Science.gov

Sample records for ge liquid semiconductor

  1. Monte Carlo studies of liquid semiconductor surfaces - Si and Ge

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1988-01-01

    The liquid-vapor interface of Si and Ge, and of Si doped with impurities is studied using the empirical Stillinger-Weber two- and three-body potentials. The surface tension of the pure elements is calculated by use of a direct evaluation of the free energy required to create the surface. For Si, both the surface tension and its temperature derivative are in good agreement with experiment. To within numerical accuracy, the free surfaces of both Si and Ge have a monotonically decreasing density, with a 10-90 percent surface width of about 2.2 A in both cases. When large and small model impurities are introduced into pure liquid Si, they are found in the simulations to migrate, respectively, towards the surface and away from the surface. This behavior is consistent with the interpretation that impurities with atoms larger than Si tend to lower the surface tension.

  2. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    PubMed Central

    Lu, Haiming; Meng, Xiangkang

    2015-01-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size. PMID:26053237

  3. Optical conductivity for liquid semiconductors

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Ko, Eunjung; Derby, J. J.; Chelikowsky, James

    2002-03-01

    We present calculations for the optical conductivity of several semiconductor liquids: SiGe, GaAs, CdTe, and ZnTe. We perform ab initio molecular dynamics for these liquids. The required interatomic forces are determined using the pseudopotential density functional method. We determine the optical conductivity by considering ensemble averages of the liquid state within the Kubo-Greenwood formalism. In the liquid phase, CdTe and ZnTe exhibit properties that are different from III-V and group IV semiconductors. CdTe and ZnTe remain semiconducting unlike SiGe and GaAs, which are metallic in the melt. These differences in optical conductivities are explained in terms of differences in the microstructure of the liquids. We also verify an empirical rule by Joffe and Regel. Their rule predicts the liquid will remain semiconducting if the short range order of the melt resembles that of the crystalline phase.

  4. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  5. Modeling of Diffusion in Liquid Ge and Its Alloys

    NASA Technical Reports Server (NTRS)

    Stroud, David G.

    1998-01-01

    This report summarizes progress made on NASA Grant NAG3-1437, Modeling of diffusion in Liquid Ge and Its Alloys, which was in effect from January 15, 1993 through July 10, 1997. It briefly describes the purpose of the grant, and the work accomplished in simulations and other studies of thermophysical properties of liquid semiconductors and related materials. A list of publications completed with the support of the grant is also given.

  6. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    and the proportionality to Tl concentration. The ionic model satisfactorily explains the observed concentration and temperature dependence of the absorption. It also provides for the first time, a universal explanation of the exponential edge in liquid semiconductors where charged defects are present, and provides a means of measuring the concentration of ions when the absorption can be calibrated.

  7. Semiconductor liquid-junction solar cell

    SciTech Connect

    Parkinson, B.A.

    1982-10-29

    A semiconductor liquid junction photocell in which the photocell is in the configuration of a light concentrator and in which the electrolytic solution both conducts current and facilitates the concentration of incident solar radiation onto the semiconductor. The photocell may be in the configuration of a non-imaging concentrator such as a compound parabolic concentrator, or an imaging concentrator such as a lens.

  8. A Pseudopotential Approach to Compute Thermodynamic Properties of Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Prajapati, Anand; Thakor, Pankaj; Sonvane, Yogesh

    2015-03-01

    This paper deals with the theoretical approach for calculating the thermodynamical properties viz. Enthalpy(E),Entropy(S) and Helmholtz free energy(F) of some liquid semiconductors (Si, Ga, Ge, In, Sn, Tl, Bi, As, Se, Te and Sb). The Gibbs-Bogoliubov(GB) variational method is applied to compute the thermodynamical properties. Our well established model potential is used to define the electron-ion interaction. Charged Hard Sphere (CHS) reference system is used to describe the structural contribution to the Helmholtz free energy in the liquid phase. Local field correction function proposed by Farid et al is adopted to see the screening effect. Lastly, our newly constructed model potential is an effective one to produce the data of thermodynamical properties of some liquid semiconductor.

  9. Moving liquids with light: Photoelectrowetting on semiconductors

    PubMed Central

    Arscott, Steve

    2011-01-01

    By linking semiconductor physics and wetting phenomena a brand new effect termed “photoelectrowetting-on-semiconductors” is demonstrated here for a conducting droplet resting on an insulator-semiconductor stack. Optical generation of carriers in the space-charge region of the underlying semiconductor alters the capacitance of the liquid-insulator-semiconductor stack; the result of this is a modification of the wetting contact angle of the droplet upon illumination using above band gap light. The effect is demonstrated using commercial silicon wafers, both n- and p-type having a doping range spanning four orders of magnitude (6×1014−8×1018 cm−3), coated with a commercial amorphous fluoropolymer insulating film (Teflon®). Impedance measurements confirm that the observations are semiconductor space-charge related effects. The impact of the work could lead to new silicon-based technologies in areas such as Laboratory-on-a-Chip, Microfluidics and Optofluidics. PMID:22355699

  10. Semiconductor liquid crystal composition and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  11. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    details chosen for ec-LLS. Third, the rate of introduction of zero-valent materials into the liquid metal is precisely gated with a high degree of resolution by the applied potential/current. The intent of this Account is to summarize the key elements of ec-LLS identified to date, first contextualizing this method with respect to other semiconductor crystal growth methods and then highlighting some unique capabilities of ec-LLS. Specifically, we detail ec-LLS as a platform to prepare Ge and Si crystals from bulk- (∼1 cm(3)), micro- (∼10(-10) cm(3)), and nano-sized (∼10(-16) cm(3)) liquid metal electrodes in common solvents at low temperature. In addition, we describe our successes in the preparation of more compositionally complex binary covalent III-V semiconductors. PMID:26132141

  12. Production of 35S for a Liquid Semiconductor Betavoltaic

    SciTech Connect

    Meier, David E.; Garnov, A. Y.; Robertson, J. D.; Kwon, J. W.; Wacharasindhu, T.

    2009-10-01

    The specific energy density from radioactive decay is five to six orders of magnitude greater than the specific energy density in conventional chemical battery and fuel cell technologies. We are currently investigating the use of liquid semiconductor based betavoltaics as a way to directly convert the energy of radioactive decay into electrical power and potentially avoid the radiation damage that occurs in solid state semiconductor devices due to non-ionizing energy loss. Sulfur-35 was selected as the isotope for the liquid semiconductor demonstrations because it can be produced in high specific activity and it is chemically compatible with known liquid semiconductor media.

  13. Magnetic Mn5Ge3 nanocrystals embedded in crystalline Ge: a magnet/semiconductor hybrid synthesized by ion implantation

    PubMed Central

    2012-01-01

    The integration of ferromagnetic Mn5Ge3 with the Ge matrix is promising for spin injection in a silicon-compatible geometry. In this paper, we report the preparation of magnetic Mn5Ge3 nanocrystals embedded inside the Ge matrix by Mn ion implantation at elevated temperature. By X-ray diffraction and transmission electron microscopy, we observe crystalline Mn5Ge3 with variable size depending on the Mn ion fluence. The electronic structure of Mn in Mn5Ge3 nanocrystals is a 3d6 configuration, which is the same as that in bulk Mn5Ge3. A large positive magnetoresistance has been observed at low temperatures. It can be explained by the conductivity inhomogeneity in the magnetic/semiconductor hybrid system. PMID:23009168

  14. Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature.

    PubMed

    Adhikari, Hemant; Marshall, Ann F; Goldthorpe, Irene A; Chidsey, Christopher E D; McIntyre, Paul C

    2007-12-01

    The vapor-liquid-solid mechanism of nanowire (NW) growth requires the presence of a liquid at one end of the wire; however, Au-catalyzed Ge nanowire growth by chemical vapor deposition can occur at approximately 100 degrees C below the bulk Au-Ge eutectic. In this paper, we investigate deep sub-eutectic stability of liquid Au-Ge catalysts on Ge NWs quantitatively, both theoretically and experimentally. We construct a binary Au-Ge phase diagram that is valid at the nanoscale and show that equilibrium arguments, based on capillarity, are inconsistent with stabilization of Au-Ge liquid at deep sub-eutectic temperatures, similar to those used in Ge NW growth. Hot-stage electron microscopy and X-ray diffraction are used to test the predictions of nanoscale phase equilibria. In addition to Ge supersaturation of the Au-Ge liquid droplet, which has recently been invoked as an explanation for deep sub-eutectic Ge NW growth, we find evidence of a substantial kinetic barrier to Au solidification during cooling below the nanoscale Au-Ge eutectic temperature. PMID:19206662

  15. Synthesis and characterization of group IV semiconductor nanowires by vapor-liquid-solid growth

    NASA Astrophysics Data System (ADS)

    Lew, Kok-Keong

    There is currently intense interest in one-dimensional nanostructures, such as nanotubes and nanowires, due to their potential to test fundamental concepts of dimensionality and to serve as building blocks for nanoscale devices. Vapor-liquid-solid (VLS) growth, which is one of the most common fabrication methods, has been used to produce single crystal semiconductor nanowires such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs). In the VLS growth of Group IV semiconductor nanowires, a metal, such as gold (Au) is used as a catalyst agent to nucleate whisker growth from a Si-containing (silane (SIH4)) or Ge-containing vapor (germane (GeH 4)). Au and Si/Ge form a liquid alloy that has a eutectic temperature of around 360°C, which, upon supersaturation, nucleates the growth of a Si or Ge wire. The goal of this work is to develop a more fundamental understanding of VLS growth kinetics and intentional doping of Group IV semiconductor nanowires in order to better control the properties of the nanowires. The fabrication of p-type and n-type Si nanowires will be studied via the addition of dopant gases such as diborane (B2H 6), trimethylboron (TMB), and phosphine (PH3) during growth. The use of gaseous dopant sources provides more flexibility in growth, particularly for the fabrication of p-n junctions and structures with axial dopant variations (e.g. p+-p- p+). The study is then extended to fabricate SiGe alloy nanowires by mixing SiH4 and GeH4. Bandgap engineering in Si/SiGe heterostructures can lead to novel devices with improved performance compared to those made entirely of Si. The scientific findings will lead to a better understanding of the fabrication of Si/SiGe axial and radial heterostructure nanowires for functional nanowire device structures, such as heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs). Eventually, the central theme of this research is to provide a scientific knowledge base and foundation for

  16. Liquid-Phase Electroepitaxy of Semiconductors

    NASA Astrophysics Data System (ADS)

    Dost, Sadik

    The chapter presents a review of the growth of single-crystal bulk semiconductors by liquid-phase electroepitaxy (LPEE). Following a short introduction, early modeling and theoretical studies on LPEE are briefly introduced. Recent experimental results on LPEE growth of GaAs/GaInAs single crystals under a static applied magnetic field are discussed in detail. The results of three-dimensional numerical simulations carried out for LPEE growth of GaAs under various electric and magnetic field levels are presented. The effect of magnetic field nonuniformities is numerically examined. Crystal growth experiments show that the application of a static magnetic field in LPEE growth of GaAs increases the growth rate very significantly. A continuum model to predict such high growth rates is also presented. The introduction of a new electric mobility in the model, i.e., the electromagnetic mobility, allows accurate predictions of both the growth rate and the growth interface shape. Space limitation required the citation of a limited number of references related to LPEE [29.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73]. For details of many aspects of the LPEE growth process and its historical developments, the reader is referred to these references and also others cited therein.

  17. Growth and applications of GeSn-related group-IV semiconductor materials

    NASA Astrophysics Data System (ADS)

    Zaima, Shigeaki; Nakatsuka, Osamu; Taoka, Noriyuki; Kurosawa, Masashi; Takeuchi, Wakana; Sakashita, Mitsuo

    2015-08-01

    We review the technology of Ge1-xSnx-related group-IV semiconductor materials for developing Si-based nanoelectronics. Ge1-xSnx-related materials provide novel engineering of the crystal growth, strain structure, and energy band alignment for realising various applications not only in electronics, but also in optoelectronics. We introduce our recent achievements in the crystal growth of Ge1-xSnx-related material thin films and the studies of the electronic properties of thin films, metals/Ge1-xSnx, and insulators/Ge1-xSnx interfaces. We also review recent studies related to the crystal growth, energy band engineering, and device applications of Ge1-xSnx-related materials, as well as the reported performances of electronic devices using Ge1-xSnx related materials.

  18. First principles simulations of liquid semiconductors: Electronic, structural and dynamic properties

    NASA Astrophysics Data System (ADS)

    Godlevsky, Vitaliy

    We develop ab initio molecular dynamics simulation technique to examine liquid semiconductors. Our methods use quantum interatomic forces, computed within the pseudopotential-density functional method (PDFM). In our work, we study typical representatives of IV, III-V and II-VI materials: Si, Ge, GaAs and CdTe. We show that, upon melting, IV and III-V semiconductors experience semiconductor → metal transition, while more ionic II-VI compounds remain semiconductors in the melt. Metallic type conductivity of liquid IV and III-V materials results from the structural changes of the systems in the melt. In our simulations, "open" zinc-blende (diamond for Si and Ge) structures transform into a more close-packed configuration during solid → liquid transition. Their coordination number, equal to 4 in the crystalline phase, changes to ˜6 in the liquid. We demonstrate that this leads to the breaking of covalent bonds and delocalization of electrons. According to our results, the density of states function of liquid IV and III-V semiconductors has a well defined "free electron" character. For these materials, the electrical conductivity jumps by one to two orders of magnitude during melting. This is opposite to the behavior of the majority of II-VI compounds. In our work, we examine CdTe, typical II-VI semiconductor. Although the dc conductivity of CdTe increases by a factor of 40 as it melts, this material remains a semiconductor in the liquid: its electrical conductivity increases with the temperature. At variance with IV and III-V semiconductors, liquid CdTe retains its tetrahedral environment with the coordination number of ˜4. We discover that a significant number of anion-cation bonds are conserved in liquid CdTe as opposed to IV and III-V materials. This is in agreement with the small entropy change observed in the melting process of CdTe. In our simulations, we find that further heating of molten CdTe results in significant structural changes with a

  19. Semiconductor apparatus utilizing gradient freeze and liquid-solid techniques

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)

    1998-01-01

    Transition metals of Group VIII (Co, Rh and Ir) have been prepared as semiconductor compounds with the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freezing techniques and/or liquid phase sintering techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 1200 cm.sup.2.V.sup.-1.s.sup.-1) and good Seebeck coefficients (up to 150 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a substantial increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials.

  20. Atomically precise semiconductor--graphene and hBN interfaces by Ge intercalation.

    PubMed

    Verbitskiy, N I; Fedorov, A V; Profeta, G; Stroppa, A; Petaccia, L; Senkovskiy, B; Nefedov, A; Wöll, C; Usachov, D Yu; Vyalikh, D V; Yashina, L V; Eliseev, A A; Pichler, T; Grüneis, A

    2015-01-01

    The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication of high-quality atomically precise interfaces between 2D materials, like graphene and hexagonal boron nitride (hBN), and classical semiconductor via Ge intercalation. Using angle-resolved photoemission spectroscopy and complementary DFT modelling we observed for the first time that epitaxially grown graphene with the Ge monolayer underneath demonstrates Dirac Fermions unaffected by the substrate as well as an unperturbed electronic band structure of hBN. This approach provides the intrinsic relativistic 2D electron gas towards integration in semiconductor technology. Hence, these new interfaces are a promising path for the integration of graphene and hBN into state-of-the-art semiconductor technology. PMID:26639608

  1. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Minjoo L.; Fitzgerald, Eugene A.; Bulsara, Mayank T.; Currie, Matthew T.; Lochtefeld, Anthony

    2005-01-01

    This article reviews the history and current progress in high-mobility strained Si, SiGe, and Ge channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We start by providing a chronological overview of important milestones and discoveries that have allowed heterostructures grown on Si substrates to transition from purely academic research in the 1980's and 1990's to the commercial development that is taking place today. We next provide a topical review of the various types of strain-engineered MOSFETs that can be integrated onto relaxed Si1-xGex, including surface-channel strained Si n- and p-MOSFETs, as well as double-heterostructure MOSFETs which combine a strained Si surface channel with a Ge-rich buried channel. In all cases, we will focus on the connections between layer structure, band structure, and MOS mobility characteristics. Although the surface and starting substrate are composed of pure Si, the use of strained Si still creates new challenges, and we shall also review the literature on short-channel device performance and process integration of strained Si. The review concludes with a global summary of the mobility enhancements available in the SiGe materials system and a discussion of implications for future technology generations.

  2. A method of studying the photoelectric properties of liquid semiconductors

    SciTech Connect

    Aivazov, A.A.; Budagyan, B.G.; Giorgadze, A.L.

    1985-09-01

    The authors propose a way of measuring the optical and photoelectric properties of liquid semiconductors. They have developed a high temperature apparatus with cuvettes that allow sufficient material to be loaded for heat treating the melt over the whole range of measurement temperatures. After fusion and heat treatment for 30 min, the melt is fed into the working chamber by the pressure exerted by the inert gas. The optical and photoeletric parameters are measured from the melt. This method has been used to measure the steady-state longitudinal photoconductivity of liquid selenium.

  3. Electron Liquids in Semiconductor Quantum Structures

    SciTech Connect

    Aron Pinczuk

    2009-05-25

    The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.

  4. Investigation of redox processes at semiconductor electrode liquid junctions

    SciTech Connect

    Koval, C.A.

    1990-08-01

    Research in fundamental aspects of photoelectrochemical cells has been in the following areas: chemical probes for hot carrier processes, electrostatic theory for describing electrical interactions at interfaces, and kinetics of electron transfer at ideal semiconductor solution interfaces. Our goal is to achieve a better understanding of dark and photo-induced current flow at the semiconductor electrode/redox electrolyte interface (SEI) so that devices and processes utilizing this interface for solar energy conversion can be developed or improved. Our most important accomplishment has been the development of a redox system capable of detecting hot electrons at the p-InP/acetonitrile interface. Also, we have examined electrostatic theory for the image potential of an ion as a function of distance from the SEI. Finally, our group was one of the first to realize that the 2-dimensional metal chalcogenides (MC) are excellent materials for fundamental studies of electron transfer at the SEI. One of the chief potential advantages for use of MC's is the formation of semiconductor/liquid junctions with nearly ideal electrochemical properties. 27 refs., 1 fig.

  5. Direct detection of sub-GeV dark matter with semiconductor targets

    NASA Astrophysics Data System (ADS)

    Essig, Rouven; Fernández-Serra, Marivi; Mardon, Jeremy; Soto, Adrián; Volansky, Tomer; Yu, Tien-Tien

    2016-05-01

    Dark matter in the sub-GeV mass range is a theoretically motivated but largely unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil direct detection experiments, but may be detected through the small ionization signals caused by dark matter-electron scattering. Semiconductors are well-studied and are particularly promising target materials because their {O} (1 eV) band gaps allow for ionization signals from dark matter particles as light as a few hundred keV. Current direct detection technologies are being adapted for dark matter-electron scattering. In this paper, we provide the theoretical calculations for dark matter-electron scattering rate in semiconductors, overcoming several complications that stem from the many-body nature of the problem. We use density functional theory to numerically calculate the rates for dark matter-electron scattering in silicon and germanium, and estimate the sensitivity for upcoming experiments such as DAMIC and SuperCDMS. We find that the reach for these upcoming experiments has the potential to be orders of magnitude beyond current direct detection constraints and that sub-GeV dark matter has a sizable modulation signal. We also give the first direct detection limits on sub-GeV dark matter from its scattering off electrons in a semiconductor target (silicon) based on published results from DAMIC. We make available publicly our code, QEdark , with which we calculate our results. Our results can be used by experimental collaborations to calculate their own sensitivities based on their specific setup. The searches we propose will probe vast new regions of unexplored dark matter model and parameter space.

  6. Emergence of competing magnetic interactions induced by Ge doping in the semiconductor FeGa3

    NASA Astrophysics Data System (ADS)

    Alvarez-Quiceno, J. C.; Cabrera-Baez, M.; Ribeiro, R. A.; Avila, M. A.; Dalpian, G. M.; Osorio-Guillén, J. M.

    2016-07-01

    FeGa3 is an unusual intermetallic semiconductor that presents intriguing magnetic responses to the tuning of its electronic properties. When doped with Ge, the system evolves from diamagnetic to paramagnetic to ferromagnetic ground states that are not well understood. In this work, we have performed a joint theoretical and experimental study of FeGa3 -xGex using density functional theory and magnetic susceptibility measurements. For low Ge concentrations we observe the formation of localized moments on some Fe atoms and, as the dopant concentration increases, a more delocalized magnetic behavior emerges. The magnetic configuration strongly depends on the dopant distribution, leading even to the appearance of antiferromagnetic interactions in certain configurations.

  7. Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage.

    PubMed

    Gu, Junsi; Collins, Sean M; Carim, Azhar I; Hao, Xiaoguang; Bartlett, Bart M; Maldonado, Stephen

    2012-09-12

    The direct electrodeposition of crystalline germanium (Ge) nanowire film electrodes from an aqueous solution of dissolved GeO(2) using discrete 'flux' nanoparticles capable of dissolving Ge(s) has been demonstrated. Electrodeposition of Ge at inert electrode substrates decorated with small (<100 nm), discrete indium (In) nanoparticles resulted in crystalline Ge nanowire films with definable nanowire diameters and densities without the need for a physical or chemical template. The Ge nanowires exhibited strong polycrystalline character as-deposited, with approximate crystallite dimensions of 20 nm and a mixed orientation of the crystallites along the length of the nanowire. Energy dispersive spectroscopic elemental mapping of individual Ge nanowires showed that the In nanoparticles remained at the base of each nanowire, indicating good electrical communication between the Ge nanowire and the underlying conductive support. As-deposited Ge nanowire films prepared on Cu supports were used without further processing as Li(+) battery anodes. Cycling studies performed at 1 C (1624 mA g(-1)) indicated the native Ge nanowire films supported stable discharge capacities at the level of 973 mA h g(-1), higher than analogous Ge nanowire film electrodes prepared through an energy-intensive vapor-liquid-solid nanowire growth process. The cumulative data show that ec-LLS is a viable method for directly preparing a functional, high-activity nanomaterials-based device component. The work presented here is a step toward the realization of simple processes that make fully functional energy conversion/storage technologies based on crystalline inorganic semiconductors entirely through benchtop, aqueous chemistry and electrochemistry without time- or energy-intensive process steps. PMID:22900746

  8. Vertically Aligned Ge Nanowires on Flexible Plastic Films Synthesized by (111)-Oriented Ge Seeded Vapor-Liquid-Solid Growth.

    PubMed

    Toko, Kaoru; Nakata, Mitsuki; Jevasuwan, Wipakorn; Fukata, Naoki; Suemasu, Takashi

    2015-08-19

    Transfer-free fabrication of vertical Ge nanowires (NWs) on a plastic substrate is demonstrated using a vapor-liquid-solid (VLS) method. The crystal quality of Ge seed layers (50 nm thickness) prepared on plastic substrates strongly influenced the VLS growth morphology, i.e., the density, uniformity, and crystal quality of Ge NWs. The metal-induced layer exchange yielded a (111)-oriented Ge seed layer at 325 °C, which allowed for the VLS growth of vertically aligned Ge NWs. The Ge NW array had almost the same quality as that formed on a bulk Ge(111) substrate. Transmission electron microscopy demonstrated that the Ge NWs were defect-free single crystals. The present investigation paves the way for advanced electronic optical devices integrated on a low-cost flexible substrate. PMID:26230716

  9. Magnetic Interactions in the Diluted Magnetic Semiconductor Mn_xGe_1-x

    NASA Astrophysics Data System (ADS)

    Erwin, Steven C.; Hellberg, C. Stephen

    2001-03-01

    Much current debate has focused on the origins of ferromagnetism in III-V magnetic semiconductors. Less attention has been paid to magnetically doped Group-IV semiconductors, although they have been predicted to have Curie temperatures of the same order [1]. We use density-functional theoretical (DFT) methods to study the electronic structure and magnetic interactions in Mn_xGe_1-x, the first such elemental magnetic semiconductor to be realized experimentally [2]. We use ordered supercells to simulate 6% Mn concentration, and calculate total energies within DFT for a variety of positional and magnetic arrangements of Mn at fixed concentration. We then fit these energies to a Heisenberg model to extract the spin coupling constants. The result is a strong but very short-ranged antiferromagnetic interaction between Mn atoms, and a weaker but longer-ranged ferromagnetic interaction. The ferromagnetic interaction dominates at all Mn-Mn distances beyond nearest neighbor. [1] T. Dietl et al., Science 287, 1019 (2000). [2] Y.D. Park, J. Mattson, A. Hanbicki, and B. Jonker (unpublished).

  10. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    SciTech Connect

    Guo, Yijun; Rowland, Clare E; Schaller, Richard D; Vela, Javier

    2014-08-26

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

  11. Semiconductor-doped liquid-core optical fiber.

    PubMed

    Hreibi, Ali; Gérôme, Frédéric; Auguste, Jean-Louis; Zhang, Yu; Yu, William W; Blondy, Jean-Marc

    2011-05-01

    A semiconductor liquid-core optical fiber has been made by simply filling the hollow core of a capillary waveguide with nanoparticles suspended in toluene media. Under a low continuous optical power excitation at 532 nm, the emission of PbSe particles was clearly demonstrated in the infrared region and then partially maintained in the core of the fiber by the total internal reflection mechanism. Finally, due to the guided propagation, which results in multiple absorption effects, a linear shift of the emission peak toward longer wavelengths was observed (~0.32 nm/cm). As a proof of concept, this original demonstration of visible-to-infrared conversion could lead to the development of active fibered devices at wavelengths not covered by the conventional rare-earth ion doping. PMID:21540972

  12. Quest for high-Curie temperature MnxGe1-x diluted magnetic semiconductors for room-temperature spintronics applications

    NASA Astrophysics Data System (ADS)

    Nie, Tianxiao; Tang, Jianshi; Wang, Kang L.

    2015-09-01

    In this paper, we report the non-equilibrium growth of various Mn-doped Ge dilute magnetic semiconductor nanostructures using molecular-beam epitaxy, including quantum dots, nanodisks and nanowires. Their detailed structural and magnetic properties are characterized. By comparing the results with those in MnxGe1-x thin films, it is affirmed that the use of nanostructures helps eliminate crystalline defects and meanwhile enhance the carrier-mediate ferromagnetism from substantial quantum confinements. Our systematic studies provide a promising platform to build nonvolatile spinFET and other novel spintronic devices based upon dilute magnetic semiconductor nanostructures.

  13. Metal-induced assembly of a semiconductor island lattice: Ge truncated pyramids on Au-patterned Si.

    PubMed

    Robinson, J T; Liddle, J A; Minor, A; Radmilovic, V; Yi, D O; Greaney, P Alex; Long, K N; Chrzan, D C; Dubon, O D

    2005-10-01

    We report the two-dimensional alignment of semiconductor islands using rudimentary metal patterning to control nucleation and growth. In the Ge on Si system, a square array of submicron Au dots on the Si (001) surface induces the assembly of deposited Ge adatoms into an extensive island lattice. Remarkably, these highly ordered Ge islands form between the patterned Au dots and are characterized by a unique truncated pyramidal shape. A model based on patterned diffusion barriers explains the observed ordering and establishes general criteria for the broader applicability of such a directed assembly process to quantum dot ordering. PMID:16218739

  14. Intrinsic carrier effects in HfO2-Ge metal-insulator-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Dimoulas, A.; Vellianitis, G.; Mavrou, G.; Evangelou, E. K.; Sotiropoulos, A.

    2005-05-01

    Germanium metal-insulator-semiconductor capacitors with HfO2 or other high-κ gate dielectrics show unusual low frequency behavior of the high frequency (1 kHz or higher) capacitance-voltage characteristics when biased in inversion. Here, we provide evidence that this effect is partly due to the high intrinsic carrier concentration ni in Ge. We show in particular that the ac conductance in inversion is thermally activated and it is governed either by generation-recombination processes in depletion, varying proportional to ni or by diffusion-limited processes varying as ni2, depending on whether the temperature is below or above 45 °C, respectively. From these measurements, we also show that the minority carrier response time in Ge is very short, in the microsecond range (much shorter than in Si), depending inversely proportional to ni at room temperature. This means that due to high ni, the inversion charge is built fast in response to high frequency signals at the gate, inducing the observed low frequency behavior.

  15. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors

    NASA Astrophysics Data System (ADS)

    Barreteau, C.; Michon, B.; Besnard, C.; Giannini, E.

    2016-06-01

    Silicon and Germanium monopnictides SiP, SiAs, GeP and GeAs form a family of 2D layered semiconductors. We have succeeded in growing bulk single crystals of these compounds by melt-growth under high pressure (0.5-1 GPa) in a cubic anvil hot press. Large (mm-size), shiny, micaceous crystals of GeP, GeAs and SiAs were obtained, and could be exfoliated into 2D flakes. Small and brittle crystals of SiP were yielded by this method. High-pressure sintered polycrystalline SiP and GeAs have also been successfully used as a precursor in the Chemical Vapor Transport growth of these crystals in the presence of I2 as a transport agent. All compounds are found to crystallize in the expected layered structure and do not undergo any structural transition at low temperature, as shown by Raman spectroscopy down to T=5 K. All materials exhibit a semiconducting behavior. The electrical resistivity of GeP, GeAs and SiAs is found to depend on temperature following a 2D-Variable Range Hopping conduction mechanism. The availability of bulk crystals of these compounds opens new perspectives in the field of 2D semiconducting materials for device applications.

  16. Liquid GeBr/sub 4/. II. Molecular packing and liquid structure

    SciTech Connect

    Ludwig, K.F. Jr.; Wilson, L.; Warburton, W.K.; Bienenstock, A.I.

    1987-07-01

    Anomalous scattering data from 1-GeBr/sub 4/ are compared with theoretical predictions and with several models. Published hard-sphere RISM calculations of the pair correlation functions accurately predict the features of the experimental distribution functions, but discrepancies between theory and experiment are larger than the experimental uncertainty. New calculations with more realistic potentials are needed. The total structure factor of 1-GeBr/sub 4/ contains a prepeak which is due largely, but not exclusively, to correlations between molecular centers (i.e., germanium atoms). Modeling results indicate that there is strong interlocking of molecules in the liquid and that the Br--Br structure factor is largely determined by the packing of the halogen atoms with the germanium atoms effectively fitting in tetrahedral interstices. Models based on the monoclinic crystal of SnBr/sub 4/ agree better with the liquid data than models based on the cubic crystal of c-GeBr/sub 4/, suggesting that GeBr/sub 4/ undergoes a change in short-range molecular packing on melting.

  17. Liquid-state semiconductor p-n junction at 903 K

    NASA Astrophysics Data System (ADS)

    Sasaki, Yasushi; Hirano, Yoshihiko; Iguchi, Manabu; Ishii, Kuniyoshi

    2006-12-01

    A liquid-state semiconductor p-n junction has been fabricated by applying the liquid phase separation of the monotectic Sb-Sb2S3 system at 903K. Electrical conduction types of liquid semiconductor of Sb-S alloy and S2S3-x consisting of the immiscible system are found to be p and n types, respectively, from measured absolute Seebeck coefficients. The p-n junction was formed by the liquid Sb--S alloy and Sb2S3-x; this is confirmed from the asymmetric current-voltage characteristics or its behavior is rectified. The formation of the liquid-state p-n junction in liquid semiconductors has great prospects in the next-generation direct thermal-to-electrical energy conversion materials.

  18. Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge1–xFex

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Yuki K.; Sakamoto, Shoya; Takeda, Yuki-Haru; Ishigami, Keisuke; Takahashi, Yukio; Saitoh, Yuji; Yamagami, Hiroshi; Fujimori, Atsushi; Tanaka, Masaaki; Ohya, Shinobu

    2016-03-01

    We investigate the local electronic structure and magnetic properties of the group-IV-based ferromagnetic semiconductor, Ge1‑xFex (GeFe), using soft X-ray magnetic circular dichroism. Our results show that the doped Fe 3d electrons are strongly hybridized with the Ge 4p states, and have a large orbital magnetic moment relative to the spin magnetic moment; i.e., morb/mspin ≈ 0.1. We find that nanoscale local ferromagnetic regions, which are formed through ferromagnetic exchange interactions in the high-Fe-content regions of the GeFe films, exist even at room temperature, well above the Curie temperature of 20–100 K. We observe the intriguing nanoscale expansion of the local ferromagnetic regions with decreasing temperature, followed by a transition of the entire film into a ferromagnetic state at the Curie temperature.

  19. Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge1-xFex.

    PubMed

    Wakabayashi, Yuki K; Sakamoto, Shoya; Takeda, Yuki-Haru; Ishigami, Keisuke; Takahashi, Yukio; Saitoh, Yuji; Yamagami, Hiroshi; Fujimori, Atsushi; Tanaka, Masaaki; Ohya, Shinobu

    2016-01-01

    We investigate the local electronic structure and magnetic properties of the group-IV-based ferromagnetic semiconductor, Ge1-xFex (GeFe), using soft X-ray magnetic circular dichroism. Our results show that the doped Fe 3d electrons are strongly hybridized with the Ge 4p states, and have a large orbital magnetic moment relative to the spin magnetic moment; i.e., morb/mspin ≈ 0.1. We find that nanoscale local ferromagnetic regions, which are formed through ferromagnetic exchange interactions in the high-Fe-content regions of the GeFe films, exist even at room temperature, well above the Curie temperature of 20-100 K. We observe the intriguing nanoscale expansion of the local ferromagnetic regions with decreasing temperature, followed by a transition of the entire film into a ferromagnetic state at the Curie temperature. PMID:26996202

  20. Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge1–xFex

    PubMed Central

    Wakabayashi, Yuki K.; Sakamoto, Shoya; Takeda, Yuki-haru; Ishigami, Keisuke; Takahashi, Yukio; Saitoh, Yuji; Yamagami, Hiroshi; Fujimori, Atsushi; Tanaka, Masaaki; Ohya, Shinobu

    2016-01-01

    We investigate the local electronic structure and magnetic properties of the group-IV-based ferromagnetic semiconductor, Ge1−xFex (GeFe), using soft X-ray magnetic circular dichroism. Our results show that the doped Fe 3d electrons are strongly hybridized with the Ge 4p states, and have a large orbital magnetic moment relative to the spin magnetic moment; i.e., morb/mspin ≈ 0.1. We find that nanoscale local ferromagnetic regions, which are formed through ferromagnetic exchange interactions in the high-Fe-content regions of the GeFe films, exist even at room temperature, well above the Curie temperature of 20–100 K. We observe the intriguing nanoscale expansion of the local ferromagnetic regions with decreasing temperature, followed by a transition of the entire film into a ferromagnetic state at the Curie temperature. PMID:26996202

  1. Magnetic-field-induced ferroelectric polarization reversal in the multiferroic Ge(1-x)Mn(x)Te semiconductor.

    PubMed

    Przybylińska, H; Springholz, G; Lechner, R T; Hassan, M; Wegscheider, M; Jantsch, W; Bauer, G

    2014-01-31

    Ge(1-x)Mn(x)Te is shown to be a multiferroic semiconductor, exhibiting both ferromagnetic and ferroelectric properties. By ferromagnetic resonance we demonstrate that both types of order are coupled to each other. As a result, magnetic-field-induced ferroelectric polarization reversal is achieved. Switching of the spontaneous electric dipole moment is monitored by changes in the magnetocrystalline anisotropy. This also reveals that the ferroelectric polarization reversal is accompanied by a reorientation of the hard and easy magnetization axes. By tuning the GeMnTe composition, the interplay between ferromagnetism and ferroelectricity can be controlled. PMID:24580486

  2. Semiconductor arrays with multiplexer readout for gamma-ray imaging: results for a 48 × 48 Ge array

    NASA Astrophysics Data System (ADS)

    Barber, H. B.; Augustine, F. L.; Barrett, H. H.; Dereniak, E. L.; Matherson, K. L.; Meyers, T. J.; Perry, D. L.; Venzon, J. E.; Woolfenden, J. M.; Young, E. T.

    1994-12-01

    We are developing a new kind of gamma-ray imaging device that has sub-millimeter spatial resolution and excellent energy resolution. The device is composed of a slab of semiconductor detector partitioned into an array of detector cells by photolithography and connected to a monolithic circuit chip called a multiplexer (MUX) for readout. Our application is for an ultra-high-resolution SPECT system for functional brain imaging using an injected radiotracer. We report here on results obtained with a Hughes 48 × 48 Ge PIN-photodiode array with MUX readout, originally developed as an infrared focal-plane-array imaging sensor. The device functions as an array of individual gamma-ray detectors with minimal interpixel crosstalk. Linearity of energy response is excellent up to at least 140 keV. The array exhibits excellent energy resolution, ˜ 2 keV at ≤ 140 keV or 1.5% FWHM at 140 keV. The energy resolution is dominated by MUX readout noise and so should improve with MUX optimization for gamma-ray detection. The spatial resolution of the 48 × 48 Ge array is essentially the same as the pixel spacing, 125 μm. The quantum efficiency is limited by the thin Ge detector (0.25 mm), but this approach is readily applicable to thicker Ge detectors and room-temperature semiconductor detectors such as CdTe, HgI 2 and CdZnTe.

  3. Electronic band structures of Ge1-xSnx semiconductors: A first-principles density functional theory study

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsien; Liu, Po-Liang; Hong, Yung-An; Chou, Yen-Ting; Hong, Jia-Yang; Siao, Yu-Jin

    2013-02-01

    We conduct first-principles total-energy density functional calculations to study the band structures in Ge1-xSnx infrared semiconductor alloys. The norm-conserving optimized pseudopotentials of Ge and Sn have been constructed for electronic structure calculations. The composition-bandgap relationships in Ge1-xSnx lattices are evaluated by a detailed comparison of structural models and their electronic band structures. The critical Sn composition related to the transition from indirect- to direct-gap in Ge1-xSnx alloys is estimated to be as low as x ˜ 0.016 determined from the parametric fit. Our results show that the crossover Sn concentration occurs at a lower critical Sn concentration than the values predicted from the absorption measurements. However, early results indicate that the reliability of the critical Sn concentration from such measurements is hard to establish, since the indirect gap absorption is much weaker than the direct gap absorption. We find that the direct band gap decreases exponentially with the Sn composition over the range 0 0.375, in very good agreement with the theoretical observed behavior [D. W. Jenkins and J. D. Dow, Phys. Rev. B 36, 7994, 1987]. For homonuclear and heteronuclear complexes of Ge1-xSnx alloys, the indirect band gap at L-pointis is found to decrease homonuclear Ge-Ge bonds or increase homonuclear Sn-Sn bonds as a result of the reduced L valley. All findings agree with previously reported experimental and theoretical results. The analysis suggests that the top of valence band exhibits the localization of bond charge and the bottom of the conduction band is composed of the Ge 4s4p and/or Sn 5s5p atomic orbits.

  4. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    SciTech Connect

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori; Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya; Hirata, Osamu; Shibano, Yuki

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  5. Tensile-Strained GeSn Metal-Oxide-Semiconductor Field-Effect Transistor Devices on Si(111) Using Solid Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Lieten, Ruben R.; Maeda, Tatsuro; Jevasuwan, Wipakorn; Hattori, Hiroyuki; Uchida, Noriyuki; Miura, Shu; Tanaka, Masatoshi; Locquet, Jean-Pierre

    2013-10-01

    We demonstrate tensile-strained GeSn metal-oxide-semiconductor field-effect transistor (MOSFET) devices on Si(111) substrates using solid phase epitaxy of amorphous GeSn layers. Amorphous GeSn layers are obtained by limiting the adatom surface mobility during deposition. Subsequent annealing transforms the amorphous layer into single-crystalline GeSn by solid phase epitaxy. Single-crystalline GeSn layers with 4.5% Sn and 0.33% tensile strain are fabricated on Si(111) substrates. To verify the structural quality of thin-film GeSn as a channel material, we fabricate ultrathin GeSn p-channel MOSFETs (pMOSFETs) on Si(111). We demonstrate junctionless depletion-mode operation of tensile-strained GeSn(111) pMOSFETs on Si substrates.

  6. Anomalous diffusion and non-monotonic relaxation processes in Ge-Se liquids

    NASA Astrophysics Data System (ADS)

    Yildirim, Can; Raty, Jean-Yves; Micoulaut, Matthieu

    2016-06-01

    We investigate the dynamical properties of liquid GexSe100-x as a function of Ge content by first-principles molecular dynamic simulations for a certain number of temperatures in the liquid state. The focus is set on ten compositions (where x ≤ 33%) encompassing the reported flexible to rigid and rigid to stressed-rigid transitions. We examine diffusion coefficients, diffusion activation energies, glassy relaxation behavior, and viscosity of these liquids from Van Hove correlation and intermediate scattering functions. At fixed temperature, all properties/functions exhibit an anomalous behavior with Ge content in the region 18%-22%, and provide a direct and quantitative link to the network rigidity.

  7. Photogeneration and enhanced charge transport in aligned smectic liquid crystalline organic semiconductor

    NASA Astrophysics Data System (ADS)

    Paul, Sanjoy; Ellman, Brett; Tripathi, Suvagata; Twieg, Robert J.

    2015-10-01

    Liquid crystalline organic semiconductors are emerging candidates for applications in electronic and photonic devices. One of the most attractive aspects of such materials is the potential, in principle, to easily control and manipulate the molecular alignment of the semiconductor over large length scales. Here, we explore the consequences of alignment in a model smectic liquid crystalline semiconductor, and find that the photogeneration efficiency is a strong function of incident polarization in aligned samples. A straightforward theory shows that such behavior is a general feature of aligned materials, regardless of the details of photophysics. Furthermore, we uncover tentative evidence that the mobility of aligned samples is substantially enhanced. Both of these phenomena are of significant technological importance.

  8. Photogeneration and enhanced charge transport in aligned smectic liquid crystalline organic semiconductor

    SciTech Connect

    Paul, Sanjoy; Ellman, Brett; Tripathi, Suvagata; Twieg, Robert J.

    2015-10-07

    Liquid crystalline organic semiconductors are emerging candidates for applications in electronic and photonic devices. One of the most attractive aspects of such materials is the potential, in principle, to easily control and manipulate the molecular alignment of the semiconductor over large length scales. Here, we explore the consequences of alignment in a model smectic liquid crystalline semiconductor, and find that the photogeneration efficiency is a strong function of incident polarization in aligned samples. A straightforward theory shows that such behavior is a general feature of aligned materials, regardless of the details of photophysics. Furthermore, we uncover tentative evidence that the mobility of aligned samples is substantially enhanced. Both of these phenomena are of significant technological importance.

  9. Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions

    NASA Astrophysics Data System (ADS)

    Cho, Minkyu; Seo, Jung-Hun; Park, Dong-Wook; Zhou, Weidong; Ma, Zhenqiang

    2016-06-01

    Metal-oxide-semiconductor (MOS) device is the basic building block for field effect transistors (FET). The majority of thin-film transistors (TFTs) are FETs. When MOSFET are mechanically bent, the MOS structure will be inevitably subject to mechanical strain. In this paper, flexible MOS devices using single crystalline Silicon (Si) and Germanium (Ge) nanomembranes (NM) with SiO2, SiO, and Al2O3 dielectric layers are fabricated on a plastic substrate. The relationships between semiconductor nanomembranes and various oxide materials are carefully investigated under tensile/compressive strain. The flatband voltage, threshold voltage, and effective charge density in various MOS combinations revealed that Si NM-SiO2 configuration shows the best interface charge behavior, while Ge NM-Al2O3 shows the worst. This investigation of flexible MOS devices can help us understand the impact of charges in the active region of the flexible TFTs and capacitance changes under the tensile/compressive strains on the change in electrical characteristics in flexible NM based TFTs.

  10. Diffusion mass transport in liquid phase epitaxial growth of semiconductors

    SciTech Connect

    Dost, S.; Qin, Z.; Kimura, M.

    1996-12-01

    A numerical simulation model for the mass transport occurring during the liquid phase epitaxial growth of AlGaAs is presented. The mass transport equations in the liquid and solid phases, and the relationships between concentrations and temperature obtained from the phase diagram constitute the governing equations. These equations together with appropriate interface and boundary conditions were solved numerically by the Finite Element Method. Numerical results show the importance of diffusion into the solid phase, affecting the composition of grown layers. Simulation results agree with experiments.

  11. LETTER TO THE EDITOR: Breakdown of intermediate-range order in liquid GeSe2 at high temperatures

    NASA Astrophysics Data System (ADS)

    Massobrio, C.; van Roon, F. H. M.; Pasquarello, Alfredo; DeLeeuw, S. W.

    2000-11-01

    The structure of liquid GeSe2 at T = 1373 K has been investigated by first-principles molecular dynamics. The calculated total neutron structure factor is in good agreement with recent experimental data. We found that the disappearance with increasing temperature of the first sharp diffraction peak (FSDP) in the total neutron structure factor is due to an increase of short-range chemical disorder. At T = 1373 K various bonding configurations coexist in close amounts, such as the Ge-GeSe3, Ge-GeSe2 and Se-SeGe2 motifs. This contrasts with the behaviour of liquid GeSe2 at T = 1050 K, for which more than half of the Ge atoms are four-fold coordinated to Se atoms in regular GeSe4 tetrahedra. Our result correlates the appearance of the FSPD in disordered AX2 network-forming materials to the predominant presence of AX4 subunits.

  12. Direct observation of both contact and remote oxygen scavenging of GeO{sub 2} in a metal-oxide-semiconductor stack

    SciTech Connect

    Fadida, S. Shekhter, P.; Eizenberg, M.; Cvetko, D.; Floreano, L.; Verdini, A.; Kymissis, I.

    2014-10-28

    In the path to incorporating Ge based metal-oxide-semiconductor into modern nano-electronics, one of the main issues is the oxide-semiconductor interface quality. Here, the reactivity of Ti on Ge stacks and the scavenging effect of Ti were studied using synchrotron X-ray photoelectron spectroscopy measurements, with an in-situ metal deposition and high resolution transmission electron microscopy imaging. Oxygen removal from the Ge surface was observed both in direct contact as well as remotely through an Al{sub 2}O{sub 3} layer. The scavenging effect was studied in situ at room temperature and after annealing. We find that the reactivity of Ti can be utilized for improved scaling of Ge based devices.

  13. Strained germanium-tin (GeSn) p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with ammonium sulfide passivation

    NASA Astrophysics Data System (ADS)

    Wang, Lanxiang; Su, Shaojian; Wang, Wei; Gong, Xiao; Yang, Yue; Guo, Pengfei; Zhang, Guangze; Xue, Chunlai; Cheng, Buwen; Han, Genquan; Yeo, Yee-Chia

    2013-05-01

    High-mobility strained Ge0.958Sn0.042 p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with ammonium sulfide [(NH4)2S] surface passivation were demonstrated. A ˜10 nm thick fully-strained single crystalline GeSn layer was epitaxially grown on Ge (1 0 0) substrate as the channel layer. (NH4)2S surface passivation was performed for the GeSn surface, followed by gate stack formation. Ge0.958Sn0.042 p-MOSFETs with (NH4)2S passivation show decent electrical characteristics and a peak effective mobility of 509 cm2/V s, which is the highest reported peak mobility obtained for GeSn channel p-MOSFETs so far.

  14. Interfacial trapping in an aged discotic liquid crystal semiconductor

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Patrick, Michael S.; Paul, Sanjoy; Ellman, Brett; Semyonov, Alexander; Twieg, Robert J.; Matthews, Rachael; Pentzer, Emily; Singer, Kenneth D.

    2015-08-01

    This study reports on time-of-flight (TOF) hole mobility measurements in aged 2,3,6,7,10,11-Hexakis(pentyloxy)triphenylene columnar liquid crystals. In contrast to the original samples reported in 2006, homeotropically aligned samples yielded TOF transients with an extended non-exponential rise. The experimental data were fit to a simple model that accurately reproduces the TOF transients assuming delayed charge release from traps near the optically excited electrode. While interfacial trapping appears only in the aged materials, the bulk mobility is similar to the pristine material. The model addresses dispersive transport in quasi-one-dimensional materials, determines the charge carrier mobility in systems with interfacial traps, and provides a method for characterizing the traps.

  15. Infrared sensitive liquid crystal light valve with semiconductor substrate.

    PubMed

    Shcherbin, Konstantin; Gvozdovskyy, Igor; Evans, Dean R

    2016-02-10

    A liquid crystal light valve (LCLV) is an optically controlled spatial light modulator that allows recording of dynamic holograms. Almost all known LCLVs operate in the visible range of the spectrum. In the present work we demonstrate a LCLV operating in the infrared. The interaction of signal and pump waves is studied for different applied voltages, grating spacings, and intensities of the recording beams. A fourfold amplification of the weak signal beam is achieved. The amplitude of the refractive index modulation Δn=0.007 and nonlinear coupling constant n₂=-1  cm²/W are estimated from the experimental results. External phase modulation of one of the recording beams is used for a further transient increase of the signal beam gain. PMID:26906379

  16. Growth and magnetic properties of IV-VI diluted magnetic semiconductor Ge{sub 1-x}Cr{sub x}Te

    SciTech Connect

    Fukuma, Y.; Taya, T.; Miyawaki, S.; Irisa, T.; Asada, H.; Koyanagi, T.

    2006-04-15

    IV-VI diluted magnetic semiconductor Ge{sub 1-x}Cr{sub x}Te films were grown on BaF{sub 2} substrates by molecular-beam epitaxy. The Ge{sub 1-x}Cr{sub x}Te film up to x=0.103 is single phase as determined by reflection high-energy electron diffraction and x-ray diffraction measurements. The optical band gap decreases with increasing Cr composition. Ferromagnetic order of the Ge{sub 1-x}Cr{sub x}Te films is characterized by direct magnetization and anomalous Hall effect measurements.

  17. Oriented Liquid Crystalline Polymer Semiconductor Films with Large Ordered Domains.

    PubMed

    Xue, Xiao; Chandler, George; Zhang, Xinran; Kline, R Joseph; Fei, Zhuping; Heeney, Martin; Diemer, Peter J; Jurchescu, Oana D; O'Connor, Brendan T

    2015-12-01

    Large strains are applied to liquid crystalline poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) (pBTTT) films when held at elevated temperatures resulting in in-plane polymer alignment. We find that the polymer backbone aligns significantly in the direction of strain, and that the films maintain large quasi-domains similar to that found in spun-cast films on hydrophobic surfaces, highlighted by dark-field transmission electron microscopy imaging. The highly strained films also have nanoscale holes consistent with dewetting. Charge transport in the films is then characterized in a transistor configuration, where the field effect mobility is shown to increase in the direction of polymer backbone alignment, and decrease in the transverse direction. The highest saturated field-effect mobility was found to be 1.67 cm(2) V(-1) s(-1), representing one of the highest reported mobilities for this material system. The morphology of the oriented films demonstrated here contrast significantly with previous demonstrations of oriented pBTTT films that form a ribbon-like morphology, opening up opportunities to explore how differences in molecular packing features of oriented films impact charge transport. Results highlight the role of grain boundaries, differences in charge transport along the polymer backbone and π-stacking direction, and structural features that impact the field dependence of charge transport. PMID:26552721

  18. Discotic liquid crystals: a new generation of organic semiconductors.

    PubMed

    Sergeyev, Sergey; Pisula, Wojciech; Geerts, Yves Henri

    2007-12-01

    Discotic (disc-like) molecules typically comprising a rigid aromatic core and flexible peripheral chains have been attracting growing interest because of their fundamental importance as model systems for the study of charge and energy transport and due to the possibilities of their application in organic electronic devices. This critical review covers various aspects of recent research on discotic liquid crystals, in particular, molecular design concepts, supramolecular structure, processing into ordered thin films and fabrication of electronic devices. The chemical structure of the conjugated core of discotic molecules governs, to a large extent, their intramolecular electronic properties. Variation of the peripheral flexible chains and of the aromatic core is decisive for the tuning of self-assembly in solution and in bulk. Supramolecular organization of discotic molecules can be effectively controlled by the choice of the processing methods. In particular, approaches to obtain suitable macroscopic orientations of columnar superstructures on surfaces, that is, planar uniaxial or homeotropic alignment, are discussed together with appropriate processing techniques. Finally, an overview of charge transport in discotic materials and their application in optoelectronic devices is given. PMID:17982517

  19. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    SciTech Connect

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G.; Posadas, Agham; Demkov, Alexander A.

    2015-12-15

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al{sub 2}O{sub 3} and HfO{sub 2}. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO{sub 3}), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

  20. Design and control of Ge-based metal-oxide-semiconductor interfaces for high-mobility field-effect transistors with ultrathin oxynitride gate dielectrics

    NASA Astrophysics Data System (ADS)

    Minoura, Yuya; Kasuya, Atsushi; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2013-07-01

    High-quality Ge-based metal-oxide-semiconductor (MOS) stacks were achieved with ultrathin oxynitride (GeON) gate dielectrics. An in situ process based on plasma nitridation of the base germanium oxide (GeO2) surface and subsequent metal electrode deposition was proven to be effective for suppressing electrical deterioration induced by the reaction at the metal/insulator interface. The electrical properties of the bottom GeON/Ge interface were further improved by both low-temperature oxidation for base GeO2 formation and high-temperature in situ vacuum annealing after plasma nitridation of the base oxide. Based on the optimized in situ gate stack fabrication process, very high inversion carrier mobility (μhole: 445 cm2/Vs, μelectron: 1114 cm2/Vs) was demonstrated for p- and n-channel Ge MOSFETs with Al/GeON/Ge gate stacks at scaled equivalent oxide thickness down to 1.4 nm.

  1. Interactive Analysis of Gamm-ray Spectra from GE Semiconductor Detectors

    Energy Science and Technology Software Center (ESTSC)

    1997-09-25

    GAUSS IX is a tool to interactively analyze gamma-ray spectra from Ge Semicondutor detectors. The user has full control over the view of the spectrum being analyzed and the location of the peaks and peak regions. Analysis is performed at user request to the requested peak regions. The fit of a peak region can be previewed before archival or deletion. An iterative procedure is available for calibrating the energy and width equations.

  2. Temperature dependent shape transformation of Ge nanostructures by the vapor-liquid-solid method

    NASA Astrophysics Data System (ADS)

    Das, K.; Chakraborty, A. K.; NandaGoswami, M. L.; Shingha, R. K.; Dhar, A.; Coleman, K. S.; Ray, S. K.

    2007-04-01

    A vapor-liquid-solid method has been used to study the temperature dependent growth mechanism of Ge nanostructures on Au-coated Si (100) substrates. The formation of Ge nanodots, nanorods, and nanowires has been observed at different growth temperatures. The diameter of grown nanowires is found to be varying from 40 to 80 nm and that of nanorods from 70 to 90 nm, respectively. A comparative study has been done on three types of samples using x-ray diffraction and Raman spectroscopy. Photoluminescence spectra of grown nanostructures exhibit a broad emission band around 2.6 eV due to oxide related defect states.

  3. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGESBeta

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Ovchinnikova, Olga S.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  4. Synthesis and fundamental studies of (H3Ge)xSiH4-x molecules: precursors to semiconductor hetero- and nanostructures on Si.

    PubMed

    Ritter, Cole J; Hu, Changwu; Chizmeshya, Andrew V G; Tolle, John; Klewer, Douglas; Tsong, Ignatius S T; Kouvetakis, John

    2005-07-13

    The synthesis of the entire silyl-germyl sequence of molecules (H(3)Ge)(x)SiH(4)(-)(x) (x = 1-4) has been demonstrated. These include the previously unknown (H(3)Ge)(2)SiH(2), (H(3)Ge)(3)SiH, and (H(3)Ge)(4)Si species as well as the H(3)GeSiH(3) analogue which is obtained in practical high-purity yields as a viable alternative to disilane and digermane for semiconductor applications. The molecules are characterized by FTIR, multinuclear NMR, mass spectrometry, and Rutherford backscattering. The structural, thermochemical, and vibrational properties are studied using density functional theory. A detailed comparison of the experimental and theoretical data is used to corroborate the synthesis of specific molecular structures. The (H(3)Ge)(x)SiH(4)(-)(x) family of compounds described here is not only of intrinsic molecular interest but also provides a unique route to a new class of Si-based semiconductors including epitaxial layers and coherent islands (quantum dots), with Ge-rich stoichiometries SiGe, SiGe(2), SiGe(3), and SiGe(4) reflecting the Si/Ge content of the corresponding precursor. The layers grow directly on Si(100) at unprecedented low temperatures of 300-450 degrees C and display homogeneous compositional and strain profiles, low threading defect densities, and atomically planar surfaces circumventing entirely the need for conventional graded compositions or lift-off technologies. The activation energies of all Si-Ge hydride reactions on Si(100) (E(a) approximately 1.5-2.0 eV) indicate high reactivity profiles with respect to H(2) desorption, consistent with the low growth temperatures of the films. The quantum dots are obtained exclusively at higher temperatures (T > 500 degrees C) and represent a new family of Ge-rich compositions with narrow size distribution, defect-free microstructures, and homogeneous, precisely tuned elemental content at the atomic level. PMID:15998091

  5. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    PubMed

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-01

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles. PMID:26599639

  6. Investigation of Ge nanocrytals in a metal-insulator-semiconductor structure with a HfO2/SiO2 stack as the tunnel dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Shiye; Liu, Weili; Wan, Qing; Dai, J. Y.; Lee, P. F.; Suhua, Luo; Shen, Qinwo; Zhang, Miao; Song, Zhitang; Lin, Chenglu

    2005-03-01

    A metal-insulator-semiconductor (MIS) structure containing a HfO2 control gate, a Ge nanocrystal-embedded HfO2 dielectric and a HfO2/SiO2 stack layer as tunnel oxide, was fabricated by an electron-beam evaporation method. High-resolution transmission electron microscopy study revealed that the HfO2/SiO2 stack layer minimized Ge penetration, leading to the formation of Ge nanocrystals that are self-aligned between the tunnel oxide and the capping HfO2 layer. Influence of different annealing conditions on the formation and distribution of Ge nanocrystals was studied. Current-voltage (I -V) and capacitance-voltage (C-V) measurements revealed promising electrical characteristics of the MIS structure, and relatively high stored charge density of 1012cm-2 was achieved.

  7. Ferromagnets based on diamond-like semiconductors GaSb, InSb, Ge, and Si supersaturated with manganese or iron impurities during laser-plasma deposition

    SciTech Connect

    Demidov, E. S. Podol'skii, V. V.; Lesnikov, V. P.; Sapozhnikov, M. V.; Druzhnov, D. M.; Gusev, S. N.; Gribkov, B. A.; Filatov, D. O.; Stepanova, Yu. S.; Levchuk, S. A.

    2008-01-15

    Properties of thin (30-100 nm) layers of diluted magnetic semiconductors based on diamond-like compounds III-V (InSb and GaSb) and elemental semiconductors Ge and Si doped with 3d impurities of manganese and iron up to 15% were measured and discussed. The layers were grown by laser-plasma deposition onto heated single-crystal gallium arsenide or sapphire substrates. The ferromagnetism of layers with the Curie temperature up to 500 K appeared in observations of the ferromagnetic resonance, anomalous Hall effect, and magneto-optic Kerr effect. The carrier mobility of diluted magnetic semiconductors is a hundred times larger than that of the previously known highest temperature magnetic semiconductors, i.e., copper and chromium chalcogenides. The difference between changes in the magnetization with temperature in diluted semiconductors based on III-V, Ge, and Si was discussed. A complex structure of the ferromagnetic resonance spectrum in Si:Mn/GaAs was observed. The results of magnetic-force microscopy showed a weak correlation between the surface relief and magnetic inhomogeneity, which suggests that the ferromagnetism is caused by the 3d-impurity solid solution, rather than ferromagnetic phase inclusions.

  8. Intermediate range chemical ordering in amorphous and liquid water, Si, and Ge

    SciTech Connect

    Benmore, C.J.; Hart, R.T.; Mei, Q.; Price, D.L.; Yarger, J.; Tulk, C.A.; Klug, D.D.

    2005-10-01

    Neutron and x-ray diffraction data for low, high, and very high density amorphous ice and liquid water, silicon, and germanium have been compared in terms of the first sharp diffraction peak in the structure factor and at the radial distribution function level. The low and high density forms of H{sub 2}O, Si, and Ge are shown to have very similar structures if the contributions from the hydrogen correlations in water are neglected. The very high density amorphous ice form is shown to be structurally analogous to recently reported high pressure liquid forms of Si and Ge, although there are slight differences in the way interstitial atoms or molecules are pushed into the first coordination shell.

  9. Spatially resolved charge transport study in discotic liquid crystalline organic semiconductors

    NASA Astrophysics Data System (ADS)

    Paul, Sanjoy; Semyonov, Alexander; Dawson, Nathan J.; Singer, Kenneth D.; Twieg, Robert J.; Ellman, Brett

    Spatially resolved time-of-flight photogeneration and mobility have been measured on a discotic liquid crystalline organic semiconductor using scanning time-of-flight microscopy (STOFm). STOFm simultaneously obtains time-of-flight transients and polarized transmittance across the sample. Various shapes in time-of-flight transients were observed and extracted charge transport parameters such as photogeneration efficiency, mobility, and trapping show significant spatial variation. In some cases these can be linked to electrode surface inhomogeneities. Detailed measurement methodology, experimental results and challenges in their analysis will be discussed.

  10. Electronic structure and charge injection at interface between electrode and liquid-crystalline semiconductor

    NASA Astrophysics Data System (ADS)

    Toda, Tohru; Hanna, Jun-ichi; Tani, Tadaaki

    2007-01-01

    The measurement and analysis of the current-voltage characteristics of a liquid-crystalline organic semiconductor 2-(4'-octyphenyl)-6-dodecyloxynaphthalene (8-PNP-O12) in contact with electrodes of Pt, Au, ITO, Cr, and Al (in the order of work function) have revealed that the injection of holes from the electrodes of Pt, Au, and indium tin oxide to 8-PNP-O12 takes place according to the Richardson-Schottky model and that an electric double layer is formed at the interface between each of these electrodes and 8-PNP-O12, making it difficult to inject holes from the former to the latter.

  11. Photoluminescence study of p-type CdGeAs2 ordered semiconductor crystals

    NASA Astrophysics Data System (ADS)

    McCrae, J. E.; Hengehold, R. L.; Yeo, Y. K.; Ohmer, M. C.; Schunemann, P. G.

    1997-01-01

    Results of a photoluminescence (PL) study as a function of excitation laser power, sample temperature, crystal orientation, and polarization are reported for the nonlinear optical material CdGeAs2. One broad weak PL peak near 0.38 eV, and another somewhat narrower and often far brighter PL peak near 0.55 eV were found at 4 K. The high energy PL peak shifts first towards lower, then higher, and back to lower energies again as the temperature increases from 2.2 to 295 K. This high energy peak is attributed to donor-acceptor pair dominant transitions at low temperatures, but it is attributed to band-to-band dominant transitions at higher temperatures. Strongly polarized PL was observed with the E field of the PL parallel to the material's c axis, and a polarization ratio as high as 6:1 was obtained.

  12. Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge1-xMnxTe.

    PubMed

    Kriener, M; Nakajima, T; Kaneko, Y; Kikkawa, A; Yu, X Z; Endo, N; Kato, K; Takata, M; Arima, T; Tokura, Y; Taguchi, Y

    2016-01-01

    Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) - is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various magnets. Here we find that heat-treatment allows the control over two competing magnetic phases in the Mn-doped polar semiconductor GeTe. The onset temperatures Tc of ferromagnetism vary at low Mn concentrations by a factor of five to six with a maximum Tc ≈ 180 K, depending on the selected phase. Analyses in terms of synchrotron x-ray diffraction and energy dispersive x-ray spectroscopy indicate a possible segregation of the Mn ions, which is responsible for the high-Tc phase. More importantly, we demonstrate that the two states can be switched back and forth repeatedly from either phase by changing the heat-treatment of a sample, thereby confirming magnetic phase-change-memory functionality. PMID:27160657

  13. Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge1‑xMnxTe

    NASA Astrophysics Data System (ADS)

    Kriener, M.; Nakajima, T.; Kaneko, Y.; Kikkawa, A.; Yu, X. Z.; Endo, N.; Kato, K.; Takata, M.; Arima, T.; Tokura, Y.; Taguchi, Y.

    2016-05-01

    Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) – is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various magnets. Here we find that heat-treatment allows the control over two competing magnetic phases in the Mn-doped polar semiconductor GeTe. The onset temperatures Tc of ferromagnetism vary at low Mn concentrations by a factor of five to six with a maximum Tc ≈ 180 K, depending on the selected phase. Analyses in terms of synchrotron x-ray diffraction and energy dispersive x-ray spectroscopy indicate a possible segregation of the Mn ions, which is responsible for the high-Tc phase. More importantly, we demonstrate that the two states can be switched back and forth repeatedly from either phase by changing the heat-treatment of a sample, thereby confirming magnetic phase-change-memory functionality.

  14. Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge1−xMnxTe

    PubMed Central

    Kriener, M.; Nakajima, T.; Kaneko, Y.; Kikkawa, A.; Yu, X. Z.; Endo, N.; Kato, K.; Takata, M.; Arima, T.; Tokura, Y.; Taguchi, Y.

    2016-01-01

    Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) – is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various magnets. Here we find that heat-treatment allows the control over two competing magnetic phases in the Mn-doped polar semiconductor GeTe. The onset temperatures Tc of ferromagnetism vary at low Mn concentrations by a factor of five to six with a maximum Tc ≈ 180 K, depending on the selected phase. Analyses in terms of synchrotron x-ray diffraction and energy dispersive x-ray spectroscopy indicate a possible segregation of the Mn ions, which is responsible for the high-Tc phase. More importantly, we demonstrate that the two states can be switched back and forth repeatedly from either phase by changing the heat-treatment of a sample, thereby confirming magnetic phase-change-memory functionality. PMID:27160657

  15. Simulations of Liquid III-V and II-VI Semiconductors: Semiconducting versus Metallic Behavior.

    NASA Astrophysics Data System (ADS)

    Godlevsky, V.

    2000-03-01

    All III-V group semiconductors exhibit metallic behavior when melted. The coordination number of these materials changes from 4 in the bulk to ~ 6 in the liquid phase. With the increase of the coordination number and compositional disorder common to liquid III-V semiconductors, the covalent bonds of these materials are predominantly replaced by metallic bonds. Electron delocalization and high atomic randomization result in a large entropy change during the solidarrowliquid transition. Unlike III-V compounds, a number of II-VI semiconductors (e.g. CdTe, ZnTe and HgS) experience a semiconductorarrowsemiconductor transition upon melting. These compounds retain their fourfold coordination in the liquid phase. In our work, we perform ab initio simulations of liquid GaAs (l-GaAs) and CdTe (l-CdTe), as representatives of III-V and II-VI materials.(V. Godlevsky, J. Derby, and J.R. Chelikowsky, Phys. Rev. Lett. 81), 4959 (1998) As opposed to the more close-packed l-GaAs, l-CdTe has an open fourfold structure. Besides the coordination number, l-CdTe also retains some of its crystalline compositional features (e.g. there are fewer ``wrong'' bond defects than in l-GaAs). In l-CdTe, the density of states has a dip at the Fermi level indicating the semiconducting character of electrical conductivity in this material. The d.c. conductivity in l-CdTe is by two orders of magnitude lower than that in l-GaAs. The small change in the structural order and electron delocalization is in good agreement with the small entropy change observed experimentally during the melting of CdTe. As the temperature increases further, l-CdTe undergoes a fourfold-sixfold transition accompanied by the disappearing of band gap. The d.c. conductivity of sixfold coordinated l-CdTe is by an order of magnitude larger than the d.c. conductivity of fourfold coordinated l-CdTe.(V. Godlevsky, M. Jain, J. Derby, and J.R. Chelikowsky, Phys. Rev. B, 60), 8640 (1999)

  16. Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe by solid-liquid-coexisting annealing of a-GeSn/c-Si structures

    NASA Astrophysics Data System (ADS)

    Sadoh, Taizoh; Chikita, Hironori; Matsumura, Ryo; Miyao, Masanobu

    2015-09-01

    Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%-26%) and annealing conditions (300-1000 °C, 1 s-48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (˜80%) SiGe layers with Sn concentrations of ˜2% are realized by ultra-low temperature annealing (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.

  17. Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe by solid-liquid-coexisting annealing of a-GeSn/c-Si structures

    SciTech Connect

    Sadoh, Taizoh Chikita, Hironori; Miyao, Masanobu; Matsumura, Ryo

    2015-09-07

    Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%–26%) and annealing conditions (300–1000 °C, 1 s–48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (∼80%) SiGe layers with Sn concentrations of ∼2% are realized by ultra-low temperature annealing (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.

  18. Carrier transport properties of the Group-IV ferromagnetic semiconductor Ge{sub 1-x}Fe{sub x} with and without boron doping

    SciTech Connect

    Ban, Yoshisuke Wakabayashi, Yuki; Akiyama, Ryota; Nakane, Ryosho; Tanaka, Masaaki

    2014-09-15

    We have investigated the transport and magnetic properties of group-IV ferromagnetic semiconductor Ge{sub 1-x}Fe{sub x} films (x = 1.0 and 2.3%) with and without boron doping grown by molecular beam epitaxy (MBE). In order to accurately measure the transport properties of 100-nm-thick Ge{sub 1-x}Fe{sub x} films, (001)-oriented silicon-on-insulator (SOI) wafers with an ultra-thin Si body layer (∼5 nm) were used as substrates. Owing to the low Fe content, the hole concentration and mobility in the Ge{sub 1-x}Fe{sub x} films were exactly estimated by Hall measurements because the anomalous Hall effect in these films was found to be negligibly small. By boron doping, we increased the hole concentration in Ge{sub 1-x}Fe{sub x} from ∼10{sup 18} cm{sup −3} to ∼10{sup 20} cm{sup −3} (x = 1.0%) and to ∼10{sup 19} cm{sup −3} (x = 2.3%), but no correlation was observed between the hole concentration and magnetic properties. This result presents a contrast to the hole-induced ferromagnetism in III-V ferromagnetic semiconductors.

  19. IV-VI diluted magnetic semiconductor Ge{sub 1-x}Mn{sub x}Te epilayer grown by molecular beam epitaxy

    SciTech Connect

    Fukuma, Y.; Goto, K.; Senba, S.; Miyawaki, S.; Asada, H.; Koyanagi, T.; Sato, H.

    2008-03-01

    Growth of the IV-VI diluted magnetic semiconductor Ge{sub 1-x}Mn{sub x}Te by molecular beam epitaxy is reported. The epitaxial growth of Ge{sub 1-x}Mn{sub x}Te (x=0.13) on BaF{sub 2} (111) with a GeTe buffer layer is confirmed by x-ray diffraction and reflection high-energy electron diffraction. The ferromagnetic order is clearly established by the magnetization and magnetotransport measurements. The Curie temperature of 100 K is obtained for the hole concentration of 7.86x10{sup 20} cm{sup -3}. The existence of the strong p-d exchange which gives rise to the ferromagnetic order is revealed by the hard x-ray photoemission measurements.

  20. Thermal transport across high-pressure semiconductor-metal transition in Si and Si0.991Ge0.009

    NASA Astrophysics Data System (ADS)

    Hohensee, Gregory T.; Fellinger, Michael R.; Trinkle, Dallas R.; Cahill, David G.

    2015-05-01

    Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond anvil cell and provide noncontact measurements of thermal transport properties. We have performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si0.991Ge0.009 across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have an anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. We used the Wiedemann-Franz law to derive the associated electrical resistivity, and found it consistent with the Bloch-Grüneisen model.

  1. Surface structure of the liquid Au[subscript 72]Ge[subscript 28] eutectic phase: X-ray reflectivity

    SciTech Connect

    Pershan, P.S.; Stoltz, S.E.; Mechler, S.; Shpyrko, O.G.; Grigoriev, A.Y.; Balagurusamy, V.S. K.; Lin, B.H.; Meron, M.

    2009-12-01

    The surface structure of the liquid phase of the Au{sub 72}Ge{sub 28} eutectic alloy has been measured using resonant and nonresonant x-ray reflectivity and grazing incidence x-ray diffraction. In spite of the significant differences in the surface tension of liquid Ge and Au the Gibbs adsorption enhancement of Ge concentration at the surface is minimal. This is in striking contrast to all the other binary alloys with large differences in the respective surface tensions measured up to date. In addition there is no evidence of the anomalous strong surface layering or in-plane crystalline order that has been reported for the otherwise quite similar liquid Au{sub 82}Si{sub 18} eutectic. Instead, the surface of eutectic Au{sub 72}Ge{sub 28} is liquidlike and the layering can be explained by the distorted crystal model with only slight modifications to the first layer.

  2. Cation ordering and physicochemical characterization of the quaternary diamond-like semiconductor Ag{sub 2}CdGeS{sub 4}

    SciTech Connect

    Brunetta, Carl D.; Minsterman, William C.; Lake, Charles H.; Aitken, Jennifer A.

    2012-03-15

    The quaternary diamond-like semiconductor, Ag{sub 2}CdGeS{sub 4}, was synthesized via high-temperature solid-state synthesis as well as structurally and physicochemically characterized. Single crystal X-ray diffraction provided a model for Ag{sub 2}CdGeS{sub 4} in the orthorhombic, noncentrosymmetric space group Pna2{sub 1} with a=13.7415(8) A, b=8.0367(5) A and c=6.5907(4) A, in contrast to a previously published model in Pmn2{sub 1} from the Rietveld analysis of laboratory X-ray powder diffraction data. The Pna2{sub 1} space group is supported by the Rietveld analysis of synchrotron X-ray powder diffraction data. Differential thermal analysis suggests that Ag{sub 2}CdGeS{sub 4} exists in two polymorphs. Optical diffuse reflectance UV/vis/NIR spectroscopy indicates that the orange compound is a semiconductor with a band gap of 2.32 eV. Optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and inductively coupled plasma optical emission spectroscopy were used to further characterize the material. - Graphical abstract: The structure of the diamond-like semiconductor Ag{sub 2}CdGeS{sub 4} has been solved and refined in the orthorhombic noncentrosymmetric space group Pna2{sub 1}. A view down the a-axis shows that all MS{sub 4} tetrahedra are pointing in the same direction along the c-axis. The structure can be derived from that of lonsdaleite. Highlights: Black-Right-Pointing-Pointer The structure of Ag{sub 2}CdGeS{sub 4} is solved from single crystal X-ray diffraction. Black-Right-Pointing-Pointer The structure is supported by the Rietveld analysis of synchrotron diffraction data. Black-Right-Pointing-Pointer Ag{sub 2}CdGeS{sub 4} is a semiconductor with an optical band gap of 2.32 eV. Black-Right-Pointing-Pointer Additional characterization is reported.

  3. Influence of Temperature Variation on Field Effect Transistor Properties Using a Solution-Processed Liquid Crystalline Semiconductor, 8TNAT8.

    PubMed

    Monobe, Hirosato; Kimoto, Masaomi; Shimizu, Yo

    2016-04-01

    In this study, we used a liquid crystalline (LC) semiconductor, 8TNAT8, solution (e.g., 0.1 wt% in toluene) for forming an organic semiconductor layer by solution casting method, and fabricated bottom-gate/bottom-contact type field effect transistors (FETs). These LC semiconductors show FET characteristic properties and have high carrier mobility of 0.01 cm2 V-1 s-1. We have investigated the surface morphology and the influence of temperature variation on LC FET properties across the phase transition from crystal to mesophase of a LC semiconductor, 8TNAT8. In the most cases, FET mobility was irreversibly decreased after. temperature heat stress above the melting point of 8TNAT8, owing to the morphological change of LC layer. PMID:27451617

  4. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures.

    PubMed

    Tan, Chaoliang; Zeng, Zhiyuan; Huang, Xiao; Rui, Xianhong; Wu, Xue-Jun; Li, Bing; Luo, Zhimin; Chen, Junze; Chen, Bo; Yan, Qingyu; Zhang, Hua

    2015-02-01

    Although many two-dimensional (2D) hybrid nanostructures are being prepared, the engineering of epitaxial 2D semiconductor hetero-nanostructures in the liquid phase still remains a challenge. The preparation of 2D semiconductor hetero-nanostructures by epitaxial growth of metal sulfide nanocrystals, including CuS, ZnS and Ni3S2, is achieved on ultrathin TiS2 nanosheets by a simple electrochemical approach by using the TiS2 crystal and metal foils. Ultrathin CuS nanoplates that are 50-120 nm in size and have a triangular/hexagonal shape are epitaxially grown on TiS2 nanosheets with perfect epitaxial alignment. ZnS and Ni3S2 nanoplates can be also epitaxially grown on TiS2 nanosheets. As a proof-of-concept application, the obtained 2D CuS-TiS2 composite is used as the anode in a lithium ion battery, which exhibits a high capacity and excellent cycling stability. PMID:25530025

  5. A wave packet model for electron transfer and its implications for the semiconductor-liquid interface

    SciTech Connect

    Smith, B.B.; Nozik, A.J.

    1999-11-11

    This paper establishes the computational feasibility and examines the implications of a particular technique for simulations of time dependent electron transfer (ET) at semiconductor-liquid interfaces (SLIs). The methodology uses a one electron formalism employing wave packets, pseudopotentials, and molecular dynamics, which the authors dub WPMD. They describe a detailed mechanism for SLI ET by using the methodology. The model is versatile enough to address conventional SLI ET, surface state and adsorption mediated ET, photoexcited ET, and ET between quantum dots and other microstructures. They contrast the perspectives of their WPMD model of SLI ET with those in traditional literature and find substantial differences. The use of standard Landau-Zener theory for SLI ET is found particularly problematic.

  6. Business diversification - In the businesses of desk calculator, semiconductor and liquid crystal

    NASA Astrophysics Data System (ADS)

    Asada, Atsushi

    This is a record of the lecture at the 27th Annual Meeting on Information Science and Technology. Lecturer, a staff member of Sharp, Corp., explained its business diversification. The Company started with electric appliances. After coping with the application of computer technology, it made a success in the business of desk calculator. Aiming at making calculator for personal use, it coped with the business in semiconductor, and developed its business in liquid crystal for making calculator thinner. Based on these businesses, it expanded its business in OA appliances, and developed the business in combining electric appliances and information including distribution and marketing. The businesses in the age of 1990s will be requested to provide services by customizing hardware, software and system with efforts to enhance valued-added to them.

  7. Hole Confinement and 1/ f Noise Characteristics of SiGe Double-Quantum-Well p-Type Metal-Oxide-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lin, Yu Min; Wu, San Lein; Chang, Shoou Jinn; Chen, Pang Shiu; Liu, Chee Wee

    2006-05-01

    A working p-type SiGe double-quantum-well metal-oxide-semiconductor field effect transistor (DQW-pMOSFETs) has been fabricated and characterized. The upper quantum well with 15%-Ge acts as an induced-carrier buffer to slow holes into the Si surface channel and increases the number of high-mobility holes in the 30%-Ge well at the bottom under high gate voltage by improving carrier confinement. DQW devices with a thinner Si-spacer layer between the two SiGe quantum wells exhibit an improved effective hole mobility and wider gate voltage swings but also reduced 1/ f noise levels than Si-controlled pMOSFETs. The DQW has an enhanced carrier confinement compared to a single quantum-well (SQW) device; however, the degradation of mobility and transconductance observed in a sample DQW indicates that this poor transport mechanism may result from an additional hole scattering effect at the Si/SiGe interface.

  8. Standardization of 68Ge/68Ga Using Three Liquid Scintillation Counting Based Methods

    PubMed Central

    Zimmerman, B. E.; Cessna, J. T.; Fitzgerald, R.

    2008-01-01

    A solution containing 68Ge in equilibrium with its daughter, 68Ga, has been standardized for the first time at the National Institute of Standards and Technology (NIST) using 3 liquid scintillation-based techniques: live-timed 4πβ -γ anticoincidence (LTAC) counting, the Triple-to-Double Coincidence Ratio (TDCR) method, and 3H-standard efficiency tracing with the CIEMAT1/NIST (CNET) method. The LTAC technique is much less dependent on level scheme data and model-dependent parameters and was thus able to provide a reference activity concentration value for the master solution with a combined standard uncertainty of about 0.3 %. The other two methods gave activity concentration values with respective differences from the reference value of +1.2 % and −1.5 %, which were still within the experimental uncertainties. Measurements made on the NIST “4π”γ secondary standard ionization chamber allowed for the determination of calibration factors for that instrument, allowing future calibrations to be made for 68Ge/68Ga without the need for a primary measurement. The ability to produce standardized solutions of 68Ge presents opportunities for the development of a number of NIST-traceable calibration sources with very low (<1 %) relative standard uncertainties that can be used in diagnostic medical imaging. PMID:27096126

  9. Epitaxial GeSn film formed by solid phase epitaxy and its application to Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor capacitors with sub-nm equivalent oxide thickness

    SciTech Connect

    Lee, Ching-Wei; Wu, Yung-Hsien; Hsieh, Ching-Heng; Lin, Chia-Chun

    2014-11-17

    Through the technique of solid phase epitaxy (SPE), an epitaxial Ge{sub 0.955}Sn{sub 0.045} film was formed on a Ge substrate by depositing an amorphous GeSn film followed by a rapid thermal annealing at 550 °C. A process that uses a SiO{sub 2} capping layer on the amorphous GeSn film during SPE was proposed and it prevents Sn precipitation from occurring while maintaining a smooth surface due to the reduced surface mobility of Sn atoms. The high-quality epitaxial GeSn film was observed to have single crystal structure, uniform thickness and composition, and tiny surface roughness with root mean square of 0.56 nm. With a SnO{sub x}-free surface, Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor (MOS) capacitors with equivalent oxide thickness (EOT) of 0.55 nm were developed. A small amount of traps inside the Yb{sub 2}O{sub 3} was verified by negligible hysteresis in capacitance measurement. Low leakage current of 0.4 A/cm{sup 2} at gate bias of flatband voltage (V{sub FB})-1 V suggests the high quality of the gate dielectric. In addition, the feasibility of using Yb{sub 2}O{sub 3} to well passivate GeSn surface was also evidenced by the small interface trap density (D{sub it}) of 4.02 × 10{sup 11} eV{sup −1} cm{sup −2}, which can be attributed to smooth GeSn surface and Yb{sub 2}O{sub 3} valency passivation. Both leakage current and D{sub it} performance outperform other passivation techniques at sub-nm EOT regime. The proposed epitaxial GeSn film along with Yb{sub 2}O{sub 3} dielectric paves an alternative way to enable high-performance GeSn MOS devices.

  10. Nitride-Based UV Metal-Insulator-Semiconductor Photodetector with Liquid-Phase-Deposition Oxide

    NASA Astrophysics Data System (ADS)

    Hwang, J. D.; Yang, Gwo Huei; Yang, Yuan Yi; Yao, Pin Cuan

    2005-11-01

    A low-temperature (30-40°C), low-cost and reliable method of liquid phase deposition (LPD) has been employed to grow SiO2 layers on GaN. The LPD process uses a supersaturated acid aqueous solution of hydrofluosilicic (H2SiF6) as a source liquid and an aqueous solution of boric acid (H3BO3) as a deposition rate controller. In this study, the LPD SiO2 was prepared at 40°C with concentrations of H2SiF6 and H3BO3 at 0.2 and 0.01 M, respectively. The minimum interface-trap density, Dit, of a metal-insulator-semiconductor (MIS) capacitor with a structure of Al/20 nm LPD-SiO2/n-GaN was estimated to be 8.4× 1011 cm-2 V-1. Furthermore, a MIS photodetector with a 10-nm-thick LPD-SiO2 layer has been fabricated successfully. The dark current density was as low as 4.41× 10-6 A/cm2 for an applied field of 4 MV/cm. A maximum responsivity of 0.112 A/W was observed for incident ultraviolet light of 366 nm with an intensity of 4.15 mW/cm2. Defect-assisted tunneling was invoked to explain these results.

  11. Magnetic anisotropy induced by crystal distortion in Ge{sub 1−x}Mn{sub x}Te/PbTe//KCl (001) ferromagnetic semiconductor layers

    SciTech Connect

    Knoff, W. Łusakowski, A.; Domagała, J. Z.; Minikayev, R.; Taliashvili, B.; Łusakowska, E.; Pieniążek, A.; Szczerbakow, A.; Story, T.

    2015-09-21

    Ferromagnetic resonance (FMR) study of magnetic anisotropy is presented for thin layers of IV-VI diluted magnetic semiconductor Ge{sub 1−x}Mn{sub x}Te with x = 0.14 grown by molecular beam epitaxy on KCl (001) substrate with a thin PbTe buffer. Analysis of the angular dependence of the FMR resonant field reveals that an easy magnetization axis is located near to the normal to the layer plane and is controlled by two crystal distortions present in these rhombohedral Ge{sub 1−x}Mn{sub x}Te layers: the ferroelectric distortion with the relative shift of cation and anion sub-lattices along the [111] crystal direction and the biaxial in-plane, compressive strain due to thermal mismatch.

  12. Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology.

    PubMed

    Cunningham, Patrick D; Souza, João B; Fedin, Igor; She, Chunxing; Lee, Byeongdu; Talapin, Dmitri V

    2016-06-28

    Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor-polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I∥/I⊥ = 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures. PMID:27203222

  13. Si Waveguide-Integrated Metal-Semiconductor-Metal and p-i-n-Type Ge Photodiodes Using Si-Capping Layer

    NASA Astrophysics Data System (ADS)

    Fujikata, Junichi; Miura, Makoto; Noguchi, Masataka; Okamoto, Daisuke; Horikawa, Tsuyoshi; Arakawa, Yasuhiko

    2013-04-01

    We studied Si waveguide-integrated metal-semiconductor-metal (MSM) and p-i-n-type Ge photodiodes (Ge-PDs), using a Si-capping layer. As for an MSM Ge-PD, the Schottky barrier height was increased up to 0.44 V by applying a 8-20 nm Si-capping layer, and a very low dark current density of approximately 0.4 nA/µm2 was achieved with a high responsivity of 0.8 A/W. In addition, a small electrode spacing of 1 µm realized high-speed photodetection of 20 Gbps. As for a p-i-n-type Ge-PD, by applying a 10-20 nm Si capping layer, the contact resistance between a metal electrode of Ti/TiN/Al and n+-Si capping layer was successfully reduced to 1×10-5 Ω.cm2. A 45 GHz bandwidth was obtained with a low dark current density of 0.8 nA/µm2. Moreover, a more than 20 GHz bandwidth was achieved with zero-bias voltage. In the case of zero-bias voltage operation, a 3 dB bandwidth was a little affected by input power, which would originate from the photocarrier screening effect on the built-in electric field.

  14. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    SciTech Connect

    Hollingsworth, Jennifer A.; Palaniappan, Kumaranand; Laocharoensuk, Rawiwan; Smith, Nickolaus A.; Dickerson, Robert M.; Casson, Joanna L.; Baldwin, Jon K.

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth rates as a

  15. Vapor-liquid-soild growth of group IV (Si, Ge, Si1-xGe x) single and heterostructured nanowires

    NASA Astrophysics Data System (ADS)

    Minassian, Sharis

    In this thesis, an alternative Si source, disilane (Si2H 6) has been investigated which is of interest since it is more reactive than SiH4 and therefore may enable higher growth rates at lower temperature and lower partial pressures. The lower thermal stability of Si 2H6 could also be an advantage to enable the growth of Si 1-xGex nanowires over the entire composition range at lower temperatures which are more compatible with the range of conditions typically used for Ge nanowire growth and in turn may enable the fabrication of different types of heterostructures. To fulfill the objective of this research, a systematic study has been developed to explore the growth of group IV (Si, Ge, and Si 1-xGex alloy) single and heterostructured nanowires from Si2H6 and GeH4 precursors. First, the growth kinetics of individual SiNWs from Si2H 6 was investigated by examining the effects of growth parameters on their growth rate. The results were compared to that obtained with SiH 4. In addition, to gain a better insight into the SiNW growth process, the results were also compared with Si films deposited under similar conditions inside the same reactor. Overall compared to SiH4, the use of Si 2H6 enabled higher growth rates for both SiNWs and Si films. For both gases, a nonlinearity was observed in the growth rate of nanowire as a function of gas partial pressure which was explained by a simple decomposition mechanism including the adsorption, desorption and incorporation of precursor molecule on the Au droplet surface. The apparent activation energy of the process was found to be identical for both gases under the conditions examined in the present study, suggesting similar rate-determining step in the nanowire growth process from the two precursors. Upon completion of studies on SiNW growth, the synthesis parameter space was then determined for undoped GeNWs and the influence of growth conditions on their morphology as well as their growth rate was examined. It was found that

  16. Liquid-Sn-driven lateral growth of poly-GeSn on insulator assisted by surface oxide layer

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Taoka, Noriyuki; Sakashita, Mitsuo; Nakatsuka, Osamu; Miyao, Masanobu; Zaima, Shigeaki

    2013-09-01

    Effects of surface oxide layers on liquid-Sn-driven GeSn crystallization on insulators at various temperatures (<475 °C) are investigated. An amorphous Ge in neighborhood of patterned-Sn (<3.5 μm) becomes to polycrystalline Ge1-xSnx (x ≈ 0.025 - 0.14) after annealing at 150-475 °C, which is independent of the surface oxide thickness. Interestingly, a 50-μm-length lateral growth of polycrystalline Ge0.99Sn0.01 layers achieved by combination of thickening of the surface-oxide treated by NH4OH and annealing above melting temperature of Sn (231.9 °C). The growth length is 15 times longer than without the treatment. The advanced process promises to achieve group-IV-based optic and electronic devices on flexible substrates and Si platforms.

  17. Generation of diluted magnetic semiconductor nanostructures by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Savchuk, Ol. A.; Savchuk, A. I.; Stolyarchuk, I. D.; Tkachuk, P. M.; Garasym, V. I.

    2015-11-01

    Results of study of two members of diluted magnetic semiconductor (DMS) family, namely Cd1-xMnxTe and Zn1-xMnxO, which are in form of micro- and nanoparticles generated by pulsed laser ablation in liquid medium (PLAL), have been presented. The structural analysis using X-ray diffraction (XRD) of nanocrystals indicated that Mn has entered the AIIBVI lattice without changing the crystal structure and systematically substituted the A2+ ions in the lattice. Atomic force microscopy (AFM) gives information about surface morphology of the formed nanostructures. The scanning electron microscopy (SEM) clearly illustrates flower-like particles of Zn1-xMnxO, which consist of nanosheets and nanoleaves with average thickness about (5-8) nm. Obviously, these nanoobjects are responsible for the observed blue shift of the absorption edge in DMS nanostructures. In magneto-optical Faraday rotation spectra of both Cd1-xMnxTe and Zn1-xMnxO nanostructures there were exhibited peculiarities associated with s,p-d spin exchange interactions and confinement effect. It was observed almost linear dependence of the Faraday rotation as function of magnetic field strength for nanoparticles in contrast to the dependence with saturation in bulk case.

  18. A systematic study of the optical and electrical properties of Ge1-ySny and Ge1-x-ySixSn y semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Harris, Thomas R.

    In order to fully utilize newly developed Ge1-ySny and Ge1-x-ySixSny materials for new novel optoelectronic devices, the optical and electrical properties of these alloys were investigated using photoluminescence (PL) and Hall-effect measurements. Direct bandgap PL emission was observed from almost all the samples, making them very promising candidates for Si-based light emitting devices. T-dependent PL studies also indicate that the indirect-to-direct bandgap transition of Ge1-ySny alloys might take place at a much lower Sn content than the theory predicts. T-dependent Hall-effect measurements showed both degenerate parallel conducting layers as well as a conductivity type change from p to n at around 370-435 K, which could affect the operation of devices made from these materials. Etch studies were performed to determine the properties of the epilayers alone. Reasonable results for the average volume carrier density in the film were obtained. It was also found that there exists high level of surface states at the surface of almost all the samples. These studies should be very useful for the development of practical devices based on Ge1-ySny alloys.

  19. Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS)

    NASA Astrophysics Data System (ADS)

    Wang, G. L.; Moeen, M.; Abedin, A.; Kolahdouz, M.; Luo, J.; Qin, C. L.; Zhu, H. L.; Yan, J.; Yin, H. Z.; Li, J. F.; Zhao, C.; Radamson, H. H.

    2013-09-01

    SiGe has been widely used for source/drain (S/D) engineering in pMOSFETs to enhance channel mobility. In this study, selective Si1-xGex growth (0.25 ≤ x ≤ 0.35) with boron concentration of 1-3 × 1020 cm-3 in the process for 22 nm node complementary metal-oxide semiconductor (CMOS) has been investigated and optimized. The growth parameters were carefully tuned to achieve deposition of high quality and highly strained material. The thermal budget was decreased to 800 °C to suppress dopant diffusion, to minimize Si loss in S/D recesses, and to preserve the S/D recess shape. Two layers of Si1-xGex were deposited: a bottom layer with high Ge content (x = 0.35) which filled the recess and a cap layer with low Ge content (x = 0.25) which was elevated in the S/D regions. The elevated SiGe cap layer was intended to be consumed during the Ni-silicidation process in order to avoid strain reduction in the channel region arising from strain relaxation in SiGe S/D. In this study, a kinetic gas model was also applied to predict the pattern dependency of the growth and to determine the epi-profile in different transistor arrays. The input parameters include growth temperature, partial pressures of reactant gases, and chip layout. By using this model, the number of test wafers for epitaxy experiments can be decreased significantly. When the epitaxy process parameters can be readily predicted by the model for epi-profile control in an advanced chip design, fast and cost-effective process development can be achieved.

  20. Designer hydride routes to 'Si-Ge'/(Gd,Er)2O3/Si(1 1 1) semiconductor-on-insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Watkins, Tylan; Jiang, Liying; Smith, D. J.; Chizmeshya, A. V. G.; Menendez, J.; Kouvetakis, J.

    2011-12-01

    We demonstrate Si-Ge integration on engineered M2O3/Si(1 1 1) (M = Gd,Er) dielectric buffer layers using non-traditional chemical precursors that provide new levels of functionality within the deposition process. Stoichiometric Si0.50Ge0.50 alloys and pure Si heterostructures are grown epitaxially via ultra-low-temperature chemical vapor deposition using SiH3GeH3 and Si3H8/Si4H10, respectively. In the case of Si on Gd2O3, an optimal growth processing window in the range of 500-600 °C was found to yield planar layers with monocrystalline structures via a proposed coincidence lattice matching mechanism (2aSi-aGd2O3), while for the SiGe system (2% lattice mismatch) comparable quality films with fully relaxed strain states are deposited at a lower temperature range of 420-450 °C. Extension of this growth process to Si on Er2O3 yields remarkably high-quality layers in spite of the even larger ~3% lattice mismatch. In all cases, the Si-Ge overlayers are found to primarily adopt an A-B-A epitaxial alignment with respect to the M2O3 buffered Si(1 1 1). A comparative study of the Si growth using Si3H8 and Si4H10 indicates that both compounds provide an efficient and straightforward process for semiconductor growth on Gd2O3/Si(1 1 1), which appears to be more viable than conventional approaches from the point of view of scalability and volume.

  1. Liquid phase electroepitaxial bulk growth of binary and ternary alloy semiconductors under external magnetic field

    NASA Astrophysics Data System (ADS)

    Sheibani, Hamdi

    2002-01-01

    Liquid Phase Electroepitaxy (LPEE) and is a relatively new, promising technique for producing high quality, thick compound semiconductors and their alloys. The main objectives are to reduce the adverse effect of natural convection and to determine the optimum growth conditions for reproducible desired crystals for the optoelectronic and electronic device industry. Among the available techniques for suppressing the adverse effect of natural convection, the application of an external magnetic field seems the most feasible one. The research work in this dissertation consists of two parts. The first part is focused on the design and development of a state of the art LPEE facility with a novel crucible design, that can produce bulk crystals of quality higher than those achieved by the existing LPEE system. A growth procedure was developed to take advantage of this novel crucible design. The research of the growth of InGaAs single crystals presented in this thesis will be a basis for the future LPEE growth of other important material and is an ideal vehicle for the development of a ternary crystal growth process. The second part of the research program is the experimental study of the LPEE growth process of high quality bulk single crystals of binary/ternary semiconductors under applied magnetic field. The compositional uniformity of grown crystals was measured by Electron Probe Micro-analysis (EPMA) and X-ray microanalysis. The state-of-the-art LPEE system developed at University of Victoria, because of its novel design features, has achieved a growth rate of about 4.5 mm/day (with the application of an external fixed magnetic field of 4.5 KGauss and 3 A/cm2 electric current density), and a growth rate of about 11 mm/day (with 4.5 KGauss magnetic field and 7 A/cm2 electric current density). This achievement is simply a breakthrough in LPEE, making this growth technique absolutely a bulk growth technique and putting it in competition with other bulk growth techniques

  2. Important role of the non-uniform Fe distribution for the ferromagnetism in group-IV-based ferromagnetic semiconductor GeFe

    SciTech Connect

    Wakabayashi, Yuki K.; Ohya, Shinobu; Ban, Yoshisuke; Tanaka, Masaaki

    2014-11-07

    We investigate the growth-temperature dependence of the properties of the group-IV-based ferromagnetic semiconductor Ge{sub 1−x}Fe{sub x} films (x = 6.5% and 10.5%), and reveal the correlation of the magnetic properties with the lattice constant, Curie temperature (T{sub C}), non-uniformity of Fe atoms, stacking-fault defects, and Fe-atom locations. While T{sub C} strongly depends on the growth temperature, we find a universal relationship between T{sub C} and the lattice constant, which does not depend on the Fe content x. By using the spatially resolved transmission-electron diffractions combined with the energy-dispersive X-ray spectroscopy, we find that the density of the stacking-fault defects and the non-uniformity of the Fe concentration are correlated with T{sub C}. Meanwhile, by using the channeling Rutherford backscattering and particle-induced X-ray emission measurements, we clarify that about 15% of the Fe atoms exist on the tetrahedral interstitial sites in the Ge{sub 0.935}Fe{sub 0.065} lattice and that the substitutional Fe concentration is not correlated with T{sub C}. Considering these results, we conclude that the non-uniformity of the Fe concentration plays an important role in determining the ferromagnetic properties of GeFe.

  3. Strained Germanium-Tin (GeSn) P-Channel Metal-Oxide-Semiconductor Field-Effect Transistors Featuring High Effective Hole Mobility

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yan, Jing; Wang, Hongjuan; Cheng, Buwen; Han, Genquan

    2015-06-01

    Compressively strained and p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are fabricated with low-temperature surface passivation. High crystallinity GeSn films epitaxially grown on a Ge(001) substrate are used for the device fabrication. The impacts of the Sn composition on the subthreshold swing , threshold voltage , on-state current , and effective hole mobility of the devices are investigated. GeSn pMOSFETs with different Sn compositions show a similar , indicating almost the same midgap density of interface states . A positive shift of with an increase of the Sn composition is observed. A pMOSFET exhibits a significant improvement in as compared to a device with a lower Sn composition, which is due to the superior hole mobility in a device with a higher Sn composition. pMOSFETs achieve a peak effective hole mobility of , which is much higher than that of devices. The enhancement of the compressive strain and chemical effect in the channel region with increased Sn composition leads to an improvement of.

  4. First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure

    NASA Astrophysics Data System (ADS)

    Sandong, Guo

    2015-05-01

    The electronic structures of Mg2X (X = Si, Ge, Sn) have been calculated by using generalized gradient approximation, various screened hybrid functionals, as well as Tran and Blaha's modified Becke and Johnson exchange potential. It was found that the Tran and Blaha's modified Becke and Johnson exchange potential provides a more realistic description of the electronic structures and the optical properties of Mg2X (X = Si, Ge, Sn) than else exchange-correlation potential, and the theoretical gaps and dielectric functions of Mg2X (X = Si, Ge, Sn) are quite compatible with the experimental data. The elastic properties of Mg2X (X = Si, Ge, Sn) have also been studied in detail with the generalized gradient approximation, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, sound velocities, and Debye temperature. The phonon dispersions of Mg2X (X = Si, Ge, Sn) have been calculated within the generalized gradient approximation, suggesting no structural instability, and the measurable phonon heat capacity as a function of the temperature has been also calculated. Project supported by the Fundamental Research Funds for the Central Universities (No. 2013QNA32) and the National Natural Science Foundation of China (No. 11404391).

  5. Elastic, vibrational and thermodynamic properties of α-Sn based group IV semiconductors and GeC under pressure

    NASA Astrophysics Data System (ADS)

    Souadkia, M.; Bennecer, B.; Kalarasse, F.

    2013-11-01

    We present first-principles calculations of the structural, elastic, vibrational and thermodynamic properties of SnSi, SnGe, SnC and GeC. We employ the density-functional perturbation theory (DFPT) within the local density approximation in conjunction with the quasi-harmonic approximation. The calculated lattice parameters, which are obtained by minimizing the total energy, are in the range of those reported in the literature for the binary compounds and in good agreement with the measured ones for the elemental components. Our results for the elastic properties show that c44 softens as pressure increases for SnSi and SnGe. The phonon spectra, the density of states and the Born effective charge at zero pressure are calculated and the phonon frequencies are positive. A pressure induced soft transverse acoustic phonon mode is identified at the zone boundary X point of the Brillouin zone at pressure of 12.95 and 12.45 GPa for SnSi and SnGe respectively. The linear expansion coefficient for the elemental components is calculated and compared to experiment. The temperature and pressure dependence of the thermal expansion, the overall Grüneisen parameter, the bulk modulus and the heat capacity is predicted. The thermal expansion coefficient decreases with increasing pressure and does not show any negative behavior for GeC and this is due to the positive transverse acoustic mode Grüneisen parameters. Our results for SnxGe alloys using the supercell method indicate that the variation of the Grüneisen parameter and the thermal expansion with concentration has the same trend and the bulk modulus softens.

  6. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    SciTech Connect

    Li, Jia; Zhang, Zhidong; Lu, Zunming; Xie, Hongxian; Fang, Wei; Li, Shaomin; Liang, Chunyong; Yin, Fuxing

    2015-11-15

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part of the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.

  7. Theoretical comparison of Si, Ge, and GaAs ultrathin p-type double-gate metal oxide semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Dib, Elias; Bescond, Marc; Cavassilas, Nicolas; Michelini, Fabienne; Raymond, Laurent; Lannoo, Michel

    2013-08-01

    Based on a self-consistent multi-band quantum transport code including hole-phonon scattering, we compare current characteristics of Si, Ge, and GaAs p-type double-gate transistors. Electronic properties are analyzed as a function of (i) transport orientation, (ii) channel material, and (iii) gate length. We first show that ⟨100⟩-oriented devices offer better characteristics than their ⟨110⟩-counterparts independently of the material choice. Our results also point out that the weaker impact of scattering in Ge produces better electrical performances in long devices, while the moderate tunneling effect makes Si more advantageous in ultimately scaled transistors. Moreover, GaAs-based devices are less advantageous for shorter lengths and do not offer a high enough ON current for longer gate lengths. According to our simulations, the performance switching between Si and Ge occurs for a gate length of 12 nm. The conclusions of the study invite then to consider ⟨100⟩-oriented double-gate devices with Si for gate length shorter than 12 nm and Ge otherwise.

  8. Numerical study of liquid phase diffusion growth of SiGe subjected to accelerated crucible rotation

    NASA Astrophysics Data System (ADS)

    Sekhon, M.; Lent, B.; Dost, S.

    2016-03-01

    The effect of accelerated crucible rotation technique (ACRT) on liquid phase diffusion (LPD) growth of SixGe1-x crystal has been investigated numerically. Transient, axisymmetric simulations have been carried out for triangular and trapezoidal ACRT cycles. Natural convection driven flow in the early growth hours is found to be modified by the ACRT induced Ekman flow. Results also reveal that a substantial mixing in the solution can be induced by the application of ACRT in the later hours of growth which is otherwise a diffusion dominated growth period for LPD growth technique. A comparison is drawn to the cases of stationary crucible and crucible rotating at a constant speed examined previously for this growth system by Sekhon and Dost (J. Cryst. Growth 430 (2015) 63). It is found that a superior interface flattening effect and radial compositional uniformity along the growth interface can be accomplished by employing ACRT at 12 rpm than that which could be achieved by using steady crucible rotation at 25 rpm, owing to the higher time averaged growth velocity achieved in the former case. Furthermore, minor differences are also predicted in the results obtained for trapezoidal and triangular ACRT cycles.

  9. Micropipe healing in SiC wafers by liquid-phase epitaxy in Si Ge melts

    NASA Astrophysics Data System (ADS)

    Filip, O.; Epelbaum, B.; Bickermann, M.; Winnacker, A.

    2004-10-01

    Liquid-phase epitaxy (LPE) of silicon carbide (SiC) was shown to be an effective technique to overgrow micropipe defects (MP) in SiC wafers prepared by the physical vapour transport (PVT) technique. Growth close to thermodynamic equilibrium, e.g. low supersaturation, provides a favourable condition for effective MP healing. Therefore, the aim of this work was to grow epitaxial layers from strongly diluted Si-based solutions. Using the method of horizontal dipping, the dependence of MP elimination efficiency on Si-Ge flux composition and on the crystallographic orientation (on- and off-axis) of the SiC wafer was investigated. High-quality single crystalline SiC layers of a thickness up to 10 μm were grown with the growth rate of 0.5 μm/h. On off-oriented wafers, stepped growth morphology was observed independent of the melt composition. Micropipes with the diameter below 5 μm were closed with an efficiency of about 80%. SEM investigations as well as inspection under reflected/transmitted light did not show any specific distortion of the growth morphology at the micropipe healing place.

  10. Infrared nonlinear optical properties of lithium-containing diamond-like semiconductors Li2ZnGeSe4 and Li2ZnSnSe4.

    PubMed

    Zhang, Jian-Han; Clark, Daniel J; Brant, Jacilynn A; Sinagra, Charles W; Kim, Yong Soo; Jang, Joon I; Aitken, Jennifer A

    2015-06-28

    Two new lithium-containing diamond-like semiconductors, Li2ZnGeSe4 and Li2ZnSnSe4, have been prepared by high-temperature, solid-state synthesis. Single crystal X-ray diffraction reveals that both compounds adopt the wurtz-kesterite structure type, crystallizing in the noncentrosymmetric space group Pn. X-ray powder diffraction coupled with Rietveld refinement indicates the high degree of phase purity in which the materials are prepared. Both compounds display optical bandgaps around 1.8 eV, wide optical transparency windows from 0.7 to 25 μm and type-I phase matched second harmonic generation starting at 2500 nm and persisting deeper into the infrared. Using the Kurtz powder method, the second-order nonlinear optical coefficient, χ((2)), was estimated to be 19 and 23 pm V(-1) for Li2ZnGeSe4 and Li2ZnSnSe4, respectively. Using a 1064 nm incident laser beam with a pulse width (τ) of 30 ps both compounds exhibit a laser damage threshold of 0.3 GW cm(-2), which is higher than that of the AgGaSe2 reference material measured under identical conditions. Differential thermal analysis shows that the title compounds are stable up to 684 and 736 °C, respectively. These properties collectively demonstrate that Li2ZnGeSe4 and Li2ZnSnSe4 have great potential for applications in tunable laser systems, especially in the infrared and even up to the terahertz regime. Electronic structure calculations using a plane-wave pseudopotential method within density functional theory provide insight regarding the nature of the bandgap and bonding. PMID:26006322

  11. Dreams and Reality of Using Naked Ge Detectors in Liquid Nitrogen Status (Long-Term Stability) of GENIUS-TF

    NASA Astrophysics Data System (ADS)

    Krivosheina, Irina V.; Klapdor-Kleingrothaus, Hans V.

    2008-04-01

    GENIUS-TF-II is a setup of six naked high purity Ge detectors (15 kg) in liquid nitrogen in Gran Sasso. It has been installed in October, 2004 - after the first four naked Ge detectors had been installed on May 5, 2003 (GENIUS-TF-I). The GENIUS-Test-Facility (GENIUS-TF) is the first and up to now only setup ever testing the novel technique aiming at extreme background reduction in search for rare decays in particular underground. The goal of GENIUS-TF was to test some key operational parameters of the full GENIUS project in 1997.1-6 Simultaneous physical goal was to search for the annual modulation of the Dark Matter signal.12,25 After operation of GENIUS-TF over three years with finally six naked Ge detectors (15 kg) in liquid nitrogen in Gran Sasso we realize serious problems for realization of a full-size GENIUS-like experiment: 1. Background from 222Rn diffusing into the setup, on a level far beyond the expectation. 2. Limited long-term stability of naked detectors in liquid nitrogen as result of increasing leakage current. None of the six detectors is running after three years with the nominal leakage current. Three of the six detectors do not work any more at all. The results of our three years of investigation of the long-term stability casts serious doubt on the possibility to perform a full GENIUS project - or its copies GERDA or CAMEO/GEM.

  12. Synthesis of doped semiconductor nanostructures using microemulsions and liquid crystals as templates

    NASA Astrophysics Data System (ADS)

    Panzarella, Tracy Heckler

    Semiconductor nanocrystals, also known as quantum dots (QDs), are a relatively new class of materials with unique size-dependent optical properties that enable the use of these materials in a variety of applications, including fluorescent labels for biomolecules, illumination and display technologies and photovoltaics. When the size of the QD is smaller than the mean separation of an optically excited electron-hole pair, or exciton, size-dependent fluorescence is observed as their emission peak shifts to larger wavelengths with increasing size. Doping of QDs with transition metals enables the tuning of their optoelectronic properties, leading to emission wavelengths longer than their bulk emission. The doping of QDs has recently garnered significant attention because it allows for the ability to tune the QD emission without changing its size. Currently, the most common method for synthesizing QDs involves the injection of organometallic precursors into hot coordinating solvents. To obtain monodisperse nanocrystals with this technique, instantaneous injection of the reactants, uniform nucleation over the entire reactor volume and perfect mixing are required. These conditions are difficult to achieve in practice, and even more difficult in a scaled-up reactor system necessary for commercial applications. The use of microemulsions as templates can enable the synthesis of semiconductor nanocrystals of uniform size and shape, and allow for scalability. The template used in this work consists of para-xylene as the continuous phase, water as the dispersed phase, and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO37-PPO56-PEO37) block copolymer as the surfactant, with the reactants dissolved in the aqueous dispersed phase. Microemulsions formed by this technique, exhibit very slow droplet to droplet coalescence kinetics and allow for the growth of particles with narrow size distribution. A microemulsion template was used to synthesize Mn-doped Zn

  13. Study on Momentum Density in Semiconductor Alloys GeC and SnC by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Amrane, N.

    The independent particle model (IPM) coupled with empirical pseudopotential method (EPM) was used to compute the thermalized positron charge densities in specific family of binary tetrahedrally coordinated crystals of formula ANB8-N. Initial results show a clear asymmetrical positron charge distribution relative to the bond center. It is observed that the positron density is maximum in the open interstices and is excluded not only from the ion cores but also to a considerable degree from the valence bonds. Electron-positron momentum densities are calculated for the (001, 110) planes. The results are used to analyze the positron effects in GeC and SnC. Our computational technique provides the theoretical means of interpreting the k-space densities obtained experimentally using the two-dimensional angular correlation of annihilation radiation (2D-ACAR).

  14. ``Seedless'' vapor-liquid-solid growth of Si and Ge nanowires: The origin of bimodal diameter distributions

    NASA Astrophysics Data System (ADS)

    Dailey, Eric; Drucker, Jeff

    2009-03-01

    We identify a previously uncharacterized vapor-liquid-solid growth mode that can produce small diameter, epitaxial ⟨110⟩ oriented Si and Ge nanowires (NWs). Disilane or digermane pyrolysis evolves H2 causing the monolayer thick Au/Si(111) layer between three dimensional Au seeds to dewet and form small Au islands. Under some conditions, these small islands facilitate "seedless" growth of small diameter NWs distinct from larger NWs that grow from the deposited seeds leading to a bimodal diameter distribution. We identify the precursor pressures and growth temperature regimes for which Si and Ge NW growth occurs in the absence of deposited seeds from the dewetted Au/Si(111) layer.

  15. Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy

    SciTech Connect

    Santala, M. K. Campbell, G. H.; Raoux, S.

    2015-12-21

    The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ∼100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. The high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.

  16. Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy

    SciTech Connect

    Santala, M. K.; Raoux, S.; Campbell, G. H.

    2015-12-24

    The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ~100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. As a result, the high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.

  17. Impacts of Ti on electrical properties of Ge metal-oxide-semiconductor capacitors with ultrathin high- k LaTiON gate dielectric

    NASA Astrophysics Data System (ADS)

    Xu, H. X.; Xu, J. P.; Li, C. X.; Chan, C. L.; Lai, P. T.

    2010-06-01

    Ge Metal-Oxide-Semiconductor (MOS) capacitors with LaON gate dielectric incorporating different Ti contents are fabricated and their electrical properties are measured and compared. It is found that Ti incorporation can increase the dielectric permittivity, and the higher the Ti content, the larger is the permittivity. However, the interfacial and gate-leakage properties become poorer as the Ti content increases. Therefore, optimization of Ti content is important in order to obtain a good trade-off among the electrical properties of the device. For the studied range of the Ti/La2O3 ratio, a suitable Ti/La2O3 ratio of 14.7% results in a high relative permittivity of 24.6, low interface-state density of 3.1×1011 eV-1 cm-2, and relatively low gate-leakage current density of 2.0×10-3 A cm-2 at a gate voltage of 1 V.

  18. ZnMnO diluted magnetic semiconductor nanoparticles: Synthesis by laser ablation in liquids, optical and magneto-optical properties

    NASA Astrophysics Data System (ADS)

    Savchuk, A. I.; Perrone, A.; Lorusso, A.; Stolyarchuk, I. D.; Savchuk, O. A.; Shporta, O. A.

    2014-05-01

    Nanoparticles of ZnO and Zn1-xMnxO were synthesized by pulsed laser ablation in liquid medium (PLAL). Metal zinc target was used for preparing of pure ZnO nanostructures and Zn1-xMnxO ceramic plates served for preparing of ternary nanoparticles. As synthesized nanomaterials are characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy analysis (EDS), atomic force microscopy (AFM), UV-vis absorption, photoluminescence and Faraday rotation spectroscopy. SEM images showed a well-defined flower-like nanostructures. Absorption edge of Zn0.95Mn0.05O nanoparticles in colloid solution exhibits blue shift due to confinement effect. The observed photoluminescence peaks are attributed to the band-edge transitions and vacancies or defects. The Faraday rotation as a function of photon energy demonstrates behavior typical for diluted magnetic semiconductors (DMSs) in paramagnetic state.

  19. Liquid nitrogen tests of a Torus coil for the Jefferson Lab 12GeV accelerator upgrade

    SciTech Connect

    Fair, Ruben J.; Ghoshal, Probir K.; Bruhwel, Krister B.; Kashy, David H.; Machie, Danny; Bachimanchi, Ramakrishna; Taylor, William; Fischer, John W.; Legg, Robert A.; Powers, Jacob R.

    2015-06-01

    A magnet system consisting of six superconducting trapezoidal racetrack-type coils is being built for the Jefferson Lab 12-GeV accelerator upgrade project. The magnet coils are wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. Each superconducting toroidal coil is force cooled by liquid helium, which circulates in a tube that is in good thermal contact with the inside of the coil. Thin copper sheets are soldered to the helium cooling tube and enclose the superconducting coil, providing cooling to the rest of the coil pack. As part of a rigorous risk mitigation exercise, each of the six coils is cooled with liquid nitrogen (LN2) to 80 K to validate predicted thermal stresses, verify the robustness and integrity of electrical insulation, and evaluate the efficacy of the employed conduction cooling method. This paper describes the test setup, the tests performed, and the findings.

  20. Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy

    DOE PAGESBeta

    Santala, M. K.; Raoux, S.; Campbell, G. H.

    2015-12-24

    The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ~100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measuredmore » with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. As a result, the high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less

  1. Semiconductor electrodes. 32. n- and p-GaAs, n- and p-Si, and n-TiO/sub 2/ in liquid ammonia

    SciTech Connect

    Malpas, R.E.; Itaya, K.; Bard, A.J.

    1981-04-08

    The behavior of several n- and p-type semiconductors in liquid ammonia with 0.1 M KI as supporting electrolyte was investigated. The flat-band potentials were estimated from Schottky-Mott plots, and the current-potential curves with several redox couples (e.g., benzophenone, naphthalene, nitrobenzene) in the dark and under illumination were obtained. Photoinjection of solvated electrons at p-GaAs and p-Si was demonstrated, and the results with these materials were shown to be consistent with those from the Fermi level pinning model. Solvated electron photovoltaic cells with these semiconductors were also constructed.

  2. Synthesis and properties of Si and SiGe/Si nanowires

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Lew, Kok-Keong; Bogart, Timothy E.; Pan, Ling; Dickey, Elizabeth C.; Carim, A. H.; Wang, Yanfeng; Cabassi, Marco A.; Mayer, Theresa S.

    2004-06-01

    The fabrication of semiconductor nanowires, in which composition, size and conductivity can be controlled in both the radial and axial direction of the wire is of interest for fundamental studies of carrier confinement as well as nanoscale device development. In this study, group IV semiconductor nanowires, including Si, Ge and SixGe1-x alloy nanowires were fabricated by vapor-liquid-solid (VLS) growth using gaseous precursors. In the VLS process, gold is used to form a liquid alloy with Si and Ge which, upon supersaturation, precipitates a semiconductor nanowire. Nanoporous alumina membranes were used as templates for the VLS growth process, in order to control the diameter of the nanowires over the range from 45 nm to 200 nm. Intentional p-type and n-type doping was achieved through the addition of either trimethylboron, diborane or phosphine gas during nanowire growth. The electrical properties of undoped and intentionally doped silicon nanowires were characterized using field-assisted assembly to align and position the wires onto pre-patterned test bed structures. The depletion characteristics of back-gated nanowire structures were used to determine conductivity type and qualitatively compare dopant concentration. SiGe and SiGe/Si axial heterostructure nanowires were also prepared through the addition of germane gas during VLS growth. The Ge concentration in the wires was controllable over the range from 12 % to 25% by varying the inlet GeH4/SiH4 ratio.

  3. Dispersions of Semiconductor Nanoparticles in Thermotropic Liquid Crystal: From Optical Modification to Assisted Self-Assembly

    NASA Astrophysics Data System (ADS)

    Rodarte, Andrea L.

    The interaction of semiconducting quantum dot nanoparticles (QDs) within thermotropic liquid crystalline (LC) materials are studied in this thesis. LC materials are ideal for bottom-up organization of nanoparticles as an active matrix that can be externally manipulated via electric or magnetic fields. In addition, the optical properties of QDs can be modified by the surrounding LC resulting in novel devices such as a quantum dot/liquid crystal laser. The first system studies the dispersion of spherical nanoparticles in the phase. The dispersion is investigated with the use of polarized optical microscopy, fluorescence microscopy and confocal scanning microscopy. Quantum dots well dispersed in the isotropic phase are expelled from ordered domains of LC at the phase transition. Under controlled conditions, the majority of QDs in the system can form ordered three dimensional assemblies that are situated at defect points in the liquid crystal. The internal order of the assemblies is probed utilizing Forster resonance energy transfer (FRET), combined with small angle X-ray scattering (SAXS). Furthermore, the location of these assemblies can be predetermined with the use of beads as defect nucleation points in the cell. The interaction of QDs in a cholesteric liquid crystal (CLC) is also investigated. The reflection band created by the periodic change of index of refraction in a planar aligned CLC acts as a 1-D photonic cavity when the CLC is doped with a low concentration of QDs. A Cano-wedge cell varies the pitch of the CLC leading to the formation of Grandjean steps. This spatially tunes the photonic stop band, changing the resonance condition and continuously altering both the emission wavelength and polarization state of the QD ensemble. Using high resolution spatially and spectrally resolved photoluminescence measurements, the emission is shown to be elliptically polarized and that the tilt of the ellipse, while dependent on the emission wavelength, additionally

  4. Evolution of ferromagnetic and non-Fermi-liquid states with doping: The case of Ru-doped UCoGe

    NASA Astrophysics Data System (ADS)

    Vališka, Michal; Pospíšil, Jiří; Diviš, Martin; Prokleška, Jan; Sechovský, Vladimír; Abd-Elmeguid, Mohsen M.

    2015-07-01

    We have investigated the impact of Ru substitution for Co on the behavior of the ferromagnetic superconductor UCoGe by performing x-ray diffraction, magnetization, specific heat, and electrical resistivity measurements on polycrystalline samples of the UCo1 -xRuxGe series (0 ≥x ≤0.9 ) . The initial Ru substitution up to x ≈0.1 leads to a simultaneous sharp increase of the Curie temperature and spontaneous magnetization up to maximum values of TC=8.6 K and MS=0.1 μB per formula unit, respectively, whereas superconductivity vanishes already for x ≈0.03 . Further increase of the Ru content beyond x ≈0.1 leads to a precipitous decrease of both TC and MS towards a ferromagnetic quantum critical point (QCP) at xcr=0.31 . Consequently, the T -x magnetic phase diagram consists of a well-developed ferromagnetic dome. We discuss the evolution of ferromagnetism with x on the basis of band structure changes due to varying 5 f -ligand hybridization. This scenario is supported by the results of electronic structure calculations and consideration of the simplified periodic Anderson model. The analysis of the temperature dependencies of the electrical resistivity and heat capacity at low temperatures of the samples in the vicinity of the QCP reveals a non-Fermi-liquid behavior and assigns the ferromagnetic quantum phase transition to be most likely of a continuous Hertz-Millis type.

  5. Effects of degradation on the performance of a triphenylene based liquid crystal organic semiconductor

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Patrick, Michael S.; Peters, Kyle; Paul, Sanjoy; Ellman, Brett; Matthews, Rachael; Pentzer, Emily; Twieg, Robert J.; Singer, Kenneth D.

    2015-09-01

    We report on time-of-flight (TOF) hole mobility measurements in an aged discotic columnar liquid crystal, Hexakis(pentyloxy)triphenylene (HAT5). The experimental data was fit to an interfacial trapping model based on Van de Walle's approximations. The theory accurately reproduces the TOF transients of delayed charge release near the optically excited material/electrode interface. Interfacial trapping appears only in the aged materials, but the bulk mobility is the same as that of the pristine material. We also discuss preliminary results of TOF photocurrent transients of HAT5 exposed to ozone.

  6. Facile liquid phase deposition of thick reflective GeO2 film for hollow waveguide delivery of CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Jing, Chengbin; Hou, Jinxia; Xu, Xinguang; Zhang, Yongheng

    2008-02-01

    A new idea of using LPD (liquid phase deposition) to prepare a GeO2 thick reflective film for hollow waveguide delivery of CO2 laser radiation was investigated in this work. The LPD process was achieved by designedly adding acid to GeO2-aqueous ammonia. The addition of acid could induce the transformation of germanate ions into GeO2 solutes, leading to the deposition of a GeO2 ceramic film when the concentration of GeO2 solute is higher than its saturation solubility. It was found that the highest film growth rate occurred at a pH value of 3, while a film with low surface roughness and good adhesion to the substrate was produced at a pH value of 2 and the film could be converted to a smooth, compact hexagonal GeO2 film by heat treatment at 1120 °C for 30 min. Two abnormal dispersion bands within 7.6-9 μm and 9.6-11.2 μm were mainly caused by the silica glass substrate and the GeO2 film, respectively. The film was thick enough to achieve the total reflectance of the CO2 laser radiation. The use of this GeO2 film in a hollow waveguide structure for CO2 laser radiation delivery is discussed based on the transmission loss and the feasibility of the deposition of the GeO2 film inside silica capillary tubes. The results show that the hollow waveguides with low transmission loss are most likely fabricated at a low cost using the LPD-derived GeO2 reflective film.

  7. Enhancement of photoluminescence from n-type tensile-strained GeSn wires on an insulator fabricated by lateral liquid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Shimura, Takayoshi; Matsue, Masahiro; Tominaga, Kohei; Kajimura, Keiko; Amamoto, Takashi; Hosoi, Takuji; Watanabe, Heiji

    2015-11-01

    We investigated the optical properties of undoped and n-type GeSn wires fabricated by a lateral liquid-phase epitaxial method. The Sn concentration was approximately 0.5% in the region from the seed to near the wire end. Moreover, the Sn concentration increased to 6% at the wire end, whereas Si diffusion from the seed was enhanced and extended to 200 μm from the seed. Tensile strain gradually decreased from 0.5% close the seed to 0.25% at the wire end. The photoluminescence (PL) peak was red-shifted by Sn incorporation into the Ge wires, and a PL peak at 0.66 eV was observed from the wire end. Upon n-type doping, the PL intensity of the GeSn layers was significantly enhanced to approximately 10 times higher than that of the undoped GeSn wires.

  8. Determination of the electrical conductivity of liquid Ge(0.95)Si(0.05)

    NASA Technical Reports Server (NTRS)

    Rolin, T. D.; Szofran, F. R.

    1995-01-01

    We have measured the electrical conductivity of molten germanium-silicon Ge(0.95)Si(0.05) from the liquidus temperature (1050 C) up to 1220 C. The data were acquired with a unique apparatus which utilizes the standard four-probe technique. The basic unit consists of a fused silica enclosure that contains hermetic glass-to-tungsten seals that can support vacuum pressures down to 10(exp -7) Torr. With calibration, the measurement error for the low vapor pressure materials of this study was typically less than 7%. The temperature dependence of the electrical conductivity of a Ge(0.95)Si(0.05) melt was found to vary from approximately 22,300/ohm/cm at the liquidus temperature down to approximately 16,000/ohm/cm at 1220 C. The negative temperature coefficient as well as the magnitude of these data clearly indicate that the molten material is metallic in nature despite the semiconducting properties of the solid.

  9. n-Type silicon photoelectrochemistry in methanol: Design of a 10.1% efficient semiconductor/liquid junction solar cell

    PubMed Central

    Gronet, Chris M.; Lewis, Nathan S.; Cogan, George; Gibbons, James

    1983-01-01

    n-Type Si electrodes in MeOH solvent with 0.2 M (1-hydroxyethyl)ferrocene, 0.5 mM (1-hydroxyethyl)ferricenium, and 1.0 M LiClO4 exhibit air mass 2 conversion efficiencies of 10.1% for optical energy into electricity. We observe open-circuit voltages of 0.53 V and short-circuit quantum efficiencies for electron flow of nearly unity. The fill factor of the cell does not decline significantly with increases in light intensity, indicating substantial reduction in efficiency losses in MeOH solvent compared to previous nonaqueous n-Si systems. Matte etch texturing of the Si surface decreases surface reflectivity and increases photocurrent by 50% compared to shiny, polished Si samples. The high values of the open-circuit voltage observed are consistent with the presence of a thin oxide layer, as in a Schottky metal-insulator-semiconductor device, which yields decreased surface recombination and increased values of open-circuit voltage and short-circuit current. The n-Si system was shown to provide sustained photocurrent at air mass 2 levels (20 mA/cm2) for charge through the interface of >2,000 C/cm2. The n-Si/MeOH system represents a liquid junction cell that has exceeded the 10% barrier for conversion of optical energy into electricity. PMID:16593280

  10. Indium-Tin-Oxide Metal-Insulator-Semiconductor GaN Ultraviolet Photodetectors Using Liquid-Phase-Deposition Oxide

    NASA Astrophysics Data System (ADS)

    Yang, Gow-Huei; Hwang, Jun-Dar; Lan, Chih-Hsueh; Chan, Chien-Mao; Chen, Hone-Zem; Chang, Shoou-Jinn

    2007-08-01

    A low-cost and reliable SiO2 insulating layer was successfully deposited onto GaN by liquid-phase deposition (LPD) using supersaturated H2SiF6 and H3BO3 solutions. The interface-trap density, Dit, was estimated to be 1.2× 1012 cm-2 eV-1 for the as-grown, not annealed LPD-SiO2 layers. It was found that the leakage current density was 2.06× 10-5 A/cm2 at a negative bias of 10 V for the as-grown Al/20 nm LPD-SiO2/GaN metal-insulator-semiconductor (MIS) capacitors. It was also found that the LPD-SiO2 layer could be used to suppress the dark current of nitride-based photodetectors. A large photocurrent to dark-current contrast ratio higher than four orders of magnitude and a maximum responsivity of 0.65 A/W were observed from the fabricated indium-tin-oxide (ITO)/LPD-SiO2/GaN MIS UV photodetectors. These results could be explained by defect-assisted tunneling.

  11. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry.

    PubMed

    Orava, J; Greer, A L; Gholipour, B; Hewak, D W; Smith, C E

    2012-04-01

    Differential scanning calorimetry (DSC) is widely used to study the stability of amorphous solids, characterizing the kinetics of crystallization close to the glass-transition temperature T(g). We apply ultrafast DSC to the phase-change material Ge(2)Sb(2)Te(5) (GST) and show that if the range of heating rates is extended to more than 10(4) K s(-1), the analysis can cover a wider temperature range, up to the point where the crystal growth rate approaches its maximum. The growth rates that can be characterized are some four orders of magnitude higher than in conventional DSC, reaching values relevant for the application of GST as a data-storage medium. The kinetic coefficient for crystal growth has a strongly non-Arrhenius temperature dependence, revealing that supercooled liquid GST has a high fragility. Near T(g) there is evidence for decoupling of the crystal-growth kinetics from viscous flow, matching the behaviour for a fragile liquid suggested by studies on oxide and organic systems. PMID:22426461

  12. Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities.

    PubMed

    Zhu, X; Cassidy, D T

    1996-08-20

    A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%. PMID:21102889

  13. Molecular approaches to p- and n-nanoscale doping of Ge 1-ySn y semiconductors: Structural, electrical and transport properties

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Tolle, J.; D'Costa, V. R.; Weng, C.; Chizmeshya, A. V. G.; Menendez, J.; Kouvetakis, J.

    2009-08-01

    We report the development of practical doping protocols via designer molecular sources to create n- and p-type doped Ge 1-ySn y layers grown directly upon Si(1 0 0). These materials will have applications in the fabrication of advanced PIN devices that are intended to extend the infrared optical response beyond that of Ge by utilizing the Sn composition as an additional design parameter. Highly controlled and efficient n-doping of single-layer structures is achieved using custom built P(GeH 3) 3 and As(GeH 3) 3, precursors containing preformed Ge-As and Ge-P near-tetrahedral bonding arrangements compatible with the structure of the host Ge-Sn lattice. Facile substitution and complete activation of the P and As atoms at levels ˜10 17-10 19 cm -3 is obtained via in situ depositions at low temperatures (350 °C). Acceptor doping is readily achieved using conventional diborane yielding carrier concentrations between 10 17-10 19 cm -3 under similar growth conditions. Full activation of the as-grown dopant concentrations is demonstrated by combined SIMS and Hall experiments, and corroborated using a contactless spectroscopic ellipsometry approach. RTA processing of the samples leads to a significant increase in carrier mobility comparable to that of bulk Ge containing similar doping levels. The alloy scattering contribution appears to be negligible for electron carrier concentrations beyond 10 19 cm -3 in n-type samples and hole concentrations beyond 10 18 cm -3 in p-type samples. A comparative study using the classical lower-order hydrides PH 3 and AsH 3 produced n-doped films with carrier densities (up to 9 × 10 19 cm -3) similar to those afforded by P(GeH 3) 3 and As(GeH 3) 3. However, early results indicate that the simpler PH 3 and AsH 3 sources yield materials with inferior morphology and microstructure. Calculations of surface energetics using bond enthalpies suggest that the latter massive compounds bind to the surface via strong Ge-Ge bonds and likely act as

  14. Genetic-Algorithm Discovery of a Direct-Gap and Optically Allowed Superstructure from Indirect-Gap Si and Ge Semiconductors

    SciTech Connect

    d'Avezac, M.; Luo, J. W.; Chanier, T.; Zunger, A.

    2012-01-13

    Combining two indirect-gap materials - with different electronic and optical gaps - to create a direct gap material represents an ongoing theoretical challenge with potentially rewarding practical implications, such as optoelectronics integration on a single wafer. We provide an unexpected solution to this classic problem, by spatially melding two indirect-gap materials (Si and Ge) into one strongly dipole-allowed direct-gap material. We leverage a combination of genetic algorithms with a pseudopotential Hamiltonian to search through the astronomic number of variants of Si{sub n}/Ge{sub m}/.../Si{sub p}/Ge{sub q} superstructures grown on (001) Si{sub 1-x}Ge{sub x}. The search reveals a robust configurational motif - SiGe{sub 2}Si{sub 2}Ge{sub 2}SiGe{sub n} on (001) Si{sub x}Ge{sub 1-x} substrate (x {le} 0.4) presenting a direct and dipole-allowed gap resulting from an enhanced {Gamma}-X coupling at the band edges.

  15. Topological characteristics of bonds in SiO{sub 2} and GeO{sub 2} oxide systems upon a glass-liquid transition

    SciTech Connect

    Ozhovan, M. I.

    2006-11-15

    Using the Angell model of broken bonds (configurons), configuron clustering in a topologically disordered lattice (network) of amorphous SiO{sub 2} and GeO{sub 2} upon a glass-liquid transition is considered. It is shown that the glass-liquid transition is accompanied by the formation of a macroscopic (percolation) configuron cluster penetrating the entire bulk of the material and possessing fractal geometry. The glass-liquid (overcooled liquid) percolation phase transition in the amorphous substance is accompanied by a change in the Hausdorff dimension of the bond network structure for configurons from the three-dimensional Euclidean dimension in the glassy state to a fractal dimension of 2.55 {+-} 0.05 in the liquidlike state. Contrary to the kinetic character of the liquid-glass transition, the glass-transition temperature is a thermodynamic parameter of the amorphous substance, depending parametrically on the cooling rate.

  16. Liquid crystalline phthalocyanines as a self-assembling organic semiconductor for solution-processing thin film devices

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Hori, T.; Yoshida, H.; Monobe, H.; Fujii, A.; Ozaki, M.; Shimizu, Y.

    2011-03-01

    A liquid crystalline phthalocyanine semiconductor, 1, 4, 8, 11, 15, 18, 22, 25-hexahexylphthalocyanine (C6PcH2) was studied on the drift mobility of charged carriers by a Time-Of-Flight (TOF) method. It was found that this compound exhibits an ambipolar nature for charge transport and the hole and electron mobilities were determined to be in the order of 10-1 cm2 V-1 s-1 for polydomain films of the hexagonal disordered columnar (Colhd) mesophase. This is comparable to that of the octyl homologue (C8PcH2) reported by Hanna et al. However, C6PcH2 did not show any tendency to form the homeotropic alignment between ITO-coated glass substrates, though C8PcH2 so clearly and easily does. Clear decay curves of the transient photocurrents could be obtained in TOF measurements even for polydomain films of the crystalline solid phase to give a strongly temperature-dependent mobility of holes which reaches to 1.1 cm2 V-1 s-1 at room temperature (RT) as the temperature goes down, whilst the electron mobility slightly increases to be 0.5 cm2 V-1 s-1at RT. This compound could easily form thin films by spin-coating technique with the toluene solution and a simple bulk-heterojunction thin film solar cell was fabricated to give a good performance such as 3.1 % of power conversion efficiency and > 70 % of external quantum efficiency.

  17. Enhancement of mobility in ultra-thin-body GeOI p-channel metal–oxide–semiconductor field effect transistors with Si-passivated back interfaces

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Hsin; Irisawa, Toshifumi; Ishii, Hiroyuki; Hattori, Hiroyuki; Takagi, Hideki; Kurashima, Yuichi; Maeda, Tatsuro

    2016-09-01

    Ultra-thin-body (UTB) germanium-on-insulator (GeOI) substrates with Si-passivated back interfaces have been fabricated by using advanced epitaxial-lift-off (ELO) technology. Performance of UTB GeOI p-MOSFETs with body thickness (T body) in the 4–16 nm range has also been characterized. Si-passivated back interfaces have been fabricated and found to be effective in mitigating the unpleasant hole-mobility degradation in the UTB GeOI regime owing to the suppression of the back interface scattering.

  18. Absorbance and Photoluminescence of Si, Ge, and MoS{sub 2} Nanoparticles Studied by Liquid Chromatography

    SciTech Connect

    Provencio, P.P.; Samara, G.A.; Wilcoxon, J.P,

    1999-07-12

    The authors have successfully synthesized highly crystalline, size-selected indirect band-gap nanocrystals (NC) of Si, Ge and MoS{sub 2} in the size range 2-10 nm in inverse micelles and studied their optical absorption and photoluminescence (PL) properties using liquid chromatography. Room temperature, visible PL from these nanocrystals was demonstrated in the range 700-350 nm (1.8-3.5 eV). their experimental results are interpreted in terms of the corresponding electronic structure of the bulk materials and it is demonstrated that these nanocrystals retain bulk-like electronic character to sizes as small as 2 nm, but the absorbance energies are strongly blue-shifted by quantum confinement. The experimental results on Si-NCs are also compared to earlier work on Si clusters grown by other techniques and to the predictions of various model calculations. Currently, the wide variations in the theoretical predictions of the various models along with considerable uncertainties in experimental size determination for clusters less than 3-4 nm, make it difficult to select the best model.

  19. Phase separation and exchange biasing in the ferromagnetic IV-VI semiconductor Ge{sub 1-x}Mn{sub x}Te

    SciTech Connect

    Lechner, R. T.; Springholz, G.; Hassan, M.; Groiss, H.; Kirchschlager, R.; Stangl, J.; Hrauda, N.; Bauer, G.

    2010-07-12

    Ferromagnetic Ge{sub 1-x}Mn{sub x}Te grown by molecular beam epitaxy with Mn content of x{sub Mn}approx =0.5 is shown to exhibit a strong tendency for phase separation. At higher growth temperatures apart from the cubic Ge{sub 0.5}Mn{sub 0.5}Te, a hexagonal MnTe and a rhombohedral distorted Ge{sub 0.83}Mn{sub 0.17}Te phase is formed. This coexistence of antiferromagnetic MnTe and ferromagnetic Ge{sub 0.5}Mn{sub 0.5}Te results in magnetic exchange-bias effects.

  20. Nanoscale strain distributions in embedded SiGe semiconductor devices revealed by precession electron diffraction and dual lens dark field electron holography

    SciTech Connect

    Wang, Y. Y.; Cooper, D.; Bernier, N.; Rouviere, J.; Murray, C. E.; Bruley, J.

    2015-01-26

    The detailed strain distributions produced by embedded SiGe stressor structures are measured at high spatial resolution with high precision, with dual lens dark field electron holography and precession electron diffraction. Shear strain and lattice rotation within the crystalline lattice are observed at the boundaries between the SiGe and Si regions. The experimental results are compared to micromechanical modeling simulations to understand the mechanisms of elastic relaxation on all the modes of deformation at a sub-micron length scale.

  1. Semiconductor-based experiments for neutrinoless double beta decay search

    NASA Astrophysics Data System (ADS)

    Barnabé Heider, Marik; Gerda Collaboration

    2012-08-01

    Three experiments are employing semiconductor detectors in the search for neutrinoless double beta (0νββ) decay: COBRA, Majorana and GERDA. COBRA is studying the prospects of using CdZnTe detectors in terms of achievable energy resolution and background suppression. These detectors contain several ββ emitters and the most promising for 0νββ-decay search is 116Cd. Majorana and GERDA will use isotopically enriched high purity Ge detectors to search for 0νββ-decay of 76Ge. Their aim is to achieve a background ⩽10-3 counts/(kgṡyṡkeV) at the Q improvement compared to the present state-of-art. Majorana will operate Ge detectors in electroformed-Cu vacuum cryostats. A first cryostat housing a natural-Ge detector array is currently under preparation. In contrast, GERDA is operating bare Ge detectors submerged in liquid argon. The construction of the GERDA experiment is completed and a commissioning run started in June 2010. A string of natural-Ge detectors is operated to test the complete experimental setup and to determine the background before submerging the detectors enriched in 76Ge. An overview and a comparison of these three experiments will be presented together with the latest results and developments.

  2. Synthesis in ionic liquids : [Bi{sub 2}Te{sub 2}Br](AlCl{sub 4}), a direct gap semiconductor with a cationic framework.

    SciTech Connect

    Biswas, K.; Zhang, Q.; Chung, I.; Song, J.-H.; Androulaksi, J.; Freeman, A. J.; Kanatzidis, M. G.; Materials Science Division; Northwestern Univ.

    2010-01-01

    The Lewis acidic ionic liquid EMIMBr-AlCl{sub 3} (EMIM = 1-ethyl-3-methylimidazolium) allows a novel synthetic route to the semiconducting layered metal chalcogenides halide [Bi{sub 2}Te{sub 2}Br](AlCl{sub 4}) and its Sb analogue. [Bi{sub 2}Te{sub 2}Br](AlCl{sub 4}) is a direct band gap, strongly anisotropic semiconductor and consists of cationic infinite layers of [Bi{sub 2}Te{sub 2}Br]{sup +} and [AlCl{sub 4}]{sup -} anions inserted between the layers.

  3. Electrical properties of Ge metal–oxide–semiconductor capacitors with high-k La2O3 gate dielectric incorporated by N or/and Ti

    NASA Astrophysics Data System (ADS)

    Huoxi, Xu; Jingping, Xu

    2016-06-01

    LaON, LaTiO and LaTiON films are deposited as gate dielectrics by incorporating N or/and Ti into La2O3 using the sputtering method to fabricate Ge MOS capacitors, and the electrical properties of the devices are carefully examined. LaON/Ge capacitors exhibit the best interface quality, gate leakage property and device reliability, but a smaller k value (14.9). LaTiO/Ge capacitors exhibit a higher k value (22.7), but a deteriorated interface quality, gate leakage property and device reliability. LaTiON/Ge capacitors exhibit the highest k value (24.6), and a relatively better interface quality (3.1 × 1011 eV‑1 cm‑2), gate leakage property (3.6 × 10‑3 A/cm2 at V g = 1 V + V fb) and device reliability. Therefore, LaTiON is more suitable for high performance Ge MOS devices as a gate dielectric than LaON and LaTiO materials. Project supported by the National Natural Science Foundation of China (No. 61274112), the Natural Science Foundation of Hubei Province (No. 2011CDB165), and the Scientific Research Program of Huanggang Normal University (No. 2012028803).

  4. (Chemical probes of charge transfer at semiconductor/liquid junctions). Technical report for May 15, 1984-January 15, 1985

    SciTech Connect

    Koval, C.A.

    1985-01-01

    A study of the effects of surface energetics and surface oxide layers on the cyclic voltametry of metallocenes at nonilluminated p- and n-InP electrodes has been completed. Nearly ideal semiconductor/solution interfaces can be prepared, it was concluded, and the voltammetry of metallocenes is a way to probe electron transfer across this interface under different surface energetic conditions. Single crystals of WSe/sub 2/ were grown by chemical vapor transport. A computer program was written to collect voltametric data and calculated convoluted currents, and it is used to examine the kinetics of charge transfer across the semiconductor solution interface. (LEW)

  5. Field-induced spin-flop in antiferromagnetic semiconductors with commensurate and incommensurate magnetic structures: Li2FeGeS4 (LIGS) and Li2FeSnS4 (LITS).

    PubMed

    Brant, Jacilynn A; dela Cruz, Clarina; Yao, Jinlei; Douvalis, Alexios P; Bakas, Thomas; Sorescu, Monica; Aitken, Jennifer A

    2014-12-01

    Li2FeGeS4 (LIGS) and Li2FeSnS4 (LITS), which are among the first magnetic semiconductors with the wurtz-kesterite structure, exhibit antiferromagnetism with TN ≈ 6 and 4 K, respectively. Both compounds undergo a conventional metamagnetic transition that is accompanied by a hysteresis; a reversible spin-flop transition is dominant. On the basis of constant-wavelength neutron powder diffraction data, we propose that LIGS and LITS exhibit collinear magnetic structures that are commensurate and incommensurate with propagation vectors km = [1/2, 1/2, 1/2] and [0, 0, 0.546(1)], respectively. The two compounds exhibit similar magnetic phase diagrams, as the critical fields are temperature-dependent. The nuclear structures of the bulk powder samples were verified using time-of-flight neutron powder diffraction along with synchrotron X-ray powder diffraction. (57)Fe and (119)Sn Mössbauer spectroscopy confirmed the presence of Fe(2+) and Sn(4+) as well as the number of crystallographically unique positions. LIGS and LITS are semiconductors with indirect and direct bandgaps of 1.42 and 1.86 eV, respectively, according to optical diffuse-reflectance UV-vis-NIR spectroscopy. PMID:25397682

  6. Fabrication and electrical characterization of homo- and hetero-structure Si/SiGe nanowire Tunnel Field Effect Transistor grown by vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Brouzet, V.; Salem, B.; Periwal, P.; Alcotte, R.; Chouchane, F.; Bassani, F.; Baron, T.; Ghibaudo, G.

    2016-04-01

    We demonstrate the fabrication and electrical characterization of Ω -gate Tunnel Field Effect Transistors (TFET) based on p-Si/i-Si/n+Si0.7Ge0.3 heterostructure nanowires grown by Chemical Vapor Deposition (CVD) using the vapor-liquid-solid (VLS) mechanism. The electrical performances of the p-Si/i-Si/n+Si0.7Ge0.3 heterostructure TFET device are presented and compared to Si and Si0.7Ge0.3 homostructure nanowire TFETs. We observe an improvement of the electrical performances of TFET with p-Si/i-Si/n+Si0.7Ge0.3 heterostructure nanowire (HT NW). The optimized devices present an Ion current of about 245 nA at VDS = -0.5 V and VGS = -3 V with a subthreshold swing around 135 mV/dec. Finally, we show that the electrical results are in good agreement with numerical simulation using Kane's Band-to-Band Tunneling model.

  7. Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state

    NASA Astrophysics Data System (ADS)

    Schumacher, Mathias; Weber, Hans; Jóvári, Pál; Tsuchiya, Yoshimi; Youngs, Tristan G. A.; Kaban, Ivan; Mazzarello, Riccardo

    2016-06-01

    Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the structural, electronic and kinetic properties of liquid Ge2Sb2Te5 as a function of temperature by a combined experimental and computational approach. Understanding the properties of this phase is important to clarify the amorphization and crystallization processes. We show that the structural properties of the models obtained from ab initio and reverse Monte Carlo simulations are in good agreement with neutron and X-ray diffraction experiments. We extract the kinetic coefficients from the molecular dynamics trajectories and determine the activation energy for viscosity. The obtained value is shown to be fully compatible with our viscosity measurements.

  8. Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state.

    PubMed

    Schumacher, Mathias; Weber, Hans; Jóvári, Pál; Tsuchiya, Yoshimi; Youngs, Tristan G A; Kaban, Ivan; Mazzarello, Riccardo

    2016-01-01

    Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the structural, electronic and kinetic properties of liquid Ge2Sb2Te5 as a function of temperature by a combined experimental and computational approach. Understanding the properties of this phase is important to clarify the amorphization and crystallization processes. We show that the structural properties of the models obtained from ab initio and reverse Monte Carlo simulations are in good agreement with neutron and X-ray diffraction experiments. We extract the kinetic coefficients from the molecular dynamics trajectories and determine the activation energy for viscosity. The obtained value is shown to be fully compatible with our viscosity measurements. PMID:27272222

  9. Charge-Doping-Driven Evolution of Magnetism and Non-Fermi-Liquid Behavior in the Filled Skutterudite CePt4Ge12-xSbx

    NASA Astrophysics Data System (ADS)

    Nicklas, M.; Kirchner, S.; Borth, R.; Gumeniuk, R.; Schnelle, W.; Rosner, H.; Borrmann, H.; Leithe-Jasper, A.; Grin, Yu.; Steglich, F.

    2012-12-01

    The filled skutterudite compound CePt4Ge12 is situated close to the border between the intermediate valence of Ce and heavy-fermion behavior. Substitution of Ge by Sb drives the system into a strongly correlated and, ultimately, upon further increasing the Sb concentration, an antiferromagnetically ordered state. Our experiments evidence a delicate interplay of emerging Kondo physics and the formation of a local 4f moment. An extended non-Fermi-liquid region, which can be understood in the framework of a Kondo-disorder model, is observed. Band-structure calculations support the conclusion that the physical properties are governed by the interplay of electron supply via Sb substitution and the concomitant volume effects.

  10. Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state

    PubMed Central

    Schumacher, Mathias; Weber, Hans; Jóvári, Pál; Tsuchiya, Yoshimi; Youngs, Tristan G. A.; Kaban, Ivan; Mazzarello, Riccardo

    2016-01-01

    Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the structural, electronic and kinetic properties of liquid Ge2Sb2Te5 as a function of temperature by a combined experimental and computational approach. Understanding the properties of this phase is important to clarify the amorphization and crystallization processes. We show that the structural properties of the models obtained from ab initio and reverse Monte Carlo simulations are in good agreement with neutron and X-ray diffraction experiments. We extract the kinetic coefficients from the molecular dynamics trajectories and determine the activation energy for viscosity. The obtained value is shown to be fully compatible with our viscosity measurements. PMID:27272222

  11. Influence of uniaxial strain in Si and Ge p-type double-gate metal-oxide-semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Moussavou, Manel; Cavassilas, Nicolas; Dib, Elias; Bescond, Marc

    2015-09-01

    We theoretically investigate the impact of uniaxial strain in extremely thin Si and Ge p-type double-gate transistors. Quantum transport modeling is treated using a 6-band k.p Hamiltonian and the non-equilibrium Green's function formalism including phonon scattering. Based on this framework, we analyze the influence of strain on current characteristics considering different transport directions and gate lengths. Our results first confirm the superiority of Ge over Si in long devices (15 nm gate length) for which best electrical performances are obtained considering channels along <110 > with a uni-axial compressive strain. For this configuration, Si devices suffer from inter-subband coupling which generates a strong hole-phonon scattering. Material dominance is reversed for shorter devices (7 nm gate length) where the small effective masses of Ge deteriorate the off-regime of the nano-transistor regardless of strain and crystallographic options. Due to weaker hole-phonon-scattering, <100 > -Si devices with a tensile strain are interestingly found to be more competitive than their <110 > -compressive counterparts. These results show that Si is still the most relevant material to reach the ultimate nanometer scale. More importantly, the same tensile strain can be considered to boost performances of both p- and n-type planar transistors which would lead to a significant simplification of the technological strain manufacturing.

  12. Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.

    2016-01-01

    Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.

  13. Metal-Insulator-Semiconductor Photodetectors

    PubMed Central

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III–V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows. PMID:22163382

  14. Chemical probes of charge transfer at semiconductor/liquid junctions. Technical report, January 16, 1985-January 15, 1986

    SciTech Connect

    Koval, C.A.

    1986-01-01

    We attempted to obtain quantitative, non-mass-transfer limited current density vs. potential relationships for a select group of metallocenes. A reproducible procedure for poising the solution redox potential and measuring currents in stirred solutions was developed as well as software programs for data analysis and graphical representation. Even though both p-type and n-type InP electrodes exhibit regions of relative stability, it now appears that this material will not be suitable for detailed kinetic studies. The currents seem to be dominated by leakage phenomena and changes in the thickness of surface oxide which tend to obscure redox processes inherent to the semiconductor solution interface itself.

  15. Strain and lattice orientation distribution in SiN/Ge complementary metal–oxide–semiconductor compatible light emitting microstructures by quick x-ray nano-diffraction microscopy

    SciTech Connect

    Chahine, G. A.; Schülli, T. U.; Zoellner, M. H.; Guha, S.; Reich, C.; Zaumseil, P.; Capellini, G.; Richard, M.-I.; Schroeder, T.

    2015-02-16

    This paper presents a study of the spatial distribution of strain and lattice orientation in CMOS-fabricated strained Ge microstripes using high resolution x-ray micro-diffraction. The recently developed model-free characterization tool, based on a quick scanning x-ray diffraction microscopy technique can image strain down to levels of 10{sup −5} (Δa/a) with a spatial resolution of ∼0.5 μm. Strain and lattice tilt are extracted using the strain and orientation calculation software package X-SOCS. The obtained results are compared with the biaxial strain distribution obtained by lattice parameter-sensitive μ-Raman and μ-photoluminescence measurements. The experimental data are interpreted with the help of finite element modeling of the strain relaxation dynamics in the investigated structures.

  16. Analysis of lateritic material from Cerro Impacto by instrumental neutron activation employing a low-energy photon semiconductor and a high-energy Ge(Li) detector

    SciTech Connect

    LaBrecque, J.J.; Beusen, J.M.; Van Grieken, R.E.

    1986-01-01

    Nineteen elements were determined in four different grain size fractions of a bulk geological material from Cerro Impacto for a study of the physical (mechanical) concentration process of different elements based upon the hardness of the different minerals. The analysis was performed by excitation of the sample with a high, slow neutron flux followed by gamma-ray spectroscopy with both a conventional Ge(Li) high-energy detector and a low-energy photon detector (LEPD). The accuracy of this method was studied with the use of two standard reference materials, SY-2 and SY-3, which are similar to the real samples. The values determined were also compared with a secondary target x-ray fluorescence method for all the elements that were suitable to both methods. Actually, the x-ray fluorescence method was found to be more complementary than competitive. 10 refs., 2 figs., 4 tabs.

  17. Coherent magnetic semiconductor nanodot arrays

    PubMed Central

    2011-01-01

    In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation. PMID:21711627

  18. Studies of photocorrosion and passivation of n-GaAs based semiconductor/liquid junction photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Miller, Eric Alan

    Semiconductor photoelectrochemical cells offer a cheap, easily constructed alternative to all-solid-state solar cells. However, a persistent problem in their development has been photocorrosion of the semiconductor electrode. Photocorrosion degrades the electrode, reducing the device lifetime to unacceptably short times. Much effort has gone into developing passivation schemes to reduce or eliminate photocorrosion. None has yet provided permanent protection. A better understanding of the basic interfacial chemistry and physics is necessary to achieve this. Toward this end, the studies described in this manuscript have been performed. n-GaAs has been chosen as the electrode material in these studies due to its strong absorption near a maximum in the solar spectrum. Its photoelectrochemical behavior in Nasb2S has been examined because of the known ability of Nasb2S to passivate photocorrosion. Although the protection provided by Nasb2S is known to be temporary, the focus of these studies is to gain a more complete understanding of the interactions between Nasb2S and GaAs which lead to passivation and photocorrosion. Three separate studies are described in this manuscript. In the first, time-resolved photoluminescence experiments were employed to determine whether the minority carrier surface recombination velocity (SRV) is dependent upon electrolyte concentration. The results indicate that, within the concentration range studied, the SRV is independent of Nasb2S concentration, suggesting that there is no significant change in the degree of semiconductor/electrolyte bond formation. In the second study, the dependence of photocorrosion and passivation on crystallographic orientation was examined. Results show that the (100) and (110) surfaces of GaAs were passivated equally well by Nasb2S, although surface states which eventually formed at the two surfaces were separated in energy by 300 meV. The (111)B surface was not passivated by Nasb2S. In the third study, the

  19. A method to form semiconductor quantum dot (QD) thin films by igniting a flame at air-liquid interface: CdS and WO3.

    PubMed

    Jadhav, Aarti H; Patil, Sagar H; Sathaye, Shivaram D; Patil, Kashinath R

    2015-02-01

    We reveal an easy, inexpensive, efficient one stepflame synthesis of semiconductor/metal oxide thin films at air-liquid interface, subsequently, transferred on suitable substrate. The method has been illustrated by the formation of CdS and WO3 QDs thin films. The features of the present method are (1) Growth of thin films consisting of0.5-2.0nm sized Quantum Dots (QDs)/(ultra-small nanoparticles) in a short time, at the air-liquid interface which can be suitably transferred by a well-known Blodgett technique to an appropriate substrate, (2) The method is suitable to apply layer by layer (LbL) technique to increase the film thickness as well as forming various compositions as revealed by AFM measurements. The films are characterized for their structure (SAED), morphology (TEM), optical properties (UV-Vis.) and photoluminescence (PL). Possible mechanism of formation of QDs thin film and effect of capping in case of CdS QDs is discussed. PMID:25463183

  20. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Sukhanova, Alyona; Prudnikau, Anatol; Artemyev, Mikhail; Shibaev, Valery; Nabiev, Igor

    2012-12-01

    Novel types of electro- and photoactive quantum dot-doped cholesteric materials have been engineered. UV-irradiation or electric field application allows one to control the degree of circular polarization and intensity of fluorescence emission by prepared quantum dot-doped liquid crystal films. PMID:22972420

  1. Contact resistivity decrease at a metal/semiconductor interface by a solid-to-liquid phase transitional metallo-organic silver.

    PubMed

    Shin, Dong-Youn; Seo, Jun-Young; Kang, Min Gu; Song, Hee-eun

    2014-09-24

    We present a new approach to ensure the low contact resistivity of a silver paste at a metal/semiconductor interface over a broad range of peak firing temperatures by using a solid-to-liquid phase transitional metallo-organic silver, that is, silver neodecanoate. Silver nanoclusters, thermally derived from silver neodecanoate, are readily dissolved into the melt of metal oxide glass frit even at low temperatures, at which point the molten metal oxide glass frit lacks the dissociation capability of bulk silver into Ag(+) ions. In the presence of O(2-) ions in the melt of metal oxide glass frit, the redox reaction from Ag(+) to Ag(0) augments the noble-metal-assisted etching capability to remove the passivation layer of silicon nitride. Moreover, during the cooling stage, the nucleated silver atoms enrich the content of silver nanocolloids in the solidified metal oxide glass layer. The resulting contact resistivity of silver paste with silver neodecanoate at the metal/semiconductor interface thus remains low-between 4.12 and 16.08 mΩ cm(2)-whereas without silver neodecanoate, the paste exhibits a contact resistivity between 2.61 and 72.38 mΩ cm(2) in the range of peak firing temperatures from 750 to 810 °C. The advantage of using silver neodecanoate in silver paste becomes evident in that contact resistivity remains low over the broad range of peak firing temperatures, thus providing greater flexibility with respect to the firing temperature required in silicon solar cell applications. PMID:25182502

  2. Laser induced photocurrent transients in semiconductor liquid-junction solar cells employing n-WSe/sub 2/ and n-MoSe/sub 2/ photoanodes

    SciTech Connect

    Prybyla, S.G.

    1984-01-01

    The effects of perturbing a semiconductor liquid-junction solar cell from dark equilibrium conditions with a nanosecond (5 nsec FWHM) laser pulse of greater than bandgap energy were studied. It was found that n-WSe/sub 2/ and n-MoSe/sub 2/ photoanodes in either I/sup -//I/sub 3//sup -/ or Fe/sup 2 +//Fe/sup 3 +/ redox couple containing electrolyte solutions exhibit biexponentially decaying photocurrent transients in response to photoexcitation. For a given redox couple, n-WSe/sub 2/ was found to yield slightly higher peak photocurrents than n-MoSe/sub 2/ due to be more favorable band bending under dark conditions. The redox couple I/sup -//I/sub 3//sup -/ was found to be superior to Fe/sup 2 +//Fe/sup 3 +/ in spite of more positive redox potential of the Fe/sup 2 +//Fe/sup 3 +/ couple. The I/sup -//I/sub 3//sup -/ apparently adsorbs onto the semiconductor surface, negating the effects of surface states which tend to limit the amount of equilibrium band bending present. Quantum yields of charge transfer were determined for both redox couples as a function of laser pulse energy and energy density. Quantum yields of charge transfer were also determined for variation of the I/sup -//I/sub 3//sup -/ couple concentration for a fixed excitation energy. The resultant nonlinear dependency appears to follow the adsorption isotherm for I/sup -//I/sub 3//sup -/. Decay time constants and quantum yields of charge transfer as a function of added load resistance were studied.

  3. Amorphous Ge bipolar blocking contacts on Ge detectors

    SciTech Connect

    Luke, P.N.; Cork, C.P.; Madden, N.W.; Rossington, C.S.; Wesela, M.F.

    1991-10-01

    Semiconductor nuclear radiation detectors are usually operated in a full depletion mode and blocking contacts are required to maintain low leakage currents and high electric fields for charge collection. Blocking contacts on Ge detectors typically consist of n-type contacts formed by lithium diffusion and p-type contacts formed by boron ion implantation. Electrical contacts formed using sputtered amorphous Ge (a-Ge) films on high-purity Ge crystals were found to exhibit good blocking behavior in both polarities with low leakage currents. The a-Ge contacts have thin dead layers associated with them and can be used in place of lithium-diffused, ion-implanted or Schottky barrier contacts on Ge radiation detectors. Multi-electrode detectors can be fabricated with very simple processing steps using these contacts. 12 refs.

  4. Semiconductor nanorod self-assembly at the liquid/air interface studied by in situ GISAXS and ex situ TEM.

    PubMed

    Pietra, Francesca; Rabouw, Freddy T; Evers, Wiel H; Byelov, Dima V; Petukhov, Andrei V; de Mello Donegá, Celso; Vanmaekelbergh, Daniël

    2012-11-14

    We study the self-assembly of colloidal CdSe/CdS nanorods (NRs) at the liquid/air interface combining time-resolved in situ grazing-incidence small angle X-ray scattering (GISAXS) and ex situ transmission electron microscopy (TEM). Our study shows that NR superstructure formation occurs at the liquid/air interface. Short NRs self-assemble into micrometers long tracks of NRs lying side by side flat on the surface. In contrast, longer NRs align vertically into ordered superstructures. Systematic variation of the NR length and initial concentration of the NR dispersion allowed us to tune the orientation of the NRs in the final superstructure. With GISAXS, we were able to follow the dynamics of the self-assembly. We propose a model of hierarchical self-organization that provides a basis for the understanding of the length-dependent self-organization of NRs at the liquid/air interface. This opens the way to new materials based on NR membranes and anisotropic thin films. PMID:23038984

  5. An unusual phenomenon of surface reaction observed during Ge overgrowth on Mn5Ge3/Ge(111) heterostructures

    NASA Astrophysics Data System (ADS)

    Dau, Minh-Tuan; Le Thanh, Vinh; Michez, Lisa A.; Petit, Matthieu; Le, Thi-Giang; Abbes, Omar; Spiesser, Aurélie; Ranguis, Alain

    2012-10-01

    The Mn5Ge3 compound, thanks to its room-temperature ferromagnetism, metallic character and ability to epitaxially grow on germanium, acts as a potential candidate for spin injection into group-IV semiconductors. Understanding and controlling Ge overgrowth behaviour on Mn5Ge3/Ge heterostructures represents a crucial step to realize Ge/Mn5Ge3/Ge multilayers for numerous spintronic applications. Here, we have combined structural and morphological characterizations with magnetic analyses to study the mechanisms of Ge overgrowth on epitaxial Mn5Ge3 layers in the temperature range of 450-550 °C. It is found that deposited Ge instantly reacts with Mn to form a Mn5Ge3 surface layer, which, acting as a surfactant, continuously floats upwards from the growing surface to a distance larger than 70 nm. New Ge layers are successively formed underneath, allowing such a floating Mn5Ge3 surface layer to be stabilized by epitaxy. These observations can be considered as a typical example in which the stabilization of metastable thin films by epitaxy can overcome thermodynamic equilibrium. We have also investigated the effect of carbon adsorption on the top of the Mn5Ge3 layer prior to Ge deposition to control the Mn:Ge reaction. It is shown that adsorbed carbon effectively reduces the out-diffusion of Mn from Mn5Ge3, allowing Ge layers to stack up on top of Mn5Ge3. However, at temperatures of 450-550 °C, carbon may react with Mn to form manganese carbides and the resulting Ge overlayers are found to change their orientation from the (111) plane to the (001) plane, which has a higher surface energy. Finally, a strategy to realize Ge/Mn5Ge3/Ge multilayers will be addressed.

  6. Zinc oxide based diluted magnetic semiconductor nanoparticles: Synthesis by laser ablation in liquids, microstructural and optical properties

    NASA Astrophysics Data System (ADS)

    Savchuk, Andriy I.; Perrone, Alessio; Stolyarchuk, Ihor D.; Savchuk, Oleksandr A.; Makoviy, Vitaliy V.; Smolinsky, Mykhailo M.; Shporta, Oleksandra A.

    2013-12-01

    Nanoparticles of ZnO and ZnO doped with transition metals (Mn, Co) were synthesized by laser ablation in liquid medium. Scanning electron microscopy (SEM) showed formation of nanostructures with different shapes. Atomic force microscopy (AFM) gives information about surface morphology of the formed nanostructures. Absorption edge of ZnO, ZnO:Mn and ZnO:Co colloidal nanoparticles exhibits blue shift due to confinement effect. In photoluminescence spectra three peaks are attributed to the band-edge transitions and defect states. The Faraday rotation in ZnO:Mn nanoparticles gives evidence for paramagnetic behavior at room temperature.

  7. High-contrast X-ray radiography using hybrid semiconductor pixel detectors with 1 mm thick Si sensor as a tool for monitoring liquids in natural building stones

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Slavikova, M.; Zemlicka, J.; Jakubek, J.; Kotlik, P.

    2014-07-01

    For the preservation of buildings and other cultural heritage, the application of various conservation products such as consolidants or water repellents is often used. X-ray radiography utilizing semiconductor particle-counting detectors stands out as a promising tool in research of consolidants inside natural building stones. However, a clear visualization of consolidation products is often accomplished by doping with a contrast agent, which presents a limitation. This approach causes a higher attenuation for X-rays, but also alters the penetration ability of the original consolidation product. In this contribution, we focus on the application of Medipix type detectors newly equipped with a 1 mm thick Si sensor. This thicker sensor has enhanced detection efficiency leading to extraordinary sensitivity for monitoring consolidants and liquids in natural building stones even without any contrast agent. Consequently, methods for the direct monitoring of organosilicon consolidants and dynamic visualization of the water uptake in the Opuka stone using high-contrast X-ray radiography are demonstrated. The presented work demonstrates a significant improvement in the monitoring sensitivity of X-ray radiography in stone consolidation studies and also shows advantages of this detector configuration for X-ray radiography in general.

  8. Studies of the n-GaAs/KOH-Se sub 2 sup 2 minus -Se sup 2 minus semiconductor/liquid junction

    SciTech Connect

    Tufts, B.J.; Abrahams, I.L.; Casagrande, L.G.; Lewis, N.S. )

    1989-04-20

    The current-voltage characteristics of the n-GaAs/KOH-Se{sub 2}{sup 2{minus}}-Se{sup 2{minus}} semiconductor/liquid junction have been determined for a variety of conditions, including changes in the majority carrier density, the minority carrier diffusion length, and the incident light intensity. These data provide an experimental test of previous digital simulation calculations and provide necessary data for use in further mechanistic studies of this system. Spectral response measurements have been performed to elucidate the anomalous increase in short circuit photocurrent density when the n-GaAs photoanodes, and we have observed solar simulated efficiencies in excess of 16% for Os{sup 3+}-treated n-GaAs photoanodes. Chemisorption of metal ions that yielded beneficial effects of n-GaAs photoanode performance also yielded increased charge-transfer rates at p-GaAs, n{sup +}-GaAs, and Sn-doped In{sub 2}O{sub 3} surfaces.

  9. Intense pulsed light induced crystallization of a liquid-crystalline polymer semiconductor for efficient production of flexible thin-film transistors.

    PubMed

    Yang, Hee Yeon; Park, Han-Wool; Kim, Soo Jin; Hong, Jae-Min; Kim, Tae Whan; Kim, Do Hwan; Lim, Jung Ah

    2016-02-14

    Here we demonstrated the split-second crystallization of a liquid-crystalline conjugated polymer semiconductor induced by irradiation with intense pulsed white light (IPWL) for the efficient improvement of electrical properties of flexible thin film transistors. A few seconds of IPWL irradiation of poly(didodecylquaterthiophene-alt-didodecylbithiazole) (PQTBTz-C12) thin films generated heat energy through the photo-thermal effect, leading to the crystallization of PQTBTz-C12 and formation of nodule-like nanostructures. The IPWL-induced crystallization of PQTBTz-C12 resulted in a threefold improvement in the field-effect mobility of thin film transistors compared to as-prepared devices. The conformational change of the PQTBTz-C12 chains was found to be strongly related to the irradiation fluence. As a proof-of-concept, the IPWL treatment was successfully applied to the PQTBTz-C12 layer in flexible transistors based on plastic substrates. The performance of these flexible devices was significantly improved after only 0.6 s of IPWL treatment, without deformation of the plastic substrate. PMID:26795202

  10. Facile fabrication of porous thin films of Bi2O3/Bi2S3 nanocomposite semiconductors at gas/liquid interface and their photoelectrochemical performances

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqing; Pu, Fang; Xia, Yue; Huang, Wei; Li, Zelin

    2014-04-01

    Porous thin films of Bi2O3/Bi2S3 nanocomposite semiconductors were prepared rapidly at gas/liquid interface for the first time by contacting an acidic Bi(NO3)3 solution with vapors from ammonia water and ammonium sulfide solution. Hydrolysis of Bi3+ into Bi2O3 nanoparticles (NPs) and their partial sulfurization into Bi2S3 occurred at/near the solution surface upon contacting the vapors of NH3 and H2S, respectively. Based on photoelectrochemical performances, the conditions were optimized for preparation of Bi2O3/Bi2S3 thin films by interfacial reactions and self-assembly of the in situ produced nanocomposites, including concentrations of Bi(NO3)3 and HNO3, vapor sources, contact manners and contact times. The porous thin film of Bi2O3/Bi2S3 prepared under optimized conditions showed better photoelectrochemical performance than the respective thin films of Bi2O3 and Bi2S3 and their some other composites.

  11. SEMICONDUCTOR DEVICES Prospects of a β-SiC based IMPATT oscillator for application in THz communication and growth of a β-SiC p—n junction on a Ge modified Si (100) substrate to realize THz IMPATTs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Moumita; Mazumder, Nilratan

    2010-12-01

    The prospects of a p+nn+ cubic silicon carbide (3C-SiC/β-SiC) based IMPATT diode as a potential solid-state terahertz source is studied for the first time through a modified generalized simulation scheme. The simulation predicts that the device is capable of generating an RF power output of 63.0 W at 0.33 THz with an efficiency of 13%. The effects of parasitic series resistance on the device performance and exploitable RF power level are further simulated. The studies clearly establish the potential of 3C-SiC as a base semiconductor material for a high-power THz IMPATT device. Based on the simulation results, an attempt has been made to fabricate β-SiC based IMPATT devices in the THz region. Single crystalline, epitaxial 3C-SiC films are deposited on silicon (Si) (100) substrates by rapid thermal chemical vapour deposition (RTPCVD) at a temperature as low as 800 °C using a single precursor methylsilane, which contains Si and C atoms in the same molecule. No initial surface carbonization step is required in this method. A p—n junction with an n-type doping concentration of 4 × 1024 m-3 (which is similar to the simulated design data) has been grown successfully and the characterization of the grown 3C-SiC film is reported in this paper. It is found that the inclusion of Ge improves the crystal quality and reduces the surface roughness.

  12. Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability.

    PubMed

    Sivaram, Saujan V; Shin, Naechul; Chou, Li-Wei; Filler, Michael A

    2015-08-12

    Surface adsorbates are well-established choreographers of material synthesis, but the presence and impact of these short-lived species on semiconductor nanowire growth are largely unknown. Here, we use infrared spectroscopy to directly observe surface adsorbates, hydrogen atoms and methyl groups, chemisorbed to the nanowire sidewall and show they are essential for the stable growth of Ge nanowires via the vapor-liquid-solid mechanism. We quantitatively determine the surface coverage of hydrogen atoms during nanowire growth by comparing ν(Ge-H) absorption bands from operando measurements (i.e., during growth) to those after saturating the nanowire sidewall with hydrogen atoms. This method provides sub-monolayer chemical information at relevant reaction conditions while accounting for the heterogeneity of sidewall surface sites and their evolution during elongation. Our findings demonstrate that changes to surface bonding are critical to understand Ge nanowire synthesis and provide new guidelines for rationally selecting catalysts, forming heterostructures, and controlling dopant profiles. PMID:26147949

  13. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  14. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  15. Mn segregation in Ge/Mn5Ge3 heterostructures: The role of surface carbon adsorption

    NASA Astrophysics Data System (ADS)

    Dau, Minh-Tuan; Thanh, Vinh Le; Le, Thi-Giang; Spiesser, Aurélie; Petit, Mathieu; Michez, Lisa A.; Daineche, Rachid

    2011-10-01

    Mn5Ge3 compound, with its room-temperature ferromagnetism and possibility to epitaxially grow on Ge, acts as a potential spin injector into group-IV semiconductors. However, the realization of Ge/Mn5Ge3 multilayers is highly hampered by Mn segregation toward the Ge growing surface. Here, we show that adsorption of some monolayers of carbon on top of the Mn5Ge3 surface prior to Ge deposition allows to greatly reduce Mn segregation. In addition, a fraction of deposited carbon can diffuse down to the underneath Mn5Ge3 layers, resulting in an enhancement of the Curie temperature up to ˜360 K. The obtained results will be discussed in terms of the formation of a diffusion barrier by filling interstitial sites of Mn5Ge3 by carbon.

  16. Semiconductor processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The primary thrust of the semiconductor processing is outlined. The purpose is to (1) advance the theoretical basis for bulk growth of elemental and compound semiconductors in single crystal form, and (2) to develop a new experimental approaches by which semiconductor matrices with significantly improved crystalline and chemical perfection can be obtained. The most advanced approaches to silicon crystal growth is studied. The projected research expansion, directed toward the capability of growth of 4 inch diameter silicon crystals was implemented. Both intra and interdepartmental programs are established in the areas of process metallurgy, heat transfer, mass transfer, and systems control. Solutal convection in melt growth systems is also studied.

  17. Survey of cryogenic semiconductor devices

    SciTech Connect

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  18. Size, shape, and ordering of SiGe/Si(001) islands grown by means of liquid phase epitaxy under far-nonequilibrium growth conditions

    SciTech Connect

    Hanke, M.; Boeck, T.; Gerlitzke, A.-K.; Syrowatka, F.; Heyroth, F.; Koehler, R.

    2005-04-04

    Applying scanning electron microscopy, we have studied the evolution of shape and lateral positional correlation of Si{sub 1-x}Ge{sub x}/Si(001) Stranski-Krastanov islands grown by means of liquid phase epitaxy (LPE). However, in contrast to conventional near-equilibrium LPE, a distinctly higher cooling rate of 10 K/min ensures extremly nonequilibrium growth conditions. The facet inclination of subsequent island stages decreases from nearly vertical sidewalls toward {l_brace}111{r_brace}- and {l_brace}101{r_brace}-type facets. Energy dispersive x-ray microanalysis yields a size-independent germanium content of 8.9% within islands between 760 and 1700 nm base width which is--by more than a factor of 2--smaller than islands of the same concentration grown in a near-equilibrium LPE process. Square-like formations of subsequently smaller islands around a large central island indicate only next to island interactions during the lateral self-assembling.

  19. Isotopically engineered semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1995-04-01

    Scientific interest, technological promise, and increased availability of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This review of mostly recent activities begins with an introduction to some past classical experiments which have been performed on isotopically controlled semiconductors. A review of the natural isotopic composition of the relevant elements follows. Some materials aspects resulting in part from the high costs of enriched isotopes are discussed next. Raman spectroscopy studies with a number of isotopically pure and deliberately mixed Ge bulk crystals show that the Brillouin-zone-center optical phonons are not localized. Their lifetime is almost independent of isotopic disorder, leading to homogeneous Raman line broadening. Studies with short period isotope superlattices consisting of alternating layers of n atomic planes of 70Ge and 74Ge reveal a host of zone-center phonons due to Brillouin-zone folding. At n≳40 one observes two phonon lines at frequencies corresponding to the bulk values of the two isotopes. In natural diamond, isotope scattering of the low-energy phonons, which are responsible for the thermal conductivity, is very strongly affected by small isotope disorder. Isotopically pure 12C diamond crystals exhibit thermal conductivities as high as 410 W cm-1 K-1 at 104 K, leading to projected values of over 2000 W cm-1 K-1 near 80 K. The changes in phonon properties with isotopic composition also weakly affect the electronic band structures and the lattice constants. The latter isotope dependence is most relevant for future standards of length based on crystal lattice constants. Capture of thermal neutrons by isotope nuclei followed by nuclear decay produces new elements, resulting in a very large number of possibilities for isotope selective doping of semiconductors. This neutron transmutation of isotope nuclei, already used

  20. New developments in nanoparticle-liquid crystal composites: from magic-sized semiconductor nanoclusters to alignment pattern formation via nanoparticle stenciling

    NASA Astrophysics Data System (ADS)

    Mirzaei, Javad; Sawatzky, Ryan; Sharma, Anshul; Urbanski, Martin; Yu, Kui; Kitzerow, Heinz-S.; Hegmann, Torsten

    2012-03-01

    We here report on the alignment and electro-optic properties of nematic liquid crystals (LCs) either containing nanoscale particles as additives or featuring particles patterned on substrates. The investigated nematic LCs or LC dispersions are doped or in contact with magic-sized semiconductor CdSe nanocrystals (MSNCs) or silane- and alkylthiol monolayercapped gold nanoparticles. Three single-sized CdSe quantum dots capped with myristic acid exhibiting bright bandgap photoluminescence (PL) at λmax ~ 463 nm were tested as additives. Two of the quantum dots only vary in the amount of defects as indicated by different bandgap and deep trap PL. The third MSNC sample is compositionally different, doped with Zn. These MSNCs with almost identical sizes were doped at different concentrations (1-5 wt%) into the nematic phase of the 2-phenylpyrimidine-based LC1. Only the Zn-doped MSNCs showed the formation of birefringent stripes surrounded by areas of homeotropic alignment between plain glass slides at all concentrations as observed for many other nanoparticle-doped nematic LCs reported earlier by our group. In polyimide-coated glass slides favoring planar orientation of the nematic director, planar alignment was observed. Similarly, siloxane-coated gold nanoparticle additives with narrow size distribution, but larger size, show homeotropic alignment between plain glass and planar alignment in rubbed polyimide-coated cells. Surprisingly then, we succeeded in creating alignment patterns using smaller, ~2 nm alkylthiol-capped gold nanoparticles using a process called stenciling that allowed us to generate patterns of homeotropic alignment in a continuum of planar alignment of the nematic LC. Finally, electro-optic investigations on some of these samples revealed that only the Zn-doped magic-sized MSNCs significantly lower the dielectric anisotropy as well as the splay elastic constant of the nematic host, despite identical size and surface functionality of the three used

  1. Recent developments in semiconductor gamma-ray detectors

    SciTech Connect

    Luke, Paul N.; Amman, Mark; Tindall, Craig; Lee, Julie S.

    2003-10-28

    The successful development of lithium-drifted Ge detectors in the 1960's marked the beginning of the significant use of semiconductor crystals for direct detection and spectroscopy of gamma rays. In the 1970's, high-purity Ge became available, which enabled the production of complex detectors and multi-detector systems. In the following decades, the technology of semiconductor gamma-ray detectors continued to advance, with significant developments not only in Ge detectors but also in Si detectors and room-temperature compound-semiconductor detectors. In recent years, our group at Lawrence Berkeley National Laboratory has developed a variety of gamma ray detectors based on these semiconductor materials. Examples include Ge strip detectors, lithium-drifted Si strip detectors, and coplanar-grid CdZnTe detectors. These advances provide new capabilities in the measurement of gamma rays, such as the ability to perform imaging and the realization of highly compact spectroscopy systems.

  2. Tracks and voids in amorphous Ge induced by swift heavy-ion irradiation.

    PubMed

    Ridgway, M C; Bierschenk, T; Giulian, R; Afra, B; Rodriguez, M D; Araujo, L L; Byrne, A P; Kirby, N; Pakarinen, O H; Djurabekova, F; Nordlund, K; Schleberger, M; Osmani, O; Medvedev, N; Rethfeld, B; Kluth, P

    2013-06-14

    Ion tracks formed in amorphous Ge by swift heavy-ion irradiation have been identified with experiment and modeling to yield unambiguous evidence of tracks in an amorphous semiconductor. Their underdense core and overdense shell result from quenched-in radially outward material flow. Following a solid-to-liquid phase transformation, the volume contraction necessary to accommodate the high-density molten phase produces voids, potentially the precursors to porosity, along the ion direction. Their bow-tie shape, reproduced by simulation, results from radially inward resolidification. PMID:25165936

  3. Comparison of EL emitted by LEDs on Si substrates containing Ge and Ge/GeSn MQW as active layers

    NASA Astrophysics Data System (ADS)

    Schwartz, B.; Arguirov, T.; Kittler, M.; Oehme, M.; Kostecki, K.; Kasper, E.; Schulze, J.

    2015-02-01

    We analyzed Ge- and GeSn/Ge multiple quantum well (MQW) light emitting diodes (LEDs). The structures were grown by molecular beam epitaxy (MBE) on Si. In the Ge LEDs the active layer was 300 nm thick. Sb doping was ranging from 1×1018 to 1×1020 cm-3. An unintentionally doped Ge-layer served as reference. The LEDs with the MQWs consist of ten alternating GeSn/Ge-layers. The Ge-layers were 10 nm thick and the GeSn-layers were grown with 6 % Sn and thicknesses between 6 and 12 nm. The top contact of all LEDs was identical. Accordingly, the light extraction is comparable. The electroluminescence (EL) analysis was performed under forward bias at different currents. Sample temperatures between <300 K and 80 K were studied. For the reference LED the direct transition at 0.8 eV dominates. With increasing current the peak is slightly redshifted due to Joule heating. Sb doping of the active Ge-layer affects the intensity and at 3×1019 cm-3 the strongest emission appears. It is ~4 times higher as compared to the reference. Moreover a redshift of the peak position is caused by bandgap narrowing. The LEDs with undoped GeSn/Ge-MQWs as active layer show a very broad luminescence band with a peak around 0.65 eV, pointing to a dominance of the GeSn-layers. The light emission intensity is at least 17 times stronger as compared to the reference Ge-LED. Due to incorporation of Sn in the MQWs the active layer should approach to a direct semiconductor. In indirect Si and Ge we observed an increase of intensity with increasing temperature, whereas the intensity of GeSn/Ge-MQWs was much less affected. But a deconvolution of the spectra revealed that the energy of indirect transition in the wells is still below the one of the direct transition.

  4. Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Fan, Qinbai; And Others

    1995-01-01

    Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)

  5. Nanochannel-Directed Growth of One-Dimensional Multi-Segment Heterojunctions of Metallic Au1-xGex and Semiconducting Ge

    SciTech Connect

    Li, Xiangdong; Meng, Guowen; Qin, Shengyong; Xu, Qiaoling; Chu, Zhaoqin; Zhu, Xiaoguang; Kong, Mingguang; Li, An-Ping

    2012-01-01

    We report on the synthesis of multi-segment nanowire (NW) junctions of Au{sub 1-x}Ge{sub x} and Ge inside the nanochannels of porous anodic aluminum oxide template. The one-dimensional heterostructures are grown with a low-temperature chemical vapor deposition process, assisted by electrodeposited Au nanowires (AuNWs). The Au-catalyzed vapor-liquid-solid growth process occurs simultaneously in multiple locations along the nanochannel, which leads to multi-segment Au{sub 1-x}Ge{sub x}/Ge heterojunctions. The structures of the as-grown hybrid NWs, analyzed by using transmission electron microscopy and energy-dispersive X-ray spectroscopy elemental mapping, show clear compositional modulation with variable modulation period and controllable junction numbers. Remarkably, both GeNW and Au{sub 1-x}Ge{sub x}NW segments are single crystalline with abrupt interfaces and good crystallographic coherences. The electronic and transport properties of individual NW junctions are measured by using a multi-probe scanning tunneling microscope, which confirms the semiconducting nature of Ge segments and the metallic behavior of Au{sub 1-x}Ge{sub x} segments, respectively. The high yield of multiple segment NW junctions of a metal-semiconductor can facilitate the applications in nanoelectronics and optoelectronics that harness multiple functionalities of heterointerfaces.

  6. Fabrication of normally-off AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors by photo-electrochemical gate recess etching in ionic liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Zhili; Qin, Shuangjiao; Fu, Kai; Yu, Guohao; Li, Weiyi; Zhang, Xiaodong; Sun, Shichuang; Song, Liang; Li, Shuiming; Hao, Ronghui; Fan, Yaming; Sun, Qian; Pan, Gebo; Cai, Yong; Zhang, Baoshun

    2016-08-01

    We characterized an ionic liquid (1-butyl-3-methylimidazolium nitrate, C8H15N3O3) as a photo-electrochemical etchant for fabricating normally-off AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs). Using the ionic liquid, we achieved an etching rate of ∼2.9 nm/min, which is sufficiently low to facilitate good etching control. The normally-off AlGaN/GaN MIS-HEMT was fabricated with an etching time of 6 min, with the 20 nm low-pressure chemical vapor deposition (LPCVD) silicon nitride (Si3N4) gate dielectric exhibiting a threshold voltage shift from ‑10 to 1.2 V, a maximum drain current of more than 426 mA/mm, and a breakdown voltage of 582 V.

  7. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  8. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  9. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  10. Selective Passivation of GeO2/Ge Interface Defects in Atomic Layer Deposited High-k MOS Structures.

    PubMed

    Zhang, Liangliang; Li, Huanglong; Guo, Yuzheng; Tang, Kechao; Woicik, Joseph; Robertson, John; McIntyre, Paul C

    2015-09-23

    Effective passivation of interface defects in high-k metal oxide/Ge gate stacks is a longstanding goal of research on germanium metal-oxide-semiconductor devices. In this paper, we use photoelectron spectroscopy to probe the formation of a GeO2 interface layer between an atomic layer deposited Al2O3 gate dielectric and a Ge(100) substrate during forming gas anneal (FGA). Capacitance- and conductance-voltage data were used to extract the interface trap density energy distribution. These results show selective passivation of interface traps with energies in the top half of the Ge band gap under annealing conditions that produce GeO2 interface layer growth. First-principles modeling of Ge/GeO2 and Ge/GeO/GeO2 structures and calculations of the resulting partial density of states (PDOS) are in good agreement with the experiment results. PMID:26334784

  11. Formation and Stabilization of Single-Crystalline Metastable AuGe Phases in Ge Nanowires

    SciTech Connect

    Sutter, E.; Sutter, P.

    2011-07-22

    We use in situ observations by variable temperature transmission electron microscopy on AuGe alloy drops at the tips of Ge nanowires (NWs) with systematically varying composition to demonstrate the controlled formation of metastable solid phases integrated in NWs. The process, which operates in the regime of vapor-liquid-solid growth, involves a size-dependent depression of the alloy liquidus at the nanoscale that leads to extremely Ge-rich AuGe melts at low temperatures. During slow cooling, these liquid AuGe alloy drops show pronounced departures from equilibrium, i.e., a frustrated phase separation of Ge into the adjacent solid NW, and ultimately crystallize as single-crystalline segments of metastable {gamma}-AuGe. Our findings demonstrate a general avenue for synthesizing NW heterostructures containing stable and metastable solid phases, applicable to a wide range of materials of which NWs form by the vapor-liquid-solid method.

  12. Hydrogen on semiconductor surfaces

    SciTech Connect

    Schaefer, J.A.; Balster, T.; Polyakov, V.; Rossow, U.; Sloboshanin, S.; Starke, U.; Tautz, F.S.

    1998-12-31

    The authors review structural and electronic aspects of the reaction of hydrogen with semiconductor surfaces. Among others, they address the Si(100), Ge{sub x}Si{sub 1{minus}x}(100), GaAs(100), InP(100), SiC(100), SiC(0001) and SiC(000{bar 1}) surfaces. It is demonstrated that high resolution electron energy loss spectroscopy (HREELS) in conjunction with a number of other surface sensitive techniques like low energy electron diffraction (LEED) and photoelectron spectroscopy (XPS/UPS) can yield important information about the surface atomic structure, the effects of hydrogen passivation and etching and on electronic properties of the surfaces. 67 refs., 7 figs., 3 tabs.

  13. Transport Phenomena in Liquid Phase Diffusion Growth of Silicon Germanium

    NASA Astrophysics Data System (ADS)

    Armour, Neil Alexander

    Silicon Germanium, SiGe, is an important emerging semiconductor material. In order to optimize growth techniques for SiGe production, such as Liquid Phase Diffusion, LPD, or Melt Replenishment Czochralski, a good understanding of the transport phenomena in the melt is required. In the context of the Liquid Phase Diffusion growth technique, the transport phenomena of silicon in a silicon-germanium melt has been explored. Experiments isolating the dissolution and transport of silicon into a germanium melt have been conducted under a variety of flow conditions. Preliminary modeling of these experiments has also been conducted and agreement with experiments has been shown. In addition, full LPD experiments have also been conducted under varying flow conditions. Altered flow conditions were achieved through the application of a variety of magnetic fields. Through the experimental and modeling work better understanding of the transport mechanisms at work in a silicon-germanium melt has been achieved.

  14. Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing

    SciTech Connect

    Tonkikh, Alexander A.; Eisenschmidt, Christian; Schmidt, Georg; Talalaev, Vadim G.; Zakharov, Nikolay D.; Werner, Peter; Schilling, Joerg

    2013-07-15

    A study of the bandgap character of compressively strained GeSn{sub 0.060-0.091}/Ge(001) quantum wells grown by molecular beam epitaxy is reported. The built-in strain in GeSn wells leads to an increased separation between L and {Gamma} conduction band minima. The prevalent indirect interband transitions in GeSn were probed by photoluminescence spectroscopy. As a result we could simulate the L-valley bowing parameter in GeSn alloys, b{sub L} = 0.80 {+-} 0.06 eV at 10 K. From this we conclude that even compressively strained GeSn/Ge(001) alloys could become direct band gap semiconductors at the Sn-fraction higher than 17.0 at. %.

  15. Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing

    NASA Astrophysics Data System (ADS)

    Tonkikh, Alexander A.; Eisenschmidt, Christian; Talalaev, Vadim G.; Zakharov, Nikolay D.; Schilling, Joerg; Schmidt, Georg; Werner, Peter

    2013-07-01

    A study of the bandgap character of compressively strained GeSn0.060-0.091/Ge(001) quantum wells grown by molecular beam epitaxy is reported. The built-in strain in GeSn wells leads to an increased separation between L and Γ conduction band minima. The prevalent indirect interband transitions in GeSn were probed by photoluminescence spectroscopy. As a result we could simulate the L-valley bowing parameter in GeSn alloys, bL = 0.80 ± 0.06 eV at 10 K. From this we conclude that even compressively strained GeSn/Ge(001) alloys could become direct band gap semiconductors at the Sn-fraction higher than 17.0 at. %.

  16. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    SciTech Connect

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.

  17. Axial Ge/Si nanowire heterostructure tunnel FETs

    SciTech Connect

    Picraux, Sanuel T; Daych, Shadi A

    2010-01-01

    The vapor-liquid-solid (VLS) growth of semiconductor nanowires allows doping and composition modulation along their axis and the realization of axial 1 D heterostructures. This provides additional flexibility in energy band-edge engineering along the transport direction which is difficult to attain by planar materials growth and processing techniques. We report here on the design, growth, fabrication, and characterization of asymmetric heterostructure tunnel field-effect transistors (HTFETs) based on 100% compositionally modulated Si/Ge axial NWs for high on-current operation and low ambipolar transport behavior. We discuss the optimization of band-offsets and Schottky barrier heights for high performance HTFETs and issues surrounding their experimental realization. Our HTFET devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a measured current drive exceeding 100 {mu}A/{mu}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios.

  18. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires.

    PubMed

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A; Holmes, Justin D

    2016-01-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth. PMID:27095012

  19. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires

    NASA Astrophysics Data System (ADS)

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A.; Holmes, Justin D.

    2016-04-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

  20. Semiconductor Cubing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Through Goddard Space Flight Center and Jet Propulsion Laboratory Small Business Innovation Research contracts, Irvine Sensors developed a three-dimensional memory system for a spaceborne data recorder and other applications for NASA. From these contracts, the company created the Memory Short Stack product, a patented technology for stacking integrated circuits that offers higher processing speeds and levels of integration, and lower power requirements. The product is a three-dimensional semiconductor package in which dozens of integrated circuits are stacked upon each other to form a cube. The technology is being used in various computer and telecommunications applications.

  1. Optimization and Design of 2d Honeycomb Lattice Photonic Crystal Modulated by Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Guo, Caihong; Zheng, Jihong; Gui, Kun; Zhang, Menghua; Zhuang, Songlin

    2013-12-01

    Photonic crystals (PCs) with infiltrating liquid crystals (LCs) have many potential applications because of their ability to continuously modulate the band-gaps. Using the plane-wave expansion method (PWM), we simulate the band-gap distribution of 2D honeycomb lattice PC with different pillar structures (circle, hexagonal and square pillar) and with different filling ratios, considering both when the LC is used as filling pillar material and semiconductors (Si, Ge) are used in the substrate, and when the semiconductors (Si, Ge) are pillar material and the LC is the substrate. Results show that unlike LC-based triangle lattice PC, optimized honeycomb lattice PC has the ability to generate absolute photonic band-gaps for fabricating optical switches. We provide optimization parameters for LC infiltrating honeycomb lattice PC structure based on simulation results and analysis.

  2. Chemical pressure effects on magnetism in the quantum spin liquid candidates Yb2X2O7 (X =Sn, Ti, Ge)

    NASA Astrophysics Data System (ADS)

    Dun, Z. L.; Lee, M.; Choi, E. S.; Hallas, A. M.; Wiebe, C. R.; Gardner, J. S.; Arrighi, E.; Freitas, R. S.; Arevalo-Lopez, A. M.; Attfield, J. P.; Zhou, H. D.; Cheng, J. G.

    2014-02-01

    The linear and nonlinear ac susceptibility measurements of Yb-pyrochlores, Yb2X2O7 (X =Sn, Ti, and Ge), show transitions with a ferromagnetic nature at 0.13 and 0.25 K for Yb2Sn2O7 and Yb2Ti2O7, respectively, and an antiferromagnetic ordering at 0.62 K for Yb2Ge2O7. These systematical results (i) provided information about the nature of the unconventional magnetic ground state in Yb2Ti2O7; (ii) realized a distinct antiferromagnetic ordering state in Yb2Ge2O7; and (iii) demonstrated that the application of chemical pressure through the series of Yb-pyrochlores can efficiently perturb the fragile quantum spin fluctuations of the Yb3+ ions and lead to very different magnetic ground states.

  3. Thermophysical Property Measurements of Molten Semiconductors in 1-g and Reduced-g Condition

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1999-01-01

    Understanding and controlling the formation kinetics of varieties of crystal imperfections such as point defects, non uniform distribution of doping atoms, and impurity atoms in growing crystals are very important. Theoretical (numerical) modeling of the crystal growth process is an essential step to achieving these objectives. In order to obtain reliable modeling results, input parameters, i.e. various thermophysical parameters, must be accurate. The importance of accurate thermophysical properties of semiconductors in crystal growth cannot be overly emphasized. The total hemispherical emissivity, for instance, has a dramatic impact on the thermal environment. It determines the radiative emission from the surface of the melt which determines to a large extent the profile of the solidified crystal. In order to understand the convection and the turbulence in a melt, viscosity becomes an important parameter. The liquid surface tension determines the shape of the liquid-atmosphere interface near the solid-liquid-atmosphere triple point. Currently used values for these parameters are rather inaccurate, and this program intends to provide more reliable measurements of these thermophysical properties. Thus, the objective of this program is in the accurate measurements of various thermophysical properties which can be reliably used in the modeling of various crystal growth processes. In this program, thermophysical properties of molten semiconductors, such as Si, Ge, Si-Ge, and InSb will be measured as a function of temperature using the High Temperature Electrostatic Levitator at JPL. Each material will be doped by different kinds of impurities at various doping levels. Thermophysical properties which will be measured include: density, thermal expansion coefficient, surface tension, viscosity, specific heat, hemispherical total emissivity, and perhaps electrical and thermal conductivities. Many molten semiconductors are chemically reactive with crucibles. As a result

  4. Robustness of Sn precipitation during thermal oxidation of Ge1-xSnx on Ge(001)

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Asano, Takanori; Taoka, Noriyuki; Sakashita, Mitsuo; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2014-08-01

    The thermal robustness of Sn segregation and precipitation in epitaxial Ge1-xSnx layers on Ge(001) substrates with a Sn content greater than the equilibrium solubility limit has been investigated for applications of Ge1-xSnx in high-performance metal-oxide-semiconductor field-effect transistors (MOSFETs). Sn segregation and precipitation occur on the Ge1-xSnx surface after epitaxial growth of the Ge1-xSnx layer at 150 °C. After the thermal oxidation of the Ge1-xSnx layer below 500 °C, there are no significant decreases in the average Sn content in the Ge1-xSnx layer and no additional Sn segregation on the Ge1-xSnx surface. However, Sn precipitation occurs at the Ge1-xSnx surface during the thermal oxidation of the Ge1-xSnx layer with an average Sn content as high as 8.7% at 600 °C, causing a decrease in the Sn content in the Ge1-xSnx layer. The Sn content in the Ge1-xSnx oxide is 1.5 times greater than that observed near the Ge1-xSnx surface for the sample with a Sn content of 8.7% after the thermal oxidation at 400 to 500 °C. The capacitance-voltage characteristics of the Al/Al2O3/Ge1-xSnx/Ge MOS capacitors treated with thermal oxidation at 400 °C indicate that the slow state density increases with the Sn content. Meanwhile, the small interface state density could be achieved via thermal oxidation of the Ge1-xSnx layer, even with a high Sn content.

  5. Hypersonic modes in nanophononic semiconductors.

    PubMed

    Hepplestone, S P; Srivastava, G P

    2008-09-01

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal. PMID:18851224

  6. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  7. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  8. Mechanistic aspects of photoconversion at semiconductor-liquid junctions and in facilitated transport membranes. Final report, March 15, 1994--March 14, 1998

    SciTech Connect

    Koval, C.A.

    1998-06-01

    A major portion of the research completed during this funding period involved the use of rotating ring-disk electrochemical techniques in conjunction with carefully chosen solution redox systems to investigate hot electron transfer reactions at the semiconductor electrolyte interface. This paper cover the following topics: photoreduction reactions at GaAs/AlGaAs superlattice electrodes; photoelectrochemistry at GaInP{sub 2} capped p-GaAs electrodes; further investigation of p-InP photocathodes; rotating ring disk photoelectrochemistry at TiO{sub 2} films; and photomodulation of interfacial mass transport rates.

  9. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  10. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  11. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  12. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  13. Thermal stability and radiation resistance of tin valent states in the structure of the (As{sub 2}Se{sub 3}){sub 1-z}(SnSe){sub z-x}(GeSe){sub x} semiconductor glasses

    SciTech Connect

    Bordovskii, G. A.; Kastro, R. A.; Marchenko, A. V.; Nemov, S. A.; Seregin, P. P.

    2007-12-15

    The ratio between the content of bivalent and tetravalent tin atoms in the (As{sub 2}Se{sub 3}){sub 1-z}(SnSe){sub z-x}(GeSe){sub x} glasses depends on the rate of quenching of the alloy and on its temperature. Irradiation of these glasses with {gamma}-ray photons brings about a partial oxidation of bivalent tin with formation of amorphous (finely divided) SnO{sub 2} phase blocked by the glass, so that the physicochemical properties of the glasses (density, microhardness, glassformation temperature, and the electrical-conductivity activation energy) are virtually unaffected by irradiation.

  14. Effect of imidazolium-based ionic liquids on the nanoscale morphology of CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) metal-organic semiconductors.

    PubMed

    Pearson, Andrew; O'Mullane, Anthony P; Bhargava, Suresh K; Bansal, Vipul

    2013-01-01

    We demonstrate for the first time the ionic-liquid-mediated synthesis of nanostructured CuTCNQ by the simple immersion of copper in a solution of TCNQ where the viscosity of the medium significantly impacts the corrosion-crystallization process and the final morphology of the material. PMID:23244737

  15. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  16. Photocatalysis Using Semiconductor Nanoclusters

    SciTech Connect

    Thurston, T.R.; Wilcoxon,J.P.

    1999-01-21

    We report on experiments using nanosize MoS{sub 2} to photo-oxidize organic pollutants in water using visible light as the energy source. We have demonstrated that we can vary the redox potentials and absorbance characteristics of these small semiconductors by adjusting their size, and our studies of the photooxidation of organic molecules have revealed that the rate of oxidation increases with increasing bandgap (i.e. more positive valence band and more negative conduction band potentials). Because these photocatalysis reactions can be performed with the nanoclusters fully dispersed and stable in solution, liquid chromatography can be used to determine both the intermediate reaction products and the state of the nanoclusters during the reaction. We have demonstrated that the MoS{sub 2} nanoclusters remain unchanged during the photooxidation process by this technique. We also report on studies of MoS{sub 2} nanoclusters deposited on TiO{sub 2} powder.

  17. Kesterite Cu2Zn(Sn,Ge)(S,Se)4 thin film with controlled Ge-doping for photovoltaic application.

    PubMed

    Zhao, Wangen; Pan, Daocheng; Liu, Shengzhong Frank

    2016-05-21

    Cu2ZnSn(S,Se)4 (CZTSSe) semiconductors have been a focus of extensive research effort owing to low-toxicity, high abundance and low material cost. Yet, the CZTSSe thin film solar cell has a low open-circuit voltage value that presents challenges. Herein, using GeSe2 as a new Ge source material, we have achieved a wider band gap CZTSSe-based semiconductor absorber layer with its band-gap controlled by adjusting the ratio of SnS2 : GeSe2 used. In addition, the Cu2Zn(Sn,Ge)(S,Se)4 thin films were prepared with optimal Ge doping (30%) and solar cells were fabricated to attain a respectable power conversion efficiency of 4.8% under 1.5 AM with an active area of 0.19 cm(2) without an anti-reflection layer. PMID:27121893

  18. Vibrational Properties of Ge Nanocrystals Determined by EXAFS

    SciTech Connect

    Araujo, L. L.; Kluth, P.; Ridgway, M. C.; Azevedo, G. de M.

    2007-02-02

    The vibrational properties of Ge nanocrystals (NCs) produced by ion implantation in SiO2 followed by thermal annealing were determined from temperature dependent Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy measurements. Using a correlated anharmonic Einstein model and thermodynamic perturbation theory it was possible to extract information about thermal and static disorder, thermal expansion and anharmonicity effects for the Ge NCs. Comparison with results for bulk crystalline and amorphous Ge indicates that the Ge NCs bonds are stiffer than those of both bulk phases of Ge. Also, the values of the anharmonic linear thermal expansion and the thermal expansion coefficient obtained for the Ge NCs were considerably smaller those for bulk crystalline Ge. Similar trends are reported in the literature for other semiconductor NC systems. They suggest that the increased surface to volume ratio of nanocrystals and the presence of the surrounding SiO2 matrix might be responsible for the different vibrational properties of the nanocrystal phase.

  19. Band alignment at interfaces of amorphous Al{sub 2}O{sub 3} with Ge{sub 1−x}Sn{sub x}- and strained Ge-based channels

    SciTech Connect

    Chou, H.-Y.; Afanas'ev, V. V. Houssa, M.; Stesmans, A.; Vincent, B.; Gencarelli, F.; Shimura, Y.; Merckling, C.; Loo, R.; Nakatsuka, O.; Zaima, S.

    2014-05-19

    Spectroscopy of internal photoemission of electrons from Ge and Ge{sub 1−x}Sn{sub x} (x ≤ 0.08) alloys into amorphous Al{sub 2}O{sub 3} is used to evaluate the energy of the semiconductor valence band top. It is found that in Ge and Ge{sub 1−x}Sn{sub x} the valence bands are aligned within the measurement accuracy (±0.05 eV) irrespective of the strain imposed on the semiconductor or by the kind of passivating inter-layer applied between the semiconductor and alumina. This indicates that the Ge{sub 1−x}Sn{sub x}-stressor approach may be useful for strain engineering in p-channel Ge metal-oxide-semiconductor transistors.

  20. Reduction of Schottky barrier height at metal/n-Ge interface by introducing an ultra-high Sn content Ge1-xSnx interlayer

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Nakatsuka, Osamu; Shibayama, Shigehisa; Sakashita, Mitsuo; Takeuchi, Wakana; Kurosawa, Masashi; Zaima, Shigeaki

    2015-11-01

    We investigated the impact of introducing an ultra-high Sn content Ge1-xSnx interlayer on the electrical properties at the metal/Ge interface. We achieved epitaxial growth of a Ge1-xSnx thin layer with an ultra-high substitutional Sn content of up to 46% on a Ge(001) substrate by considering the misfit strain between Ge1-xSnx and Ge. From the current-voltage characteristics of Al/Ge1-xSnx/n-Ge Schottky diodes, we found an increase in the forward current density of the thermionic emission current with increasing Sn content in the Ge1-xSnx interlayer. The Schottky barrier height estimated in Al/Ge1-xSnx/n-Ge diodes decreases to 0.49 eV with an increase in the Sn content up to 46% of the Ge1-xSnx interlayer. The reduction of the barrier height may be due to the shift of the Fermi level pinning position at the metal/Ge interface with a Ge1-xSnx interlayer whose valence band edge is higher than that of Ge. This result enables the effective reduction of the contact resistivity by introducing a group-IV semiconductor alloy interlayer of Ge1-xSnx into the metal/n-Ge interface.

  1. Epitaxial Electronic Oxides on Semiconductors Using Pulsed-Laser Deposition

    SciTech Connect

    Norton, D.P.; Budai, J.D.; Chisholm, M.F.

    1999-12-01

    We describe the growth and properties of epitaxial (OO1) CeO{sub 2} on a (001) Ge surface using a hydrogen-assisted pulsed-laser deposition method. Hydrogen gas is introduced during film growth to eliminate the presence of the GeOs from the semiconductor surface during the initial nucleation of the metal oxide film. The hydrogen partial pressure and substrate temperature are selected to be sufficiently high such that the germanium native oxides are thermodynamically unstable. The Gibbs free energy of CeO{sub 2} is larger in magnitude than that of the Ge native oxides, making it more favorable for the metal oxide to reside at the interface in comparison to the native Ge oxides. By satisfying these criteria. the metal oxide/semiconductor interface is shown to be atomically abrupt with no native oxide present. Preliminary structural and electrical properties are reported.

  2. Interfacial effects on the optical behavior of Ge:ITO and Ge:ZnO nanocomposite films.

    PubMed

    Shih, Grace H; Allen, Cary G; Potter, B G

    2012-02-24

    Nanophase semiconductors are of interest for their unique, size-tunable solar spectral absorption characteristics as well as their potential to contribute to the improved energy conversion efficiency of photovoltaics (PV). Embedding these nanoparticles within electrically active transparent conductive oxides (TCO) can also provide an opportunity for enhanced, long-range carrier transport. However, differences in the atomic and electronic structure, dielectric behavior, and chemistry between the matrix and semiconductor phases highlight the influence of interfacial effects on the optical absorption properties of the composite. In this work, nanocomposites of Ge:indium tin oxide (Ge:ITO) and Ge:ZnO were fabricated with sequential RF-magnetron sputtering and annealed at temperatures from 310 to 550 °C to investigate the impact of matrix identity on this interface and its contribution to nanostructure-mediated optical absorption. Transmission electron microscopy showed a decrease in Ge nanocrystal size relative to the initial semiconductor domain size in both matrices that was correlated with an increase in absorption onset energy after annealing. The effect was particularly pronounced in Ge:ITO composites in which Raman spectroscopy indicated the presence of germanium oxide at the semiconductor-ITO interface. These results support the primary contribution of carrier confinement in the Ge nanophase to the shifts in absorption onset energies observed. PMID:22261039

  3. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  4. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  5. Engineering optical properties of semiconductor metafilm superabsorbers

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2016-04-01

    Light absorption in ultrathin layer of semiconductor has been considerable interests for many years due to its potential applications in various optical devices. In particular, there have been great efforts to engineer the optical properties of the film for the control of absorption spectrums. Whereas the isotropic thin films have intrinsic optical properties that are fixed by materials' properties, metafilm that are composed by deep subwavelength nano-building blocks provides significant flexibilities in controlling the optical properties of the designed effective layers. Here, we present the ultrathin semiconductor metafilm absorbers by arranging germanium (Ge) nanobeams in deep subwavelength scale. Resonant properties of high index semiconductor nanobeams play a key role in designing effective optical properties of the film. We demonstrate this in theory and experimental measurements to build a designing rule of efficient, controllable metafilm absorbers. The proposed strategy of engineering optical properties could open up wide range of applications from ultrathin photodetection and solar energy harvesting to the diverse flexible optoelectronics.

  6. Fermi level dependent native defect formation: Consequences for metal--semiconductor and semiconductor--semiconductor interfaces

    SciTech Connect

    Walukiewicz, W.

    1988-07-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration.

  7. Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces

    SciTech Connect

    Walukiewicz, W.

    1988-02-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs.

  8. Temperature dependences of the gapwidth of A/sup IV/Se and A/sub 2//sup V/Se/sub 3/ semiconductors

    SciTech Connect

    Rasulov, S.M.

    1988-03-01

    The gapwidth of semiconductors E/sub g/ is related with the change in the enthalpy H/sub T/ - H/sub o/. The authors obtained a dependence between the temperature coefficient of the gapwidth and the heat capacity c/sub p/. They determined (par. deltaE/sub g//par. deltaT)p and E/sub g/(T) for semiconductors of the type A/sup IV/Se(A - Ge, Sn, Pb) and A/sub 2//sup V/Se/sub 3/ (A - As, Sb, Bi) in the solid and liquid states. For c/sub p/(T) and (H/sub T/ - H/sub o/)(T) based on the experimental data, empirical equations which are obeyed for temperatures above 273 K were derived.

  9. Reexamination of Fermi level pinning for controlling Schottky barrier height at metal/Ge interface

    NASA Astrophysics Data System (ADS)

    Nishimura, Tomonori; Yajima, Takeaki; Toriumi, Akira

    2016-08-01

    The element metal/germanium (Ge) interface exhibits a strong Fermi level pinning (FLP), which is usually characterized on the basis of Ge side semiconductor properties. In this work, we demonstrate that metal properties significantly affect the Schottky barrier height (SBH) on Ge. Metallic germanides show both FLP alleviation and a clear substrate orientation dependence of SBH on Ge, despite the nearly perfect FLP and very slight orientation dependence in the element metal case. As a result, ohmic characteristics are observed at germanide/n-Ge (111) junctions. The metal properties required to alleviate the FLP on Ge are also discussed.

  10. Coated semiconductor devices for neutron detection

    DOEpatents

    Klann, Raymond T.; McGregor, Douglas S.

    2002-01-01

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  11. Nanowires and Nanobelts: Volume 1, Metal and Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Zhong Lin

    This two volume reference, Nanowires and Nanobelts: Materials, Properties and Devices, provides a comprehensive introduction to the field and reviews the current state of the research. Volume 1, Metal and Semiconductor Nanowires covers a wide range of materials systems, from noble metals (such as Au, Ag, Cu), single element semiconductors (such as Si and Ge), compound semiconductors (such as InP, CdS and GaAs as well as heterostructures), nitrides (such as GaN and Si3N4) to carbides (such as SiC).

  12. Float Zone Growth of Alloy Semiconductor Crystals: Influence of Solutocapillary Convection

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Croell, A.; Campbell, T.; Boschert, S.; Benz, K. W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Growth techniques with large free melt surfaces are affected by convective flows induced by gradients of the surface tension. In the case of dilute semiconductor alloys (in our case: germanium-silicon), the impact of solutocapillary convection (due to the concentration dependence of the surface tension) has to be taken into account in addition to the "normal" thermocapillary convection (due to the temperature dependence of the surface tension). Theoretical considerations, based on experimental temperature profiles, growth geometry, segregation coefficient, and measured values for the temperature and concentration coefficients of the surface tension, lead to the conclusion that for the germanium rich side of the Ge(1-x)Si(x) system, the contribution of solutocapillary convection is, at least in front of the solid-liquid interface, the dominant factor. It results in an additional flow roll with a flow direction opposite to the thermocapillary flow, similar to the ones reported for metal alloys or high Prandtl-number fluids.

  13. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    SciTech Connect

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x. We present structural and electrical characterization of SrZrxTi1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.

  14. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE PAGESBeta

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore » structural and electrical characterization of SrZrxTi1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  15. Photoelectrosynthesis at semiconductor electrodes

    SciTech Connect

    Nozik, A. J.

    1980-12-01

    The general principles of photoelectrochemistry and photoelectrosynthesis are reviewed and some new developments in photoelectrosynthesis are discussed. Topics include energetics of semiconductor-electrolyte interfaces(band-edge unpinning); hot carrier injection at illuminated semiconductor-electrolyte junctions; derivatized semiconductor electrodes; particulate photoelectrochemical systems; layered compounds and other new materials; and dye sensitization. (WHK)

  16. Photorefractive Semiconductors and Applications

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Luke, Keung L.

    1993-01-01

    Photorefractive semiconductors are attractive for information processing, becuase of fast material response, compatibility with semiconductor lasers, and availability of cross polarization diffraction for enhancing signal-to-noise ration. This paper presents recent experimental results on information processing using photorefractive GaAs, InP and CdTe, including image processing with semiconductor lasers.

  17. Preparation of III-V semiconductor nanocrystals

    DOEpatents

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.

  18. Preparation of III-V semiconductor nanocrystals

    DOEpatents

    Alivisatos, A. Paul; Olshavsky, Michael A.

    1996-01-01

    Nanometer-scale crystals of III-V semiconductors are disclosed, They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline.

  19. Structure of two liquid semiconductors : Ag{sub 1-x}Se{sub x} and Ag{sub 0.67}Te{sub 0.33}.

    SciTech Connect

    Price, D. L.; Saboungi, M.-L.; Susman, S.; Volin, K. J.; Enderby, J. E.; Barnes, A. C.; Materials Science Division; Univ. of Bristol

    1993-01-01

    Neutron diffraction measurements have been carried out on Ag{sub 1-x}Se{sub x} and Ag{sub 0.67}Te{sub 0.33} alloys to investigate possible structural causes for the differences in electrical transport properties observed in the two alloys. Ag{sub 1-x}Se{sub x} was measured for the compositions, x=0.30, 0.33 and 0.36, at temperatures just above the liquidus (1045, 915 and 855 degrees C, respectively), and for x=0.33 at three temperatures (915, 985 and 1045 degrees C). The Ag{sub 1-x}Te{sub x} system was measured at only one composition x=0.33, just above the liquidus (985 degrees C). At the level of the average correlation function, the behavior of liquid Ag-Se shows no unusual dependence on either concentration or temperature, and the selenium and tellurium alloys show generally similar behavior. There is no obvious structural connection with the anomalous concentration dependence of the electrical conductivity in Ag{sub 1-x}Se{sub x} alloys or with the different behavior in both electronic and ionic conduction observed in the Ag-Se and Ag-Te systems.

  20. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    SciTech Connect

    Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; Ren, Yuan; Vasudevan, Rama K.; Okatan, Mahmut Baris; Jesse, Stephen; Aoki, Toshihiro; McCartney, Martha; Smith, David J.; Kalinin, Sergei V.; Lai, Keji; Demkov, Alexander A.

    2015-01-14

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-loss spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.

  1. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  2. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  3. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Ting; Yang, Kuo-Ching; Liao, Po-Hsiang; George, Tom; Li, Pei-Wen

    2016-02-01

    We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5‑90 nm), the SiO2 thickness (3‑4 nm), and as well the SiGe-shell thickness (2‑15 nm) has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS) devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5) in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge) MOS nanoelectronic and nanophotonic applications.

  4. Indoor test for thermal performance of the GE TC-100 liquid solar collector eight- and ten-tube configuration. [Marshall Space Flight Center solar simulator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal performance of a liquid solar collector was tested in eight- and ten-tube configurations under simulated conditions. A time constant test and an incident angle modifier test were also conducted to determine the transient and incident angle effects on the collector. Performance loss with accessory covers is demonstrated. The gross collector area is about 17.4 ft sq without manifold and 19.1 ft sq with manifold. The collector weight is approximately 60 pounds empty and 75 pounds with manifold.

  5. Ultrathin (5 nm) SiGe-On-Insulator with high compressive strain (-2 GPa): From fabrication (Ge enrichment process) to in-depth characterizations

    NASA Astrophysics Data System (ADS)

    Glowacki, F.; Le Royer, C.; Morand, Y.; Pédini, J.-M.; Denneulin, T.; Cooper, D.; Barnes, J.-P.; Nguyen, P.; Rouchon, D.; Hartmann, J.-M.; Gourhant, O.; Baylac, E.; Campidelli, Y.; Barge, D.; Bonnin, O.; Schwarzenbach, W.

    2014-07-01

    300 mm ultrathin Silicon-On-Insulator (SOI) wafers with SiGe/Si stacks on top were used as pre-structures for the fabrication of 5 nm thick SiGe-On-Insulator (SGOI) substrates obtained by the Ge enrichment technique. Those substrates will be used as the channel of advanced Fully Depleted (FD) p-type Metal Oxide Semiconductor Field Effect Transistors (pMOSFET). We present in the first part the successful fabrication of 5 nm SGOI wafers. Various characterization techniques are used to investigate the Ge profile and the final strain in the fabricated 5 nm Si0.7Ge0.3 film. Secondary Ions Mass Spectrometry (SIMS) and Scanning Transmission Electron Microscopy (STEM) clearly show that the Ge content is very homogeneous (xGe = 30 ± 1%) in the SiGe layer. Raman spectroscopy and High Angle Annular Dark Field (HAADF) STEM both confirm that the 5 nm thick SiGe film is compressively strained (-2 GPa). The second part is dedicated to the sensitivity of the Ge enrichment process (based on numerical modelling). We investigate the impact of single and combined fluctuations of the pre-structure parameters (TSi, TSiGe,0, xGe,0) on the final SiGe layer (TSiGe, xGe).

  6. Pseudomorphic GeSn/Ge (001) heterostructures

    SciTech Connect

    Tonkikh, A. A.; Talalaev, V. G.; Werner, P.

    2013-11-15

    The synthesis of pseudomorphic GeSn heterostructures on a Ge (001) substrate by molecular-beam epitaxy is described. Investigations by transmission electron microscopy show that the GeSn layers are defect free and possess cubic diamondlike structure. Photoluminescence spectroscopy reveals interband radiative recombination in the GeSn quantum wells, which is identified as indirect transitions between the subbands of heavy electrons and heavy holes. On the basis of experimental data and modeling of the band structure of pseudomorphic GeSn compounds, the lower boundary of the bowing parameter for the indirect band gap is estimated as b{sub L} {>=} 1.47 eV.

  7. Resistive switching memory characteristics of Ge/GeOx nanowires and evidence of oxygen ion migration

    PubMed Central

    2013-01-01

    The resistive switching memory of Ge nanowires (NWs) in an IrOx/Al2O3/Ge NWs/SiO2/p-Si structure is investigated. Ge NWs with an average diameter of approximately 100 nm are grown by the vapor–liquid-solid technique. The core-shell structure of the Ge/GeOx NWs is confirmed by both scanning electron microscopy and high-resolution transmission electron microscopy. Defects in the Ge/GeOx NWs are observed by X-ray photoelectron spectroscopy. Broad photoluminescence spectra from 10 to 300 K are observed because of defects in the Ge/GeOx NWs, which are also useful for nanoscale resistive switching memory. The resistive switching mechanism in an IrOx/GeOx/W structure involves migration of oxygen ions under external bias, which is also confirmed by real-time observation of the surface of the device. The porous IrOx top electrode readily allows the evolved O2 gas to escape from the device. The annealed device has a low operating voltage (<4 V), low RESET current (approximately 22 μA), large resistance ratio (>103), long pulse read endurance of >105 cycles, and good data retention of >104 s. Its performance is better than that of the as-deposited device because the GeOx film in the annealed device contains more oxygen vacancies. Under SET operation, Ge/GeOx nanofilaments (or NWs) form in the GeOx film. The diameter of the conducting nanofilament is approximately 40 nm, which is calculated using a new method. PMID:23657016

  8. Asymmetrically contacted germanium photodiode using a metal-interlayer-semiconductor-metal structure for extremely large dark current suppression.

    PubMed

    Zang, Hwan-Jun; Kim, Gwang-Sik; Park, Gil-Jae; Choi, Yong-Soo; Yu, Hyun-Yong

    2016-08-15

    In this study, we proposed germanium (Ge) metal-interlayer-semiconductor-metal (MISM) photodiodes (PD), with an anode of a metal-interlayer-semiconductor (MIS) contact and a cathode of a metal-semiconductor (MS) contact, to efficiently suppress the dark current of Ge PD. We selected titanium dioxide (TiO2) as an interlayer material for the MIS contact, due to its large valence band offset and negative conduction band offset to Ge. We significantly suppress the dark current of Ge PD by introducing the MISM structure with a TiO2 interlayer, as this enhances the hole Schottky barrier height, and thus acts as a large barrier for holes. In addition, it collects photo-generated carriers without degradation, due to its negative conduction band offset to Ge. This reduces the dark current of Ge MISM PDs by ×8000 for 7-nm-thick TiO2 interlayer, while its photo current is still comparable to that of Ge metal-semiconductor-metal (MSM) PDs. Furthermore, the proposed Ge PD shows ×6,600 improvement of the normalized photo-to-dark-current ratio (NPDR) at a wavelength of 1.55 μm. The proposed Ge MISM PD shows considerable promise for low power and high sensitivity Ge-based optoelectronic applications. PMID:27519063

  9. High density group IV semiconductor nanowire arrays fabricated in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Dilts, Sarah M.; Lew, Kok-Keong; Cranmer, Alexana E.; Mohney, Suzanne E.

    2005-11-01

    The fabrication of high density arrays of semiconductor nanowires is of interest for nanoscale electronics, chemical and biological sensing and energy conversion applications. We have investigated the synthesis, intentional doping and electrical characterization of Si and Ge nanowires grown by the vapor-liquid-solid (VLS) method in nanoporous alumina membranes. Nanoporous membranes provide a convenient platform for nanowire growth and processing, enabling control of wire diameter via pore size and the integration of contact metals for electrical testing. For VLS growth in nanoporous materials, reduced pressures and temperatures are required in order to promote the diffusion of reactants into the pore without premature decomposition on the membrane surface or pore walls. The effect of growth conditions on the growth rate of Si and Ge nanowires from SiH 4 and GeH 4 sources, respectively, was investigated and compared. In both cases, the measured activation energies for nanowire growth were substantially lower than activation energies typically reported for Si and Ge thin film deposition under similar growth conditions, suggesting that gold plays a catalytic role in the VLS growth process. Intentionally doped SiNW arrays were also prepared using trimethylboron (TMB) and phosphine (PH 3) as p-type and n-type dopant sources, respectively. Nanowire resistivities were calculated from plots of the array resistance as a function of nanowire length. A decrease in resistivity was observed for both n-type and p-type doped SiNW arrays compared to those grown without the addition of a dopant source.

  10. The Physics of Semiconductors

    NASA Astrophysics Data System (ADS)

    Grundmann, Marius

    The historic development of semiconductor physics and technology began in the second half of the 19th century. Interesting discussions of the early history of the physics and chemistry of semiconductors can be found in treatises of G. Busch [2] and Handel [3]. The history of semiconductor industry can be followedin the text of Morris [4] and Holbrook et al. [5]. In 1947, the realization of the transistor was the impetus to a fast-paced development that created the electronics and photonics industries. Products founded on the basis of semiconductor devices such as computers (CPUs, memories), optical-storage media (lasers for CD, DVD), communication infrastructure (lasers and photodetectors for optical-fiber technology, high frequency electronics for mobile communication), displays (thin film transistors, LEDs), projection (laser diodes) and general lighting (LEDs) are commonplace. Thus, fundamental research on semiconductors and semiconductor physics and its offspring in the form of devices has contributed largely to the development of modern civilization and culture.