Science.gov

Sample records for ge hawkeye camera

  1. SPEIR: A Ge Compton Camera

    SciTech Connect

    Mihailescu, L; Vetter, K M; Burks, M T; Hull, E L; Craig, W W

    2004-02-11

    The SPEctroscopic Imager for {gamma}-Rays (SPEIR) is a new concept of a compact {gamma}-ray imaging system of high efficiency and spectroscopic resolution with a 4-{pi} field-of-view. The system behind this concept employs double-sided segmented planar Ge detectors accompanied by the use of list-mode photon reconstruction methods to create a sensitive, compact Compton scatter camera.

  2. E-2D Advanced Hawkeye: primary flight display

    NASA Astrophysics Data System (ADS)

    Paolillo, Paul W.; Saxena, Ragini; Garruba, Jonathan; Tripathi, Sanjay; Blanchard, Randy

    2006-05-01

    This paper is a response to the challenge of providing a large area avionics display for the E-2D AHE aircraft. The resulting display design provides a pilot with high-resolution visual information content covering an image area of almost three square feet (Active Area of Samsung display = 33.792cm x 27.0336 cm = 13.304" x 10.643" = 141.596 square inches = 0.983 sq. ft x 3 = 2.95 sq. ft). The avionics display application, design and performance being described is the Primary Flight Display for the E-2D Advanced Hawkeye aircraft. This cockpit display has a screen diagonal size of 17 inches. Three displays, with minimum bezel width, just fit within the available instrument panel area. The significant design constraints of supporting an upgrade installation have been addressed. These constraints include a display image size that is larger than the mounting opening in the instrument panel. This, therefore, requires that the Electromagnetic Interference (EMI) window, LCD panel and backlight all fit within the limited available bezel depth. High brightness and a wide dimming range are supported with a dual mode Cold Cathode Fluorescent Tube (CCFT) and LED backlight. Packaging constraints dictated the use of multiple U shaped fluorescent lamps in a direct view backlight design for a maximum display brightness of 300 foot-Lamberts. The low intensity backlight levels are provided by remote LEDs coupled through a fiber optic mesh. This architecture generates luminous uniformity within a minimum backlight depth. Cross-cockpit viewing is supported with ultra-wide field-of-view performance including contrast and the color stability of an advanced LCD cell design supports. Display system design tradeoffs directed a priority to high optical efficiency for minimum power and weight.

  3. Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies

    PubMed Central

    Schatz, Michael C.; Phillippy, Adam M.; Sommer, Daniel D.; Delcher, Arthur L.; Puiu, Daniela; Narzisi, Giuseppe; Salzberg, Steven L.; Pop, Mihai

    2013-01-01

    Since its launch in 2004, the open-source AMOS project has released several innovative DNA sequence analysis applications including: Hawkeye, a visual analytics tool for inspecting the structure of genome assemblies; the Assembly Forensics and FRCurve pipelines for systematically evaluating the quality of a genome assembly; and AMOScmp, the first comparative genome assembler. These applications have been used to assemble and analyze dozens of genomes ranging in complexity from simple microbial species through mammalian genomes. Recent efforts have been focused on enhancing support for new data characteristics brought on by second- and now third-generation sequencing. This review describes the major components of AMOS in light of these challenges, with an emphasis on methods for assessing assembly quality and the visual analytics capabilities of Hawkeye. These interactive graphical aspects are essential for navigating and understanding the complexities of a genome assembly, from the overall genome structure down to individual bases. Hawkeye and AMOS are available open source at http://amos.sourceforge.net. PMID:22199379

  4. IMS/Satellite Situation Center report. Predicted orbit plots for Hawkeye 1, 1976

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The predicted orbit plots are shown in three projections. The time period covered by each set of projections is 2 days 1 hour, corresponding approximately to the period of Hawkeye 1. The three coordinate systems used are the Geocentric Solar Ecliptic system (GSE), the Geocentric Solar Magnetospheric system (GSM), and the Solar Magnetic system (SM). For each of the three projections, time ticks and codes are given on the satellite trajectories. The codes are interpreted in the table at the base of each plot. Time is given in the table as year/day/decimal hour. The total time covered by each plot is shown at the bottom of each table, and an additional variable is given in the table for each time tick. For the GSM and SM projection this variable is the geocentric distance to the satellite in earth radii, and for the GSE projection the variable is satellite ecliptic latitude in degrees.

  5. Scalability analysis of three monitoring and information systems : MDS2, R-GMA, and Hawkeye.

    SciTech Connect

    Zhang, X.; Freschl, J. L.; Schopf, J. M.; Mathematics and Computer Science; Univ. of Chicago; Univ. of Wisconsin at Madison

    2007-08-01

    Monitoring and information system (MIS) implementations provide data about available resources and services within a distributed system, or Grid. A comprehensive performance evaluation of an MIS can aid in detecting potential bottlenecks, advise in deployment, and help improve future system development. In this paper, we analyze and compare the performance of three implementations in a quantitative manner: the Globus Toolkit Monitoring and Discovery Service (MDS2), the European DataGrid Relational Grid Monitoring Architecture (R-GMA), and the Condor project's Hawkeye. We use the NetLogger toolkit to instrument the main service components of each MIS and conduct four sets of experiments to benchmark their scalability with respect to the number of users, the number of resources, and the amount of data collected. Our study provides quantitative measurements comparable across all systems. We also find performance bottlenecks and identify how they relate to the design goals, underlying architectures, and implementation technologies of the corresponding MIS, and we present guidelines for deploying MISs in practice.

  6. Observations of the Earth's polar cleft at large radial distances with the Hawkeye 1 magnetometer

    SciTech Connect

    Farrell, W.M.; Van Allen, J.A.

    1990-12-01

    Based on 364 spacecraft passes through the dayside region, the position of the polar cleft at large radial distances was determined with the magnetometer flown on Hawkeye 1. This data set represents one of the largest to investigate the high-latitude region at large radial distances, making it ideal for study of the cusp and cleft region. Identification of the cleft depended on noting strong negative deviations of the magnetic field strength in the region from that of the dipole field. In solar magnetic coordinates, cleft observations were found between 40 deg and 70 deg lat. and + or - 75 deg long., while in geocentric magnetospheric coordinates, these observations were found between 20 deg and 75 deg lat. and + or - 75 deg long. The extreme longitudinal extent of 150 deg is larger than those reported in some previous studies. Large magnetic depressions associated with the cleft extend out to 12 earth radii. Beyond this point, low model dipole field strengths make the determination of the cleft based on magnetic depressions unreliable. The cleft occurrences fall within an oval in magnetic latitude and longitude, but this oval is of a statistical nature and cannot be interpreted as the shape of the region at a given moment. (edc)

  7. Observations of the Earth's polar cleft at large radial distances with the Hawkeye 1 magnetometer

    SciTech Connect

    Farrell, W.M.; Van Allen, J.A. )

    1990-12-01

    Based on 364-spacecraft passes through the dayside region, the position of the polar cleft at large redial distances was determined with the magnetometer flown on Hawkeye 1. This data set represents one of the largest to investigate the high-latitude region at large radial distances, making it ideal for the study of the cusp and cleft region. Identification of the cleft depended on noting strong negative deviations of the magnetic field strength in the region from that of the dipole field. In solar magnetic coordinates, cleft observations were found between 40{degree} and 70{degree} latitude and {plus minus}75{degree} longitude, while in geocentric magnetospheric coordinates, these observations were found between 20{degree} and 75{degree} latitude and {plus minus} 75{degree} longitude. The extreme longitudinal extent of 150{degree} is larger than those reported in some previous studies. Large magnetic depressions associated with the cleft extend out to 12 R{sub E}. Beyond this point, low model dipole field strengths make the determination of the cleft based on magnetic depressions unreliable. The cleft occurrences fall within an oval in magnetic latitude and longitude, but this oval is of a statistical nature and cannot be interpreted as the shape of the region at a given moment. As reported in other studies, the cleft was observed to shift to lower latitudes as compared to its quiet time geometry during periods when Kp was large and when the interplanetary magnetic field (IMF) pointed in a southerly direction. A southerly shift was also observed when th solar wind bulk flow speed, V{sub sw}, was large (>450 km/s), and the region might have enlarged when solar wind pressure, P{sub sw}, was large. The variation of the cleft latitude with V{sub sw} and P{sub sw} has not been thoroughly examined in previous studies.

  8. Space Camera

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Nikon's F3 35mm camera was specially modified for use by Space Shuttle astronauts. The modification work produced a spinoff lubricant. Because lubricants in space have a tendency to migrate within the camera, Nikon conducted extensive development to produce nonmigratory lubricants; variations of these lubricants are used in the commercial F3, giving it better performance than conventional lubricants. Another spinoff is the coreless motor which allows the F3 to shoot 140 rolls of film on one set of batteries.

  9. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  10. Nikon Camera

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Nikon FM compact has simplification feature derived from cameras designed for easy, yet accurate use in a weightless environment. Innovation is a plastic-cushioned advance lever which advances the film and simultaneously switches on a built in light meter. With a turn of the lens aperture ring, a glowing signal in viewfinder confirms correct exposure.

  11. CCD Camera

    DOEpatents

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  12. CCD Camera

    DOEpatents

    Roth, R.R.

    1983-08-02

    A CCD camera capable of observing a moving object which has varying intensities of radiation emanating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other. 7 figs.

  13. Caught on Camera.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Describes the benefits of and rules to be followed when using surveillance cameras for school security. Discusses various camera models, including indoor and outdoor fixed position cameras, pan-tilt zoom cameras, and pinhole-lens cameras for covert surveillance. (EV)

  14. Proactive PTZ Camera Control

    NASA Astrophysics Data System (ADS)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  15. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  16. Evaluating intensified camera systems

    SciTech Connect

    S. A. Baker

    2000-06-30

    This paper describes image evaluation techniques used to standardize camera system characterizations. The authors group is involved with building and fielding several types of camera systems. Camera types include gated intensified cameras, multi-frame cameras, and streak cameras. Applications range from X-ray radiography to visible and infrared imaging. Key areas of performance include sensitivity, noise, and resolution. This team has developed an analysis tool, in the form of image processing software, to aid an experimenter in measuring a set of performance metrics for their camera system. These performance parameters are used to identify a camera system's capabilities and limitations while establishing a means for camera system comparisons. The analysis tool is used to evaluate digital images normally recorded with CCD cameras. Electro-optical components provide fast shuttering and/or optical gain to camera systems. Camera systems incorporate a variety of electro-optical components such as microchannel plate (MCP) or proximity focused diode (PFD) image intensifiers; electro-static image tubes; or electron-bombarded (EB) CCDs. It is often valuable to evaluate the performance of an intensified camera in order to determine if a particular system meets experimental requirements.

  17. Novel fundus camera design

    NASA Astrophysics Data System (ADS)

    Dehoog, Edward A.

    A fundus camera a complex optical system that makes use of the principle of reflex free indirect ophthalmoscopy to image the retina. Despite being in existence as early as 1900's, little has changed in the design of a fundus camera and there is minimal information about the design principles utilized. Parameters and specifications involved in the design of fundus camera are determined and their affect on system performance are discussed. Fundus cameras incorporating different design methods are modeled and a performance evaluation based on design parameters is used to determine the effectiveness of each design strategy. By determining the design principles involved in the fundus camera, new cameras can be designed to include specific imaging modalities such as optical coherence tomography, imaging spectroscopy and imaging polarimetry to gather additional information about properties and structure of the retina. Design principles utilized to incorporate such modalities into fundus camera systems are discussed. Design, implementation and testing of a snapshot polarimeter fundus camera are demonstrated.

  18. Advanced camera for surveys

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Ford, Holland C.; Bartko, Frank; Bely, Pierre Y.; Broadhurst, Tom; Burrows, Christopher J.; Cheng, Edward S.; Crocker, James H.; Franx, Marijn; Feldman, Paul D.; Golimowski, David A.; Hartig, George F.; Illingworth, Garth; Kimble, Randy A.; Lesser, Michael P.; Miley, George H.; Postman, Marc; Rafal, Marc D.; Rosati, Piero; Sparks, William B.; Tsvetanov, Zlatan; White, Richard L.; Sullivan, Pamela; Volmer, Paul; LaJeunesse, Tom

    2000-07-01

    The Advanced Camera for Surveys (ACS) is a third generation instrument for the Hubble Space Telescope (HST). It is currently planned for installation in HST during the fourth servicing mission in Summer 2001. The ACS will have three cameras.

  19. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  20. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  1. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  2. Nanosecond frame cameras

    SciTech Connect

    Frank, A M; Wilkins, P R

    2001-01-05

    The advent of CCD cameras and computerized data recording has spurred the development of several new cameras and techniques for recording nanosecond images. We have made a side by side comparison of three nanosecond frame cameras, examining them for both performance and operational characteristics. The cameras include; Micro-Channel Plate/CCD, Image Diode/CCD and Image Diode/Film; combinations of gating/data recording. The advantages and disadvantages of each device will be discussed.

  3. Evaluating intensified camera systems

    SciTech Connect

    S. A. Baker

    2000-07-01

    This paper describes image evaluation techniques used to standardize camera system characterizations. Key areas of performance include resolution, noise, and sensitivity. This team has developed a set of analysis tools, in the form of image processing software used to evaluate camera calibration data, to aid an experimenter in measuring a set of camera performance metrics. These performance metrics identify capabilities and limitations of the camera system, while establishing a means for comparing camera systems. Analysis software is used to evaluate digital camera images recorded with charge-coupled device (CCD) cameras. Several types of intensified camera systems are used in the high-speed imaging field. Electro-optical components are used to provide precise shuttering or optical gain for a camera system. These components including microchannel plate or proximity focused diode image intensifiers, electro-static image tubes, or electron-bombarded CCDs affect system performance. It is important to quantify camera system performance in order to qualify a system as meeting experimental requirements. The camera evaluation tool is designed to provide side-by-side camera comparison and system modeling information.

  4. Harpicon camera for HDTV

    NASA Astrophysics Data System (ADS)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  5. Digital Pinhole Camera

    ERIC Educational Resources Information Center

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  6. 2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  7. 7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  8. 6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. Tower Camera Handbook

    SciTech Connect

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  10. Automated Camera Calibration

    NASA Technical Reports Server (NTRS)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  11. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  12. GRACE star camera noise

    NASA Astrophysics Data System (ADS)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  13. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  14. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  15. Analytical multicollimator camera calibration

    USGS Publications Warehouse

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  16. LSST Camera Optics Design

    SciTech Connect

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  17. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  18. Ringfield lithographic camera

    DOEpatents

    Sweatt, William C.

    1998-01-01

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.

  19. Constrained space camera assembly

    DOEpatents

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  20. CCD Luminescence Camera

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  1. The Camera Cook Book.

    ERIC Educational Resources Information Center

    Education Development Center, Inc., Newton, MA.

    Intended for use with the photographic materials available from the Workshop for Learning Things, Inc., this "camera cookbook" describes procedures that have been tried in classrooms and workshops and proven to be the most functional and inexpensive. Explicit starting off instructions--directions for exploring and loading the camera and for taking…

  2. The DSLR Camera

    NASA Astrophysics Data System (ADS)

    Berkó, Ernő; Argyle, R. W.

    Cameras have developed significantly in the past decade; in particular, digital Single-Lens Reflex Cameras (DSLR) have appeared. As a consequence we can buy cameras of higher and higher pixel number, and mass production has resulted in the great reduction of prices. CMOS sensors used for imaging are increasingly sensitive, and the electronics in the cameras allows images to be taken with much less noise. The software background is developing in a similar way—intelligent programs are created for after-processing and other supplementary works. Nowadays we can find a digital camera in almost every household, most of these cameras are DSLR ones. These can be used very well for astronomical imaging, which is nicely demonstrated by the amount and quality of the spectacular astrophotos appearing in different publications. These examples also show how much post-processing software contributes to the rise in the standard of the pictures. To sum up, the DSLR camera serves as a cheap alternative for the CCD camera, with somewhat weaker technical characteristics. In the following, I will introduce how we can measure the main parameters (position angle and separation) of double stars, based on the methods, software and equipment I use. Others can easily apply these for their own circumstances.

  3. Camera Operator and Videographer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  4. Dry imaging cameras

    PubMed Central

    Indrajit, IK; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-01-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow. PMID:21799589

  5. 3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  6. 7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  7. Replacing 16 mm film cameras with high definition digital cameras

    SciTech Connect

    Balch, K.S.

    1995-12-31

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  8. Structured light camera calibration

    NASA Astrophysics Data System (ADS)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  9. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  10. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  11. Ringfield lithographic camera

    DOEpatents

    Sweatt, W.C.

    1998-09-08

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D{sub source} {approx_equal} 0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors. 11 figs.

  12. Ga:Ge array development

    NASA Technical Reports Server (NTRS)

    Young, Erick T.; Rieke, G. H.; Low, Frank J.; Haller, E. E.; Beeman, J. W.

    1989-01-01

    Work at the University of Arizona and at Lawrence Berkeley Laboratory on the development of a far infrared array camera for the Multiband Imaging Photometer on the Space Infrared Telescope Facility (SIRTF) is discussed. The camera design uses stacked linear arrays of Ge:Ga photoconductors to make a full two-dimensional array. Initial results from a 1 x 16 array using a thermally isolated J-FET readout are presented. Dark currents below 300 electrons s(exp -1) and readout noises of 60 electrons were attained. Operation of these types of detectors in an ionizing radiation environment are discussed. Results of radiation testing using both low energy gamma rays and protons are given. Work on advanced C-MOS cascode readouts that promise lower temperature operation and higher levels of performance than the current J-FET based devices is described.

  13. The MKID Camera

    NASA Astrophysics Data System (ADS)

    Maloney, P. R.; Czakon, N. G.; Day, P. K.; Duan, R.; Gao, J.; Glenn, J.; Golwala, S.; Hollister, M.; LeDuc, H. G.; Mazin, B.; Noroozian, O.; Nguyen, H. T.; Sayers, J.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Wilson, P.; Zmuidzinas, J.

    2009-12-01

    The MKID Camera project is a collaborative effort of Caltech, JPL, the University of Colorado, and UC Santa Barbara to develop a large-format, multi-color millimeter and submillimeter-wavelength camera for astronomy using microwave kinetic inductance detectors (MKIDs). These are superconducting, micro-resonators fabricated from thin aluminum and niobium films. We couple the MKIDs to multi-slot antennas and measure the change in surface impedance produced by photon-induced breaking of Cooper pairs. The readout is almost entirely at room temperature and can be highly multiplexed; in principle hundreds or even thousands of resonators could be read out on a single feedline. The camera will have 576 spatial pixels that image simultaneously in four bands at 750, 850, 1100 and 1300 microns. It is scheduled for deployment at the Caltech Submillimeter Observatory in the summer of 2010. We present an overview of the camera design and readout and describe the current status of testing and fabrication.

  14. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  15. Targetless Camera Calibration

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Mussio, L.; Remondino, F.; Scaioni, M.

    2011-09-01

    In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  16. Miniature TV Camera

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Originally devised to observe Saturn stage separation during Apollo flights, Marshall Space Flight Center's Miniature Television Camera, measuring only 4 x 3 x 1 1/2 inches, quickly made its way to the commercial telecommunications market.

  17. Gamma ray camera

    SciTech Connect

    Robbins, C.D.; Wang, S.

    1980-09-09

    An anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the anger camera, the image intensifier tube having a negatively charged flat scintillator screen and a flat photocathode layer and a grounded, flat output phosphor display screen all of the same dimension (Unity image magnification) and all within a grounded metallic tube envelope and having a metallic, inwardly concaved input window between the scintillator screen and the collimator.

  18. Camera Edge Response

    NASA Astrophysics Data System (ADS)

    Zisk, Stanley H.; Wittels, Norman

    1988-02-01

    Edge location is an important machine vision task. Machine vision systems perform mathematical operations on rectangular arrays of numbers that are intended to faithfully represent the spatial distribution of scene luminance. The numbers are produced by periodic sampling and quantization of the camera's video output. This sequence can cause artifacts to appear in the data with a noise spectrum that is high in power at high spatial frequencies. This is a problem because most edge detection algorithms are preferentially sensitive to the high-frequency content in an image. Solid state cameras can introduce errors because of the spatial periodicity of their sensor elements. This can result in problems when image edges are aligned with camera pixel boundaries: (a) some cameras introduce transients into the video signal while switching between sensor elements; (b) most cameras use analog low-pass filters to minimize sampling artifacts and these introduce video phase delays that shift the locations of edges. The problems compound when the vision system samples asynchronously with the camera's pixel rate. Moire patterns (analogous to beat frequencies) can result. In this paper, we examine and model quantization effects in a machine vision system with particular emphasis on edge detection performance. We also compare our models with experimental measurements.

  19. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  20. 9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ON RAILROAD TRACK AND FIXED CAMERA STATION 1400 (BUILDING NO. 42021) ABOVE, ADJACENT TO STATE HIGHWAY 39, LOOKING WEST, March 23, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  1. 1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  3. Uncooled radiometric camera performance

    NASA Astrophysics Data System (ADS)

    Meyer, Bill; Hoelter, T.

    1998-07-01

    Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

  4. The Dark Energy Camera

    SciTech Connect

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  5. The CAMCAO infrared camera

    NASA Astrophysics Data System (ADS)

    Amorim, Antonio; Melo, Antonio; Alves, Joao; Rebordao, Jose; Pinhao, Jose; Bonfait, Gregoire; Lima, Jorge; Barros, Rui; Fernandes, Rui; Catarino, Isabel; Carvalho, Marta; Marques, Rui; Poncet, Jean-Marc; Duarte Santos, Filipe; Finger, Gert; Hubin, Norbert; Huster, Gotthard; Koch, Franz; Lizon, Jean-Louis; Marchetti, Enrico

    2004-09-01

    The CAMCAO instrument is a high resolution near infrared (NIR) camera conceived to operate together with the new ESO Multi-conjugate Adaptive optics Demonstrator (MAD) with the goal of evaluating the feasibility of Multi-Conjugate Adaptive Optics techniques (MCAO) on the sky. It is a high-resolution wide field of view (FoV) camera that is optimized to use the extended correction of the atmospheric turbulence provided by MCAO. While the first purpose of this camera is the sky observation, in the MAD setup, to validate the MCAO technology, in a second phase, the CAMCAO camera is planned to attach directly to the VLT for scientific astrophysical studies. The camera is based on the 2kx2k HAWAII2 infrared detector controlled by an ESO external IRACE system and includes standard IR band filters mounted on a positional filter wheel. The CAMCAO design requires that the optical components and the IR detector should be kept at low temperatures in order to avoid emitting radiation and lower detector noise in the region analysis. The cryogenic system inclues a LN2 tank and a sptially developed pulse tube cryocooler. Field and pupil cold stops are implemented to reduce the infrared background and the stray-light. The CAMCAO optics provide diffraction limited performance down to J Band, but the detector sampling fulfills the Nyquist criterion for the K band (2.2mm).

  6. Satellite camera image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Savides, John (Inventor); Hanson, Charles W. (Inventor)

    1987-01-01

    Pixels within a satellite camera (1, 2) image are precisely located in terms of latitude and longitude on a celestial body, such as the earth, being imaged. A computer (60) on the earth generates models (40, 50) of the satellite's orbit and attitude, respectively. The orbit model (40) is generated from measurements of stars and landmarks taken by the camera (1, 2), and by range data. The orbit model (40) is an expression of the satellite's latitude and longitude at the subsatellite point, and of the altitude of the satellite, as a function of time, using as coefficients (K) the six Keplerian elements at epoch. The attitude model (50) is based upon star measurements taken by each camera (1, 2). The attitude model (50) is a set of expressions for the deviations in a set of mutually orthogonal reference optical axes (x, y, z) as a function of time, for each camera (1, 2). Measured data is fit into the models (40, 50) using a walking least squares fit algorithm. A transformation computer (66 ) transforms pixel coordinates as telemetered by the camera (1, 2) into earth latitude and longitude coordinates, using the orbit and attitude models (40, 50).

  7. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  8. The Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Flaugher, B.; Diehl, H. T.; Honscheid, K.; Abbott, T. M. C.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Antonik, M.; Ballester, O.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Bonati, M.; Boprie, D.; Brooks, D.; Buckley-Geer, E. J.; Campa, J.; Cardiel-Sas, L.; Castander, F. J.; Castilla, J.; Cease, H.; Cela-Ruiz, J. M.; Chappa, S.; Chi, E.; Cooper, C.; da Costa, L. N.; Dede, E.; Derylo, G.; DePoy, D. L.; de Vicente, J.; Doel, P.; Drlica-Wagner, A.; Eiting, J.; Elliott, A. E.; Emes, J.; Estrada, J.; Fausti Neto, A.; Finley, D. A.; Flores, R.; Frieman, J.; Gerdes, D.; Gladders, M. D.; Gregory, B.; Gutierrez, G. R.; Hao, J.; Holland, S. E.; Holm, S.; Huffman, D.; Jackson, C.; James, D. J.; Jonas, M.; Karcher, A.; Karliner, I.; Kent, S.; Kessler, R.; Kozlovsky, M.; Kron, R. G.; Kubik, D.; Kuehn, K.; Kuhlmann, S.; Kuk, K.; Lahav, O.; Lathrop, A.; Lee, J.; Levi, M. E.; Lewis, P.; Li, T. S.; Mandrichenko, I.; Marshall, J. L.; Martinez, G.; Merritt, K. W.; Miquel, R.; Muñoz, F.; Neilsen, E. H.; Nichol, R. C.; Nord, B.; Ogando, R.; Olsen, J.; Palaio, N.; Patton, K.; Peoples, J.; Plazas, A. A.; Rauch, J.; Reil, K.; Rheault, J.-P.; Roe, N. A.; Rogers, H.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R. H.; Schmidt, R.; Schmitt, R.; Schubnell, M.; Schultz, K.; Schurter, P.; Scott, L.; Serrano, S.; Shaw, T. M.; Smith, R. C.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Suchyta, E.; Sypniewski, A.; Tarle, G.; Thaler, J.; Tighe, R.; Tran, C.; Tucker, D.; Walker, A. R.; Wang, G.; Watson, M.; Weaverdyck, C.; Wester, W.; Woods, R.; Yanny, B.; DES Collaboration

    2015-11-01

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel-1. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  9. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  10. Solid state television camera

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, fabrication, and tests of a solid state television camera using a new charge-coupled imaging device are reported. An RCA charge-coupled device arranged in a 512 by 320 format and directly compatible with EIA format standards was the sensor selected. This is a three-phase, sealed surface-channel array that has 163,840 sensor elements, which employs a vertical frame transfer system for image readout. Included are test results of the complete camera system, circuit description and changes to such circuits as a result of integration and test, maintenance and operation section, recommendations to improve the camera system, and a complete set of electrical and mechanical drawing sketches.

  11. Selective-imaging camera

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  12. Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor)

    1992-01-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  13. Artificial human vision camera

    NASA Astrophysics Data System (ADS)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  14. Pseudomorphic GeSn/Ge (001) heterostructures

    SciTech Connect

    Tonkikh, A. A.; Talalaev, V. G.; Werner, P.

    2013-11-15

    The synthesis of pseudomorphic GeSn heterostructures on a Ge (001) substrate by molecular-beam epitaxy is described. Investigations by transmission electron microscopy show that the GeSn layers are defect free and possess cubic diamondlike structure. Photoluminescence spectroscopy reveals interband radiative recombination in the GeSn quantum wells, which is identified as indirect transitions between the subbands of heavy electrons and heavy holes. On the basis of experimental data and modeling of the band structure of pseudomorphic GeSn compounds, the lower boundary of the bowing parameter for the indirect band gap is estimated as b{sub L} {>=} 1.47 eV.

  15. Underwater camera with depth measurement

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  16. Imaging phoswich anger camera

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sood, R. K.

    1991-08-01

    High angular resolution and low background are the primary requisites for detectors for future astronomy experiments in the low energy gamma-ray region. Scintillation counters are still the only available large area detector for studies in this energy range. Preliminary details of a large area phoswich anger camera designed for coded aperture imaging is described and its background and position characteristics are discussed.

  17. Photogrammetric camera calibration

    USGS Publications Warehouse

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  18. Spas color camera

    NASA Technical Reports Server (NTRS)

    Toffales, C.

    1983-01-01

    The procedures to be followed in assessing the performance of the MOS color camera are defined. Aspects considered include: horizontal and vertical resolution; value of the video signal; gray scale rendition; environmental (vibration and temperature) tests; signal to noise ratios; and white balance correction.

  19. Anger Camera Firmware

    Energy Science and Technology Software Center (ESTSC)

    2010-11-19

    The firmware is responsible for the operation of Anger Camera Electronics, calculation of position, time of flight and digital communications. It provides a first stage analysis of 48 signals from 48 analog signals that have been converted to digital values using A/D convertors.

  20. Jack & the Video Camera

    ERIC Educational Resources Information Center

    Charlan, Nathan

    2010-01-01

    This article narrates how the use of video camera has transformed the life of Jack Williams, a 10-year-old boy from Colorado Springs, Colorado, who has autism. The way autism affected Jack was unique. For the first nine years of his life, Jack remained in his world, alone. Functionally non-verbal and with motor skill problems that affected his…

  1. Advanced Virgo phase cameras

    NASA Astrophysics Data System (ADS)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  2. The LSST Camera Overview

    SciTech Connect

    Gilmore, Kirk; Kahn, Steven A.; Nordby, Martin; Burke, David; O'Connor, Paul; Oliver, John; Radeka, Veljko; Schalk, Terry; Schindler, Rafe; /SLAC

    2007-01-10

    The LSST camera is a wide-field optical (0.35-1um) imager designed to provide a 3.5 degree FOV with better than 0.2 arcsecond sampling. The detector format will be a circular mosaic providing approximately 3.2 Gigapixels per image. The camera includes a filter mechanism and, shuttering capability. It is positioned in the middle of the telescope where cross-sectional area is constrained by optical vignetting and heat dissipation must be controlled to limit thermal gradients in the optical beam. The fast, f/1.2 beam will require tight tolerances on the focal plane mechanical assembly. The focal plane array operates at a temperature of approximately -100 C to achieve desired detector performance. The focal plane array is contained within an evacuated cryostat, which incorporates detector front-end electronics and thermal control. The cryostat lens serves as an entrance window and vacuum seal for the cryostat. Similarly, the camera body lens serves as an entrance window and gas seal for the camera housing, which is filled with a suitable gas to provide the operating environment for the shutter and filter change mechanisms. The filter carousel can accommodate 5 filters, each 75 cm in diameter, for rapid exchange without external intervention.

  3. Make a Pinhole Camera

    ERIC Educational Resources Information Center

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  4. Communities, Cameras, and Conservation

    ERIC Educational Resources Information Center

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  5. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  6. 15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL TO SLED TRACK. Looking west southwest down Camera Road. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  7. Changes in local energy spectra with SPECT rotation for two Anger cameras

    SciTech Connect

    Koral, K.F.; Luo, J.Q.; Ahmad, W.; Buchbinder, S.; Ficaro, E.

    1995-08-01

    The authors investigated the shift of local energy spectra with SPECT rotation for the GE 400 AT and the Picker Prism 3000 tomographs. A Co-57 flood source was taped to the parallel-beam collimator of the GE 400 AT; a Tc-99m line source was placed at the focus of the fan-beam collimator of one head of the Picker Prism. The count-based method, which employs a narrow window (about 4 keV) on the maximum slope of the photopeak, was used with both systems. Non-linear, polynomial spectral fittings was applied to x-y-E data acquisitions with the GE camera. The fitting yielded either shifts or shifts and width changes. Results show (1) the shifts are pseudo-sinusoidal with angle and similar for different spatial locations, (2) the average of their absolute value is 0.71 keV and 0.13 keV for the GE and Picker cameras, respectively, (3) width changes for the GE camera are small and appear random, (4) the calculated shifts from the count-based method for the central part of the GE camera are correlated with those from the spectral fitting method. They are 12% smaller. The conclusion is that energy shift with angle may be present with many rotating cameras although they may be smaller with newer cameras. It might be necessary to account for them in schemes designed for high-accuracy compensation of Compton-scattered gamma rays although they possibly could be ignored for newer cameras.

  8. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  9. LSST Camera Optics

    SciTech Connect

    Olivier, S S; Seppala, L; Gilmore, K; Hale, L; Whistler, W

    2006-06-05

    The Large Synoptic Survey Telescope (LSST) is a unique, three-mirror, modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary feeding a camera system that includes corrector optics to produce a 3.5 degree field of view with excellent image quality (<0.3 arcsecond 80% encircled diffracted energy) over the entire field from blue to near infra-red wavelengths. We describe the design of the LSST camera optics, consisting of three refractive lenses with diameters of 1.6m, 1.0m and 0.7m, along with a set of interchangeable, broad-band, interference filters with diameters of 0.75m. We also describe current plans for fabricating, coating, mounting and testing these lenses and filters.

  10. The NEAT Camera Project

    NASA Technical Reports Server (NTRS)

    Jr., Ray L. Newburn

    1995-01-01

    The NEAT (Near Earth Asteroid Tracking) camera system consists of a camera head with a 6.3 cm square 4096 x 4096 pixel CCD, fast electronics, and a Sun Sparc 20 data and control computer with dual CPUs, 256 Mbytes of memory, and 36 Gbytes of hard disk. The system was designed for optimum use with an Air Force GEODSS (Ground-based Electro-Optical Deep Space Surveillance) telescope. The GEODSS telescopes have 1 m f/2.15 objectives of the Ritchey-Chretian type, designed originally for satellite tracking. Installation of NEAT began July 25 at the Air Force Facility on Haleakala, a 3000 m peak on Maui in Hawaii.

  11. Combustion pinhole camera system

    DOEpatents

    Witte, Arvel B.

    1984-02-21

    A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  12. Combustion pinhole camera system

    DOEpatents

    Witte, A.B.

    1984-02-21

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor. 2 figs.

  13. Streak camera receiver definition study

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hunkler, L. T., Sr.; Letzring, S. A.; Jaanimagi, P.

    1990-01-01

    Detailed streak camera definition studies were made as a first step toward full flight qualification of a dual channel picosecond resolution streak camera receiver for the Geoscience Laser Altimeter and Ranging System (GLRS). The streak camera receiver requirements are discussed as they pertain specifically to the GLRS system, and estimates of the characteristics of the streak camera are given, based upon existing and near-term technological capabilities. Important problem areas are highlighted, and possible corresponding solutions are discussed.

  14. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  15. Geometric database maintenance using CCTV cameras and overlay graphics

    NASA Technical Reports Server (NTRS)

    Oxenberg, Sheldon C.; Landell, B. Patrick; Kan, Edwin

    1988-01-01

    An interactive graphics system using closed circuit television (CCTV) cameras for remote verification and maintenance of a geometric world model database has been demonstrated in GE's telerobotics testbed. The database provides geometric models and locations of objects viewed by CCTV cameras and manipulated by telerobots. To update the database, an operator uses the interactive graphics system to superimpose a wireframe line drawing of an object with known dimensions on a live video scene containing that object. The methodology used is multipoint positioning to easily superimpose a wireframe graphic on the CCTV image of an object in the work scene. An enhanced version of GE's interactive graphics system will provide the object designation function for the operator control station of the Jet Propulsion Laboratory's telerobot demonstration system.

  16. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  17. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  18. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  19. Hemispherical Laue camera

    DOEpatents

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  20. Adaptive compressive sensing camera

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  1. Phoenix Robotic Arm Camera

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Goetz, W.; Hartwig, H.; Hviid, S. F.; Kramm, R.; Markiewicz, W. J.; Reynolds, R.; Shinohara, C.; Smith, P.; Tanner, R.; Woida, P.; Woida, R.; Bos, B. J.; Lemmon, M. T.

    2008-10-01

    The Phoenix Robotic Arm Camera (RAC) is a variable-focus color camera mounted to the Robotic Arm (RA) of the Phoenix Mars Lander. It is designed to acquire both close-up images of the Martian surface and microscopic images (down to a scale of 23 μm/pixel) of material collected in the RA scoop. The mounting position at the end of the Robotic Arm allows the RAC to be actively positioned for imaging of targets not easily seen by the Stereo Surface Imager (SSI), such as excavated trench walls and targets under the Lander structure. Color information is acquired by illuminating the target with red, green, and blue light-emitting diodes. Digital terrain models (DTM) can be generated from RAC images acquired from different view points. This can provide high-resolution stereo information about fine details of the trench walls. The large stereo baseline possible with the arm can also provide a far-field DTM. The primary science objectives of the RAC are the search for subsurface soil/ice layering at the landing site and the characterization of scoop samples prior to delivery to other instruments on board Phoenix. The RAC shall also provide low-resolution panoramas in support of SSI activities and acquire images of the Lander deck for instrument and Lander check out. The camera design was inherited from the unsuccessful Mars Polar Lander mission (1999) and further developed for the (canceled) Mars Surveyor 2001 Lander (MSL01). Extensive testing and partial recalibration qualified the MSL01 RAC flight model for integration into the Phoenix science payload.

  2. DEVICE CONTROLLER, CAMERA CONTROL

    Energy Science and Technology Software Center (ESTSC)

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher),more » devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.« less

  3. DEVICE CONTROLLER, CAMERA CONTROL

    SciTech Connect

    Perry, Marcia

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher), devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.

  4. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.

  5. A Monte Carlo evaluation of three Compton camera absorbers.

    PubMed

    Uche, C Z; Round, W H; Cree, M J

    2011-09-01

    We present a quantitative study on the performance of cadmium zinc telluride (CZT), thallium-doped sodium iodide (NaI(Tl)) and germanium (Ge) detectors as potential Compton camera absorbers. The GEANT4 toolkit was used to model the performance of these materials over the nuclear medicine energy range. CZT and Ge demonstrate the highest and lowest efficiencies respectively. Although the best spatial resolution was attained for Ge, its lowest ratio of single photoelectric to multiple interactions suggests that it is most prone to inter-pixel cross-talk. In contrast, CZT, which demonstrates the least positioning error due to multiple interactions, has a comparable spatial resolution with Ge. Therefore, we modelled a Compton camera system based on silicon (Si) and CZT as the scatterer and absorber respectively. The effects of the detector parameters of our proposed system on image resolution were evaluated and our results show good agreement with previous studies. Interestingly, spatial resolution which accounted for the least image degradation at 140.5 keV became the dominant degrading factor at 511 keV, indicating that the absorber parameters play some key roles at higher energies. The results of this study have validated the predictions by An et al. which state that the use of a higher energy gamma source together with reduction of the absorber segmentation to sub-millimetre could achieve the image resolution of 5 mm required in medical imaging. PMID:21710232

  6. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  7. Stereoscopic camera design

    NASA Astrophysics Data System (ADS)

    Montgomery, David J.; Jones, Christopher K.; Stewart, James N.; Smith, Alan

    2002-05-01

    It is clear from the literature that the majority of work in stereoscopic imaging is directed towards the development of modern stereoscopic displays. As costs come down, wider public interest in this technology is expected to increase. This new technology would require new methods of image formation. Advances in stereo computer graphics will of course lead to the creation of new stereo computer games, graphics in films etc. However, the consumer would also like to see real-world stereoscopic images, pictures of family, holiday snaps etc. Such scenery would have wide ranges of depth to accommodate and would need also to cope with moving objects, such as cars, and in particular other people. Thus, the consumer acceptance of auto/stereoscopic displays and 3D in general would be greatly enhanced by the existence of a quality stereoscopic camera. This paper will cover an analysis of existing stereoscopic camera designs and show that they can be categorized into four different types, with inherent advantages and disadvantages. A recommendation is then made with regard to 3D consumer still and video photography. The paper will go on to discuss this recommendation and describe its advantages and how it can be realized in practice.

  8. NFC - Narrow Field Camera

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Gorková, S.

    2015-01-01

    We have been introducing a low-cost CCTV video system for faint meteor monitoring and here we describe the first results from 5 months of two-station operations. Our system called NFC (Narrow Field Camera) with a meteor limiting magnitude around +6.5mag allows research on trajectories of less massive meteoroids within individual parent meteor showers and the sporadic background. At present 4 stations (2 pairs with coordinated fields of view) of NFC system are operated in the frame of CEMeNt (Central European Meteor Network). The heart of each NFC station is a sensitive CCTV camera Watec 902 H2 and a fast cinematographic lens Meopta Meostigmat 1/50 - 52.5 mm (50 mm focal length and fixed aperture f/1.0). In this paper we present the first results based on 1595 individual meteors, 368 of which were recorded from two stations simultaneously. This data set allows the first empirical verification of theoretical assumptions for NFC system capabilities (stellar and meteor magnitude limit, meteor apparent brightness distribution and accuracy of single station measurements) and the first low mass meteoroid trajectory calculations. Our experimental data clearly showed the capabilities of the proposed system for low mass meteor registration and for calculations based on NFC data to lead to a significant refinement in the orbital elements for low mass meteoroids.

  9. New measurement of the electron flux from 10 GeV to 100 GeV with the bets instrument

    NASA Astrophysics Data System (ADS)

    Torii, S.; Tamura, T.; Tateyama, N.; Yoshida, K.; Yamagami, T.; Kamioka, E.; Saito, Y.; Murakami, H.; Kobayashi, T.; Komori, Y.; Kasahara, K.; Yuda, T.; Nishimura, J.

    The BETS (balloon-borne electron telescope with scintillating fibers) instrument has been developed for high-altitude balloon flights to observe the cosmic ray electrons with energies of 10 GeV to several 100 GeV. The detector is a Lead/SciFi sampling calorimeter consisting of 36 SciFi belts (each 280 mm wide) and 8 lead plates (each 5 mm thick). The electron identification is performed by triggering the electro-magnetic showers on board and by analyzing the three-dimensional shower images by an intensified CCD camera. It is demonstrated in the flight data in 1995 and 1997 that a reliable identification of the electron component against the proton background is achieved up to a few 100 GeV. The performance of detector was tested by the CERN-SPS electron beams in 1996 and with the proton beams in 1997. The obtained energy spectrum is consistent with the recent observation by HEAT, although our result still has a little room for improvement. The energy spectrum from 10 GeV to 1000 GeV which is obtained by combining these data and the emulsion chamber data (Nishimura 1997) suggests that the diffusion constant is about 1 × 10 28 ( E/GeV) 0.3 cm 2/sec in the energy range between 10 GeV and 1000 GeV. A hump in the energy spectrum is observed around several hundred GeV, which is expected from a nearby source.

  10. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  11. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  12. A Motionless Camera

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Omniview, a motionless, noiseless, exceptionally versatile camera was developed for NASA as a receiving device for guiding space robots. The system can see in one direction and provide as many as four views simultaneously. Developed by Omniview, Inc. (formerly TRI) under a NASA Small Business Innovation Research (SBIR) grant, the system's image transformation electronics produce a real-time image from anywhere within a hemispherical field. Lens distortion is removed, and a corrected "flat" view appears on a monitor. Key elements are a high resolution charge coupled device (CCD), image correction circuitry and a microcomputer for image processing. The system can be adapted to existing installations. Applications include security and surveillance, teleconferencing, imaging, virtual reality, broadcast video and military operations. Omniview technology is now called IPIX. The company was founded in 1986 as TeleRobotics International, became Omniview in 1995, and changed its name to Interactive Pictures Corporation in 1997.

  13. Single-photon imaging camera development for night vision

    NASA Astrophysics Data System (ADS)

    Vasile, Stefan; Cheng, Jing; Lipson, Jerold; Liu, Jifeng; Michel, Jurgen

    2010-04-01

    Single-photon imaging in infrared will add a new valuable tool to night imaging cameras. Despite years of development, high-sensitivity SWIR cameras are still expensive and not ready for large-volume production. Germanium (Ge) is a promising semiconductor to convert SWIR radiation and it has seen extensive development in conjunction with highspeed optical communications. We are demonstrating a new low-light level infrared array technology based on the single-photon sensitive Geiger avalanche PhotoDiode (Si-GPD) array technology developed at aPeak and low-dislocation Germanium processing developed at MIT. The core of the imaging camera is a Ge:Si photon-counting GPD pixel with CMOS readout. The primary technology objective is to demonstrate through prototyping and semiconductor process development the technical feasibility of single-photon detection cameras sensitive in the SWIR and set the performance specifications. We report on prototype Ge:Si structures compatible with the GPD operation and technology. We demonstrate >80% quantum efficiency at 1310nm and 45%-60% quantum efficiency at 1550nm. Dark current measurements indicate that single-photon sensitivity (2.6x10-18W/pixel) is achievable by cooling the detector at cryogenic temperatures down to 53K. A digital developed to provide adjustable dynamic range and frame rate is reported. Because the GPD detectors have intrinsic excellent gating and ranging capability, the pixel architecture is developed to enable the dual mode operation - passive illumination two-dimensional imaging (night vision) and active illumination three-dimensional imaging.

  14. Camera Calibration for Uav Application Using Sensor of Mobile Camera

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Chikatsu, H.

    2015-05-01

    Recently, 3D measurements using small unmanned aerial vehicles (UAVs) have increased in Japan, because small type UAVs is easily available at low cost and the analysis software can be created the easily 3D models. However, small type UAVs have a problem: they have very short flight times and a small payload. In particular, as the payload of a small type UAV increases, its flight time decreases. Therefore, it is advantageous to use lightweight sensors in small type UAVs. A mobile camera is lightweight and has many sensors such as an accelerometer, a magnetic field, and a gyroscope. Moreover, these sensors can be used simultaneously. Therefore, the authors think that the problems of small UAVs can be solved using the mobile camera. The authors executed camera calibration using a test target for evaluating sensor values measured using a mobile camera. Consequently, the authors confirmed the same accuracy with normal camera calibration.

  15. The underwater camera calibration based on virtual camera lens distortion

    NASA Astrophysics Data System (ADS)

    Qin, Dahui; Mao, Ting; Cheng, Peng; Zhang, Zhiliang

    2011-08-01

    The machine view is becoming more and more popular in underwater. It is a challenge to calibrate the camera underwater because of the complicated light ray path in underwater and air environment. In this paper we firstly analyzed characteristic of the camera when light transported from air to water. Then we proposed a new method that takes the high-level camera distortion model to compensate the deviation of the light refraction when light ray come through the water and air media. In the end experience result shows the high-level distortion model can simulate the effect made by the underwater light refraction which also makes effect on the camera's image in the process of the camera underwater calibration.

  16. Multi-PSPMT scintillation camera

    SciTech Connect

    Pani, R.; Pellegrini, R.; Trotta, G.; Scopinaro, F.; Soluri, A.; Vincentis, G. de; Scafe, R.; Pergola, A.

    1999-06-01

    Gamma ray imaging is usually accomplished by the use of a relatively large scintillating crystal coupled to either a number of photomultipliers (PMTs) (Anger Camera) or to a single large Position Sensitive PMT (PSPMT). Recently the development of new diagnostic techniques, such as scintimammography and radio-guided surgery, have highlighted a number of significant limitations of the Anger camera in such imaging procedures. In this paper a dedicated gamma camera is proposed for clinical applications with the aim of improving image quality by utilizing detectors with an appropriate size and shape for the part of the body under examination. This novel scintillation camera is based upon an array of PSPMTs (Hamamatsu R5900-C8). The basic concept of this camera is identical to the Anger Camera with the exception of the substitution of PSPMTs for the PMTs. In this configuration it is possible to use the high resolution of the PSPMTs and still correctly position events lying between PSPMTs. In this work the test configuration is a 2 by 2 array of PSPMTs. Some advantages of this camera are: spatial resolution less than 2 mm FWHM, good linearity, thickness less than 3 cm, light weight, lower cost than equivalent area PSPMT, large detection area when coupled to scintillating arrays, small dead boundary zone (< 3 mm) and flexibility in the shape of the camera.

  17. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites. Meteorites have great…

  18. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  19. Radiation camera motion correction system

    DOEpatents

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  20. SEOS frame camera applications study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research and development satellite is discussed which will provide opportunities for observation of transient phenomena that fall within the fixed viewing circle of the spacecraft. The evaluation of possible applications for frame cameras, for SEOS, are studied. The computed lens characteristics for each camera are listed.

  1. Digital Cameras for Student Use.

    ERIC Educational Resources Information Center

    Simpson, Carol

    1997-01-01

    Describes the features, equipment and operations of digital cameras and compares three different digital cameras for use in education. Price, technology requirements, features, transfer software, and accessories for the Kodak DC25, Olympus D-200L and Casio QV-100 are presented in a comparison table. (AEF)

  2. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F., III; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  3. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  4. LISS-4 camera for Resourcesat

    NASA Astrophysics Data System (ADS)

    Paul, Sandip; Dave, Himanshu; Dewan, Chirag; Kumar, Pradeep; Sansowa, Satwinder Singh; Dave, Amit; Sharma, B. N.; Verma, Anurag

    2006-12-01

    The Indian Remote Sensing Satellites use indigenously developed high resolution cameras for generating data related to vegetation, landform /geomorphic and geological boundaries. This data from this camera is used for working out maps at 1:12500 scale for national level policy development for town planning, vegetation etc. The LISS-4 Camera was launched onboard Resourcesat-1 satellite by ISRO in 2003. LISS-4 is a high-resolution multi-spectral camera with three spectral bands and having a resolution of 5.8m and swath of 23Km from 817 Km altitude. The panchromatic mode provides a swath of 70Km and 5-day revisit. This paper briefly discusses the configuration of LISS-4 Camera of Resourcesat-1, its onboard performance and also the changes in the Camera being developed for Resourcesat-2. LISS-4 camera images the earth in push-broom mode. It is designed around a three mirror un-obscured telescope, three linear 12-K CCDs and associated electronics for each band. Three spectral bands are realized by splitting the focal plane in along track direction using an isosceles prism. High-speed Camera Electronics is designed for each detector with 12- bit digitization and digital double sampling of video. Seven bit data selected from 10 MSBs data by Telecommand is transmitted. The total dynamic range of the sensor covers up to 100% albedo. The camera structure has heritage of IRS- 1C/D. The optical elements are precisely glued to specially designed flexure mounts. The camera is assembled onto a rotating deck on spacecraft to facilitate +/- 26° steering in Pitch-Yaw plane. The camera is held on spacecraft in a stowed condition before deployment. The excellent imageries from LISS-4 Camera onboard Resourcesat-1 are routinely used worldwide. Such second Camera is being developed for Resourcesat-2 launch in 2007 with similar performance. The Camera electronics is optimized and miniaturized. The size and weight are reduced to one third and the power to half of the values in Resourcesat

  5. IMAX camera (12-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The IMAX camera system is used to record on-orbit activities of interest to the public. Because of the extremely high resolution of the IMAX camera, projector, and audio systems, the audience is afforded a motion picture experience unlike any other. IMAX and OMNIMAX motion picture systems were designed to create motion picture images of superior quality and audience impact. The IMAX camera is a 65 mm, single lens, reflex viewing design with a 15 perforation per frame horizontal pull across. The frame size is 2.06 x 2.77 inches. Film travels through the camera at a rate of 336 feet per minute when the camera is running at the standard 24 frames/sec.

  6. Coherent infrared imaging camera (CIRIC)

    SciTech Connect

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  7. Proportional counter radiation camera

    DOEpatents

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  8. Cameras for digital microscopy.

    PubMed

    Spring, Kenneth R

    2013-01-01

    This chapter reviews the fundamental characteristics of charge-coupled devices (CCDs) and related detectors, outlines the relevant parameters for their use in microscopy, and considers promising recent developments in the technology of detectors. Electronic imaging with a CCD involves three stages--interaction of a photon with the photosensitive surface, storage of the liberated charge, and readout or measurement of the stored charge. The most demanding applications in fluorescence microscopy may require as much as four orders of greater magnitude sensitivity. The image in the present-day light microscope is usually acquired with a CCD camera. The CCD is composed of a large matrix of photosensitive elements (often referred to as "pixels" shorthand for picture elements, which simultaneously capture an image over the entire detector surface. The light-intensity information for each pixel is stored as electronic charge and is converted to an analog voltage by a readout amplifier. This analog voltage is subsequently converted to a numerical value by a digitizer situated on the CCD chip, or very close to it. Several (three to six) amplifiers are required for each pixel, and to date, uniform images with a homogeneous background have been a problem because of the inherent difficulties of balancing the gain in all of the amplifiers. Complementary metal oxide semiconductor sensors also exhibit relatively high noise associated with the requisite high-speed switching. Both of these deficiencies are being addressed, and sensor performance is nearing that required for scientific imaging. PMID:23931507

  9. Lights, Camera, Courtroom? Should Trials Be Televised?

    ERIC Educational Resources Information Center

    Kirtley, Jane E.; Brothers, Thomas W.; Veal, Harlan K.

    1999-01-01

    Presents three differing perspectives from American Bar Association members on whether television cameras should be allowed in the courtroom. Contends that cameras should be allowed with differing degrees of certainty: cameras truly open the courts to the public; cameras must be strategically placed; and cameras should be used only with the…

  10. The Advanced Camera for Surveys

    NASA Astrophysics Data System (ADS)

    Clampin, M.; Ford, H. C.; Feldman, P.; Golimowski, D.; Tsvetanov, Z.; Bartko, F.; Brown, B.; Burrows, C.; Hartig, G.; Postman, M.; Rafal, M.; Sparks, B.; White, R.; Crocker, J.; Bely, P.; Cheng, E.; Krebs, C.; Kimble, R.; Neff, S.; Illingworth, G.; Lesser, M.; Broadhurst, T.; Miley, G.; Lajeunesse, T.; Woodruff, B.

    1998-01-01

    The Advanced Camera for Surveys (ACS) is to be installed in the Hubble Space Telescope (HST) during the third HST servicing mission in December 1999. The ACS comprises three cameras each designed to achieve specific goals. The first, the Wide Field Camera, will be a high throughput, wide field (200" x 204"), visible to nar-IR camera that is half critically sampled at 500 nm. The second, the High Resolution Camera (HRC), is critically sampled at 500 nm, and has a 26" x 29" field of view. The HRC optical path includes a coronagraph which will improve the HST's contrast near bright objects by a factor of 10. The third camera is a far ultraviolet, Solar-Blind Camera (SBC),with a field of 26" x 29". ACS will increase HST's capability for imaging surveys and discovery by at least a factor of 10. We give an overview of the ACS design and discuss image the quality of the optics and the performance of the CCD and MAMA detectors. The plans for the GTO science program are reviewed, and specific scientific capabilities of the instrument reviewed.

  11. Vision Sensors and Cameras

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.

  12. A liquid xenon radioisotope camera.

    NASA Technical Reports Server (NTRS)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  13. Dark energy survey and camera

    SciTech Connect

    William Wester

    2004-08-16

    The authors describe the Dark Energy Survey and Camera. The survey will image 5000 sq. deg. in the southern sky to collect 300 million galaxies, 30,000 galaxy clusters and 2000 Type Ia supernovae. They expect to derive a value for the dark energy equation of state parameters, w, to a precision of 5% by combining four distinct measurement techniques. They describe the mosaic camera that will consist of CCDs with enhanced sensitivity in the near infrared. The camera will be mounted at the prime focus of the 4m Blanco telescope.

  14. Three-dimensional Camera Phone

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2004-12-01

    An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.

  15. Comet Ge-Wang

    NASA Astrophysics Data System (ADS)

    Ge, Yong-liang; Wang, Qi; Han, Tao

    1990-03-01

    Comet Ge-Wang (1988o) was discovered by GE Yong-liang and WANG Qi at Xinglong Station of Beijing Observatory on 1988 November 4. We collected 13 observations of this comet in China and abroad and calculated its orbit. It passed the perihelion on 1988 May 23. Ephemerides up to 1991 April are given.

  16. Comet Ge-Wang

    NASA Astrophysics Data System (ADS)

    Ge, Yong-Liang; Wang, Qi; Han, Tao

    1989-03-01

    Comet Ge-Wang (1988o) was discovered by GE Yong-liang and WANG Qi at Xinglong Station of Beijing Observatory on November 4, 1988. Thirteen observations of this comet were collected in China and abroad and calculated its orbit. It passed the perihelion on May 23, 1988. Ephemerides up to April 1991 are given.

  17. An Inexpensive Digital Infrared Camera

    ERIC Educational Resources Information Center

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  18. Solid State Television Camera (CID)

    NASA Technical Reports Server (NTRS)

    Steele, D. W.; Green, W. T.

    1976-01-01

    The design, development and test are described of a charge injection device (CID) camera using a 244x248 element array. A number of video signal processing functions are included which maximize the output video dynamic range while retaining the inherently good resolution response of the CID. Some of the unique features of the camera are: low light level performance, high S/N ratio, antiblooming, geometric distortion, sequential scanning and AGC.

  19. The future of consumer cameras

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Moltisanti, Marco

    2015-03-01

    In the last two decades multimedia, and in particular imaging devices (camcorders, tablets, mobile phones, etc.) have been dramatically diffused. Moreover the increasing of their computational performances, combined with an higher storage capability, allows them to process large amount of data. In this paper an overview of the current trends of consumer cameras market and technology will be given, providing also some details about the recent past (from Digital Still Camera up today) and forthcoming key issues.

  20. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  1. Fundus Camera Guided Photoacoustic Ophthalmoscopy

    PubMed Central

    Liu, Tan; Li, Hao; Song, Wei; Jiao, Shuliang; Zhang, Hao F.

    2014-01-01

    Purpose To demonstrate the feasibility of fundus camera guided photoacoustic ophthalmoscopy (PAOM) system and its multimodal imaging capabilities. Methods We integrated PAOM and a fundus camera consisting of a white-light illuminator and a high-sensitivity, high-speed CCD. The fundus camera captures both retinal anatomy and PAOM illumination at the same time to provide a real-time feedback when we position the PAOM illuminating light. We applied the integrated system to image rat eyes in vivo and used full-spectrum, visible (VIS), and near infrared (NIR) illuminations in fundus photography. Results Both albino and pigmented rat eyes were imaged in vivo. During alignment, different trajectories of PAOM laser scanning were successfully visualized by the fundus camera, which reduced the PAOM alignment time from several minutes to 30 s. In albino eyes, in addition to retinal vessels, main choroidal vessels were observed using VIS-illumination, which is similar to PAOM images. In pigmented eyes, the radial striations of retinal nerve fiber layer were visualized by fundus photography using full-spectrum illumination; meanwhile, PAOM imaged both retinal vessels and the retinal pigmented epithelium melanin distribution. Conclusions The results demonstrated that PAOM can be well-integrated with fundus camera without affecting its functionality. The fundus camera guidance is faster and easier comparing with our previous work. The integrated system also set the stage for the next-step verification between oximetry methods based on PAOM and fundus photography. PMID:24131226

  2. Wide Dynamic Range CCD Camera

    NASA Astrophysics Data System (ADS)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  3. The virtual gamma camera room.

    PubMed

    Penrose, J M; Trowbridge, E A; Tindale, W B

    1996-05-01

    The installation of a gamma camera is time-consuming and costly and, once installed, the camera position is unlikely to be altered during its working life. Poor choice of camera position therefore has long-term consequences. Additional equipment such as collimators and carts, the operator's workstation and wall-mounted display monitors must also be situated to maximize access and ease of use. The layout of a gamma camera room can be optimized prior to installation by creating a virtual environment. Super-Scape VRT software running on an upgraded 486 PC microprocessor was used to create a 'virtual camera room'. The simulation included an operator's viewpoint and a controlled tour of the room. Equipment could be repositioned as required, allowing potential problems to be identified at the design stage. Access for bed-ridden patients, operator ergonomics, operator and patient visibility were addressed. The display can also be used for patient education. Creation of a virtual environment is a valuable tool which allows different camera systems to be compared interactively in terms of dimensions, extent of movement and use of a defined space. Such a system also has applications in radiopharmacy design and simulation. PMID:8736511

  4. The MC and LFC cameras. [metric camera (MC); large format camera (LFC)

    NASA Technical Reports Server (NTRS)

    Norton, Clarice L.; Schroeder, Manfried; Mollberg, Bernard

    1986-01-01

    The characteristics of the shuttle-borne Large Format Camera are listed. The LFC focal plane format was 23 by 46 cm, double the usual size, thereby acquiring approximately double the ground area. Forward motion compensation was employed. With the stable platform (shuttle) it was possible to use the slow exposure, high resolution, Kodak aerial films; 3414 and 3412 black and white, SO-242 color, and SO-131 aerochrome infrared. The camera was designed to maintain stability during varying temperature extremes of space.

  5. Sub-Camera Calibration of a Penta-Camera

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  6. CARTOGAM: a portable gamma camera

    NASA Astrophysics Data System (ADS)

    Gal, O.; Izac, C.; Lainé, F.; Nguyen, A.

    1997-02-01

    The gamma camera is devised to establish the cartography of radioactive sources against a visible background in quasi real time. This device is designed to spot sources from a distance during the preparation of interventions on active areas of nuclear installations. This implement will permit to optimize interventions especially on the dosimetric level. The camera consists of a double cone collimator, a scintillator and an intensified CCD camera. This chain of detection provides the formation of both gamma images and visible images. Even though it is wrapped in a denal shield, the camera is still portable (mass < 15 kg) and compact (external diameter = 8 cm). The angular resolution is of the order of one degree for gamma rays of 1 MeV. In a few minutes, the device is able to measure a dose rate of 10 μGy/h delivered for instance by a source of 60Co of 90 mCi located at 10 m from the detector. The first images recorded in the laboratory will be presented and will illustrate the performances obtained with this camera.

  7. Distributed consensus on camera pose.

    PubMed

    Jorstad, Anne; DeMenthon, Daniel; Wang, I-Jeng; Burlina, Philippe

    2010-09-01

    Our work addresses pose estimation in a distributed camera framework. We examine how processing cameras can best reach a consensus about the pose of an object when they are each given a model of the object, defined by a set of point coordinates in the object frame of reference. The cameras can only see a subset of the object feature points in the midst of background clutter points, not knowing which image points match with which object points, nor which points are object points or background points. The cameras individually recover a prediction of the object's pose using their knowledge of the model, and then exchange information with their neighbors, performing consensus updates locally to obtain a single estimate consistent across all cameras, without requiring a common centralized processor. Our main contributions are: 1) we present a novel algorithm performing consensus updates in 3-D world coordinates penalized by a 3-D model, and 2) we perform a thorough comparison of our method with other current consensus methods. Our method is consistently the most accurate, and we confirm that the existing consensus method based upon calculating the Karcher mean of rotations is also reliable and fast. Experiments on simulated and real imagery are reported. PMID:20363678

  8. The Clementine longwave infrared camera

    SciTech Connect

    Priest, R.E.; Lewis, I.T.; Sewall, N.R.; Park, H.S.; Shannon, M.J.; Ledebuhr, A.G.; Pleasance, L.D.; Massie, M.A.; Metschuleit, K.

    1995-04-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. The longwave-infrared (LWIR) camera supplemented the UV/Visible and near-infrared mapping cameras providing limited strip coverage of the moon, giving insight to the thermal properties of the soils. This camera provided {approximately}100 m spatial resolution at 400 km periselene, and a 7 km across-track swath. This 2.1 kg camera using a 128 x 128 Mercury-Cadmium-Telluride (MCT) FPA viewed thermal emission of the lunar surface and lunar horizon in the 8.0 to 9.5 {micro}m wavelength region. A description of this light-weight, low power LWIR camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights.

  9. Traditional gamma cameras are preferred.

    PubMed

    DePuey, E Gordon

    2016-08-01

    Although the new solid-state dedicated cardiac cameras provide excellent spatial and energy resolution and allow for markedly reduced SPECT acquisition times and/or injected radiopharmaceutical activity, they have some distinct disadvantages compared to traditional sodium iodide SPECT cameras. They are expensive. Attenuation correction is not available. Cardio-focused collimation, advantageous to increase depth-dependent resolution and myocardial count density, accentuates diaphragmatic attenuation and scatter from subdiaphragmatic structures. Although supplemental prone imaging is therefore routinely advised, many patients cannot tolerate it. Moreover, very large patients cannot be accommodated in the solid-state camera gantries. Since data are acquired simultaneously with an arc of solid-state detectors around the chest, no temporally dependent "rotating" projection images are obtained. Therefore, patient motion can be neither detected nor corrected. In contrast, traditional sodium iodide SPECT cameras provide rotating projection images to allow technologists and physicians to detect and correct patient motion and to accurately detect the position of soft tissue attenuators and to anticipate associated artifacts. Very large patients are easily accommodated. Low-dose x-ray attenuation correction is widely available. Also, relatively inexpensive low-count density software is provided by many vendors, allowing shorter SPECT acquisition times and reduced injected activity approaching that achievable with solid-state cameras. PMID:27072004

  10. Video camera use at nuclear power plants

    SciTech Connect

    Estabrook, M.L.; Langan, M.O.; Owen, D.E. )

    1990-08-01

    A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

  11. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  12. Dark Energy Camera for Blanco

    SciTech Connect

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  13. Cameras for semiconductor process control

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Parker, D. L.

    1977-01-01

    The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.

  14. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  15. Aerial camera auto focusing system

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  16. The GISMO-2 Bolometer Camera

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  17. Geiger-mode ladar cameras

    NASA Astrophysics Data System (ADS)

    Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Boisvert, Joseph; McDonald, Paul; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison; Van Duyne, Stephen; Pauls, Greg; Gaalema, Stephen

    2011-06-01

    The performance of Geiger-mode LAser Detection and Ranging (LADAR) cameras is primarily defined by individual pixel attributes, such as dark count rate (DCR), photon detection efficiency (PDE), jitter, and crosstalk. However, for the expanding LADAR imaging applications, other factors, such as image uniformity, component tolerance, manufacturability, reliability, and operational features, have to be considered. Recently we have developed new 32×32 and 32×128 Read-Out Integrated Circuits (ROIC) for LADAR applications. With multiple filter and absorber structures, the 50-μm-pitch arrays demonstrate pixel crosstalk less than 100 ppm level, while maintaining a PDE greater than 40% at 4 V overbias. Besides the improved epitaxial and process uniformity of the APD arrays, the new ROICs implement a Non-uniform Bias (NUB) circuit providing 4-bit bias voltage tunability over a 2.5 V range to individually bias each pixel. All these features greatly increase the performance uniformity of the LADAR camera. Cameras based on these ROICs were integrated with a data acquisition system developed by Boeing DES. The 32×32 version has a range gate of up to 7 μs and can cover a range window of about 1 km with 14-bit and 0.5 ns timing resolution. The 32×128 camera can be operated at a frame rate of up to 20 kHz with 0.3 ns and 14-bit time resolution through a full CameraLink. The performance of the 32×32 LADAR camera has been demonstrated in a series of field tests on various vehicles.

  18. Stratoscope 2 integrating television camera

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development, construction, test and delivery of an integrating television camera for use as the primary data sensor on Flight 9 of Stratoscope 2 is described. The system block diagrams are presented along with the performance data, and definition of the interface of the telescope with the power, telemetry, and communication system.

  19. Television Camera Operator. Student's Manual.

    ERIC Educational Resources Information Center

    Grimes, L. A., Jr.

    This student manual is one in a series of individualized instructional materials for use under the supervision of an instructor. The self-contained manual was developed for persons training to become television camera operators. Each assignment has all the information needed, including a list of objectives that should be met and exercise questions…

  20. The Camera Comes to Court.

    ERIC Educational Resources Information Center

    Floren, Leola

    After the Lindbergh kidnapping trial in 1935, the American Bar Association sought to eliminate electronic equipment from courtroom proceedings. Eventually, all but two states adopted regulations applying that ban to some extent, and a 1965 Supreme Court decision encouraged the banning of television cameras at trials as well. Currently, some states…

  1. Camera lens adapter magnifies image

    NASA Technical Reports Server (NTRS)

    Moffitt, F. L.

    1967-01-01

    Polaroid Land camera with an illuminated 7-power magnifier adapted to the lens, photographs weld flaws. The flaws are located by inspection with a 10-power magnifying glass and then photographed with this device, thus providing immediate pictorial data for use in remedial procedures.

  2. Measuring Distances Using Digital Cameras

    ERIC Educational Resources Information Center

    Kendal, Dave

    2007-01-01

    This paper presents a generic method of calculating accurate horizontal and vertical object distances from digital images taken with any digital camera and lens combination, where the object plane is parallel to the image plane or tilted in the vertical plane. This method was developed for a project investigating the size, density and spatial…

  3. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  4. Camera assisted multimodal user interaction

    NASA Astrophysics Data System (ADS)

    Hannuksela, Jari; Silvén, Olli; Ronkainen, Sami; Alenius, Sakari; Vehviläinen, Markku

    2010-01-01

    Since more processing power, new sensing and display technologies are already available in mobile devices, there has been increased interest in building systems to communicate via different modalities such as speech, gesture, expression, and touch. In context identification based user interfaces, these independent modalities are combined to create new ways how the users interact with hand-helds. While these are unlikely to completely replace traditional interfaces, they will considerably enrich and improve the user experience and task performance. We demonstrate a set of novel user interface concepts that rely on built-in multiple sensors of modern mobile devices for recognizing the context and sequences of actions. In particular, we use the camera to detect whether the user is watching the device, for instance, to make the decision to turn on the display backlight. In our approach the motion sensors are first employed for detecting the handling of the device. Then, based on ambient illumination information provided by a light sensor, the cameras are turned on. The frontal camera is used for face detection, while the back camera provides for supplemental contextual information. The subsequent applications triggered by the context can be, for example, image capturing, or bar code reading.

  5. Making Films without a Camera.

    ERIC Educational Resources Information Center

    Cox, Carole

    1980-01-01

    Describes draw-on filmmaking as an exciting way to introduce children to the plastic, fluid nature of the film medium, to develop their appreciation and understanding of divergent cinematic techniques and themes, and to invite them into the dream world of filmmaking without the need for a camera. (AEA)

  6. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1991-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occuring during the readout window.

  7. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1989-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occurring during the readout window.

  8. Full Stokes polarization imaging camera

    NASA Astrophysics Data System (ADS)

    Vedel, M.; Breugnot, S.; Lechocinski, N.

    2011-10-01

    Objective and background: We present a new version of Bossa Nova Technologies' passive polarization imaging camera. The previous version was performing live measurement of the Linear Stokes parameters (S0, S1, S2), and its derivatives. This new version presented in this paper performs live measurement of Full Stokes parameters, i.e. including the fourth parameter S3 related to the amount of circular polarization. Dedicated software was developed to provide live images of any Stokes related parameters such as the Degree Of Linear Polarization (DOLP), the Degree Of Circular Polarization (DOCP), the Angle Of Polarization (AOP). Results: We first we give a brief description of the camera and its technology. It is a Division Of Time Polarimeter using a custom ferroelectric liquid crystal cell. A description of the method used to calculate Data Reduction Matrix (DRM)5,9 linking intensity measurements and the Stokes parameters is given. The calibration was developed in order to maximize the condition number of the DRM. It also allows very efficient post processing of the images acquired. Complete evaluation of the precision of standard polarization parameters is described. We further present the standard features of the dedicated software that was developed to operate the camera. It provides live images of the Stokes vector components and the usual associated parameters. Finally some tests already conducted are presented. It includes indoor laboratory and outdoor measurements. This new camera will be a useful tool for many applications such as biomedical, remote sensing, metrology, material studies, and others.

  9. Recent advances in digital camera optics

    NASA Astrophysics Data System (ADS)

    Ishiguro, Keizo

    2012-10-01

    The digital camera market has extremely expanded in the last ten years. The zoom lens for digital camera is especially the key determining factor of the camera body size and image quality. Its technologies have been based on several analog technological progresses including the method of aspherical lens manufacturing and the mechanism of image stabilization. Panasonic is one of the pioneers of both technologies. I will introduce the previous trend in optics of zoom lens as well as original optical technologies of Panasonic digital camera "LUMIX", and in addition optics in 3D camera system. Besides, I would like to suppose the future trend in digital cameras.

  10. Replacing 16-mm film cameras with high-definition digital cameras

    NASA Astrophysics Data System (ADS)

    Balch, Kris S.

    1995-09-01

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  11. Advanced camera for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Ford, Holland C.; Feldman, Paul D.; Golimowski, David A.; Tsvetanov, Zlatan; Bartko, Frank; Crocker, James H.; Bely, Pierre Y.; Brown, Robert A.; Burrows, Christopher J.; Clampin, Mark; Hartig, George F.; Postman, Marc; Rafal, Marc D.; Sparks, William B.; White, Richard L.; Broadhurst, Tom; Illingworth, Garth; Kelly, Tim; Woodruff, Robert A.; Cheng, Edward; Kimble, Randy A.; Krebs, Carolyn A.; Neff, Susan G.; Lesser, Michael P.; Miley, George

    1996-10-01

    The Advanced Camera for the Hubble Space Telescope will have three cameras. The first, the Wide Field Camera, will be a high throughput (45% at 700 nm, including the HST optical telescope assembly), wide field (200' X 204'), optical and I-band camera that is half critically sampled at 500 nm. The second, the High Resolution Camera (HRC), is critically sampled at 500 nm, and has a 26' X 29' field of view and 25% throughput at 600 nm. The HRC optical path will include a coronagraph which will improve the HST contrast near bright objects by a factor of approximately 10. The third camera is a far ultraviolet, Solar-Blind Camera that has a relatively high throughput (6% at 121.6 nm) over a 26' X 29' field of view. The Advanced Camera for Surveys will increase HST's capability for surveys and discovery by at least a factor of ten.

  12. The wide field/planetary camera

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.; Baum, W. A.; Code, A. D.; Currie, D. G.; Danielson, G. E.; Gunn, J. E.; Kelsall, T. F.; Kristian, J. A.; Lynds, C. R.; Seidelmann, P. K.

    1982-01-01

    A wide site of potential astronomical and solar system scientific studies using the wide field planetary camera on space telescope are described. The expected performance of the camera as it approaches final assembly and testing is also detailed.

  13. Lytro camera technology: theory, algorithms, performance analysis

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  14. The Dark Energy Survey Camera

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna

    2012-03-01

    The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  15. A 10-microm infrared camera.

    PubMed

    Arens, J F; Jernigan, J G; Peck, M C; Dobson, C A; Kilk, E; Lacy, J; Gaalema, S

    1987-09-15

    An IR camera has been built at the University of California at Berkeley for astronomical observations. The camera has been used primarily for high angular resolution imaging at mid-IR wavelengths. It has been tested at the University of Arizona 61- and 90-in. telescopes near Tucson and the NASA Infrared Telescope Facility on Mauna Kea, HI. In the observations the system has been used as an imager with interference coated and Fabry-Perot filters. These measurements have demonstrated a sensitivity consistent with photon shot noise, showing that the system is limited by the radiation from the telescope and atmosphere. Measurements of read noise, crosstalk, and hysteresis have been made in our laboratory. PMID:20490151

  16. Electronographic cameras for space astronomy.

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1972-01-01

    Magnetically-focused electronographic cameras have been under development at the Naval Research Laboratory for use in far-ultraviolet imagery and spectrography, primarily in astronomical and optical-geophysical observations from sounding rockets and space vehicles. Most of this work has been with cameras incorporating internal optics of the Schmidt or wide-field all-reflecting types. More recently, we have begun development of electronographic spectrographs incorporating an internal concave grating, operating at normal or grazing incidence. We also are developing electronographic image tubes of the conventional end-window-photo-cathode type, for far-ultraviolet imagery at the focus of a large space telescope, with image formats up to 120 mm in diameter.

  17. Combustion pinhole-camera system

    DOEpatents

    Witte, A.B.

    1982-05-19

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  18. Corrective Optics For Camera On Telescope

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Meinel, Aden B.

    1994-01-01

    Assembly of tilted, aspherical circularly symmetric mirrors used as corrective optical subsystem for camera mounted on telescope exhibiting both large spherical wave-front error and inherent off-axis astigmatism. Subsystem provides unobscured camera aperture and diffraction-limited camera performance, despite large telescope aberrations. Generic configuration applied in other optical systems in which aberations deliberately introduced into telescopes and corrected in associated cameras. Concept of corrective optical subsystem provides designer with additional degrees of freedom used to optimize optical system.

  19. Graphic design of pinhole cameras

    NASA Technical Reports Server (NTRS)

    Edwards, H. B.; Chu, W. P.

    1979-01-01

    The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.

  20. Solid-state array cameras.

    PubMed

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  1. Coaxial fundus camera for opthalmology

    NASA Astrophysics Data System (ADS)

    de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.

    2015-09-01

    A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.

  2. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  3. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  4. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  5. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  6. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  7. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  8. 21 CFR 886.1120 - Ophthalmic camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Ophthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  9. 21 CFR 886.1120 - Opthalmic camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  10. 21 CFR 886.1120 - Ophthalmic camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Ophthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  11. 21 CFR 886.1120 - Opthalmic camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  12. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image...

  13. Sub-100g uncooled thermal imaging camera design

    NASA Astrophysics Data System (ADS)

    Brown, Alistair

    2008-10-01

    There are many applications for thermal imaging systems where low weight, high performance and high durability are at a premium. These include UAV systems, future warrior programs and thermal weapon sights. Thermal imaging camera design is restricted by a number external constraints including, detector packaging, detector performance and optical design. This paper describes how, by combining the latest 25µm pitch detector technology, novel optical design and shutter-less image processing a high resolution imager a system weight of 100g can be achieved. Recently developed detectors have low mass vacuum packages, in this example a 384x288 25um un-cooled microbolometer has a weight of less than 25g. By comparison, earlier 35µm and 50 µm devices were In the region of 40g. Where cameras are used in harsh environments mechanical shutters present both a reliability issue and additional weight. The low-weight camera utilises Xti Shutter-less technology to generate high quality images without the need for any form of mechanical shutter. The resulting camera has no moving parts. Lenses for Long Wave Infrared (LWIR) Thermal imaging are typically manufactured using Germanium (Ge) elements. These lenses tend to be designed with f/1.0 apertures and as a result add significant weight to the design. Thanks to the smaller detector pitch and system sensitivity a lens has been designed with a focal length of 14.95mm at f/1.3 where the mass of the optical components is 9g. The final optical assembly, including passive athermalisation has a mass of no more than 15g.

  14. Si/Ge intermixing during Ge Stranski–Krastanov growth

    PubMed Central

    Hoummada, Khalid; Ronda, Antoine; Mangelinck, Dominique; Berbezier, Isabelle

    2014-01-01

    Summary The Stranski–Krastanov growth of Ge islands on Si(001) has been widely studied. The morphology changes of Ge islands during growth, from nucleation to hut/island formation and growth, followed by hut-to-dome island transformation and dislocation nucleation of domes, have been well described, even at the atomic scale, using techniques such as scanning tunneling microscopy and transmission electron microscopy. Although it is known that these islands do not consist of pure Ge (due to Si/Ge intermixing), the composition of the Ge islands is not precisely known. In the present work, atom probe tomography was used to study the composition of buried dome islands at the atomic scale, in the three-dimensional space. The core of the island was shown to contain about 55 atom % Ge, while the Ge composition surrounding this core decreases rapidly in all directions in the islands to reach a Ge concentration of about 15 atom %. The Ge distribution in the islands follows a cylindrical symmetry and Ge segregation is observed only in the {113} facets of the islands. The Ge composition of the wetting layer is not homogeneous, varying from 5 to 30 atom %. PMID:25551065

  15. Evaluation of detector material and radiation source position on Compton camera's ability for multitracer imaging.

    PubMed

    Uche, C Z; Round, W H; Cree, M J

    2012-09-01

    We present a study on the effects of detector material, radionuclide source and source position on the Compton camera aimed at realistic characterization of the camera's performance in multitracer imaging as it relates to brain imaging. The GEANT4 Monte Carlo simulation software was used to model the physics of radiation transport and interactions with matter. Silicon (Si) and germanium (Ge) detectors were evaluated for the scatterer, and cadmium zinc telluride (CZT) and cerium-doped lanthanum bromide (LaBr(3):Ce) were considered for the absorber. Image quality analyses suggest that the use of Si as the scatterer and CZT as the absorber would be preferred. Nevertheless, two simulated Compton camera models (Si/CZT and Si/LaBr(3):Ce Compton cameras) that are considered in this study demonstrated good capabilities for multitracer imaging in that four radiotracers within the nuclear medicine energy range are clearly visualized by the cameras. It is found however that beyond a range difference of about 2 cm for (113m)In and (18)F radiotracers in a brain phantom, there may be a need to rotate the Compton camera for efficient brain imaging. PMID:22829298

  16. Mini gamma camera, camera system and method of use

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  17. HHEBBES! All sky camera system: status update

    NASA Astrophysics Data System (ADS)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  18. Passive Millimeter Wave Camera (PMMWC) at TRW

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Engineers at TRW, Redondo Beach, California, inspect the Passive Millimeter Wave Camera, a weather-piercing camera designed to 'see' through fog, clouds, smoke and dust. Operating in the millimeter wave portion of the electromagnetic spectrum, the camera creates visual-like video images of objects, people, runways, obstacles and the horizon. A demonstration camera (shown in photo) has been completed and is scheduled for checkout tests and flight demonstration. Engineer (left) holds a compact, lightweight circuit board containing 40 complete radiometers, including antenna, monolithic millimeter wave integrated circuit (MMIC) receivers and signal processing and readout electronics that forms the basis for the camera's 1040-element focal plane array.

  19. Passive Millimeter Wave Camera (PMMWC) at TRW

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Engineers at TRW, Redondo Beach, California, inspect the Passive Millimeter Wave Camera, a weather-piercing camera designed to see through fog, clouds, smoke and dust. Operating in the millimeter wave portion of the electromagnetic spectrum, the camera creates visual-like video images of objects, people, runways, obstacles and the horizon. A demonstration camera (shown in photo) has been completed and is scheduled for checkout tests and flight demonstration. Engineer (left) holds a compact, lightweight circuit board containing 40 complete radiometers, including antenna, monolithic millimeter wave integrated circuit (MMIC) receivers and signal processing and readout electronics that forms the basis for the camera's 1040-element focal plane array.

  20. 3D camera tracking from disparity images

    NASA Astrophysics Data System (ADS)

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  1. Initial laboratory evaluation of color video cameras

    SciTech Connect

    Terry, P L

    1991-01-01

    Sandia National Laboratories has considerable experience with monochrome video cameras used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than identify an intruder. Monochrome cameras are adequate for that application and were selected over color cameras because of their greater sensitivity and resolution. There is a growing interest in the identification function of security video systems for both access control and insider protection. Color information is useful for identification purposes, and color camera technology is rapidly changing. Thus, Sandia National Laboratories established an ongoing program to evaluate color solid-state cameras. Phase one resulted in the publishing of a report titled, Initial Laboratory Evaluation of Color Video Cameras (SAND--91-2579).'' It gave a brief discussion of imager chips and color cameras and monitors, described the camera selection, detailed traditional test parameters and procedures, and gave the results of the evaluation of twelve cameras. In phase two six additional cameras were tested by the traditional methods and all eighteen cameras were tested by newly developed methods. This report details both the traditional and newly developed test parameters and procedures, and gives the results of both evaluations.

  2. Phenology cameras observing boreal ecosystems of Finland

    NASA Astrophysics Data System (ADS)

    Peltoniemi, Mikko; Böttcher, Kristin; Aurela, Mika; Kolari, Pasi; Tanis, Cemal Melih; Linkosalmi, Maiju; Loehr, John; Metsämäki, Sari; Nadir Arslan, Ali

    2016-04-01

    Cameras have become useful tools for monitoring seasonality of ecosystems. Low-cost cameras facilitate validation of other measurements and allow extracting some key ecological features and moments from image time series. We installed a network of phenology cameras at selected ecosystem research sites in Finland. Cameras were installed above, on the level, or/and below the canopies. Current network hosts cameras taking time lapse images in coniferous and deciduous forests as well as at open wetlands offering thus possibilities to monitor various phenological and time-associated events and elements. In this poster, we present our camera network and give examples of image series use for research. We will show results about the stability of camera derived color signals, and based on that discuss about the applicability of cameras in monitoring time-dependent phenomena. We will also present results from comparisons between camera-derived color signal time series and daily satellite-derived time series (NVDI, NDWI, and fractional snow cover) from the Moderate Resolution Imaging Spectrometer (MODIS) at selected spruce and pine forests and in a wetland. We will discuss the applicability of cameras in supporting phenological observations derived from satellites, by considering the possibility of cameras to monitor both above and below canopy phenology and snow.

  3. Initial laboratory evaluation of color video cameras

    NASA Astrophysics Data System (ADS)

    Terry, P. L.

    1991-12-01

    Sandia National Laboratories has considerable experience with monochrome video cameras used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than identify an intruder. Monochrome cameras are adequate for that application and were selected over color cameras because of their greater sensitivity and resolution. There is a growing interest in the identification function of security video systems for both access control and insider protection. Color information is useful for identification purposes, and color camera technology is rapidly changing. Thus, Sandia National Laboratories established an ongoing program to evaluate color solid-state cameras. Phase one resulted in the publishing of a report titled, 'Initial Laboratory Evaluation of Color Video Cameras (SAND--91-2579).' It gave a brief discussion of imager chips and color cameras and monitors, described the camera selection, detailed traditional test parameters and procedures, and gave the results of the evaluation of twelve cameras. In phase two, six additional cameras were tested by the traditional methods and all eighteen cameras were tested by newly developed methods. This report details both the traditional and newly developed test parameters and procedures, and gives the results of both evaluations.

  4. Automatic calibration method for plenoptic camera

    NASA Astrophysics Data System (ADS)

    Luan, Yinsen; He, Xing; Xu, Bing; Yang, Ping; Tang, Guomao

    2016-04-01

    An automatic calibration method is proposed for a microlens-based plenoptic camera. First, all microlens images on the white image are searched and recognized automatically based on digital morphology. Then, the center points of microlens images are rearranged according to their relative position relationships. Consequently, the microlens images are located, i.e., the plenoptic camera is calibrated without the prior knowledge of camera parameters. Furthermore, this method is appropriate for all types of microlens-based plenoptic cameras, even the multifocus plenoptic camera, the plenoptic camera with arbitrarily arranged microlenses, or the plenoptic camera with different sizes of microlenses. Finally, we verify our method by the raw data of Lytro. The experiments show that our method has higher intelligence than the methods published before.

  5. Characterization of the Series 1000 Camera System

    SciTech Connect

    Kimbrough, J; Moody, J; Bell, P; Landen, O

    2004-04-07

    The National Ignition Facility requires a compact network addressable scientific grade CCD camera for use in diagnostics ranging from streak cameras to gated x-ray imaging cameras. Due to the limited space inside the diagnostic, an analog and digital input/output option in the camera controller permits control of both the camera and the diagnostic by a single Ethernet link. The system consists of a Spectral Instruments Series 1000 camera, a PC104+ controller, and power supply. The 4k by 4k CCD camera has a dynamic range of 70 dB with less than 14 electron read noise at a 1MHz readout rate. The PC104+ controller includes 16 analog inputs, 4 analog outputs and 16 digital input/output lines for interfacing to diagnostic instrumentation. A description of the system and performance characterization is reported.

  6. Synthesis of Epitaxial Films Based on Ge-Si-Sn Materials with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn Heterojunctions

    NASA Astrophysics Data System (ADS)

    Timofeev, V. A.; Kokhanenko, A. P.; Nikiforov, A. I.; Mashanov, V. I.; Tuktamyshev, A. R.; Loshkarev, I. D.

    2015-11-01

    Results of investigations into the synthesis of heterostructures based on Ge-Si-Sn materials by the method of low-temperature molecular beam epitaxy are presented. The formation of epitaxial films during structure growth has been controlled by the reflection high-energy electron diffraction method. Films with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn heterojunctions are grown with Sn content changing from 2 to 10 % at temperatures in the interval 150-350°C. The stressed state, the composition, and the lattice parameter are studied by the x-ray diffraction method using Omega-scan curves and reciprocal space maps. A tensile strain in the Ge film during Ge/Ge0.9Sn0.1/Si structure growth has reached 0.86%.

  7. Design and development of wafer-level short wave infrared micro-camera

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Richwine, Robert A.; Pethuraja, Gopal; Puri, Yash R.; Lee, Je-Ung; Haldar, Pradeep; Dhar, Nibir K.

    2013-06-01

    Low cost IR Sensors are needed for a variety of Defense and Commercial Applications as low cost imagers for various Army and Marine missions. SiGe based IR Focal Planes offers a low cost alternative for developing wafer-level shortwave infrared micro-camera that will not require any cooling and can operate in the Visible-NIR band. The attractive features of SiGe based IRFPA's will take advantage of Silicon based technology, that promises small feature size and compatibility with the low power silicon CMOS circuits for signal processing. SiGe technology offers a low cost alternative for developing Visible-NIR sensors that will not require any cooling and can operate from 0.4- 1.7 microns. The attractive features of SiGe based IRFPA's will take advantage of Silicon based technology that can be processed on 12-inch silicon substrates, that can promise small feature size and compatibility with the Silicon CMOS circuit for signal processing. In this paper, we will discuss the design and development of Wafer-Level Short Wave Infrared (SWIR) Micro-Camera. We will discuss manufacturing approaches and sensor configurations for short wave infrared (SWIR) focal plane arrays (FPAs) that significantly reduce the cost of SWIR FPA packaging, optics and integration into micro-systems.

  8. An attentive multi-camera system

    NASA Astrophysics Data System (ADS)

    Napoletano, Paolo; Tisato, Francesco

    2014-03-01

    Intelligent multi-camera systems that integrate computer vision algorithms are not error free, and thus both false positive and negative detections need to be revised by a specialized human operator. Traditional multi-camera systems usually include a control center with a wall of monitors displaying videos from each camera of the network. Nevertheless, as the number of cameras increases, switching from a camera to another becomes hard for a human operator. In this work we propose a new method that dynamically selects and displays the content of a video camera from all the available contents in the multi-camera system. The proposed method is based on a computational model of human visual attention that integrates top-down and bottom-up cues. We believe that this is the first work that tries to use a model of human visual attention for the dynamic selection of the camera view of a multi-camera system. The proposed method has been experimented in a given scenario and has demonstrated its effectiveness with respect to the other methods and manually generated ground-truth. The effectiveness has been evaluated in terms of number of correct best-views generated by the method with respect to the camera views manually generated by a human operator.

  9. System Synchronizes Recordings from Separated Video Cameras

    NASA Technical Reports Server (NTRS)

    Nail, William; Nail, William L.; Nail, Jasper M.; Le, Doung T.

    2009-01-01

    A system of electronic hardware and software for synchronizing recordings from multiple, physically separated video cameras is being developed, primarily for use in multiple-look-angle video production. The system, the time code used in the system, and the underlying method of synchronization upon which the design of the system is based are denoted generally by the term "Geo-TimeCode(TradeMark)." The system is embodied mostly in compact, lightweight, portable units (see figure) denoted video time-code units (VTUs) - one VTU for each video camera. The system is scalable in that any number of camera recordings can be synchronized. The estimated retail price per unit would be about $350 (in 2006 dollars). The need for this or another synchronization system external to video cameras arises because most video cameras do not include internal means for maintaining synchronization with other video cameras. Unlike prior video-camera-synchronization systems, this system does not depend on continuous cable or radio links between cameras (however, it does depend on occasional cable links lasting a few seconds). Also, whereas the time codes used in prior video-camera-synchronization systems typically repeat after 24 hours, the time code used in this system does not repeat for slightly more than 136 years; hence, this system is much better suited for long-term deployment of multiple cameras.

  10. Lens assemblies for multispectral camera

    NASA Astrophysics Data System (ADS)

    Lepretre, Francois

    1994-09-01

    In the framework of a contract with the Indian Space Research Organization (ISRO), MATRA DEFENSE - DOD/UAO have developed, produced and tested 36 types LISS 1 - LISS 2 lenses and 12 LISS 3 lenses equipped with their interferential filters. These lenses are intended to form the optical systems of multispectral imaging sensors aboard Indian earth observation satellites IRS 1A, 1B, 1C, and 1D. It should be noted that the multispectrum cameras of the IRS 1A - 1B satellite have been in operation for two years and have given very satisfactory results according to ISRO. Each of these multispectrum LISS 3 cameras consists of lenses, each working in a different spectral bandwidth (B2: 520 - 590 nm; B3: 620 - 680 nm; B4: 770 - 860 nm; B5: 1550 - 1700 nm). In order to superimpose the images of each spectral band without digital processing, the image formats (60 mm) of the lenses are registered better that 2 micrometers and remain as such throughout all the environmental tests. Similarly, due to the absence of precise thermal control aboard the satellite, the lenses are as athermal as possible.

  11. Toward the camera rain gauge

    NASA Astrophysics Data System (ADS)

    Allamano, P.; Croci, A.; Laio, F.

    2015-03-01

    We propose a novel technique based on the quantitative detection of rain intensity from images, i.e., from pictures taken in rainy conditions. The method is fully analytical and based on the fundamentals of camera optics. A rigorous statistical framing of the technique allows one to obtain the rain rate estimates in terms of expected values and associated uncertainty. We show that the method can be profitably applied to real rain events, and we obtain promising results with errors of the order of ±25%. A precise quantification of the method's accuracy will require a more systematic and long-term comparison with benchmark measures. The significant step forward with respect to standard rain gauges resides in the possibility to retrieve measures at very high temporal resolution (e.g., 30 measures per minute) at a very low cost. Perspective applications include the possibility to dramatically increase the spatial density of rain observations by exporting the technique to crowdsourced pictures of rain acquired with cameras and smartphones.

  12. Amorphous Ge bipolar blocking contacts on Ge detectors

    SciTech Connect

    Luke, P.N.; Cork, C.P.; Madden, N.W.; Rossington, C.S.; Wesela, M.F.

    1991-10-01

    Semiconductor nuclear radiation detectors are usually operated in a full depletion mode and blocking contacts are required to maintain low leakage currents and high electric fields for charge collection. Blocking contacts on Ge detectors typically consist of n-type contacts formed by lithium diffusion and p-type contacts formed by boron ion implantation. Electrical contacts formed using sputtered amorphous Ge (a-Ge) films on high-purity Ge crystals were found to exhibit good blocking behavior in both polarities with low leakage currents. The a-Ge contacts have thin dead layers associated with them and can be used in place of lithium-diffused, ion-implanted or Schottky barrier contacts on Ge radiation detectors. Multi-electrode detectors can be fabricated with very simple processing steps using these contacts. 12 refs.

  13. Characteristics of Sn segregation in Ge/GeSn heterostructures

    NASA Astrophysics Data System (ADS)

    Li, H.; Chang, C.; Chen, T. P.; Cheng, H. H.; Shi, Z. W.; Chen, H.

    2014-10-01

    We report an investigation of Sn segregation in Ge/GeSn heterostructures occurred during the growth by molecular beam epitaxy. The measured Sn profile in the Ge layer shows that: (a) the Sn concentration decreases rapidly near the Ge/GeSn interface, and (b) when moving away from the interface, the Sn concentration reduced with a much slower rate. The 1/e decay lengths of the present system are much longer than those of the conventional group IV system of Ge segregation in the Si overlayer because of the smaller kinetic potential as modeled by a self-limited two-state exchange scheme. The demonstration of the Sn segregation shows the material characteristics of the heterostructure, which are needed for the investigation of its optical properties.

  14. Ge Nanocluster Enhanced Er Photoluminescence

    NASA Astrophysics Data System (ADS)

    Guzman, Julian; Chrzan, Daryl C.; Haller, Eugene E.

    2010-03-01

    We investigated the enhancement of the Er^3+ photoluminescence (PL) at 1540 nm by the incorporation of Ge nanoclusters into Er-doped silica using ion beams. We found that the Er^3+ PL enhancement is due to the presence of Ge and not to the radiation damage from the ion-implantation process. We determined that the Er^3+ PL depends on the Ge content, postgrowth annealing, and crystallinity of the Ge nanoclusters. Furthermore, we observed that the Er^3+ PL signal is maximized after annealing at 685 C for 1 h. This is the temperature at which Ge nanoclusters begin to crystallize. Transmission electron microscopy studies were conducted to determine the size distribution of the Ge nanoclusters. Moreover, extended X-ray absorption fine structure measurements performed at the Ge-K and Er-LIII edges revealed that there is negligible Ge-Er bonding. This suggests that Er is either fully oxidized or that it is not located in the Ge nanoclusters. Therefore, we believe that the energy transfer process from the Ge nanoclusters to the Er ions occurs through a non-optical resonant dipole transfer (F"orster ProcessfootnotetextT. F"orster, Discuss. Faraday Soc. 27, 7 (1959). similar to what has been proposed for the Si nanocrystal case.footnotetextM. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, J. Appl. Phys. 84, 4525 (1998).

  15. Television camera video level control system

    NASA Technical Reports Server (NTRS)

    Kravitz, M.; Freedman, L. A.; Fredd, E. H.; Denef, D. E. (Inventor)

    1985-01-01

    A video level control system is provided which generates a normalized video signal for a camera processing circuit. The video level control system includes a lens iris which provides a controlled light signal to a camera tube. The camera tube converts the light signal provided by the lens iris into electrical signals. A feedback circuit in response to the electrical signals generated by the camera tube, provides feedback signals to the lens iris and the camera tube. This assures that a normalized video signal is provided in a first illumination range. An automatic gain control loop, which is also responsive to the electrical signals generated by the camera tube 4, operates in tandem with the feedback circuit. This assures that the normalized video signal is maintained in a second illumination range.

  16. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  17. Computational imaging for miniature cameras

    NASA Astrophysics Data System (ADS)

    Salahieh, Basel

    Miniature cameras play a key role in numerous imaging applications ranging from endoscopy and metrology inspection devices to smartphones and head-mount acquisition systems. However, due to the physical constraints, the imaging conditions, and the low quality of small optics, their imaging capabilities are limited in terms of the delivered resolution, the acquired depth of field, and the captured dynamic range. Computational imaging jointly addresses the imaging system and the reconstructing algorithms to bypass the traditional limits of optical systems and deliver better restorations for various applications. The scene is encoded into a set of efficient measurements which could then be computationally decoded to output a richer estimate of the scene as compared with the raw images captured by conventional imagers. In this dissertation, three task-based computational imaging techniques are developed to make low-quality miniature cameras capable of delivering realistic high-resolution reconstructions, providing full-focus imaging, and acquiring depth information for high dynamic range objects. For the superresolution task, a non-regularized direct superresolution algorithm is developed to achieve realistic restorations without being penalized by improper assumptions (e.g., optimizers, priors, and regularizers) made in the inverse problem. An adaptive frequency-based filtering scheme is introduced to upper bound the reconstruction errors while still producing more fine details as compared with previous methods under realistic imaging conditions. For the full-focus imaging task, a computational depth-based deconvolution technique is proposed to bring a scene captured by an ordinary fixed-focus camera to a full-focus based on a depth-variant point spread function prior. The ringing artifacts are suppressed on three levels: block tiling to eliminate boundary artifacts, adaptive reference maps to reduce ringing initiated by sharp edges, and block-wise deconvolution or

  18. Development of biostereometric experiments. [stereometric camera system

    NASA Technical Reports Server (NTRS)

    Herron, R. E.

    1978-01-01

    The stereometric camera was designed for close-range techniques in biostereometrics. The camera focusing distance of 360 mm to infinity covers a broad field of close-range photogrammetry. The design provides for a separate unit for the lens system and interchangeable backs on the camera for the use of single frame film exposure, roll-type film cassettes, or glass plates. The system incorporates the use of a surface contrast optical projector.

  19. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  20. The CTIO CCD-TV acquisition camera

    NASA Astrophysics Data System (ADS)

    Walker, Alistair R.; Schmidt, Ricardo

    A prototype CCD-TV camera has been built at CTIO, conceptually similar to the cameras in use at Lick Observatory. A GEC CCD is used as the detector, cooled thermo-electrically to -45C. Pictures are displayed via an IBM PC clone computer and an ITI image display board. Results of tests at the CTIO telescopes are discussed, including comparisons with the RCA ISIT cameras used at present for acquisition and guiding.

  1. Omnidirectional Underwater Camera Design and Calibration

    PubMed Central

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Ribas, David

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV) simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3) and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach. PMID:25774707

  2. Multiple LED camera for dynamic photoelasticity

    NASA Astrophysics Data System (ADS)

    Asundi, A.; Sajan, M. R.

    1995-05-01

    Dynamic photoelasticity involves the high-speed recording of rapidly moving fringe patterns in synchronization with loading. Cranz Schardin cameras are routinely utilized in the recording of dynamic photoelastic patterns. There are no moving components in these cameras, making the setup simple and attractive. A multiple LED camera based on the Cranz Schardin format is presented. High-speed instant polaroid film is used for recording the photoelastic fringes. Low cost, simplicity in the experimental setup, and rapid repeatability are the advantages of the camera.

  3. Omnidirectional underwater camera design and calibration.

    PubMed

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Ribas, David

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV) simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3) and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach. PMID:25774707

  4. Advanced High-Definition Video Cameras

    NASA Technical Reports Server (NTRS)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  5. Color measurements based on a color camera

    NASA Astrophysics Data System (ADS)

    Marszalec, Elzbieta A.; Pietikaeinen, Matti

    1997-08-01

    The domain of color camera applications is increasing all time due to recent progress in color machine vision research. Colorimetric measurement tasks are quite complex as the purpose of color measurement is to provide a quantitative evaluation of the phenomenon of colors as perceived by human vision. A proper colorimetric calibration of the color camera system is needed in order to make color a practical tool in machine vision. This paper discuses two approaches to color measurements based on a color camera and includes an overview of practical approaches to color camera calibration under unstable illumination conditions.

  6. LROC - Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Eliason, E.; Hiesinger, H.; Jolliff, B. L.; McEwen, A.; Malin, M. C.; Ravine, M. A.; Thomas, P. C.; Turtle, E. P.

    2009-12-01

    The Lunar Reconnaissance Orbiter (LRO) went into lunar orbit on 23 June 2009. The LRO Camera (LROC) acquired its first lunar images on June 30 and commenced full scale testing and commissioning on July 10. The LROC consists of two narrow-angle cameras (NACs) that provide 0.5 m scale panchromatic images over a combined 5 km swath, and a wide-angle camera (WAC) to provide images at a scale of 100 m per pixel in five visible wavelength bands (415, 566, 604, 643, and 689 nm) and 400 m per pixel in two ultraviolet bands (321 nm and 360 nm) from the nominal 50 km orbit. Early operations were designed to test the performance of the cameras under all nominal operating conditions and provided a baseline for future calibrations. Test sequences included off-nadir slews to image stars and the Earth, 90° yaw sequences to collect flat field calibration data, night imaging for background characterization, and systematic mapping to test performance. LRO initially was placed into a terminator orbit resulting in images acquired under low signal conditions. Over the next three months the incidence angle at the spacecraft’s equator crossing gradually decreased towards high noon, providing a range of illumination conditions. Several hundred south polar images were collected in support of impact site selection for the LCROSS mission; details can be seen in many of the shadows. Commissioning phase images not only proved the instruments’ overall performance was nominal, but also that many geologic features of the lunar surface are well preserved at the meter-scale. Of particular note is the variety of impact-induced morphologies preserved in a near pristine state in and around kilometer-scale and larger young Copernican age impact craters that include: abundant evidence of impact melt of a variety of rheological properties, including coherent flows with surface textures and planimetric properties reflecting supersolidus (e.g., liquid melt) emplacement, blocks delicately perched on

  7. Illumination box and camera system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  8. Reading Challenging Barcodes with Cameras

    PubMed Central

    Gallo, Orazio; Manduchi, Roberto

    2010-01-01

    Current camera-based barcode readers do not work well when the image has low resolution, is out of focus, or is motion-blurred. One main reason is that virtually all existing algorithms perform some sort of binarization, either by gray scale thresholding or by finding the bar edges. We propose a new approach to barcode reading that never needs to binarize the image. Instead, we use deformable barcode digit models in a maximum likelihood setting. We show that the particular nature of these models enables efficient integration over the space of deformations. Global optimization over all digits is then performed using dynamic programming. Experiments with challenging UPC-A barcode images show substantial improvement over other state-of-the-art algorithms. PMID:20617113

  9. Wind dynamic range video camera

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    A television camera apparatus is disclosed in which bright objects are attenuated to fit within the dynamic range of the system, while dim objects are not. The apparatus receives linearly polarized light from an object scene, the light being passed by a beam splitter and focused on the output plane of a liquid crystal light valve. The light valve is oriented such that, with no excitation from the cathode ray tube, all light is rotated 90 deg and focused on the input plane of the video sensor. The light is then converted to an electrical signal, which is amplified and used to excite the CRT. The resulting image is collected and focused by a lens onto the light valve which rotates the polarization vector of the light to an extent proportional to the light intensity from the CRT. The overall effect is to selectively attenuate the image pattern focused on the sensor.

  10. A magnetic source imaging camera

    NASA Astrophysics Data System (ADS)

    Dolgovskiy, V.; Fescenko, I.; Sekiguchi, N.; Colombo, S.; Lebedev, V.; Zhang, J.; Weis, A.

    2016-07-01

    We describe a magnetic source imaging camera (MSIC) allowing a direct dynamic visualization of the two-dimensional spatial distribution of the individual components Bx(x ,y ), By(x ,y ) and Bz(x ,y ) of a magnetic field. The field patterns allow—in principle—a reconstruction of the distribution of sources that produce the field B → by inverse problem analysis. We compare experimentally recorded point-spread functions, i.e., field patterns produced by point-like magnetic dipoles of different orientations with anticipated field patterns. Currently, the MSIC can resolve fields of ≈10 pT (1 s measurement time) range in a field of view up to ˜20 × 20 mm2. The device has a large range of possible applications. As an example, we demonstrate the MSIC's use for recording the spatially resolved Néel magnetorelaxation of blocked magnetic nanoparticles.

  11. Explosive Transient Camera (ETC) Program

    NASA Technical Reports Server (NTRS)

    Ricker, George

    1991-01-01

    Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.

  12. Superconducting cameras for optical astronomy

    NASA Astrophysics Data System (ADS)

    Martin, D. D. E.; Verhoeve, P.; de Bruijne, J. H. J.; Reynolds, A. P.; van Dordrecht, A.; Verveer, J.; Page, J.; Rando, N.; Peacock, A.

    2002-05-01

    superconducting Tunnel junctions (STJs) have been extensively investigated it as photon detectors covering the range from near-infrared to x-ray energies. A 6× 6 array of Tantalum junctions has performed multiple astronomical observations of optical sources using the wiliam Herschel 4.2m telescope at La Palma. Following the success of this programme, we are now developing a second generation camera. The goals of this programme are to increase the field of view of the instrument from “4× 4” to “5×9”, to optimize IR rejection filters, possibly extending the `red' response to ~ lum and to increase the electronics readout speed. For these purposes, we are developing a new Superconducting Tunnel Junction Array consisting of 10× 12 Tantalum/Aluminium devices as well as an important readout system. In this paper, we review the instrument's architecture and describe the performance of the new detector

  13. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W., III; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  14. 75 FR 47318 - GE Asset Management Incorporated and GE Investment Distributors, Inc.; Notice of Application and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... COMMISSION GE Asset Management Incorporated and GE Investment Distributors, Inc.; Notice of Application and.... Applicants: GE Asset Management Incorporated (``GEAM'') and GE Investment Distributors, Inc. (``GEID....\\3\\ The Commission alleged in the complaint (``Complaint'') that, from 2000 to 2003, four...

  15. Christoph Scheiner and the camera obscura (German Title: Christoph Scheiner und die Camera obscura )

    NASA Astrophysics Data System (ADS)

    Daxecker, Franz

    A hitherto not noted portable camera obscura developed by Christoph Scheiner is documented with drawings. Furthermore a walkable camera obscura and the proof of the intersection of light rays caused by a pinhole are described, as well as the comparison between the camera obscura and the eye.

  16. Multilayered Ge/SiGe Material in Microfabricated Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Samarelli, A.; Llin, L. Ferre; Cecchi, S.; Chrastina, D.; Isella, G.; Etzelstorfer, T.; Stangl, J.; Gubler, E. Muller; Weaver, J. M. R.; Dobson, P.; Paul, D. J.

    2014-10-01

    Results for low dimensional p-type Ge/SiGe superlattices with Ge quantum wells of 3.43 nm are presented. A range of microfabricated test structures have been developed to characterise the cross-plane electrical and thermal properties of the Ge/SiGe heterostructures. These superlattices were directly grown on 100-mm-diameter silicon wafers by a chemical vapour deposition growth system with rates up to 6 nm/s. Quantum well and quantum mechanical tunnel barriers with dimensions down to nm have been designed, grown and tested; they demonstrate a ZT of 0.08 ± 0.011 and power factor of 1.34 ± 0.15 m W m-1 K-2 at 300 K. A complete microfabricated module using indium bump-bonding is reported together with preliminary results on unoptimised material and leg dimensions. Routes to optimise the material and modules are discussed.

  17. A versatile digital camera trigger for telescopes in the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Schwanke, U.; Shayduk, M.; Sulanke, K.-H.; Vorobiov, S.; Wischnewski, R.

    2015-05-01

    This paper describes the concept of an FPGA-based digital camera trigger for imaging atmospheric Cherenkov telescopes, developed for the future Cherenkov Telescope Array (CTA). The proposed camera trigger is designed to select images initiated by the Cherenkov emission of extended air showers from very-high energy (VHE, E > 20 GeV) photons and charged particles while suppressing signatures from background light. The trigger comprises three stages. A first stage employs programmable discriminators to digitize the signals arriving from the camera channels (pixels). At the second stage, a grid of low-cost FPGAs is used to process the digitized signals for camera regions with 37 pixels. At the third stage, trigger conditions found independently in any of the overlapping 37-pixel regions are combined into a global camera trigger by few central FPGAs. Trigger prototype boards based on Xilinx FPGAs have been designed, built and tested and were shown to function properly. Using these components a full camera trigger with a power consumption and price per channel of about 0.5 W and 19 €, respectively, can be built. With the described design the camera trigger algorithm can take advantage of pixel information in both the space and the time domain allowing, for example, the creation of triggers sensitive to the time-gradient of a shower image; the time information could also be exploited to online adjust the time window of the acquisition system for pixel data. Combining the results of the parallel execution of different trigger algorithms (optimized, for example, for the lowest and highest energies, respectively) on each FPGA can result in a better response over all photons energies (as demonstrated by Monte Carlo simulation in this work).

  18. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  19. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  20. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  1. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  2. Creating and Using a Camera Obscura

    ERIC Educational Resources Information Center

    Quinnell, Justin

    2012-01-01

    The camera obscura (Latin for "darkened room") is the earliest optical device and goes back over 2500 years. The small pinhole or lens at the front of the room allows light to enter and this is then "projected" onto a screen inside the room. This differs from a camera, which projects its image onto light-sensitive material. Originally images were…

  3. Cameras Monitor Spacecraft Integrity to Prevent Failures

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

  4. Making a room-sized camera obscura

    NASA Astrophysics Data System (ADS)

    Flynt, Halima; Ruiz, Michael J.

    2015-01-01

    We describe how to convert a room into a camera obscura as a project for introductory geometrical optics. The view for our camera obscura is a busy street scene set against a beautiful mountain skyline. We include a short video with project instructions, ray diagrams and delightful moving images of cars driving on the road outside.

  5. Matching image color from different cameras

    NASA Astrophysics Data System (ADS)

    Fairchild, Mark D.; Wyble, David R.; Johnson, Garrett M.

    2008-01-01

    Can images from professional digital SLR cameras be made equivalent in color using simple colorimetric characterization? Two cameras were characterized, these characterizations were implemented on a variety of images, and the results were evaluated both colorimetrically and psychophysically. A Nikon D2x and a Canon 5D were used. The colorimetric analyses indicated that accurate reproductions were obtained. The median CIELAB color differences between the measured ColorChecker SG and the reproduced image were 4.0 and 6.1 for the Canon (chart and spectral respectively) and 5.9 and 6.9 for the Nikon. The median differences between cameras were 2.8 and 3.4 for the chart and spectral characterizations, near the expected threshold for reliable image difference perception. Eight scenes were evaluated psychophysically in three forced-choice experiments in which a reference image from one of the cameras was shown to observers in comparison with a pair of images, one from each camera. The three experiments were (1) a comparison of the two cameras with the chart-based characterizations, (2) a comparison with the spectral characterizations, and (3) a comparison of chart vs. spectral characterization within and across cameras. The results for the three experiments are 64%, 64%, and 55% correct respectively. Careful and simple colorimetric characterization of digital SLR cameras can result in visually equivalent color reproduction.

  6. New camera tube improves ultrasonic inspection system

    NASA Technical Reports Server (NTRS)

    Berger, H.; Collis, W. J.; Jacobs, J. E.

    1968-01-01

    Electron multiplier, incorporated into the camera tube of an ultrasonic imaging system, improves resolution, effectively shields low level circuits, and provides a high level signal input to the television camera. It is effective for inspection of metallic materials for bonds, voids, and homogeneity.

  7. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect

    Frank, A M; Bartolick, J M

    2006-08-25

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  8. 21 CFR 886.1120 - Opthalmic camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  9. Perspective projection camera model for zoom lenses

    NASA Astrophysics Data System (ADS)

    Willson, Reg G.; Shafer, Steven A.

    1994-03-01

    To effectively use automated zoom lenses for machine vision we need camera models that are valid over continuous ranges of lens settings. While camera calibration has been the subject of much research in machine vision and photogrammetry, for the most part the resulting models and calibration techniques have been for cameras with fixed parameter lenses where the lens' imaging process is static. For cameras with automated lenses the image formation process is a dynamic function of the lens control parameters. The complex nature of the relationships between the control parameters and the imaging process plus the need to calibrate them over a continuum of lens settings makes both the modeling and the calibration of cameras with automated zoom lenses fundamentally more difficult than that of cameras with fixed parameter lenses. In this paper we illustrate some of the problems involved with the modeling and calibration of cameras with variable parameter lenses. We then show how an iterative, empirical approach to modeling and calibration can produce a dynamic camera model of perspective projection that holds calibration across a continuous range of zoom.

  10. AIM: Ames Imaging Module Spacecraft Camera

    NASA Technical Reports Server (NTRS)

    Thompson, Sarah

    2015-01-01

    The AIM camera is a small, lightweight, low power, low cost imaging system developed at NASA Ames. Though it has imaging capabilities similar to those of $1M plus spacecraft cameras, it does so on a fraction of the mass, power and cost budget.