983-01-01

    Developments and applications in the field of frequency and time are addressed. Specific topics include rubidium frequency standards, future timing requirements, noise and atomic standards, hydrogen maser technology, synchronization, and quartz technology.

  8. Loran-C expansion: Impact on precise time/time interval

    NASA Technical Reports Server (NTRS)

    Roeber, J. F., Jr.

    1974-01-01

    On 16 May 1974, it was announced that Loran-C was chosen as the navigation system to serve the U. S. Coastal Confluence Zone. At the present time, reliable CONUS Loran-C groundwave timing coverage extends westward only about as far as Boulder, CO. The groundwave hyperbolic and timing coverage which will result from the planned CONUS expansion are illustrated. Time frames are provided. A status report on the planned reduction in Loran-C PTTI tolerances is presented.

  9. Influence of developmental nicotine exposure on spike-timing precision and reliability in hypoglossal motoneurons.

    PubMed

    Powell, Gregory L; Levine, Richard B; Frazier, Amanda M; Fregosi, Ralph F

    2015-03-15

    Smoothly graded muscle contractions depend in part on the precision and reliability of motoneuron action potential generation. Whether or not a motoneuron generates spikes precisely and reliably depends on both its intrinsic membrane properties and the nature of the synaptic input that it receives. Factors that perturb neuronal intrinsic properties and/or synaptic drive may compromise the temporal precision and the reliability of action potential generation. We have previously shown that developmental nicotine exposure (DNE) alters intrinsic properties and synaptic transmission in hypoglossal motoneurons (XIIMNs). Here we show that the effects of DNE also include alterations in spike-timing precision and reliability, and spike-frequency adaptation, in response to sinusoidal current injection. Current-clamp experiments in brainstem slices from neonatal rats show that DNE lowers the threshold for spike generation but increases the variability of spike-timing mechanisms. DNE is also associated with an increase in spike-frequency adaptation and reductions in both peak and steady-state firing rate in response to brief, square wave current injections. Taken together, our data indicate that DNE causes significant alterations in the input-output efficiency of XIIMNs. These alterations may play a role in the increased frequency of obstructive apneas and altered suckling strength and coordination observed in nicotine-exposed neonatal humans. PMID:25552642

  10. Precise terrestrial time: A means for improved ballistic missile guidance analysis

    NASA Technical Reports Server (NTRS)

    Ehrsam, E. E.; Cresswell, S. A.; Mckelvey, G. R.; Matthews, F. L.

    1978-01-01

    An approach developed to improve the ground instrumentation time tagging accuracy and adapted to support the Minuteman ICBM program is desired. The Timing Insertion Unit (TIU) technique produces a telemetry data time tagging resolution of one tenth of a microsecond, with a relative intersite accuracy after corrections and velocity data (range, azimuth, elevation and range rate) also used in missile guidance system analysis can be correlated to within ten microseconds of the telemetry guidance data. This requires precise timing synchronization between the metric and telemetry instrumentation sites. The timing synchronization can be achieved by using the radar automatic phasing system time correlation methods. Other time correlation techniques such as Television (TV) Line-10 and the Geostationary Operational Environmental Satellites (GEOS) terrestial timing receivers are also considered.

  11. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections.

    PubMed

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  12. The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion

    SciTech Connect

    Guo, Ran; Du, Jiulin

    2015-08-15

    We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.

  13. Shock timing on the National Ignition Facility: the first precision tuning series

    SciTech Connect

    Robey, H F; Celliers, P M; Kline, J L; Mackinnon, A J

    2011-10-27

    Ignition implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT) layered capsule implosions by measurement of fuel areal density (rR), which show the highest fuel compression (rR {approx} 1.0 g/cm{sup 2}) measured to date.

  14. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy.

    PubMed

    Tian, Jiangwei; Ding, Lin; Ju, Huangxian; Yang, Yongchao; Li, Xilan; Shen, Zhen; Zhu, Zhi; Yu, Jun-Sheng; Yang, Chaoyong James

    2014-09-01

    Simultaneous targeted cancer imaging, therapy and real-time therapeutic monitoring can prevent over- or undertreatment. This work describes the design of a multifunctional nanomicelle for recognition and precise near-infrared (NIR) cancer therapy. The nanomicelle encapsulates a new pH-activatable fluorescent probe and a robust NIR photosensitizer, R16FP, and is functionalized with a newly screened cancer-specific aptamer for targeting viable cancer cells. The fluorescent probe can light up the lysosomes for real-time imaging. Upon NIR irradiation, R16FP-mediated generation of reactive oxygen species causes lysosomal destruction and subsequently trigger lysosomal cell death. Meanwhile the fluorescent probe can reflect the cellular status and in situ visualize the treatment process. This protocol can provide molecular information for precise therapy and therapeutic monitoring. PMID:25045069

  15. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    NASA Astrophysics Data System (ADS)

    Wermuth, Martin; Hauschild, Andre; Montenbruck, Oliver; Kahle, Ralph

    TerraSAR-X is a German Synthetic Aperture Radar (SAR) satellite, which was launched in June 2007 from Baikonour. Its task is to acquire radar images of the Earth's surface. In order to locate the radar data takes precisely, the satellite is equipped with a high-quality dual-frequency GPS receiver -the Integrated Geodetic and Occultation Receiver (IGOR) provided by the GeoForschungsZentrum Potsdam (GFZ). Using GPS observations from the IGOR instrument in a reduced dynamic precise orbit determination (POD), the German Space Operations Center (DLR/GSOC) is computing rapid and science orbit products on a routine basis. The rapid orbit products arrive with a latency of about one hour after data reception with an accuracy of 10-20 cm. Science orbit products are computed with a latency of five days achieving an accuracy of about 5cm (3D-RMS). For active and future Earth observation missions, the availability of near real-time precise orbit information is becoming more and more important. Other applications of near real-time orbit products include the processing of GNSS radio occulation measurements for atmospheric sounding as well as altimeter measurements of ocean surface heights, which are nowadays employed in global weather and ocean circulation models with short latencies. For example after natural disasters it is necessary to evaluate the damage by satellite images as soon as possible. The latency and quality of POD results is mainly driven by the availability of precise GPS ephemerides. In order to have high-quality GPS ephemerides available at real-time, GSOC has developed the real-time clock estimation system RETICLE. The system receives NTRIP-data streams with GNSS observations from the global tracking network of IGS in real-time. Using the known station position, RETICLE estimates precise GPS satellite clock offsets and drifts based on the most recent available IGU predicted orbits. The clock offset estimates have an accuracy of better than 0.3 ns and are

  16. a Solution to Low Rfm Fitting Precision of Planetary Orbiter Images Caused by Exposure Time Changing

    NASA Astrophysics Data System (ADS)

    Liu, B.; Xu, B.; Di, K.; Jia, M.

    2016-06-01

    In this paper, we propose a new solution to the low RFM fitting precision caused by exposure time changing using sensor correction. First, we establish a new rigorous geometric model, with the same ephemerides, attitudes and sensor design parameters of Chang'E-2 and HRSC images, using an equal exposure time of each scan line. The original rigorous geometric model is also established. With a given height, we can establish the correspondence between the two rigorous models. Then we generate a sensor corrected image by resampling the original image using an average elevation or a digital elevation model. We found that the sensor corrected images can be used for topographic mapping which maintains almost the same precision of the original images under certain conditions. And RFM can fit rigorous geometric model of the sensor corrected image very well. Preliminary experimental results show that the RMS residual error of the RFM fitting can reach to 1/100 pixel level too. Using the proposed solution, sensors with changing exposure time can be precisely modelled by the generic RFM.

  17. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  18. Comment on "Gauss-Bonnet inflation"

    NASA Astrophysics Data System (ADS)

    Hikmawan, Getbogi; Soda, Jiro; Suroso, Agus; Zen, Freddy P.

    2016-03-01

    Recently, an interesting inflationary scenario, named Gauss-Bonnet inflation, was proposed by Kanti et al. [Phys. Rev. D 92, 041302 (2015); Phys. Rev. D 92, 083524 (2015)]. In the model, there is no inflaton potential, but the inflaton couples to the Guass-Bonnet term. In the case of quadratic coupling, they find inflation occurs with a graceful exit. The scenario is attractive because of the natural setup. However, we show there exists a gradient instability in the tensor perturbations in this inflationary model. We further prove the no-go theorem for Gauss-Bonnet inflation without an inflaton potential.

  19. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH).

    PubMed

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills. PMID:25505879

  20. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH)

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills. PMID:25505879

  1. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles

    PubMed Central

    Sponberg, S.; Daniel, T. L.

    2012-01-01

    Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power–phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left–right pairs of flight muscles normally fire precisely, within 0.5–0.6 ms of each other; (ii) during a yawing optomotor response, left—right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left–right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left—right timing differences. Because many organisms also have muscles operating with high power–phase gains (Δpower/Δphase), this motor control strategy may be ubiquitous in locomotor systems. PMID:22833272

  2. Tests of daily time variable Earth gravity field solutions for precise orbit determination of altimetry satellites

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Gruber, Christian

    2016-04-01

    This study makes use of current GFZ monthly and daily gravity field products from 2002 to 2014 based on radial basis functions (RBF) instead of time variable gravity field modeling for precise orbit determination of altimetry satellites. Since some monthly solutions are missing in the GFZ GRACE RL05a solution and in order to reach a better quality for the precise orbit determination, daily generated RBF solutions obtained from Kalman filtered GRACE data processing and interpolated in case of gaps have been used. Moreover, since the geopotential coefficients of low degrees are better determined using SLR observations to geodetic satellites like Lageos, Stella, Starlette and Ajisai than from GRACE observations, these terms are co-estimated in the RBF solutions by using apriori SLR-derived values up to degree and order 4. Precise orbits for altimetry satellites Envisat (2002-2012), Jason-1 (2002-2013) and Jason-2 (2008-2014) are then computed over the given time intervals using this approach and compared with the orbits obtained when using other models such as EIGEN-6S4. An analysis of the root-mean-square values of the observation fits of SLR and DORIS observations and the orbit arcs overlaps will allow us to draw a conclusion on the quality of the RBF solution and to use these new trajectories for sea level trend estimates and geophysical application.

  3. Characterizing curves satisfying the Gauss-Christoffel theorem

    NASA Astrophysics Data System (ADS)

    Berriochoa, E.; Cachafeiro, A.

    2009-12-01

    In this paper we obtain the reciprocal of the classical Gauss theorem for quadrature formulas. Indeed we characterize the support of the measures having quadrature formulas with the exactness given in the Gauss theorem.

  4. Development of a machine vision system for a real-time precision sprayer

    NASA Astrophysics Data System (ADS)

    Bossu, Jérémie; Gée, Christelle; Truchetet, Frédéric

    2007-01-01

    In the context of precision agriculture, we have developed a machine vision system for a real time precision sprayer. From a monochrome CCD camera located in front of the tractor, the discrimination between crop and weeds is obtained with an image processing based on spatial information using a Gabor filter. This method allows to detect the periodic signals from the non periodic one and it enables to enhance the crop rows whereas weeds have patchy distribution. Thus, weed patches were clearly identified by a blob-coloring method. Finally, we use a pinhole model to transform the weed patch coordinates image in world coordinates in order to activate the right electro-pneumatic valve of the sprayer at the right moment.

  5. High Precision Time Transfer in Space with a Hydrogen Maser on MIR

    NASA Technical Reports Server (NTRS)

    Mattison, Edward M.; Vessot, Robert F. C.

    1996-01-01

    An atomic hydrogen maser clock system designed for long term operation in space will be installed on the Russian space station Mir, in late 1997. The H-maser's frequency stability will be measured using pulsed laser time transfer techniques. Daily time comparisons made with a precision of better than 100 picoseconds will allow an assessment of the long term stability of the space maser at a level on the order of 1 part in 10(sup 15) or better. Laser pulse arrival times at the spacecraft will be recorded with a resolution of 10 picoseconds relative to the space clock's time scale. Cube corner reflectors will reflect the pulses back to the Earth laser station to determine the propagation delay and enable comparison with the Earth-based time scale. Data for relativistic and gravitational frequency corrections will be obtained from a Global Positioning System (GPS) receiver.

  6. Near-real-time regional troposphere models for the GNSS precise point positioning technique

    NASA Astrophysics Data System (ADS)

    Hadas, T.; Kaplon, J.; Bosy, J.; Sierny, J.; Wilgan, K.

    2013-05-01

    The GNSS precise point positioning (PPP) technique requires high quality product (orbits and clocks) application, since their error directly affects the quality of positioning. For real-time purposes it is possible to utilize ultra-rapid precise orbits and clocks which are disseminated through the Internet. In order to eliminate as many unknown parameters as possible, one may introduce external information on zenith troposphere delay (ZTD). It is desirable that the a priori model is accurate and reliable, especially for real-time application. One of the open problems in GNSS positioning is troposphere delay modelling on the basis of ground meteorological observations. Institute of Geodesy and Geoinformatics of Wroclaw University of Environmental and Life Sciences (IGG WUELS) has developed two independent regional troposphere models for the territory of Poland. The first one is estimated in near-real-time regime using GNSS data from a Polish ground-based augmentation system named ASG-EUPOS established by Polish Head Office of Geodesy and Cartography (GUGiK) in 2008. The second one is based on meteorological parameters (temperature, pressure and humidity) gathered from various meteorological networks operating over the area of Poland and surrounding countries. This paper describes the methodology of both model calculation and verification. It also presents results of applying various ZTD models into kinematic PPP in the post-processing mode using Bernese GPS Software. Positioning results were used to assess the quality of the developed models during changing weather conditions. Finally, the impact of model application to simulated real-time PPP on precision, accuracy and convergence time is discussed.

  7. Controllable light capsules employing modified Bessel-Gauss beams

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-07-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms.

  8. Controllable light capsules employing modified Bessel-Gauss beams

    PubMed Central

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  9. Controllable light capsules employing modified Bessel-Gauss beams.

    PubMed

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  10. Prospects for high-precision pulsar timing with the new Effelsberg PSRIX backend

    NASA Astrophysics Data System (ADS)

    Lazarus, P.; Karuppusamy, R.; Graikou, E.; Caballero, R. N.; Champion, D. J.; Lee, K. J.; Verbiest, J. P. W.; Kramer, M.

    2016-05-01

    The PSRIX backend is the primary pulsar timing instrument of the Effelsberg 100 m radio telescope since early 2011. This new ROACH-based system enables bandwidths up to 500 MHz to be recorded, significantly more than what was possible with its predecessor, the Effelsberg-Berkeley Pulsar Processor (EBPP). We review the first four years of PSRIX timing data for 33 pulsars collected as part of the monthly European Pulsar Timing Array (EPTA) observations. We describe the automated data analysis pipeline, COASTGUARD, that we developed to reduce these observations. We also introduce TOASTER, the EPTA timing data base, used to store timing results, processing information and observation metadata. Using these new tools, we measure the phase-averaged flux densities at 1.4 GHz of all 33 pulsars. For seven of these pulsars, our flux density measurements are the first values ever reported. For the other 26 pulsars, we compare our flux density measurements with previously published values. By comparing PSRIX data with EBPP data, we find an improvement of ˜2-5 times in signal-to-noise ratio, which translates to an increase of ˜2-5 times in pulse time-of-arrival (TOA) precision. We show that such an improvement in TOA precision will improve the sensitivity to the stochastic gravitational wave background. Finally, we showcase the flexibility of the new PSRIX backend by observing several millisecond-period pulsars (MSPs) at 5 and 9 GHz. Motivated by our detections, we discuss the potential for complementing existing pulsar timing array data sets with MSP monitoring campaigns at these higher frequencies.

  11. Galileo, Gauss, and the Green Monster

    ERIC Educational Resources Information Center

    Kalman, Dan; Teague, Daniel J.

    2013-01-01

    Galileo dropped cannonballs from the leaning tower of Pisa to demonstrate something about falling bodies. Gauss was a giant of mathematics and physics who made unparalleled contributions to both fields. More contemporary (and not a person), the Green Monster is the left-field wall at the home of the Boston Red Sox, Fenway Park. Measuring 37 feet…

  12. Reaching a few picosecond timing precision with the 16-channel digitizer and timestamper SAMPIC ASIC

    NASA Astrophysics Data System (ADS)

    Delagnes, E.; Breton, D.; Grabas, H.; Maalmi, J.; Rusquart, P.

    2015-07-01

    SAMPIC is a Time and Waveform to Digital Converter (TWDC) multichannel chip. It integrates 16 channels each including DLL-based TDC providing a raw time associated with an ultra-fast analog memory sampling the signal used for precise timing measurements as well as other parameters of the pulse. Every channel also integrates a discriminator that can trigger it independently or participate to a more complex trigger. After triggering, the analog samples are digitized by on-chip ADCs and are sent serially to the acquisition. The paper describes the architecture of SAMPIC and reports the main performance measured on the first prototype chip with a focus on timing resolution in the range of 15 ps RMS using raw data improved to less than 5 ps RMS after a simple calibration.

  13. Precision timing measurement of phototube pulses using a flash analog-to-digital converter

    NASA Astrophysics Data System (ADS)

    Bennett, J. V.; Kornicer, M.; Shepherd, M. R.; Ito, M. M.

    2010-10-01

    We present the timing characteristics of the flash ADC readout of the GlueX forward calorimeter, which depends on precise measurement of arrival time of pulses from FEU 84-3 photomultiplier tubes to suppress backgrounds. The tests presented were performed using two different 250 MHz prototype flash ADC devices, one with eight-bit and one with 12-bit sampling depth. All measured time resolutions were better than 1 ns, independent of signal size, which is the design goal for the GlueX forward calorimeter. For pulses with an amplitude of 100 mV the timing resolution is 0.57±0.18 ns, while for 500 mV pulses it is 0.24±0.08 ns.

  14. Precision Time Transfer and Obit Determination Using Laser Ranging to Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Mao, D.; Barker, M. K.; Clarke, C. B.; Golder, J. E.; Hoffman, E.; Horvath, J. E.; Mazarico, E.; Mcgarry, J.; Neumann, G. A.; Torrence, M. H.; Rowlands, D. D.; Skillman, D.; Smith, D. E.; Sun, X.; Zuber, M. T.

    2011-12-01

    Since the commissioning of LRO in June, 2009, one-way laser ranging (LR) to Lunar Reconnaissance Orbiter (LRO) has been conducted successfully from NASA's Next Generation Satellite Laser Ranging System (NGSLR) at Goddard Geophysical and Astronomical observatory (GGAO) in Greenbelt, Maryland. With the support of the International Laser Ranging Service (ILRS), ten international satellite laser ranging (SLR) ground stations have participated in this experiment and over 1200 hours of ranging data have been collected. In addition to supplementing the precision orbit determination (POD) of LRO, LR is able to perform time transfer between the ground station and the spacecraft clocks. The LRO clock oscillator is stable to 1 part in 10^{12} over several hours, and as stable for much longer periods after correcting for a long-term drift rate and an aging rate. With a precisely-determined LRO ephemeris, the oscillator-determined laser pulse receive time can be differenced with ground station clock transmit times using H-maser and GPS-steered Rb oscillators as references. Simultaneous ranging to LRO among 2, 3, or 4 ground stations has made it possible for relative time transfer among the participating LR stations. Results have shown about 100 ns difference between some LR stations and the primary NGSLR station. At present, the time transfer accuracy is limited to 100 ns at NGSLR. However, an All-View GPS receiver has been installed, which, in combination with a H-maser, is expected to improve the accuracy to 1 ns r.m.s. at NGSLR. Results of new ranging and time transfer experiments using the new time base will be reported. The ability to use LR for time transfer validates the selection of a commercially-supplied, oven-controlled crystal oscillator on board LRO for one-way laser ranging.The increased clock accuracy also provides stronger orbit constraints for LRO POD. The improvements due to including LR data in the LRO POD will be presented.

  15. Correcting for Interstellar Scattering Delay in High-precision Pulsar Timing: Simulation Results

    NASA Astrophysics Data System (ADS)

    Palliyaguru, Nipuni; Stinebring, Daniel; McLaughlin, Maura; Demorest, Paul; Jones, Glenn

    2015-12-01

    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any method to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse "jitter" is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.

  16. On Gautschi's conjecture for generalized Gauss-Radau and Gauss-Lobatto formulae

    NASA Astrophysics Data System (ADS)

    Joulak, Hédi; Beckermann, Bernhard

    2009-12-01

    Recently, Gautschi introduced so-called generalized Gauss-Radau and Gauss-Lobatto formulae which are quadrature formulae of Gaussian type involving not only the values but also the derivatives of the function at the endpoints. In the present note we show the positivity of the corresponding weights; this positivity has been conjectured already by Gautschi. As a consequence, we establish several convergence theorems for these quadrature formulae.

  17. Experimental generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase holograms

    NASA Astrophysics Data System (ADS)

    Mellado-Villaseñor, Gabriel; Aguirre-Olivas, Dilia; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-08-01

    We generate Hermite-Gauss and Ince-Gauss beams by using kinoform phase holograms encoded onto a liquid crystal display. The phase transmittance of this holograms coincide with the phases of such beams. Scale versions of the desired beams appear at the Fourier domain of the KPHs. When an appropriated pupil size is employed, the method synthesizes HG and IG beams with relatively high accuracy and high efficiency. It is noted that experimental and numerical results are agreement with the theory.

  18. Lake Erie Yellow perch age estimation based on three structures: Precision, processing times, and management implications

    USGS Publications Warehouse

    Vandergoot, C.S.; Bur, M.T.; Powell, K.A.

    2008-01-01

    Yellow perch Perca flavescens support economically important recreational and commercial fisheries in Lake Erie and are intensively managed. Age estimation represents an integral component in the management of Lake Erie yellow perch stocks, as age-structured population models are used to set safe harvest levels on an annual basis. We compared the precision associated with yellow perch (N = 251) age estimates from scales, sagittal otoliths, and anal spine sections and evaluated the time required to process and estimate age from each structure. Three readers of varying experience estimated ages. The precision (mean coefficient of variation) of estimates among readers was 1% for sagittal otoliths, 5-6% for anal spines, and 11-13% for scales. Agreement rates among readers were 94-95% for otoliths, 71-76% for anal spines, and 45-50% for scales. Systematic age estimation differences were evident among scale and anal spine readers; less-experienced readers tended to underestimate ages of yellow perch older than age 4 relative to estimates made by an experienced reader. Mean scale age tended to underestimate ages of age-6 and older fish relative to otolith ages estimated by an experienced reader. Total annual mortality estimates based on scale ages were 20% higher than those based on otolith ages; mortality estimates based on anal spine ages were 4% higher than those based on otolith ages. Otoliths required more removal and preparation time than scales and anal spines, but age estimation time was substantially lower for otoliths than for the other two structures. We suggest the use of otoliths or anal spines for age estimation in yellow perch (regardless of length) from Lake Erie and other systems where precise age estimates are necessary, because age estimation errors resulting from the use of scales could generate incorrect management decisions. ?? Copyright by the American Fisheries Society 2008.

  19. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    PubMed Central

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  20. White Rabbit Precision Time Protocol on Long-Distance Fiber Links.

    PubMed

    Dierikx, Erik F; Wallin, Anders E; Fordell, Thomas; Myyry, Jani; Koponen, Petri; Merimaa, Mikko; Pinkert, Tjeerd J; Koelemeij, Jeroen C J; Peek, Henk Z; Smets, Rob

    2016-07-01

    The application of White Rabbit precision time protocol (WR-PTP) in long-distance optical fiber links has been investigated. WR-PTP is an implementation of PTP in synchronous Ethernet optical fiber networks, originally intended for synchronization of equipment within a range of 10 km. This paper discusses the results and limitations of two implementations of WR-PTP in the existing communication fiber networks. A 950-km WR-PTP link was realized using unidirectional paths in a fiber pair between Espoo and Kajaani, Finland. The time transfer on this link was compared (after initial calibration) against a clock comparison by GPS precise point positioning (PPP). The agreement between the two methods remained within [Formula: see text] over three months of measurements. Another WR-PTP implementation was realized between Delft and Amsterdam, the Netherlands, by cascading two links of 137 km each. In this case, the WR links were realized as bidirectional paths in single fibers. The measured time offset between the starting and end points of the link was within 5 ns with an uncertainty of 8 ns, mainly due to the estimated delay asymmetry caused by chromatic dispersion. PMID:26780791

  1. Electron bunch timing with femtosecond precision in a superconducting free-electron laser.

    PubMed

    Löhl, F; Arsov, V; Felber, M; Hacker, K; Jalmuzna, W; Lorbeer, B; Ludwig, F; Matthiesen, K-H; Schlarb, H; Schmidt, B; Schmüser, P; Schulz, S; Szewinski, J; Winter, A; Zemella, J

    2010-04-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter. PMID:20481941

  2. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Löhl, F.; Arsov, V.; Felber, M.; Hacker, K.; Jalmuzna, W.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Schmüser, P.; Schulz, S.; Szewinski, J.; Winter, A.; Zemella, J.

    2010-04-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  3. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    SciTech Connect

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  4. Real-time GPS seismology using a single receiver: method comparison, error analysis and precision validation

    NASA Astrophysics Data System (ADS)

    Li, Xingxing

    2014-05-01

    Earthquake monitoring and early warning system for hazard assessment and mitigation has traditional been based on seismic instruments. However, for large seismic events, it is difficult for traditional seismic instruments to produce accurate and reliable displacements because of the saturation of broadband seismometers and problematic integration of strong-motion data. Compared with the traditional seismic instruments, GPS can measure arbitrarily large dynamic displacements without saturation, making them particularly valuable in case of large earthquakes and tsunamis. GPS relative positioning approach is usually adopted to estimate seismic displacements since centimeter-level accuracy can be achieved in real-time by processing double-differenced carrier-phase observables. However, relative positioning method requires a local reference station, which might itself be displaced during a large seismic event, resulting in misleading GPS analysis results. Meanwhile, the relative/network approach is time-consuming, particularly difficult for the simultaneous and real-time analysis of GPS data from hundreds or thousands of ground stations. In recent years, several single-receiver approaches for real-time GPS seismology, which can overcome the reference station problem of the relative positioning approach, have been successfully developed and applied to GPS seismology. One available method is real-time precise point positioning (PPP) relied on precise satellite orbit and clock products. However, real-time PPP needs a long (re)convergence period, of about thirty minutes, to resolve integer phase ambiguities and achieve centimeter-level accuracy. In comparison with PPP, Colosimo et al. (2011) proposed a variometric approach to determine the change of position between two adjacent epochs, and then displacements are obtained by a single integration of the delta positions. This approach does not suffer from convergence process, but the single integration from delta positions to

  5. Low phase noise high power handling InGaAs photodiodes for precise timing applications

    NASA Astrophysics Data System (ADS)

    Datta, Shubhashish; Joshi, Abhay; Becker, Don

    2009-05-01

    Time is the most precisely measured physical quantity. Such precision is achieved by optically probing hyperfine atomic transitions. These high Q-factor resonances demonstrate frequency instability of ~10-18 over 1 s observation time. Conversion of such a stable optical clock signal to an electrical clock through photodetection introduces additional phase noise, thereby resulting in a significant degradation in the frequency stability. This excess phase noise is primarily caused by the conversion of optical intensity noise into electrical phase noise by the phase non-linearity of the photodetector, characterized by its power-to-phase conversion factor. It is necessary to minimize this phase nonlinearity in order to develop the next generation of ultra-high precision electronic clocks. Reduction in excess phase noise must be achieved while ensuring a large output RF signal generated by the photodetector. The phase linearity in traditional system designs that employ a photoreceiver, namely a photodiode followed by a microwave amplifier, is limited by the phase non-linearity of the amplifier. Utilizing high-power handling photodiodes eliminates the need of microwave amplifiers. In this work, we present InGaAs p-i-n photodiodes that display a power-to-phase conversion factor <6 rad/W at a peak-to-peak RF output amplitude of 2 V. In comparison, the photodiode coupled to a transimpedance amplifier demonstrates >44 rad/W at a peak-to-peak RF output amplitude of 0.5 V. These results are supported by impulse response measurements at 1550 nm wavelength at 1 GHz repetition rate. These photodiodes are suitable of applications such as optical clock distribution networks, photonic analog-to-digital converters, and phased array radars.

  6. Virtual source for a Laguerre-Gauss beam

    NASA Astrophysics Data System (ADS)

    Seshadri, S. R.

    2002-11-01

    A virtual source that generates a cylindrically symmetric Laguerre-Gauss wave of radial mode number n is introduced. An expression is derived for this Laguerre-Gauss wave that in the appropriate limit yields the corresponding Laguerre-Gauss beam. From the spectral representation of the Laguerre-Gauss wave, the first three orders of nonparaxial corrections for the paraxial Laguerre-Gauss beam are determined. On the beam axis, the number of orders of nonvanishing nonparaxial corrections is found to be equal to n.

  7. Gauss's law test of gravity at short range

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Paik, H. J.

    1993-01-01

    A null test of the gravitational inverse-square law can be performed by testing Gauss's law for the field. We have constructed a three-axis superconducting gravity gradiometer and carried out such a test. A lead pendulum weighing 1500 kg was used to produce a time-varying field. This experiment places a new (2-sigma) limit of alpha = (0.9 + or - 4.6) x 10 exp -4 at lambda of 1.5 m, where alpha and lambda are parameters for the generalized potential phi = -(GM/r)(l + alpha e exp -r/lambda).

  8. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study

    PubMed Central

    Witt, Annette; Palmigiano, Agostina; Neef, Andreas; El Hady, Ahmed; Wolf, Fred; Battaglia, Demian

    2013-01-01

    Dynamic oscillatory coherence is believed to play a central role in flexible communication between brain circuits. To test this communication-through-coherence hypothesis, experimental protocols that allow a reliable control of phase-relations between neuronal populations are needed. In this modeling study, we explore the potential of closed-loop optogenetic stimulation for the control of functional interactions mediated by oscillatory coherence. The theory of non-linear oscillators predicts that the efficacy of local stimulation will depend not only on the stimulation intensity but also on its timing relative to the ongoing oscillation in the target area. Induced phase-shifts are expected to be stronger when the stimulation is applied within specific narrow phase intervals. Conversely, stimulations with the same or even stronger intensity are less effective when timed randomly. Stimulation should thus be properly phased with respect to ongoing oscillations (in order to optimally perturb them) and the timing of the stimulation onset must be determined by a real-time phase analysis of simultaneously recorded local field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two decades of light intensity. Through simulations of a neural population which undergoes coherent gamma oscillations—either spontaneously or as an effect of continuous optogenetic driving—we show that precisely-timed photostimulation pulses can be used to shift the phase of oscillation, even at transduction rates smaller than 25%. We consider then a canonic circuit with two inter-connected neural populations oscillating with gamma frequency in a phase-locked manner. We demonstrate that photostimulation pulses applied locally to a single population can induce, if precisely phased, a lasting reorganization of the phase-locking pattern and hence modify functional interactions between the

  9. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio. PMID:20480922

  10. Precise and Continuous Time and Frequency Synchronisation at the 5×10-19 Accuracy Level

    PubMed Central

    Wang, B.; Gao, C.; Chen, W. L.; Miao, J.; Zhu, X.; Bai, Y.; Zhang, J. W.; Feng, Y. Y.; Li, T. C.; Wang, L. J.

    2012-01-01

    The synchronisation of time and frequency between remote locations is crucial for many important applications. Conventional time and frequency dissemination often makes use of satellite links. Recently, the communication fibre network has become an attractive option for long-distance time and frequency dissemination. Here, we demonstrate accurate frequency transfer and time synchronisation via an 80 km fibre link between Tsinghua University (THU) and the National Institute of Metrology of China (NIM). Using a 9.1 GHz microwave modulation and a timing signal carried by two continuous-wave lasers and transferred across the same 80 km urban fibre link, frequency transfer stability at the level of 5×10−19/day was achieved. Time synchronisation at the 50 ps precision level was also demonstrated. The system is reliable and has operated continuously for several months. We further discuss the feasibility of using such frequency and time transfer over 1000 km and its applications to long-baseline radio astronomy. PMID:22870385

  11. Delivery and application of precise timing for a traveling wave powerline fault locator system

    NASA Technical Reports Server (NTRS)

    Street, Michael A.

    1990-01-01

    The Bonneville Power Administration (BPA) has successfully operated an in-house developed powerline fault locator system since 1986. The BPA fault locator system consists of remotes installed at cardinal power transmission line system nodes and a central master which polls the remotes for traveling wave time-of-arrival data. A power line fault produces a fast rise-time traveling wave which emanates from the fault point and propagates throughout the power grid. The remotes time-tag the traveling wave leading edge as it passes through the power system cardinal substation nodes. A synchronizing pulse transmitted via the BPA analog microwave system on a wideband channel sychronizes the time-tagging counters in the remote units to a different accuracy of better than one microsecond. The remote units correct the raw time tags for synchronizing pulse propagation delay and return these corrected values to the fault locator master. The master then calculates the power system disturbance source using the collected time tags. The system design objective is a fault location accuracy of 300 meters. BPA's fault locator system operation, error producing phenomena, and method of distributing precise timing are described.

  12. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker.

    PubMed

    Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea

    2016-01-01

    This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet. PMID:26978360

  13. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker

    PubMed Central

    Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea

    2016-01-01

    This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet. PMID:26978360

  14. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  15. Precise time dissemination and applications development on the Bonneville Power Administration system

    NASA Technical Reports Server (NTRS)

    Martin, Ken E.; Esztergalyos, J.

    1992-01-01

    The Bonneville Power Administration (BPA) uses IRIG-B transmitted over microwave as its primary system time dissemination. Problems with accuracy and reliability have led to ongoing research into better methods. BPA has also developed and deployed a unique fault locator which uses precise clocks synchronized by a pulse over microwaves. It automatically transmits the data to a central computer for analysis. A proposed system could combine fault location timing and time dissemination into a Global Position System (GPS) timing receiver and close the verification loop through a master station at the Dittmer Control Center. Such a system would have many advantages, including lower cost, higher reliability, and wider industry support. Test results indicate the GPS has sufficient accuracy and reliability for this and other current timing requirements including synchronous phase angle measurements. A phasor measurement system which provides phase angle has recently been tested with excellent results. Phase angle is a key parameter in power system control applications including dynamic braking, DC modulation, remedial action schemes, and system state estimation. Further research is required to determine the applications which can most effectively use real-time phase angle measurements and the best method to apply them.

  16. Precise Real-Time Low-Earth-Orbiter Navigation With the Global Positioning System (GPS)

    NASA Astrophysics Data System (ADS)

    Bertiger, W.; Haines, B.; Kuang, D.; Lough, M.; Lichten, S.; Muellerschoen, R. J.; Vigue-Rodi, Y.; Wu, S.

    1999-01-01

    Technology currently is available to support real-time onboard knowledge of the position of a low Earth orbiter at the 5- to 15-m level using the civilian broadcast Global Positioning System (GPS) signal with sophisticated models and filtering techniques onboard the spacecraft. Without these techniques, the standard positioning service yields 50 to 100 m with the current level of selective availability (SA). Proposed augmentations and/or enhancements to the GPS system will make rms accuracies of from 10 centimeters to a few decimeters available to the real-time onboard user. Presently, near-real-time processing of GPS tracking data can routinely provide low-Earth-orbit determination accuracy at the level of 5 cm. Such processing systems can, in fact, be fully automated; recent results from the Jet Propulsion Laboratory (JPL), where ongoing daily processing of low Earth GPS tracking data has been undertaken for several years, are presented in this article, showing orbit determination accuracies at the sub-10-cm level. At the present time, such solutions can be produced with about a 10-h delay after real time, but recent improvements in JPL's processing system soon will enable turnaround at the 1-h level or better for such precise orbit determination. We anticipate that orbit determination at the 1-cm-accuracy level will be demonstrated, with some refinements to the current system, in the not too distant future. Continuing enhancements in the automation of data retrieval and precise orbit processing will result in continuing decreases in latency for ground-based generation of precise orbit products for Earth orbiters. Such ephemerides can be propagated slightly ahead to provide real-time knowledge. However, there are advantages to an onboard, real-time orbit-determination capability. These include unique mission requirements (military, strategic, and scientific), as well as the potential to dramatically lower navigation operations costs through the enabling of a

  17. A fast Gauss-Newton optimizer for estimating human body orientation.

    PubMed

    Lee, Jung Keun; Park, Edward J

    2008-01-01

    This paper presents a quaternion-based Gauss-Newton optimizer for tracking human body orientation using inertial/magnetic sensors. Since a computationally efficient and robust algorithm for estimating orientation is critical for low-cost and real-time ambulatory purposes, the optimizer is formulated using a virtual rotation concept in order to decrease the computing time. In addition, to guard against the effects of fast body motions and temporary ferromagnetic disturbances, a situational measurement vector selection procedure is adopted in conjunction with the Gauss-Newton optimizer. PMID:19163001

  18. On troposphere delay constraining in real-time GNSS Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Hadas, Tomasz; Kazmierski, Kamil; Bosy, Jaroslaw

    2015-04-01

    A common procedure in Precise Point Positioning (PPP) is to have the adjustment model accounting for the correction to an a priori value of the total troposphere delay (ZTD) given at the first epoch of data processing, and the troposphere wet delay filter is updated epoch by epoch. This approach requires some time so that a change in satellite geometry allows to efficiently de-correlate among tropospheric delay, receiver clock error and height. Empirical troposphere state models and mapping functions are available, however they may not reflect properly the actual state of the troposphere, especially in severe weather conditions. It might be more appropriate to take advantage on a regional troposphere model derived from near real-time (NRT) processing of GBAS network. To evaluate the impact of troposphere constraining in real-time PPP, one week long period was selected, that was characterized with active troposphere conditions. Using the development version of original GNSS-WARP software, a 1 Hz kinematic positioning was performed for 10 selected Polish GBAS stations using IGS Real-Time Service (RTS) products. Two processing strategies were used, one reflecting the common PPP approach and the second with NRT ZTD to constrain the troposphere delay estimates. GPS only and GPS+GLONASS positioning was performed and analyzed using both strategies. For unconstrained solutions, the convergence time of one hour (GPS only) and 15 minutes (GPS+GLONASS) was reached, providing the sub-decimeter accuracy in horizontal and vertical component. However, for some epochs, and outlying height estimates were observed with the residuals reaching up to 0.5m with the estimated error of 0.2m. At the same time, the unconstrained estimated troposphere delay differs up to 12 cm from the reference NRT ZTD solution. In case the troposphere delay is constrained, all three coordinate components remains accurate and precise for entire processing period after the convergence is reached. From the

  19. Two-frequency-dependent Gauss quadrature rules

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Joong

    2005-02-01

    We construct two-frequency-dependent Gauss quadrature rules which can be applied for approximating the integration of the product of two oscillatory functions with different frequencies [beta]1 and [beta]2 of the forms,yi(x)=fi,1(x) cos([beta]ix)+fi,2(x) sin([beta]ix), i=1,2,where the functions fi,j(x) are smooth. A regularization procedure is presented to avoid the singularity of the Jacobian matrix of nonlinear system of equations which is induced as one frequency approaches the other frequency. We provide numerical results to compare the accuracy of the classical Gauss rule and one- and two-frequency-dependent rules.

  20. Entanglement temperature with Gauss-Bonnet term

    NASA Astrophysics Data System (ADS)

    Pal, Shesansu Sekhar; Panda, Sudhakar

    2015-09-01

    We compute the entanglement temperature using the first law-like of thermodynamics, ΔE =Tent ΔSEE, up to Gauss-Bonnet term in the Jacobson-Myers entropy functional in any arbitrary spacetime dimension. The computation is done when the entangling region is the geometry of a slab. We also show that such a Gauss-Bonnet term, which becomes a total derivative, when the co-dimension two hypersurface is four dimensional, does not contribute to the finite term in the entanglement entropy. We observe that the Weyl-squared term does not contribute to the entanglement entropy. It is important to note that the calculations are performed when the entangling region is very small and the energy is calculated using the normal Hamiltonian.

  1. Real time calibration and testing of chemical sensors enabled by precision micro-dispensing technology

    NASA Astrophysics Data System (ADS)

    Hayes, Donald J.; Taylor, David W.

    2005-05-01

    Precision micro-dispensing based upon ink jet technology has been used in medical diagnostics since the early nineties, and now is moving into a wide range of applications. Ink-jet printing technology can reproducibly dispense micro-droplets of fluid with diameters of 15 to 100 μm (2pl to 5nl) at rates of 0 - 25,000 per second from a single drop-on-demand printhead. The deposition is non-contact, data-driven and can dispense a wide range of fluids. It is a key enabling technology in the development of Bio-MEMS devices, Sensors, Micro-fluidic devices and Micro-optical systems. In this paper, we will discuss the use of this technology for real time calibration and testing of chemical sensors. The technology is based upon test systems developed for olfaction testing which are capable of precisely dispensing chemical aromas in concentration that vary over 6 orders of magnitude. The droplets of each chemical are thermally converted into a vapor that is fed directly into the sensor under test.

  2. Seasonal Plasticity of Precise Spike Timing in the Avian Auditory System

    PubMed Central

    Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A.

    2015-01-01

    Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843

  3. Research on high precision timing system based on FPGA non scanning imaging laser radar

    NASA Astrophysics Data System (ADS)

    Fu, Yanbo; Han, Shaokun; Wang, Liang; Ma, Yayun

    2015-08-01

    The article introduced the system structure and imaging principle of no three-dimensional imaging laser radar. This paper used the XC7K325T XILINX chip of KINTEX 7 series and used temporal interpolation method to measure distance. Rough side used PLL multiplier 400MHZ, which reached 2.5ns time accuracy. This method used a thin chip delay chains carry resources to reach 50ps accuracy and greatly improved the accuracy of the timing of imaging. Application technique used a delay line in APD array imaging system, such that each channel distance accuracy greatly improved. Echo signal by photoelectric conversion is completed by APD array detector, and designed by the impedance amplifier and other analog signal processing circuit. FPGA signal processing circuit is to complete the back-end processing, which is the timing function. FPGA array timer clock is to achieve coarse portion through timing, and delay line technique for measuring the length of time a non-integer multiple of the period of the laser pulse emission and the moment of reception, each stage of the delay units delay accuracy of sub ns magnitude, so as to achieve precision measuring part timers. With the above device was close imaging experiments, obtaining the 5 × 5 pixel imaging test results, presented to further improve system accuracy improved method.

  4. Seasonal plasticity of precise spike timing in the avian auditory system.

    PubMed

    Caras, Melissa L; Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A

    2015-02-25

    Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843

  5. Integrity monitoring in real-time precise point positioning in the presence of ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Wezka, K.; Galas, R.

    2013-12-01

    Ionospheric disturbances are characterized as fast and random variability in the ionosphere. Those phenomena are difficult to predict, detect and model. Occurrence of some strong ionospheric disturbances can cause, inter alia degradation and interruption of GNSS signals. Therefore they are especially harmful for real-time applications, as for example Precise Point Positioning (PPP) in real time, where one of the most important requirements is to ensure the high level of reliability. In such applications verification and confirmation of a high trust degree towards the estimated coordinates is a very critical issue. In one of the previous papers (K. Wezka, 2012 -Identification of system performance parameters and their usability) two sets of parameters have been proposed for enhance reliability of the PPP. The first one for data quality control (QC) of the raw GNSS observations and the second one for examination of the quality, robustness and performance of various processing approaches (strategies). To the second group the following parameters has been proposed: accuracy, precision, availability, integrity and convergence time. In consideration of perturbation of GNSS signal resulting from sudden ionospheric disturbances, one of the most important demands is effective autonomous integrity monitoring. The poster presents first preliminary results of the applicability of the proposed parameters in order to ensure the high level of reliability/integrity of GNSS observations and positioning results under the presence of strong ionospheric anomalies. The data-set from continuously operated GNSS station located at high latitude, where ionospheric disturbances occur more frequently, were used for the analysis. Various selected Receiver Autonomous Integrity Monitoring (RAIM) approaches for quality control of the GNSS observables are applied to the data sets recorded under different (low/quite and high) ionospheric activities. Based on those analyses the usability of the

  6. Energy conditions in modified Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    García, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, José P.

    2011-05-01

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  7. Energy conditions in modified Gauss-Bonnet gravity

    SciTech Connect

    Garcia, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, Jose P.

    2011-05-15

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  8. Real-time, autonomous precise satellite orbit determination using the global positioning system

    NASA Astrophysics Data System (ADS)

    Goldstein, David Ben

    2000-10-01

    The desire for autonomously generated, rapidly available, and highly accurate satellite ephemeris is growing with the proliferation of constellations of satellites and the cost and overhead of ground tracking resources. Autonomous Orbit Determination (OD) may be done on the ground in a post-processing mode or in real-time on board a satellite and may be accomplished days, hours or immediately after observations are processed. The Global Positioning System (GPS) is now widely used as an alternative to ground tracking resources to supply observation data for satellite positioning and navigation. GPS is accurate, inexpensive, provides continuous coverage, and is an excellent choice for autonomous systems. In an effort to estimate precise satellite ephemeris in real-time on board a satellite, the Goddard Space Flight Center (GSFC) created the GPS Enhanced OD Experiment (GEODE) flight navigation software. This dissertation offers alternative methods and improvements to GEODE to increase on board autonomy and real-time total position accuracy and precision without increasing computational burden. First, GEODE is modified to include a Gravity Acceleration Approximation Function (GAAF) to replace the traditional spherical harmonic representation of the gravity field. Next, an ionospheric correction method called Differenced Range Versus Integrated Doppler (DRVID) is applied to correct for ionospheric errors in the GPS measurements used in GEODE. Then, Dynamic Model Compensation (DMC) is added to estimate unmodeled and/or mismodeled forces in the dynamic model and to provide an alternative process noise variance-covariance formulation. Finally, a Genetic Algorithm (GA) is implemented in the form of Genetic Model Compensation (GMC) to optimize DMC forcing noise parameters. Application of GAAF, DRVID and DMC improved GEODE's position estimates by 28.3% when applied to GPS/MET data collected in the presence of Selective Availability (SA), 17.5% when SA is removed from the GPS

  9. Causal structures in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Izumi, Keisuke

    2014-08-01

    We analyze causal structures in Gauss-Bonnet gravity. It is known that Gauss-Bonnet gravity potentially has superluminal propagation of gravitons due to its noncanonical kinetic terms. In a theory with superluminal modes, an analysis of causality based on null curves makes no sense, and thus, we need to analyze them in a different way. In this paper, using the method of the characteristics, we analyze the causal structure in Gauss-Bonnet gravity. We have the result that, on a Killing horizon, gravitons can propagate in the null direction tangent to the Killing horizon. Therefore, a Killing horizon can be a causal edge as in the case of general relativity; i.e. a Killing horizon is the "event horizon" in the sense of causality. We also analyze causal structures on nonstationary solutions with (D-2)-dimensional maximal symmetry, including spherically symmetric and flat spaces. If the geometrical null energy condition, RABNANB≥0 for any null vector NA, is satisfied, the radial velocity of gravitons must be less than or equal to that of light. However, if the geometrical null energy condition is violated, gravitons can propagate faster than light. Hence, on an evaporating black hole where the geometrical null energy condition is expected not to hold, classical gravitons can escape from the "black hole" defined with null curves. That is, the causal structures become nontrivial. It may be one of the possible solutions for the information loss paradox of evaporating black holes.

  10. Real Time Precise Point Positioning: Preliminary Results for the Brazilian Region

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João.; Hirokazu Shimabukuro, Milton; Aquino, Marcio

    2010-05-01

    GNSS positioning can be carried out in relative or absolute approach. In the last years, more attention has been driven to the real time precise point positioning (PPP). To achieve centimeter accuracy with this method in real time it is necessary to have available the satellites precise coordinates as well as satellites clocks corrections. The coordinates can be used from the predicted IGU ephemeris, but the satellites clocks must be estimated in a real time. It can be made from a GNSS network as can be seen from EUREF Permanent Network. The infra-structure to realize the PPP in real time is being available in Brazil through the Brazilian Continuous Monitoring Network (RBMC) together with the Sao Paulo State GNSS network which are transmitting GNSS data using NTRIP (Networked Transport of RTCM via Internet Protocol) caster. Based on this information it was proposed a PhD thesis in the Univ. Estadual Paulista (UNESP) aiming to investigate and develop the methodology to estimate the satellites clocks and realize PPP in real time. Then, software is being developed to process GNSS data in the real time PPP mode. A preliminary version of the software was called PPP_RT and is able to process GNSS code and phase data using precise ephemeris and satellites clocks. The PPP processing can be accomplished considering the absolute satellite antenna Phase Center Variation (PCV), Ocean Tide Loading (OTL), Earth Body Tide, among others. The first order ionospheric effects can be eliminated or minimized by ion-free combination or parameterized in the receiver-satellite direction using a stochastic process, e.g. random walk or white noise. In the case of ionosphere estimation, a pseudo-observable is introduced in the mathematical model for each satellite and the initial value can be computed from Klobuchar model or from Global Ionospheric Map (GIM). The adjustment is realized in the recursive mode and the DIA (Detection Identification and Adaptation) is used for quality control. In

  11. Effects of shortened acquisition time on accuracy and precision of quantitative estimates of organ activity1

    PubMed Central

    He, Bin; Frey, Eric C.

    2010-01-01

    Purpose: Quantitative estimation of in vivo organ uptake is an essential part of treatment planning for targeted radionuclide therapy. This usually involves the use of planar or SPECT scans with acquisition times chosen based more on image quality considerations rather than the minimum needed for precise quantification. In previous simulation studies at clinical count levels (185 MBq 111In), the authors observed larger variations in accuracy of organ activity estimates resulting from anatomical and uptake differences than statistical noise. This suggests that it is possible to reduce the acquisition time without substantially increasing the variation in accuracy. Methods: To test this hypothesis, the authors compared the accuracy and variation in accuracy of organ activity estimates obtained from planar and SPECT scans at various count levels. A simulated phantom population with realistic variations in anatomy and biodistribution was used to model variability in a patient population. Planar and SPECT projections were simulated using previously validated Monte Carlo simulation tools. The authors simulated the projections at count levels approximately corresponding to 1.5–30 min of total acquisition time. The projections were processed using previously described quantitative SPECT (QSPECT) and planar (QPlanar) methods. The QSPECT method was based on the OS-EM algorithm with compensations for attenuation, scatter, and collimator-detector response. The QPlanar method is based on the ML-EM algorithm using the same model-based compensation for all the image degrading effects as the QSPECT method. The volumes of interests (VOIs) were defined based on the true organ configuration in the phantoms. The errors in organ activity estimates from different count levels and processing methods were compared in terms of mean and standard deviation over the simulated phantom population. Results: There was little degradation in quantitative reliability when the acquisition time was

  12. Precise timing resolution measurements of GSO scintillators with different Ce concentrations combined with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Okumura, Satoshi; Yamamoto, Seiichi; Yeol Yeom, Jung; Shimura, Naoaki; Ishibashi, Hiroyuki

    2015-10-01

    Ce doped Gd2SiO5 (GSO) is a scintillator which has relatively fast decay time, high density, high light output, and is used for commercial PET systems. However as time-of-flight (TOF) PET systems become more popular in clinical diagnostic, GSO seems less attractive, because its performance is thought to be insufficient for use in TOF-PET application. Although the timing resolution of the GSO combined with photomultiplier tube (PMT) is known to be inappropriate for TOF-PET system, the performance of GSO coupled to silicon photomultipliers (Si-PM) has not been reported to date. In addition, GSO possesses a variety of decay times depending on its Ce concentration. We measured basic performance of GSOs with different Ce concentrations and then coupled them to Si-PMs to measure the precise timing resolution using a high bandwidth digital oscilloscope. The decay time of GSO with 0.4 mol% Ce were longer (63±4 ns) compared with those with 1.0 mol% (40±2 ns) and 1.5 mol% (33±1 ns). With a Si-PM, the photo-peak channels were almost the same for GSOs with 0.4 mol% Ce and those with 1.5 mol% Ce, but the GSO with 1.0 mol% Ce was ~25% higher. Energy resolutions of these three GSOs were ~13% full-width at half-maximum (FWHM) for 662 keV gamma photons without correcting for saturation effects. When coupled to Si-PMs, the timing resolution for GSO with 1.5 mol% Ce (decay time 33 ns) was 549 ps FWHM, almost good enough to use for TOF-PET system. The combination of GSO with 1.5 mol% Ce with Si-PM will be an interesting combination to realize low cost TOF-PET systems.

  13. High precision electric gate for time-of-flight ion mass spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  14. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  15. Gauss-Bonnet modified gravity models with bouncing behavior

    NASA Astrophysics Data System (ADS)

    Escofet, Anna; Elizalde, Emilio

    2016-06-01

    The following issue is addressed: How the addition of a Gauss-Bonnet term (generically coming from most fundamental theories, as string and M theories), to a viable model, can change the specific properties, and even the physical nature, of the corresponding cosmological solutions? Specifically, brand new original dark energy models are obtained in this way with quite interesting properties, which exhibit, in a unified fashion, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence and ordinary matter, respectively. A model, in which the equation of state (EoS) parameter, w, is a function of time, is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with w = ‑1. Moreover, new Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are obtained and tested for the validity and stability of the corresponding solutions. They allow for a remarkably natural, unified description of a bouncing behavior at early times and accelerated expansion at present.

  16. Magnetic-field effects on p-wave phase transition in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Bo; Lu, Jun-Wang; Jin, Yong-Yi; Lu, Jian-Bo; Zhang, Xue; Wu, Si-Yu; Wang, Cui

    2014-07-01

    In the probe limit, we study the holographic p-wave phase transition in the Gauss-Bonnet gravity via numerical and analytical methods. Concretely, we study the influences of the external magnetic field on the Maxwell complex vector model in the five-dimensional Gauss-Bonnet-AdS black hole and soliton backgrounds, respectively. For the two backgrounds, the results show that the magnetic field enhances the superconductor phase transition in the case of the lowest Landau level, while the increasing Gauss-Bonnet parameter always hinders the vector condensate. Moreover, the Maxwell complex vector model is a generalization of the SU(2) Yang-Mills model all the time. In addition, the analytical results backup the numerical results. Furthermore, this model might provide a holographic realization for the QCD vacuum instability.

  17. Modelling the water balance of a precise weighable lysimeter for short time scales

    NASA Astrophysics Data System (ADS)

    Fank, Johann; Klammler, Gernot; Rock, Gerhard

    2015-04-01

    Precise knowledge of the water fluxes between the atmosphere and the soil-plant system and the percolation to the groundwater system is of great importance for understanding and modeling water, solute and energy transfer in the atmosphere-plant-soil-groundwater system. Weighable lysimeters yield the most precise and realistic measures for the change of stored water volume (ΔS), Precipitation (P) which can be rain, irrigation, snow and dewfall and evapotranspiration (ET) as the sum of soil evaporation, evaporation of intercepted water and transpiration. They avoid systematic errors of standard gauges and class-A pans. Lysimeters with controlled suction at the lower boundary allow estimation of capillary rise (C) and leachate (L) on short time scales. Precise weighable large scale (surface >= 1 m2) monolithic lysimeters avoiding oasis effects allow to solve the water balance equation (P - ET - L + C ± ΔS = 0) for a 3D-section of a natural atmosphere-plant-soil-system for a certain time period. Precision and accuracy of the lysimeter measurements depend not only on the precision of the weighing device but also on external conditions, which cannot be controlled or turned off. To separate the noise in measured data sets from signals the adaptive window and adaptive threshold (AWAT) filter (Peters et al., 2014) is used. The data set for the years 2010 and 2011 from the HYDRO-lysimeter (surface = 1 m2, depth = 1 m) in Wagna, Austria (Klammler and Fank, 2014) with a resolution of 0,01 mm for the lysimeter scale and of 0,001 mm for the leachate tank scale is used to evaluate the water balance. The mass of the lysimeter and the mass of the leachate tank is measured every two seconds. The measurements are stored as one minute arithmetic means. Based on calculations in a calibration period from January to May 2010 with different widths of moving window the wmax - Parameter for the AWAT filter was set to 41 minutes. A time series for the system mass ('upper boundary') of the

  18. Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Dzyhgadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Ugur, C.; Zühlsdorf, M.; Dodokhov, V. Kh.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Düren, M.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Corell, O.; Ferretti Bondy, M. I.; Hoek, M.; Lauth, W.; Rosner, C.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.

    2014-12-01

    The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and fast discriminators. The discriminators also provide time-over-threshold information thus enabling walk corrections to improve the timing resolution. Two types of frontend electronics cards optimised for reading out 64-channel PHOTONIS Planacon MCP-PMTs were tested: one based on the NINO ASIC and the other, called PADIWA, on FPGA discriminators. Promising results were obtained in a full characterisation using a fast laser setup and in a test experiment at MAMI, Mainz, with a small scale DIRC prototype.

  19. Precise Feature Based Time Scales and Frequency Decorrelation Lead to a Sparse Auditory Code

    PubMed Central

    Chen, Chen; Read, Heather L.; Escabí, Monty A.

    2012-01-01

    Sparse redundancy reducing codes have been proposed as efficient strategies for representing sensory stimuli. A prevailing hypothesis suggests that sensory representations shift from dense redundant codes in the periphery to selective sparse codes in cortex. We propose an alternative framework where sparseness and redundancy depend on sensory integration time scales and demonstrate that the central nucleus of the inferior colliculus (ICC) of cats encodes sound features by precise sparse spike trains. Direct comparisons with auditory cortical neurons demonstrate that ICC responses were sparse and uncorrelated as long as the spike train time scales were matched to the sensory integration time scales relevant to ICC neurons. Intriguingly, correlated spiking in the ICC was substantially lower than predicted by linear or nonlinear models and strictly observed for neurons with best frequencies within a “critical band,” the hallmark of perceptual frequency resolution in mammals. This is consistent with a sparse asynchronous code throughout much of the ICC and a complementary correlation code within a critical band that may allow grouping of perceptually relevant cues. PMID:22723685

  20. Radioisotopic Tie Points of the Quaternary Geomagnetic Instability Time Scale (GITS): How Accurate and Precise?

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2014-12-01

    Reversals and excursions of the geomagnetic field are recorded globally by sedimentary and volcanic rocks. These geodynamo instabilities provide a rich set of chronostratigraphic tie points for the Quaternary period that can provide tests of age models central to paleoclimate studies. Radioisotopic dating of volcanic rocks, mainly 40Ar/39Ar dating of lava flows, coupled with astronomically-dated deep sea sediments, reveals 10 polarity reversals and 27 field excursions during the Quaternary (Singer, 2014). A key question concerns the uncertainties associated with radioisotopic dates of those geodynamo instabilities that have been identified both in terrestrial volcanic rocks and in deep sea sediments. These particular features offer the highest confidence in linking 40Ar/39Ar dates to the global marine climate record. Geological issues aside, for rocks in which the build-up of 40Ar by decay of 40K may be overwhelmed by atmospheric 40Ar at the time of eruption, the uncertainty in 40Ar/39Ar dates derives from three sources: (1) analytical uncertainty associated with measurement of the isotopes; this is straightforward to estimate; (2) systematic uncertainties stemming from the age of standard minerals, such as the Fish Canyon sanidine, and in the 40K decay constant; and (3) systematic uncertainty introduced during analysis, mainly the size and reproducibility of procedural blanks. Whereas 1 and 2 control the precision of an age determination, 2 and 3 also control accuracy. In parallel with an astronomical calibration of 28.201 Ma for the Fish Canyon sanidine standard, awareness of the importance of procedural blanks, and a new generation multi-collector mass spectrometer capable of exceptionally low-blank and isobar-free analysis, are improving both accuracy and precision of 40Ar/39Ar dates. Results from lavas recording the Matuyama-Brunhes reversal, the Santa Rosa excursion, and the reversal at the top of the Cobb Mtn subchron demonstrate these advances. Current best

  1. Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements.

    PubMed

    Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-10-01

    We discuss the generation of Hermite-Gauss and Ince-Gauss beams employing phase elements whose transmittances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted by marginal optical noise, at the element's Fourier domain. The motivation to perform this study is that, in the context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as a figure of merit. PMID:26479622

  2. Precise discussion of time-reversal asymmetries in B-meson decays

    SciTech Connect

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-02-26

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_ →B¯0 and B¯0 → B_ (– expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought to be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵK is extracted and gives rise to O(10–3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of Bd meson, CPT violation, etc. As a result, we also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.

  3. Precise discussion of time-reversal asymmetries in B-meson decays

    DOE PAGESBeta

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-02-26

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_ →B¯0 and B¯0 → B_ (– expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought to be T-oddmore » since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵK is extracted and gives rise to O(10–3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of Bd meson, CPT violation, etc. As a result, we also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.« less

  4. Does the Gauss-Bonnet term stabilize wormholes?

    NASA Astrophysics Data System (ADS)

    Kokubu, Takafumi; Maeda, Hideki; Harada, Tomohiro

    2015-12-01

    The effect of the Gauss-Bonnet term on the existence and dynamical stability of thin-shell wormholes as negative tension branes is studied in the arbitrary-dimensional spherically, planar and hyperbolically symmetric spacetimes. We consider radial perturbations against the shell for the solutions that have the Z2 symmetry and admit the general relativistic limit. It is shown that the Gauss-Bonnet term shrinks the parameter region that admits static wormholes. The effect of the Gauss-Bonnet term on the stability depends on the spacetime symmetry. For planar symmetric wormholes, the Gauss-Bonnet term does not affect their stability. If the coupling constant is positive but small, the Gauss-Bonnet term tends to destabilize spherically symmetric wormholes, while it stabilizes hyperbolically symmetric wormholes. The Gauss-Bonnet term can destabilize hyperbolically symmetric wormholes as a non-perturbative effect, but spherically symmetric wormholes cannot be stable.

  5. Black holes in Gauss-Bonnet gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Faizal, Mir

    2015-08-01

    In this paper, we will generalize the Gauss-Bonnet gravity to an energy-dependent Gauss-Bonnet theory of gravity, which we shall call the Gauss-Bonnet gravity's rainbow. We will also couple this theory to a Maxwell's theory. We will analyze black hole solutions in this energy-dependent Gauss-Bonnet gravity's rainbow. We will calculate the modifications to the thermodynamics of black holes in the Gauss-Bonnet's gravity's rainbow. We will demonstrate that even though the thermodynamics of the black holes get modified in the Gauss-Bonnet gravity's rainbow, the first law of thermodynamics still holds for this modified thermodynamics. We will also comment on the thermal stability of the black hole solutions in this theory.

  6. Assignment of Calibration Information to Deeper Phylogenetic Nodes is More Effective in Obtaining Precise and Accurate Divergence Time Estimates.

    PubMed

    Mello, Beatriz; Schrago, Carlos G

    2014-01-01

    Divergence time estimation has become an essential tool for understanding macroevolutionary events. Molecular dating aims to obtain reliable inferences, which, within a statistical framework, means jointly increasing the accuracy and precision of estimates. Bayesian dating methods exhibit the propriety of a linear relationship between uncertainty and estimated divergence dates. This relationship occurs even if the number of sites approaches infinity and places a limit on the maximum precision of node ages. However, how the placement of calibration information may affect the precision of divergence time estimates remains an open question. In this study, relying on simulated and empirical data, we investigated how the location of calibration within a phylogeny affects the accuracy and precision of time estimates. We found that calibration priors set at median and deep phylogenetic nodes were associated with higher precision values compared to analyses involving calibration at the shallowest node. The results were independent of the tree symmetry. An empirical mammalian dataset produced results that were consistent with those generated by the simulated sequences. Assigning time information to the deeper nodes of a tree is crucial to guarantee the accuracy and precision of divergence times. This finding highlights the importance of the appropriate choice of outgroups in molecular dating. PMID:24855333

  7. Precision measurement of timing RPC gas mixtures with laser-beam induced electrons

    NASA Astrophysics Data System (ADS)

    Naumann, L.; Siebold, M.; Kaspar, M.; Kämpfer, B.; Kotte, R.; Laso Garcia, A.; Löser, M.; Schramm, U.; Wüstenfeld, J.

    2014-10-01

    The main goals of a new test facility at Helmholtz-Zentrum Dresden-Rossendorf are precision measurements of the electron drift velocity and the Townsend coefficient of gases at atmospheric pressure in the strongest ever used homogenous electrical fields and the search for new RPC gas mixtures to substitute the climate harmful Freon. Picosecond UV laser pulses were focused into a sub-millimeter gas gap to initialize a defined tiny charge. These gaps are formed by electrodes of low-resistive ceramics or high-resistive float glass. The charge multiplication occurs in a strong homogeneous electric field of up to 100 kV/cm. Electron-ion pairs were generated in a cylindrical micro-volume by multi-photon ionization. The laser-pulse repetition rate ranges from 1 Hz to a few kHz. The RPC time resolution has been measured for different gases. First results of the Townsend coefficient at 100 kV/cm show a strong disagreement between the present measurement and Magboltz simulations for the typical timing RPC gas mixture C2F4H2/SF6/i-C4H10, while the measured electron drift velocities are in a good agreement with the model predictions.

  8. Drift time spectrum and gas monitoring in the ATLAS Muon Spectrometer precision chambers

    NASA Astrophysics Data System (ADS)

    Levin, Daniel S.; Amram, Nir; Ball, Robert; ben Moshe, Meny; Benhammou, Yan; Chapman, John W.; Dai, Tiesheng; Diehl, Edward B.; Etzion, Erez; Ferretti, Claudio; Goldfarb, Steven; Gregory, Jeffery; Kiesel, Mike; McKee, Shawn; Thun, Rudi; Weaverdyck, Curtis; Wilson, Alan; Zhao, Zhengguo; Zhou, Bing

    2008-04-01

    The ATLAS Muon Spectrometer incorporates 354 000 drift tubes assembled into 1200 Monitored Drift Tube (MDT) precision chambers, with a total gas volume of 723 m3. This MDT gas, Ar 93% and CO2 7% at 3 bar, is cycled through the spectrometer at a rate of one total detector volume per day. Achieving the 80 μm drift tube design resolution requires stringent gas quality control as a fundamental component of the MDT calibration program. We report on the design, deployment and performance of a dedicated MDT mini-chamber conceived for continuous monitoring and drift time calibration of the ATLAS MDT operating gas. This chamber enables measurement of the drift spectra from which gas properties relevant to MDT calibrations and stable operating conditions are determined. Located in the ATLAS gas facility at CERN, the mini-chamber produces hourly drift spectra which are automatically analyzed. Results are published online and disseminated to the ATLAS muon system conditions and calibration databases in real time.

  9. The timing and precision of action prediction in the aging brain.

    PubMed

    Diersch, Nadine; Jones, Alex L; Cross, Emily S

    2016-01-01

    Successful social interactions depend on the ability to anticipate other people's actions. Current conceptualizations of brain function propose that causes of sensory input are inferred through their integration with internal predictions generated in the observer's motor system during action observation. Less is known concerning how action prediction changes with age. Previously we showed that internal action representations are less specific in older compared with younger adults at behavioral and neural levels. Here, we characterize how neural activity varies while healthy older adults aged 56-71 years predict the time-course of an unfolding action as well as the relation to task performance. By using fMRI, brain activity was measured while participants observed partly occluded actions and judged the temporal coherence of the action continuation that was manipulated. We found that neural activity in frontoparietal and occipitotemporal regions increased the more an action continuation was shifted backwards in time. Action continuations that were shifted towards the future preferentially engaged early visual cortices. Increasing age was associated with neural activity that extended from posterior to anterior regions in frontal and superior temporal cortices. Lower sensitivity in action prediction resulted in activity increases in the caudate. These results imply that the neural implementation of predicting actions undergoes similar changes as the neural process of executing actions in older adults. The comparison between internal predictions and sensory input seems to become less precise with age leading to difficulties in anticipating observed actions accurately, possibly due to less specific internal action models. PMID:26503586

  10. Small-displacement measurements using high-order Hermite-Gauss modes

    SciTech Connect

    Sun, Hengxin; Liu, Kui; Liu, Zunlong; Guo, Pengliang; Zhang, Junxiang; Gao, Jiangrui

    2014-03-24

    We present a scheme for small-displacement measurements using high-order Hermite-Gauss modes and balanced homodyne detection. We demonstrate its use with experimental results of displacement measurements using fundamental transverse mode TEM{sub 00} and first order transverse mode TEM{sub 10} as signal modes. The results show a factor of 1.41 improvement in measurement precision with the TEM{sub 10} mode compared with that with the TEM{sub 00} mode. This scheme has potential applications in precision metrology, atomic force microscopy, and optical imaging.

  11. Gauss Legendre Quadrature Formulae for Tetrahedra

    NASA Astrophysics Data System (ADS)

    Rathod, H. T.; Venkatesudu, B.; Nagaraja, K. V.

    2005-09-01

    In this paper we consider the Gauss Legendre quadrature method for numerical integration over the standard tetrahedron: {(x, y, z)|0 = x, y, z = 1, x + y + z = 1} in the Cartesian three-dimensional (x, y, z) space. The mathematical transformation from the (x, y, z) space to (?, ?, ?) space is described to map the standard tetrahedron in (x, y, z) space to a standard 2-cube: {(?, ?, ?)| - 1 = ?, ?,? = 1} in the (?, ?, ?) space. This overcomes the difficulties associated with the derivation of new weight co-efficients and sampling points. The effectiveness of the formulae is demonstrated by applying them to the integration of three nonpolynomial and three polynomial functions.

  12. Multivariate curve-fitting in GAUSS

    USGS Publications Warehouse

    Bunck, C.M.; Pendleton, G.W.

    1988-01-01

    Multivariate curve-fitting techniques for repeated measures have been developed and an interactive program has been written in GAUSS. The program implements not only the one-factor design described in Morrison (1967) but also includes pairwise comparisons of curves and rates, a two-factor design, and other options. Strategies for selecting the appropriate degree for the polynomial are provided. The methods and program are illustrated with data from studies of the effects of environmental contaminants on ducklings, nesting kestrels and quail.

  13. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.; Ku, T.-L.; Edwards, R. Lawrence

    1987-01-01

    The development of mass spectrometric techniques for determination of Th-230 abundance has made it possible to reduce analytical errors in (U-238)-(U-234)-(Th-230) dating of corals even with very small samples. Samples of 6 x 10 to the 8th atoms of Th-230 can be measured to an accuracy of + or - 3 percent (2sigma), and 3 x 10 to the 10th atoms of Th-230 can be measured to an accuracy of + or - 0.2 percent. The time range over which useful age data on corals can be obtained now ranges from about 50 to about 500,000 years. For young corals, this approach may be preferable to C-14 dating. The precision with which the age of a coral can now be determined should make it possible to critically test the Milankovitch hypothesis concerning Pleistocene climate fluctuations. Analyses of a number of corals that grew during the last interglacial period yield ages of 122,000 to 130,000 years. The ages coincide with, or slightly post-date, the summer solar insolation high at 65 deg N latitude which occurred 128,000 years ago. This supports the idea that changes in Pleistocene climate can be the result of variations in the distribution of solar insolation caused by changes in the geometry of the earth's orbit and rotation axis.

  14. PRECISE HIGH-CADENCE TIME SERIES OBSERVATIONS OF FIVE VARIABLE YOUNG STARS IN AURIGA WITH MOST

    SciTech Connect

    Cody, Ann Marie; Tayar, Jamie; Hillenbrand, Lynne A.; Matthews, Jaymie M.; Kallinger, Thomas

    2013-03-15

    To explore young star variability on a large range of timescales, we have used the MOST satellite to obtain 24 days of continuous, sub-minute cadence, high-precision optical photometry on a field of classical and weak-lined T Tauri stars (TTSs) in the Taurus-Auriga star formation complex. Observations of AB Aurigae, SU Aurigae, V396 Aurigae, V397 Aurigae, and HD 31305 reveal brightness fluctuations at the 1%-10% level on timescales of hours to weeks. We have further assessed the variability properties with Fourier, wavelet, and autocorrelation techniques, identifying one significant period per star. We present spot models in an attempt to fit the periodicities, but find that we cannot fully account for the observed variability. Rather, all stars exhibit a mixture of periodic and aperiodic behavior, with the latter dominating stochastically on timescales less than several days. After removal of the main periodicity, periodograms for each light curve display power-law trends consistent with those seen for other young accreting stars. Several of our targets exhibited unusual variability patterns not anticipated by prior studies, and we propose that this behavior originates with the circumstellar disks. The MOST observations underscore the need for investigation of TTS light variations on a wide range of timescales in order to elucidate the physical processes responsible; we provide guidelines for future time series observations.

  15. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver

    PubMed Central

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-01-01

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China’s HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2–0.4 m and 0.2–0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3–5 dm for position and 0.3–0.5 mm/s for velocity with this RTOD method. PMID:26690149

  16. Track Reconstruction in a Time Projection Chamber Designed to Make High Precision Fission Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Sharma, Sarvagya

    2010-10-01

    The TPC (Time Projection Chamber), being constructed by the NIFFTE (Neutron Induced Fission Fragment Tracking Experiment) collaboration will be used for high-precision fission cross-section measurements. These measurements will aid in the design of future generations of nuclear power plants. The NIFFTE track reconstruction effort has developed two approaches consisting of a variety of statistical estimators. The first, consists of traditional cluster and hit finding algorithms that are performed on 2D planes. A least squares is performed on the hits to produce a track in the TPC. The alternate approach uses the Hough Transform, a brute force attempt at finding tracks that isolates features in the TPC volume through data binning. To determine fit parameters, a Kalman Filter has been implemented that accounts for multiple scattering and kinks in the track. Comparing simulated and reconstructed tracks have shown the validity of these methods. The software uses open source packages to ensure re-usability for future TPC projects. In my talk, I will describe these methods in detail.

  17. Archean gold mineralization and metamorphism: timing constraints from precise U-Pb dating

    SciTech Connect

    Colvine, A.C.; Corfu, F.; Davis, D.W.; Stott, G.M.

    1985-01-01

    Gold mineralization is tightly constrained to an event closely following establishment of peak metamorphic condition, in all areas of the Superior Province of Canada where precise dating has been applied to defined field relationships. In the Abitibi and Wabigoon Subprovinces of the Southern Superior Domain, peak metamorphism caused by major batholith emplacement is consistently >2685 Ma and affects Archean supracrustal units of all ages (mainly >2700 Ma). Gold is commonly hosted by felsic stocks, dated at a specific age in the Abitibi Belt (2688-2684 Ma), and is therefore close to or younger than peak metamorphism. Dateable units crosscutting mineralization are extremely rare, but at Shebandowan and Mine Centre dated field relationships bracket the maximum and minimum age of mineralization between 2689 - 2684 and 2692 - 2686 Ma, respectively. While the metamorphic event in the Northern Superior Domain is approximately 20 my older, relative timing of gold mineralization is identical. At Red Lake, gold is hosted by units ranging in age from 2990-2718 Ma, all metamorphosed at >2704 Ma. Peak metamorphic minerals are retrograded by alteration during gold localization and mineralization is cut by a 2704 Ma dyke. These data show that gold mineralization was the product of a tectonic event during the latest Archean which involved major plutonism, deformation and metamorphism.

  18. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.

    PubMed

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-01-01

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method. PMID:26690149

  19. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals

    SciTech Connect

    Edwards, R.L.; Chen, J.H.; Ku, T.L.; Wasserburg, G.J.

    1987-06-19

    The development of mass spectrometric techniques for determination of STTh abundance has made it possible to reduce analytical errors in STYU-STUU-STTh dating of corals even with very small samples. Samples of 6 x 10Y atoms of STTh can be measured to an accuracy of +/- 3% (2sigma) and 3 x 10 atoms of STTh can be measured to an accuracy of +/- 0.2%. The time range over which useful age data on corals can be obtained now ranges from about 50 to about 500,000 years. For young corals, this approach may be preferable to UC dating. The precision should make it possible to critically test the Milankovitch hypothesis concerning Pleistocene climate fluctuations. Analyses of a number of corals that grew during the last interglacial period yield ages of 122,000 to 130,000 years. The ages coincide with, or slightly postdate, the summer solar insolation high at 65N latitude which occurred 128,000 years ago. This supports the idea that changes in Pleistocene climate can be the result of variations in the distribution of solar insolation caused by changes in the geometry of the earth's orbit and rotation axis.

  20. An Alternative Realization of Gauss-Newton for Frequency-Domain Acoustic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, J.; Chi, B.; Dong, L.

    2014-12-01

    Since FWI was studied under the least-square misfit optimization proposed by Tarantola (1984) in time domain, it has been greatly improved by many researchers. Pratt (1998) developed FWI in frequency domain using a Gauss-Newton optimization. In recent years, FWI has been widely studied under the framework of adjoint-state methods, as summarized by Plessix (2006). Preconditioning and high order gradients are important for FWI. Many researches have focused on the Newton optimization, in which the calculation of inverse Hessian is the key problem. Pseudo Hessian such as the diagonal Hessian was firstly used to approximate inverse Hessian (Choi & Shin, 2007). Then Gauss-Newton or l-BFGS method was widely studied to iteratively calculate the inverse approximate Hessian Haor full Hessian (Sheen et al., 2006). Full Hessian is the base of the exact Newton optimization. Fichtner and Trampert (2011) presented an extension of the adjoint-state method to directly compute the full Hessian; Métivier et al. (2012) proposed a general second-order adjoint-state formula for Hessian-vector product to tackle Gauss-Newton and exact Newton. Liu et al. (2014) proposed a matrix-decomposition FWI (MDFWI) based on Born kernel. They used the Born Fréchet kernel to explicitly calculate the gradient of the objective function through matrix decomposition, no full Fréchet kernel being stored in memory beforehand. However, they didn't give a method to calculate the Gauss-Newton. In this paper, We propose a method based on Born Fréchet kernel to calculate the Gauss-Newton for acoustic full waveform inversion (FWI). The Gauss-Newton is iteratively constructed without needing to store the huge approximate Hessian (Ha) or Fréchet kernel beforehand, and the inverse of Ha is not need to be calculated either. This procedure can be efficiently accomplished through matrix decomposition. More resolved result and faster convergence are obtained when this Gauss-Newton is applied in FWI based on the Born

  1. Impacts of real-time satellite clock errors on GPS precise point positioning-based troposphere zenith delay estimation

    NASA Astrophysics Data System (ADS)

    Shi, Junbo; Xu, Chaoqian; Li, Yihe; Gao, Yang

    2015-08-01

    Global Positioning System (GPS) has become a cost-effective tool to determine troposphere zenith total delay (ZTD) with accuracy comparable to other atmospheric sensors such as the radiosonde, the water vapor radiometer, the radio occultation and so on. However, the high accuracy of GPS troposphere ZTD estimates relies on the precise satellite orbit and clock products available with various latencies. Although the International GNSS Service (IGS) can provide predicted orbit and clock products for real-time applications, the predicted clock accuracy of 3 ns cannot always guarantee the high accuracy of troposphere ZTD estimates. Such limitations could be overcome by the use of the newly launched IGS real-time service which provides 5 cm orbit and 0.2-1.0 ns (an equivalent range error of 6-30 cm) clock products in real time. Considering the relatively larger magnitude of the clock error than that of the orbit error, this paper investigates the effect of real-time satellite clock errors on the GPS precise point positioning (PPP)-based troposphere ZTD estimation. Meanwhile, how the real-time satellite clock errors impact the GPS PPP-based troposphere ZTD estimation has also been studied to obtain the most precise ZTD solutions. First, two types of real-time satellite clock products are assessed with respect to the IGS final clock product in terms of accuracy and precision. Second, the real-time GPS PPP-based troposphere ZTD estimation is conducted using data from 34 selected IGS stations over three independent weeks in April, July and October, 2013. Numerical results demonstrate that the precision, rather than the accuracy, of the real-time satellite clock products impacts the real-time PPP-based ZTD solutions more significantly. In other words, the real-time satellite clock product with better precision leads to more precise real-time PPP-based troposphere ZTD solutions. Therefore, it is suggested that users should select and apply real-time satellite products with

  2. STICK: Spike Time Interval Computational Kernel, a Framework for General Purpose Computation Using Neurons, Precise Timing, Delays, and Synchrony.

    PubMed

    Lagorce, Xavier; Benosman, Ryad

    2015-11-01

    There has been significant research over the past two decades in developing new platforms for spiking neural computation. Current neural computers are primarily developed to mimic biology. They use neural networks, which can be trained to perform specific tasks to mainly solve pattern recognition problems. These machines can do more than simulate biology; they allow us to rethink our current paradigm of computation. The ultimate goal is to develop brain-inspired general purpose computation architectures that can breach the current bottleneck introduced by the von Neumann architecture. This work proposes a new framework for such a machine. We show that the use of neuron-like units with precise timing representation, synaptic diversity, and temporal delays allows us to set a complete, scalable compact computation framework. The framework provides both linear and nonlinear operations, allowing us to represent and solve any function. We show usability in solving real use cases from simple differential equations to sets of nonlinear differential equations leading to chaotic attractors. PMID:26378879

  3. Getting back on the beat: links between auditory-motor integration and precise auditory processing at fast time scales.

    PubMed

    Tierney, Adam; Kraus, Nina

    2016-03-01

    The auditory system is unique in its ability to precisely detect the timing of perceptual events and use this information to update motor plans, a skill that is crucial for language. However, the characteristics of the auditory system that enable this temporal precision are only beginning to be understood. Previous work has shown that participants who can tap consistently to a metronome have neural responses to sound with greater phase coherence from trial to trial. We hypothesized that this relationship is driven by a link between the updating of motor output by auditory feedback and neural precision. Moreover, we hypothesized that neural phase coherence at both fast time scales (reflecting subcortical processing) and slow time scales (reflecting cortical processing) would be linked to auditory-motor timing integration. To test these hypotheses, we asked participants to synchronize to a pacing stimulus, and then changed either the tempo or the timing of the stimulus to assess whether they could rapidly adapt. Participants who could rapidly and accurately resume synchronization had neural responses to sound with greater phase coherence. However, this precise timing was limited to the time scale of 10 ms (100 Hz) or faster; neural phase coherence at slower time scales was unrelated to performance on this task. Auditory-motor adaptation therefore specifically depends upon consistent auditory processing at fast, but not slow, time scales. PMID:26750313

  4. Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales

    PubMed Central

    dos Reis, Mario; Thawornwattana, Yuttapong; Angelis, Konstantinos; Telford, Maximilian J.; Donoghue, Philip C.J.; Yang, Ziheng

    2015-01-01

    Summary The timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature. PMID:26603774

  5. Higgs inflation in Gauss-Bonnet braneworld

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Guo, Zong-Kuan; Wang, Shao-Jiang

    2015-09-01

    The measured masses of the Higgs boson and top quark indicate that the effective potential of the standard model either develops an unstable electroweak vacuum or stands stable all the way up to the Planck scale. In the latter case in which the top quark mass is about 2 σ below its present central value, the Higgs boson can be the inflaton with the help of a large nonminimal coupling to curvature in four dimensions. We propose a scenario in which the Higgs boson can be the inflaton in a five-dimensional Gauss-Bonnet braneworld model to solve both the unitarity and stability problems which usually plague Higgs inflation. We find that in order for Higgs inflation to happen successfully in the Gauss-Bonnet regime, the extra dimension scale must appear roughly in the range between the TeV scale and the instability scale of standard model. At the tree level, our model can give rise to a naturally small nonminimal coupling ξ ˜O (1 ) for the Higgs quartic coupling λ ˜O (0.1 ) if the extra dimension scale lies at the TeV scale. At the loop level, the inflationary predictions at the tree level are preserved. Our model can be confronted with future experiments and observations from both particle physics and cosmology.

  6. Heavy duty precision leveling jacks expedite setup time on horizontal boring mill

    NASA Technical Reports Server (NTRS)

    Dellenbaugh, W.; Jones, C.

    1966-01-01

    Leveling jack is a precise alignment tool which expedites the setup of components or assemblies up to 2500 pounds on horizontal boring mills. This tool eliminates the necessity of wedges and blocks to shim the components to proper position.

  7. Fast-Time Analysis Support for the Terminal Area Precision Scheduling and Spacing (TAPSS) Simulation

    NASA Technical Reports Server (NTRS)

    Mulfinger, Daniel

    2011-01-01

    This poster describes research conducted using the Stochastic Terminal Area Simulation Software to determine spacing buffers for the Terminal Area Precision Scheduling and Spacing human-in-the-loop simulation.

  8. A 24 Hr Global Campaign to Assess Precision Timing of the Millisecond Pulsar J1713+0747

    NASA Astrophysics Data System (ADS)

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S.; Bassa, C.; Bhattacharyya, B.; Champion, D. J.; Cognard, I.; Crowter, K.; Demorest, P. B.; Hessels, J. W. T.; Janssen, G.; Jenet, F. A.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kondratiev, V.; Kramer, M.; Lazarus, P.; Lazio, T. J. W.; Lee, K. J.; McLaughlin, M. A.; Roy, J.; Shannon, R. M.; Stairs, I.; Stovall, K.; Verbiest, J. P. W.; Madison, D. R.; Palliyaguru, N.; Perrodin, D.; Ransom, S.; Stappers, B.; Zhu, W. W.; Dai, S.; Desvignes, G.; Guillemot, L.; Liu, K.; Lyne, A.; Perera, B. B. P.; Petroff, E.; Rankin, J. M.; Smits, R.

    2014-10-01

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized \\sqrt{N} improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  9. A 24 hr global campaign to assess precision timing of the millisecond pulsar J1713+0747

    SciTech Connect

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S.; Bassa, C.; Hessels, J. W. T.; Janssen, G.; Kondratiev, V.; Bhattacharyya, B.; Jordan, C.; Keith, M.; Champion, D. J.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Cognard, I.; Demorest, P. B.; Jenet, F. A.; Jones, G.; and others

    2014-10-10

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized √N improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  10. Potassium conductance dynamics confer robust spike-time precision in a neuromorphic model of the auditory brain stem

    PubMed Central

    Boahen, Kwabena

    2013-01-01

    A fundamental question in neuroscience is how neurons perform precise operations despite inherent variability. This question also applies to neuromorphic engineering, where low-power microchips emulate the brain using large populations of diverse silicon neurons. Biological neurons in the auditory pathway display precise spike timing, critical for sound localization and interpretation of complex waveforms such as speech, even though they are a heterogeneous population. Silicon neurons are also heterogeneous, due to a key design constraint in neuromorphic engineering: smaller transistors offer lower power consumption and more neurons per unit area of silicon, but also more variability between transistors and thus between silicon neurons. Utilizing this variability in a neuromorphic model of the auditory brain stem with 1,080 silicon neurons, we found that a low-voltage-activated potassium conductance (gKL) enables precise spike timing via two mechanisms: statically reducing the resting membrane time constant and dynamically suppressing late synaptic inputs. The relative contribution of these two mechanisms is unknown because blocking gKL in vitro eliminates dynamic adaptation but also lengthens the membrane time constant. We replaced gKL with a static leak in silico to recover the short membrane time constant and found that silicon neurons could mimic the spike-time precision of their biological counterparts, but only over a narrow range of stimulus intensities and biophysical parameters. The dynamics of gKL were required for precise spike timing robust to stimulus variation across a heterogeneous population of silicon neurons, thus explaining how neural and neuromorphic systems may perform precise operations despite inherent variability. PMID:23554436

  11. Progress in Bathymetric Surveys: Combining High Precision Positioning in Real Time with a Continuous Vertical Datum in Remote Areas

    NASA Astrophysics Data System (ADS)

    Lévesque, S.; Robin, C. M. I.; MacLeod, K.; Fadaie, K.

    2014-12-01

    For most of its bathymetric survey activities, the Canadian Hydrographic Service (CHS) requires high precision, three dimensional positioning. As part of a pilot project, one of its launches was equipped with a GNSS receiver processing a high precision correction service in real time (HP-GPS*C) via the internet using satellite telecommunication. This service was provided by Natural Resources Canada/Canadian Geodetic Survey (NRCan/CGS). The bathymetric data from a survey in eastern Hudson Bay performed by CHS in Fall 2013 was post -processed using different standard methods. This resulted in high precision positions that were compared with positions corrected with the real-time precise point positioning (PPP) service (HP-GPS*C) from NRCan/CGS. CHS bathymetric surveys must be referred to chart datum, the hydrographical vertical datum defined for use on nautical charts. In the Canadian north, another limitation to high precision bathymetric work is the availability of tide observations and/or predictions. The territory is vast and tide data is limited in space and in time while predicted tides are not always accurate. This makes reductions of bathymetric soundings to Chart datum difficult. To address this problem, CHS and NRCan/CGS have collaborated to produce a Continuous Vertical Datum for Canadian Waters (CVDCW), which incorporates data from NRCan's geoid model, tide gauge and GPS data, satellite altimetry, and ocean models. Thus high precision positioning provides ellipsoidal heights for the bathymetric depths, and the CVDCW allows to correct these ellipsoidal heights to chart datum. Comparisons of the bathymetry from the pilot survey corrected for tide data versus the bathymetry referred to its ellipsoidal height corrected to chart datum with the CVDCW are given to demonstrate the relative changes to the depths. This also illustrates the advantage of a continuous vertical datum with its potential to be combined with real-time high precision positioning.

  12. Precise High-cadence Time Series Observations of Five Variable Young Stars in Auriga with MOST

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Tayar, Jamie; Hillenbrand, Lynne A.; Matthews, Jaymie M.; Kallinger, Thomas

    2013-03-01

    To explore young star variability on a large range of timescales, we have used the MOST satellite to obtain 24 days of continuous, sub-minute cadence, high-precision optical photometry on a field of classical and weak-lined T Tauri stars (TTSs) in the Taurus-Auriga star formation complex. Observations of AB Aurigae, SU Aurigae, V396 Aurigae, V397 Aurigae, and HD 31305 reveal brightness fluctuations at the 1%-10% level on timescales of hours to weeks. We have further assessed the variability properties with Fourier, wavelet, and autocorrelation techniques, identifying one significant period per star. We present spot models in an attempt to fit the periodicities, but find that we cannot fully account for the observed variability. Rather, all stars exhibit a mixture of periodic and aperiodic behavior, with the latter dominating stochastically on timescales less than several days. After removal of the main periodicity, periodograms for each light curve display power-law trends consistent with those seen for other young accreting stars. Several of our targets exhibited unusual variability patterns not anticipated by prior studies, and we propose that this behavior originates with the circumstellar disks. The MOST observations underscore the need for investigation of TTS light variations on a wide range of timescales in order to elucidate the physical processes responsible; we provide guidelines for future time series observations. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for Aerospace Studies, and the University of British Columbia with the assistance of the University of Vienna.

  13. Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning

    NASA Astrophysics Data System (ADS)

    Fang, Rongxin; Shi, Chuang; Song, Weiwei; Wang, Guangxing; Liu, Jingnan

    2014-01-01

    For earthquake and tsunami early warning and emergency response, earthquake magnitude is the crucial parameter to be determined rapidly and correctly. However, a reliable and rapid measurement of the magnitude of an earthquake is a challenging problem, especially for large earthquakes (M > 8). Here, the magnitude is determined based on the GPS displacement waveform derived from real-time precise point positioning (RTPPP). RTPPP results are evaluated with an accuracy of 1 cm in the horizontal components and 2-3 cm in the vertical components, indicating that the RTPPP is capable of detecting seismic waves with amplitude of 1 cm horizontally and 2-3 cm vertically with a confidence level of 95 per cent. In order to estimate the magnitude, the unique information provided by the GPS displacement waveform is the horizontal peak displacement amplitude. We show that the empirical relation of Gutenberg (1945) between peak displacement and magnitude holds up to nearly magnitude 9.0 when displacements are measured with GPS. We tested the proposed method for three large earthquakes. For the 2010 Mw 7.2 El Mayor-Cucapah earthquake, our method provides a magnitude of M7.18 ± 0.18. For the 2011 Mw 9.0 Tohoku-oki earthquake the estimated magnitude is M8.74 ± 0.06, and for the 2010 Mw 8.8 Maule earthquake the value is M8.7 ± 0.1 after excluding some near-field stations. We, therefore, conclude that depending on the availability of high-rate GPS observations, a robust value of magnitude up to 9.0 for a point source earthquake can be estimated within tens of seconds or a few minutes after an event using a few GPS stations close to the epicentre. The rapid magnitude could be as a pre-requisite for tsunami early warning, fast source inversion and emergency response is feasible.

  14. HIGH-PRECISION TIMING OF FIVE MILLISECOND PULSARS: SPACE VELOCITIES, BINARY EVOLUTION, AND EQUIVALENCE PRINCIPLES

    SciTech Connect

    Gonzalez, M. E.; Stairs, I. H.; Ferdman, R. D.; Lyne, A. G.; Freire, P. C. C.; Kramer, M.; Nice, D. J.; Demorest, P. B.; Ransom, S. M.; Camilo, F.; Hobbs, G.; Manchester, R. N.

    2011-12-20

    We present high-precision timing of five millisecond pulsars (MSPs) carried out for more than seven years; four pulsars are in binary systems and one is isolated. We are able to measure the pulsars' proper motions and derive an estimate for their space velocities. The measured two-dimensional velocities are in the range 70-210 km s{sup -1}, consistent with those measured for other MSPs. We also use all the available proper motion information for isolated and binary MSPs to update the known velocity distribution for these populations. As found by earlier works, we find that the velocity distribution of binary and isolated MSPs are indistinguishable with the current data. Four of the pulsars in our observing program are highly recycled with low-mass white dwarf companions and we are able to derive accurate binary parameters for these systems. For three of these binary systems, we are able to place initial constraints on the pulsar masses with best-fit values in the range 1.0-1.6 M{sub Sun }. The implications of the results presented here to our understanding of binary pulsar evolution are discussed. The updated parameters for the binary systems studied here, together with recently discovered similar systems, allowed us to update previous limits on the violation of the strong equivalence principle through the parameter |{Delta}| to 4.6 Multiplication-Sign 10{sup -3} (95% confidence) and the violation of Lorentz invariance/momentum conservation through the parameter |{alpha}-hat3| to 5.5 Multiplication-Sign 10{sup -20} (95% confidence).

  15. Retrieving real-time precise co-seismic displacements with a standalone single-frequency GPS receiver

    NASA Astrophysics Data System (ADS)

    Chen, Kejie; Ge, Maorong; Li, Xingxing; Babeyko, Andrey; Ramatschi, Markus; Bradke, Markus

    2015-08-01

    Nowadays, Global Positioning System (GPS) plays an increasingly important role in retrieving real-time precise co-seismic displacements for geo-hazard monitoring and early warning. Several real-time positioning approaches have been demonstrated for such purpose, such as real-time kinematic relative positioning, precise point positioning, etc., where dual-frequency geodetic receivers are applied for the removal of ionosphere delays by inter-frequency combination. At the same time, it would be also useful to develop efficient algorithms for estimating precise displacements with low-cost GPS receivers since they can make a denser network or multi-sensors combination without putting too much financial burden. In this contribution, we present a new method to retrieve precise co-seismic displacements in real-time using a standalone single-frequency receiver. In the new method, observations prior to an earthquake are utilized to establish a precise ionospheric delay prediction model, so that precise co-seismic displacements can be obtained without any convergence process. Our method was validated with an outdoor experiment as well as by re-processing of 1-Hz GPS data collected by the GEONET network during the 2011 Tohoku Mw 9.0 earthquake. For the latter, RMS against dual-frequency receivers constituted 2 cm for horizontal components and 3 cm for the vertical component. We specially address the observation biases and their impact on the accuracy of single frequency positioning. Our approach makes real-time GPS displacement monitoring with dense network much more affordable in terms of financial costs.

  16. Electromagnetic modified Bessel-Gauss beams and waves.

    PubMed

    Seshadri, S R

    2008-01-01

    The transverse magnetic (TM) modified Bessel-Gauss beams and their full-wave generalizations are treated. Attention is paid to the spreading properties on propagation of the null in the radiation intensity pattern for the azimuthal mode numbers m=0 and 1. The rate of spreading of the null in the propagation direction is significantly less for the TM modified Bessel-Gauss waves than those for the corresponding TM Bessel-Gauss waves. The total power transported by the waves is determined and compared with that of the corresponding paraxial beam to estimate the quality of the paraxial beam approximation of the wave. The dependence of the quality of the paraxial beam approximation on the azimuthal mode number, the beam shape parameter, and the ratio of the beam waist to the wavelength has a regular pattern for the TM Bessel-Gauss wave and not for the TM modified Bessel-Gauss wave. PMID:18157205

  17. The use of precise ephemerides, ionospheric data, and corrected antenna coordinates in a long-distance GPS time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine; Weiss, Marc A.

    1990-01-01

    Over intercontinental distances, the accuracy of The Global Positioning System (GPS) time transfers ranges from 10 to 20 ns. The principal error sources are the broadcast ionospheric model, the broadcast ephemerides and the local antenna coordinates. For the first time, the three major error sources for GPS time transfer can be reduced simultaneously for a particular time link. Ionospheric measurement systems of the National Institute of Standards and Technology (NIST) type are now operating on a regular basis at the National Institute of Standards and Technology in Boulder and at the Paris Observatory in Paris. Broadcast ephemerides are currently recorded for time-transfer tracks between these sites, this being necessary for using precise ephemerides. At last, corrected local GPS antenna coordinates are now introduced in GPS receivers at both sites. Shown here is the improvement in precision for this long-distance time comparison resulting from the reduction of these three error sources.

  18. Time interval measurement device based on surface acoustic wave filter excitation, providing 1 ps precision and stability.

    PubMed

    Panek, Petr; Prochazka, Ivan

    2007-09-01

    This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3 ps rms that corresponds to the time of arrival precision of 0.9 ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5 ps/K, and the long term stability is better than +/-0.2 ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis. PMID:17902964

  19. Time interval measurement device based on surface acoustic wave filter excitation, providing 1 ps precision and stability

    NASA Astrophysics Data System (ADS)

    Panek, Petr; Prochazka, Ivan

    2007-09-01

    This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3ps rms that corresponds to the time of arrival precision of 0.9ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5ps/K, and the long term stability is better than ±0.2ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.

  20. Precise time-window for the onset of glacial termination found

    NASA Astrophysics Data System (ADS)

    Lai, C.-C.; Tseng, Y.-H.; Dietrich, D. E.

    2009-04-01

    Following a set of three simple rules, we have found a precise time-window (TW) for each onset of a glacial termination (GT) appeared during the last million years. The onset of GT (OGT) is defined as the year when the following two conditions are met: (1) the benthic delta 18-O is a maximum and greater than 4.5‰ and (2) its value continually drops 1‰ within 5 Ky. We developed the rules based on three hypotheses. We hypothesize that: (H1) The Earth's three orbital parameters (eccentricity, obliquity and precession of equinox) determine the insolation which is the key force to the climate system. (H2) However, only a small fraction of insolation is converted into sensible heat (SH) and chemical energy through photosynthesis (CETP) as influxes to the climate system's main heat capacitors (HCs), namely the world oceans. When insolation increases, both the SH flux and CETP increase. The downward SH flux will only increase the stability of the seawater. Nonetheless, the CETP gets accumulated faster than average. The CETP cascades through the marine food web and bacterial degradation. Finally, it is stored in the simple gas molecules (such as CH4) that form methane hydrate (MH) and other hydrates such as hydrogen sulfide hydrate (HSH) in deep sea sediments after a long time. While hydrates deposit accumulates with time, it also breaks off from the sediments from time to time. Since the density of MH is slightly smaller than average seawater, the MH ascends slowly from deep sea into upper part of ocean. But, HSH is slightly denser than the warm seawater in the upper part of ocean. Over the portion of glacial cycle when insolation is strong, the existence of a residual SH prevents the ascension of hydrates. (H3) Internal forcing - An internal energy converter or a heat generator exists in the oceans. Lai (2007) has found the link between the observed seawater warming at intermediate depth (400 - 750 m) (Barnett et al. 2001) and the dissociation of floating microscopic

  1. Precise time-window for the onset of glacial termination found

    NASA Astrophysics Data System (ADS)

    Lai, C.-C.; Tseng, Y.-H.; Dietrich, D. E.

    2009-04-01

    Following a set of three simple rules, we have found a precise time-window (TW) for each onset of a glacial termination (GT) appeared during the last million years. The onset of GT (OGT) is defined as the year when the following two conditions are met: (1) the benthic delta 18-O is a maximum and greater than 4.5‰ and (2) its value continually drops 1‰ within 5 Ky. We developed the rules based on three hypotheses. We hypothesize that: (H1) The Earth's three orbital parameters (eccentricity, obliquity and precession of equinox) determine the insolation which is the key force to the climate system. (H2) However, only a small fraction of insolation is converted into sensible heat (SH) and chemical energy through photosynthesis (CETP) as influxes to the climate system's main heat capacitors (HCs), namely the world oceans. When insolation increases, both the SH flux and CETP increase. The downward SH flux will only increase the stability of the seawater. Nonetheless, the CETP gets accumulated faster than average. The CETP cascades through the marine food web and bacterial degradation. Finally, it is stored in the simple gas molecules (such as CH4) that form methane hydrate (MH) and other hydrates such as hydrogen sulfide hydrate (HSH) in deep sea sediments after a long time. While hydrates deposit accumulates with time, it also breaks off from the sediments from time to time. Since the density of MH is slightly smaller than average seawater, the MH ascends slowly from deep sea into upper part of ocean. But, HSH is slightly denser than the warm seawater in the upper part of ocean. Over the portion of glacial cycle when insolation is strong, the existence of a residual SH prevents the ascension of hydrates. (H3) Internal forcing - An internal energy converter or a heat generator exists in the oceans. Lai (2007) has found the link between the observed seawater warming at intermediate depth (400 - 750 m) (Barnett et al. 2001) and the dissociation of floating microscopic

  2. Research progress on real-time measurement of soil attributes for precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid and accurate measurement of soil organic matter content and nitrogen, phosphorus, potassium and other nutrients is the basis for variable rate fertilizer application in precision agriculture, and it is also a difficult problem that scientists have been committed to resolving. On the basis of ...

  3. Accuracy, precision and response time of consumer bimetal and digital thermometers for cooked ground beef patties and chicken breasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three models each of consumer instant-read bimetal and digital thermometers were tested for accuracy, precision and response time compared to a calibrated thermocouple in cooked 80 percent and 90 percent lean ground beef patties and boneless and bone-in split chicken breasts. At the recommended inse...

  4. High-Precision Time Delay Control with Continuous Phase Shifter for Pump-Probe Experiments Using Synchrotron Radiation Pulses

    SciTech Connect

    Tanaka, Yoshihito; Ohshima, Takashi; Moritomo, Yutaka; Tanaka, Hitoshi; Takata, Masaki

    2010-06-23

    Brilliant pulsed x-ray synchrotron radiation (SR) is useful for pump-probe experiment such as time-resolved x-ray diffraction, x-ray absorption fine structure, and x-ray spectroscopy. For laser pump-SR x-ray probe experiments, short pulsed lasers are generally synchronized to the SR master oscillator controlling the voltage for acceleration of electron bunches in an accelerator, and the interval between the laser and the SR pulses is changed around the time scale of target phenomenon. Ideal delay control produces any time delay as keeping the time-precision and pointing-stability of optical pulses at a sample position. We constructed the time delay control module using a continuous phase shifter of radio frequency signal and a frequency divider, which can produce the delayed trigger pulses to the laser without degradation of the time precision and the pointing stability. A picoseconds time-resolved x-ray diffraction experiment was demonstrated at SPring-8 storage ring for fast lattice response by femtosecond pulsed laser irradiation, and suggested the possibility of accurate sound velocity measurement. A delay control unit operating with subpicosecond precision has also been designed for femtosecond pump-probe experiments using a free electron laser at SPring-8 campus.

  5. An Efficient Real-Time Precise Point Positioning (RT-PPP) Solution for Offshore Surveys in Turkey

    NASA Astrophysics Data System (ADS)

    Abdelazeem, Mohamed; Nurhan Çelik, Rahmi

    2016-07-01

    Recently, the international global navigation satellite systems (GNSS) service (IGS) has launched the real-time service (IGS-RTS). The IGS-RTS has shown promise accuracy in precise point positioning applications. Currently, the precise point positioning technique is used extensively in marine applications. In this study, we evaluate the accuracy of the real-time precise point positioning (RT-PPP) solution using the IGS-RTS for offshore surveys in Turkey. Dual-frequency GPS data is collected onboard a vessel and then processed using the Bernese 5.2 PPP module. The IGS-RTS precise orbit and clock products are used in order to account for the satellite orbit and clock products. To investigate the accuracy of the RT-PPP technique, the positioning accuracy is assessed and compared with the traditional double-difference solution. It is shown that the RT-PPP solution has good agreement with the double-difference solution. Also, the proposed solution efficiently fulfills the international maritime organization (IMO) standards for the offshore surveys.

  6. Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Dick, Galina; Ge, Maorong; Heise, Stefan; Wickert, Jens; Bender, Michael

    2014-05-01

    The recent development of the International Global Navigation Satellite Systems Service Real-Time Pilot Project and the enormous progress in precise point positioning (PPP) techniques provide a promising opportunity for real-time determination of Integrated Water Vapor (IWV) using GPS ground networks for various geodetic and meteorological applications. In this study, we develop a new real-time GPS water vapor processing system based on the PPP ambiguity fixing technique with real-time satellite orbit, clock, and phase delay corrections. We demonstrate the performance of the new real-time water vapor estimates using the currently operationally used near-real-time GPS atmospheric data and collocated microwave radiometer measurements as an independent reference. The results show that an accuracy of 1.0 ~ 2.0 mm is achievable for the new real-time GPS based IWV value. Data of such accuracy might be highly valuable for time-critical geodetic (positioning) and meteorological applications.

  7. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Dominguez, Alfredo E.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditions on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.

  8. Gauss Quadratures - the Keystone of Lattice Boltzmann Models

    NASA Astrophysics Data System (ADS)

    Piaud, Benjamin; Blanco, Stéphane; Fournier, Richard; Ambruş, Victor Eugen; Sofonea, Victor

    2014-01-01

    In this paper, we compare two families of Lattice Boltzmann (LB) models derived by means of Gauss quadratures in the momentum space. The first one is the HLB(N;Qx,Qy,Qz) family, derived by using the Cartesian coordinate system and the Gauss-Hermite quadrature. The second one is the SLB(N;K,L,M) family, derived by using the spherical coordinate system and the Gauss-Laguerre, as well as the Gauss-Legendre quadratures. These models order themselves according to the maximum order N of the moments of the equilibrium distribution function that are exactly recovered. Microfluidics effects (slip velocity, temperature jump, as well as the longitudinal heat flux that is not driven by a temperature gradient) are accurately captured during the simulation of Couette flow for Knudsen number (kn) up to 0.25.

  9. Composite Gauss-Legendre Quadrature with Error Control

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  10. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    SciTech Connect

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Fabrycky, Daniel C.

    2014-02-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.