Science.gov

Sample records for gd si planar

  1. The isothermal section of Gd-Ni-Si system at 1070 K

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Manfrinetti, P.; Pani, M.; Provino, A.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2016-03-01

    The Gd-Ni-Si system has been investigated at 1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: GdNi10Si2, GdNi8Si3, GdNi5Si3, GdNi7Si6, GdNi6Si6, GdNi4Si, GdNi2Si2, GdNiSi3, Gd3Ni6Si2, GdNiSi, GdNiSi2, GdNi0.4Si1.6, Gd2Ni2.35Si0.65, Gd3NiSi2, Gd3NiSi3 and Gd6Ni1.67Si3, has been confirmed. Moreover, five new phases have been identified in this system. The crystal structure for four of them has been determined: Gd2Ni16-12.8Si1-4.2 (Th2Zn17-type), GdNi6.6Si6 (GdNi7Si6-type), Gd3Ni8Si (Y3Co8Si-type) and Gd3Ni11.5Si4.2(Gd3Ru4Ga12-type). The compound with composition ~Gd2Ni4Si3 still remains with unknown structure. Quasi-binary phases, solid solutions, were detected at 1070 K to be formed by the binaries GdNi5, GdNi3, GdNi2, GdNi, GdSi2 and GdSi1.67; while no appreciable solubility was observed for the other binary compounds of the Gd-Ni-Si system. Magnetic properties of the GdNi6Si6, GdNi6.6Si6 and Gd3Ni11.5Si4.2 compounds have also been investigated and are here reported.

  2. Designer hydride routes to 'Si-Ge'/(Gd,Er)2O3/Si(1 1 1) semiconductor-on-insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Watkins, Tylan; Jiang, Liying; Smith, D. J.; Chizmeshya, A. V. G.; Menendez, J.; Kouvetakis, J.

    2011-12-01

    We demonstrate Si-Ge integration on engineered M2O3/Si(1 1 1) (M = Gd,Er) dielectric buffer layers using non-traditional chemical precursors that provide new levels of functionality within the deposition process. Stoichiometric Si0.50Ge0.50 alloys and pure Si heterostructures are grown epitaxially via ultra-low-temperature chemical vapor deposition using SiH3GeH3 and Si3H8/Si4H10, respectively. In the case of Si on Gd2O3, an optimal growth processing window in the range of 500-600 °C was found to yield planar layers with monocrystalline structures via a proposed coincidence lattice matching mechanism (2aSi-aGd2O3), while for the SiGe system (2% lattice mismatch) comparable quality films with fully relaxed strain states are deposited at a lower temperature range of 420-450 °C. Extension of this growth process to Si on Er2O3 yields remarkably high-quality layers in spite of the even larger ~3% lattice mismatch. In all cases, the Si-Ge overlayers are found to primarily adopt an A-B-A epitaxial alignment with respect to the M2O3 buffered Si(1 1 1). A comparative study of the Si growth using Si3H8 and Si4H10 indicates that both compounds provide an efficient and straightforward process for semiconductor growth on Gd2O3/Si(1 1 1), which appears to be more viable than conventional approaches from the point of view of scalability and volume.

  3. Planar CMOS analog SiPMs: design, modeling, and characterization

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Villa, Federica; Bronzi, Danilo; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2015-11-01

    Silicon photomultipliers (SiPMs) are large area detectors consisting of an array of single-photon-sensitive microcells, which make SiPMs extremely attractive to substitute the photomultiplier tubes in many applications. We present the design, fabrication, and characterization of analog SiPMs in standard planar 0.35 μm CMOS technology, with about 1 mm × 1 mm total area and different kinds of microcells, based on single-photon avalanche diodes with 30 μm diameter reaching 21.0% fill-factor (FF), 50 μm diameter (FF = 58.3%) or 50 μm square active area with rounded corner of 5 μm radius (FF = 73.7%). We also developed the electrical SPICE model for CMOS SiPMs. Our CMOS SiPMs have 25 V breakdown voltage, in line with most commercial SiPMs and higher gain (8.8 × 106, 13.2 × 106, and 15.0 × 106, respectively). Although dark count rate density is slightly higher than state-of-the-art analog SiPMs, the proposed standard CMOS processing opens the feasibility of integration with active electronics, for switching hot pixels off, drastically reducing the overall dark count rate, or for further on-chip processing.

  4. Growth and scintillation properties of Ce doped Gd2Si2O7/SiO2 eutectics

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Kurosawa, Shunsuke; Murakami, Rikito; Yokota, Yuui; Pejchal, Jan; Ohashi, Yuji; Yoshikawa, Akira

    2015-06-01

    Ce:Gd2Si2O7/SiO2 eutectic was grown by the μ-PD method. The square-shape sample with a side of 5 mm and a length of 15 mm was obtained. Two phases of orthorhombic Gd2Si2O7 and SiO2 was observed. Rod-phase was SiO2 and matrix phase was Gd2Si2O7. Ce3+ 4f5d emission have been observed at 400nm. The sample showed light yield of around 16,000 photons/MeV. Scintillation decay time was 46.3ns(21%) 249ns(79%).

  5. Crystal structure of the ternary silicide Gd2Re3Si5.

    PubMed

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-12-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta-silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo-octa-hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti-prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re-Re distance of 2.78163 (5) Å and isolated squares with an Re-Re distance of 2.9683 (6) Å. PMID:25552967

  6. Crystal structure of the ternary silicide Gd2Re3Si5

    PubMed Central

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-01-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta­silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo­octa­hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti­prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å. PMID:25552967

  7. Analysis of Gd5(Si2Ge2) Microstructure and Phase Transition

    SciTech Connect

    John Scott Meyers

    2002-06-27

    With the recent discovery of the giant magnetocaloric effect and the beginning of extensive research on the properties of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, a necessity has developed for a better understanding of the microstructure and crystal structure of this family of rare earth compounds with startling phenomenological properties. The aim of this research is to characterize the microstructure of the Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, with X {approx_equal} 2 and its phase change by using both transmission and electron microscopes. A brief history of past work on Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} is necessary to understand this research in its proper context.

  8. Effect of Milling Time on the Blocking Temperature of Nanoparticles of Magnetocaloric Gd5Si4

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Gupta, Shalbh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David; David C Jiles Team; Vitalij Pecharsky Collaboration

    Extensive research has been done on giant magnetocaloric material Gd5(SixGe1-x)4 to improve adiabatic temperature/isothermal entropy change. However, there have been only a few reports on fabrication of nanostructure/nanoparticles that can be used to tune various properties by changing the length scale. Recently we have reported fabrication of room temperature ferromagnetic nanoparticles of Gd5Si4 using high energy ball milling. These nanoparticles have potential applications in biomedical engineering such as better T2 MRI contrast agents and in hypothermia. Here we report the effect of milling time on the blocking temperature, micro-structure, crystal structure, and magnetic properties of these nanoparticles. Magnetization vs. temperature at an applied field of 100 Oe is measured for all the ball milled samples. Bulk Gd5Si4 has a transition temperature of ~340 K. There are two phase transitions observed in the nanoparticles, one near 300 K corresponding to the Gd5Si4 phase and another between 75-150 K corresponding to Gd5Si3. Zero Field Cooling (ZFC) and Field Cooling (FC) were measured. The blocking temperatures for the nanoparticles increase with decrease in milling time.

  9. Synthesis and luminescent properties of nanoscale Gd2Si2O7:Eu3+ phosphors.

    PubMed

    Li, Yong; Wang, Chao-Nan; Wei, Xian-Tao; Zhao, Jiang-Bo; Zhang, Wei-Ping; Yin, Min

    2010-03-01

    Gd2Si2O7:Eu3+ nanoparticles were prepared by the sol-gel method with citric acid as an additive in the precursor solutions. The crystal structure was analyzed by means of X-ray diffraction (XRD). The results indicate that the alpha-Gd2Si2O7 powders in size 35 nm are obtained at a synthesis temperature of 1,100 degrees C, and the doping ion contents do not influence the crystal structure. The excitation and emission spectra of samples were measured. The dependence of photoluminescence intensity and lifetime of level on Eu3+ concentration and synthesis temperature of samples are also discussed. PMID:20355659

  10. Electron spin resonance g shift in Gd{sub 5}Si{sub 4}, Gd{sub 5}Ge{sub 4}, and Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}

    SciTech Connect

    Pires, M. J. M.; Mansanares, A. M.; Silva, E. C. da; Carvalho, A. Magnus G.; Gama, S.; Coelho, A. A.

    2006-04-01

    Gd{sub 5}Si{sub 4}, Gd{sub 5}Ge{sub 4}, and Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88} compounds were studied by electron spin resonance. The arc-melted samples were initially characterized by optical metallography, x-ray diffraction, and static magnetization measurements. The electron spin resonance results show a negative paramagnetic g shift for Gd{sub 5}Si{sub 4} and Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}, and a smaller positive one for Gd{sub 5}Ge{sub 4}. The values of the exchange parameter (j) between the localized Gd-4f spins and the conduction electrons are obtained from the g shifts. These values are positive and of the same order of magnitude for Gd{sub 5}Si{sub 4} and Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}, and negative one order of magnitude smaller for Gd{sub 5}Ge{sub 4}. The electron spin resonance data were interpreted considering the strongly bottlenecked solution of the coupled Bloch-Hasegawa equations.

  11. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  12. Atomic configuration of irradiation-induced planar defects in 3C-SiC

    SciTech Connect

    Lin, Y. R.; Ho, C. Y.; Hsieh, C. Y.; Chang, M. T.; Lo, S. C.; Chen, F. R.; Kai, J. J.

    2014-03-24

    The atomic configuration of irradiation-induced planar defects in single crystal 3C-SiC at high irradiation temperatures was shown in this research. A spherical aberration corrected scanning transmission electron microscope provided images of individual silicon and carbon atoms by the annular bright-field (ABF) method. Two types of irradiation-induced planar defects were observed in the ABF images including the extrinsic stacking fault loop with two offset Si-C bilayers and the intrinsic stacking fault loop with one offset Si-C bilayer. The results are in good agreement with images simulated under identical conditions.

  13. Electronic structure and spectral properties of RCuSi (R=Nd,Gd) compounds

    NASA Astrophysics Data System (ADS)

    Knyazev, Yu. V.; Lukoyanov, A. V.; Kuz'min, Yu. I.; Gupta, Sachin; Suresh, K. G.

    2016-04-01

    We report a joint experimental and theoretical investigation of optical properties and electronic structure of NdCuSi and GdCuSi compounds. Optical characteristics have been studied employing ellipsometry in a spectral range 0.22-15 μm. Spin-polarized calculations of the electronic structure have been performed using LSDA+U method accounting for electronic correlations in the 4f shell of rare earth elements. Additionally, we probe our electronic structures by calculating the interband optical conductivities and comparing them with spectral measurement. We find that all main features of the experimental curves have been qualitative interpreted using the calculated densities of states.

  14. Preparation and effect of thermal treatment on Gd2O3:SiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Ahlawat, Rachna

    2015-04-01

    Rare earth oxides have been extensively investigated due to their fascinating properties such as enhanced luminescence efficiency, lower lasing threshold, high-performance luminescent devices, drug-carrying vehicle, contrast agent in magnetic resonance imaging (MRI), up-conversion materials, catalysts and time-resolved fluorescence (TRF) labels for biological detection etc. Nanocomposites of silica gadolinium oxide have been successfully synthesized by sol-gel process using hydrochloric acid as a catalyst. Gd(NO3)3ṡ6H2O and tetraethyl orthosilicate (TEOS) were used as precursors to obtain powdered form of gadolinum oxide:silica (Gd2O3:SiO2) composite. The powdered samples having 2.8 mol% Gd2O3 were annealed at 500°C and 900°C temperature for 6 h and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM). The effect of annealing on the phase evolution of the composite system has been discussed in detail. It was found that the sintering of gadolinium precursor plays a pivotal role to obtain crystalline phase of Gd2O3. Cubic phase of gadolinium oxide was developed for annealed sample at 900°C (6 h) with an average grain size 12 nm.

  15. A current modulation in the Gd{sub 2}O{sub 3}/Si/Gd{sub 2}O{sub 3} quantum well structure as a mean to monitor oxygen vacancies

    SciTech Connect

    Sitaputra, Wattaka; Hudak, John A.; Tsu, Raphael

    2014-05-15

    The Gd{sub 2}O{sub 3} layer grown by electron beam evaporation system normally leads to oxygen deficient sites unless the oxygen partial pressure is provided. These oxygen vacancies were monitored through their current modulating effect. This modulation controlled the current within a Si well of the Gd{sub 2}O{sub 3}/Si/Gd{sub 2}O{sub 3} quantum well structure through the migration of the oxygen vacancies. Such behavior were not found in the structure that contains far less oxygen vacancy such as SiO{sub 2}/Si/SiO{sub 2} structure.

  16. Investigation of room temperature ferromagnetic nanoparticles of Gd5Si4

    DOE PAGESBeta

    Hadimani, R. L.; Gupta, S.; Harstad, S. M.; Pecharsky, V. K.; Jiles, D. C.

    2015-07-06

    Gd5(SixGe1-x)4 compounds undergo first-order phase transitions close to room temperature when x ~ = 0.5, which are accompanied by extreme changes of properties. We report the fabrication of the nanoparticles of one of the parent compounds-Gd5Si4-using high-energy ball milling. Crystal structure, microstructure, and magnetic properties have been investigated. Particles agglomerate at long milling times, and the particles that are milled >20 min lose crystallinity and no longer undergo magnetic phase transition close to 340 K, which is present in a bulk material. The samples milled for >20 min exhibit a slightly increased coercivity. As a result, magnetization at a highmore » temperature of 275K decreases with the increase in the milling time.« less

  17. Atomically sharp 318 nm Gd:AlGaN ultraviolet light emitting diodes on Si with low threshold voltage

    SciTech Connect

    Kent, Thomas F.; Carnevale, Santino D.; Myers, Roberto C.

    2013-05-20

    Self-assembled Al{sub x}Ga{sub 1-x}N polarization-induced nanowire light emitting diodes (PINLEDs) with Gd-doped AlN active regions are prepared by plasma-assisted molecular beam epitaxy on Si substrates. Atomically sharp electroluminescence (EL) from Gd intra-f-shell electronic transitions at 313 nm and 318 nm is observed under forward biases above 5 V. The intensity of the Gd 4f EL scales linearly with current density and increases at lower temperature. The low field excitation of Gd 4f EL in PINLEDs is contrasted with high field excitation in metal/Gd:AlN/polarization-induced n-AlGaN devices; PINLED devices offer over a three fold enhancement in 4f EL intensity at a given device bias.

  18. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    DOEpatents

    Pecharsky, Alexandra O.; Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    2006-10-03

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  19. Studies of relativistic electron scattering at planar alignment in a thin Si crystal

    NASA Astrophysics Data System (ADS)

    Takabayashi, Y.; Pivovarov, Yu. L.; Tukhfatullin, T. A.

    2014-04-01

    Experiments on 255-MeV electron scattering under (220) planar channeling conditions in a Si crystal were carried out at the linac of the SAGA Light Source. The spatial and angular distributions of electrons penetrating through a 20-μm thick Si crystal at different incident angles with respect to the (220) plane were measured, and features characteristic of the planar alignment were identified. The experimental results were compared with computer simulations, and showed a reasonable agreement. A comparison with doughnut scattering at axial channeling in the same crystal was also performed. It was confirmed that the planar alignment effect is weaker than the axial alignment effect. These studies are important for understanding the basic mechanism of electron scattering and radiation processes in a crystal.

  20. Photoluminescence properties of MgY4Si3O13:Gd3+, Tb3+ under vacuum ultraviolet excitation

    NASA Astrophysics Data System (ADS)

    Zhao, Wenyu; An, Shengli; Fan, Bin; Li, Songbo

    2013-07-01

    Gd3+ and Tb3+ co-doped MgY4Si3O13 green phosphors were prepared by a solid-state reaction. The photoluminescence properties in vacuum ultraviolet-visible (VUV-vis) range and decay properties were investigated in details. The f-d transition of Gd3+ ions and spin-allowed f-d transition of Tb3+ ions locate at about 134 nm and 239 nm, respectively. Two charge transfer bands of O2- → Gd3+ and O2- → Tb3+ overlap at about 155 nm. Some f-f transition of Tb3+ and Gd3+ ions are confirmed in VUV-vis range. Upon excitation at 172 nm, the optimal composition of MgY3.3Si3O13:0.5Gd3+, 0.2Tb3+ phosphor exhibits the characteristic transitions of Gd3+ and Tb3+ with chromaticity coordinate of (0.2849, 0.5843). The phosphor has a shorter decay time (2.13 ms) than that of Zn2SiO4:Mn2+ (4.56 ms). The results suggest that this green phosphor is a potential candidate for mercury-free luminescence lamps and plasma display panels (PDPs) application.

  1. Illumination Effect on Bipolar Switching Properties of Gd:SiO2 RRAM Devices Using Transparent Indium Tin Oxide Electrode.

    PubMed

    Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M

    2016-12-01

    To discuss the optoelectronic effect on resistive random access memory (RRAM) devices, the bipolar switching properties and electron-hole pair generation behavior in the transparent indium tin oxide (ITO) electrode of Gd:SiO2 thin films under the ultraviolet (λ = 400 nm) and red-light (λ = 770 nm) illumination for high resistance state (HRS)/low resistance state (LRS) was observed and investigated. In dark environment, the Gd:SiO2 RRAM devices exhibited the ohmic conduction mechanism for LRS, exhibited the Schottky emission conduction and Poole-Frankel conduction mechanism for HRS. For light illumination effect, the operation current of the Gd:SiO2 RRAM devices for HRS/LRS was slightly increased. Finally, the electron-hole pair transport mechanism, switching conduction diagram, and energy band of the RRAM devices will be clearly demonstrated and explained. PMID:27117634

  2. Illumination Effect on Bipolar Switching Properties of Gd:SiO2 RRAM Devices Using Transparent Indium Tin Oxide Electrode

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M.

    2016-04-01

    To discuss the optoelectronic effect on resistive random access memory (RRAM) devices, the bipolar switching properties and electron-hole pair generation behavior in the transparent indium tin oxide (ITO) electrode of Gd:SiO2 thin films under the ultraviolet ( λ = 400 nm) and red-light ( λ = 770 nm) illumination for high resistance state (HRS)/low resistance state (LRS) was observed and investigated. In dark environment, the Gd:SiO2 RRAM devices exhibited the ohmic conduction mechanism for LRS, exhibited the Schottky emission conduction and Poole-Frankel conduction mechanism for HRS. For light illumination effect, the operation current of the Gd:SiO2 RRAM devices for HRS/LRS was slightly increased. Finally, the electron-hole pair transport mechanism, switching conduction diagram, and energy band of the RRAM devices will be clearly demonstrated and explained.

  3. Forced Volume Magnetostriction in Composite Gd5Si2Ge2

    SciTech Connect

    Choe, W; McCall, S K; Radousky, H B; Nersessian, N; Or, S W; Carman, G P; Pecharsky, V K; Pecharsky, A O

    2004-04-01

    A -1200 ppm forced volume magnetostriction has been obtained in a [0-3], resin binder, Gd{sub 5}Si{sub 2}Ge{sub 2} particulate composite. The strain is a result of a magnetically induced phase transformation from a high volume (high temperature, low magnetic field) monoclinic phase to a low volume (low temperature, high magnetic field) orthorhombic phase. The particles used in the composite were ball-milled from a bulk sample and were sieved to obtain a size distribution of {approx}> 600 {micro}m. Bulk Gd{sub 5}Si{sub 2}Ge{sub 2} was manufactured via arc melting and subsequently annealed at 1300 C for 1 hour to produce a textured, polycrystalline sample. The transformation temperatures of the bulk sample, as measured using a Differential Scanning Calorimeter (DSC), were M{sub s}= -9.3 C, M{sub f}=-14.6 C, A{sub s}=-4.4 C, and A{sub f}=-1.2 C. The composite and the bulk samples were magnetically characterized using a SQUID magnetometer, and found to undergo a paramagnetic to ferromagnetic transition during the phase transformation, consistent with published results. The bulk sample was also found to possess a maximum linear magnetostriction -2500 ppm.

  4. Temperature and field induced strain measurements in single crystal Gd5Si2Ge2

    DOE PAGESBeta

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-03-29

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Furthermore,more » using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less

  5. Magnetic ordering in Sc2CoSi2-type R2FeSi2 (R=Gd, Tb) and R2CoSi2 (R=Y, Gd-Er) compounds

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Pani, M.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2016-09-01

    Magnetic and magnetocaloric properties of Sc2CoSi2-type R2TSi2 (R=Gd-Er, T=Fe, Co) compounds have been studied using magnetization data. These indicate the presence of mixed ferromagnetic and antiferromagnetic interactions in these compounds. One observes a ferromagnetic transition followed by an antiferromagnetic order and a further possible spin-reorientation transition at low temperatures. Compared to Gd2{Fe, Co}Si2, the Tb2FeSi2 and {Tb-Er}2CoSi2 compounds exhibit remarkable hysteresis (for e.g. Tb2FeSi2 shows residual magnetization Mres/Tb=2.45 μB, coercive field Hcoer=14.9 kOe, and critical field Hcrit 5 kOe at 5 K) possibly due to the magnetocrystalline anisotropy of the rare earth. The R2{Fe, Co}Si2 show relatively small magnetocaloric effect (i.e. isothermal magnetic entropy change, ΔSm) around the magnetic transition temperature: the maximal value of MCE is demonstrated by Ho2CoSi2 (ΔSm=-8.1 J/kg K at 72 K and ΔSm=-9.4 J/kg K at 23 K in field change of 50 kOe) and Er2CoSi2 (ΔSm=-13.6 J/kg K at 32 K and ΔSm=-8.4 J/kg K at 12 K in field change of 50 kOe).

  6. RNi8Si3 (R=Gd,Tb): Novel ternary ordered derivatives of the BaCd11 type

    NASA Astrophysics Data System (ADS)

    Pani, M.; Morozkin, A. V.; Yapaskurt, V. O.; Provino, A.; Manfrinetti, P.; Nirmala, R.; Malik, S. K.

    2016-01-01

    The title compounds have been synthesized and characterized both from the structural and magnetic point of view. Both crystallize in a new monoclinic structure strictly related to the tetragonal BaCd11 type. The structure was solved by means of X-ray single-crystal techniques for GdNi8Si3 and confirmed for TbNi8Si3 on powder data; the corresponding lattice parameters (obtained from Guinier powder patterns) are a=6.3259(2), b=13.7245(5), c=7.4949(3) Å, β=113.522(3)°, Vcell=596.64(3) Å3 and a=6.3200(2), b=13.6987(4), c=7.4923(2) Å, β=113.494(2)°, Vcell=594.88(2) Å3. The symmetry relationship between the tI48-I41/amd BaCd11 aristotype and the new ordered mS48-C2/c GdNi8Si3 derivative is described via the Bärnighausen formalism within the group theory. The large Gd-Gd (Tb-Tb) distances, mediated via Ni-Si network, likely lead to weak magnetic interactions. Low-field magnetization vs temperature measurements indicate weak and field-sensitive antiferromagnetic ground state, with ordering temperatures of 3 K in GdNi8Si3 and about 2-3 K in TbNi8Si3. On the other hand, the isothermal field-dependent magnetization data show the presence of competing interactions in both compounds, with a field-induced ferromagnetic behavior for GdNi8Si3 and a ferrimagnetic-like behavior in TbNi8Si3 at the ordering temperature TC/N of about (or slightly higher than) 3K. The magnetocaloric effect, quantified in terms of isothermal magnetic entropy change ΔSm, has the maximum values of -19.8 J(kg K)-1 (at 4 K for 140 kOe field change) and -12.1 J(kg K)-1 (at 12 K for 140 kOe field change) in GdNi8Si3 and TbNi8Si3, respectively.

  7. Phase equilibria and elements partitioning in zirconolite-rich region of Ca-Zr-Ti-Al-Gd-Si-O system

    SciTech Connect

    Knyazev, O.A.; Stefanovsky, S.V.; Ioudintsev, S.V.; Nikonov, B.S.; Omelianenko, B.I.; Mokhov, A.V.; Yakushev, A.I.

    1997-12-31

    Zirconolite-rich ceramics were produced by the cold crucible melting technique in an air atmosphere, at 1550 {+-} 50 C and 1 atm. Four samples with overall composition (in wt.%): 4.9-14.3 CaO; 19.0-41.3 ZrO{sub 2}; 24.1-42.6 TiO{sub 2}; 1.3-11.3 Al{sub 2}O{sub 3}; 6.8-30.0 Gd{sub 2}O{sub 3}; and 1.1-8.5 SiO{sub 2} have been studied. Total phases in the ceramics consist of major zirconolite and minor rutile, perovskite, zirconia, aluminium titanate, and glass. The Gd{sub 2}O{sub 3} content in zirconolite reaches up to 31.4 wt.% corresponding to the formula: (Ca{sub 0.4},Gd{sub 0.7})Zr{sub 1.0}(Ti{sub 1.4},Al{sub 0.5})O{sub 7.0}. The data on the phase composition agree well with coupled Gd incorporation into the mineral structure: Ca(II) + Ti(IV) = Gd(III) + Al(III), and 2Gd(III) = Ca(II) + Zr(IV). The highest Gd contents observed in the other phases are 25.4% for zirconia, 12.6% in glass, 8.8% in perovskite, and 1.4% for rutile. The rest of the elements` distribution in the samples are analyzed.

  8. Second order phase transition temperature of single crystals of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6

    DOE PAGESBeta

    Hadimani, R. L.; Melikhov, Y.; Schlagel, D. L.; Lograsso, T. A.; Dennis, K. W.; McCallum, R. W.; Jiles, D. C.

    2015-01-30

    Gd5(SixGe1–x)4 has mixed phases in the composition range 0.32 < x < 0.41, which have not been widely studied. In this paper, we have synthesized and indexed single crystal samples of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6. In this study, we have investigated the first order and second order phase transition temperatures of these samples using magnetic moment vs. temperature and magnetic moment vs. magnetic field at different temperatures. We have used a modified Arrott plot technique that was developed and reported by us previously to determine the “hidden” second order phase transition temperature of the orthorhombic II phase.

  9. Bonding, aromaticity, and planar tetracoordinated carbon in Si2CH 2 and Ge 2CH 2.

    PubMed

    Vogt-Geisse, Stefan; Wu, Judy I-Chia; Schleyer, Paul v R; Schaefer, Henry F

    2015-08-01

    Natural bond orbital (NBO) analyses and dissected nucleus-independent chemical shifts (NICS π z z ) were computed to evaluate the bonding (bond type, electron occupation, hybridization) and aromatic character of the three lowest-lying Si2CH2 (1-Si, 2-Si, 3-Si) and Ge2CH2 (1-Ge, 2-Ge, 3-Ge) isomers. While their carbon C3H2 analogs favor classical alkene, allene, and alkyne type bonding, these Si and Ge derivatives are more polarizable and can favor "highly electron delocalized"? and "non-classical"? structures. The lowest energy Si 2CH2 and Ge 2CH2 isomers, 1-Si and 1-Ge, exhibit two sets of 3-center 2-electron (3c-2e) bonding; a π-3c-2e bond involving the heavy atoms (C-Si-Si and C-Ge-Ge), and a σ-3c-2e bond (Si-H-Si, Ge-H-Ge). Both 3-Si and 3-Ge exhibit π and σ-3c-2e bonding involving a planar tetracoordinated carbon (ptC) center. Despite their highly electron delocalized nature, all of the Si2CH2 and Ge2CH2 isomers considered display only modest two π electron aromatic character (NICS(0) π z z =--6.2 to -8.9 ppm, computed at the heavy atom ring center) compared to the cyclic-C 3H2 (-13.3 ppm). Graphical Abstract The three lowest Si2CH2 and Ge2CH2 isomers. PMID:26232183

  10. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  11. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  12. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  13. Graphene as a transparent conducting and surface field layer in planar Si solar cells

    PubMed Central

    2014-01-01

    This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto planar Si cells. An increase in efficiency from 5.38% to 7.85% was observed upon deposition of graphene onto Si cells, which further increases to 8.94% upon SiO2 deposition onto the graphene/Si structure. A large increase in photon conversion efficiency as a result of graphene deposition shows that the electronic interaction and the presence of an electric field at the graphene/Si interface together play an important role in this improvement and additionally lead to a reduction in series resistance due to the conducting nature of graphene. PMID:25114642

  14. Self-assembly of SiO2/Gd-DTPA-polyethylenimine nanocomposites as magnetic resonance imaging probes.

    PubMed

    Luo, Kui; Tian, Jing; Liu, Gang; Sun, Jiayu; Xia, Chunchao; Tang, Hehan; Lin, Ling; Miao, Tianxin; Zhao, Xuna; Gao, Fabao; Gong, Qiyong; Song, Bin; Shuai, Xintao; Ai, Hua; Gu, Zhongwei

    2010-01-01

    Controlled self-assembly of organic/inorganic magnetic hybrid materials have important applications in magnetic resonance imaging (MRI). In this study, a widely used polycation polyethylenimine was conjugated with gadopentetic acid (Gd-DTPA) as a gadolinium bearing polyelectrolyte (Gd-DTPA-PEI). Next, multilayers of Gd-DTPA-PEI were coated on silica nanoparticles through layer-by-layer (LbL) self-assembly with polyanions as monitored by dynamic light scattering, zeta-potential, and scanning electron microscopy. The thickness of the multilayer film was estimated from quartz crystal microbalance based on counting frequency change of each adsorbed layer. The magnetic relaxation of SiO2/(Gd-DTPA-PEl/polyanion), core-shell nanocomposite was tested at 1.5 T magnetic field in a clinical MRI scanner, and a 3-fold increase in T1 relaxivity to 15.1 Gd mM(-1)s(-1) was noticed comparing to Gd-DTPA small molecules. Dextran sulfate was coated as the outermost layer on the nanocomposite for better biocompatibility as verified by in vitro cytotoxicity studies. This formulation provides good signal intensity enhancement of mouse liver in vivo with only 1/25 dose of clinical standard at 30 and 60 minutes after intravenous injection. This sensitive imaging probe with unique core-shell structures may find broad applications in cellular and molecular imaging. PMID:20352889

  15. Generation of planar defects caused by the surface diffusion of Au atoms on SiNWs

    SciTech Connect

    Lee, Woo-Jung; Ma, Jin Won; Bae, Jung Min; Cho, Mann-Ho; Ahn, Jae Pyung

    2012-10-15

    The generation of planar defects in silicon nanowires (SiNWs) synthesized by means of a vapor–liquid–solid (VLS) procedure using Au as a catalyst in an ultra-high vacuum chemical vapor deposition (UHV-CVD) system was investigated. Faceting, the formation of planar defects and the diffusion of Au in SiNWs occurred simultaneously, proportional to the growth temperature and the ratio of the H{sub 2} precursor gas. The planes located on the sidewalls of the wire after Au diffusion were faceted (1 1 1) and (1 0 0) surfaces, which represent equilibrium configurations of Si due to surface energy minimization during rapid wire growth under unstable conditions. Moreover, (1 1 1) twin defects were formed on the sidewalls of the faceted boundaries where the Au clusters were mainly located, due to the surface tension of the Au atoms, resulting in clusters at the liquid/solid interfaces in SiNWs with a 〈1 1 1〉 growth direction.

  16. SiO2 nanofluid planar jet impingement cooling on a convex heated plate

    NASA Astrophysics Data System (ADS)

    Asghari Lafmajani, Neda; Ebrahimi Bidhendi, Mahsa; Ashjaee, Mehdi

    2016-02-01

    The main objective of this paper is to investigate the heat transfer coefficient of a planar jet of SiO2 nanofluid that impinges vertically on the middle of a convex heated plate for cooling purposes. The planar jet issues from a rectangular slot nozzle. The convex aluminum plate has a thickness, width and length of 0.2, 40 and 130 mm, respectively, and is bent with a radius of 200 mm. A constant heat-flux condition is employed. 7 nm SiO2 particles are added to water to prepare the nanofluid with 0.1, 1 and 2 % (ml SiO2/ml H2O) concentrations. The tests are also performed at different Reynolds numbers from 1803 to 2782. Results indicate that adding the SiO2 nanoparticles can effectively increase both local and average heat transfer coefficients up to 39.37 and 32.78 %, respectively. These positive effects often are more pronounced with increasing Reynolds numbers. This enhancement increases with ascending the concentration of nanofluid, especially from 0.1 to 1 %.

  17. Anomalous Hall effect in the prospective spintronic material Eu1‑x Gd x O integrated with Si

    NASA Astrophysics Data System (ADS)

    Parfenov, Oleg E.; Averyanov, Dmitry V.; Tokmachev, Andrey M.; Taldenkov, Alexander N.; Storchak, Vyacheslav G.

    2016-06-01

    Remarkable properties of EuO make it a versatile spintronic material. Despite numerous experimental and theoretical studies of EuO, little is known about the anomalous Hall effect in this ferromagnet. So far, the effect has not been observed in bulk EuO, though has been detected in EuO films with uncontrolled distribution of defects. In the present work doping is taken under control: epitaxial films of Gd-doped EuO are synthesized integrated with Si using molecular beam epitaxy and characterized with x-ray diffraction and magnetization measurements. Nanoscale transport studies reveal the anomalous Hall effect in the ferromagnetic region for samples with different Gd concentration. The saturated anomalous Hall effect conductivity value of 5.0 S·cm‑1 in Gd-doped EuO is more than an order of magnitude larger than those reported so far for Eu chalcogenides doped with anion vacancies.

  18. Anomalous Hall effect in the prospective spintronic material Eu1-x Gd x O integrated with Si.

    PubMed

    Parfenov, Oleg E; Averyanov, Dmitry V; Tokmachev, Andrey M; Taldenkov, Alexander N; Storchak, Vyacheslav G

    2016-06-01

    Remarkable properties of EuO make it a versatile spintronic material. Despite numerous experimental and theoretical studies of EuO, little is known about the anomalous Hall effect in this ferromagnet. So far, the effect has not been observed in bulk EuO, though has been detected in EuO films with uncontrolled distribution of defects. In the present work doping is taken under control: epitaxial films of Gd-doped EuO are synthesized integrated with Si using molecular beam epitaxy and characterized with x-ray diffraction and magnetization measurements. Nanoscale transport studies reveal the anomalous Hall effect in the ferromagnetic region for samples with different Gd concentration. The saturated anomalous Hall effect conductivity value of 5.0 S·cm(-1) in Gd-doped EuO is more than an order of magnitude larger than those reported so far for Eu chalcogenides doped with anion vacancies. PMID:27165844

  19. Unusual magnetic behavior in Gd{sub 5}(Si{sub 1.5}Ge{sub 2.5}) and Gd{sub 5}(Si{sub 2}Ge{sub 2})

    SciTech Connect

    Levin, E. M.; Pecharsky, V. K.; Gschneidner, K. A.

    2000-12-01

    The coexistence of ferromagnetic and paramagnetic phases in the 4f-electron systems Gd{sub 5}(Si{sub 1.5}Ge{sub 2.5}) and Gd{sub 5}(Si{sub 2}Ge{sub 2}) during the magnetic-martensitic phase transition have been observed. A dc magnetic field reversibly changes both the magnetic and crystal structures of the alloys above their respective Curie temperatures. A negative imaginary component of the ac magnetic susceptibility for both alloys has been observed in the ferromagnetic state. The results are discussed in terms of indirect Ruderman-Kittel-Kasuya-Yosida and direct superexchange interactions, and anomalies of the relaxation process.

  20. X-ray photoelectron spectroscopy and diffraction investigation of a metal-oxide-semiconductor heterostructure: Pt/Gd2O3/Si(111)

    NASA Astrophysics Data System (ADS)

    Ferrah, D.; El Kazzi, M.; Niu, G.; Botella, C.; Penuelas, J.; Robach, Y.; Louahadj, L.; Bachelet, R.; Largeau, L.; Saint-Girons, G.; Liu, Q.; Vilquin, B.; Grenet, G.

    2015-04-01

    Platinum thin films deposited by physical vapor deposition (PVD) on Gd2O3/Si(111) templates are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray photoelectron diffraction (XPD). Both XRD and XPD give clear evidence that Gd2O3 grows (111)-oriented and single-domain on Si(111) with mirror epitaxial relationship viz., [1bar10] Gd2O3(111)//[11bar0] Si(111). On Gd2O3/Si(111), Pt is partially crystallized with (111) orientation. There are two epitaxial domains and a slightly visible (111) fiber texture. The in-plane relationships of these Pt(111) domains with Gd2O3(111) are a direct one: [11bar0] Pt(111)//[11bar0] Gd2O3(111) and a mirror one: [1bar10] Pt(111)//[11bar0] Gd2O3(111). XPS reveals that Pt4f exhibits a metallic behavior even for small amounts of Pt but very small chemical shifts suggest that Pt environment is different at the interface with Gd2O3. These XPS chemical shifts have been correlated with features in XPD azimuth curves, which could be related with the existence of hexagonal α-PtO2(0001)layer.

  1. High-temperature scintillation properties of orthorhombic Gd2Si2O7 aiming at well logging

    NASA Astrophysics Data System (ADS)

    Tsubota, Youichi; Kaneko, Junichi H.; Higuchi, Mikio; Nishiyama, Shusuke; Ishibashi, Hiroyuki

    2015-06-01

    Scintillation and luminescence properties of orthorhombic Gd2Si2O7:Ce (GPS:Ce) single-crystal scintillators were investigated for temperatures ranging from room temperature (RT) to 573 K. Orthorhombic GPS crystals were grown by using a top-seeded solution growth (TSSG) method. The scintillation light yield of the orthorhombic GPS at RT was ∼2.9 times higher than that of Gd2SiO5:Ce (GSO). The light yield values of the orthorhombic GPS (Ce = 2.5%) were almost unchanged for temperatures ranging from RT to 523 K, and at 523 K, were higher than twice the light yield of GSO at RT. These GPS scintillators are expected to contribute to oil exploration at greater depths.

  2. Investigation of room temperature ferromagnetic nanoparticles of Gd5Si4

    SciTech Connect

    Hadimani, R. L.; Gupta, S.; Harstad, S. M.; Pecharsky, V. K.; Jiles, D. C.

    2015-07-06

    Gd5(SixGe1-x)4 compounds undergo first-order phase transitions close to room temperature when x ~ = 0.5, which are accompanied by extreme changes of properties. We report the fabrication of the nanoparticles of one of the parent compounds-Gd5Si4-using high-energy ball milling. Crystal structure, microstructure, and magnetic properties have been investigated. Particles agglomerate at long milling times, and the particles that are milled >20 min lose crystallinity and no longer undergo magnetic phase transition close to 340 K, which is present in a bulk material. The samples milled for >20 min exhibit a slightly increased coercivity. As a result, magnetization at a high temperature of 275K decreases with the increase in the milling time.

  3. Electrospun SiO2 "necklaces" on unglazed ceramic tiles: a planarizing strategy

    NASA Astrophysics Data System (ADS)

    Di Mauro, Alessandro; Fragalà, Maria Elena

    2015-05-01

    Silica based nanofibres have been deposited on unglazed ceramic tiles by combining electrospinning and sol-gel processes. Poly(vinyl pyrrolidone) (PVP) alcoholic solutions and commercial spin on glass (Accuglass) mixtures have been used to obtain composite fibrous non-woven mats totally converted, after thermal annealing at 600 °C, to SiO2 microsphere "necklaces". The possibility to get an uniform fibres coverage onto the tile surface confirms the validity of electrospinning (easily scalable to large surface samples) as coating strategy to cover the macroscopic defects typical of the polished unglazed tile surface and improve surface planarization.

  4. Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2

    PubMed Central

    Güttler, M.; Generalov, A.; Otrokov, M. M.; Kummer, K.; Kliemt, K.; Fedorov, A.; Chikina, A.; Danzenbächer, S.; Schulz, S.; Chulkov, E. V.; Koroteev, Yu. M.; Caroca-Canales, N.; Shi, M.; Radovic, M.; Geibel, C.; Laubschat, C.; Dudin, P.; Kim, T. K.; Hoesch, M.; Krellner, C.; Vyalikh, D. V.

    2016-01-01

    Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated. PMID:27052006

  5. Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2

    NASA Astrophysics Data System (ADS)

    Güttler, M.; Generalov, A.; Otrokov, M. M.; Kummer, K.; Kliemt, K.; Fedorov, A.; Chikina, A.; Danzenbächer, S.; Schulz, S.; Chulkov, E. V.; Koroteev, Yu. M.; Caroca-Canales, N.; Shi, M.; Radovic, M.; Geibel, C.; Laubschat, C.; Dudin, P.; Kim, T. K.; Hoesch, M.; Krellner, C.; Vyalikh, D. V.

    2016-04-01

    Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.

  6. Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2.

    PubMed

    Güttler, M; Generalov, A; Otrokov, M M; Kummer, K; Kliemt, K; Fedorov, A; Chikina, A; Danzenbächer, S; Schulz, S; Chulkov, E V; Koroteev, Yu M; Caroca-Canales, N; Shi, M; Radovic, M; Geibel, C; Laubschat, C; Dudin, P; Kim, T K; Hoesch, M; Krellner, C; Vyalikh, D V

    2016-01-01

    Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated. PMID:27052006

  7. Possible magnetic-polaron-switched positive and negative magnetoresistance in the GdSi single crystals.

    PubMed

    Li, Haifeng; Xiao, Yinguo; Schmitz, Berthold; Persson, Jörg; Schmidt, Wolfgang; Meuffels, Paul; Roth, Georg; Brückel, Thomas

    2012-01-01

    Magnetoresistance (MR) has attracted tremendous attention for possible technological applications. Understanding the role of magnetism in manipulating MR may in turn steer the searching for new applicable MR materials. Here we show that antiferromagnetic (AFM) GdSi metal displays an anisotropic positive MR value (PMRV), up to ~415%, accompanied by a large negative thermal volume expansion (NTVE). Around T(N) the PMRV translates to negative, down to ~-10.5%. Their theory-breaking magnetic-field dependencies [PMRV: dominantly linear; negative MR value (NMRV): quadratic] and the unusual NTVE indicate that PMRV is induced by the formation of magnetic polarons in 5d bands, whereas NMRV is possibly due to abated electron-spin scattering resulting from magnetic-field-aligned local 4f spins. Our results may open up a new avenue of searching for giant MR materials by suppressing the AFM transition temperature, opposite the case in manganites, and provide a promising approach to novel magnetic and electric devices. PMID:23087815

  8. Possible magnetic-polaron-switched positive and negative magnetoresistance in the GdSi single crystals

    PubMed Central

    Li, Haifeng; Xiao, Yinguo; Schmitz, Berthold; Persson, Jörg; Schmidt, Wolfgang; Meuffels, Paul; Roth, Georg; Brückel, Thomas

    2012-01-01

    Magnetoresistance (MR) has attracted tremendous attention for possible technological applications. Understanding the role of magnetism in manipulating MR may in turn steer the searching for new applicable MR materials. Here we show that antiferromagnetic (AFM) GdSi metal displays an anisotropic positive MR value (PMRV), up to ~415%, accompanied by a large negative thermal volume expansion (NTVE). Around TN the PMRV translates to negative, down to ~−10.5%. Their theory-breaking magnetic-field dependencies [PMRV: dominantly linear; negative MR value (NMRV): quadratic] and the unusual NTVE indicate that PMRV is induced by the formation of magnetic polarons in 5d bands, whereas NMRV is possibly due to abated electron-spin scattering resulting from magnetic-field-aligned local 4f spins. Our results may open up a new avenue of searching for giant MR materials by suppressing the AFM transition temperature, opposite the case in manganites, and provide a promising approach to novel magnetic and electric devices. PMID:23087815

  9. Study of radiation hardness of Gd2SiO5 scintillator for heavy ion beam

    NASA Astrophysics Data System (ADS)

    Kawade, K.; Fukatsu, K.; Itow, Y.; Masuda, K.; Murakami, T.; Sako, T.; Suzuki, K.; Suzuki, T.; Taki, K.

    2011-09-01

    Gd2SiO5 (GSO) scintillator has very excellent radiation resistance, a fast decay time and a large light yield. Because of these features, GSO scintillator is a suitable material for high radiation environment experiments such as those encountered at high energy accelerators. The radiation hardness of GSO has been measured with Carbon ion beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC). During two nights of irradiation the GSO received a total radiation dose of 7 × 105 Gy and no decrease of light yield was observed. On the other hand an increase of light yield by 25% was observed. The increase is proportional to the total dose, increasing at a rate of 0.025%/Gy and saturating at around 1 kGy. Recovery to the initial light yield was also observed during the day between two nights of radiation exposure. The recovery was observed to have a slow exponential time constant of approximately 1.5 × 104 seconds together with a faster component. In case of the LHCf experiment, a very forward region experiment on LHC (pseudo-rapidity η > 8.4), the irradiation dose is expected to be approximately 100 Gy for 10 nb-1 of data taking at (s)1/2 = 14TeV. The expected increase in light yield of less than a few percent will not affect the LHCf measurement.

  10. Magnetic Entropy and Interactions in a-Gd_xSi_1-x

    NASA Astrophysics Data System (ADS)

    Zink, B. L.; Sappey, R.; Revaz, B.; Hellman, F.

    2001-03-01

    In the last several years many dramatic phenomena have been observed in amorphous gadolinium-silicon alloys. Among these are enormous negative magnetoresistance(F. Hellman et al., PRL 77, 4652 (1996))^,(P. Xiong et al., PRB 59, R3929 (1999)), a resulting field-tunable metal-insulator transition(W. Teizer et al., PRL 85, 848 (2000)), and unique and fascinating spin-glass behavior(F. Hellman et al., PRL 84, 5411 (2000)). The zero field specific heat of these films indicates that localized electrons cooperate with the local gadolinium moments in the magnetic freezing(B. L. Zink et al., PRL 83, 2266 (1999)). Recent specific heat measurements in magnetic fields up to 8 Tesla show a shift of magnetic entropy to higher temperatures which is small relative to that seen in the canonical spin-glasses such as CuMn. The size of this shift raises questions about the strength and nature of magnetic interactions in a-Gd_xSi_1-x.

  11. Laser cladding of a Mg based Mg-Gd-Y-Zr alloy with Al-Si powders

    NASA Astrophysics Data System (ADS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-03-01

    In the present work, a Mg based Mg-Gd-Y-Zr alloy was subjected to laser cladding with Al-Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg2Si, Mg17Al12 and Al2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg2Si, Mg17Al12 and Al2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from -1.77 V for the untreated alloy to -1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10-5 A cm-2 to 1.64 × 10-6 A cm-2. The results show that laser cladding is an efficient method to improve surface properties of Mg-Rare earth alloys.

  12. Solvothermal synthesis and luminescence properties of monodisperse Gd{sub 2}O{sub 3}:Eu{sup 3+} and Gd{sub 2}O{sub 3}:Eu{sup 3+}SiO{sub 2} nanospheres

    SciTech Connect

    Wang, Yu; Bai, Xue; Liu, Tong; Dong, Biao; Xu, Lin; Liu, Qiong; Song, Hongwei

    2010-12-15

    A series of uniform, monodispersed Gd(OH){sup 3}:Eu{sup 3+} nanospheres less than 100 nm were successfully synthesized with iron ions as catalyst and DMF as solvent under the solvothermal condition. Cetyltrimethyl ammonium bromide (CTAB) and Polyvinylpyrrolidone (PVP) were performed as co-surfactant during this facile procedure should be changed as A series of uniform, monodisperse Gd(OH){sup 3}:Eu{sup 3+} nanospheres less than 100 nm in diameter were successfully synthesized with solvothermal method. Iron ion was used as catalyst and Dimethylformamide (DMF) as solvent, Cetyltrimethyl Ammonium Bromide (CTAB) and Polyvinylpyrrolidone (PVP) were performed as surfactants. Further calcination process was applied to prepare Gd{sub 2}O{sub 3}:Eu{sup 3+} nanoshpheres during this facile procedure. -- Graphical abstract: Uniform and monodisperse Gd{sub 2}O{sub 3}:Eu{sup 3+} and Gd{sub 2}O{sub 3}:Eu{sup 3+}SiO{sub 2} monodisperse were synthesized by annealed relative parent's Gd(OH){sub 3}:Eu{sup 3+} and Gd(OH){sub 3}:Eu{sup 3+}SiO{sub 2}, respectively. Their morphology and luminescence properties all strongly depended on the iron concentration. Display Omitted

  13. Channeling energy loss and dechanneling of He along axial and planar directions of Si

    NASA Astrophysics Data System (ADS)

    Shafiei, S.; Lamehi-Rachti, M.

    2016-01-01

    In the present work, the energy loss and the dechanneling of He ions in the energy of 1.5 MeV and 2 MeV along the <1 0 0> and <1 1 0> axial directions as well as the {1 0 0} and {1 1 0} planar directions of Si were studied by the simulation of the channeling Rutherford backscattering spectra. The simulation was done based on the considerations that a fraction of the aligned beam enters the sample as a random component due to the ions scattering from the surface, and the dechanneling starts at the greater penetration depths, xDech. It was presumed that the dechanneling process follows a simple exponential law with a parameter λ which is proportional to the half-thickness. The Levenberg-Marquardt algorithm was used to set the best parameters of energy loss ratio, xDech and λ. The experimental results are well reproduced by this simulation. Differences between various axial and planar channels in the Si crystal and their influence on the energy loss ratio and dechanneling of He ions are described. Moreover, the energy dependence of energy loss ratio and dechanneling of He ions were investigated. It is shown that the dechanneling behavior of ions depends on the energy and energy loss of the ions along a channel. The channeled to random energy loss increases by decreasing ions energy.

  14. Role of Ge in bridging ferromagnetism in the giant magnetocaloric Gd{sub 5}(Ge{sub 1-x}Si{sub x}){sub 4} alloys.

    SciTech Connect

    Haskel, D.; Lee, Y. B.; Harmon, B. N.; Islam, Z.; Lang, J. C.; Srajer, G.; Mudryk, Ya.; Gschneidner, K. A., Jr.; Pecharsky, V. K.; X-Ray Science Division; Iowa State Univ.

    2007-06-15

    X-ray magnetic circular dichroism (XMCD) measurements and density functional theory (DFT) are used to study the electronic conduction states in Gd{sub 5}(Ge{sub 1-x}Si{sub x}){sub 4} materials through the first-order bond-breaking magnetostructural transition responsible for their giant magnetocaloric effect. Spin-dependent hybridization between Ge 4p and Gd 5d conduction states, which XMCD senses through the induced magnetic polarization in Ge ions, enables long-range Ruderman-Kittel-Kasuya-Yosida ferromagnetic interactions between Gd 4f moments in adjacent Gd slabs connected by Ge(Si) bonds. These interactions are strong below but weaken above the Ge(Si) bond-breaking transition that destroys 3D ferromagnetic order.

  15. Performance of very thin Gd2SiO5 scintillator bars for the LHCf experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Kasahara, K.; Kawade, K.; Murakami, T.; Masuda, K.; Sako, T.; Torii, S.

    2013-01-01

    To increase the radiation resistivity of the calorimeter, the LHCf group plans to replace its plastic scintillator with Gd2SiO5 (GSO) scintillator. In this report, we present the basic performance of very thin GSO scintillator bars that will replace the scintillating fibers employed as the position sensitive part of the current LHCf detector. The size of a bar is 1 mm × 1 mm × 40 mm. White acrylic paint was painted on one group of GSO bars and a second group was unpainted. After observing a clear peak of cosmic ray muons corresponding to 3 to 4 photoelectrons, a quantitative test was performed by using a 290 MeV/n carbon beam at HIMAC in Japan. The non-painted bars have less position dependence of light collection efficiency (effective attenuation length is about 140 mm) and less piece-to-piece variation. The unpainted bars show about 8% cross talk between adjacent bars which is larger than the painted ones. However, for estimating the center of a cascade shower inside the calorimeter, uniformity of light collection is more important than cross talk, so we have decided to use non-painted bars in the LHCf detector. A simulation of a 100 GeV electron injected in the center of the detector shows that position dependence and cross talk cause only a 0.04 mm shift of the shower centroid without any correction applied. This shows that these effects are relatively small compared to the uncertainty of the beam center position which was 1 mm for the LHCf experiments already performed at √s =7 TeV.

  16. High-Pressure Rare Earth Disilicates REE2Si 2O 7( REE=Nd, Sm, Eu, Gd): Type K

    NASA Astrophysics Data System (ADS)

    Fleet, Michael E.; Liu, Xiaoyang

    2001-10-01

    A new structure type (K) is reported for the disilicates of Nd, Sm, Eu, and Gd made at high pressure. Crystals of type K were synthesized at 10 GPa, 1600-1700°C in an MA6/8 superpress and used for single-crystal X-ray structure study by Kappa CCD diffractometry at room temperature. Crystal data are: monoclinic, space group P21/n, Z=4; Nd2Si2O7-a=6.6658(2), b=6.7234(3), c=12.3975(6) Å, β=102.147(3)°, V=543.2 Å3, R=0.029, and Dx=5.584 g/cm3; Sm2Si2O7-a=6.6039(3), b=6.6849(3), c=12.3069(5) Å, β=102.489(3)°, V=530.4 Å3, R=0.038, and Dx=5.871 g/cm3; Eu2Si2O7-a=6.5777(3), b=6.6652(4), c=12.2668(8) Å, β=102.671(4)°, V=524.7 Å3, R=0.030, and Dx=5.976 g/cm3; Gd2Si2O7-a=6.5558(4), b=6.6469(4), c=12.2394(6) Å, β=102.844(3)°, V=520.0 Å3, R=0.026, and Dx=6.166 g/cm3. The type K structure is built from a diorthosilicate group [Si2O7] interconnected by REE3+ cations in eightfold coordination with oxygen. The bridging oxygen (Si-O-Si) bond angle of the diorthosilicate group of rare earth disilicates stable at 1 bar (types A to G) is related to spatial accommodation of the REE3+ cation and ranges from 130 to 135° in the light rare earth disilicates (types A, F, G) to 180° in Lu2Si2O7 (type C). Volume reduction in the high-pressure type K structure is achieved largely by closure of the Si-O-Si bond angle to 122.7-124.4°, through rigid body rotation of the two SiO4 tetrahedra. This also permits a marginal increase in the average coordination of the REE3+ cation.

  17. Magnetic order of Y3NiSi3-type R3NiSi3 (R=Gd-DY) compounds

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Yapaskurt, V. O.; Nirmala, R.; Malik, S. K.; Quezado, S.; Yao, Jinlei; Mozharivskyj, Y.; Nigam, A. K.; Isnard, O.

    2016-01-01

    Magnetic measurements and neutron powder diffraction investigations on the Y3NiSi3-type R3NiSi3 compounds (R=Gd, Tb, Dy) reveal their complex antiferromagnetic ordering. Magnetic measurements on Gd3NiSi3, Tb3NiSi3 and Dy3NiSi3 indicate antiferromagnetic-like transition at temperatures 260 K, 202 K and 140 K, respectively. Also, the Tb3NiSi3 and Dy3NiSi3 compounds show spin-reorientation transition at 132 K and 99 K, respectively. Below the spin-reorientation transition, the isothermal magnetization curves indicate the metamagnetic-like behavior of Tb3NiSi3 and Dy3NiSi3. The magnetocaloric effect of Dy3NiSi3 is calculated in terms of isothermal magnetic entropy change and it reaches a maximum value of -1.2 J/kg K and -1.1 J/kg K for a field change of 50 kOe near 146 K and 92 K, respectively. The neutron diffraction studies of Tb3NiSi3 suggest the magnetic ordering of the Tb2 4j sublattice and no magnetic ordering of the Tb1 2a sublattice. Tb3NiSi3 transforms from the high temperature paramagnetic state to the commensurate high-temperature a- and c-axis antiferromagnet of I‧2/m magnetic space group below 250 K. Below 150 K, the high-temperature antiferromagnet transforms into the low-temperature a-, b- and c-axis antiferromagnet of I‧i magnetic space group. At 1.5 K, the terbium magnetic moment in Tb2 sublattice and its a-, b- and c-axis components reach the values of MTb2=8.2(1) μB, MaTb2=5.9(1) μB, MbTb2=4.3(2) μB and McTb2=3.7(2) μB, respectively.

  18. Investigation of band offsets and direct current leakage properties of nitrogen doped epitaxial Gd{sub 2}O{sub 3} thin films on Si

    SciTech Connect

    Roy Chaudhuri, Ayan; Osten, H. J.; Fissel, A.

    2013-05-14

    Dielectric properties of epitaxial Gd{sub 2}O{sub 3} thin films grown on Si have been found to improve significantly by incorporation of suitable dopants. However, in order to achieve optimum electrical properties from such doped oxides, it is important to understand the correlation between doping and the electronic structure of the material. In the present article, we report about the effect of nitrogen doping on the electronic structure and room temperature dc leakage properties of epitaxial Gd{sub 2}O{sub 3} thin films. Epitaxial Gd{sub 2}O{sub 3}:N thin films were grown on p-type Si (111) substrates by solid source molecular beam epitaxy technique using molecular N{sub 2}O as the nitridation agent. First investigations confirmed the presence of substitutional N in the Gd{sub 2}O{sub 3}:N layers. Incorporation of nitrogen did not affect the structural quality of the oxide layers. X ray photoelectron spectroscopy investigations revealed band gap narrowing in epitaxial Gd{sub 2}O{sub 3} due to nitrogen doping, which leads to reduction in the valence band offset of the Gd{sub 2}O{sub 3}:N layers with Si. DC leakage current measured at room temperature revealed that despite reduction in the band gap and valence band offsets due to N doping, the Gd{sub 2}O{sub 3}:N layers remain sufficiently insulating. A significant reduction of the leakage current densities in the Gd{sub 2}O{sub 3}:N layers with increasing nitrogen content suggests that doping of epitaxial Gd{sub 2}O{sub 3} thin films with nitrogen can be an effective route to eliminate the adverse effects of the oxygen vacancy induced defects in the oxide layers.

  19. Magnetic nanoparticles induced dielectric enhancement in (La, Gd)2O3: SiO2 composite systems

    NASA Astrophysics Data System (ADS)

    Kao, T. H.; Mukherjee, S.; Yang, H. D.

    2013-11-01

    Magnetic Gd2O3 and non-magnetic La2O3 nanoparticles (NPs) have been synthesized together with different doping concentrations in SiO2 matrix via sol-gel route calcination at 700 °C and above. Properly annealed NP-glass composite systems show enhancement of dielectric constant and magnetodielectric effect (MDE) near room temperature, depending on superparamagnetic NPs concentrations. From application point of view, the enhancement of dielectric constant along with MDE can be achieved by tuning the NPs size through varying calcination temperature and/or increasing the doping concentration of magnetic rare earth oxide.

  20. Study on energy transfer and energy migration of Ca2Gd8(SiO4)6O2:Dy3+ phosphor films.

    PubMed

    Wang, X Q; Han, X M; Zhen, C M

    2011-11-01

    Being a kind of rare-earth-metal silicate with oxidapatite structure, Ca2R8(SiO4)6O2 (R = Y, Gd, La) is a promising material doped with rare earth, and widely used as phosphors. In this thesis, Ca2Gd8(SiO4)6O2:Dy3+ films were prepared by the sol-gel method. X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. AFM study indicated that the phosphor films consisted of 120 nm homogeneous particles. By combining the model of Burshtein for donor-donor migration and the V-F-B model for donor-acceptor energy transfer, the experimental luminescence decay curve of 6P(J) state of Gd3+ was re-simulated. It is found that concentration quenching of Gd3+ can be due to the result of the joint action of donor-donor (Gd3+-Gd3+) energy migration and donor-acceptor (Gd3+-Dy3+) energy transfer. PMID:22413278

  1. Performance of Ce-doped (La, Gd)2Si2O7 scintillator with an avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Kurosawa, Shunsuke; Shishido, Toetsu; Suzuki, Akira; Pejchal, Jan; Yokota, Yuui; Yoshikawa, Akira

    2014-04-01

    Scintillation properties of Ce-doped (La, Gd)2Si2O7 (Ce:La-GPS) crystal were measured with Si avalanche photodiode (APD, Hamamatsu S8664-55). Since Ce:La-GPS is a novel scintillator, its scintillation properties have been evaluated using the APD for the first time. This crystal grown by floating zone method had a good light output of 41,000±1000 photons/MeV and FWHM energy resolution at 662 keV was 4.4±0.1% at 23.0±0.2 °C. The photon non-proportional response (PNR) of Ce:La-GPS was approximately 65% at 32 keV, where light output at 662 keV was normalized to 100%. Moreover, the temperature dependence of the light outputs was determined to be approximately 0.15%/°C from -10 to 30 °C.

  2. Low field magneto caloric effect in (Gd1-x Prx)5 Si3.2 Sn0.8 alloys

    NASA Astrophysics Data System (ADS)

    Xavier, J.; Saban, K. V.

    2015-02-01

    The structural, thermal and magnetic properties of the arc melted (Gd1-x Prx)5 Si3.2 Sn0.8 alloys with x = 0, 0.05, 0.1 and 0.15 were studied. A maximum magnetic entropy change of 1.2034 J/kgK occurs for the x = 0.1 alloy at 299 K for a low magnetic field change of 1.58 T. The Arrott plot technique confirms a second order ferromagnetic to paramagnetic phase transition in all these Si rich orthorhombic samples. Tuneable Tc around room temperature, moderate values of ΔSm in low magnetic fields and absence of magnetic hysteresis make these alloys useful with regard to room temperature magnetic refrigeration.

  3. Improvement of Bipolar Switching Properties of Gd:SiOx RRAM Devices on Indium Tin Oxide Electrode by Low-Temperature Supercritical CO2 Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M.

    2016-02-01

    Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices.

  4. Superior dielectric properties for template assisted grown (100) oriented Gd{sub 2}O{sub 3} thin films on Si(100)

    SciTech Connect

    Roy Chaudhuri, Ayan Osten, H. J.; Fissel, A.

    2014-01-06

    We report about the single crystalline growth and dielectric properties of Gd{sub 2}O{sub 3}(100) thin films on Si(100) surface. Using a two step molecular beam epitaxy growth process, we demonstrate that controlled engineering of the oxide/Si interface is a key step to achieve the atypical (100) oriented growth of Gd{sub 2}O{sub 3}. Unusually, high dielectric constant values (∼23–27) were extracted from capacitance voltage measurements. Such effect can be understood in terms of a two dimensional charge layer at the Gd{sub 2}O{sub 3}/Si interface (W. Sitaputra and R. Tsu, Appl. Phys. Lett. 101, 222903 (2012)) which can influence the dielectric properties of the oxide layer by forming an additional negative quantum capacitance.

  5. Improvement of Bipolar Switching Properties of Gd:SiOx RRAM Devices on Indium Tin Oxide Electrode by Low-Temperature Supercritical CO2 Treatment.

    PubMed

    Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M

    2016-12-01

    Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices. PMID:26831690

  6. Fabrication of a novel nanocomposite Ag/graphene@SiO2-NaLuF4:Yb,Gd,Er for large enhancement upconversion luminescence.

    PubMed

    Yin, Dongguang; Cao, Xianzhang; Zhang, Lu; Tang, Jingxiu; Huang, Wenfeng; Han, Yanlin; Wu, Minghong

    2015-06-28

    Upconversion nanocrystals have a lot of advantages over other fluorescent materials. However, their applications are still limited due to their comparatively low upconversion luminescence (UCL). In the present study, a novel nanocomposite of Ag/graphene@SiO2-NaLuF4:Yb,Gd,Er for enhancing UCL was fabricated successfully, and its morphology, crystalline phase, composition, and fluorescent property were investigated. It is interesting to find that the Ag/graphene@SiO2-NaLuF4:Yb,Gd,Er and Ag@SiO2-NaLuF4:Yb,Gd,Er nanocomposites showed high UCL enhancements of 52- and 10-fold compared to the control of Ag-free nanocomposite SiO2-NaLuF4:Yb,Gd,Er, respectively. The enhancement of 52-fold is greater than those reported in our previous studies and some papers. Moreover, the measured life times of the Ag-presented nanocrystals were longer than that of Ag-absent counterparts. These enhancements of UCL can be ascribed to the effect of metal-enhanced fluorescence, which is caused by the enhancement of the local electric field. The UCL intensity of Ag/graphene@SiO2-NaLuF4:Yb,Gd,Er was 5.2-fold higher than that of Ag@SiO2-NaLuF4:Yb,Gd,Er, indicating that graphene presented in the fabricated nanocomposite structure favors metal-enhanced UCL. The small-sized Ag nanoparticles anchored on the graphene sheet mutually enhanced each other's polarizability and surface plasmon resonance, resulting in a big metal-enhanced UCL. This study provides a new strategy for effectively enhancing the UCL of upconversion nanocrystals. The enhancement potentially increases the overall upconversion nanocrystal detectability for highly sensitive biological, medical, and optical detections. PMID:25999289

  7. Epitaxial growth of Sc2O3 films on Gd2O3-buffered Si substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Paulraj, Joseph; Wang, Rongping; Sellars, Matthew; Luther-Davies, Barry

    2016-04-01

    We investigated the optimal conditions to prepare high-quality Sc2O3 films on Gd2O3-buffered Si wafers using pulsed laser deposition technique with an aim at developing waveguide devices that can transform the performance of the gradient echo quantum memory based on bulk crystals. Under the optimal conditions, only oxide and Si (2 2 2) peaks appeared in the X-ray diffraction pattern. The Sc2O3 (2 2 2) diffraction peak was located at 2 θ = 31.5° with a full width at half maxima (FWHM) of 0.16°, and its rocking curve had a FWHM of 0.10°. In-plane epitaxial relationship was confirmed by X-ray pole figure where Sc2O3 (1 1 1) was parallel to Si (1 1 1). High-resolution TEM images indicated clear interfaces and perfect lattice images with sharp electron diffraction dots. All these results confirm that the oxide films on Si were single crystalline with high quality.

  8. Planar SiC MEMS flame ionization sensor for in-engine monitoring

    NASA Astrophysics Data System (ADS)

    Rolfe, D. A.; Wodin-Schwartz, S.; Alonso, R.; Pisano, A. P.

    2013-12-01

    A novel planar silicon carbide (SiC) MEMS flame ionization sensor was developed, fabricated and tested to measure the presence of a flame from the surface of an engine or other cooled surface while withstanding the high temperature and soot of a combustion environment. Silicon carbide, a ceramic semiconductor, was chosen as the sensor material because it has low surface energy and excellent mechanical and electrical properties at high temperatures. The sensor measures the conductivity of scattered charge carriers in the flame's quenching layer. This allows for flame detection, even when the sensor is situated several millimetres from the flame region. The sensor has been shown to detect the ionization of premixed methane and butane flames in a wide temperature range starting from room temperature. The sensors can measure both the flame chemi-ionization and the deposition of water vapour on the sensor surface. The width and speed of a premixed methane laminar flame front were measured with a series of two sensors fabricated on a single die. This research points to the feasibility of using either single sensors or arrays in internal combustion engine cylinders to optimize engine performance, or for using sensors to monitor flame stability in gas turbine applications.

  9. [U(III) {N(SiMe2 tBu)2 }3 ]: a structurally authenticated trigonal planar actinide complex.

    PubMed

    Goodwin, Conrad A P; Tuna, Floriana; McInnes, Eric J L; Liddle, Stephen T; McMaster, Jonathan; Vitorica-Yrezabal, Inigo J; Mills, David P

    2014-11-01

    We report the synthesis and characterization of the uranium(III) triamide complex [U(III) (N**)3 ] [1, N**=N(SiMe2 tBu)2 (-) ]. Surprisingly, complex 1 exhibits a trigonal planar geometry in the solid state, which is unprecedented for three-coordinate actinide complexes that have exclusively adopted trigonal pyramidal geometries to date. The characterization data for [U(III) (N**)3 ] were compared with the prototypical trigonal pyramidal uranium(III) triamide complex [U(III) (N")3 ] (N"=N(SiMe3 )2 (-) ), and taken together with theoretical calculations it was concluded that pyramidalization results in net stabilization for [U(III) (N")3 ], but this can be overcome with very sterically demanding ligands, such as N**. The planarity of 1 leads to favorable magnetic dynamics, which may be considered in the future design of U(III) single-molecule magnets. PMID:25241882

  10. [UIII{N(SiMe2tBu)2}3]: A Structurally Authenticated Trigonal Planar Actinide Complex

    PubMed Central

    Goodwin, Conrad AP; Tuna, Floriana; McInnes, Eric JL; Liddle, Stephen T; McMaster, Jonathan; Vitorica-Yrezabal, Inigo J; Mills, David P

    2014-01-01

    We report the synthesis and characterization of the uranium(III) triamide complex [UIII(N**)3] [1, N**=N(SiMe2tBu)2−]. Surprisingly, complex 1 exhibits a trigonal planar geometry in the solid state, which is unprecedented for three-coordinate actinide complexes that have exclusively adopted trigonal pyramidal geometries to date. The characterization data for [UIII(N**)3] were compared with the prototypical trigonal pyramidal uranium(III) triamide complex [UIII(N“)3] (N”=N(SiMe3)2−), and taken together with theoretical calculations it was concluded that pyramidalization results in net stabilization for [UIII(N“)3], but this can be overcome with very sterically demanding ligands, such as N**. The planarity of 1 leads to favorable magnetic dynamics, which may be considered in the future design of UIII single-molecule magnets. PMID:25241882

  11. The electronic structure and spin polarization of Co2Mn0.75(Gd, Eu)0.25Z (Z=Si, Ge, Ga, Al) quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Berri, Saadi

    2016-03-01

    A first-principles approach is used to study the electronic and magnetic properties of Co2Mn0.75(Gd, Eu)0.25Z(Z=Si, Ge, Ga, Al) quaternary Heusler alloys. The investigation was done using the (FP-LAPW) method where the exchange-correlation potential was calculated with the frame of GGA-WC. At ambient conditions our calculated results of band structures reveal that for Co2Mn0.75(Gd, Eu)0.25Z(Z=Si, Ge) has a half-metallic (HM) band structure profile showing 100% spin polarization at the Fermi level. In contrast, Co2Mn0.75(Gd, Eu)0.25Z(Z=Ga, Al) alloys are found to be metallic. Finally, the half metallic compounds found in some structures of this series might be useful in spintronic devices.

  12. Annealing influence on the magnetostructural transition in Gd5Si1.3Ge2.7 thin films

    DOE PAGESBeta

    Pires, A. L.; Belo, J. H.; Gomes, I. T.; Hadimani, R. L.; Jiles, D. C.; Fernandes, L.; Tavares, P. B.; Araújo, J. P.; Lopes, A. M. L.; Pereira, A. M.

    2015-05-19

    Due to the emerging cooling possibilities at the micro and nanoscale, such as the fast heat exchange rate, the effort to synthesize and optimize the magnetocaloric materials at these scales is rapidly growing. Here, we report the effect of different thermal treatments on Gd5Si1.3Ge2.7 thin film in order to evaluate the correlation between the crystal structure, magnetic phase transition and magnetocaloric effect. For annealing temperatures higher than 500ºC, the samples showed a typical paramagnetic behavior. On the other hand, thermal treatments below 500ºC promoted the suppression of the magnetostructural transition at 190 K, while the magnetic transition around 249 Kmore » is not affected. This magnetostructural transition extinction was reflected in the magnetocaloric behavior and resulted in a drastic decrease in the entropy change peak value (of about 68%). An increase in TC was reported, proving that at the nanoscale, heat treatments may be a useful tool to optimize the magnetocaloric properties in Gd5(SixGe1-x)4 thin films.« less

  13. Light coupling between vertical III-As nanowires and planar Si photonic waveguides for the monolithic integration of active optoelectronic devices on a Si platform.

    PubMed

    Giuntoni, Ivano; Geelhaar, Lutz; Bruns, Jürgen; Riechert, Henning

    2016-08-01

    We present a new concept for the optical interfacing between vertical III-As nanowires and planar Si waveguides. The nanowires are arranged in a two-dimensional array which forms a grating structure on top of the waveguide. This grating enables light coupling in both directions between the components made from the two different material classes. Numerical simulations show that this concept permits a light extraction efficiency from the waveguide larger than 45% and a light insertion efficiency larger than 35%. This new approach would allow the monolithic integration of nanowire-based active optoelectronics devices, like photodetectors and light sources, on the Si photonics platform. PMID:27505805

  14. White light emitting LaGdSiO5:Dy3+ nanophosphors for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Ogugua, Simon N.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.

    2016-01-01

    Powdered dysprosium (Dy3+) doped Lanthanum gadolinium oxyorthosilicate (LaGdSiO5) mixed phosphors were synthesized using urea-assisted solution combustion method. The X-ray diffractometer analysis showed that the samples crystalized in the pure monoclinic mixed phase of LaGdSiO5. The crystallite size and the lattice strain calculated from the X-ray diffraction peaks using Williamson-Hall equation varied from 12 nm to 16 nm and 1.6 ×10-2 to 2.43 ×10-2 respectively. The photoluminescence (PL) emission spectra recorded using 425, 454 and 475 nm excitation wavelengths exhibit characteristic similar to the YAG:Ce phosphor pumped InGaN LED system, by absorbing portion of the excitation energy and re-emitting it. The emission spectra were characterized by radiative recombination at 425, 454, 475, 485 and 575 nm depending on the excitation wavelength. These emission line are ascribed to the f→f transitions of Dy3+. The peak intensity and hence the color of the emitted visible light were dependent on the concentration of Dy3+. The International Commission on Illumination (CIE) color coordinates of (0.336, 0.313) and (0.359, 0.361) were obtained for Dy3+ molar concentration of 0.05 and 3.0 mol% when the emission was monitored using 454 nm and 475 nm respectively. The band gap measured from the reflectance curve using Tauc plot initially decreased with increasing Dy3+ concentration, but at higher concentration, it started to increase. These materials were evaluated for solid state lighting application.

  15. Properties of planar Nb/{alpha}-Si/Nb Josephson junctions with various degrees of doping of the {alpha}-Si layer

    SciTech Connect

    Gudkov, A. L.; Kupriyanov, M. Yu.; Samus', A. N.

    2012-05-15

    The properties of Nb/{alpha}-Si/Nb planar Josephson junctions with various degrees of doping of the amorphous silicon layer are experimentally studied. Tungsten is used as a doping impurity. The properties of the Josephson junctions are shown to change substantially when the degree of doping of the {alpha}-Si layer changes: a current transport mechanism and the shape of the current-voltage characteristic of the junctions change. Josephson junctions with SNS-type conduction are formed in the case of a fully degenerate {alpha}-Si layer. The properties of such junctions are described by a classical resistive model. Josephson junctions with a resonance mechanism of current transport through impurity centers are formed at a lower degree of doping of the {alpha}-Si layer. The high-frequency properties of such junctions are shown to change. The experimental results demonstrate that these junctions are close to SINIS-type Josephson junctions.

  16. Enhanced luminescence intensity and color purity of the red emitting LnVO{sub 4}:Eu{sup 3+}@ SiO{sub 2} (Ln = Gd, Y and Gd/Y) powder phosphors

    SciTech Connect

    Rambabu, U.; Han, Sang-Do

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Tetragonal phase lanthanide vanadates doped with Eu{sup 3+} were synthesized. ► Luminescence enhancement was done by optimizing the host (Gd,Y) and SiO{sub 2} coatings. ► SiO{sub 2} coating was characterized by SEM-EDAX, FT-IR and PL techniques. ► {sup 5}D{sub 0} → {sup 7}F{sub 2} domination over {sup 5}D{sub 0} → {sup 7}F{sub 1} indicates the absence of an inversion symmetry. ► Y{sub 0.95}VO{sub 4}:Eu{sup 3+}@ SiO{sub 2}(10 vol.%) is found to be a novel enhanced red emitting phosphor. -- Abstract: An attempt was made to enhance the luminescence properties of LnVO{sub 4}:Eu{sup 3+}@ SiO{sub 2} (Ln = Gd, Y and Gd/Y) powder phosphors. Pure phase with tetragonal structure of the produced phosphors was confirmed by XRD profiles. Sub-micron sized phosphors have shown 35% more PL intensity than the bulk, which was further improved 20.22% with SiO{sub 2} shell coating. SiO{sub 2} shell coating was optimized by SEM-EDAX, FT-IR, PL and TEM measurements. Emission intensities of the transition, {sup 5}D{sub 0} → {sup 7}F{sub 2} have dominated {sup 5}D{sub 0} → {sup 7}F{sub 1}, which indicated the lowering of an inverse symmetry in the vicinity of Eu{sup 3+} ions. Luminescence intensity and color purity were enhanced with the host modification by substituting Gd{sup 3+} with Y{sup 3+} sites, followed by SiO{sub 2} coating. Based on the systematic investigations carried out, the phosphor Y{sub 0.95}VO{sub 4}:Eu{sup 3+}{sub 0.05}@ SiO{sub 2} is suggested to be a novel contender for its suitable red emission in certain displays or lighting.

  17. Second order phase transition temperature of single crystals of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6

    SciTech Connect

    Hadimani, R. L.; Melikhov, Y.; Schlagel, D. L.; Lograsso, T. A.; Dennis, K. W.; McCallum, R. W.; Jiles, D. C.

    2015-01-30

    Gd5(SixGe1–x)4 has mixed phases in the composition range 0.32 < x < 0.41, which have not been widely studied. In this paper, we have synthesized and indexed single crystal samples of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6. In this study, we have investigated the first order and second order phase transition temperatures of these samples using magnetic moment vs. temperature and magnetic moment vs. magnetic field at different temperatures. We have used a modified Arrott plot technique that was developed and reported by us previously to determine the “hidden” second order phase transition temperature of the orthorhombic II phase.

  18. Selected AB₄²-/- (A = C, Si, Ge; B = Al, Ga, In) Ions: a Battle Between Covalency and Aromaticity, and Prediction of Square Planar Si in SiIn₄²-/-

    SciTech Connect

    Alexandrova, Anastassia N.; Nayhouse, Michael J.; Huynh, Mioy T.; Kuo, Jonathan L.; Melkonian, Arek V.; Chavez, Gerardo; Hernando, Nina M.; Kowal, Matthew D.; Liu, Chi-Ping

    2012-11-21

    CAl₄²-/- (D₄h, ¹A₁g) is is a cluster ion that has been established to be planar, aromatic, and contain a tetracoordinate planar C atom. Valence isoelectronic substitution of C with Si and Ge in this cluster leads to a radical change of structure toward distorted pentagonal species. We find that this structural change goes together with the cluster acquiring partial covalency of bonding between Si/Ge and Al₄, facilitated by hybridization of the atomic orbitals (AOs). Counter intuitively, for the AAl₄²-/- (A = C, Si, Ge) clusters, hybridization in the dopant atom is strengthened from C, to Si, and to Ge, even though typically AOs are more likely to hybridize if they are closer in energy (i.e. in earlier elements in the Periodic Table). The trend is explained by the better overlap of the hybrids of the heavier dopants with the orbitals of Al₄. From the thus understood trend, it is inferred that covalency in such clusters can be switched off, by varying the relative sizes of the AOs of the main element and the dopant. Using this mechanism, we then successfully killed covalency in Si, and predicted a new aromatic cluster ion containing a tetracoordinate square planar Si, SiIn₄²-/-.

  19. Structural, electronic, and magnetic properties of heterofullerene C(58)Si with odd number of atoms and a near planar tetracoordinate Si atom.

    PubMed

    Liu, Feng-Ling; Jalbout, Abraham F

    2008-06-01

    Density functional calculations and minimization techniques have been employed to characterize the structural and electronic properties of [5,6]-heterofullerene-C(58)Si-C(2v). Since it has odd number of atoms and a near planar tetracoordinate Si atom on the skeleton of the cage, it has odd number of atoms assembling a cage and is a novel molecule. Vibrational frequencies of the molecule have been calculated at the B3LYP/6-31G* level of theory. The absence of imaginary vibrational frequency confirms that the molecule corresponds to a true minimum on the potential energy hypersurface. Sixteen (13)C nuclear magnetic resonance (NMR) spectral signals of C(58)Si are characterized, and its heat of formation was estimated in this work. PMID:18328755

  20. Magnesium substitutions in rare-earth metal germanides with the Gd5Si4 type. Synthesis, structure determination and magnetic properties of RE5-xMgxGe4 (RE=Gd-Tm, Lu and Y)

    SciTech Connect

    Sarrao, J L; Thompson, Joe D; Tobash, P H; Bobev, S

    2009-01-01

    A series of magnesium-substituted rare-earth metal germanides with a general formula RE{sub 5-x}Mg{sub x}Ge{sub 4} (x {approx} 1.0-2.3; RE =Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction. These compounds crystallize with the common Gd{sub 5}Si{sub 4} type in the orthorhombic space group Pnma (No. 62; Z =4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45 % at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures, and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE+ ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of hte magnetic properties as a function of the Mg content are also discussed. KEYWORDS: Rare-earth intermetallics, germanides, crystal structure,Gd{sub 5}Si{sub 4} type.

  1. Characterization of 3D and planar Si diodes with different neutron converter materials

    NASA Astrophysics Data System (ADS)

    Mendicino, R.; Boscardin, M.; Carturan, S.; Betta, G.-F. Dalla; Palma, M. Dalla; Maggioni, G.; Quaranta, A.; Ronchin, S.

    2015-10-01

    In this paper, we report on the characterization of silicon 3D and planar sensors, coupled with different neutron converter materials, such as 10B, B104 C and 6LiF, with different deposition thickness. Selected results from the electrical and functional characterization of the devices are shown and comparatively discussed with the aid of SRIM and Geant4 simulations. The limited neutron detection efficiency, on the order of ≃ 1% (planar) and ≃ 8% (3D) from simulations, is understood, and hints for the optimization of the devices have been derived.

  2. Magnetic Field Induced Phase Transitions in Gd5(Si1.95Ge2.05)Single Crystal and the Anisotropic Magnetocaloric Effect

    SciTech Connect

    H. Tang; V.K. Pecharsky; A.O. Pecharsky; D.L. Schlagel; T.A. Lograsso; K.A. Gschneidner,jr.

    2004-09-30

    The magnetization measurements using a Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}) single crystal with the magnetic field applied along three crystallographic directions, [001], [010] and [100], were carried out as function of applied field (0-56 kOe) at various temperatures ({approx}5-320 K). The magnetic-field induced phase transformations at temperature above the zero-field critical temperature, i.e. the paramagnetic (PM) {leftrightarrow} ferromagnetic (FM) transitions with application or removal of magnetic field, are found to be temperature dependent and hysteretic. The corresponding critical fields increase with increasing temperature. The magnetic field (H)-temperature (T) phase diagrams have been constructed for the Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}) single crystal with field along the three directions. A small anisotropy has been observed. The magnetocaloric effect (MCE) has been calculated from the isothermal magnetization data, and the observed anisotropy correlates with H-T phase diagrams. The results are discussed in connection with the magnetic-field induced martensitic-like structural transition observed in the Gd{sub 5}(Si{sub 2}Ge{sub 2})-type compounds.

  3. A comparative investigation of Lu2SiO5:Ce and Gd2O2S:Eu powder scintillators for use in x-ray mammography detectors

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Fountos, G. P.; David, S. L.; Valais, I. G.; Toutountzis, A. E.; Kalyvas, N. E.; Kandarakis, I. S.; Panayiotakis, G. S.

    2009-10-01

    The dominant powder scintillator in most medical imaging modalities for decades has been Gd2O2S:Tb due to the very good intrinsic properties and overall efficiency. Apart from Gd2O2S:Tb, there are alternative powder phosphor scintillators such as Lu2SiO5:Ce and Gd2O2S:Eu that have been suggested for use in various medical imaging modalities. Gd2O2S:Eu emits red light and can be combined mainly with digital mammography detectors such as CCDs. Lu2SiO5:Ce emits blue light and can be combined with blue sensitivity films, photocathodes and some photodiodes. For the purposes of the present study, two scintillating screens, one from Lu2SiO5:Ce and the other from Gd2O2S:Eu powders, were prepared using the method of sedimentation. The screen coating thicknesses were 25.0 and 33.1 mg cm-2 respectively. The screens were investigated by evaluating the following parameters: the output signal, the modulation transfer function, the noise equivalent passband, the informational efficiency, the quantum detection efficiency and the zero-frequency detective quantum efficiency. Furthermore, the spectral compatibility of those materials with various optical detectors was determined. Results were compared to published data for the commercially employed 'Kodak Min-R film-screen system', based on a 31.7 mg cm-2 thick Gd2O2S:Tb phosphor. For Gd2O2S:Eu, MTF data were found comparable to those of Gd2O2S:Tb, while the MTF of Lu2SiO5:Ce was even higher resulting in better spatial resolution and image sharpness properties. On the other hand, Gd2O2S:Eu was found to exhibit higher output signal and zero-frequency detective quantum efficiency than Lu2SiO5:Ce.

  4. A promising RVO4:Eu(3+), Li(+)@SiO2 (R = Gd, Y and Gd/Y) red-emitting phosphor with improved luminescence (cd/m(2)) and colour purity for optical display applications.

    PubMed

    Rambabu, Urlagaddala; Munirathnam, Nagegownivari Ramachandra; Reddy, Busireddy Sudhakar; Chatterjee, Sandip

    2016-02-01

    Red emission intensity was optimized in three stages, by investigating the effects of: (i) host composition (Gd, Y and Gd/Y), (ii) codoping Li(+) as a sensitizer and, finally, (iii) with a SiO2 shell coating as a protecting layer. Lanthanide vanadate powder phosphors were synthesized using a modified colloidal precipitation technique. The effects of SiO2 coating on phosphor particles were characterized using scanning electron microscopy (SEM)-EDAX, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and photoluminescence (PL) measurements. An improvement in the PL intensity on Li codoping was due to improved crystallinity, which led to higher oscillating strengths for the optical transitions, and also a lowering of the inversion symmetry of Eu(3+) ions. Red emission intensity due to (5)D0  → (5)D2 transition of the phosphor Y0.94VO4:Eu(3+)0.05, Li(+)0.01 was enhanced by 22.28% compared with Y0.95VO4:Eu(3+)0.05, and was further improved by 58.73% with SiO2 coating. The luminescence intensity (I) and colour coordinates (x, y) of the optimized phosphor Y0.94VO4:Eu(3+)0.05, Li(+)0.01@SiO2, where I = 13.07 cd/m(2) and (x = 0.6721, y = 0.3240), were compared with values for a commercial red phosphor (Y2O2S:Eu(3+)), where I = 27 cd/m(2) and (x = 0.6522, y = 0.3437). The measured colour coordinates are superior to those of the commercial red phosphor, and moreover, match well with standard NTSC values (x = 0.67, y = 0.33). PMID:25989734

  5. Determination of energy loss of 1200 keV deuterons along axial and planar channels of Si

    NASA Astrophysics Data System (ADS)

    Shafiei, S.; Lamehi-Rachti, M.

    2015-02-01

    In this paper, the energy loss of 1200 keV deuterons along the <1 0 0> and <1 1 0> axes as well as the {1 0 0} and {1 1 0} planes of Si were determined by the simulation of the channeling Rutherford backscattering spectra. The simulation was done by taking two considerations into account: (i) a minimum random component of the beam which enters the sample because of the scattering ions from the surface, (ii) the dechanneling starts at greater penetration depths, xDech. Moreover, it was assumed that the dechanneling follows a Gompertz type sigmoidal function with two parameters k and xc which present the dechanneling rate and range, respectively. The best simulation parameters, penetration depth at which the dechanneling starts, energy loss and dechanneling rate and range, were chosen by using the Levenberg-Marquardt algorithm. The experimental results are well reproduced by this simulation. The ratio of channeling energy loss to the random is changed from 0.63 ± 0.02 along the <1 1 0> axial channel to the 0.91 ± 0.02 along the {1 0 0} planar direction. The differences in the energy loss and the dechanneling process along the axial and planar channels are attributed to the potential barrier and the fractional area of each channel blocked by atoms. The ratio of channeling to random energy loss of deuterons along the <1 0 0> axial direction is in agreement with another reference.

  6. Superconductivity above 90 K in the square-planar compound system ABa2Cu3O(6 + x) with A = Y, La, Nd, Sm, Eu, Gd, Ho, Er, and Lu

    NASA Technical Reports Server (NTRS)

    Hor, P. H.; Meng, R. L.; Wang, Y. Q.; Gao, L.; Huang, Z. J.

    1987-01-01

    Superconductivity has been found in the 90-K range in ABa2Cu3O(6 + x) with A = La, Nd, Sm, Eu, Gd, Ho, Er, and Lu in addition to Y. The results suggest that the unique square-planar Cu atoms, each surrounded by four or six oxygen atoms, are crucial to the superconductivity of oxides in general. In particular, the high Tc of ABa2Cu3O(6 + x) is attributed mainly to the quasi-two-dimensional assembly of the CuO2-Ba-CuO(2 + x)Ba-CuO2 layers sandwiched between two A layers, with particular emphasis in the CuO(2 + x) layers. Higher-Tc oxides are predicted for compounds with bigger assemblies of CuO2 layers coupled by Ba layers.

  7. Planar electron-tunneling Si/Si0.7Ge0.3 triple-barrier resonant tunneling diode formed on undoped strain-relaxed buffer with flat surface

    NASA Astrophysics Data System (ADS)

    Okubo, Takafumi; Tsukamoto, Takahiro; Suda, Yoshiyuki

    2014-03-01

    We demonstrated a planar electron-tunneling Si/Si0.7Ge0.3 triple-barrier (TB) resonant tunneling diode (RTD) formed via a channel layer on an undoped strain-relaxed quadruple-Si1-xGex-layer (QL) buffer. Compared with a conventional vertical Si/Si0.7Ge0.3 TB RTD formed on a heavily doped QL buffer, the dislocation density is low, the surface is flat, and the resonance current density is much larger. These observations, together with analyses of current-voltage (I-V) curve fitting to the physics-based analytical expression, suggest that the enhanced I-V characteristics in the planar RTD are related to decreases in the number of crystalline defect states and the structural and potential fluctuations.

  8. New tetragonal derivatives of cubic NaZn13-type structure: RNi6Si6 compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd-Yb)

    NASA Astrophysics Data System (ADS)

    Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A. V.; Knotko, A. V.; Garshev, A. V.; Yapaskurt, V. O.; Isnard, O.

    2014-02-01

    Novel RNi6Si6 compounds adopt the new CeNi6Si6-type structure for R=La-Ce (tP52, space group P4/nbm N 125-1) and new YNi6Si6-type structure for R=Y, Sm, Gd-Yb (tP52, space group P4barb2N 117) that are tetragonal derivative of NaZn13-type structure, like LaCo9Si4-type. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi6Si6 does not follow Curie-Weiss law. The DyNi6Si6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μB/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K.

  9. Investigation of crystallinity and planar defects in the Si nanowires grown by vapor-liquid-solid mode using indium catalyst for solar cell applications

    NASA Astrophysics Data System (ADS)

    Ajmal Khan, Muhammad; Ishikawa, Yasuaki; Kita, Ippei; Tani, Ayumi; Yano, Hiroshi; Fuyuki, Takashi; Konagai, Makoto

    2016-01-01

    Stacking-fault-free and planar defect (twinning plane)-free In-catalyzed Si nanowires (NWs) are essential for carrier transport and nanoscale device applications. In this article, In-catalyzed, vertically aligned, and cone-shaped Si NWs on Si(111) were grown successfully, in the vapor-liquid-solid (VLS) mode. In particular, the influences of substrate temperature (TS) and cooling rate (ΔTS/Δt) on the formation of planar defects, twinning planes along the [112] direction, and stacking faults in Si NWs were investigated. When TS was decreased from 600 °C to room temperature at a rate of 100 °C/240 s after Si NW growth, twinning plane defects perpendicular to the substrate and along different segments of (111)-oriented Si NWs were observed. Finally, one simple model was proposed to explain the stacking fault formation as well as Si NW length limitation due to the In-nanoparticle (In-NP) migration, and root causes of the twinning plane defects in the Si-NWs.

  10. Annealing influence on the magnetostructural transition in Gd5Si1.3Ge2.7 thin films

    SciTech Connect

    Pires, A. L.; Belo, J. H.; Gomes, I. T.; Hadimani, R. L.; Jiles, D. C.; Fernandes, L.; Tavares, P. B.; Araújo, J. P.; Lopes, A. M. L.; Pereira, A. M.

    2015-05-19

    Due to the emerging cooling possibilities at the micro and nanoscale, such as the fast heat exchange rate, the effort to synthesize and optimize the magnetocaloric materials at these scales is rapidly growing. Here, we report the effect of different thermal treatments on Gd5Si1.3Ge2.7 thin film in order to evaluate the correlation between the crystal structure, magnetic phase transition and magnetocaloric effect. For annealing temperatures higher than 500ºC, the samples showed a typical paramagnetic behavior. On the other hand, thermal treatments below 500ºC promoted the suppression of the magnetostructural transition at 190 K, while the magnetic transition around 249 K is not affected. This magnetostructural transition extinction was reflected in the magnetocaloric behavior and resulted in a drastic decrease in the entropy change peak value (of about 68%). An increase in TC was reported, proving that at the nanoscale, heat treatments may be a useful tool to optimize the magnetocaloric properties in Gd5(SixGe1-x)4 thin films.

  11. Designed synthesis of multi-functional PEGylated Yb2O3:Gd@SiO2@CeO2 islands core@shell nanostructure.

    PubMed

    Li, Junqi; Yao, Shuang; Song, Shuyan; Wang, Xiao; Wang, Yinghui; Ding, Xing; Wang, Fan; Zhang, Hongjie

    2016-07-28

    Nanomaterials that can restrain or reduce the production of excessive reactive oxygen species such as H2O2 to defend and treat against Alzheimer's disease (AD) have attracted much attention. In this paper, we adopt the strategy of layer-by-layer deposition; namely, first synthesizing available gadolinium-doped ytterbia nanoparticles (Yb2O3:Gd NPs) as cores, and then coating them with silica via the classical Stöber method to prevent leakage and act as a carrier for subsequent ceria deposition and PEGylation, and finally obtain the expected core@shell-structured nanocomposite of PEGylated Yb2O3:Gd@SiO2@CeO2 islands. The nanomaterial has proved not only to be a high-performance dual-modal contrast agent for use in MRI and CT, but also to exhibit excellent catalase mimetic activity, which may help the prognosis, diagnosis and treatment of AD in the future. In addition, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy characterization have revealed the successful design and synthesis of the cores with remarkable size uniformity, with well-distributed CeO2 islands decorated on the surface of SiO2 shells, and tightly immobilized PEG. PMID:27351951

  12. Planar versus puckered nets in the polar intermetallic series EuGaTt (Tt = Si, Ge, Sn).

    PubMed

    You, Tae-Soo; Grin, Yuri; Miller, Gordon J

    2007-10-15

    The ternary polar intermetallic compounds EuGaTt (Tt = Si, Ge, Sn) have been synthesized and characterized experimentally, as well as theoretically. EuGaSi crystallizes in the hexagonal AlB(2)-type structure (space group P6/mmm, Z = 1, Pearson symbol hP3) with randomly distributed Ga and Si atoms on the graphite-type planes: a = 4.1687(6) A, c = 4.5543(9) A. On the other hand, EuGaGe and EuGaSn adopt the hexagonal YPtAs-type structure (space group P6(3)/mmc, Z = 4, Pearson symbol hP12): a = 4.2646(6) A and c = 18.041(5) A for EuGaGe; a = 4.5243(5) A and c = 18.067(3) A for EuGaSn. The three crystal structures contain formally [GaTt](2-) polyanionic 3-bonded, hexagonal networks, which change from planar to puckered and exhibit a significant decrease in interlayer Ga-Ga distances as the size of Tt increases. Magnetic susceptibility measurements of this series of compounds show Curie-Weiss behavior above 86(5), 95(5), and 116(5) K with magnetic moments of 7.93, 7.97, and 7.99 mu(B) for EuGaSi, EuGaGe, and EuGaSn, respectively, indicating a 4f(7) electronic configuration (Eu(2+)) for Eu atoms. X-ray absorption spectra (XAS) are also consistent with these magnetic properties. Electronic structure calculations supplemented by a crystal orbital Hamilton population (COHP) analysis identifies the synergy between atomic sizes, from both Eu and Tt atoms, and the orbital contributions from Eu toward influencing the structural features of EuGaTt. A multicentered interaction between planes of Eu atoms and the [GaTt](2-) layers rather than through-space Ga-Ga bonding is seen in ELF distributions. PMID:17880208

  13. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si

    SciTech Connect

    Schmid, H. Borg, M.; Moselund, K.; Cutaia, D.; Riel, H.; Gignac, L.; Breslin, C. M.; Bruley, J.

    2015-06-08

    III–V nanoscale devices were monolithically integrated on silicon-on-insulator (SOI) substrates by template-assisted selective epitaxy (TASE) using metal organic chemical vapor deposition. Single crystal III–V (InAs, InGaAs, GaAs) nanostructures, such as nanowires, nanostructures containing constrictions, and cross junctions, as well as 3D stacked nanowires were directly obtained by epitaxial filling of lithographically defined oxide templates. The benefit of TASE is exemplified by the straightforward fabrication of nanoscale Hall structures as well as multiple gate field effect transistors (MuG-FETs) grown co-planar to the SOI layer. Hall measurements on InAs nanowire cross junctions revealed an electron mobility of 5400 cm{sup 2}/V s, while the alongside fabricated InAs MuG-FETs with ten 55 nm wide, 23 nm thick, and 390 nm long channels exhibit an on current of 660 μA/μm and a peak transconductance of 1.0 mS/μm at V{sub DS} = 0.5 V. These results demonstrate TASE as a promising fabrication approach for heterogeneous material integration on Si.

  14. Influence of Gd{sup 3+} on the visible quantum cutting in green-emitting silicate Na{sub 3}Gd{sub 0.9−x}Y{sub x}Si{sub 3}O{sub 9}:0.1Tb{sup 3+} phosphors

    SciTech Connect

    Han, Lili; Wang, Yuhua; Zhao, Lei; Zhang, Jia; Wang, Yanzhao; Tao, Ye

    2013-06-01

    Highlights: ► The visible quantum cutting between Tb{sup 3+} in silicate Na{sub 3}Gd{sub 0.9−x}Y{sub x}Si{sub 3}O{sub 9}:0.1Tb{sup 3+} phosphors are firstly investigated. ► Gd{sup 3+} plays an important intermediate role during the QC process and reinforces the cross relaxation efficiency. ► Na{sub 3}Gd{sub 0.9}Tb{sub 0.1}Si{sub 3}O{sub 9} has potential application for 3D-PDPs and Hg-free lamps for the total QE of 151.2%. - Abstract: The visible quantum cutting via cross-relaxation between Tb{sup 3+} ions in Na{sub 3}Gd{sub 0.9−x}Y{sub x}Si{sub 3}O{sub 9}:0.1Tb{sup 3+} phosphors are identified for the first time. It has also been found that with the increase of the ratio of Gd{sup 3+}/Y{sup 3+}, the quantum cutting efficiency increases, which indicates the Gd{sup 3+} plays an important intermediate role in energy transfer to convert vacuum ultraviolet light to visible light and reinforces the cross relaxation efficiency during the quantum cutting process. In addition, the energy transfer process from Gd{sup 3+} to Tb{sup 3+} is also investigated and discussed in terms of luminescence spectra.

  15. Optical properties and chemical composition analyses of mixed rare earth oxyorthosilicate (R2SiO5, R=La, Gd and Y) doped Dy3+ phosphors prepared by urea-assisted solution combustion method

    NASA Astrophysics Data System (ADS)

    Ogugua, S. N.; Shaat, S. K. K.; Swart, H. C.; Ntwaeaborwa, O. M.

    2015-08-01

    Dysprosium (Dy3+) doped lanthanum gadolinium oxyorthosilicate (LaGdSiO5), lanthanum yttrium oxyorthosilicate (LaYSiO5) and gadolinium yttrium oxyorthosilicate (GdYSiO5) phosphors (in powder form) were synthesized by urea-assisted combustion method. The X-ray diffractometer analysis confirmed that the LaGdSiO5, LaYSiO5 and GdYSiO5 crystalized in monoclinic phases. The chemical composition of the phosphors was analyzed by measuring the atomic and molecular ionic species using the time of flight secondary ion mass spectroscopy (ToF SIMS). In addition, ToF SIMS imaging technique was used to determine the distribution of the Dy3+ dopant ions on the surface on the phosphors. The average crystallite sizes and lattice strains of the phosphor were increased by Dy3+ doping. The field emission scanning electron microscope images showed that the powders were made up of an agglomeration of particles with no regular shape. The photoluminescence data showed narrow line emission peaks at the wavelengths of 485 nm (minor emission) and 573 nm (major emission) associated with the f→f transitions of Dy3+. The photoluminescence (PL) measurements showed that the emission peak of LaGdSiO5:Dy3+ was ~3× more intense than those of LaYSiO5:Dy3+ and GdYSiO5:Dy3+ when excited using monochromatic xenon lamp with a wavelength of 241 nm. However, when the powders were excited using a 325 nm He-Cd laser, the highest PL emission intensity was observed from GdYSiO5:Dy3+.

  16. In Vivo Immunotoxicity of SiO2@(Y0.5Gd0.45Eu0.05)2O3 as Dual-Modality Nanoprobes

    PubMed Central

    Tian, Xiumei; Li, Ermao; Yang, Fanwen; Peng, Ye; Zhu, Jixiang; He, Fupo; Chen, Xiaoming

    2014-01-01

    We have successfully synthesized SiO2@(Y0.5Gd0.45Eu0.05)2O3 nanocomposites as a potential dual-modality nanoprobe for molecular imaging in vitro. However, their immunotoxicity assessment in vivo remains unknown. In this article, the in vitro biocompatibility of our dual-modality nanoprobes was assayed in terms of cell viability and apoptosis. In vivo immunotoxicity was investigated by monitoring the generation of reactive oxygen species (ROS), cluster of differentiation (CD) markers and cytokines in Balb/c mice. The data show that the in vitro biocompatibility was satisfactory. In addition, the immunotoxicity data revealed there are no significant changes in the expression levels of CD11b and CD71 between the nanoprobe group and the Gd in a diethylenetriaminepentaacetic acid (DTPA) chelator (Gd-DTPA) group 24 h after injection in Balb/c mice (p > 0.05). Importantly, there are significant differences in the expression levels of CD206 and CD25 as well as the secretion of IL-4 and the generation of ROS 24 h after injection (p < 0.05). Transmission electron microscopy (TEM) images showed that few nanoprobes were localized in the phagosomes of liver and lung. In conclusion, the toxic effects of our nanoprobes may mainly result from the aggregation of particles in phagosomes. This accumulation may damage the microstructure of the cells and generate oxidative stress reactions that further stimulate the immune response. Therefore, it is important to evaluate the in vivo immunotoxicity of these rare earth-based biomaterials at the molecular level before molecular imaging in vivo. PMID:25105724

  17. Enhanced upconversion multicolor and white light luminescence in SiO2-coated lanthanide-doped GdVO4 hydrothermal nanocrystals.

    PubMed

    Calderón-Villajos, Rocío; Zaldo, Carlos; Cascales, Concepción

    2012-12-21

    Tetragonal zircon-type codoped Yb, Ln-GdVO(4) (Ln=Tm, Ho, Er) upconverting nanocrystals with square and rectangular sections were prepared through an efficient low-temperature hydrothermal synthesis. Further processing that combined annealing at 600 °C followed by coating of the surface with a uniform 5 nm-shell of SiO(2) resulted in a significant improvement of the intensity of the upconverted emitted visible light following near-infrared (~980 nm) diode laser excitation with respect to raw hydrothermal nanocrystals. Strong tunable color and bright visible light composed of red-green, blue and green emissions from Ho(3+), Tm(3+) and Er(3+), respectively, were generated by adjusting the Yb-Ln composition of these silica-coated nanocrystals. Based on calculations of CIE color coordinates, nearly ideal white upconversion light was achieved for samples of composition Gd(0.829)Yb(0.15)Tm(0.01)Ho(0.009)Er(0.002)VO(4). PMID:23196274

  18. Interfacial bonding distribution and energy band structure of (Gd 2O 3) 1 - x(SiO 2) x ( x = 0.5)/GaAs (0 0 1) system

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Kyu; Kang, Min-Gu; Kim, Woo Sik; Park, Hyung-Ho

    2004-10-01

    A (Gd 2O 3) 1 - x(SiO 2) x ( x = 0.5) gate dielectric film was deposited on an n-GaAs (0 0 1) substrate at various substrate temperatures. Bonding distribution of interfacial Ga and As was characterized by comparing the 3d and 3p photoelectron lines. Surface passivation using (NH 4) 2S was employed to preserve a stable interface. Interfacial GaAs oxide was not formed after the deposition, since bonding transition from AsS to GaS bonds provides thermal stability and protective effect against oxidation. While, without the passivation, interfacial GaAs-oxides were continuously grown as the substrate temperature was increased. The energy band gap of (Gd 2O 3) 0.5(SiO 2) 0.5 was defined as 6.8 eV using energy loss spectra of O 1s photoelectrons. The valence band maximum energy ( EVBM) of (Gd 2O 3) 0.5(SiO 2) 0.5 was determined to be 3.7 eV. By arrangement of the measured energy bandgap and EVBM, the energy band structure of (Gd 2O 3) 0.5(SiO 2) 0.5/GaAs system was demonstrated and an enhanced conduction band offset was observed.

  19. Optical, scintillation properties and defect study of Gd2Si2O7:Ce single crystal grown by floating zone method

    NASA Astrophysics Data System (ADS)

    Feng, He; Xu, Wusheng; Ren, Guohao; Yang, Qiuhong; Xie, Jianjun; Xu, Jun; Xu, Jiayue

    2013-02-01

    Single crystal of Gd2Si2O7:Ce (GPS) presenting attractive scintillation performance was grown by the floating zone method. The vacuum ultra-violet (VUV) excitation and emission, ultra-violet (UV) excitation and emission spectra and fluorescent decay time at 77 K and RT were measured and discussed. Relative energy levels of 5d sublevels of Ce3+ in GPS:Ce are detected by the VUV excitation spectrum. The UV emission curve of GPS:1%Ce peaks around 382 nm at 77 K and moves towards longer wavelength direction as temperature increases. Thermally stimulated luminescence (TSL) was employed to investigate the defects in GPS:1%Ce. Energy depths of two traps detected in GPS:1%Ce are 0.64 and 1.00 eV.

  20. Electron spin resonance and magnetic characterization of the Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}

    SciTech Connect

    Pires, M.J.M.; Carvalho, A. Magnus G.; Gama, S.; Silva, E.C. da; Coelho, A.A.; Mansanares, A.M.

    2005-12-01

    Electron spin resonance was applied on samples of Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}. The results are discussed under the scope of magnetization measurements, optical metallography, and wavelength dispersive spectroscopy. Polycrystalline arc-melted samples submitted to different heat treatments were investigated. The correlation of the electron spin resonance and magnetization results permitted a characterization of the present phases and their transitions. Two coexisting phases in the temperature range between two phase transitions have been identified and associated to distinct crystallographic phases. Additionally, the magnetic moment at high temperatures has been estimated from the measured effective g factor. A peak value of 21.5 J/kg K for the magnetocaloric effect was obtained for a sample heat treated at 1500 deg. C for 16 h.

  1. Experimental and Computational Analysis of Emission from Highly Ionized Si, Kr, Mo, Gd, and Tb Plasmas at 6.6 nm

    NASA Astrophysics Data System (ADS)

    Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin; One Team

    2013-10-01

    There is increasing interest in high-power extreme-ultraviolet (EUV) laser-based lamps for sub-10 nm lithography operating in the region of 6.6 nm based on the LaN/B4C multilayer mirrors for manufacturing the next generation of microelectronics. A detailed multilevel non-LTE atomic model is developed to investigate emissivity and absorption properties of highly ionized Si, Kr, Mo, Gd, and Tb plasmas at 6.6 nm. Experimental spectra are presented together with analysis based on calculations using the relativistic Flexible Atomic Code. We will present the optimum regions for conversion efficiency of mass-limited targets against target density and laser parameters by means of 1D hydrodynamic coupled to a developed population kinetics codes.

  2. Investigation of continuous wave and pulsed laser performance based on Nd3+:Gd0.6Y1.4SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Zhaojun; Cong, Zhenhua; Shen, Hongbin; Li, Yongfu; Wang, Qingpu; Fang, Jiaxiong; Xu, Xiaodong; Xu, Jun; Zhang, Xingyu

    2015-12-01

    We systematically investigated a laser diode (LD) pumped Nd:GYSO (Nd3+:Gd0.6Y1.4SiO5) laser. The output power of the continuous wave laser was as high as 3.5 W with a slope efficiency of 31.8%. In the Q-switched operation; the laser exhibited dual-wavelengths output (1073.6 nm and 1074.7 nm) synchronously with a Cr4+:YAG as the saturable absorber (SA). Additionally, a passively mode-locked laser was demonstrated using a semiconductor SA mirror with a maximum average output power of 510 mW at a central wavelength of 1074 nm, while the pulse width of the laser was as short as 5 ps. Our experiment proved that the Nd:GYSO mixed crystal was a promising material for a solid-state laser.

  3. Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Di, Juqing; Zhang, Jian; Tang, Dingyuan; Xu, Jun

    2016-05-01

    Efficient dual-wavelength continuous-wave (CW) and passively Q-switched laser operation of Nd:(Gd0.3Y0.7)2SiO5 crystal were investigated for the first time to our knowledge. Maximum CW output power of 2.3 W was obtained under the absorbed pump power of 4.6 W, corresponding to the slope efficiency of 55%. Dual-wavelength CW laser with respective wavelengths around 1074 nm and 1078 nm were achieved. With Cr4+:YAG as the saturable absorber, passive Q-switched performance was obtained. The slope efficiency of passively Q-switched operation was 45%. The shortest pulse width, the corresponding pulse energy and peak power were calculated to be 13.1 ns, 50.2 μJ and 3.8 kW, respectively.

  4. Preparation of translucent Gd2Si2O7:Ce polycrystalline thin plates and their scintillation performance for α-particles

    NASA Astrophysics Data System (ADS)

    Nishikata, Mami; Ueda, Aki; Higuchi, Mikio; Kaneko, Junichi H.; Tsubota, Youichi; Ishibashi, Hiroyuki

    2015-07-01

    Translucent Gd2Si2O7:Ce (GPS:Ce) polycrystalline plates were prepared via liquid-phase sintering using SiO2 as a self-flux, and their scintillation performances for α-particles were investigated. Dense sintered compacts comprising large grains, some of which were larger than 100 μm in diameter, were successfully prepared by sintering at 1690 °C for 100 h. The best result was obtained with the powder comprising only <40 μm particles. Any combination of powders of <40 μm and <15 μm resulted in inhomogeneous structures with smaller grains of about 50 μm. A translucent GPS:Ce thin plate was fabricated by grinding the sintered compact that contained excess SiO2 of 8 mol%. Since the plate was composed of large grains, scattering at the grain boundaries was effectively suppressed and many of the grains virtually act as single crystals when the plate thickness was less than 100 μm. Therefore, the decrease in the plate thickness brought increase in the total transmission, and light yield and energy resolution were consequently improved. When the plate thickness was 50 μm, light yield was 82% as compared with that of a GPS:Ce single crystal as a reference, and energy resolution attained to 13%.

  5. A luminescent and mesoporous core-shell structured Gd2O3 : Eu(3+)@nSiO2@mSiO2 nanocomposite as a drug carrier.

    PubMed

    Xu, Zhenhe; Gao, Yu; Huang, Shanshan; Ma, Ping' an; Lin, Jun; Fang, Jiye

    2011-05-14

    In this paper, Gd(2)O(3) : Eu(3+) nanospheres have been encapsulated with nonporous silica and further layer of ordered mesoporous silica through a simple sol-gel process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N(2) adsorption/desorption, photoluminescence (PL) spectra, and kinetic decay were used to characterize the sample. The results indicate that the nanocomposite with general 50 nm shell thickness and 270 nm core size shows typical ordered mesoporous characteristics (2.4 nm) and has spherical morphology with a smooth surface and narrow size distribution. Additionally, the obtained inorganic nanocomposite shows the characteristic emission of Eu(3+) ((5)D(0)→(7)F(1-4)) even after the loading of drug molecules. The biocompatibility test on L929 fibroblast cells using MTT assay reveals low cytotoxicity of the system. Most importantly, the nanocomposite can be used as an effective drug delivery carrier. A typical anticancer drug, doxorubicin hydrochloride (DOX), was used for drug loading, and the DOX release, cytotoxicity, uptake behavior and therapeutic effects were examined. It was found that DOX is shuttled into the cell by the nanocomposite and released inside cells after endocytosis and that the DOX-loaded nanocomposite exhibited greater cytotoxicity than free DOX. These results indicate that core-shell structured Gd(2)O(3) : Eu(3+)@nSiO(2)@mSiO(2) nanocomposite has potential for drug loading and delivery into cancer cells to induce cell death. PMID:21431226

  6. Toward Design Principles for Diffusionless Transformations: The Frustrated Formation of Co-Co Bonds in a Low-Temperature Polymorph of GdCoSi2.

    PubMed

    Vinokur, Anastasiya I; Fredrickson, Daniel C

    2016-06-20

    Diffusionless (or displacive) phase transitions allow inorganic materials to show exquisite responsiveness to external stimuli, as is illustrated vividly by the superelasticity, shape memory, and magnetocaloric effects exhibited by martensitic materials. In this Article, we present a new diffusionless transition in the compound GdCoSi2, whose origin in frustrated bonding points toward generalizable design principles for these transformations. We first describe the synthesis of GdCoSi2 and the determination of its structure using single crystal X-ray diffraction. While previous studies based on powder X-ray diffraction assigned this compound to the simple CeNi1-xSi2 structure type (space group Cmcm), our structure solution reveals a superstructure variant (space group Pbcm) in which the Co sublattice is distorted to create zigzag chains of Co atoms. DFT-calibrated Hückel calculations, coupled with a reversed approximation Molecular Orbital (raMO) analysis, trace this superstructure to the use of Co-Co isolobal bonds to complete filled 18 electron configurations on the Co atoms, in accordance with the 18-n rule. The formation of these Co-Co bonds is partially impeded, however, by a small degree of electron transfer from Si-based electronic states to those with Co-Co σ* character. The incomplete success of Co-Co bond creation suggests that these interactions are relatively weak, opening the possibility of them being overcome by thermal energy at elevated temperatures. In fact, high-temperature powder and single crystal X-ray diffraction data, as well as differential scanning calorimetry, indicate that a reversible Pbcm to Cmcm transition occurs at about 380 K. This transition is diffusionless, and the available data point toward it being first-order. We expect that similar cases of frustrated interactions could be staged in other rare earth-transition metal-main group phases, providing a potentially rich source of compounds exhibiting diffusionless transformations

  7. (1)H relaxivity of water in aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material: the influence of Si/Al ratio and pore size.

    PubMed

    Norek, Małgorzata; Neves, Isabel C; Peters, Joop A

    2007-07-23

    The results of a (1)H nuclear magnetic relaxation dispersion (NMRD) and EPR study on aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material are described. Upon increase of the Si/Al ratio from 1.7 to 4.0 in the Gd(3+)-loaded zeolites, the relaxation rate per mM Gd(3+) (r1) at 40 MHz and 25 degrees C increases from 14 to 27 s(-)1 mM(-1). The NMRD and EPR data were fitted with a previously developed two-step model that considers the system as a concentrated aqueous solution of Gd(3+) in the interior of the zeolite that is in exchange with the bulk water outside the zeolite. The results show that the observed increase in relaxivity can mainly be attributed to the residence lifetime of the water protons in the interior of the material, which decreased from 0.3 to 0.2 micros, upon the increase of the Si/Al ratio. This can be explained by the decreased interaction of water with the zeolite walls as a result of the increased hydrophobicity. The importance of the exchange rate of water between the inside and the outside of the material was further demonstrated by the relatively high relaxivity (33 s(-1) mM(-1) at 40 MHz, 25 degrees C) observed for a suspension of the Gd(3+)-loaded mesoporous material AlTUD-1. Unfortunately, Gd(3+) leaches rather easily from that material, but not from the Gd(3+)-loaded NaY zeolites, which may have potential as contrast agents for magnetic resonance imaging. PMID:17589991

  8. Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6 %

    NASA Astrophysics Data System (ADS)

    Pietsch, Matthias; Jäckle, Sara; Christiansen, Silke

    2014-06-01

    We have studied interface formation properties of hybrid n-Si/PEDOT:PSS solar cells on planar substrates by varying the silicon substrate doping concentration ( N D). Final power conversion efficiencies (PCE) of 12.6 % and open circuit voltages ( V oc) comparable to conventional diffused emitter pn junction solar cells have been achieved. It was observed, that an increase of N D leads to an increase of V oc with a maximal value of 645 mV, which is, to our knowledge, the highest reported value for n-Si/PEDOT:PSS interfaces. The dependence of the solar cell characteristics on N D is analyzed and similarities to minority charge carrier drift-diffusion limited solar cells are presented. The results point out the potential of hybrid n-Si/PEDOT:PSS interfaces to fabricate high performance opto-electronic devices with cost-effective fabrication technologies.

  9. Superstructure in RE2-xFe4Si14-y (RE = Y, Gd-Lu) characterized by diffraction, electron microscopy, and Mössbauer spectroscopy.

    PubMed

    Han, Mi-Kyung; Wu, Ya-Qiao; Kramer, Matthew; Vatovez, Benjamin; Grandjean, Fernande; Long, Gary J; Miller, Gordon J

    2006-12-25

    Ternary rare-earth iron silicides RE(2-x)Fe4Si(14-y) (RE = Y, Gd-Lu; x approximately equal to 0.8; y approximately equal to 4.1) crystallize in the hexagonal system with a approximately equal to 3.9 A, c approximately equal to 15.3 A, Pearson symbol hP20-4.9. Their structures involve rare-earth silicide planes with approximate compositions of "RE1.2Si1.9" alternating with beta-FeSi2-derived slabs and are part of a growing class of rare-earth/transition-metal/main-group compounds based on rare-earth/main-group element planes interspersed with (distorted) fluorite-type transition-metal/main-group element layers. The rare-earth silicide planes in the crystallographic unit cells show partial occupancies of both the RE and Si sites because of interatomic distance constraints. Transmission electron microscopy reveals a 4a x 4b x c superstructure for these compounds, whereas further X-ray diffraction experiments suggest ordering within the ab planes but disordered stacking along the c direction. A 4a x 4b structural model for the rare-earth silicide plane is proposed, which provides good agreement with the electron microscopy results and creates two distinct Fe environments in a 15:1 ratio. Fe-57 Mössbauer spectra confirm these two different iron environments in the powder samples. Magnetic susceptibilities suggest weak (essentially no) magnetic coupling between rare-earth elements, and resistivity measurements indicate poor metallic behavior with a large residual resistivity at low temperatures, which is consistent with disorder. First-principles electronic-structure calculations on model structures identify a pseudogap in the densities of states for specific valence-electron counts that provides a basis for a useful electron-counting scheme for this class of rare-earth/transition-metal/main-group compounds. PMID:17173406

  10. Exploration of R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd2AlGe2 and Analysis of the U3Si2 and Zr3Al2 Structure Types

    SciTech Connect

    Sean William McWhorter

    2006-05-01

    In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} several new compounds were synthesized with different crystal structures, but similar structural features. In Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} can be thought of as being formed from two 3{sup 2}434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd{sub 2}MgGe{sub 2} and Gd{sub 2}InGe{sub 2} both possess the same 3{sup 2}434 nets of Gd atoms as Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, but these nets are connected differently, forming the Mo{sub 2}FeB{sub 2} crystal structure. A search of the literature revealed that compounds with the composition R{sub 2}XM{sub 2} (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo{sub 2}FeB{sub 2}, Zr{sub 3}Al{sub 2}, Mn{sub 2}AlB{sub 2} and W{sub 2}CoB{sub 2} crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd{sub 2}AlGe{sub 2} forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how electrons can be accounted for. A series of electronic structure calculations were performed on models with the U{sub 3}Si{sub 2} and Zr{sub 3}Al{sub 2} structures, using Zr and A1 as

  11. Multifunctional SiO2@Gd2O3:Yb/Tm hollow capsules: controllable synthesis and drug release properties.

    PubMed

    Yang, Guixin; Lv, Ruichan; Gai, Shili; Dai, Yunlu; He, Fei; Yang, Piaoping

    2014-10-20

    A series of hollow and luminescent capsules have been fabricated by covering luminescent Gd2O3:Yb/Tm nanoparticles on the surface of uniform hollow mesoporous silica capsules (HMSCs), which were obtained from an etching process using Fe3O4 as hard templates. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), up-conversion (UC) fluorescence spectra, and N2 adsorption-desorption were used to characterize these samples. It is found that the as-prepared products have mesoporous pores, large specific surface, and high dispersity. In particular, the size, shape, surface area, and interior space of the composites can be finely tuned by adjusting the size and morphology of the magnetic cores. Under 980 nm near-infrared (NIR) laser irradiation, the composites show characteristic blue UC emissions of Tm(3+) even after carrying doxorubicin hydrochloride (DOX). The drug-release test reveals that the capsules showed an apparent sustained release character and released in a pH-sensitive manner. Interestingly, the UC luminescence intensity of the drug-carrying system increases with the released DOX, realizing the possibility to track or monitor the released drug by the change of UC fluorescence simultaneously, which should be highly promising in anticancer drug delivery and targeted cancer therapy. PMID:25285784

  12. Magnetic and Electrical Properties of a New Series of Rare Earth Silicide Carbides with the Composition R3Si 2C 2( R=Y, La-Nd, Sm, Gd-Tm)

    NASA Astrophysics Data System (ADS)

    Gerdes, Martin H.; Witte, Anne M.; Jeitschko, Wolfgang; Lang, Arne; Künnen, Bernd

    1998-07-01

    The 12 title compounds have been prepared by arc-melting cold-pressed pellets of the elemental components and subsequent annealing. They crystallize with an orthorhombic structure and with cell dimensions varying betweena=403.9(1) pm,b=1688.4(2) pm, andc=450.6(1) pm for La3Si2C2anda=379.6(1) pm,b=1532.8(2) pm, andc=414.5(1) pm for Tm3Si2C2. The magnetic properties of these compounds were determined with a SQUID magnetometer between 2 and 300 K with magnetic flux densities up to 5.5 T. Y3Si2C2is a Pauli paramagnet. The cerium atoms in Ce3Si2C2are trivalent; at low temperatures this compound is ferro- or ferrimagnetic with an ordering temperature of 10(±3) K. Pr3Si2C2and Nd3Si2C2are ferromagnetic (TC=25(±3) and 30(±3) K, respectively), whereas the silicide carbidesR3Si2C2withR=Sm and Gd-Tm are antiferromagnetic. Ho3Si2C2, Er3Si2C2, and Tm3Si2C2show metamagnetic transitions. The highest ordering temperature occurs for Gd3Si2C2with a Néel temperatureTN=50(±1) K. The electrical conductivities of several compounds were determined between 5 and 300 K. They indicate metallic behavior, and in several cases they reflect the magnetic ordering temperatures.

  13. Study of Rayleigh–Taylor growth in laser irradiated planar SiO{sub 2} targets at ignition-relevant conditions

    SciTech Connect

    Hager, J. D.; Collins, T. J. B.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.; Smalyuk, V. A.

    2013-07-15

    Rayleigh–Taylor (RT) growth experiments were performed on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar SiO{sub 2} targets seeded with a single mode 60-μm wavelength perturbation driven at peak laser intensities up to 9 × 10{sup 14} W/cm{sup 2}. These are the first RT measurements in SiO{sub 2} at conditions relevant to direct-drive inertial confinement fusion ignition. The measured average modulation growth rates agree with the 2-D hydrodynamics code DRACO, providing an important step in the development of target ablators that are robust to RT growth and hot- electron preheat considerations when driven at the intensities required to achieve thermonuclear ignition.

  14. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    NASA Technical Reports Server (NTRS)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  15. The layered antimonides RELi3Sb2 (RE=Ce-Nd, Sm, Gd-Ho). Filled derivatives of the CaAl2Si2 structure type

    NASA Astrophysics Data System (ADS)

    Schäfer, Marion C.; Suen, Nian-Tzu; Raglione, Michaella; Bobev, Svilen

    2014-02-01

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal-lithium-antimonides with the formula RELi3Sb2 (RE=Ce-Nd, Sm, Gd-Ho). They crystallize in the trigonal space group P3barm1 (No. 164, Pearson symbol hP6) with a structure, best viewed as a filled derivative of the common CaAl2Si2 structure type (ternary variant of α-La2O3). Across the series, the lattice parameters monotonically decrease, following the lanthanide contraction. Temperature-dependent magnetic susceptibility measurements for CeLi3Sb2, PrLi3Sb2 and TbLi3Sb2 reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with the expected ones for the free-ion RE3+ ground state. Possible ferromagnetic ordering for PrLi3Sb2 and antiferromagnetic ordering for TbLi3Sb2 are observed in the low temperature range (below 20 K). Tight-binding muffin-tin orbital electronic band structure calculations for LaLi3Sb2 are presented and discussed as well.

  16. Lasing characteristics of Yb-doped gadolinium yttrium mixed oxyorthosilicate Yb:(Gd0.1Y0.9)2SiO5

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Dechun; Li, Guiqiu; Li, Tao; Qiao, Wenchao; Xu, Xiaodong; Zheng, Lihe; Xu, Jun

    2015-07-01

    A continuous wave (CW) tunable laser based on an alloyed oxyorthosilicate Yb:(Gd0.1Y0.9)2SiO5 was demonstrated for the first time. With an output coupler (OC) of T = 10%, a maximum output power of 958 mW was obtained with a slope efficiency of 18.2%. Simultaneous multi-wavelength operation was also observed with an OC of T = 4%. The M2 factor of the CW laser beam was measured to be 1.06. The thermo-optic coefficient was estimated to be 7.1 × 10-6/K. By using a 400 μm-thick GaAs wafer as saturable absorber, a stably Q-switched laser at 1080.4 nm was also firstly realized. A minimum pulse duration of 60.2 ns was obtained with a repetition rate of 47.6 kHz under an absorbed pump power of 11.25 W. The corresponding highest pulse energy and peak power were 5.3 μJ and 88 W, respectively. By using a V-type cavity and an OC of T = 4%, the laser can be tuned in the range from 1021 to 1094 nm.

  17. Influence of core size on the upconversion luminescence properties of spherical Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+}@SiO{sub 2} particles with core-shell structures

    SciTech Connect

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-11-14

    Spherical SiO{sub 2} particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+}@SiO{sub 2} particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO{sub 2} cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er{sup 3+} ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO{sub 2} particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO{sub 2} cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO{sub 2} core sizes.

  18. Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures

    NASA Astrophysics Data System (ADS)

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-11-01

    Spherical SiO2 particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd2O3:Yb3+/Er3+ layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd2O3:Yb3+/Er3+@SiO2 particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO2 cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er3+ ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd2O3:Yb3+/Er3+ with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO2 particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO2 cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO2 core sizes.

  19. Selective MOVPE of InGaN-based LED structures on non-planar Si (111) facets of patterned Si (100) substrates

    NASA Astrophysics Data System (ADS)

    Reuters, B.; Strate, J.; Hahn, H.; Finken, M.; Wille, A.; Heuken, M.; Kalisch, H.; Vescan, A.

    2014-04-01

    The growing interest in modern energy-saving illuminants for general lighting, multimedia applications and automotive industry demands for alternative low-cost substrates for MOVPE LED growth. Nitride MOVPE growth is possible on the Si (111) plane, which makes Si substrates attractive as an alternative to sapphire substrates. A novel technology is presented using patterned Si (100) substrates, in which MOVPE-grown LED structures are fabricated on Si {111} facets tilted by 54.7°. Structural and optical properties are discussed and correlated to epitaxial growth conditions. It is shown that crystal quality reaches already a reasonable level for preliminary LED operation.

  20. Spectroscopy of Gd153 and Gd157 using the (p,dγ) reaction

    DOE PAGESBeta

    Ross, T. J.; Hughes, R. O.; Allmond, J. M.; Beausang, C. W.; Angell, C. T.; Basunia, M. S.; Bleuel, D. L.; Burke, J. T.; Casperson, R. J.; Escher, J. E.; et al

    2014-10-31

    Low-spin single quasineutron levels in 153Gd and 157Gd have been studied following the 154Gd(p,d-γ )153Gd and 158Gd(p,d-γ )157Gd reactions. A combined Si telescope and high-purity germanium array was utilized, allowing d-γ and d-γ-γ coincidence measurements. Almost all of the established low-excitation-energy, low-spin structures were confirmed in both 153Gd and 157Gd. Several new levels and numerous new rays are observed in both nuclei, particularly for Ex ≥1 MeV. Lastly, residual effects of a neutron subshell closure at N = 64 are observed in the form of a large excitation energy gap in the single quasineutron level schemes.

  1. Growth conditions, structure, Raman characterization and optical properties of Sm-doped (Lu{sub x}Gd{sub 1-x}){sub 2}SiO{sub 5} single crystals grown by the Czochralski method

    SciTech Connect

    GLowacki, MichaL; Runka, Tomasz; Drozdowski, MirosLaw; Domukhovski, Viktor; Berkowski, Marek

    2012-02-15

    The (Lu{sub x}Gd{sub 0.995-x}Sm{sub 0.005}){sub 2}SiO{sub 5} single crystals with x=0.095, 0.11, 0.15, 0.17, 0.19 0.35 and 0.5 were grown by the Czochralski method. Structural properties were investigated by X-ray diffraction measurements. Unit cell parameters and cell volume were determined by the Rietveld refinement of the collected X-ray powder spectra. The segregation features between Gd and Lu were estimated and analyzed. Vibrational properties of the solid solutions were analyzed on the basis of polarized Raman spectra acquired at 300-875 K temperature range. Absorption and emission spectra of Sm{sup 3+} ion in the crystals with different composition were analyzed in the terms of dopant energy levels, oscillator strengths of transitions and spectral features of luminescence bands in the visible range. Both structural and optical investigations revealed that change of Lu{sup 3+} content in (Lu{sub x}Gd{sub 0.995-x}Sm{sub 0.005}){sub 2}SiO{sub 5} solid solution crystals induces the phase transition from C2/c (Lu{sub 2}SiO{sub 5}) to P2{sub 1}/c (Gd{sub 2}SiO{sub 5}) structure. It was found that the break of LSO to GSO-type structure occurs at 0.15Gd{sub 1-x}){sub 2}SiO{sub 5} solid solutions have been grown by Czochralski method and characterized by various techniques. Crystal structure changes from C2/c to P2{sub 1}/c for composition with 0.15Gd{sub 1-x}){sub 2}SiO{sub 5} crystals are an alternative to LSO and GSO hosts for applications. Black-Right-Pointing-Pointer The break of the P2{sub 1}/c to C2/c structure in (Lu{sub x}Gd{sub 1-x}){sub 2}SiO{sub 5}:Sm occurs for 0.15

  2. Fabrication and optical testing of hybrid SiO2: azo-polymer based planar waveguides for NLO/SHG laser emission

    NASA Astrophysics Data System (ADS)

    Torres-Zúñiga, V.; Morales-Saavedra, O. G.; Pérez-Martínez, A. L.

    2015-01-01

    Predesigned push-pull azo-dye polymers were homogeneously dispersed within a SiO2 sol-gel matrix synthesized via the sonogel (SG) route. High-quality spin-coated films were obtained with these hybrid structures in the liquid sol-phase. The spectroscopic UV- Vis analyses reveal the appropriate insertion of these organic compounds within the highly pure SG-environment whereas the thermal (DSC) analysis and photoacoustic measurements evidence the thermomechanical stability of the amorphous hybrid layers. As the optical attenuation, refractive index and film thickness values of the obtained films are adequate for opto-electronic applications; these hybrid films were implemented to fabricate optical waveguiding prototypes. In this sense, functional planar waveguides were fabricated for nonlinear optical (NLO) applications after performing a molecular ordering via a corona DC-poling procedure in order to achieve a macroscopic polar order (ferroelectric and noncentrosymmetric arrangement of the organic chromophores). The poled films were then able to exhibit stable NLO-waveguiding effects as excited with a Nd:YAG laser system in order to generate second harmonic waves travelling within the planar layer.

  3. Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications

    NASA Astrophysics Data System (ADS)

    Guddala, S.; Chiappini, A.; Armellini, C.; Turell, S.; Righini, G. C.; Ferrari, M.; Narayana Rao, D.

    2015-02-01

    Glass-ceramics are a kind of two-phase materials constituted by nanocrystals embedded in a glass matrix and the respective volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. Among these properties transparency is crucial in particular when confined structures, such as, dielectric optical waveguides, are considered. Moreover, the segregation of dopant rare-earth ions, like erbium, in low phonon energy crystalline medium makes these structures more promising in the development of waveguide amplifiers. Here we are proposing a new class of low phonon energy tin oxide semiconductor medium doped silicate based planar waveguides. Er3+ doped (100-x) SiO2-xSnO2 (x= 10, 20, 25 and 30mol%), glass-ceramic planar waveguide thin films were fabricated by a simple sol-gel processing and dip coating technique. XRD and HRTEM studies indicates the glass-ceramic phase of the film and the dispersion of ~4nm diameter of tin oxide nanocrystals in the amorphous phase of silica. The spectroscopic assessment indicates the distribution of the dopant erbium ions in the crystalline medium of tin oxide. The observed low losses, 0.5±0.2 dB/cm, at 1.54 μm communication wavelength makes them a quite promising material for the development of high gain integrated optical amplifiers.

  4. Novel Dy{sup 3+}-doped Ca{sub 2}Gd{sub 8}(SiO{sub 4}){sub 6}O{sub 2} white light phosphors for Hg-free lamps application

    SciTech Connect

    Wang, Yuhua; Wen, Yan; Zhang, Feng

    2010-11-15

    The luminescent properties of Ca{sub 2}Gd{sub 8(1-x)}(SiO{sub 4}){sub 6}O{sub 2}:xDy{sup 3+} (1% {<=} x {<=} 5%) powder crystals with oxyapatite structure were investigated under vacuum ultraviolet excitation. In the excitation spectrum, the peaks at 166 nm and 191 nm of the vacuum ultraviolet region can be assigned to the O{sup 2-} {yields} Gd{sup 3+}, and O{sup 2-} {yields} Dy{sup 3+} charge transfer band respectively, which is consistent with the theoretical calculated value using J{phi}rgensen's empirical formula. While the peaks at 183 nm and 289 nm are attributed to the f-d spin-allowed transitions and the f-d spin-forbidden transitions of Dy{sup 3+} in the host lattice with Dorenbos's expression. According to the emission spectra, all the samples exhibited excellent white emission under 172 nm excitation and the best calculated chromaticity coordinate was 0.335, 0.338, which indicates that the Ca{sub 2}Gd{sub 8}(SiO{sub 4}){sub 6}O{sub 2}:Dy{sup 3+} phosphor could be considered as a potential candidate for Hg-free lamps application.

  5. High-pressure synthesis and single-crystal structure refinement of gadolinium holmium silicate hydroxyapatite Gd{sub 4.33}Ho{sub 4.33}(SiO{sub 4}){sub 6}(OH){sub 2}

    SciTech Connect

    Wang Chao; Liu Xiaoyang . E-mail: liuxy@jlu.edu.cn; Fleet, M.E.; Feng, Shouhua; Xu Ruren

    2006-07-15

    Single crystals of gadolinium holmium silicate hydroxyapatite Gd{sub 4.33}Ho{sub 4.33}(SiO{sub 4}){sub 6}(OH){sub 2} have been synthesized at 2.0GPa and 1450 deg. C using a piston-cylinder-type high-pressure apparatus. The crystal symmetry by single-crystal X-ray diffraction analysis is hexagonal, space group P6{sub 3}/m (No. 176), with a=9.3142(5)A, c=6.7010(4)A, Z=1. Gadolinium and Ho are disordered over the two large cation positions, A(1) and A(2), and charge balance in this silicate apatite is maintained by cation vacancies in A(1). Two other apatite-structure crystals investigated have P3-bar and Imma symmetry, and represent either partially ordered Gd-Ho distributions or crystal strain induced during quenching.

  6. A planar Al-Si Schottky barrier metal-oxide-semiconductor field effect transistor operated at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Purches, W. E.; Rossi, A.; Zhao, R.; Kafanov, S.; Duty, T. L.; Dzurak, A. S.; Rogge, S.; Tettamanzi, G. C.

    2015-08-01

    Schottky Barrier-MOSFET technology offers intriguing possibilities for cryogenic nano-scale devices, such as Si quantum devices and superconducting devices. We present experimental results on a device architecture where the gate electrode is self-aligned with the device channel and overlaps the source and drain electrodes. This facilitates a sub-5 nm gap between the source/drain and channel, and no spacers are required. At cryogenic temperatures, such devices function as p-MOS Tunnel FETs, as determined by the Schottky barrier at the Al-Si interface, and as a further advantage, fabrication processes are compatible with both CMOS and superconducting logic technology.

  7. A planar Al-Si Schottky barrier metal–oxide–semiconductor field effect transistor operated at cryogenic temperatures

    SciTech Connect

    Purches, W. E.; Rossi, A.; Zhao, R.; Kafanov, S.; Duty, T. L.; Dzurak, A. S.; Rogge, S.; Tettamanzi, G. C.

    2015-08-10

    Schottky Barrier-MOSFET technology offers intriguing possibilities for cryogenic nano-scale devices, such as Si quantum devices and superconducting devices. We present experimental results on a device architecture where the gate electrode is self-aligned with the device channel and overlaps the source and drain electrodes. This facilitates a sub-5 nm gap between the source/drain and channel, and no spacers are required. At cryogenic temperatures, such devices function as p-MOS Tunnel FETs, as determined by the Schottky barrier at the Al-Si interface, and as a further advantage, fabrication processes are compatible with both CMOS and superconducting logic technology.

  8. Crystal and electronic structures of CaAl 2Si 2-type rare-earth copper zinc phosphides RECuZnP 2 ( RE=Pr, Nd, Gd-Tm, Lu)

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Stoyko, Stanislav S.; Cavell, Ronald G.; Mar, Arthur

    2011-01-01

    The quaternary rare-earth phosphides RECuZnP 2 ( RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 °C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl 2Si 2-type structure (Pearson symbol hP5, space group P3¯ m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP 2 and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP 2 model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP 2 ( RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e - per formula unit, as demonstrated by the formation of a solid solution in GdCu xZn 2- xP 2 (1.0≤ x≤1.3), while still retaining the CaAl 2Si 2-type structure. Because the Cu 2 p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP 2 ( RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms.

  9. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  10. Electrochemical planarization

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1993-01-01

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer.

  11. Crystal and electronic structures of CaAl{sub 2}Si{sub 2}-type rare-earth copper zinc phosphides RECuZnP{sub 2} (RE=Pr, Nd, Gd-Tm, Lu)

    SciTech Connect

    Blanchard, Peter E.R.; Stoyko, Stanislav S.; Cavell, Ronald G.; Mar, Arthur

    2011-01-15

    The quaternary rare-earth phosphides RECuZnP{sub 2} (RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 {sup o}C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl{sub 2}Si{sub 2}-type structure (Pearson symbol hP5, space group P3-bar m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP{sub 2} and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP{sub 2} model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP{sub 2} (RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e{sup -} per formula unit, as demonstrated by the formation of a solid solution in GdCu{sub x}Zn{sub 2-x}P{sub 2} (1.0{<=}x{<=}1.3), while still retaining the CaAl{sub 2}Si{sub 2}-type structure. Because the Cu 2p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP{sub 2} (RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms. -- Graphical abstract: The absence of a band gap in the semimetallic quaternary rare-earth phosphides RECuZnP{sub 2} permits the formation of a solid solution such as GdCu{sub x}Zn{sub 2-x}P{sub 2} through hole-doping of the valence band. Display Omitted

  12. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  13. Pressure tuning of the magnetic transition in Gd{sub5}(Si{sub 0.375} Ge{sub 0.625}){sub 4}giant magnetocaloric effect material.

    SciTech Connect

    Tseng, Y. C.; Haskel, D.; Lang, J. C.; Mudryk, Ya.; Pecharsky, V. K.; Gschneidner, K. A.; Northwestern Univ.; Iowa State Univ.

    2008-04-01

    The effect of hydrostatic pressure on the ferromagnetic ordering transition of the monoclinic Gd{sub 5}(Si{sub 0.375}Ge{sub 0.625}){sub 4} giant magnetocaloric effect compound was investigated using x-ray magnetic circular dichroism measurements in a diamond anvil cell. The Curie temperature T{sub C} increases linearly with applied pressure up to {approx}7.2 GPa, at which point a discontinuity in dT{sub c}/dP occurs. This discontinuity, which appears when T{sub C} reaches {approx}277 K, is also observed when the unit cell volume is reduced by Si doping and is associated with the volume-driven monoclinic (M) to orthorhombic [O(I)] structural transition.

  14. Mo2NiB2-type {Gd, Tb, Dy)2Ni2.35Si0.65 and La2Ni3-type {Dy, Ho}2Ni2.5Si0.5 compounds: Crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Isnard, O.; Nirmala, R.; Malik, S. K.

    2015-05-01

    The crystal structure of new Mo2NiB2-type {Gd, Tb, Dy}2Ni2.35Si0.65 (Immm, No. 71, oI10) and La2Ni3-type {Dy, Ho}2Ni2.5Si0.5 (Cmce No. 64, oC20) compounds has been established using powder X-ray diffraction studies. Magnetization measurements show that the Mo2NiB2-type Gd2Ni2.35Si0.65 undergoes a ferromagnetic transition at 66 K, whereas isostructural Tb2Ni2.35Si0.65 shows an antiferromagnetic transition at 52 K and a field-induced metamagnetic transition at low temperatures. Neutron diffraction study shows that, in zero applied field, Tb2Ni2.35Si0.65 exhibits c-axis antiferromagnetic order with propagation vector K=[1/2, 0, 1/2] below its magnetic ordering temperature and Tb magnetic moment reaches a value of 8.32(5) μB at 2 K. The La2Ni3-type Dy2Ni2.5Si0.5 exhibits ferromagnetic like transition at 42 K with coexisting antiferromagnetic interactions and field induced metamagnetic transition below 17 K. The magnetocaloric effect of Gd2Ni2.35Si0.65, Tb2Ni2.35Si0.65 and Dy2Ni2.5Si0.5 is calculated in terms of isothermal magnetic entropy change and it reaches a maximum value of -14.3 J/kg K, -5.3 J/kg K and -10.3 J/kg K for a field change of 50 kOe near 66 K, 52 K and 42 K, respectively. Low temperature magnetic ordering with enhanced anisotropic effects in Tb2Ni2.35Si0.65 and Dy2Ni2.35Si0.65 is accompanied by a positive magnetocaloric effect with isothermal magnetic entropy changes of +12.8 J/kg K and +9.9 J/kg K, respectively at 7 K for a field change of 50 kOe.

  15. Synthesis and characterization of monodisperse spherical SiO{sub 2}-RE{sub 2}O{sub 3} (RE=rare earth elements) and SiO{sub 2}-Gd{sub 2}O{sub 3}:Ln{sup 3+} (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles with core-shell structure

    SciTech Connect

    Wang, H.; Yang, J.; Zhang, C.M.; Lin, J.

    2009-10-15

    Spherical SiO{sub 2} particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO{sub 2}-RE{sub 2}O{sub 3} (RE=rare earth elements) and SiO{sub 2}-Gd{sub 2}O{sub 3}:Ln{sup 3+} (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO{sub 2}-RE{sub 2}O{sub 3} (RE=rare earth elements) and SiO{sub 2}-Gd{sub 2}O{sub 3}:Ln{sup 3+} (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Sm{sup 3+}, Er{sup 3+}, Ho{sup 3+}) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles). Under the excitation of ultraviolet, the Ln{sup 3+} ion mainly shows its characteristic emissions in the core-shell particles from Gd{sub 2}O{sub 3}:Ln{sup 3+} (Eu{sup 3+}, Tb{sup 3+}, Sm{sup 3+}, Dy{sup 3+}, Er{sup 3+}, Ho{sup 3+}) shells. - Graphical abstract: The advantages of core-shell phosphors are the easy availability of homogeneous spherical morphology in different size, and its corresponding luminescence color can change from red, yellow to green.

  16. Mo{sub 2}NiB{sub 2}-type (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} and La{sub 2}Ni{sub 3}-type (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} compounds: Crystal structure and magnetic properties

    SciTech Connect

    Morozkin, A.V.; Isnard, O.; Nirmala, R.; Malik, S.K.

    2015-05-15

    The crystal structure of new Mo{sub 2}NiB{sub 2}-type (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} (Immm, No. 71, oI10) and La{sub 2}Ni{sub 3}-type (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} (Cmce No. 64, oC20) compounds has been established using powder X-ray diffraction studies. Magnetization measurements show that the Mo{sub 2}NiB{sub 2}-type Gd{sub 2}Ni{sub 2.35}Si{sub 0.65} undergoes a ferromagnetic transition at ~66 K, whereas isostructural Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} shows an antiferromagnetic transition at ~52 K and a field-induced metamagnetic transition at low temperatures. Neutron diffraction study shows that, in zero applied field, Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} exhibits c-axis antiferromagnetic order with propagation vector K=[1/2, 0, 1/2] below its magnetic ordering temperature and Tb magnetic moment reaches a value of 8.32(5) μ{sub B} at 2 K. The La{sub 2}Ni{sub 3}-type Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} exhibits ferromagnetic like transition at ~42 K with coexisting antiferromagnetic interactions and field induced metamagnetic transition below ~17 K. The magnetocaloric effect of Gd{sub 2}Ni{sub 2.35}Si{sub 0.65}, Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} is calculated in terms of isothermal magnetic entropy change and it reaches a maximum value of −14.3 J/kg K, −5.3 J/kg K and −10.3 J/kg K for a field change of 50 kOe near 66 K, 52 K and 42 K, respectively. Low temperature magnetic ordering with enhanced anisotropic effects in Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.35}Si{sub 0.65} is accompanied by a positive magnetocaloric effect with isothermal magnetic entropy changes of +12.8 J/kg K and ~+9.9 J/kg K, respectively at 7 K for a field change of 50 kOe. - Graphical abstract: The (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} supplement the series of Mo{sub 2}NiB{sub 2}-type rare earth compounds, whereas the (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} supplement the series of La{sub 2}Ni{sub 3}-type rare

  17. Study on the low-temperature properties of pyrochlores Gd2Hf2O7 and Gd2Zr2O7, using crystal-field theory

    NASA Astrophysics Data System (ADS)

    Ali Biswas, Aksar; Jana, Yatramohan

    2011-07-01

    The geometrically frustrated pyrochlores Gd2Hf2O7 (GdH) and Gd2Zr2O7 (GdZ) are easy planar anisotropic systems in which considerable single-ion crystal-field anisotropies of D3d symmetry are found in the ground multiplet 8S7/2 due to admixture of higher Russell-Saunders terms. The 8S7/2 splits into 4 doublets with total CF splitting 9.9 K in GdH and 9.4 K in GdZ. The magnetic specific heat Cmag follows a conventional T3 behavior in GdH and an unconventional T4.6 behavior in GdZ down to 0.4 K.

  18. Planar micromixer

    DOEpatents

    Fiechtner, Gregory J.; Singh, Anup K.; Wiedenman, Boyd J.

    2008-03-18

    The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.

  19. Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu(3+)5%@SiO2@NH2.

    PubMed

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Szutkowski, Kosma; Mrówczyńska, Lucyna; Kaźmierczak, Zuzanna; Grzyb, Tomasz; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2016-11-01

    The luminescent GdVO4:Eu(3+)5%@SiO2@NH2 core@shell nanomaterials were obtained via co-precipitation method, followed by hydrolysis and co-condensation of silane derivatives: tetraethyl orthosilicate and 3-aminopropyltriethoxysilane. Their effect on human erythrocytes sedimentation and on proliferation of human lung microvascular endothelial cells was examined and discussed. The luminescent nanoparticles were synthesized in the presence of polyacrylic acid or glycerin in order to minimalize the agglomeration and excessive growth of nanostructures. Surface coating with amine functionalized silica shell improved their biocompatibility, facilitated further organic conjugation and protected the internal core. Magnetic measurements revealed an enhanced T1-relaxivity for the synthesized GdVO4:Eu(3+)5% nanostructures. Structure, morphology and average grain size of the obtained nanomaterials were determined by X-ray diffraction, transmission electron microscopy and dynamic light scattering analysis. The qualitative elemental composition of the nanomaterials was established using energy-dispersive X-ray spectroscopy. The spectroscopic characteristic of red emitting core@shell nanophosphors was completed by measuring luminescence spectra and decays. The emission spectra revealed characteristic bands of Eu(3+) ions related to the transitions (5)D0-(7)F0,1,2,3,4 and (5)D1-(7)F1. The luminescence lifetimes consisted of two components, associated with the presence of Eu(3+) ions located at the surface of the crystallites and in the bulk. PMID:27478979

  20. Analysis of the refractive index and film thickness of Eu doped gadolinium oxide (Gd2O3) planar waveguides fabricated by the sol-gel and dip coating methods

    NASA Astrophysics Data System (ADS)

    Johnson, Quianna S.; Edwards, Matthew; Curley, Michael

    2013-09-01

    The present research focused on the systematic study of the fabrication of gadolinium oxide (Gd2O3) and gadolinium oxide:europium (Gd2O3:Eu3+) thin films via the sol-gel and dip coating methods under normal laboratory conditions in a methanol solvent medium to determine if thin films of comparable quality could be produced. The thin films were synthesized via the sol-gel method by the hydrolysis of gadolinium acetylacetate in two different solvent mediums, absolute ethanol and methanol. The europium doped gadolinium oxide sol-­-gels were prepared to have a final concentration of 0.01 M europium nitrate. Ordinary microscope glass slides (borosilicate glass or BSG) were used as the substrate. The substrates were cleaned and coated using the dip coating apparatus to prepare thin films that consisted of 5, 10, 30 and 50 layers. The cast films were annealed at 300°C and 500°C by direct insertion in a furnace operated under atmospheric conditions. The resulting film thickness and effective refractive indices were determined and compared. Finally, we present the introductory results of gadolinium oxide thin films as a waveguide.

  1. CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of Gd2Zr2O7 and Sm2Zr2O7

    DOE PAGESBeta

    Wang, Honglong; Bakal, Ahmet; Zhang, Xingxing; Tarwater, Emily; Sheng, Zhizhi; Fergus, Jeffrey W.

    2016-08-08

    Ceramic thermal barrier coatings are applied to superalloys used in gas turbine engineering to increase the operating temperature and the energy conversion efficiency. However, dust consisting of CaO-MgO-Al2O3-SiO2 (CMAS) from the air can be injected into the engines and corrode the thermal barrier coatings. Lanthanide zirconates are promising materials in thermal barrier coatings due to their low thermal conductivities, good phase stability and good corrosion resistance. However, the corrosion resistance mechanism of CMAS on lanthanide zirconates is still not clearly understood. In this work, the corrosion mechanism of Gd2Zr2O7 and Sm2Zr2O7 in CMAS is studied. Here, the results show thatmore » the CMAS can easily react with lanthanide zirconate thermal barrier coatings to form a dense layer, which can resist further corrosion« less

  2. The lanthanoid(III) chloride cyclo-tetrasilicates M{sub 6}Cl{sub 10}[Si{sub 4}O{sub 12}] (M=Sm, Gd-Dy): Synthesis, structure and IR investigations

    SciTech Connect

    Hartenbach, Ingo . E-mail: hartenbach@iac.uni-stuttgart.de; Jagiella, Stefan; Schleid, Thomas . E-mail: schleid@iac.uni-stuttgart.de

    2006-08-15

    The chloride derivatized lanthanoid(III) cyclo-tetrasilicates of the composition M{sub 6}Cl{sub 10}[Si{sub 4}O{sub 12}] (M=Sm, Gd-Dy) crystallize monoclinically in space group C2/m (a=1062-1065, b=1036-1052, c=1163-1187pm, {beta}{approx}103{sup o}, Z=2). They are obtained by the reaction of the sesquioxides M{sub 2}O{sub 3} (or the combination of Tb{sub 4}O{sub 7} and Tb in 3:2-molar ratio for the terbium case), the corresponding trichlorides MCl{sub 3}, and SiO{sub 2} (silica gel) in stoichiometric ratios with double the amount of MCl{sub 3} as flux in evacuated silica tubes (7d at 850deg. C) as transparent, pseudo-octagonal, pillar-shaped single crystals with the colour of the respective lanthanoid trication M{sup 3+}. Their crystal structure can be considered as a layered arrangement in which cationic {sub {approx}}{sup 2}{l_brace}[(M2){sub 5}Cl{sub 9}]{sup 6+}{r_brace} layers are alternatingly piled with anionic ones of the kind {sub {approx}}{sup 2}{l_brace}[(M1)Cl[Si{sub 4}O{sub 12}

  3. Electrochemical planarization for microelectronic circuits

    SciTech Connect

    Contolini, R.J.; Mayer, S.T.; Bernhardt, A.F.

    1993-03-25

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO[sub 2] for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  4. Electrochemical planarization for microelectronic circuits

    NASA Astrophysics Data System (ADS)

    Contolini, R. J.; Mayer, S. T.; Bernhardt, A. F.

    1993-03-01

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO2 for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  5. Thermopower and electrical resistivity behavior near the martensitic transition in Gd 5(Si xGe 1-x) 4 magnetocaloric compounds

    NASA Astrophysics Data System (ADS)

    Pinto, R. P.; Sousa, J. B.; Correia, F. C.; Araújo, J. P.; Braga, M. E.; Pereira, A. M.; Morellon, L.; Algarabel, P. A.; Magen, C.; Ibarra, M. R.

    2005-04-01

    Recently, the Gd5(SixGe1-x)4 system exhibits fascinating physical properties, namely giant magnetocaloric, magnetoresistance and magnetostriction effects near a first-order (martensitic like; T =TS) magneto-structural transition. We report the thermopower behavior S (T) between 10 and 300 K for compounds with x = 0 , 0.10 and 0.45, belonging to three distinct regions of the magnetic/structural phase diagram. Large thermopower changes are observed near TS for x = 0 .10 (TS = 78 K ; AFM-Orthorhombic II/FM-Ortho.I) and for x = 0.45 (TS = 242 K ; PM-Monoc/FM-Ortho.I) with a Gaussian distribution in d S / d T , characteristic of a first-order phase transition. Near the purely magnetic transitions (PM/AFM) for x = 0 (TN = 122 K) and x = 0.10 (TN = 127 K) we observe d S / d T peaks governed by spin fluctuation effects. A comparative analysis between d S / d T and the resistivity derivative d ρ / d T near TS is made. At low temperatures S (T) behaves similarly in the ferromagnetic x = 0.10 and 0.45 compounds (S ≈ AT + BT2) , the anomalous B term being related to the mean internal field (spin wave excitations). For x = 0 (AFM phase at low T) one has S = AT (no B term; zero mean internal field).

  6. Si

    NASA Astrophysics Data System (ADS)

    Fiameni, S.; Famengo, A.; Agresti, F.; Boldrini, S.; Battiston, S.; Saleemi, M.; Johnsson, M.; Toprak, M. S.; Fabrizio, M.

    2014-06-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density >95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.

  7. Biogeochemistry of Mariana Islands coastal sediments: terrestrial influence on /gd13, Ash, CaCO3, Al, Fe, Si and P

    NASA Astrophysics Data System (ADS)

    Matson, Ernest A.

    1989-01-01

    Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.

  8. Synthesis, crystal structure and properties of Mg3B36Si9C and related rare earth compounds RE3-xB36Si9C (RE=Y, Gd-Lu)

    NASA Astrophysics Data System (ADS)

    Ludwig, Thilo; Pediaditakis, Alexis; Sagawe, Vanessa; Hillebrecht, Harald

    2013-08-01

    We report on the synthesis and characterisation of Mg3B36Si9C. Black single crystals of hexagonal shape were yielded from the elements at 1600 °C in h-BN crucibles welded in Ta ampoules. The crystal structure (space group R3barm, a=10.0793(13) Å, c=16.372(3) Å, 660 refl., 51 param., R1(F)=0.019; wR2(F2)=0.051) is characterized by a Kagome-net of B12 icosahedra, ethane like Si8-units and disordered SiC-dumbbells. Vibrational spectra show typical features of boron-rich borides and Zintl phases. Mg3B36Si9C is stable against HF/HNO3 and conc. NaOH. The micro-hardness is 17.0 GPa (Vickers) and 14.5 GPa (Knoop), respectively. According to simple electron counting rules Mg3B36Si9C is an electron precise compound. Band structure calculations reveal a band gap of 1.0 eV in agreement to the black colour. Interatomic distances obtained from the refinement of X-ray data are biased and falsified by the disorder of the SiC-dumbbell. The most evident structural parameters were obtained by relaxation calculation. Composition and carbon content were confirmed by WDX measurements. The small but significant carbon content is necessary by structural reasons and frequently caused by contaminations. The rare earth compounds RE3-xB36Si9C (RE=Y, Dy-Lu) are isotypic. Single crystals were grown from a silicon melt and their structures refined. The partial occupation of the RE-sites fits to the requirements of an electron-precise composition. According to the displacement parameters a relaxation should be applied to obtain correct structural parameters.

  9. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    PubMed Central

    2014-01-01

    Background Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Methods Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Results Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2

  10. Modification of Mg{sub 2}Si in Mg–Si alloys with gadolinium

    SciTech Connect

    Ye, Lingying; Hu, Jilong Tang, Changping; Zhang, Xinming; Deng, Yunlai; Liu, Zhaoyang; Zhou, Zhile

    2013-05-15

    The modification effect of gadolinium (Gd) on Mg{sub 2}Si in the hypereutectic Mg–3 wt.% Si alloy has been investigated using optical microscope, scanning electron microscope, X-ray diffraction and hardness measurements. The results indicate that the morphology of the primary Mg{sub 2}Si is changed from coarse dendrite into fine polygon with the increasing Gd content. The average size of the primary Mg{sub 2}Si significantly decreases with increasing Gd content up to 1.0 wt.%, and then slowly increases. Interestingly, when the Gd content is increased to 4.0 and 8.0 wt.%, the primary and eutectic Mg{sub 2}Si evidently decrease and even disappear. The modification and refinement of the primary Mg{sub 2}Si is mainly attributed to the poisoning effect. The GdMg{sub 2} phase in the primary Mg{sub 2}Si is obviously coarsened as the Gd content exceeds 2.0 wt.%. While the decrease and disappearance of the primary and eutectic Mg{sub 2}Si are ascribed to the formation of vast GdSi compound. Therefore, it is reasonable to conclude that proper Gd (1.0 wt.%) addition can effectively modify and refine the primary Mg{sub 2}Si. - Highlights: ► Proper Gd (1.0 wt.%) addition can effectively modify and refine the primary Mg{sub 2}Si. ► We studied the reaction feasibility between Mg and Si, Gd and Si in Mg–Gd–Si system. ► We explored the modification mechanism of Gd modifier on Mg{sub 2}Si.

  11. SiO 2-CaO-B 2O 3-Al 2O 3 ceramic glaze as sealant for planar ITSOFC

    NASA Astrophysics Data System (ADS)

    Zheng, R.; Wang, S. R.; Nie, H. W.; Wen, T.-L.

    A series of ceramic glazes based on the SiO 2-CaO-B 2O 3-Al 2O 3 system as sealant for intermediate temperature solid oxide fuel cell (ITSOFC) were investigated. Different ratios of B 2O 3/SiO 2 and Al 2O 3/CaO were investigated to control softening process, phase separation, and crystallization. When B 2O 3/SiO 2 ratio was in the range of 0.14-0.27, the glazes showed good wetting and bonding behavior with both 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte and stainless steel interconnect which could satisfy the sealing demand at 850 °C. And the dimension stability can be kept for over 100 h by introducing ceramic felt and controlling the glazes viscosity in the range of 10 4 to 10 6 Pa s. By means of controlling Al 2O 3/CaO ratio in the range of 0.4-0.68, phase separation and crystallization were restrained effectively. After holding at 850 °C for 100 h, non-crystalline network in the glazes could be found, and a suitable viscous flow could well relax thermal stress. The sealing was effective even after 10 thermal cycles. Element analysis showed a good chemical stability at the ceramic glazes/stainless steel interconnect and ceramic glazes/8YSZ electrolyte interfaces.

  12. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    NASA Astrophysics Data System (ADS)

    Cipro, R.; Baron, T.; Martin, M.; Moeyaert, J.; David, S.; Gorbenko, V.; Bassani, F.; Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N.; Chauvin, N.; Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E.

    2014-06-01

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO2 cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  13. The morphology of GM1 x/SM 0.6-x/Chol 0.4 planar bilayers supported on SiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Mao, Yanli; Tero, Ryugo; Imai, Yosuke; Hoshino, Tyuji; Urisu, Tsuneo

    2008-07-01

    Ganglioside GM1 (GM1), sphingomyelin (SM) and cholesterol (Chol) are dominant lipid components of rafts in plasma membranes. The morphology of GM1 x/SM 0.6-x/Chol 0.4 SPBs on SiO 2 surfaces has been studied by atomic force microscopy and fluorescence microscopy at various ratios of GM1/SM ( x = 0-0.25). The unique changes in morphology depending on the GM1 concentrations are qualitatively explained by hydrogen bonding and the hydrophobic interactions between SM and Chol, and by hydrogen bonding and the steric effects between bulky GM1 headgroups under Ca 2+ existing conditions and the electrostatic repulsion between the negative charges of GM1 headgroups under Ca 2+ nonexisting conditions.

  14. High-pressure synthesis of a La orthosilicate and Nd, Gd, and Dy disilicates

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Fleet, Michael E.

    2002-11-01

    Several rare-earth silicates have been synthesized at 10 GPa and 1600-1700 °C: a La orthosilicate (La4Si3O12) with a defect Ba3(PO4)2-type, a new structure type (K) for Nd and Gd disilicates (Nd2Si2O7 and Gd2Si2O7) with a diorthosilicate structure, and a new structure type (L) for Dy disilicate (Dy2Si2O7) with a structure containing linear triple tetrahedral groups [Si3O10], but having one in six atoms distributed with 50% occupancy over two tetrahedral positions.

  15. Electrochromatography Methods: Planar Electrochromatography

    NASA Astrophysics Data System (ADS)

    Chomicki, Adam; Dzido, Tadeusz H.; Płocharz, Paweł; Polak, Beata

    Planar electrochromatography is a technique in which mixture components are separated in adsorbent layer of a chromatographic plate placed in electric field. In such separation system a mobile phase movement stems from electroosmosis phenomenon. Partition and electrophoresis mechanisms are involved in separation of mixture components with this technique. Two principal modes of planar electrochromatography are described: planar electrochromatography in an open system (PEC) and planar electrochromatography in a closed system (pressurized planar electrochromatography, PPEC). The development of both modes is presented beginning with the first paper on electrochromatography by Pretorius et al. in 1974 and finishing with the last papers by Dzido et al. in 2010. Constructional development of equipment to planar electrochromatography is provided and influence of operating variables on separation efficiency as well. The advantages and challenges of PPEC technique are especially discussed.

  16. Perpendicular Magnetic Anisotropy of Tb/Fe and Gd/Fe Multilayers Studied with Torque Magnetometer

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Perpendicular magnetic anisotropy (PMA) of multilayers critically depend on the magnetic and structural ordering of the interface. To study the effect of interface on PMA, Tb/Fe and Gd/Fe multilayers with varying Fe (0.8-9.0 nm) and Gd (0.5-2.8 nm) or Tb (0.3-6.3 nm) layer thicknesses were fabricated by planar magnetron sputtering. The magnetometer results of spin orientation clearly reveals that samples with Gd or Tb layer thickness of more than 1.2 nm display no PMA, regardless of the Fe layer thickness. Tb/Fe and Gd/Fe multilayers with thin (<1.2 nm) Tb or Gd layers display large PMA, but no PMA is observed when the Fe layer thickness is increased to 4.0 nm and higher. The bulk magnetization and anisotropy energy constant of the samples are found to increase with increasing Fe layer thickness. Torque measurement also reveals that there are two distinctly different axes of spin alignment at different energy. Tb/Fe and Gd/Fe multilayers with similar composition reveal similar magnetic and structural characteristics, and it may imply that single-ion-anisotropy of rare-earth element, which is quite large for Tb ions and very small for Gd ions, may not be the dominating cause of PMA in Td/Fe and Gd/Fe multilayers. A detailed explanation of the results will be provided based on exchange interaction at the interface.

  17. Glass-ceramic nuclear waste forms obtained by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Caurant, D.

    2010-07-01

    Glass-ceramic materials containing zirconolite (nominally CaZrTi 2O 7) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO 5 and CaAl 2Si 2O 8, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO 2 precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 °C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.

  18. Tuning interfacial domain walls in GdCo/Gd/GdCo' spring magnets

    NASA Astrophysics Data System (ADS)

    Blanco-Roldán, C.; Choi, Y.; Quirós, C.; Valvidares, S. M.; Zarate, R.; Vélez, M.; Alameda, J. M.; Haskel, D.; Martín, J. I.

    2015-12-01

    Spring magnets based on GdCo multilayers have been prepared to study the nucleation and evolution of interfacial domain walls (iDWs) depending on layer composition and interlayer coupling. GdCo alloy compositions in each layer were chosen so that their net magnetization aligns either with the Gd (G d35C o65 ) or Co (G d11C o89 ) sublattices. This condition forces an antiparallel arrangement of the layers' net magnetization and leads to nucleation of iDWs above critical magnetic fields whose values are dictated by the interplay between Zeeman and exchange energies. By combining x-ray resonant magnetic scattering with Kerr magnetometry, we provide detailed insight into the nucleation and spatial profile of the iDWs. For strong coupling (GdCo/GdCo' bilayer), iDWs are centered at the interface but with asymmetric width depending on each layer magnetization. When interlayer coupling is weakened by introducing a thin Gd interlayer, the exchange spring effect becomes restricted to a lower temperature and field range than observed in the bilayer structure. Due to the ferromagnetic alignment between the high magnetization G d35C o65 layer and the Gd interlayer, the iDW shrinks and moves into the lower exchange Gd interlayer, causing a reduction of iDW energy.

  19. Epitaxial Si encapsulation of highly misfitting SiC quantum dot arrays formed on Si (001)

    SciTech Connect

    Petz, C. W.; Floro, J. A.; Yang, D.; Levy, J.; Myers, A. F.

    2014-01-06

    This work examines Si overgrowth to encapsulate 3C-SiC quantum dot arrays epitaxially grown on Si substrates. Using transmission electron microscopy, we show how the crystalline quality of the Si cap depends on the growth conditions. Overgrowth at 300 °C leads to a planar, epitaxial Si cap, but with small crystallographic rotations in the cap above each quantum dot. At 400 °C growth temperature, Si exhibits reduced sticking to the SiC, leading to a non-planar cap. However, a two-step process, with thin layer grown at 250 °C followed by growth at 500 °C, leads to a planar cap with a much-reduced density of defects.

  20. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  1. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems

    NASA Astrophysics Data System (ADS)

    Romaka, V. V.; Romaka, L.; Horyn, A.; Rogl, P.; Stadnyk, Yu; Melnychenko, N.; Orlovskyy, M.; Krayovskyy, V.

    2016-07-01

    The phase equilibria in the Gd-Ni-Sb and Lu-Ni-Sb ternary systems were studied at 873 K by X-ray and metallographic analyses in the whole concentration range. The interaction of the elements in the Gd-Ni-Sb system results the formation of five ternary compounds at investigated temperature: Gd5Ni2Sb (Mo5SiB2-type), Gd5NiSb2 (Yb5Sb3-type), GdNiSb (MgAgAs-type), Gd3Ni6Sb5 (Y3Ni6Sb5-type), and GdNi0.72Sb2 (HfCuSi2-type). At investigated temperature the Lu-Ni-Sb system is characterized by formation of the LuNiSb (MgAgAs-type), Lu5Ni2Sb (Mo5SiB2-type), and Lu5Ni0.56Sb2.44 (Yb5Sb3-type) compounds. The disordering in the crystal structure of half-Heusler GdNiSb and LuNiSb was revealed by EPMA and studied by means of Rietveld refinement and DFT modeling. The performed electronic structure calculations are in good agreement with electrical transport property studies.

  2. Spectroscopy of Gd153 and Gd157 using the (p,dγ) reaction

    SciTech Connect

    Ross, T. J.; Hughes, R. O.; Allmond, J. M.; Beausang, C. W.; Angell, C. T.; Basunia, M. S.; Bleuel, D. L.; Burke, J. T.; Casperson, R. J.; Escher, J. E.; Fallon, P.; Hatarik, R.; Munson, J.; Paschalis, S.; Petri, M.; Phair, L. W.; Ressler, J. J.; Scielzo, N. D.

    2014-10-31

    Low-spin single quasineutron levels in 153Gd and 157Gd have been studied following the 154Gd(p,d-γ )153Gd and 158Gd(p,d-γ )157Gd reactions. A combined Si telescope and high-purity germanium array was utilized, allowing d-γ and d-γ-γ coincidence measurements. Almost all of the established low-excitation-energy, low-spin structures were confirmed in both 153Gd and 157Gd. Several new levels and numerous new rays are observed in both nuclei, particularly for Ex ≥1 MeV. Lastly, residual effects of a neutron subshell closure at N = 64 are observed in the form of a large excitation energy gap in the single quasineutron level schemes.

  3. Observations on the Influence of Secondary Me Oxides Additives (Me=Si,Al, Mg) on the Microstructural Evolution and Mechanical Behavior of Silicon Nitride Ceramics Containing RE2O3 (RE=La, Gd, Lu)

    SciTech Connect

    Becher, Paul F; Averill, Frank; Lin, Hua-Tay; Waters, Shirley B; Shibata, Naoya; Painter, Gayle S; van Benthem, Klaus

    2010-01-01

    The evolution of β Si3N4 microstructures is influenced by the adsorption of rare earth elements at grain surfaces and by the viscosity of the intergranular phases. Theoretical and STEM studies show that the RE atoms exhibit different tendencies to segregate from the liquid phase to grain surfaces and different binding strengths at these surfaces. When combined with MgO (or Al2O3) secondary additions, the rare earth additives are combined in low viscosity intergranular phases during densification and the α to β phase transformation and microstructural evolution are dominated by the RE adsorption behavior. On the other hand, a much higher viscosity intergranular phase forms when the RE2O3 are combined with SiO2. While the rare earth adsorption behavior remains the same, the phase transformation and microstructure are now dominated by Si3N4 solubility and transport in the high liquid phase. By understanding these additive effects, one can develop reinforced microstructures leading silicon nitride ceramics with greatly improved mechanical behavior.

  4. Glass-ceramic nuclear waste forms obtained from SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): study of internal crystallization

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Caurant, D.; Baffier, N.; Mazerolles, L.; Fillet, C.

    2004-10-01

    Glass-ceramic waste forms such as zirconolite (nominally CaZrTi 2O 7) based ones can be envisaged as good candidates for minor actinides or Pu immobilization. Such materials, in which the actinides (or lanthanides used as actinide surrogates) would be preferentially incorporated into zirconolite crystals homogeneously dispersed in a durable glassy matrix, can be prepared by controlled crystallization (nucleation + crystal growth) of parent glasses belonging to the SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 system. In this work we present the effects of the nature of the minor actinide surrogate (Ce, Nd, Eu, Gd, Yb, Th) on the structure, the microstructure and the composition of the zirconolite crystals formed in the bulk of the glass-ceramics. The amount of lanthanides and thorium incorporated into zirconolite crystals is discussed in relation with the capacity of the glass to accommodate these elements and of the crystals to incorporate them in the calcium and zirconium sites of their structure.

  5. Enjoyment of Euclidean Planar Triangles

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    This article adopts the following classification for a Euclidean planar [triangle]ABC, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar [triangle]ABC are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ?ABC is a right angle…

  6. Planar plasmonic chiral nanostructures.

    PubMed

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-21

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. PMID:26818746

  7. Planar electrochemical device assembly

    DOEpatents

    Jacobson; Craig P. , Visco; Steven J. , De Jonghe; Lutgard C.

    2010-11-09

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  8. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  9. Planar electrochemical device assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  10. Planar waveguide optical immunosensors

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Locascio-Brown, Laurie E.; Durst, Richard A.

    1991-03-01

    Monoclonal antibodies were covalently bonded to the surfaces of planar waveguides to confer immunoreacth''ity. Silver-ion diffused waveguides were used to measure theophylline concentrations in a fluorescence immunoassay and silicon nitride waveguides were used to detect theophylline in an absorbance-based immunoassay. Liposomes were employed in both assays as the optically detectable label in a competitive reaction to monitor antigen-antibody complexation. Regeneration of the active antibody site will be discussed.

  11. Planar triode pulser socket

    DOEpatents

    Booth, R.

    1994-10-25

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes. 14 figs.

  12. Planar triode pulser socket

    DOEpatents

    Booth, Rex

    1994-01-01

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes.

  13. Lattice distortions in layered type arsenides LnTAs 2 ( Ln=La-Nd, Sm, Gd, Tb; T=Ag, Au): Crystal structures, electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Rutzinger, D.; Bartsch, C.; Doerr, M.; Rosner, H.; Neu, V.; Doert, Th.; Ruck, M.

    2010-03-01

    The lanthanide coinage-metal diarsenides LnTAs 2 ( Ln=La, Ce-Nd, Sm; T=Ag, Au) have been reinvestigated and their structures have been refined from single crystal X-ray data. Two different distortion variants of the HfCuSi 2 type are found: PrAgAs 2, NdAgAs 2, SmAgAs 2, GdAgAs 2, TbAgAs 2, NdAuAs 2 and SmAuAs 2 crystallize as twofold superstructures in space group Pmcn with the As atoms of their planar layers forming zigzag chains, whereas LaAgAs 2, CeAgAs 2 and PrAuAs 2 adopt a fourfold superstructure (space group Pmca) with cis-trans chains of As atoms. The respective atomic positions can be derived from the HfCuSi 2 type by group-subgroup relations. The compounds with zigzag chains of As atoms exhibit metallic behaviour while those with cis-trans chains are semiconducting as measured on powder pellets. The majority of the compounds including 4 f elements show antiferromagnetic ordering at TN<20 K.

  14. Crystal growth and optical properties of Ce:(La,Gd)2Ge2O7 grown by the floating zone method

    NASA Astrophysics Data System (ADS)

    Kurosawa, Shunsuke; Shishido, Toetsu; Sugawara, Takamasa; Yubuta, Kunio; Jan, Pejchal; Suzuki, Akira; Yokota, Yuui; Shoji, Yasuhiro; Kamada, Kei; Yoshikawa, Akira

    2014-05-01

    Some pyrosilicate scintillators such as Ce:Gd2Si2O7 and Ce:Lu2Si2O7 have a good light output, and especially Ce:(Gd,La)2Si2O7 has an excellent light output of over 36,000 ph/MeV. In order to search novel scintilators, we have developed a pyrogermanate-based scintillation material (Ce0.01,Gd0.90,La0.09)2Ge2O7 using the floating zone method. Although the light output was decreased due to quenching, 5d-4f transition of Ce3+ was observed around 480 nm in photo- and radio-luminescence spectra. This emission wavelength was longer than that of (Ce0.01,Gd0.90,La0.09)2Si2O7 with an emission wavelength of 390 nm.

  15. Critical Behavior of Thermal Expansion and Magnetostriction in the Vicinity of the First order transition at the Curie Point of Gd5(SixGe1-x)4

    SciTech Connect

    Mangui Han

    2004-12-19

    Thermal expansion (TE) and magnetostriction (MS) measurements have been conducted for Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} with a series of x values to study its critical behavior in the vicinity of transition temperatures. It was found that the Curie temperature of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} for x 0 {approx} 0.5 is dependent on magnetic field, direction of change of temperature (Tc on cooling was lower than Tc on heating), purity of Gd starting material, compositions, material preparation methods, and also can be triggered by the external magnetic field with a different dT/dB rate for different x values. For Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}), Gd{sub 5}(Si{sub 2}Ge{sub 2}), Gd{sub 5}(Si{sub 2.09}Ge{sub 1.91}), it was also found that the transition is a first order magneto-structural transition, which means the magnetic transition and crystalline structure transition occur simultaneously, and completely reversible. Temperature hysteresis and phase coexistence have been found to confirm that it is a first order transformation. While for Gd{sub 5}(Si{sub 0.15}Ge{sub 3.85}), it is partially reversible at some temperature range between the antiferromagnetic and the ferromagnetic state. For Gd{sub 5}(Si{sub 2.3}Ge{sub 1.7}) and Gd{sub 5}(Si{sub 3}Ge{sub 1}), it was a second order transformation between the paramagnetic and ferromagnetic state, because no {Delta}T have been found. Giant magnetostriction was only found on Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}), Gd{sub 5}(Si{sub 2}Ge{sub 2}), Gd{sub 5}(Si{sub 2.09}Ge{sub 1.91}) in their vicinity of first order transformation. MFM images have also been taken on polycrystal sample Gd{sub 5}(Si{sub 2.09}Ge{sub 1.91}) to investigate the transformation process. The results also indicates that the Curie temperature was lower and the thermally-induced strain higher in the sample made from lower purity level Gd starting materials compared with the sample made from high purity Gd metal. TE, MS, MFM and VSM measurements

  16. Instantaneous planar visualization of reacting supersonic flows using silane seeding

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Northam, G. B.

    1991-01-01

    A new visualization technique for reacting flows has been developed. This technique, which is suitable for supersonic combustion flows, has been demonstrated on a scramjet combustor model. In this application, gaseous silane (SiH4) was added to the primary hydrogen fuel. When the fuel reacted, so did the (SiH4), producing silica (SiO2) particles in situ. The particles were illuminated with a laser sheet formed from a frequency-doubled Nd:YAG laser (532 nm) beam and the Mie scattering signal was imaged. These planar images of the silica Mie scattering provided instantaneous 'maps' of combustion progress within the turbulent reacting flowfield.

  17. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    SciTech Connect

    Cipro, R.; Gorbenko, V.; Baron, T. Martin, M.; Moeyaert, J.; David, S.; Bassani, F.; Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N.; Chauvin, N.; Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E.

    2014-06-30

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO{sub 2} cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  18. Planar electroluminescent panel techniques

    NASA Technical Reports Server (NTRS)

    Kerr, C.; Kell, R. E.

    1973-01-01

    Investigations of planar electroluminescent multipurpose displays with latch-in memory are described. An 18 x 24 in. flat, thin address panel with elements spacing of 0.100 in. was constructed which demonstrated essentially uniform luminosity of 3-5 foot lamberts for each of its 43200 EL cells. A working model of a 4-bit EL-PC (electroluminescent photoconductive) electrooptical decoder was made which demonstrated the feasibility of this concept. A single-diagram electroluminescent display device with photoconductive-electroluminescent latch-in memory was constructed which demonstrated the conceptual soundness of this principle. Attempts to combine these principles in a single PEL multipurpose display with latch-in memory were unsuccessful and were judged to exceed the state-of-the-art for close-packed (0.10 in. centers) photoconductor-electroluminescent cell assembly.

  19. Planar elliptic growth

    SciTech Connect

    Mineev, Mark

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  20. Elevated overview of Piers GD1 and GD2, showing rail lines, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevated overview of Piers GD-1 and GD-2, showing rail lines, GD-2 Quay Wall of Dry Dock No. 2 on left - U.S. Naval Base, Pearl Harbor, Dry Dock No. 1, Approach Pier & Caisson Docking Wharf, Ocean end of Fifth Street between Dry Dock Nos. 1 & 2, Pearl City, Honolulu County, HI

  1. Si(hhm) surfaces: Templates for developing nanostructures

    SciTech Connect

    Bozhko, S. I. Ionov, A. M.; Chaika, A. N.

    2015-06-15

    The fabrication of ordered low-dimensional structures on clean and metal-atom-decorated stepped Si(557) and Si(556) surfaces is discussed. The formation conditions and atomic structure of regular step systems on clean Si(557) 7 × 7 and Si(556) 7 × 7 surfaces are studied. The atomic structure of stepped Si(hhm), Ag/Si(557), and Gd/Si(557) surfaces is studied using high-resolution scanning tunneling microscopy and low-energy electron diffraction. The possibility of fabricating 1D and 2D structures of gadolinium and silver atoms on the Si(557) surface is demonstrated.

  2. Registration of heavy metal ions and pesticides with ATR planar waveguide enzyme sensors

    NASA Astrophysics Data System (ADS)

    Nabok, Alexei; Haron, Saharudin; Ray, Asim

    2004-11-01

    The proposed novel type of enzyme optical sensors is based on a combination of SiO2/Si3N4/SiO2 planar waveguide ATR (attenuated total reflection) transducer, fabricated by standard silicon planar technology, with the composite polyelectrolyte self-assembled coating containing both organic chromophores and enzyme molecules. Such devices were deployed to monitor typical industrial and agricultural water pollutants, such as heavy metal ions and pesticides, acting as inhibitors of enzyme reactions. The sensitivity of registration of these pollutants in the range of 1 ppb was achieved. The use of different enzymes in the sensitive membrane provides a background for pattern recognition of the above pollutants.

  3. Magnetic ordering in Gd5Ir2Bi and Gd5Ir2Sb

    NASA Astrophysics Data System (ADS)

    Ryan, D. H.; Mas, Nadejda; Rejali, Rasa; Miller, T.; Gerke, Birgit; Heying, Birgit; Pöttgen, Rainer; Flacau, Roxana

    2016-05-01

    155Gd Mössbauer spectroscopy and neutron powder diffraction have been used to study magnetic ordering in Gd5Ir2Bi and Gd5Ir2Sb. Despite the hyperfine fields (Bhf) at the two Gd sites differing by more than a factor of two for both compounds, the moments derived from neutron diffraction are essentially equal in Gd5Ir2Bi. This implies an unusual departure from the commonly assumed scaling between B hf G d and μGd. Neutron powder diffraction shows that Gd5Ir2Bi is a c-axis ferromagnet at 3.6 K. We find no evidence for a FM → AF transition.

  4. Defect induced mobility enhancement: Gadolinium oxide (100) on Si(100)

    SciTech Connect

    Sitaputra, W.; Tsu, R.

    2012-11-26

    Growth of predominantly single crystal (100)-oriented gadolinium oxide (Gd{sub 2}O{sub 3}) on a p-type Si(100) and growth of a polycrystal with a predominant Gd{sub 2}O{sub 3}(100) crystallite on a n-type Si(100) was performed using molecular beam epitaxy. Despite a poorer crystal structure than Gd{sub 2}O{sub 3}(110), an enhancement in carrier mobility can be found only from the Gd{sub 2}O{sub 3}(100)/n-type Si(100) interface. The mobility of 1715-1780 cm{sup 2}/V {center_dot} s was observed at room temperature, for carrier concentration >10{sup 20} cm{sup -3}. This accumulation of the electrons and the mobility enhancement may arise from the two-dimensional confinement due to charge transfer across the interface similar to transfer doping.

  5. GD2-targeted immunotherapy and radioimmunotherapy

    PubMed Central

    Dobrenkov, Konstantin; Cheung, Nai-Kong

    2014-01-01

    Ganglioside GD2 is a tumor-associated surface antigen found in a broad spectrum of human cancers and stem cells. They include pediatric embryonal tumors (neuroblastoma, retinoblastoma, brain tumors, osteosarcoma, Ewing’s sarcoma, rhabdomyosarcoma), as well as adult cancers (small cell lung cancer, melanoma, soft tissue sarcomas). Because of its restricted normal tissue distribution, GD2 has been proven safe for antibody targeting. Anti-GD2 antibody is now incorporated into the standard of care for the treatment of high risk metastatic neuroblastoma. Building on this experience, novel combinations of antibody, cytokines, cells and genetically engineered products all directed at GD2 are rapidly moving into the clinic. In the review, past and present immunotherapy trials directed at GD2 will be summarized, highlighting the lessons learned and the future directions. PMID:25440605

  6. Non-planar chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Lewis, Patrick R.

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  7. Ab initio quantum chemical investigation of several isomers of anionic Si 6

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Kawazoe, Yoshiyuki

    2006-02-01

    Eight isomers (planar hexagon, benzvalene, Dewar benzene, triangular prismane, bicyclopropenyl, octahedron, chair form, and twist boat form) of Si 6, Si62-, Si64-, and Si66-, have been searched for by the MP2 and B3LYP electronic structure calculations. Totally 14 isomers were found: two Si 6, six Si62-, five Si64-, and one Si66-. Two of them are different from the eight isomers: deformed triangle Si62-; pentagonal pyramidal Si64-. We discovered that the predicted stable shapes of Si62-, Si64-, and Si66- are octahedral, pentagonal pyramidal, and hexagonal, respectively, which agrees well with Wade rule.

  8. Improving dielectric properties of epitaxial Gd{sub 2}O{sub 3} thin films on silicon by nitrogen doping

    SciTech Connect

    Roy Chaudhuri, Ayan; Osten, H. J.; Fissel, A.; Archakam, V. R.

    2013-01-14

    We report about the effect of nitrogen doping on the electrical properties of epitaxial Gd{sub 2}O{sub 3} thin films. Epitaxial Gd{sub 2}O{sub 3}:N thin films were grown on Si (111) substrates by solid source molecular beam epitaxy using nitrous oxide as the nitridation agent. Substitutional nitrogen incorporation into the dielectric layer was confirmed by secondary ion mass spectroscopy and X-ray photoelectron spectroscopy analysis. Substantial reduction of the leakage current density and disappearance of hysteresis in capacitance-voltage characteristics observed in the Gd{sub 2}O{sub 3}:N layers indicate that nitrogen incorporation in Gd{sub 2}O{sub 3} effectively eliminates the adverse effects of the oxygen vacancy induced defects in the oxide layer.

  9. Process for forming planarized films

    DOEpatents

    Pang, Stella W.; Horn, Mark W.

    1991-01-01

    A planarization process and apparatus which employs plasma-enhanced chemical vapor deposition (PECVD) to form plarnarization films of dielectric or conductive carbonaceous material on step-like substrates.

  10. Object Classification via Planar Abstraction

    NASA Astrophysics Data System (ADS)

    Oesau, Sven; Lafarge, Florent; Alliez, Pierre

    2016-06-01

    We present a supervised machine learning approach for classification of objects from sampled point data. The main idea consists in first abstracting the input object into planar parts at several scales, then discriminate between the different classes of objects solely through features derived from these planar shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and relationships between planar shapes offers invariance to scale and orientation. A random forest is then used for solving the multiclass classification problem. We demonstrate the potential of our approach on a set of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and compare the performance of our method with other point-based shape descriptors.

  11. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  12. The Precataclysmic Variable GD 245

    NASA Astrophysics Data System (ADS)

    Schmidt, Gary D.; Smith, Paul S.; Harvey, David A.; Grauer, Albert D.

    1995-07-01

    A combined photometric/spectroscopic study has been carried out of the evolved binary GD 245. The system is shown to consist of a DA2 white dwarf plus M3-5 secondary in a 4.17 h orbit. From model fitting to the white dwarf spectral features, the primary star is found to have log g=7.77±0.02 and Teff=22170 K, leading to M1 (g)=0.48 Msun and R1=0.015 Rsun. Radial velocity analysis of the double-lined system implies M2=0.22 Msun. The distance is computed to be 61 pc and the orbital inclination is i≍69°. These parameters are consistent with the companion being a main-sequence object, in which case Teff=3S60 K, R2=0.27 Rsun, and the binary just escapes being an eclipsing system. A rich spectrum of emission lines phased in strength and radial velocity with the orbital motion is testimony to irradiation of a corotating secondary star by the white dwarf. However, the strength of this spectral component exceeds the intercepted Lyman continuum from the white dwarf, implying that alternate heating mechanisms are important. The companion underfills its Roche lobe by less than 25% in radius, and for current estimates of the angular momentum loss rate in close binaries will require less than 108 yr to evolve into contact. At the inception of mass transfer, the cataclysmic variable GD 245 will appear as one of the rare objects in the 2-3 h orbital period gap.

  13. Trade-Off Relationship between Si Recess and Defect Density Formed by Plasma-Induced Damage in Planar Metal-Oxide-Semiconductor Field-Effect Transistors and the Optimization Methodology

    NASA Astrophysics Data System (ADS)

    Eriguchi, Koji; Nakakubo, Yoshinori; Matsuda, Asahiko; Kamei, Masayuki; Takao, Yoshinori; Ono, Kouichi

    2011-08-01

    Physical damage induced by high-energy ion bombardment during plasma processing is characterized from the viewpoint of the relationship between surface-damaged layer (silicon loss) and defect site underneath the surface. Parameters for plasma-induced damage (PID), Si recess depth (dR) and residual (areal) defect density after wet-etch treatment (Ndam), are calculated on the basis of a modified range theory, and the trade-off relationship between dR and Ndam is presented. We also model their effects on device parameters such as off-state leakage (Ioff) and drain saturation current (Ion) of n-channel metal-oxide-semiconductor field effect transistors (MOSFETs). Based on the models, we clarify the relationship among plasma process parameters (ion energy and ion flux), dR, Ndam, Ioff, and Ion. Then we propose a methodology optimizing ion energy and ion flux under the constraints defined by device specifications Ioff and Ion, via dR and Ndam. This procedure is regarded as so-called optimization problems. The proposed methodology is applicable to optimizing plasma parameters that minimize degradation of MOSFET performance by PID.

  14. All-metal superconducting planar microwave resonator

    NASA Astrophysics Data System (ADS)

    Horsley, Matt; Pereverzev, Sergey; Dubois, Jonathon; Friedrich, Stephan; Qu, Dongxia; Libby, Steve; Lordi, Vincenzo; Carosi, Gianpaolo; Stoeffl, Wolfgang; Chapline, George; Drury, Owen; Quantum Noise in Superconducting Devices Team

    There is common agreement that noise and resonance frequency jitter in superconducting microwave planar resonators are caused by presence of two-level systems, or fluctuators, in resonator materials- in dielectric substrate, in superconducting and dielectric layers and on the boundaries and interfaces. Scaling of noise with device dimensions indicate that fluctuators are likely concentrated around boundaries; physical nature of those fluctuators remains unclear. The presence of dielectrics is not necessary for the superconducting device functionality, and one can ask question about properties of all-metal device, where dielectric substrate and oxide films on metal are absent. Resonator made from of thin conducting layer with cuts in it is usually called slot line resonator. We report on the design, fabrication and initial testing of multiple split rings slot line resonator made out of thin molybdenum plate. This work is being funded as part of a three year strategic initiative (LDRD 16-SI-004) to better understand noise in superconducting devices.

  15. pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging.

    PubMed

    Hu, Kuo-Wei; Hsu, Kang-Che; Yeh, Chen-Sheng

    2010-09-01

    We report a pH dependence of degradable silica nanotubes, which dissolved to the biodegradation product monosilicic acid, Si(OH)(4). The silica nanotubes, potentially acting as oral-based administration carriers, were resistant to dissolution in the extreme acidic condition of pH 1, but degraded quickly at pH 8, and the degradation rate can be tuned by tailoring the thickness of silica nanotubes with thicker nanotubes dissolving more slowly. Because Gd(OH)(3) nanorods were used as templates, the silica nanotubes could be further developed as MR imaging contrast agents as well as drugs carriers. The released Gd(3+) ions resulting from the etching of Gd(OH)(3) nanorods were chelated by the pre-modified DOTA, yielding Gd-DOTA complexes grafted onto silica nanotubes. The Gd-DOTA grafted silica nanotubes loaded with doxorubicin revealed enhanced T(1) imaging contrast and anticancer activity. PMID:20542331

  16. Magnetic properties of RE5Ir2X (RE = Y, Gd-Ho, X = Sn, Sb, Pb, Bi) and magnetocaloric characterization of Gd5Ir2X

    NASA Astrophysics Data System (ADS)

    Schäfer, Konrad; Schwickert, Christian; Niehaus, Oliver; Winter, Florian; Pöttgen, Rainer

    2014-09-01

    Systematic phase analytical studies of the systems RE-Ir-X (X = Sn, Pb, Sb, Bi) led to 15 new stannides, plumbides, antimonides and bismuthides with the composition RE5Ir2X. The compounds have been synthesized and characterized by X-ray powder diffraction. The structures of Gd5Ir2Sb and Dy5Ir2Bi have been refined from single crystal X-ray diffractometer data: Mo5SiB2 type, I4/mcm, a = 775.2(2), c = 1361.3(5) pm, wR2 = 0.0933, 404 F2 values, 16 variables for Gd5Ir2Sb and a = 767.5(1), c = 1368.9(3) pm, wR2 = 0.0694, 571 F2 values, 16 variables for Dy5Ir2Bi. Magnetic measurements of Gd5Ir2X (X = Sn, Pb, Sb, Bi), Tb5Ir2X (X = Sn, Pb, Sb, Bi), Dy5Ir2Pb, Dy5Ir2Bi and Ho5Ir2Pb indicate ferromagnetic transitions at TC = 154.3, 159.3, 124.4, 119.3, 99.2, 98.2, 65.5, 68.6, 45.1, 35.6 and 23.5 K, respectively. Gd5Ir2Bi and Gd5Ir2Sb show an additional antiferromagnetic transition at TN = 118.5 and 91.0 K. The magnetocaloric effect of Gd5Ir2X (X = Sn, Pb, Sb, Bi) in terms of the isothermal entropy change ΔSm is -7.3(3), -6.5(3), -8.7(3) and -9.0(3) J kg-1 K-1 at temperatures of 153, 157, 120 and 126 K for a 5 T field change. 119Sn Mössbauer spectra of Gd5Ir2Sn at 78 K show a huge transferred hyperfine field of 21.9(1) T and an isomer shift of 1.94(1) mm s-1, typical for stannides. 121Sb Mössbauer spectra of Gd5Ir2Sb at 78 K show a transferred hyperfine field of 14.2(3) T and an isomer shift of -7.45(8) mm s-1 reflecting the antimonide character.

  17. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  18. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  19. Planar immersion lens with metasurfaces

    NASA Astrophysics Data System (ADS)

    Ho, John S.; Qiu, Brynan; Tanabe, Yuji; Yeh, Alexander J.; Fan, Shanhui; Poon, Ada S. Y.

    2015-03-01

    The solid immersion lens is a powerful optical tool that allows light entering material from air or a vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, the lenses rely on semispherical topographies and are nonplanar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, referred to as metasurfaces, to construct flat optical components for manipulating light in unusual ways. Here, we propose and demonstrate the concept of a planar immersion lens based on metasurfaces. The resulting planar device, when placed near an interface between air and dielectric material, can focus electromagnetic radiation incident from air to a spot in the material smaller than the free-space wavelength. As an experimental demonstration, we fabricate an ultrathin and flexible microwave lens and further show that it achieves wireless energy transfer in material mimicking biological tissue.

  20. Effect of the control of global planarity of intermetal dielectric layers on the lithographic process window

    NASA Astrophysics Data System (ADS)

    Keysar, Shani; Markowitz, Leah; Ben-Gigi, Corin; Tweg, Rama; Margalit-Ilovich, Ayelet; Kepten, Avishai; Wachs, Amir; Shaviv, Roey

    1999-06-01

    The sensitivity of lithographic process window to global planarity of the inter metal dielectric layers is established in this work. The inter metal dielectric layers, between the metal layers, were prepared by utilizing the H2O2/SiH4 chemistry known as the 'Advanced Planarity Layer (APL)'. Four degrees of global planarity were tested within the APL process window, utilizing different H2O2 stabilization pressures. SEM cross sections were used to determine the degree of planarity in the CMOS product and at lithographic test structures. The lithographic process window and the effect of the stepper leveling system were defined for typical high and low topographies. The results how a strong link between the lithographic process window to degree of global planarity of the APL. Good global planarity enlarged depth of focus and energy latitude, allowing a wider lithographic process window. Also, in cases of improved APL planarity, the stepper leveling system had only a limited contribution to a lithographic process window. This control over the global planarity of the inter metal dielectric layers and the wide lithographic process window that results eliminate the need for CMP at 0.5 (mu) technology.

  1. Oblique view of GD5 taken from Pier GD4 U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of GD-5 taken from Pier GD-4 - U.S. Naval Base, Pearl Harbor, Pier & Quay Walls, Entrance to Dry Dock No. 2 & Repair Wharfs, east & west sides of Dry Dock No. 2 & west side of Dry Dock No. 3, Pearl City, Honolulu County, HI

  2. GD4 with GD3 at oblique view on left U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GD-4 with GD-3 at oblique view on left - U.S. Naval Base, Pearl Harbor, Pier & Quay Walls, Entrance to Dry Dock No. 2 & Repair Wharfs, east & west sides of Dry Dock No. 2 & west side of Dry Dock No. 3, Pearl City, Honolulu County, HI

  3. Pier GD3, oblique view taken from Pier GD2, Caisson of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pier GD-3, oblique view taken from Pier GD-2, Caisson of Dry Dock No. 2 to left - U.S. Naval Base, Pearl Harbor, Pier & Quay Walls, Entrance to Dry Dock No. 2 & Repair Wharfs, east & west sides of Dry Dock No. 2 & west side of Dry Dock No. 3, Pearl City, Honolulu County, HI

  4. Overview of GD2 and GD3 with Caisson of Dry Dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of GD-2 and GD-3 with Caisson of Dry Dock No. 2 in center - U.S. Naval Base, Pearl Harbor, Pier & Quay Walls, Entrance to Dry Dock No. 2 & Repair Wharfs, east & west sides of Dry Dock No. 2 & west side of Dry Dock No. 3, Pearl City, Honolulu County, HI

  5. Oblique of GD4 and GD5, Dry Dock No. 3 Caisson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique of GD-4 and GD-5, Dry Dock No. 3 Caisson between piers - U.S. Naval Base, Pearl Harbor, Pier & Quay Walls, Entrance to Dry Dock No. 2 & Repair Wharfs, east & west sides of Dry Dock No. 2 & west side of Dry Dock No. 3, Pearl City, Honolulu County, HI

  6. GD2 and GD3 synthase: novel drug targets for cancer therapy

    PubMed Central

    Sphyris, Nathalie; Sarkar, Tapasree Roy; Battula, Venkata L; Andreeff, Michael; Mani, Sendurai A

    2015-01-01

    Our recent study suggests that targeting GD3 synthase (also known as ST8SIA1)—the rate-limiting enzyme in biosynthesis of the breast cancer stem cell marker GD2—abrogates metastasis and depletes the cancer stem cell populations within a tumor, thus providing an effective therapeutic strategy against metastatic breast cancers. PMID:27308452

  7. Glycolipid GD3 and GD3 synthase are key drivers for glioblastoma stem cells and tumorigenicity.

    PubMed

    Yeh, Shih-Chi; Wang, Pao-Yuan; Lou, Yi-Wei; Khoo, Kay-Hooi; Hsiao, Michael; Hsu, Tsui-Ling; Wong, Chi-Huey

    2016-05-17

    The cancer stem cells (CSCs) of glioblastoma multiforme (GBM), a grade IV astrocytoma, have been enriched by the expressed marker CD133. However, recent studies have shown that CD133(-) cells also possess tumor-initiating potential. By analysis of gangliosides on various cells, we show that ganglioside D3 (GD3) is overexpressed on eight neurospheres and tumor cells; in combination with CD133, the sorted cells exhibit a higher expression of stemness genes and self-renewal potential; and as few as six cells will form neurospheres and 20-30 cells will grow tumor in mice. Furthermore, GD3 synthase (GD3S) is increased in neurospheres and human GBM tissues, but not in normal brain tissues, and suppression of GD3S results in decreased GBM stem cell (GSC)-associated properties. In addition, a GD3 antibody is shown to induce complement-dependent cytotoxicity against cells expressing GD3 and inhibition of GBM tumor growth in vivo. Our results demonstrate that GD3 and GD3S are highly expressed in GSCs, play a key role in glioblastoma tumorigenicity, and are potential therapeutic targets against GBM. PMID:27143722

  8. Magnetic resonance imaging of the pancreas in streptozotocin-induced diabetic rats: Gadofluorine P and Gd-DOTA

    PubMed Central

    Cho, Hye Rim; Lee, Youkyung; Doble, Philip; Bishop, David; Hare, Dominic; Kim, Young-Jae; Kim, Kwang Gi; Jung, Hye Seung; Park, Kyong Soo; Choi, Seung Hong; Moon, Woo Kyung

    2015-01-01

    AIM: To investigate the performance of Gadofluorine P-enhanced magnetic resonance imaging (MRI) on the diagnosis of diabetes in a streptozotocin (STZ) -induced diabetic rat model. METHODS: Fischer 344 rats were treated with STZ. Rats not treated with STZ served as controls. T1-weighted MRI was performed using a 3T scanner before and after the injection of Gd-DOTA or Gadofluorine P (6 diabetic rats, 5 controls). The normalized signal intensity (SI) and the enhancement ratio (ER) of the pancreas were measured at each time point, and the values were compared between the normal and diabetic rats using the Mann-Whitney test. In addition, the values were correlated with the mean islet number. Optimal cut-off values were calculated using a positive test based on receiver operating characteristics. Intrapancreatic Gd concentration after the injection of each contrast media was measured using laser ablation-inductively coupled plasma-mass spectrometry in a separate set of rats (4 diabetic rats, 4 controls for Gadofluorine P; 2, 2 for Gd-DOTA). RESULTS: The normalized SI and ER of the pancreas using Gd-DOTA were not significantly different between diabetic rats and controls. With Gadofluorine P, the values were significantly higher in the diabetic rats than in the control rats 30 min after injection (P < 0.05). The area under the receiver operating characteristic curve that differentiated diabetic rats from the control group was greater for Gadofluorine P than for Gd-DOTA (0.967 vs 0.667, P = 0.085). An increase in normalized SI 30 min after Gadofluorine P was correlated with a decrease in the mean number of islets (r2 = 0.510, P = 0.014). Intra-pancreatic Gd was higher in rats with Gadofluorine P injection than Gd-DOTA injection (Gadofluorine P vs Gd-DOTA, 7.37 vs 0.00, P < 0.01). A significant difference in the concentration of intrapancreatic Gd was observed between the control and diabetic animals that were sacrificed 30 min after Gadofluorine P injection (control vs

  9. Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and near-infrared-responsive photodynamic therapy in cancers.

    PubMed

    Zhang, Ling'e; Zeng, Leyong; Pan, Yuanwei; Luo, Song; Ren, Wenzhi; Gong, An; Ma, Xuehua; Liang, Hongze; Lu, Guangming; Wu, Aiguo

    2015-03-01

    Inorganic photosensitizer coupled Gd-based upconversion luminescent (UCL) nanocomposites have potential application for both magnetic resonance imaging (MRI) and photodynamic therapy (PDT) of cancers using the light stability and biocompatibility of TiO2 inorganic photosensitizer. However, TiO2 inorganic photosensitizer could only be excited by ultraviolet (UV) light, which was harmful and weakly penetrable in tissues. In this work, folic acid (FA)-targeted NaGdF4:Yb/Tm@SiO2@TiO2 nanocomposites (FA-Gd-Si-Ti NPs) were constructed and synthesized for both in vivo MRI and near infrared (NIR)-responsive inorganic PDT, in which TiO2 component could be excited by NIR light due to the UCL performance of NaGdF4:Yb/Tm component converting NIR to UV light. The results showed the as-prepared FA-Gd-Si-Ti NPs had good biocompatibility in vitro and in vivo. Moreover, MR study indicated that FA-Gd-Si-Ti NPs were good T1-weighted MRI contrast agents with high longitudinal relaxivity (r1) of 4.53 mm(-1) s(-1), also in vivo MRI of nude mice showed "bright" signal in MCF-7 tumor. Under the irradiation of 980 nm laser at the power density of 0.6 W/cm(2) for 20 min, the viability of HeLa and MCF-7 cells incubated with FA-Gd-Si-Ti NPs could decrease from about 90 % to 35 % and 31%, respectively. Furthermore, in vivo PDT of MCF-7 tumor-bearing nude mice model showed that the inhibition ratio of tumors injected with FA-Gd-Si-Ti NPs reached up to 88.6% after 2-week treatment, compared with that of nude mice in control group. Based on the deep penetration of NIR light and the good biocompatibility of TiO2 inorganic photosensitizer, the as-prepared FA-Gd-Si-Ti NPs could have potential applications in both MRI and NIR-responsive PDT of cancers in deep tissues. PMID:25617128

  10. Transfer of Excitation Energy from Pr3+ to Gd3+ in YF3:Pr3+,Gd3+

    NASA Astrophysics Data System (ADS)

    Hirai, Takeshi; Yoshida, Hisashi; Sakuragi, Shiro; Hashimoto, Satoshi; Ohno, Nobuhito

    2007-02-01

    Luminescence and excitation spectra for YF3:Gd3+, YF3:Pr3+, and YF3:Pr3+,Gd3+ have been studied in the vacuum ultraviolet (VUV) spectral region at room temperature. In YF3:Gd3+, Gd3+ ions absorb VUV light ranging from 150 to 200 nm due to 4 f-4 f transitions, yielding an ultraviolet (UV) luminescence line at 311 nm originating from the 4 f-4 f transition (6P7/2→8S7/2 state). In YF3:Pr3+,Gd3+, Pr3+ ions absorb the VUV light (150-200 nm) due to 4 f-5d transitions, and the absorption gives rise to the UV luminescence of Gd3+ ions that is much stronger than that of YF3:Gd3+. In this paper, we discuss the energy transfer process from Pr3+ to Gd3+ ions in YF3:Pr3+,Gd3+ excited by VUV light.

  11. Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon

    NASA Astrophysics Data System (ADS)

    Liu, G. L.; Zhao, D. Q.; Bai, H. Y.; Wang, W. H.; Pan, M. X.

    2016-02-01

    Gd50Co45Fe5 amorphous alloy ribbon with a table-like magnetocaloric effect (MCE) suitable for the ideal Ericsson cycle at room temperature has been developed. In addition to a high magnetic transition temperature of 289 K very close to that of Gd (294 K), a relatively large value of refrigerant capacity (~521 J kg-1) has been achieved under a field change of 5 T. This value of refrigerant capacity (RC) is about 27% and 70% larger than those of Gd (~410 J kg-1) and Gd5Si2Ge2 (~306 J kg-1). More importantly, the peak value of magnetic entropy change (-Δ S\\text{M}\\max ) approaches a nearly constant value of ~3.8 J  ṡ  kg-1  ṡ  K-1 under an applied field change of 0~5 T in a wide temperature span over 40 K around room temperature, which could be used as the candidate working material in the Ericsson-cycle magnetic regenerative refrigerator around room temperature.

  12. Development of a pMOSFET sensor with a Gd converter for low energy neutron dosimetry.

    PubMed

    Lee, N H; Kim, S H; Youk, G U; Park, I J; Kim, Y M

    2004-01-01

    A pMOSFET having a 10 microm thick Gadolinium (Gd) layer has been invented as a slow neutron sensor. When slow neutrons are incident to the Gd layer, conversion electrons, which generate electron-hole pairs in the SiO2 layer of the pMOSFET, are generated by a neutron capture process. The holes are easily trapped in the oxide and act as positive-charge centres in the oxide. Due to the induced charges, the threshold turn-on voltage of the pMOSFET is changed. The developed sensors were tested at a neutron beam port of the HANARO research reactor and a 60Co irradiation facility to investigate slow neutron response and gamma ray contamination, respectively. The resultant voltage change was proportional to the accumulated neutron dose and it was very sensitive to slow neutrons. Moreover, ionising radiation contamination was negligible. It can also be used in a mixed radiation field by subtracting the voltage change of a pMOSFET without Gd from that of the Gd-pMOSFET. PMID:15353659

  13. Spectroscopic properties of transparent Er-doped oxyfluoride glass-ceramics with GdF₃.

    PubMed

    Środa, Marcin; Szlósarczyk, Krzysztof; Różański, Marek; Sitarz, Maciej; Jeleń, Piotr

    2015-01-01

    Optically active glass-ceramics (GC) with the low-phonon phases of fluorides, doped with Er(3+) was studied. Glass based on SiO₂-Al₂O₃-Na₂F₂-Na₂O-GdF₃-BaO system was obtained. Dopant were introduced to the glass in an amount of 0.01 mol Er₂O₃ per 1 mol of glass. DTA/DSC study shows multi-stage crystallization. XRD identification of obtained phases did not confirm the presence of pure GdF₃ phase. Instead of that ceramization process led to formation of NaGdF₄ and BaGdF₅. The structural changes were studied using FT-IR spectroscopic method. The study of luminescence of the samples confirmed that optical properties of the obtained GC depend on crystallizing phases during ceramization. Time resolved spectroscopy of Er-doped glass showed the 3 and 8 times increase of lifetime of emission from (4)S₃/₂ and (4)F₉/₂ states, respectively. It confirms the erbium ions have ability to locate in the low phonon gadolinium-based crystallites. The results give possibility to obtain a new material for optoelectronic application. PMID:25049170

  14. Pulsating White Dwarf Star GD99

    NASA Astrophysics Data System (ADS)

    Chynoweth, K. M.; Thompson, S.; Mullally, F.; Yeates, C.

    2004-12-01

    We present 15 hours of time-series photometry of the variable white dwarf star GD99. These data were obtained at the McDonald Observatory 2.1m Otto Struve Telescope in January 2003, using the Argos CCD photometer. We achieved a noise level as low as 0.07 %, as measured from the power spectrum of our first night. Our observations confirm that GD99 is a unique pulsating white dwarf whose modes show characteristics of both the hot and cold type of DA variable stars. Additionally, GD99 has a large number of modes, making it a good candidate for asteroseismological study. Our preliminary results indicate that this star merits further study to decipher its abundant set of unusual modes. With such a rich period structure, longer continuous data sets will be required to fully resolve the pulsation spectrum.

  15. Lifetime Measurements of Levels in 160Gd

    NASA Astrophysics Data System (ADS)

    Casarella, Clark; Aprahamian, Ani; Crider, Ben; Lesher, Shelly; Marsh, Ian; Peters, Erin; Prados-Estevez, Francisco; Smith, Mallory; Vanhoy, Jeffrey; Yates, Steven

    2013-10-01

    The rare earth region of nuclei has been well established as a region of deformation for decades. However, the nature of vibrations built on a deformed ground state remain far from understood and present an oustanding challenge to nuclear structure physics. Studies of 158Gd has shown a preponderance of excited 0+ states with varying degrees of collectivity. We have measured level lifetimes, reduced transition probabilities and angular distributions of gamma-rays excited by inelastic neutron scattering and the use of the Doppler Shift Attenuation Method (DSAM) at the University of Kentucky 7 MV Van de Graaff Accelerator Facility. Low lying excited states of 160Gd were populated up to an excitation energy of E < 2 MeV. We will present and discuss the measured level lifetimes of 160Gd and their implied degrees of collectivity. This work was supported by the NSF under contract numbers PHY-1068192, PHY-12-05412, and PHY-0956310.

  16. Planar tetranuclear lanthanide clusters with the Dy4 analogue displaying slow magnetic relaxation.

    PubMed

    Langley, Stuart K; Chilton, Nicholas F; Gass, Ian A; Moubaraki, Boujemaa; Murray, Keith S

    2011-12-21

    Two isostructural tetranuclear lanthanide clusters of general formula [Ln(III)(4)(μ(3)-OH)(2)(o-van)(4)(O(2)CC(CH(3))(3))(4)(NO(3))(2)]·CH(2)Cl(2)·1.5H(2)O (Ln = Gd (1) and Dy (2)) (o-van = 3-methoxysalicylaldehydato anion) are reported. The metallic cores of both complexes display a planar 'butterfly' arrangement. Magnetic studies show that both are weakly coupled, with 2 displaying probable SMM behaviour. PMID:22031449

  17. Planar Multilayer Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Minev, Z. K.; Serniak, K.; Pop, I. M.; Leghtas, Z.; Sliwa, K.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2016-04-01

    Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar microfabricated (2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics can be implemented in a multilayer superconducting structure that combines 2D and 3D advantages. We employ standard microfabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar qubits are lithographically defined as an aperture in a conducting boundary of the resonators. We demonstrate the aperture concept by implementing an integrated, two-cavity-mode, one-transmon-qubit system.

  18. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  19. Summing Planar Bosonic Open Strings

    SciTech Connect

    Bardakci, Korkut

    2006-02-16

    In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.

  20. Window defect planar mapping technique

    NASA Technical Reports Server (NTRS)

    Minton, F. R.; Minton, U. O. (Inventor)

    1976-01-01

    A method of planar mapping defects in a window having an edge surface and a planar surface. The method is comprised of steps for mounting the window on a support surface. Then a light sensitive paper is placed adjacent to the window surface. A light source is positioned adjacent to the window edge. The window is then illuminated with the source of light for a predetermined interval of time. Defects on the surface of the glass, as well as in the interior of the glass are detected by analyzing the developed light sensitive paper. The light source must be in the form of optical fibers or a light tube whose light transmitting ends are placed near the edge surface of the window.

  1. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  2. PANEL CODE FOR PLANAR CASCADES

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1994-01-01

    The Panel Code for Planar Cascades was developed as an aid for the designer of turbomachinery blade rows. The effective design of turbomachinery blade rows relies on the use of computer codes to model the flow on blade-to-blade surfaces. Most of the currently used codes model the flow as inviscid, irrotational, and compressible with solutions being obtained by finite difference or finite element numerical techniques. While these codes can yield very accurate solutions, they usually require an experienced user to manipulate input data and control parameters. Also, they often limit a designer in the types of blade geometries, cascade configurations, and flow conditions that can be considered. The Panel Code for Planar Cascades accelerates the design process and gives the designer more freedom in developing blade shapes by offering a simple blade-to-blade flow code. Panel, or integral equation, solution techniques have been used for several years by external aerodynamicists who have developed and refined them into a primary design tool of the aircraft industry. The Panel Code for Planar Cascades adapts these same techniques to provide a versatile, stable, and efficient calculation scheme for internal flow. The code calculates the compressible, inviscid, irrotational flow through a planar cascade of arbitrary blade shapes. Since the panel solution technique is for incompressible flow, a compressibility correction is introduced to account for compressible flow effects. The analysis is limited to flow conditions in the subsonic and shock-free transonic range. Input to the code consists of inlet flow conditions, blade geometry data, and simple control parameters. Output includes flow parameters at selected control points. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 590K of 8 bit bytes. This program was developed in 1982.

  3. Enjoyment of Euclidean planar triangles

    NASA Astrophysics Data System (ADS)

    Srinivasan, V. K.

    2013-09-01

    This article adopts the following classification for a Euclidean planar ?, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar ? are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ? is a right angle with the two remaining angles as acute angles. It is said to be obtuse angled at the vertex B if ? is an obtuse angle, with the two remaining angles as acute angles. In spite of the availability of numerous text books that contain our human knowledge of Euclidean plane geometry, softwares can offer newer insights about the characterizations of planar geometrical objects. The author's characterizations of triangles involve points like the centroid G, the orthocentre H of the ?, the circumcentre S of the ?, the centre N of the nine-point circle of the ?. Also the radical centre rc of three involved diameter circles of the sides BC, AC and AB of the ? provides a reformulation of the orthocentre, resulting in an interesting theorem, dubbed by the author as 'Three Circles Theorem'. This provides a special result for a right-angled ?, again dubbed by the author as 'The Four Circles Theorem'. Apart from providing various inter connections between the geometrical points, the relationships between shapes of the triangle and the behaviour of the points are reasonably explored in this article. Most of these results will be useful to students that take courses in Euclidean Geometry at the college level and the high school level. This article will be useful to teachers in mathematics at the high school level and the college level.

  4. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  5. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  6. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  7. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  8. Reinvestigation of the Cd–Gd phase diagram

    PubMed Central

    Reichmann, Thomas L.; Ipser, Herbert

    2014-01-01

    The complete Cd–Gd equilibrium phase diagram was investigated by a combination of powder-XRD, SEM and DTA. All previously reported phases, i.e., CdGd, Cd2Gd, Cd3Gd, Cd45Gd11, Cd58Gd13, and Cd6Gd, could be confirmed. In addition, a new intermetallic compound with a stoichiometric composition corresponding to “Cd8Gd” was found to exist. It was obtained that “Cd8Gd” decomposes peritectically at 465 °C. Homogeneity ranges of all intermetallic compounds were determined at distinct temperatures. In addition, the maximum solubilities of Cd in the low- and high-temperature modifications of Gd were determined precisely as 4.6 and 22.6 at.%, respectively. All invariant reaction temperatures (with the exception of the formation of Cd58Gd13) as well as liquidus temperatures were determined, most probably, Cd58Gd13 is formed in a peritectoid reaction from Cd45Gd11 and Cd6Gd at a temperature below 700 °C. PMID:25544803

  9. Resonant Photoemission in f Electron Systems: Pu& Gd

    SciTech Connect

    Tobin, J G; Chung, B W; Schulze, R K; Terry, J; Farr, J D; Shuh, D K; Heinzelman, K; Rotenberg, E; Waddill, G D; van der Laan, G

    2003-03-07

    Resonant photoemission in the Pu5f and Pu6p states is compared to that in the Gd4f and Gd5p states. Spectral simulations, based upon and atomic model with angular momentum coupling, are compared to the Gd and Pu results. Additional spectroscopic measurements of Pu, including core level photoemission and x-ray absorption are also presented.

  10. Enhanced cathodoluminescence from an amorphous AlN:holmium phosphor by co-doped Gd{sup +3} for optical devices applications

    SciTech Connect

    Maqbool, Muhammad; Kordesch, Martin E.; Kayani, A.

    2009-05-15

    Sputter-deposited thin films of amorphous AlN:Ho (1 at. %) emits in the green (549 nm) region of the visible spectrum under electron excitation. The addition of Gd (1 at. %) in the film enhances the green emission linearly after thermal activation at 900 deg. C for 40 min in a nitrogen atmosphere. The luminescence enhancement saturates when the gadolinium concentration reaches four times the holmium concentration. The optical bandgap of amorphous AlN is about 210 nm, so that the film is transparent in the ultraviolet, allowing us to observe the ultraviolet emission at 313 nm from Gd. No significant quenching of the Gd emission is observed. Energy dispersive x-ray (EDX) spectra confirm the increasing concentration of Gd. X-ray diffraction (XRD) analysis shows no peaks other than those arising from the Si (111) substrate, confirming that the films are amorphous. The enhanced luminescence can be used to make high-efficiency optical devices.

  11. Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Hu, Hongyu; Li, Wenbo; Dutta, Niloy K.

    We have designed a tapered planar rib waveguide and numerically studied supercontinuum generation by the propagation of input pulses at 1.55 μm. The Air-SF57 glass-SiO2 waveguide is 2 cm long, with a varying etch depth to manage the total dispersion. This proposed waveguide geometry significantly broadens the output spectrum caused by continuous modification of the phase matching condition for dispersive wave emission. The coherence property has also been investigated, demonstrating that fully coherent supercontinuum extending from ~1 μm to ~4.6 μm can be obtained with proper pumping conditions.

  12. Electrochemical phase analysis of powders in the GdB4-GdB system

    SciTech Connect

    Tkach, A.V.; Masyuk, T.V.; Paderno, Y.B.

    1985-05-01

    In recent years solid-phase voltammetric analysis with a carbon paste electrode has been employed successfully for the determination of the phase composition of a number of oxide and sulfide materials. This is a rapid and highly sensitive method of quantitative analysis, offering many possibilities. In this paper the authors study the feasibility of using voltammetric analysis with a carbon paste electrode for investigating the phase composition of powders in the GdB4-GdB6 system.

  13. Structural, magnetic, and thermal characteristics of the phase transitions in Gd{sub 5}Ga{sub x}Ge{sub 4-x} magnetocaloric materials

    SciTech Connect

    Misra, Sumohan; Mozharivskyj, Yurij; Tsokol, Alexandra O.; Schlagel, Deborah L.; Lograsso, Thomas A.; Miller, Gordon J.

    2009-11-15

    Temperature-dependent, single crystal and powder X-ray diffraction studies as well as magnetization, and heat capacity measurements were carried out on two phases of the Gd{sub 5}Ga{sub x}Ge{sub 4-x} system: for x=0.7 and 1.0. Gd{sub 5}Ga{sub 0.7}Ge{sub 3.3} shows three structure types as a function of temperature: (i) from 165 K to room temperature, the orthorhombic Sm{sub 5}Ge{sub 4}-type structure exists; (ii) below 150 K, it transforms to a orthorhombic Gd{sub 5}Si{sub 4}-type structure; and (iii) a monoclinic Gd{sub 5}Si{sub 2}Ge{sub 2}-type component is observed for the intermediate temperature range of 150 K<=T<=165 K. This is the first time that all these three structure types have been observed for the same composition. For Gd{sub 5}Ga{sub 1.0}Ge{sub 3.0}, the room temperature phase belongs to the orthorhombic Pu{sub 5}Rh{sub 4}-type structure with interslab contacts between main group atoms of 2.837(4) A. Upon heating above 523 K, it transforms to a Gd{sub 5}Si{sub 4}-type structure with this distance decreasing to 2.521(7) A before decomposing above 573 K. - Graphical Abstract: Phase transformations in Gd{sub 5}Ga{sub x}Ge{sub 4-x} magnetocaloric materials as a function of temperature.

  14. Shock-ignition relevant experiments with planar targets on OMEGA

    SciTech Connect

    Hohenberger, M.; Hu, S. X.; Anderson, K. S.; Boehly, T. R.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B.; Theobald, W.; Lafon, M.; Nora, R.; Betti, R.; Meyerhofer, D. D.; Casner, A.; Fratanduono, D. E.; Ribeyre, X.; Schurtz, G.

    2014-02-15

    We report on laser-driven, strong-shock generation and hot-electron production in planar targets in the presence of a pre-plasma at shock-ignition (SI) relevant laser and pre-plasma conditions. 2-D simulations reproduce the shock dynamics well, indicating ablator shocks of up to 75 Mbar have been generated. We observe hot-electron temperatures of ∼70 keV at intensities of 1.4 × 10{sup 15} W/cm{sup 2} with multiple overlapping beams driving the two-plasmon decay instability. When extrapolated to SI-relevant intensities of ∼10{sup 16} W/cm{sup 2}, the hot electron temperature will likely exceed 100 keV, suggesting that tightly focused beams without overlap are better suited for launching the ignitor shock.

  15. Pointed drawings of planar graphs☆

    PubMed Central

    Aichholzer, Oswin; Rote, Günter; Schulz, André; Vogtenhuber, Birgit

    2012-01-01

    We study the problem how to draw a planar graph crossing-free such that every vertex is incident to an angle greater than π. In general a plane straight-line drawing cannot guarantee this property. We present algorithms which construct such drawings with either tangent-continuous biarcs or quadratic Bézier curves (parabolic arcs), even if the positions of the vertices are predefined by a given plane straight-line drawing of the graph. Moreover, the graph can be drawn with circular arcs if the vertices can be placed arbitrarily. The topic is related to non-crossing drawings of multigraphs and vertex labeling. PMID:23471372

  16. Terahertz super thin planar lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ye, Jiasheng; Hu, Dan; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng

    2012-12-01

    Terahertz (THz) radiation is an under developing range in the electromagnetic spectrum. It has attracted a lot of attentions due to its various potential applications. However, THz systems are difficult to be integrated into a smart size due to the limitation of its long wavelength. In this presentation, we propose a new approach to design planar lenses with a thickness of several hundred nanometers in the THz range. The fabricated lenses are characterized with a focal plane imaging system and it is found that they can focus the THz light and image an object well. It is expected that this new approach can pave a way for smart THz systems integration.

  17. Gd{sub 3+}-ESR and magnetic susceptibility of GdCu{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8}

    SciTech Connect

    Coldea, R.; Coldea, M.; Pop, I.

    1994-03-01

    Gd ESR of GdCu{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8} and magnetic susceptibility of GdCu{sub 4}Al{sub 8}, GdMn{sub 4}Al{sub 8}, and YMn{sub 4}Al{sub 8} were measured in the temperature range of 290K--460K and 90K--1050K, respectively. The occurrence of the Mn moment in YMn{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8} is strongly correlated with the critical value of d{approx}2.6{angstrom} of the Mn-Mn distance below which the Mn moment is not stable. The experimental data for GdMn{sub 4}Al{sub 8}, compared with the data for the isostructural compounds GdCu{sub 4}Al{sub 8} and YMn{sub 4}Al{sub 8}, show that near the critical value of d, the existence of Mn moment depends not only on the value of d, but also on the local magnetic surroundings. It has been revealed that the magnetic character of Mn moment in YMn{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8} changes from an itinerant electron type to a local-moment type with increasing temperature.

  18. Planar Be-implanted GaAs junction formation using swept-line electron beam annealing

    SciTech Connect

    Banerjee, S.K.; De Jule, R.Y.; Soda, K.J.

    1983-12-01

    Comparative studies of swept-line electron beam annealing and furnace annealing of Be implanted in n-GaAs doped with Si are presented. Electron beam annealing causes less Be redistribution and results in fewer traps than furnace annealing, but causes site mixing of amphoteric Si. Planar Be-implanted junctions result in a p(+)-nu-n structure for the electron beam annealed samples, similar to thermally quenched samples. It is believed that this is caused by the incorporation of amphoteric Si on Ga and As sites during transient annealing, which produces results similar to thermal quenching. 14 references.

  19. Theory of non-planar orbits

    SciTech Connect

    Antillon, A.; Month, M.

    1985-01-01

    The basic dynamics of a planar accelerator is extended to the non-planar case. This is done using the geometrical concept of torsion and extending the Hamiltonian formalism. A generalized non-planar reference orbit is adopted which introduces torsion in appropriately chosen drift spaces. The parameters of the reference orbit are associated with uncoupled and coupled betatron parameters currently in use. 6 refs.

  20. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  1. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  2. Scan registration using planar features

    NASA Astrophysics Data System (ADS)

    Previtali, M.; Barazzetti, L.; Brumana, R.; Scaioni, M.

    2014-06-01

    Point cloud acquisition by using laser scanners provides an efficient way for 3D as-built modelling of indoor/outdoor urban environments. In the case of large structures, multiple scans may be required to cover the entire scene and registration is needed to merge them together. In general, the identification of corresponding geometric features among a series of scans can be used to compute the 3D rigid-body transformation useful for the registration of each scan into the reference system of the final point cloud. Different automatic or semi-automatic methods have been developed to this purpose. Several solutions based on artificial targets are available, which however may not be suitable in any situations. Methods based on surface matching (like ICP and LS3D) can be applied if the scans to align have a proper geometry and surface texture. In the case of urban and architectural scenes that present the prevalence of a few basic geometric shapes ("Legoland" scenes) the availability of many planar features is exploited here for registration. The presented technique does not require artificial targets to be added to the scanned scene. In addition, unlike other surface-based techniques (like ICP) the planar feature-based registration technique is not limited to work in a pairwise manner but it can handle the simultaneous alignment of multiple scans. Finally, some applications are presented and discussed to show how this technique can achieve accuracy comparable to a consolidated registration method.

  3. Planar Hall effect bridge magnetic field sensors

    SciTech Connect

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-05

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  4. Planarized fiber-FHD optical composite

    NASA Astrophysics Data System (ADS)

    Holmes, C.; Carpenter, L. G.; Gates, J. C.; Gawith, C. B. E.; Smith, P. G. R.

    2015-03-01

    We demonstrate the fabrication of a mechanically robust planarised fibre-FHD optical composite. Fabrication is achieved through deposition and consolidation of optical grade silica soot on to both an optical fibre and planar substrate. The consolidated silica acts in joining the fibre and planar substrate both mechanically and optically. The concept lends itself to applications where long interaction lengths (order of tens of centimetres) and optical interaction via a planar waveguide are required, such as pump schemes, precision layup of fibre optics and hybrid fibre-planar devices. This paper considers the developments in fabrication process that enable component development.

  5. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  6. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  7. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  8. GD SDR Automatic Gain Control Characterization Testing

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) will provide experimenters an opportunity to develop and demonstrate experimental waveforms in space. The GD SDR platform and initial waveform were characterized on the ground before launch and the data will be compared to the data that will be collected during on-orbit operations. A desired function of the SDR is to estimate the received signal to noise ratio (SNR), which would enable experimenters to better determine on-orbit link conditions. The GD SDR does not have an SNR estimator, but it does have an analog and a digital automatic gain control (AGC). The AGCs can be used to estimate the SDR input power which can be converted into a SNR. Tests were conducted to characterize the AGC response to changes in SDR input power and temperature. This purpose of this paper is to describe the tests that were conducted, discuss the results showi ng how the AGCs relate to the SDR input power, and provide recommendations for AGC testing and characterization.

  9. GD SDR Automatic Gain Control Characterization Testing

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) will provide experimenters an opportunity to develop and demonstrate experimental waveforms in space. The GD SDR platform and initial waveform were characterized on the ground before launch and the data will be compared to the data that will be collected during on-orbit operations. A desired function of the SDR is to estimate the received signal to noise ratio (SNR), which would enable experimenters to better determine on-orbit link conditions. The GD SDR does not have an SNR estimator, but it does have an analog and a digital automatic gain control (AGC). The AGCs can be used to estimate the SDR input power which can be converted into a SNR. Tests were conducted to characterize the AGC response to changes in SDR input power and temperature. This purpose of this paper is to describe the tests that were conducted, discuss the results showing how the AGCs relate to the SDR input power, and provide recommendations for AGC testing and characterization.

  10. Ten inch Planar Optic Display

    SciTech Connect

    Beiser, L.; Veligdan, J.

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.