Science.gov

Sample records for geiger mode operation

  1. Characterization on Geiger-mode operation of deep diffused silicon APDs

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Chen, Xiao J.; McClish, Mickel; Farrell, Richard; Vanderpuye, Kofi; Christian, James

    2015-08-01

    Avalanche photodiodes (APD) manufactured at RMD are fabricated using deep diffusion processes, resulting in a thick reach-through APD with excellent performance characteristics. These include a high quantum efficiency (<50% for visible photons) and low excess noise (F ~ 2). Due to the structure of the APD, the devices have very low junction capacitance (~0.7pF/mm2). These devices have been made as squares or hexagons on the order of 2-4" dimensionally and require <1000 V for operation. Due to the high operating bias, studies on the Geiger behavior were dismissed. The low capacitance is conducive to developing large-area devices, and the large drift region allows for charge steering toward the high breakdown field region. These results provide initial data on the performance characteristics of RMD's APDs when operated in Geiger mode. Due to the thickness of these devices, they provide a high gain-bandwidth product for near IR single photon counting. A small area (~4 mm2) APD was biased beyond the reverse bias breakdown voltage (~1700 V at -50 C), where the device showed typical Geigermode behavior with a low dark count rate (<54 kHz at 1700 V at an excess bias of 3 V). The data indicates a uniform response over the diode region, yet due to the large dark currents, the device was only operated to 5 V in excess bias beyond the breakdown voltage. The Geiger probability at 5V excess bias was measured as 3%, which is consistent with simulations that suggest an excess bias of ~300 V is required for 100% Geiger probability.

  2. Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode

    NASA Astrophysics Data System (ADS)

    Sugihara, K.; Yagyu, E.; Tokuda, Y.

    2006-06-01

    For a wide range of the thicknesses of the charge and the multiplication layers, detection efficiency and dark count probability are numerically investigated for GaInAs/InP single photon detection avalanche photodiodes (APD's) which are operated in the Geiger mode. Breakdown probability and dark currents are calculated to evaluate detection efficiency and dark count probability. The result shows that dark count probability can be significantly reduced by increasing the thickness of the charge layer, whereas detection efficiency is expected to decline steeply at some thickness of the charge layer. Moreover, increasing the thickness of the multiplication layer does not continue to reduce dark count probability, which increases when the multiplication layer is thicker than a critical thickness. Finally, we show a design guideline of single photon detection APD's with higher detection efficiency and lower dark count probability.

  3. Geiger-mode ladar cameras

    NASA Astrophysics Data System (ADS)

    Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Boisvert, Joseph; McDonald, Paul; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison; Van Duyne, Stephen; Pauls, Greg; Gaalema, Stephen

    2011-06-01

    The performance of Geiger-mode LAser Detection and Ranging (LADAR) cameras is primarily defined by individual pixel attributes, such as dark count rate (DCR), photon detection efficiency (PDE), jitter, and crosstalk. However, for the expanding LADAR imaging applications, other factors, such as image uniformity, component tolerance, manufacturability, reliability, and operational features, have to be considered. Recently we have developed new 32×32 and 32×128 Read-Out Integrated Circuits (ROIC) for LADAR applications. With multiple filter and absorber structures, the 50-μm-pitch arrays demonstrate pixel crosstalk less than 100 ppm level, while maintaining a PDE greater than 40% at 4 V overbias. Besides the improved epitaxial and process uniformity of the APD arrays, the new ROICs implement a Non-uniform Bias (NUB) circuit providing 4-bit bias voltage tunability over a 2.5 V range to individually bias each pixel. All these features greatly increase the performance uniformity of the LADAR camera. Cameras based on these ROICs were integrated with a data acquisition system developed by Boeing DES. The 32×32 version has a range gate of up to 7 μs and can cover a range window of about 1 km with 14-bit and 0.5 ns timing resolution. The 32×128 camera can be operated at a frame rate of up to 20 kHz with 0.3 ns and 14-bit time resolution through a full CameraLink. The performance of the 32×32 LADAR camera has been demonstrated in a series of field tests on various vehicles.

  4. Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates

    NASA Astrophysics Data System (ADS)

    Cicek, E.; Vashaei, Z.; McClintock, R.; Bayram, C.; Razeghi, M.

    2010-06-01

    GaN avalanche photodiodes (APDs) were grown on both conventional sapphire and low dislocation density free-standing (FS) c-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. At a reverse-bias of 70 V, APDs grown on sapphire substrates exhibited a dark current density of 2.7×10-4 A/cm2 whereas APDs grown on FS-GaN substrates had a significantly lower dark current density of 2.1×10-6 A/cm2. Under linear-mode operation, APDs grown on FS-GaN achieved avalanche gain as high as 14 000. Geiger-mode operation conditions were studied for enhanced SPDE. Under front-illumination the 625-μm2-area APD yielded a SPDE of ˜13% when grown on sapphire substrates compared to more than 24% when grown on FS-GaN. The SPDE of the same APD on sapphire substrate increased to ˜30% under back-illumination—the FS-GaN APDs were only tested under front illumination due to the thick absorbing GaN substrate.

  5. Medium altitude airborne Geiger-mode mapping LIDAR system

    NASA Astrophysics Data System (ADS)

    Clifton, William E.; Steele, Bradley; Nelson, Graham; Truscott, Antony; Itzler, Mark; Entwistle, Mark

    2015-05-01

    Over the past 15 years the Massachusetts Institute of Technology, Lincoln Laboratory (MIT/LL), Defense Advanced Research Projects Agency (DARPA) and private industry have been developing airborne LiDAR systems based on arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors capable of detecting a single photon. The extreme sensitivity of GmAPD detectors allows operation of LiDAR sensors at unprecedented altitudes and area collection rates in excess of 1,000 km2/hr. Up until now the primary emphasis of this technology has been limited to defense applications despite the significant benefits of applying this technology to non-military uses such as mapping, monitoring critical infrastructure and disaster relief. This paper briefly describes the operation of GmAPDs, design and operation of a Geiger-mode LiDAR, a comparison of Geiger-mode and traditional linear mode LiDARs, and a description of the first commercial Geiger-mode LiDAR system, the IntelliEarth™ Geospatial Solutions Geiger-mode LiDAR sensor.

  6. A discrete model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode

    SciTech Connect

    Vanyushin, I. V. Gergel, V. A.; Gontar', V. M.; Zimoglyad, V. A.; Tishin, Yu. I.; Kholodnov, V. A. Shcheleva, I. M.

    2007-06-15

    A new discrete theoretical model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode is developed. It is shown that the spreading resistance in the substrate profoundly affects both the amplitude of a single-photon electrical pulse and the possibility of attaining the steady-state form of the avalanche breakdown excluding the Geiger mode of the photodiode's operation. The model is employed to interpret the experimental data obtained using test single-photon cells of avalanche photodiodes fabricated on the basis of the 0.25-{mu}m silicon technology with the use of deep implantation to form the region of avalanche multiplication for the charge carriers. Excellent functional properties of the studied type of the single-photon (Geiger) cell are noted. A typical amplitude characteristic of the cell for optical radiation with the wavelength {lambda} = 0.56 {mu}m in the irradiance range of 10{sup -3}-10{sup 2} lx is presented; this characteristic indicates that the quantum efficiency of photoconversion is extremely high.

  7. Application of Geiger-mode photosensors in Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Gamal, Ahmed; Paul, Bühler; Michael, Cargnelli; Roland, Hohler; Johann, Marton; Herbert, Orth; Ken, Suzuki

    2011-05-01

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8×8 cells to increase the active photon detection area of an 8×8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  8. Geiger mode mapping: A new imaging modality for focused ion microprobes

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Hougaard, Christiaan R.; Bielejec, Edward; Caroll, Malcolm S.; Jamieson, David N.

    2015-04-01

    Geiger mode detectors fabricated in silicon are used to detect incident photons with high sensitivity. They are operated with large internal electric fields so that a single electron-hole pair can trigger an avalanche breakdown which generates a signal in an external circuit. We have applied a modified version of the ion beam induced charge technique in a nuclear microprobe system to investigate the application of Geiger mode detectors to detect discrete ion impacts. Our detectors are fabricated with an architecture based on the avalanche diode structure and operated with a transient bias voltage that activates the Geiger mode. In this mode avalanche breakdown is triggered by ion impact followed by diffusion of an electron-hole pair into the sensitive volume. The avalanche breakdown is quenched by removal of the transient bias voltage which is synchronized with a beam gate. An alternative operation mode is possible at lower bias voltages where the avalanche process self-quenches and the device exhibits linear charge gain as a consequence. Incorporation of such a device into a silicon substrate potentially allows the exceptional sensitivity of Geiger mode to register an electron-hole pair from sub-10 keV donor atom implants for the deterministic construction of shallow arrays of single atoms in the substrate required for emerging quantum technologies. Our characterization system incorporates a fast electrostatic ion beam switcher gated by the transient device bias, duration 800 ns, with a time delay, duration 500 ns, that allows for both the ion time of flight and the diffusion of the electron-hole pairs in the substrate into the sensitive region of the device following ion impact of a scanned 1 MeV H microbeam. We compare images at the micron scale mapping the response of the device to ion impact operated in both Geiger mode and avalanche (linear) mode for silicon devices engineered with this ultimate-sensitivity detector structure.

  9. Geiger-mode avalanche photodiodes, history, properties and problems

    NASA Astrophysics Data System (ADS)

    Renker, D.

    2006-11-01

    Geiger-mode avalanche photodiodes (G-APDs) have been developed during recent years and promise to be an alternative to photomultiplier tubes. They have many advantages like single photon response, high detection efficiency, high gain at low bias voltage and very good timing properties but some of their properties, the dark count rate for example, can be a problem. Several types of G-APDs are on the market and should be selected carefully for a given application.

  10. Silicon Geiger-mode avalanche photodiode arrays for photon-starved imaging

    NASA Astrophysics Data System (ADS)

    Aull, Brian F.

    2015-05-01

    Geiger-mode avalanche photodiodes (GMAPDs) are capable of detecting single photons. They can be operated to directly trigger all-digital circuits, so that detection events are digitally counted or time stamped in each pixel. An imager based on an array of GMAPDs therefore has zero readout noise, enabling quantum-limited sensitivity for photon-starved imaging applications. In this review, we discuss devices developed for 3D imaging, wavefront sensing, and passive imaging.

  11. Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode.

    PubMed

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Hong, Keun Ho; Kim, Byung Wook; Park, Dong Jo

    2010-03-01

    In this paper, a direct-detection laser radar system that uses a Geiger-mode avalanche photodiode (GAPD) of relatively short dead time (45 ns) is described. A passively Q-switched microchip laser is used as a laser source and a compact peripheral component interconnect system, which includes a time-to-digital converter (TDC), is set up for fast signal processing. With both the GAPD and the TDC functioning multistop acquisition, the system operates in a multihit mode. The software for the three-dimensional visualization and an algorithm for the removal of noise are developed. It is shown that the single-shot precision of the system is approximately 10 cm (sigma) and the precision is improved by increasing the number of laser pulses to be averaged so that the precision of approximately 1 cm (sigma) was acquired with more than 150 laser pulses scattered from the target. The accuracy of the system is measured to be 12 cm when the energy of the emitted laser pulse varies with a factor of 7. PMID:20370163

  12. Avoiding sensor blindness in Geiger mode avalanche photodiode arrays fabricated in a conventional CMOS process

    NASA Astrophysics Data System (ADS)

    Vilella, E.; Diéguez, A.

    2011-12-01

    The need to move forward in the knowledge of the subatomic world has stimulated the development of new particle colliders. However, the objectives of the next generation of colliders sets unprecedented challenges to the detector performance. The purpose of this contribution is to present a bidimensional array based on avalanche photodiodes operated in the Geiger mode to track high energy particles in future linear colliders. The bidimensional array can function in a gated mode to reduce the probability to detect noise counts interfering with real events. Low reverse overvoltages are used to lessen the dark count rate. Experimental results demonstrate that the prototype fabricated with a standard HV-CMOS process presents an increased efficiency and avoids sensor blindness by applying the proposed techniques.

  13. Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays

    NASA Astrophysics Data System (ADS)

    Grzesik, Michael; Bailey, Robert; Mahan, Joe; Ampe, Jim

    2015-11-01

    Current-limiting fuses composed of Ti/Al/Ni were developed for use in Geiger-mode avalanche photodiode arrays for each individual pixel in the array. The fuses were designed to burn out at ˜4.5 × 10-3 A and maintain post-burnout leakage currents less than 10-7 A at 70 V sustained for several minutes. Experimental fuse data are presented and successful incorporation of the fuses into a 256 × 64 pixel InP-based Geiger-mode avalanche photodiode array is reported.

  14. Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2014-08-01

    Geiger-mode avalanche photodiodes (GM-APDs) use the avalanche mechanism of semiconductors to amplify signals in individual pixels. With proper thresholding, a pixel will be either "on" (avalanching) or "off." This discrete detection scheme eliminates read noise, which makes these devices capable of counting single photons. Using these detectors for imaging applications requires a well-developed and comprehensive expression for the expected signal-to-noise ratio (SNR). This paper derives the expected SNR of a GM-APD detector in gated operation based on gate length, number of samples, signal flux, dark count rate, photon detection efficiency, and afterpulsing probability. To verify the theoretical results, carrier-level Monte Carlo simulation results are compared to the derived equations and found to be in good agreement.

  15. The blocking probability of Geiger-mode avalanche photo-diodes

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Srinivasan, Meera; Hamkins, Jon

    2005-01-01

    When a photo is detected by a Geiger-mode avalanche photo-diode (GMAPD), the detector is rendered inactive, or blocked, for a certain period of time. In this paper we derive the blocking probability for a GMAPD whose input is either an unmodulated, Benoulli modulated or pulse-position-modulated Poisson process.

  16. Photoionization of Trapped Carriers in Avalanche Photodiodes to Reduce Afterpulsing During Geiger-Mode Photon Counting

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2005-01-01

    We reduced the afterpulsing probability by a factor of five in a Geiger-mode photon-counting InGaAs avalanche photodiode by using sub-band-gap (lambda = 1.95 micron) laser diode illumination, which we believe photoionizes the trapped carriers.

  17. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    PubMed Central

    Aull, Brian

    2016-01-01

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging. PMID:27070609

  18. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    PubMed

    Aull, Brian

    2016-01-01

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging. PMID:27070609

  19. Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms

    SciTech Connect

    Nawar Rahman, Samia Hall, David; Lo, Yu-Hwa

    2014-05-07

    A new type of single photon detector, Multiple Amplification Gain with Internal Control (MAGIC), is proposed and analyzed using Monte Carlo simulations based on a physical model of the device. The MAGIC detector has two coupled amplification mechanisms, avalanche multiplication and bipolar gain, and the net gain is regulated by a built-in feedback mechanism. Compared to conventional Geiger mode single photon avalanche detectors (SPADs), the MAGIC detector produces a much greater single photon detection efficiency of nearly 100%, low bit-error-ratio for single photon signals, and a large dynamic range. All these properties are highly desirable for applications that require single photon sensitivity and are absent for conventional Geiger-mode SPADs.

  20. Low-SWaP coincidence processing for Geiger-mode LIDAR video

    NASA Astrophysics Data System (ADS)

    Schultz, Steven E.; Cervino, Noel P.; Kurtz, Zachary D.; Brown, Myron Z.

    2015-05-01

    Photon-counting Geiger-mode lidar detector arrays provide a promising approach for producing three-dimensional (3D) video at full motion video (FMV) data rates, resolution, and image size from long ranges. However, coincidence processing required to filter raw photon counts is computationally expensive, generally requiring significant size, weight, and power (SWaP) and also time. In this paper, we describe a laboratory test-bed developed to assess the feasibility of low-SWaP, real-time processing for 3D FMV based on Geiger-mode lidar. First, we examine a design based on field programmable gate arrays (FPGA) and demonstrate proof-of-concept results. Then we examine a design based on a first-of-its-kind embedded graphical processing unit (GPU) and compare performance with the FPGA. Results indicate feasibility of real-time Geiger-mode lidar processing for 3D FMV and also suggest utility for real-time onboard processing for mapping lidar systems.

  1. Point Spread Function (PSF) noise filter strategy for geiger mode LiDAR

    NASA Astrophysics Data System (ADS)

    Smith, O'Neil; Stark, Robert; Smith, Philip; St. Romain, Randall; Blask, Steven

    2013-05-01

    LiDAR is an efficient optical remote sensing technology that has application in geography, forestry, and defense. The effectiveness is often limited by signal-to-noise ratio (SNR). Geiger mode avalanche photodiode (APD) detectors are able to operate above critical voltage, and a single photoelectron can initiate the current surge, making the device very sensitive. These advantages come at the expense of requiring computationally intensive noise filtering techniques. Noise is a problem which affects the imaging system and reduces the capability. Common noise-reduction algorithms have drawbacks such as over aggressive filtering, or decimating in order to improve quality and performance. In recent years, there has been growing interest on GPUs (Graphics Processing Units) for their ability to perform powerful massive parallel processing. In this paper, we leverage this capability to reduce the processing latency. The Point Spread Function (PSF) filter algorithm is a local spatial measure that has been GPGPU accelerated. The idea is to use a kernel density estimation technique for point clustering. We associate a local likelihood measure with every point of the input data capturing the probability that a 3D point is true target-return photons or noise (background photons, dark-current). This process suppresses noise and allows for detection of outliers. We apply this approach to the LiDAR noise filtering problem for which we have recognized a speed-up factor of 30-50 times compared to traditional sequential CPU implementation.

  2. Demonstration of lasercom and spatial tracking with a silicon Geiger-mode APD array

    NASA Astrophysics Data System (ADS)

    Yarnall, Timothy M.; Horkley, Benjamin W.; Garg, Ajay S.; Hamilton, Scott A.

    2016-03-01

    We present a demonstration of a high-rate photon counting receiver with the potential to act as a spatial tracker based on a silicon Geiger-mode avalanche photodiode array (GM-APD). This array enables sensitive high-rate optical communication in the visible and near infrared regions of the spectrum. The array contains 1024 elements arranged in a 32x32 pixel square. This large number of elements supports high data rates through the mitigation of blocking losses and associated data rate limitations created by the reset time of an individual Geiger-mode detector. Measurement of bit error rates demonstrate that receiver sensitivities of 2.55 dB (detected) photons-per-bit for 78.8 Mb/s on-off-keying and -0.46 dB (detected) photons-per-bit for 19.4 Mb/s 16-ary pulse-position modulation are accessible with strong forward error correction. Additionally, the array can record the spatial coordinates of each detection event. By computing the centroid of the distribution of spatial detections it is possible to determine the angle-of-arrival of the detected photons. These levels of performance imply that Si GM-APD arrays are excellent candidates for a variety of free space lasercom applications ranging from atmospheric communication in the 1 micron or 780 nm spectral windows to underwater communication in the 480 nm to 520 nm spectral window

  3. Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment

    PubMed Central

    Kim, Seongjoon; Lee, Impyeong; Kwon, Yong Joon

    2013-01-01

    As LADAR systems applications gradually become more diverse, new types of systems are being developed. When developing new systems, simulation studies are an essential prerequisite. A simulator enables performance predictions and optimal system parameters at the design level, as well as providing sample data for developing and validating application algorithms. The purpose of the study is to propose a method for simulating a Geiger-mode imaging LADAR system. We develop simulation software to assess system performance and generate sample data for the applications. The simulation is based on three aspects of modeling—the geometry, radiometry and detection. The geometric model computes the ranges to the reflection points of the laser pulses. The radiometric model generates the return signals, including the noises. The detection model determines the flight times of the laser pulses based on the nature of the Geiger-mode detector. We generated sample data using the simulator with the system parameters and analyzed the detection performance by comparing the simulated points to the reference points. The proportion of the outliers in the simulated points reached 25.53%, indicating the need for efficient outlier elimination algorithms. In addition, the false alarm rate and dropout rate of the designed system were computed as 1.76% and 1.06%, respectively. PMID:23823970

  4. Single ion implantation for single donor devices using Geiger mode detectors

    NASA Astrophysics Data System (ADS)

    Bielejec, E.; Seamons, J. A.; Carroll, M. S.

    2010-02-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 µm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ~600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of <2.5 nm. Significant reduction in false count probability is, furthermore, achieved by modifying the ion beam set-up to allow for cryogenic operation of the SIGMA detector. Using a detection window of 230 ns at 1 Hz, the probability of a false count was measured as ~10-1 and 10-4 for operation temperatures of ~300 K and ~77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10-4 at

  5. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs

    NASA Astrophysics Data System (ADS)

    Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna

    2015-05-01

    Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.

  6. Hybridization process for back-illuminated silicon Geiger-mode avalanche photodiode arrays

    NASA Astrophysics Data System (ADS)

    Schuette, Daniel R.; Westhoff, Richard C.; Loomis, Andrew H.; Young, Douglas J.; Ciampi, Joseph S.; Aull, Brian F.; Reich, Robert K.

    2010-04-01

    We present a unique hybridization process that permits high-performance back-illuminated silicon Geiger-mode avalanche photodiodes (GM-APDs) to be bonded to custom CMOS readout integrated circuits (ROICs) - a hybridization approach that enables independent optimization of the GM-APD arrays and the ROICs. The process includes oxide bonding of silicon GM-APD arrays to a transparent support substrate followed by indium bump bonding of this layer to a signal-processing ROIC. This hybrid detector approach can be used to fabricate imagers with high-fill-factor pixels and enhanced quantum efficiency in the near infrared as well as large-pixel-count, small-pixel-pitch arrays with pixel-level signal processing. In addition, the oxide bonding is compatible with high-temperature processing steps that can be used to lower dark current and improve optical response in the ultraviolet.

  7. The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Qu, Hui-Ming; Zhang, Yi-Fan; Ji, Zhong-Jie; Chen, Qian

    2013-10-01

    In principle, photon counting imaging can detect a photon. With the development of low-level-light image intensifier techniques and low-level-light detection devices, photon counting imaging can now detect photon images under extremely low illumination. Based on a Geiger mode silicon avalanche photodiode single photon counter, an experimental system for photon counting imaging was built through two-dimensional scanning of a SPAD (single photon avalanche diode) detector. The feasibility of the imaging platform was validated experimentally. Two images with different characteristics, namely, the USAF 1951 resolution test panel and the image of Lena, were chosen to evaluate the imaging performance of the experimental system. The results were compared and analysed. The imaging properties under various illumination and scanning steps were studied. The lowest illumination limit of the SPAD photon counting imaging was determined.

  8. Readout circuitry for continuous high-rate photon detection with arrays of InP Geiger-mode avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Frechette, Jonathan; Grossmann, Peter J.; Busacker, David E.; Jordy, George J.; Duerr, Erik K.; McIntosh, K. Alexander; Oakley, Douglas C.; Bailey, Robert J.; Ruff, Albert C.; Brattain, Michael A.; Funk, Joseph E.; MacDonald, Jason G.; Verghese, Simon

    2012-06-01

    An asynchronous readout integrated circuit (ROIC) has been developed for hybridization to a 32x32 array of single-photon sensitive avalanche photodiodes (APDs). The asynchronous ROIC is capable of simultaneous detection and readout of photon times of arrival, with no array blind time. Each pixel in the array is independently operated by a finite state machine that actively quenches an APD upon a photon detection event, and re-biases the device into Geiger mode after a programmable hold-off time. While an individual APD is in hold-off mode, other elements in the array are biased and available to detect photons. This approach enables high pixel refresh frequency (PRF), making the device suitable for applications including optical communications and frequency-agile ladar. A built-in electronic shutter that de-biases the whole array allows the detector to operate in a gated mode or allows for detection to be temporarily disabled. On-chip data reduction reduces the high bandwidth requirements of simultaneous detection and readout. Additional features include programmable single-pixel disable, region of interest processing, and programmable output data rates. State-based on-chip clock gating reduces overall power draw. ROIC operation has been demonstrated with hybridized InP APDs sensitive to 1.06-μm and 1.55-μm wavelength, and fully packaged focal plane arrays (FPAs) have been assembled and characterized.

  9. Maximum detection range limitation of pulse laser radar with Geiger-mode avalanche photodiode array

    NASA Astrophysics Data System (ADS)

    Luo, Hanjun; Xu, Benlian; Xu, Huigang; Chen, Jingbo; Fu, Yadan

    2015-05-01

    When designing and evaluating the performance of laser radar system, maximum detection range achievable is an essential parameter. The purpose of this paper is to propose a theoretical model of maximum detection range for simulating the Geiger-mode laser radar's ranging performance. Based on the laser radar equation and the requirement of the minimum acceptable detection probability, and assuming the primary electrons triggered by the echo photons obey Poisson statistics, the maximum range theoretical model is established. By using the system design parameters, the influence of five main factors, namely emitted pulse energy, noise, echo position, atmospheric attenuation coefficient, and target reflectivity on the maximum detection range are investigated. The results show that stronger emitted pulse energy, lower noise level, more front echo position in the range gate, higher atmospheric attenuation coefficient, and higher target reflectivity can result in greater maximum detection range. It is also shown that it's important to select the minimum acceptable detection probability, which is equivalent to the system signal-to-noise ratio for producing greater maximum detection range and lower false-alarm probability.

  10. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors.

    PubMed

    Fouche, Daniel G

    2003-09-20

    For a direct-detection laser radar that uses a Geiger-mode detector, theory shows that the single-pulse detection probability is reduced by a factor exp(-K), where K is the mean number of primary electrons created by noise in the interval t between detector turn-on and arrival of laser photons reflected from the target. The corresponding false-alarm probability is at least 1 - exp(-K). For fixed-rate noise, one can improve the detection and false-alarm probabilities by reducing t. Moreover, when background-light noise is significant and dominates dark-current noise and when the laser signal is of the order of ten photoelectrons or more, the probabilities can be improved by reducing the amount of light falling on the detector, even if the laser signal is reduced by the same factor as the background light is. Additional analytical calculations show that identifying coincidences in data from as few as three pulses canreduce the false-alarm probability by orders of magnitude and, for some conditions, can also improve the detection probability. PMID:14526825

  11. Characterization and Monte Carlo simulation of single ion Geiger mode avalanche diodes integrated with a quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Sharma, Peter; Abraham, J. B. S.; Ten Eyck, G.; Childs, K. D.; Bielejec, E.; Carroll, M. S.

    Detection of single ion implantation within a nanostructure is necessary for the high yield fabrication of implanted donor-based quantum computing architectures. Single ion Geiger mode avalanche (SIGMA) diodes with a laterally integrated nanostructure capable of forming a quantum dot were fabricated and characterized using photon pulses. The detection efficiency of this design was measured as a function of wavelength, lateral position, and for varying delay times between the photon pulse and the overbias detection window. Monte Carlo simulations based only on the random diffusion of photo-generated carriers and the geometrical placement of the avalanche region agrees qualitatively with device characterization. Based on these results, SIGMA detection efficiency appears to be determined solely by the diffusion of photo-generated electron-hole pairs into a buried avalanche region. Device performance is then highly dependent on the uniformity of the underlying silicon substrate and the proximity of photo-generated carriers to the silicon-silicon dioxide interface, which are the most important limiting factors for reaching the single ion detection limit with SIGMA detectors. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Evaluation of Geiger-mode APDs for PET block detector designs.

    PubMed

    Kolb, Armin; Lorenz, Eckart; Judenhofer, Martin S; Renker, Dieter; Lankes, Konrad; Pichler, Bernd J

    2010-04-01

    This paper presents an evaluation of two types of Geiger-mode avalanche photodiodes (G-APDs) for their potential to be used in a positron emission tomography (PET) detector. While the MPPC G-APD had only 3600 cells, the solid state photomultiplier (SSPM)-type G-APD had 8100 cells. In a single-channel G-APD/LSO setup, the energy resolution (DeltaEpsilon/Epsilon) of the SSPM at 511 keV was 25%, while the (DeltaEpsilon/Epsilon) of the MPPC was 13.5% (FWHM). No influences were observed while the detectors were inside a 7 T magnetic resonance (MR) scanner. A time resolution of 2.7 ns (FWHM) was measured for the LSO/SSPM and 0.9 ns for the LSO/MPPC detector setup. Although the linearity was superior for the SSPM in the single detector readout, the inferior energy and time resolution excluded them to be used for the block detector readout. All 12 x 12 LSO crystals of the block could be resolved in a crystal map using a 3 x 3 MPPC G-APD array. The time resolution of the block detector was 950 ps. While the energy spectra for the MPPC-based single-channel setup were nonlinear, they reached linearity better than 5% in the block detector. A high number of G-APD cells provide a linear signal in a single-channel detector setup, but not necessarily a good timing or (DeltaEpsilon/Epsilon) due to a larger inactive surface resulting in lower photon detection efficiency. G-APDs with a low number of cells provide a good timing and (DeltaEpsilon/Epsilon) and linear signals in block detector designs, where the scintillation light is shared over many G-APDs. PMID:20208095

  13. Spatial modeling of optical crosstalk in InGaAsP Geiger-mode APD focal plane arrays.

    PubMed

    Piccione, Brian; Jiang, Xudong; Itzler, Mark A

    2016-05-16

    We report a spatial model of optical crosstalk in InGaAsP Geiger-mode APD focal plane arrays created via non-sequential ray tracing. Using twenty-four equivalent experimental data sets as a baseline, we show that experimental results can be reproduced to a high degree of accuracy by incorporating secondary crosstalk effects, with reasonable assumptions of material and emission source properties. We use this model to categorize crosstalk according to source and path, showing that the majority of crosstalk in the immediate neighborhood of avalanching pixels in the present devices can be attributed to direct line-of-sight emissions. PMID:27409885

  14. Conception d'un circuit d'etouffement pour photodiodes a avalanche en mode geiger pour integration heterogene 3d

    NASA Astrophysics Data System (ADS)

    Boisvert, Alexandre

    Le Groupe de Recherche en Appareillage Medical de Sherbrooke (GRAMS) travaille actuellement sur un programme de recherche portant sur des photodiodes a avalanche mono-photoniques (PAMP) operees en mode Geiger en vue d'une application a la tomographie d'emission par positrons (TEP). Pour operer dans ce mode; la PAMP, ou SPAD selon l'acronyme anglais (Single Photon Avalanche Diode), requiert un circuit d'etouffement (CE) pour, d'une part, arreter l'avalanche pouvant causer sa destruction et, d'autre part. la reinitialiser en mode d'attente d'un nouveau photon. Le role de ce CE comprend egalement une electronique de communication vers les etages de traitement avance de signaux. La performance temporelle optimale du CE est realisee lorsqu'il est juxtapose a la PAMP. Cependant, cela entraine une reduction de la surface photosensible ; un element crucial en imagerie. L'integration 3D, a base d'interconnexions verticales, offre une solution elegante et performante a cette problematique par l'empilement de circuits integres possedant differentes fonctions (PAMP, CE et traitement avance de signaux). Dans l'approche proposee, des circuits d'etouffement de 50 pm x 50 pm realises sur une technologie CMOS 130 mn 3D Tezzaron, contenant chacun 112 transistors, sont matrices afin de correspondre a une matrice de PAMP localisee sur une couche electronique superieure. Chaque circuit d'etouffement possede une gigue temporelle de 7,47 ps RMS selon des simulations faites avec le logiciel Cadence. Le CE a la flexibilite d'ajuster les temps d'etouffement et de recharge pour la PAMP tout en presentant une faible consommation de puissance (~ 0,33 mW a 33 Mcps). La conception du PAMP necessite de supporter des tensions superieures aux 3,3 V de la technologie. Pour repondre a ce probleme, des transistors a drain etendu (DEMOS) ont ete realises. En raison de retards de production par Ies fabricants, les circuits n'ont pu etre testes physiquement par des mesures. Les resultats de ce memoire

  15. Operating a Geiger-Muller Tube Using a PC Sound Card

    ERIC Educational Resources Information Center

    Azooz, A. A.

    2009-01-01

    In this paper, a simple MATLAB-based PC program that enables the computer to function as a replacement for the electronic scalar-counter system associated with a Geiger-Muller (GM) tube is described. The program utilizes the ability of MATLAB to acquire data directly from the computer sound card. The signal from the GM tube is applied to the…

  16. Dynamics of local micro-breakdown in the Geiger mode of avalanche photodiodes

    SciTech Connect

    Verhovtseva, A. V. Gergel, V. A.

    2009-07-15

    Mathematical modeling methods were used to study the dynamics of micro-breakdown development in structures of silicon avalanche photodiodes. The constructed model considers the locality of the avalanchexs multiplication region appearing during single photon absorption and the delay of the avalanchexs current spreading over the rear electrode of the diode. The calculations showed two different phases of transient process of the formation of the electrical signal, i.e., the rapid and slow ones due to current spreading and ordinary RC recharge, respectively. The load resistances required to implement the pulsed mode of operation of the structures of the avalanche photodiode were calculated for a series of actual diode capacitances and spreading resistances of the rear electrode.

  17. Detection of the Light Produced in Scintillating Tiles by Means of a Wls Fiber and AN Avalanche Photodiode Working in the Geiger Mode

    NASA Astrophysics Data System (ADS)

    Akindinov, A.; Mal'Kevich, D.; Martemiyanov, A.; Smirnitsky, A.; Voloshin, K.; Grigoriev, E.; Golovin, V.; Bondarenko, G.

    2004-07-01

    Plates of an organic scintillator BC408, 50 × 50 × 5 mm3, with a wavelength-shifting (WLS) fiber Kuraray Y11, embedded in circular grooves inside the plastic, were used in combination with 1 mm2 avalanche photodiodes working in the Geiger mode (APDg or MRS-APD). Beam tests with minimum ionizing particles (MIP), performed at the ITEP synchrotron, have shown high detection efficiencies (about 13 photo-electrons).

  18. Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations

    NASA Astrophysics Data System (ADS)

    Jordy, George; Donnelly, Joseph

    2015-05-01

    A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can represent the first order nonlinear differential equations that govern the avalanche current of the APD. This continuous time representation is fundamentally different than the piecewise linear characteristics of other models. The model is based on a driving term for the differential current, which is given by the voltage overbias minus the voltage drop across the device's space-charge resistance RSC. This drop is primarily due to electrons transiting the separate absorber. RSC starts off high and decreases with time as the initial breakdown filament spreads laterally to fill the APD. With constant bias voltage, the initial current grows exponentially until space charge effects reduce the driving function. With increasing current the driving term eventually goes to zero and the APD current saturates. On the other hand, if the APD is biased with a capacitor, the driving term becomes negative as the capacitor discharges, reducing the current and driving the voltage below breakdown. The model parameters depend on device design and are obtained from fitting the model to Monte-Carlo turn-on simulations that include lateral spreading of the carriers of the relevant structure. The Monte-Carlo simulations also provide information on the probability of avalanche, and jitter due to where the photon is absorbed in the APD.

  19. Optimization of a guard ring structure in Geiger-mode avalanche photodiodes fabricated at National NanoFab Center

    NASA Astrophysics Data System (ADS)

    Lim, K. T.; Kim, H.; Cho, M.; Kim, Y.; Kim, C.; Kim, M.; Lee, D.; Kang, D.; Yoo, H.; Park, K.; Sul, W. S.; Cho, G.

    2016-01-01

    A typical Geiger-mode avalanche photodiode (G-APD) contains a guard ring that protects the structure from having an edge breakdown due to the lowering of electric fields at junction curvatures. In this contribution, G-APDs with a virtual guard ring (vGR) merged with n-type diffused guard ring (nGR) in various sizes were studied to find the optimal design for G-APDs fabricated at National NanoFab Center (NNFC) . The sensors were fabricated via a customized CMOS process with a micro-cell size of 65× 65 μm2 on a 200 mm p-type epitaxial layer wafer. I-V characteristic curves for proposed structures were measured on a wafer-level with an auto probing system and plotted together to compare their performance. A vGR width of 1.5 μm and a nGR width of 1.5 μm with an overlapping between vGR and nGR of 1.5 μm showed the lowest leakage current before the breakdown voltage while suppressing the edge breakdown. Furthermore, the current level of the lowest-leakage-current structure was as low as that of only vGR with a width of 2.0 μm, indicating that the structure is also area efficient. Based on these results, the design with vGR, nGR, and OL with width of 1.5 μm is determined to be the optimal structure for G-APDs fabricated at NNFC.

  20. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise

    NASA Technical Reports Server (NTRS)

    Zhao, Kai; Lo, YuHwa; Farr, William

    2010-01-01

    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 me

  1. Restraint of range walk error in a Geiger-mode avalanche photodiode lidar to acquire high-precision depth and intensity information.

    PubMed

    Xu, Lu; Zhang, Yu; Zhang, Yong; Yang, Chenghua; Yang, Xu; Zhao, Yuan

    2016-03-01

    There exists a range walk error in a Geiger-mode avalanche photodiode (Gm-APD) lidar because of the fluctuation in the number of signal photoelectrons. To restrain this range walk error, we propose a new returning-wave signal processing technique based on the Poisson probability response model and the Gaussian functions fitting method. High-precision depth and intensity information of the target at the distance of 5 m is obtained by a Gm-APD lidar using a 6 ns wide pulsed laser. The experiment results show that the range and intensity precisions are 1.2 cm and 0.015 photoelectrons, respectively. PMID:26974630

  2. Performance assessment of simulated 3D laser images using Geiger-mode avalanche photo-diode: tests on simple synthetic scenarios

    NASA Astrophysics Data System (ADS)

    Coyac, Antoine; Hespel, Laurent; Riviere, Nicolas; Briottet, Xavier

    2015-10-01

    In the past few decades, laser imaging has demonstrated its potential in delivering accurate range images of objects or scenes, even at long range or under bad weather conditions (rain, fog, day and night vision). We note great improvements in the conception and development of single and multi infrared sensors, concerning embedability, circuitry reading capacity, or pixel resolution and sensitivity, allowing a wide diversity of applications (i.e. enhanced vision, long distance target detection and reconnaissance, 3D DSM generation). Unfortunately, it is often difficult to dispose of all the instruments to compare their performance for a given application. Laser imaging simulation has shown to be an interesting alternative to acquire real data, offering a higher flexibility to perform this sensors comparison, plus being time and cost efficient. In this paper, we present a 3D laser imaging end-to-end simulator using a focal plane array with Geiger mode detection, named LANGDOC. This work aims to highlight the interest and capability of this new generation of photo-diodes arrays, especially for airborne mapping and surveillance of high risk areas.

  3. Geiger tube planes as a trigger for the nucleon lifetime experiment in the Frejus tunnel (France)

    NASA Astrophysics Data System (ADS)

    Dudelzak, B.; Eschstruth, P.; Grelaud, B.; Jullian, S.; Lalanne, D.; Laplanche, F.; Longuemare, C.; Paulot, C.; Roy, Ph.; Szklarz, G.

    1983-11-01

    Geiger tubes 6 m long made of extruded aluminium and assembled in 6m × 6m planes have been developed at Orsay and will be used as a trigger for the nucleon lifetime experiment in the Frejus tunnel (Aachen-Orsay-Palaiseau-Saclay-Wuppertal Collaboration) which will start in the spring of 1983. There will be 185 trigger planes which correspond to about 65 000 tubes. The use of aluminium tubes is advantageous because of their low cost mass production, but obtaining a stable Geiger mode operation of aluminium tubes of such dimensions is difficult and requires a preliminary mechanical treatment of the surface. Safety regulations in the tunnel limit the choice of gas. The gas used is a non-inflammable mixture of argon, ethyl-alcohol (2%) and freon (0.05%). The two characteristic parts of the Geiger pulse: steep rise in about 50 ns, followed by a long part lasting about 30-70 ≃s, are both advantageously used, the first to build a fast trigger, the second as a kind of natural memory. Moreover the relatively high Geiger signal reduces amplification requirements, thereby simplifying the electronics.

  4. FLEXIBLE GEIGER COUNTER

    DOEpatents

    Richter, H.G.; Gillespie, A.S. Jr.

    1963-11-12

    A flexible Geiger counter constructed from materials composed of vinyl chloride polymerized with plasticizers or co-polymers is presented. The counter can be made either by attaching short segments of corrugated plastic sleeving together, or by starting with a length of vacuum cleaner hose composed of the above materials. The anode is maintained substantially axial Within the sleeving or hose during tube flexing by means of polystyrene spacer disks or an easily assembled polyethylene flexible cage assembly. The cathode is a wire spiraled on the outside of the counter. The sleeving or hose is fitted with glass end-pieces or any other good insulator to maintain the anode wire taut and to admit a counting gas mixture into the counter. Having the cathode wire on the outside of the counter substantially eliminates the objectional sheath effect of prior counters and permits counting rates up to 300,000 counts per minute. (AEC)

  5. Geiger tube planes as a trigger for the nucleon lifetime experiment in the Frejus tunnel (France)

    NASA Astrophysics Data System (ADS)

    Dudelzak, B.; Eschstruth, P.; Grelaud, B.; Jullian, S.; Lalanne, D.; Laplanche, F.; Longuemare, C.; Paulot, C.; Roy, Ph.; Szklarz, G.

    1984-05-01

    Geiger tubes of 6 m length made of extruded aluminium in 6 m lsx 6 m planes been developed at Orsay to be used as a trigger for the nucleon lifetime experiment in the Frejus tunnel (Aachen-Orsay-Palaiseau-Saclay-Wuppertal Collaboration). There will be 185 trigger planes which correspond to about 65 000 tubes. The use of aluminium tubes is advantageous because of their low cost mass production, but obtaining a stable Geiger mode operation of aluminium tubes of such dimensions is difficult and requires a preliminary mechanical treatment of the surface. Safety regulations in the tunnel limit the choice of gas. The gas used is a non-inflammable mixture of argon, ethyl-alcohol (2%) and Freon (0.05%). The two characteristics parts of the Geiger pulse: steep rise in about 50 ns, followed by a long part lasting about 30-70 μs are both advantageously used, the first to build a fast trigger, the second as a kind of natural memory. Moreover, the relatively high Gieger signal reduces amplification requirements, thereby simplifying the electronics.

  6. Science Experimenter: Experimenting with a Geiger Counter.

    ERIC Educational Resources Information Center

    Mims, Forrest M., III

    1992-01-01

    Describes the use of geiger counters for scientific investigations and experiments. Presents information about background radiation, its sources and detection. Describes how geiger counters work and other methods of radiation detection. Provides purchasing information for geiger counters, related computer software and equipment. (MCO)

  7. A minimalist operating mode for UKIRT

    NASA Astrophysics Data System (ADS)

    Kerr, Tom; Davis, Gary R.; Craig, Simon C.; Walther, Craig; Chuter, Tim

    2012-09-01

    In late 2010, driven by funding pressure from its governing body, the United Kingdom Infrared Telescope (UKIRT) underwent the most significant operational change in its history culminating in a new "minimalist mode" operation. Since 13th December 2010 this telescope, situated at the summit of Mauna Kea, Hawaii, has been operated remotely from the Joint Astronomy Centre in Hilo, with a priority on completing the UKIRT Infrared Deep Sky Survey (UKIDSS) but also continued support of other international programmes. In mid-2012, while remaining in minimalist mode, the observatory plans to start a new and ambitious near-infrared survey of the northern sky called the UKIRT Hemisphere Survey. The change to minimalist mode has resulted in the following: the cost of running the observatory has been reduced from 3.9M to 2.0M yet despite the changes, which included a reduction in staff and support, the UKIRT continues to operate at 90% efficiency, a level it has operated at for the last several years. The fault rate remains extremely low (approximately 3%) and has not been affected by remote operations and up until February 2012 no time-losing faults were attributed to operating remotely. This paper discusses the motivations behind the change to minimalist mode, the new mode of operation itself, the effect, if any, of the change on operational efficiency and the challenges facing a remotely operated telescope at a remote mountain site.

  8. Scalable Geiger/APD/PIN multi-channel sensing platform

    NASA Astrophysics Data System (ADS)

    Buckley, Steve; Bellis, Stephen; Wilcock, Reuben; Mathewson, Alan; Jackson, J. Carlton

    2006-02-01

    Previous generation low light detection platforms have been based on the photomultiplier tube (PMT) or the silicon single photon counting module (SPCM) from Perkin Elmer1. A new generation of silicon CMOS compatible photon counting sensors are being developed offering high quantum efficiency, low operating voltage, high levels of robustness and compatibility with CMOS processing for integration into large format imaging arrays. This latest generation yields a new detector for emerging applications which demand photon counting performance providing high performance and flexibility not possible to date. We describe a 4-channel photon detection platform, which allows the use of 4 separate photon counting detectors in either free space or fibre-coupled mode. The platform is scalable up to 16 channels with plug in modules allowing active quenching or Peltier cooling as required. A graphical user interface allows feedback and control of all device parameters. We show a novel ability to integrate separate detection modules to extend the dynamic range of the system. This allows a PIN or APD mode detector to be used alongside sensitive photon counting detectors. An advanced FPGA and microcontroller interface has been designed which allows simultaneous time binning of counting rates and readout of the analog signals when used with linear detectors. This new architecture will be discussed, presenting a full characterization of count rate, quantum efficiency, time binning and sensitivity across the broad spectrum of light flux applicable to PIN diodes, APDs and Geiger-mode photon counting sensors.

  9. Operation Modes of HV/MV Substations

    NASA Astrophysics Data System (ADS)

    Survilo, Josifs; Kutjuns, Antons

    2009-01-01

    A distribution network consists of high voltage grid, medium voltage grid, and low voltage grid. Medium voltage grid is connected to high voltage grid via substations with HV/MV transformers. The substation may contain one, mostly two but sometimes even more transformers. Out of reliability and expenditure considerations the two transformer option prevail over others mentioned. For two transformer substation, there may be made choice out of several operation modes: 1) two (small) transformers, with rated power each over 0.7 of maximum substation load, permanently in operation; 2) one (big) transformer, with rated power over maximum substation load, permanently in operation and small transformer in constant cold reserve; 3) big transformer in operation in cold season, small transformer-in warm one. Considering transformer load losses and no load losses and observing transformer loading factor β it can be said that the mode 1) is less advantageous. The least power losses has the mode 3). There may be singled out yet three extra modes of two transformer substations: 4) two big transformers in permanent operation; 5) one big transformer permanently in operation and one such transformer in cold reserve; 6) two small transformers in operation in cold season of the year, in warm season-one small transformer on duty. At present mostly two transformers of equal power each are installed on substations and in operation is one of them, hence extra mode 5). When one transformer becomes faulty, it can be changed for smaller one and the third operation mode can be practiced. Extra mode 4) is unpractical in all aspects. The mode 6) has greater losses than the mode 3) and is not considered in detail. To prove the advantage of the third mode in sense of power losses, the notion of effective utilization time of power losses was introduced and it was proven that relative value of this quantity diminishes with loading factor β. The use of advantageous substation option would make it

  10. The S-ordered Operator Expansions of One-mode and Two-mode Fresnel Operators and their Applications

    NASA Astrophysics Data System (ADS)

    Du, Jian-ming; Ren, Gang; Yu, Hai-jun; Zhang, Wen-hai

    2016-08-01

    By using the technique of integration within the s-ordered product of operators (IWSOP), we first deduce the s-ordered expansion of the one-mode and two-mode Fresnel operators. Employing the s-ordered operator expansion formula, the matrix elements of one-mode and two-mode Fresnel operator in the number state representation are also obtained, respectively.

  11. Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.

    2006-01-01

    The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.

  12. Extracting Operating Modes from Building Electrical Load Data: Preprint

    SciTech Connect

    Frank, S.; Polese, L. G.; Rader, E.; Sheppy, M.; Smith, J.

    2012-01-01

    Empirical techniques for characterizing electrical energy use now play a key role in reducing electricity consumption, particularly miscellaneous electrical loads, in buildings. Identifying device operating modes (mode extraction) creates a better understanding of both device and system behaviors. Using clustering to extract operating modes from electrical load data can provide valuable insights into device behavior and identify opportunities for energy savings. We present a fast and effective heuristic clustering method to identify and extract operating modes in electrical load data.

  13. Dual-Mode Scramjet Flameholding Operability Measurements

    NASA Technical Reports Server (NTRS)

    Donohue, James M.

    2012-01-01

    Flameholding measurements were made in two different direct connect combustor facilities that were designed to simulate a cavity flameholder in the flowfield of a hydrocarbon fueled dual-mode scramjet combustor. The presence of a shocktrain upstream of the flameholder has a significant impact on the inlet flow to the combustor and on the flameholding limits. A throttle was installed in the downstream end of the test rigs to provide the needed back-pressurization and decouple the operation of the flameholder from the backpressure formed by heat release and thermal choking, as in a flight engine. Measurements were made primarily with ethylene fuel but a limited number of tests were also performed with heated gaseous JP-7 fuel injection. The flameholding limits were measured by ramping inlet air temperature down until blowout was observed. The tests performed in the United Technologies Research Center (UTRC) facility used a hydrogen fueled vitiated air heater, Mach 2.2 and 3.3 inlet nozzles, a scramjet combustor rig with a 1.666 by 6 inch inlet and a 0.65 inch deep cavity. Mean blowout temperature measured at the baseline condition with ethylene fuel, the Mach 2.2 inlet and a cavity pressure of 21 psia was 1502 oR. Flameholding sensitivity to a variety of parameters was assessed. Blowout temperature was found to be most sensitive to fuel injection location and fuel flowrates and surprisingly insensitive to operating pressure (by varying both back-pressurization and inlet flowrate) and inlet Mach number. Video imaging through both the bottom and side wall windows was collected simultaneously and showed that the flame structure was quite unsteady with significant lateral movements as well as movement upstream of the flameholder. Experiments in the University of Virginia (UVa) test facility used a Mach 2 inlet nozzle with a 1 inch by 1.5 inch exit cross section, an aspect ratio of 1.5 versus 3.6 in the UTRC facility. The UVa facility tests were designed to measure the

  14. Harmonic gyrotrons operating in high-order symmetric modes

    SciTech Connect

    Nusinovich, Gregory S.; Kashyn, Dmytro G.; Antonsen, T. M.

    2015-01-05

    It is shown that gyrotrons operating at cyclotron harmonics can be designed for operation in symmetric TE{sub 0,p}-modes. Such operation in fundamental harmonic gyrotrons is possible only at small radial indices (p≤3) because of the severe mode competition with TE{sub 2,p}-modes, which are equally coupled to annular beams as the symmetric modes. At cyclotron harmonics, however, this “degeneracy” of coupling is absent, and there is a region in the parameter space where harmonic gyrotrons can steadily operate in symmetric modes. This fact is especially important for sub-THz and THz-range gyrotrons where ohmic losses limit the power achievable in continuous-wave and high duty cycle regimes.

  15. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  16. Charging system with galvanic isolation and multiple operating modes

    SciTech Connect

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  17. Stability of gyrotron operation in very high-order modes

    SciTech Connect

    Sinitsyn, O. V.; Nusinovich, G. S.; Antonsen, T. M. Jr.

    2012-06-15

    This study was motivated by the desire to increase the power, which can be delivered by gyrotrons in long pulse and continuous regimes. Since the admissible power level is determined by the density of ohmic losses in resonator walls, to increase the radiated power a gyrotron should operate in higher order modes. Using an existing gyrotron developed for plasma experiments in the International Thermonuclear Experimental Reactor as a base model, the stability of operation of such a gyrotron in modes with larger number of radial variations was studied. It is shown that the power level achievable in such gyrotrons in stable single mode regimes is close to 1.5 MW. The power level 1.7-1.8 MW can be realized in regimes where the oscillations of the desired mode are accompanied by excitation of distant sidebands whose power is about 1% level of the power of the operating mode. Finally, in the case of operation at the 2-MW level, either the desired mode loses its stability and is replaced by less efficient oscillations of a mode with a smaller azimuthal index or oscillations of the operating mode are accompanied by excitation of sidebands with equally spaced frequencies.

  18. Simulation and Analysis of the Hybrid Operating Mode in ITER

    SciTech Connect

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-09-22

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.

  19. Computational analysis of scramjet dual mode operation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    One critical element in the design of a Scramjet is the detailed understanding of the complex flow field in the engine during various phases of operation. One area of interest is the computation of chemically reacting flows in the vicinity of flame holders. The characteristics of a method for solving the Navier-Stokes equations with chemical reactions are proposed. Also of interest are the flame holding characteristics of simple ramp and rearward facing steps. Both of these configurations are considered candidates for Scramjet flame holders.

  20. Proving Chaotic Behavior of CBC Mode of Operation

    NASA Astrophysics Data System (ADS)

    Abidi, Abdessalem; Wang, Qianxue; Bouallegue, Belgacem; Machhout, Mohsen; Guyeux, Christophe

    2016-06-01

    The cipher block chaining (CBC) mode of operation was invented by IBM (International Business Machine) in 1976. It presents a very popular way of encrypting that is used in various applications. In this paper, we have mathematically proven that, under some conditions, the CBC mode of operation can admit a chaotic behavior according to Devaney. Some cases will be properly studied in order to provide evidence for this idea.

  1. A generic mode selection strategy for high-order mode gyrotrons operating at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Franck, Joachim; Avramidis, Konstantinos; Gantenbein, Gerd; Illy, Stefan; Jin, Jianbo; Thumm, Manfred; Jelonnek, John

    2015-01-01

    High-power, high-frequency gyrotrons for electron cyclotron resonance heating and current drive, such as proposed for the demonstration thermonuclear fusion reactor DEMO, require operating modes of very high order. As it is shown, the selection of the operating modes for such gyrotrons can be based on multi-frequency operability. A general selection strategy is derived, suitable for multi-purpose multi-frequency gyrotrons with quasi-optical mode converter and single-disc output window. Two examples, one of them relevant for future DEMO gyrotron designs, are discussed.

  2. Alternate Operating Modes For NDCX-II

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.

    2012-10-01

    NDCX-II is a newly completed accelerator facility at LBNL, built to study ion-heated warm dense matter and aspects of ion-driven targets for inertial-fusion energy. The baseline design calls for using twelve induction cells to accelerate 40 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. For operational flexibility, the option of using a helium plasma source is also being investigated. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. Each of these options requires development of an alternate acceleration schedule and the associated transverse focusing. The schedules here are first worked out with a fast-running 1-D particle-in-cell code ASP, then 2-D and 3-D Warp simulations are used to verify the 1-D results and to design transverse focusing.

  3. Plasma Oscillations and Operational Modes in Hall Effect Thrusters

    NASA Astrophysics Data System (ADS)

    Sekerak, Michael J.

    Mode transitions have been commonly observed in Hall effect thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. In this study, mode transitions in HETs are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with high-speed probes and ultra-fast imaging. Two primary oscillatory modes were identified and extensively characterized called global oscillation mode and local oscillation mode. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of spokes. These spokes are localized oscillations in discharge current density propagating in the E x B direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean discharge current density value. The spoke velocity is determined from high-speed image analysis using three methods yielding values between 1500 and 2200 m/s across a range of magnetic field settings. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. It is proposed that mode transitions represent de-stabilization of the ionization front similar to excitation of the well-studied Hall thruster breathing mode, which is supported by time-resolved simulations of the discharge channel plasma. The thrust is approximately constant in both modes, but the thrust-to-power and anode efficiency decrease in global mode

  4. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    NASA Astrophysics Data System (ADS)

    Chirkov, A. V.; Denisov, G. G.; Kuftin, A. N.

    2015-06-01

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator.

  5. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    SciTech Connect

    Chirkov, A. V.; Kuftin, A. N.; Denisov, G. G.

    2015-06-29

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator.

  6. A Current-Mode Common-Mode Feedback Circuit (CMFB) with Rail-to-Rail Operation

    NASA Astrophysics Data System (ADS)

    Suadet, Apirak; Kasemsuwan, Varakorn

    2011-03-01

    This paper presents a current-mode common-mode feedback (CMFB) circuit with rail-to-rail operation. The CMFB is a stand-alone circuit, which can be connected to any low voltage transconductor without changing or upsetting the existing circuit. The proposed CMFB employs current mirrors, operating as common-mode detector and current amplifier to enhance the loop gain of the CMFB. The circuit employs positive feedback to enhance the output impedance and gain. The circuit has been designed using a 0.18 μm CMOS technology under 1V supply and analyzed using HSPICE with BSIM3V3 device models. A pseudo-differential amplifier using two common sources and the proposed CMFB shows rail to rail output swing (± 0.7 V) with low common-mode gain (-36 dB) and power dissipation of 390 μW.

  7. Operator performance with alternative manual control modes in teleoperation

    NASA Technical Reports Server (NTRS)

    Das, H.; Zak, H.; Kim, W. S.; Bejczy, A. K.; Schenker, P. S.

    1992-01-01

    Recent experiments conducted at the JPL comparing alternative manual control modes using the JPL Advanced Teleoperator system are described. Of particular interest were control modes that provide force reflection to the operator. The task selected for the experiment is a portion of the Solar Maximum Satellite Repair procedure we developed to demonstrate the repair of the Solar Maximum Satellite with teleoperators. The seven manual control modes evaluated in the experiment are combinations of manual position or resolved motion rate control with alternative control schemes for force reflection and remote manipulator compliance. Performance measures used were task completion times, average force and torque exerted during the execution of the task, and cumulative force and torque exerted. The results were statistically analyzed and they show that, in general, force reflection significantly improves operator performance and indicate that a specific force-reflecting scheme may yield the best performance among the control modes we tested. Also, our experiment showed that, for the selected task, the position control modes were preferable to the rate control modes and slave manipulator compliance reduced task interaction forces and torques.

  8. Characterization of pseudosingle bunch kick-and-cancel operational mode

    NASA Astrophysics Data System (ADS)

    Sun, C.; Robin, D. S.; Steier, C.; Portmann, G.

    2015-12-01

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.

  9. Large-mode-area fibers operating near single-mode regime.

    PubMed

    Kong, Fanting; Dunn, Christopher; Parsons, Joshua; Kalichevsky-Dong, Monica T; Hawkins, Thomas W; Jones, Maxwell; Dong, Liang

    2016-05-16

    Lower NA in large-mode-area fibers enables better single-mode operation and larger core diameters. Fiber NA has traditionally been limited to 0.06, mostly due to the control tolerance in the fabrication process. It has been recognized recently that transverse mode instability is a major limit to average power scaling in fiber lasers. One effective method to mitigate this limit is to operate nearer to the single-mode regime. Lower fiber NA is critical in this since it allows relatively larger core diameters which is the key to mitigate the limits imposed by nonlinear effects. We have developed a fabrication process of ytterbium-doped silica glass which is capable of highly accurate refractive index control and sufficient uniformity for LMA fibers. This process is also capable of large-volume production. It is based on a significant amount of post-processing once the fiber preforms are made. We have demonstrated 30/400 and 40/400 LMA fibers with a NA of ~0.028 operating very close to the single-mode regime. The second-order mode cuts off at ~1.2μm and ~1.55µm respectively. We have also studied issues related to bend losses due to the low NA and further optimization of LMA fibers. PMID:27409854

  10. Surface wave and linear operating mode of a plasma antenna

    NASA Astrophysics Data System (ADS)

    Bogachev, N. N.; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A.

    2015-10-01

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.

  11. Performances of Induction System for Nanosecond Mode Operation

    SciTech Connect

    Krasnykh, Anatoly; /SLAC

    2006-05-16

    An induction system comprises an array of single turn pulse transformers. Ferromagnetic cores of transformers are toroids that are stacked along the longitudinal core axis. Another name for this array is a fraction transformer or an adder. The primary and secondary windings of such a design have one turn. The step up mode is based on the number of primary pulse sources. The secondary windings are connected in series. Performances of such a system for the nanosecond range mode operation are different in comparison to the performances of traditional multi-turn pulse transformers, which are working on a 100+ nanosecond mode operation. In this paper, the author discusses which aspects are necessary to take into account for the high power nanosecond fractional transformer designs. The engineering method of the nanosecond induction system design is presented.

  12. Surface wave and linear operating mode of a plasma antenna

    SciTech Connect

    Bogachev, N. N. Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A.

    2015-10-15

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.

  13. Circuit breaker operation and potential failure modes during an earthquake

    SciTech Connect

    Lambert, H.E.; Budnitz, R.J.

    1987-01-01

    This study addresses the effect of a strong-motion earthquake on circuit breaker operation. It focuses on the loss of offsite power (LOSP) transient caused by a strong-motion earthquake at the Zion Nuclear Power Plant. This paper also describes the operator action necessary to prevent core melt if the above circuit breaker failure modes occur simultaneously on three 4.16 KV buses. Numerous circuit breakers important to plant safety, such as circuit breakers to diesel generators and engineered safety systems (ESS), must open and/or close during this transient while strong motion is occurring. Potential seismically-induced circuit-breaker failures modes were uncovered while the study was conducted. These failure modes include: circuit breaker fails to close; circuit breaker trips inadvertently; circuit breaker fails to reclose after trip. The causes of these failure modes include: Relay chatter causes the circuit breaker to trip; Relay chatter causes anti-pumping relays to seal-in which prevents automatic closure of circuit breakers; Load sequencer failures. The incorporation of these failure modes as well as other instrumentation and control failures into a limited scope seismic probabilistic risk assessment is also discussed in this paper.

  14. Star Mode - The improved operating regime of a Fusor

    NASA Astrophysics Data System (ADS)

    Lilley, Matthew; Niasse, Nicolas

    2013-10-01

    It was found in 1997, by G. H. Miley, that Fusors can operate in a regime where the effective transparency of the accelerating grid is greatly enhanced over the value one would traditionally expect from considering the fraction of area taken up by the grid wires. This ``Star Mode'' reduces the heating of the grid wires and so should in principle allow smaller devices to be constructed. At present there is no satisfactory explanation for this Star Mode. In this presentation we revisit some of the basic ideas and offer some new insights into the problem by considering how the discrete symmetry of the system affects the stability of the individual particle orbits.

  15. Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Chin, Jeffrey C.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2011-01-01

    Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance.

  16. Single-mode operation of a coiled multimode fiber amplifier

    SciTech Connect

    Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew

    2000-04-01

    We report a new approach to obtaining single-transverse-mode operation of a multimode fiber amplifier in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. We demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 {mu}m and a numerical aperture of {approx}0.1 (V{approx_equal}7.4) . When the amplifier was operated as an amplified-spontaneous-emission source, the output beam had an M{sup 2} value of 1.09{+-}0.09 ; when seeded at 1064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality. (c) 2000 Optical Society of America.

  17. Continuous-mode operation of a noiseless linear amplifier

    NASA Astrophysics Data System (ADS)

    Li, Yi; Carvalho, André R. R.; James, Matthew R.

    2016-05-01

    We develop a dynamical model to describe the operation of the nondeterministic noiseless linear amplifier (NLA) in the regime of continuous-mode inputs. We analyze the dynamics conditioned on the detection of photons and show that the amplification gain depends on detection times and on the temporal profile of the input state and the auxiliary single-photon state required by the NLA. We also show that the output amplified state inherits the pulse shape of the ancilla photon.

  18. Characterization of Al0.8Ga0.2As geiger photodiode

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Ren, Min; Chen, Yaojia; Johnson, E. B.; Campbell, Joe C.; Christian, James F.

    2015-08-01

    Solid-state photomultipliers (SSPM) are high gain photodetectors composed of Geiger photodiodes (GPD) operating above device breakdown voltage. In scintillation based radiation detection applications, SSPMs fabricated using silicon (SiPMs, MPPCs, etc) provide a compact, low cost alternative to photomultiplier tubes (PMTs), however, the high dark count rate due to its low band-gap (1.1eV) limits the signal-to-noise performance as the silicon SSPM is scaled to large areas. SSPMs fabricated in materials with a larger band-gap have the potential to surmount the performance limitations experienced by silicon. AlGaAs is a material that provides a bandgap from 1.55eV to 2.13 eV, depending on Al concentration. Using high Al concentration AlGaAs to engineer a wideband- gap (>2eV) SSPM is very desirable in terms of reducing dark noise, which promises better signal-to-noise performances when large detector areas is needed. This work describes the development of Geiger photodiodes (GPDs), the individual elements of a SSPM, fabricated in AlGaAs with 80% Al concentration. We present the design of the GPDs, the fabrication process, along with characterization data of fabricated GPD samples. To the best of our knowledge, we have demonstrated for the first time, a passively quenched Geiger photodiode in Al0.8Ga0.2As.

  19. Criticality Detection Using a Mirion Technologies DRM-2NC Remote Area Monitor Geiger-Mueller Probe

    NASA Astrophysics Data System (ADS)

    Kryskow, Adam P.

    The prompt fission neutron activation and subsequent response of a DRM-2NC Geiger-Mueller probe (manufactured by Mirion Technologies) was investigated for the purpose of creating a criticality accident detection algorithm with sensitivity and false positive suppression comparable to modern criticality accident detection systems. The expected decay pattern of secondary emissions arising from the neutron induced activity of the Geiger-Mueller probe was investigated experimentally in high neutron fluence environments at research reactors operated by the University of Massachusetts Lowell, Pennsylvania State University, and the White Sands Missile Range of Los Alamos National Laboratory. Monte Carlo techniques were used to both identify key probe materials responsible for the majority of the Geiger-Mueller response and investigate the effects of boron doping to increase detector sensitivity and enhance the signal to noise ratio. Subsequently, a statistical algorithm centered on a point weighted linear regression of the combined effective half-life was developed as the basis for criticality declaration. Final testing of the system indicated that the system was capable of meeting all ANSI criticality accident criteria with sufficient sensitivity to the minimum accident of concern, an adequate response time, and an extremely low likelihood of false alarm.

  20. Seismic transmission operator reciprocity - II: impedance-operator symmetry via elastic lateral modes

    NASA Astrophysics Data System (ADS)

    Thomson, C. J.

    2015-08-01

    The properties of the overburden transmission response are of particular interest for the analysis of reflectivity illumination or blurring in seismic depth imaging. The first step to showing a transmission-operator reciprocity property is to identify the symmetry of the so-called displacement-to-traction operators. The latter are analogous to Dirichlet-to-Neumann operators and they may also be called impedance operators. Their symmetry is deduced here after development of a formal spectral or modal theory of lateral wavefunctions in a laterally heterogeneous generally anisotropic elastic medium. The elastic lateral modes are displacement-traction 6-vectors and they are built from two auxiliary 3-vector lateral-mode bases. These auxiliary modes arise from Hermitian and anti-Hermitian operators, so they have familiar properties such as orthogonality. There is no assumption of down/up symmetry of the elasticity tensor, but basic assumptions are made about the existence and completeness of the elastic modes. A point-symmetry property appears and plays a central role. The 6-vector elastic modes have a symplectic orthogonality property, which facilitates the development of modal expansions for 6-vector functions of the lateral coordinates when completeness is assumed. While the elastic modal theory is consistent with the laterally homogeneous case, numerical work would provide confidence that it is correct in general. An appendix contains an introductory overview of acoustic lateral modes that were studied by other authors, given from the perspective of this new work. A distinction is drawn between unit normalization of scalar auxiliary modes and a separate energy-flux normalization of 2-vector acoustic modes. Neither is crucial to the form of acoustic pressure-to-velocity or impedance operators. This statement carries over to the elastic case for the 3-vector auxiliary- and 6-vector elastic-mode normalizations. The modal theory is used to construct the kernel of the

  1. Comparison of collision operators for the geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Li, Yang; Gao, Zhe

    2015-04-01

    The collisional damping rate and real frequency of the geodesic acoustic mode (GAM) are solved from a drift kinetic model with different collision operators. As the ion collision rate increases, the damping rate increases at low collision rate but decays at high ion collision rate. Different collision operators do not change the overall trend but influence the magnitude of the damping rate. The collision damping is much overestimated with the number-conserving-only Krook operator; on the other hand, using the Lorentz operator with a constant collision rate, the damping is overestimated at low collision rate but underestimated at high collision rate. The results from the Krook operator with both number and energy conservation terms, the Lorentz operator with an energy-dependent collision rate and the full Hirshman-Sigmar-Clarke collision operator are very close. Meanwhile, as the ion collision rate increases, the GAM frequency decreases from the collisionless value, \\sqrt {7/4+τ} {vti}/R , to \\sqrt {1+τ} {vti}/R for the number-conserving-only Krook operator, but to \\sqrt {5/3+τ} {vti}/R for the other four operators, which conserve both number and energy, where τ, vti and R are the ratio of electron temperature to ion temperature, the ion thermal velocity and the major radius, respectively. The results imply that the property of energy conservation of the collision operator is important to the dynamics of the GAM as well as that of number conservation, which may provide guidance in choosing collision operators in further study of the zonal flow (ZF) dynamics, such as the nonlinear simulation of the ZF-turbulence system.

  2. Operation of a tokamak reactor in the radiative improved mode

    NASA Astrophysics Data System (ADS)

    Morozov, D. Kh.; Mavrin, A. A.

    2016-03-01

    The operation of a nuclear fusion reactor has been simulated within a model based on experimental results obtained at the TEXTOR-94 tokamak and other facilities in which quasistationary regimes were achieved with long confinement times, high densities, and absence of the edge-localized mode. The radiative improved mode of confinement studied in detail at the TEXTOR-94 tokamak is the most interesting such regime. One of the most important problems of modern tokamaks is the problem of a very high thermal load on a divertor (or a limiter). This problem is quite easily solved in the radiative improved mode. Since a significant fraction of the thermal energy is reemitted by an impurity, the thermal loading is significantly reduced. As the energy confinement time τ E at high densities in the indicated mode is significantly larger than the time predicted by the scaling of ITERH-98P(y, 2), ignition can be achieved in a facility much smaller than the ITER facility at plasma temperatures below 20 keV. The revealed decrease in the degradation of the confinement time τ E with an increase in the introduced power has been analyzed.

  3. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2004-03-08

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  4. PT-1 Plasmoid Thruster Capable of Multi-Mode Operation

    NASA Technical Reports Server (NTRS)

    Miller, Robert; Rose, Frank; Eskridge, Richard; Martin, Adam; Alam, Mohammed

    2008-01-01

    This slide presentation reviews the concept of a Plasmoid Thruster that is capable of operating in several different modes. A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic fields. A plasmoid thruster would operate by repetitively producing plasmoids that are accelerated to high velocity. The process is inductive, and the magnetic structure of the plasmoid suppresses thermal and mass losses, and improves detachment of the exhaust. The Drive and Bias circuits, the gas distribution, the pre-ionization stage, and the operation sequence are detailed. The advantages of the Plasmoid thruster and the research and technology required for development of this form of propulsion is reviewed.

  5. Operating Modes of a Teeter-Rotor Wind Turbine

    SciTech Connect

    Bir, G. S.; Stol, K.

    1999-02-25

    We examine the operating modes of a two-bladed teetered wind turbine. Because of the gyroscopic asymmetry of its rotor, this turbine's dynamics can be quite distinct from those of a turbine with three or more blades. This asymmetry leads to system equations with periodic coefficients that are solved using the Floquet approach to extract the correct modal parameters. The system equations are derived using a simple analytical model with four degrees of freedom: cacelle yaw, rotor teeter, and flapping associated with each blade. Results confirm that the turbine modes become more dominated by the centrifugal and gyroscopic effects as the rotor speed increases. They gyroscopic effect may also cause dynamic instability. Under certain design conditions, yaw and teeter modal frequencies may coalesce.

  6. Mevva ion source operated in purely gaseous mode

    SciTech Connect

    Yushkov, G.Y.; MacGill, R.A.; Brown, I. G.

    2003-03-27

    We have operated a vacuum arc ion source in such a way as to form beams of purely gaseous ions. The vacuum arc configuration that is conventionally used to produce intense beams of metal ions was altered so as to form gaseous ion beams, with only minimal changes to the external circuitry and no changes at all internally to the ion source. In our experiments we formed beams from oxygen (O{sup +} and O{sub 2}{sup +}), nitrogen (N{sup +} and N{sub 2}{sup +}), argon (Ar{sup +}) and carbon dioxide (C{sup +}, CO{sub 2}{sup +}, O{sup +} and O{sub 2}{sup +}) at extraction voltage of 2 to 50 kV. We used a pulsed mode of operation, with beam pulses approximately 50 milliseconds long and repetition rate 10 pulses per second, for a duty cycle of about 50%. Downstream ion beam current as measured by a 5 cm diameter Faraday cup was typically 0.5 mA pulse or about 250 {micro}A time averaged. This time averaged beam current is very similar to that obtained for metal ions when the source is operated in the usual vacuum arc mode. Here we describe the modifications made to the source and the results of our investigations.

  7. Single-photon sensitive Geiger-mode LADAR cameras

    NASA Astrophysics Data System (ADS)

    Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; McDonald, Paul; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison

    2012-10-01

    Three-dimensional (3D) imaging with Short wavelength infrared (SWIR) Laser Detection and Range (LADAR) systems have been successfully demonstrated on various platforms. It has been quickly adopted in many military and civilian applications. In order to minimize the LADAR system size, weight, and power (SWAP), it is highly desirable to maximize the camera sensitivity. Recently Spectrolab has demonstrated a compact 32x32 LADAR camera with single photo-level sensitivity at 1064. This camera has many special features such as non-uniform bias correction, variable range gate width from 2 microseconds to 6 microseconds, windowing for smaller arrays, and short pixel protection. Boeing integrated this camera with a 1.06 μm pulse laser on various platforms and demonstrated 3D imaging. The features and recent test results of the 32x128 camera under development will be introduced.

  8. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmasa)

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Burrell, K. H.; Eldon, D.; Grierson, B. A.; Hanson, J. M.; Holland, C.; Huijsmans, G. T. A.; Liu, F.; Loarte, A.; Meneghini, O.; Osborne, T. H.; Paz-Soldan, C.; Smith, S. P.; Snyder, P. B.; Solomon, W. M.; Turnbull, A. D.; Zeng, L.

    2015-05-01

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER-like shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory, the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. The DIII-D results are in excellent agreement with these predictions, and nonlinear magnetohydrodynamic analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named "Super H-mode" because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.

  9. Mode Tracker for Mode-Hop-Free Operation of a Laser

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard; Tittel, Frank K.; Curl, Robert F.

    2010-01-01

    A mode-tracking system that includes a mode-controlling subsystem has been incorporated into an external-cavity (EC) quantum cascade laser that operates in a mid-infrared wavelength range. The mode-tracking system makes it possible to perform mode-hop-free wavelength scans, as needed for high-resolution spectroscopy and detection of trace gases. The laser includes a gain chip, a beam-collimating lens, and a diffraction grating. The grating is mounted on a platform, the position of which can be varied to effect independent control of the EC length and the grating angle. The position actuators include a piezoelectric stage for translation control and a motorized stage for coarse rotation control equipped with a piezoelectric actuator for fine rotation control. Together, these actuators enable control of the EC length over a range of about 90 m with a resolution of 0.9 nm, and control of the grating angle over a coarse-tuning range of +/-6.3deg and a fine-tuning range of +/-520 microrad with a resolution of 10 nrad. A mirror mounted on the platform with the grating assures always the same direction of the output laser beam.

  10. Higher Order Mode Coupler Heating in Continuous Wave Operation

    NASA Astrophysics Data System (ADS)

    Solyak, N.; Awida, M.; Hocker, A.; Khabibobulline, T.; Lunin, A.

    Electromagnetic heating due to higher order modes (HOM) propagation is particularly a concern for continuous wave (CW) particle accelerator machines. Power on the order of several watts could flow out of the cavity's HOM ports in CW operations. The upgrade of the Linac Coherent Light Source (LCLS-II) at SLAC requires a major modification of the design of the higher order mode (HOM) antenna and feed through of the conventional ILC elliptical 9-cell cavity in order to utilize it for LCLS-II. The HOM antenna is required to bear higher RF losses, while relatively maintaining the coupling level of the higher order modes. In this paper, we present a detailed analysis of the heating expected in the HOM coupler with a thorough thermal quench study in comparison with the conventional ILC design. We discuss also how the heat will be removed from the cavity through RF cables with specially designed cooling straps. Finally, we report on the latest experimental results of cavity testing in vertical and horizontal cryostats.

  11. Simulation of operation modes of a centrifugal conductive magnetohydrodynamic pump

    NASA Astrophysics Data System (ADS)

    Katsnelson, S. S.; Pozdnyakov, G. A.

    2013-09-01

    A mathematical model of a centrifugal conductive magnetohydrodynamic (MHD) pump that calculates the distributions of velocity, current density, and pressure along the channel is developed. The viscous forces in the original system of MHD equations are taken into account on the basis of the known square law of the drag for a turbulent flow in a pipe, generalized for the case of plane flows in a channel. Dependences of the drag coefficient on the main governing parameters (metal flow rate, current intensity, and intensity of magnetic induction), which provide the agreement of the calculated and experimental data on the pressure at the pump outlet for different operation modes, are obtained. It is shown that these dependences have a universal character and the proposed model can be used to design pumps of this type and to manage their operation in production industry.

  12. Single-mode operation of a coiled multimode fiber amplifier

    SciTech Connect

    Jeffrey P. Koplow; Dahv A. V. Kliner; Lew Goldberg

    2000-01-19

    The authors report a new approach to obtain single-transverse-mode operation of a multimode fiber amplifier, in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. They have demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 {micro}m and NA of {minus}0.1 (V {approx} 7.4). When operated as an ASE source, the output beam had an M{sup 2} value of 1.09 {+-} 0.09; when seeded at 1,064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique does not require exotic fiber designs or increase system complexity and is inexpensive to implement. It will allow scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality.

  13. An experimental study of a VVER reactor's steam generator model operating in the condensing mode

    NASA Astrophysics Data System (ADS)

    Morozov, A. V.; Remizov, O. V.

    2012-05-01

    Results obtained from an experimental study of a VVER reactor's steam generator model operating in the condensing mode are presented. The obtained empirical dependence for calculating the power of heat exchangers operating in the steam condensation mode is presented.

  14. Current Source Converters in Discontinuous Conduction Modes of Operation

    NASA Astrophysics Data System (ADS)

    Cuzner, Robert M.

    This work demonstrates that Current Source Rectifier (CSR) pulse-width modulation (PWM) can be successfully modified for discontinuous conduction mode (DCM). DCM is characterized by input current distortion and non-linear input to output voltage ratio. A Dead-Beat Current Injection (DBCI) PWM method is developed that ensures sinusoidal input currents and linear input to output voltage control while in DCM. A method for control analysis is proposed that enables design of the CSR closed loop voltage controller. The proposed method is simulated to show that the desired objectives are achieved at no load and very light load, where the CSR operates in an extreme DCM condition. Experimental results verify performance of the DBCI-PWM method and validate both simulation and analytical tools used to explore the capabilities of the approach. Index Terms---Active buck rectifier, Current source rectifier (CSR), current source PWM rectifier, power conversion, power converter design, power converter analysis, input power quality

  15. Single-mode operation of mushroom structure surface emitting lasers

    SciTech Connect

    Wang, Y.J.; Dziura, T.G.; Wang, S.C. ); Du, G.; Wang, S. )

    1991-01-01

    Mushroom structure vertical cavity surface emitting lasers with a 0.6 {mu}m GaAs active layer sandwiched by two Al{sub 0.6{sup {minus}}}Ga{sub 0.4}As-Al{sub 0.08}Ga{sub 0.92}As multilayers as top and bottom mirrors exhibit 15 mA pulsed threshold current at 880 nm. Single longitudinal and single transverse mode operation was achieved on lasers with a 5 {mu}m diameter active region at current levels near 2 {times} I{sub th}. The light output above threshold current was linearly polarized with a polarization ratio of 25:1.

  16. Three operation modes of the vitamin-D-biodosimeter

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina P.

    2016-04-01

    The original UV biodosimeter for an in situ monitoring of the vitamin-D-synthetic capacity of sunlight and/or artificial UV sources is based on the same photoreaction in vitro by which vitamin D is synthesized in human skin from initial provitamin D via photo- and thermo-induced monomolecular isomerizations. Therefore, targets for UV photons in the biodosimeter are the provitamin D molecules embedded in specially designed UV transparent and stable matrix. The dosimeter response to UV radiation is photoinduced conversion of provitamin D into previtamin D which is immediate precursor of vitamin D. Thus, biological `antirachitic' UV dose is determined by the amount of accumulated previtamin D. To follow the photoreaction course in real time three operation modes of varying complexity have been developed.

  17. Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis.

    PubMed

    Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-03-20

    The asymmetrical structure of photonic crystal fiber has been reported for a large mode area with the single-mode operation. The design works on the principle of bend-induced mode filtering. The proposed structure can be designed (i) by introducing down-doped material rods in place of nine air holes of the inner ring near the core of the structure and (ii) by increasing the diameter of the rest of the three air holes of the same ring in the direction of bending. These three air holes together with nine down-doped material rods control the mode field inside the core region and hence the bending losses of the modes. The single-mode operation is ensured by introducing high bend loss for the first higher order mode and very low bend loss for the fundamental mode. The finite-element-method-based anisotropic perfectly matched layer boundary condition has been applied for accurate analysis of bend loss of the structure. Numerical results show that effective single-mode operation can be ensured with a mode area as large as 1530  μm2 at bend state with a bend radius of 30 cm. The proposed photonic crystal optical fiber with such a large mode area can have potential applications in compact high-power delivery devices such as high-power fiber lasers and amplifiers. PMID:27140567

  18. Classification of US hydropower dams by their modes of operation

    DOE PAGESBeta

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; Bevelhimer, Mark S.

    2016-02-19

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less

  19. A Four-Quadrant Operation Diagram for Thermoelectric Modules in Heating-Cooling Mode and Generating Mode

    NASA Astrophysics Data System (ADS)

    Chimchavee, W.

    2011-05-01

    The operation of a thermoelectric module in heating-cooling mode, generating mode, and regenerating mode can be discussed in terms of power, cooling load, and current. A direct current machine in motoring mode and generating mode and an induction motor in motoring mode and regenerating mode are analogous to thermoelectric modules. Therefore, the first objective of this work is to present the four-quadrant (4-Q) operation diagram and the 4-Q equivalent circuits of thermoelectric modules in heating-cooling mode and generating mode. The second objective is to present the cooling and regenerating curves of a thermoelectric module in cooling mode and regenerating mode. The curves are composed from the cooling powers and the generating powers, the input and output current, the thermal resistance of the heat exchanger, and the different temperatures that exist between the hot and cold sides of the thermoelectric module. The methodology used to present the data involved drawing analogies between the mechanical system, the electrical system, and the thermal system; an experimental setup was also used. The experimental setup was built to test a thermoelectric module (TE2) in cooling mode and regenerating mode under conditions in which it was necessary to control the different temperatures on the hot and cold sides of TE2. Two thermoelectric modules were used to control the temperature. The cold side was controlled by a thermoelectric module labeled TE1, whereas the hot side was controlled by a second thermoelectric module labeled TE3. The results include the power, the cooling load, and the current of the thermoelectric module, which are analogous to the torque, the power, the speed, and the slip speed of a direct current machine and an induction motor. This 4-Q operation diagram, the 4-Q equivalent circuits, and the cooling and regenerating curves of the thermoelectric module can be used to analyze the bidirectional current and to select appropriate operating conditions in

  20. Operational mode analysis of the maps NTP system

    SciTech Connect

    Linet, F.L.; Bernard, S.; Carruge, D.; Poitevin, Y.; Raepsaet, X.

    1996-03-01

    Within the framework of the french NTP program MAPS, the analysis of the (start-up/shut-down) transient sequences whose negative impact on the specific impulsion Isp is important, requires the evaluation of the hydrogen system performance and consequently the development of a simulation computer program. This work induces a preliminary evaluation of the hydrogen system performance under nominal operating conditions. A first approach of the transient operating mode has been simultaneously performed; more specifically the evolution of the core during a shut-down sequence has been studied in order to improve the residual power evacuation and optimize necessary hydrogen amounts for cooling. Furthermore the {open_quote}{open_quote}SIMAPS{close_quote}{close_quote} computer program based on the 3D thermohydraulic code {open_quote}{open_quote}FLICA 4{close_quote}{close_quote} is being developed to analyze transient process and its benchmarking under nominal conditions is under way. Its summary presentation is given in conclusion. {copyright} {ital 1996 American Institute of Physics.}

  1. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas

    SciTech Connect

    Garofalo, A. M. Burrell, K. H.; Meneghini, O.; Osborne, T. H.; Paz-Soldan, C.; Smith, S. P.; Snyder, P. B.; Turnbull, A. D.; Eldon, D.; Grierson, B. A.; Solomon, W. M.; Hanson, J. M.; Holland, C.; Huijsmans, G. T. A.; Liu, F.; Loarte, A.; Zeng, L.

    2015-05-15

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER-like shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory, the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. The DIII-D results are in excellent agreement with these predictions, and nonlinear magnetohydrodynamic analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.

  2. Signal propagation through feedforward neuronal networks with different operational modes

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Feng; Xu, Ding; Wang, Wei

    2009-02-01

    How neuronal activity is propagated across multiple layers of neurons is a fundamental issue in neuroscience. Using numerical simulations, we explored how the operational mode of neurons —coincidence detector or temporal integrator— could affect the propagation of rate signals through a 10-layer feedforward network with sparse connectivity. Our study was based on two kinds of neuron models. The Hodgkin-Huxley (HH) neuron can function as a coincidence detector, while the leaky integrate-and-fire (LIF) neuron can act as a temporal integrator. When white noise is afferent to the input layer, rate signals can be stably propagated through both networks, while neurons in deeper layers fire synchronously in the absence of background noise; but the underlying mechanism for the development of synchrony is different. When an aperiodic signal is presented, the network of HH neurons can represent the temporal structure of the signal in firing rate. Meanwhile, synchrony is well developed and is resistant to background noise. In contrast, rate signals are somewhat distorted during the propagation through the network of LIF neurons, and only weak synchrony occurs in deeper layers. That is, coincidence detectors have a performance advantage over temporal integrators in propagating rate signals. Therefore, given weak synaptic conductance and sparse connectivity between layers in both networks, synchrony does greatly subserve the propagation of rate signals with fidelity, and coincidence detection could be of considerable functional significance in cortical processing.

  3. Squeeze strengthening of magnetorheological fluids using mixed mode operation

    NASA Astrophysics Data System (ADS)

    Becnel, A. C.; Sherman, S. G.; Hu, W.; Wereley, N. M.

    2015-05-01

    This research details a novel method of increasing the shear yield stress of magnetorheological fluids by combining shear and squeeze modes of operation to manipulate particle chain structures, so-called squeeze strengthening. Using a custom built Searle cell magnetorheometer, which is a model device emulating a rotary magnetorheological energy absorber (MREA), the contribution of squeeze strengthening to the total controllable yield force is experimentally investigated. Using an eccentric rotating inner cylinder, characterization data from large (1 mm) and small (0.25 mm) nominal gap geometries are compared to investigate the squeeze strengthening effect. Details of the experimental setup and method are presented, and a hybrid model is used to explain experimental trends. This study demonstrates that it is feasible, utilizing squeeze strengthening to increase yield stress, to either (1) design a rotary MREA of a given volume to achieve higher energy absorption density (energy absorbed normalized by active fluid volume), or (2) reduce the volume of a given rotary MREA to achieve the same energy absorption density.

  4. Modal sensitivity analysis for single mode operation in large mode area fiber

    NASA Astrophysics Data System (ADS)

    Sévigny, Benoit; Zhang, Xiaoxing; Garneau, Marc; Faucher, Mathieu; Lizé, Yannick Keith; Holehouse, Nigel

    2008-02-01

    Most of the current large mode area (LMA) fibers are few-moded designs using a large, low numerical aperture (N.A.) core, which promotes mode coupling between core modes and increases bending losses (coupling with claddingmodes), which is undesirable both in terms ofmode area and beamquality. Furthermore, short LMA fiber lengths and small cladding diameters are needed to minimize nonlinear effects and maximize pump absorption respectively in high-power pulsed laser systems. Although gain fiber coiling is a widely used technique to filter-out unwanted modes in LMA fibers, coupling between modes can still occur in component leads and relay fibers. In relay fiber, light coupled into higher-order modes can subsequently be lost in the coiling or continue as higher-order modes, which has the overall effect of reducing the effective transmission of the LP 01 mode and degrading the beam quality. However, maximum transmission of the LP 01 mode is often required in order to have the best possible beam quality (minimal M2). Launching in an LMA fiber with a mode field adapter (MFA)1 provides an excellent way of ensuring maximum LP 01 coupling, but preservation of this mode requires highmodal stability in the output fiber. Small cladding, low N.A. LMA fibers have the disadvantage of being extremely sensitive to external forces in real-life applications, which is unwanted for systems where highly sensitive mode coupling can occur. In this paper, we present a detailed experimental and theoretical analysis of mode coupling sensitivity in LMA fibers as a function of fiber parameters such as N.A., core diameter and cladding diameter. Furthermore, we present the impact of higher N.A. as a solution to increase mode stability in terms of its effect on peak power, effective mode area and coupling efficiency.

  5. Gain Filtering for Single-Spatial-Mode Operation of Large-Mode-Area Fiber Amplifiers

    SciTech Connect

    Marciante, J.R.

    2009-02-06

    Gain filtering of higher order modes in large-mode-area fibers is an extremely robust method for providing diffraction-limited performance regardless of core diameter or input beam quality. Analytic calculations demonstrate that reducing the diameter of the gain dopants compared to the waveguide diameter produces differential gain that is higher for the fundamental mode than all other fiber modes at all saturation levels. Matching the gain dopant to the mode profile is not as beneficial as a simple step profile since the primarymechanism of gain filtering is to deny gain toward the edge of the waveguide where most of the higher order mode power is contained. Numerical simulations of multikilowatt fiber amplifiers with up to 100-μm-diameter cores show that gain filtering is extremely robust, providing 99% of the output power in the fundamental mode output with only 90% of the seed power in the fundamental mode. Even with poor seed launch with 50% of the power in the fundamental mode, gain filtering can provide up to 90% of the output power in the fundamental mode.

  6. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    SciTech Connect

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.

  7. Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Shutter, Lori A.; Narayan, Raj K.

    2010-02-01

    The dual-mode operation of a polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) piezoelectric polymer diaphragm, in a capacitive or resonant mode, is reported as a flexible intracranial pressure (ICP) sensor. The pressure sensor using a capacitive mode exhibits a higher linearity and less power consumption than resonant mode operated pressure sensor. In contrast, the latter provides better sensitivity and easier adaption for wireless application. The metrological properties of the dual-mode ICP sensor being described are satisfactory in vitro. We propose that the piezoelectric polymer diaphragm has a promising future in intracranial pressure monitoring.

  8. Single longitudinal mode operation of semiconductor laser arrays with etalon feedback

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1987-01-01

    The multiple longitudinal mode output of high-power diode-laser arrays is converted into single mode with 97 percent efficiency by optical feedback from a thin (less than 200-micron thick) etalon external to the laser. The coupled cavities formed by addition of the etalon favor a single longitudinal mode. Single-mode operation is retained at 0.1 MHz pulsed rates. Both the near-field and the far-field patterns of the laser array remain nearly unchanged while the array operates in a single longitudinal mode.

  9. Single longitudinal mode operation of semiconductor laser arrays with etalon control

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1986-01-01

    A simple method is devised to obtain a single longitudinal output beam from high-power multilongitudinal mode diode laser arrays. Mode control is achieved by simply placing a thin etalon in front of the laser. The three-cavity laser formed by addition of the etalon favors a single longitudinal mode. This technique is applicable to both continuous wave and pulsed laser modes of operation. Experimental results demonstrating the technique along with future work and possible applications are discussed.

  10. Electrically Tilted Liquid Crystal Display Mode for High Speed Operation

    NASA Astrophysics Data System (ADS)

    Gwag, Jin Seog; Kim, Jae Chang; Yoon, Tae-Hoon

    2006-09-01

    To develop liquid crystal displays suitable for moving picture, a liquid crystal display mode having an electrically tilted phase is proposed. This is realized by initially having a tilted liquid crystal with low bias voltage. We found that its measured response time is in good agreement with numerical calculation obtained using the Erickson-Leslie equation. The falling times were smaller than 10 ms with conventional driving and 6 ms with overdriving.

  11. Theoretical investigation of operation modes of MHD generators for energy-bypass engines

    NASA Astrophysics Data System (ADS)

    Tang, Jingfeng; Li, Nan; Yu, Daren

    2014-12-01

    A MHD generator with different arrangements of electromagnetic fields will lead the generator working in three modes. A quasi-one-dimensional approximation is used for the model of the MHD generator to analyze the inner mechanism of operation modes. For the MHD generator with a uniform constant magnetic field, a specific critical electric field E cr is required to decelerate a supersonic entrance flow into a subsonic exit flow. Otherwise, the generator works in a steady mode with a larger electric field than E cr in which a steady supersonic flow is provided at the exit, or the generator works in a choked mode with a smaller electric field than E cr in which the supersonic entrance flow is choked in the channel. The detailed flow field characteristics in different operation modes are discussed, demonstrating the relationship of operation modes with electromagnetic fields.

  12. Note: Geiger tube coincidence counter for lower atmosphere radiosonde measurements

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Nicoll, K. A.; Lomas, A. G.

    2013-07-01

    Atmospheric profiles of cosmic rays and radioactivity can be obtained using adapted meteorological radiosondes, for which Geiger tubes remain widely used detectors. Simultaneous triggering of two tubes provides an indication of energetic events. As, however, only small volume detectors can be carried, the event rate is small, which, due to the rapid balloon ascent, cannot be circumvented using long averaging periods. To derive count rates at low altitudes, a microcontroller is used to determine the inter-event time. This yields estimates of the coincidence rate below 5 km, where the coincidence rate is too small to determine solely by event counting.

  13. 47 CFR 73.840 - Operating power and mode tolerances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ten watts must be maintained as near as practicable to its authorized TPO and may not be less than 90... authorized TPO of ten watts or less may operate with less than the authorized power, but not more than...

  14. 47 CFR 73.840 - Operating power and mode tolerances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ten watts must be maintained as near as practicable to its authorized TPO and may not be less than 90... authorized TPO of ten watts or less may operate with less than the authorized power, but not more than...

  15. Dual-mode operation of a neutron source, a concept

    NASA Technical Reports Server (NTRS)

    Givens, W. W.; Mills, W. R., Jr.

    1969-01-01

    Pulsed neutron source operates in conjunction with a photomultiplier tube coupled to a gamma ray scintillation crystal. This allows measurements of gamma radiation from both inelastic scattering and thermal neutron capture in a single experiment.

  16. A method of suppressing mode competition in a coaxial localized-defect Bragg resonator operating in a higher-order mode

    SciTech Connect

    Lai Yingxin; Yang Lei; Zhang Shichang

    2011-06-15

    A coaxial localized-defect Bragg resonator has potential applications in high-power CARM oscillators. When it operates at sub-terahertz and terahertz frequencies, a higher-order mode is always required so as to get enough large geometry size. Analysis shows that higher-order mode operation may cause undesired mode competition due to the localized defect coupling the operating mode with its neighboring modes. A simple but efficient method is presented to solve the mode competition problem, where Hamming windowing-function distribution is separately applied to both sides of the localized defect.

  17. Coupled-cavity terahertz quantum cascade lasers for single mode operation

    SciTech Connect

    Li, H. Manceau, J. M.; Andronico, A.; Jagtap, V.; Sirtori, C.; Barbieri, S.; Li, L. H.; Linfield, E. H.; Davies, A. G.

    2014-06-16

    We demonstrate the operation of coupled-cavity terahertz frequency quantum-cascade lasers composed of two sub-cavities separated by an air gap realized by optical lithography and dry etching. This geometry allows stable, single mode operation with typical side mode suppression ratios in the 30–40 dB range. We employ a transfer matrix method to model the mode selection mechanism. The obtained results are in good agreement with the measurements and allow prediction of the operating frequency.

  18. 47 CFR 73.1560 - Operating power and mode tolerances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operate at less than the authorized power, but not more than 105% of the authorized power. (c) TV stations. (1) Except as provided in paragraph (d) of this section, the visual output power of a TV or Class A TV transmitter, as determined by the procedures specified in Sec. 73.664, must be maintained as...

  19. 47 CFR 73.1560 - Operating power and mode tolerances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operate at less than the authorized power, but not more than 105% of the authorized power. (c) TV stations. (1) Except as provided in paragraph (d) of this section, the visual output power of a TV or Class A TV transmitter, as determined by the procedures specified in Sec. 73.664, must be maintained as...

  20. 47 CFR 73.1560 - Operating power and mode tolerances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operate at less than the authorized power, but not more than 105% of the authorized power. (c) TV stations. (1) Except as provided in paragraph (d) of this section, the visual output power of a TV or Class A TV transmitter, as determined by the procedures specified in Sec. 73.664, must be maintained as...

  1. 47 CFR 73.1560 - Operating power and mode tolerances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operate at less than the authorized power, but not more than 105% of the authorized power. (c) TV stations. (1) Except as provided in paragraph (d) of this section, the visual output power of a TV or Class A TV transmitter, as determined by the procedures specified in Sec. 73.664, must be maintained as...

  2. Multi-mode spectrographs for small telescopes: design, operation, performances and results

    NASA Astrophysics Data System (ADS)

    Munari, U.; Valisa, P.

    2014-03-01

    We present three generations (Mark.I, II and III) of spectrographs we put into operation with ANS Collaboration 0.61m, 0.70m and 0.84m telescopes. These spectrographs are of the Multi-Mode type, allowing for rapid interchange between Echelle high dispersion and two separate single dispersion modes (low and medium resolution). All three modes are long-slit, rotate to any angle (including parallactic compensation for atmospheric dispersion), allow to select among different comparison lamps, and are auto-guided by TV imaging the slit, which is continuously adjustable in width and by a step decker in height. The latest Mark.III model adds many new features including remote operation, spatial splitting of order overlap in single dispersion modes, interchange between prism and grating cross-dispersion in the Echelle mode, spectropolarimetry, a coronagraphic mode and direct filtered imaging without removing the spectrograph from the Cassegrain focus.

  3. APET methodology for Defense Waste Processing Facility: Mode C operation

    SciTech Connect

    Taylor, R.P. Jr.; Massey, W.M.

    1995-04-01

    Safe operation of SRS facilities continues to be the highest priority of the Savannah River Site (SRS). One of these facilities, the Defense Waste Processing Facility or DWPF, is currently undergoing cold chemical runs to verify the design and construction preparatory to hot startup in 1995. The DWPFF is a facility designed to convert the waste currently stored in tanks at the 200-Area tank farm into a form that is suitable for long term storage in engineered surface facilities and, ultimately, geologic isolation. As a part of the program to ensure safe operation of the DWPF, a probabilistic Safety Assessment of the DWPF has been completed. The results of this analysis are incorporated into the Safety Analysis Report (SAR) for DWPF. The usual practice in preparation of Safety Analysis Reports is to include only a conservative analysis of certain design basis accidents. A major part of a Probabilistic Safety Assessment is the development and quantification of an Accident Progression Event Tree or APET. The APET provides a probabilistic representation of potential sequences along which an accident may progress. The methodology used to determine the risk of operation of the DWPF borrows heavily from methods applied to the Probabilistic Safety Assessment of SRS reactors and to some commercial reactors. This report describes the Accident Progression Event Tree developed for the Probabilistic Safety Assessment of the DWPF.

  4. Modeling operation mode of pellet boilers for residential heating

    NASA Astrophysics Data System (ADS)

    Petrocelli, D.; Lezzi, A. M.

    2014-11-01

    In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.

  5. An overmoded relativistic backward wave oscillator with efficient dual-mode operation

    SciTech Connect

    Xiao, Renzhen; Li, Jiawei; Bai, Xianchen; Song, Zhimin; Teng, Yan; Ye, Hu; Li, Xiaoze; Sun, Jun; Chen, Changhua; Zhang, Xiaowei

    2014-03-03

    A dual-mode operation mechanism in an overmoded relativistic backward wave oscillator is presented. The electron beam interacts with the −1st space harmonic of TM{sub 01} mode synchronously in the slow wave structure. Then the backward propagating TM{sub 01} mode is converted to the forward propagating TM{sub 02} mode. As the phase velocity of the volume harmonic of TM{sub 02} mode is about twice that of the surface harmonic of TM{sub 01} mode, the TM{sub 02} mode also plays an important role in the high-power microwave generation. Particle-in-cell simulation shows that an efficiency of 48% and a significant improvement of the power capacity have been obtained.

  6. Active pixel image sensor with a winner-take-all mode of operation

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor); Mead, Carver (Inventor)

    2003-01-01

    An integrated CMOS semiconductor imaging device having two modes of operation that can be performed simultaneously to produce an output image and provide information of a brightest or darkest pixel in the image.

  7. Surveillance system and method having parameter estimation and operating mode partitioning

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor)

    2005-01-01

    A system and method for monitoring an apparatus or process asset including creating a process model comprised of a plurality of process submodels each correlative to at least one training data subset partitioned from an unpartitioned training data set and each having an operating mode associated thereto; acquiring a set of observed signal data values from the asset; determining an operating mode of the asset for the set of observed signal data values; selecting a process submodel from the process model as a function of the determined operating mode of the asset; calculating a set of estimated signal data values from the selected process submodel for the determined operating mode; and determining asset status as a function of the calculated set of estimated signal data values for providing asset surveillance and/or control.

  8. Surveillance system and method having parameter estimation and operating mode partitioning

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor)

    2003-01-01

    A system and method for monitoring an apparatus or process asset including partitioning an unpartitioned training data set into a plurality of training data subsets each having an operating mode associated thereto; creating a process model comprised of a plurality of process submodels each trained as a function of at least one of the training data subsets; acquiring a current set of observed signal data values from the asset; determining an operating mode of the asset for the current set of observed signal data values; selecting a process submodel from the process model as a function of the determined operating mode of the asset; calculating a current set of estimated signal data values from the selected process submodel for the determined operating mode; and outputting the calculated current set of estimated signal data values for providing asset surveillance and/or control.

  9. Versatile mode-locked fiber laser with switchable operation states of bound solitons.

    PubMed

    Zou, Xin; Qiu, Jifang; Wang, Xiaodong; Ye, Zi; Shi, Jindan; Wu, Jian

    2016-06-01

    Bound states of two solitons are among the typical forms of bound states and can be observed in various operation states of mode-locked fiber lasers. We experimentally investigated bound solitons (BSs) in a passively mode-locked erbium-doped fiber laser based on a semiconductor saturable absorber mirror, whose operation states can be switched among multiple pulses, passively harmonic mode-locking, and "giant pulses" by simply adjusting the in-line polarization controller with the pump power fixed. Up to four pulses, fourth-order harmonic mode-locking (HML), and a "giant pulse" with four BSs were obtained with increasing pump power. Experimental results showed a correlative relationship among those operation states (N pulses/Nth-order HML/"giant pulses" of N bound solitons) at different pump power levels. The birefringence induced by the erbium-doped fiber inside the laser cavity played a vital role in the transitions of those operation states. PMID:27411182

  10. Ship operation and failure mode analysis using a maneuver simulator

    NASA Astrophysics Data System (ADS)

    Cabrerizo-Morales, Miguel Angel; Molina, Rafael; de los Santos, Francisco; Camarero, Alberto

    2013-04-01

    In a ship or floating structure operation the agents that contribute to the systems behaviour are not only those derived from fluid-structure interaction, but also the ones linked to mooring-control line set-up evolution and human interaction. Therefore, the analysis of such systems is affected by boundary conditions that change during a complete operation. Frequently, monitoring techniques in laboratory (model) and field (prototype) are based in different instrumental techniques adding difficulty to data comparison and, in some cases, inducing precision and repeatability errors. For this reason, the main aim of this study is to develop the methods and tools to achieve a deep knowledge of those floating systems and obtain capabilities to optimize their operationally thresholds. This abstract presents a methodology and an instrumental system applicable both in field and laboratory: SRECMOCOS Project (Small scale REal-time Caisson MOnitoring and COntrol System). SRECMOCOS compiles three modules. For the monitoring and control of the structure it has been developed a synchronized open and modular microcontroller-based electronic system that comprises sensors, to monitor agents and reactions, and actuators to perform pertinent actions after processing the sensors' data. A secondary objective has been to design and implement a global scaled simulator (1:22), at the 3D basin of The Harbour Research Lab at Technical University of Madrid, in which climatic agents and those derived from the rig/maneuvering setup and the structural design were included. The particular case of Campamento's drydock, in Algeciras Bay (Spain), has been used to apply and validate the methodology. SRECMOCOS Project conjugates control, monitoring and wireless communication systems in a real time basis, offering the possibility to register and simulate all the parameters involved in port operations. This approach offers a step forward into a monitoring strategy to be included in monitoring

  11. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    PubMed

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. PMID:26686458

  12. Regimes of operation states in passively mode-locked fiber soliton ring laser

    NASA Astrophysics Data System (ADS)

    Gong, Y. D.; Shum, P.; Tang, D. Y.; Lu, C.; Guo, X.; Paulose, V.; Man, W. S.; Tam, H. Y.

    2004-06-01

    The principal of passively mode-locked fiber soliton ring lasers is summarized, including its three output operation states: normal soliton, bound-solitons and noise-like pulse. The experimental results of the passively mode-locked fiber soliton ring lasers developed by us are given. Bound-solitons with different discrete separations and three-bound-solitons state have been observed in our fiber laser for the first time. The relationship among three operation states in fiber soliton laser is analyzed.

  13. Switchable genetic oscillator operating in quasi-stable mode

    PubMed Central

    Strelkowa, Natalja; Barahona, Mauricio

    2010-01-01

    Ring topologies of repressing genes have qualitatively different long-term dynamics if the number of genes is odd (they oscillate) or even (they exhibit bistability). However, these attractors may not fully explain the observed behaviour in transient and stochastic environments such as the cell. We show here that even repressilators possess quasi-stable, travelling wave periodic solutions that are reachable, long-lived and robust to parameter changes. These solutions underlie the sustained oscillations observed in even rings in the stochastic regime, even if these circuits are expected to behave as switches. The existence of such solutions can also be exploited for control purposes: operation of the system around the quasi-stable orbit allows us to turn on and off the oscillations reliably and on demand. We illustrate these ideas with a simple protocol based on optical interference that can induce oscillations robustly both in the stochastic and deterministic regimes. PMID:20097721

  14. Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Tittel, Frank K; Sampaolo, Angelo; Patimisco, Pietro; Dong, Lei; Geras, Antonina; Starecki, Tomasz; Spagnolo, Vincenzo

    2016-03-21

    A detailed investigation of a set of custom quartz tuning forks (QTFs), operating in the fundamental and first overtone flexural modes is reported. Support losses are the dominant energy dissipation processes when the QTFs vibrate at the first overtone mode. These losses can be decreased by increasing the ratio between the prong length and its thickness. The QTFs were implemented in a quartz enhanced photoacoustic spectroscopy (QEPAS) based sensor operating in the near-IR spectral range and water vapor was selected as the gas target. QTF flexural modes having the highest quality factor exhibit the largest QEPAS signal, demonstrating that, by optimizing the QTF prongs sizes, overtone modes can provide a higher QEPAS sensor performance with respect to using the fundamental mode. PMID:27136886

  15. Single-mode operation of a zig-zag dye laser

    SciTech Connect

    Mandl, A.; Klimek, D.E.

    1995-05-01

    The authors report single-mode operations of a laser pumped zig-zag dye laser for pulse length {gt}1{mu}s with beam quality close to the diffraction limit. A unique linear optical cavity using counter-propagating orthogonally polarized waves was used. Laser efficiency measurements performed with a stable cavity had outputs of greater than 1.7 J at 568 nm using Pyrromethene-567 dye. The intrinsic laser efficiency was 55% with a slope efficiency of 77%. Single-mode operation was achieved using an unstable resonator with intra-cavity etalons to control the free running modes of the cavity and seeding with a single-mode Kr-ion laser operating at 568 nm. Heterodyne measurements were used to determine that the bandwidth was near the transform limit with the frequency chirping at a rate {approximately}60 MHz/{mu}s. Far-field measurements of the beam quality indicated close to diffraction limited output.

  16. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  17. Ideal mode operation of an InSb charge injection device

    NASA Astrophysics Data System (ADS)

    Wei, C.-Y.; Woodbury, H. H.

    1984-12-01

    Unlike Si or HgCdTe CID (charge injection device) arrays, which normally operate at 1 MHz with the presence of a less than 10 percent fat zero (i.e., ideal mode), current InSb CID arrays fabricated on InSb CID arrays fabricated on InSb substrates can operate either at a much lower clock frequency of 10 kHz (i.e., slow charge transfer mode), or when both row and column potential wells are partially filled with a large bias charge (i.e., charge sharing mode). The slow charge transfer mode is very ineffective in reading out signal charge from a large-area array and the charge sharing mode exhibits difficulties such as reduced readout efficiency, increased line capacitance, and a large photocurrent effect. By contrast, the ideal mode is free of these problems. This paper describes the design and fabrication of an InSb CID array, which for the first time, successfully demonstrates the ideal mode operation.

  18. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode.

    PubMed

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the 'modular' body mapping sportswear was designed and subsequently assessed on a 'Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations. PMID:24357489

  19. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode

    NASA Astrophysics Data System (ADS)

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the `modular' body mapping sportswear was designed and subsequently assessed on a `Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  20. Performance Analysis of Sleep Mode Operation in IEEE 802.16m Mobile WiMAX

    NASA Astrophysics Data System (ADS)

    Baek, Sangkyu; Son, Jung Je; Choi, Bong Dae

    We mathematically analyze the sleep mode operation of IEEE 802.16m. The sleep mode operation for downlink traffic is modeled as a 3-dimensional discrete time Markov chain. We obtain the average power consumption of a mobile station and the average delay of a message. Numerical results match simulations very well. Numerical results show that there is a tradeoff between power consumption and message delay. We find the optimal lengths of sleep cycle and close-down time that minimize the power consumption while satisfying the quality of service (QoS) constraint on message delay. The power consumption of the sleep mode in IEEE 802.16m is better than that of sleep modes in legacy IEEE 802.16e standard under the same delay bound.

  1. Numerical investigation on operation mode influenced by external frequency in atmospheric pressure barrier discharge

    SciTech Connect

    Wang Qi; Sun Jizhong; Wang Dezhen

    2011-10-15

    The influence of external driving frequency on the discharge mode in the dielectric barrier discharge was investigated with a two-dimensional, self-consistent fluid model. The simulation results show that the helium discharge exhibits three operation modes: Townsend, homogeneous glow, and local glow discharges from the lower frequency (1 kHz) to the higher frequency (100 kHz) under discharge parameters specified in this work. The discharge operates in a Townsend mode when the driving frequency varies from 1 to about 7 kHz; while it exhibits homogenous glow characteristics in an approximate range from 7 to 65 kHz; when the external frequency exceeds 65 kHz, it turns into a local glow discharge. The effects of external driving frequency on the discharge mode were revealed and the physical reasons were discussed.

  2. Comparison of two operating modes of cadmium selenide-based photoelectrochromic devices

    SciTech Connect

    Nekrasov, A.A.; Ivanov, V.F.; Vannikov, A.V.

    1987-01-01

    Two operating modes of photoelectrochromic devices (PECD) were studied, the devices consisting of a CdSe photoconductor electrode applied to a conducting substrate and of an electrochromogenic layer which was a film of polyacrylamide gel impregnated with a 0.1 M solution of Fe(III)-..cap alpha..,..cap alpha..'-bipyridine complexes in 1 M HCl. In mode A exposure was with constant illumination of the PECD and application of a 0.1-sec voltage pulse. In mode B exposure was with an 0.1-sec light pulse applied during a longer voltage pulse. In mode A, the speed (sensitivity to light) was found to increase with the applied voltage, an effect chiefly arising from the character of potential distribution within the PECD. In mode B the speed decreases with increasing voltage, an effect determined by decreasing electrochromic efficiency.

  3. Stable single-mode operation of surface-emitting terahertz lasers with graded photonic heterostructure resonators

    NASA Astrophysics Data System (ADS)

    Xu, Gangyi; Halioua, Yacine; Moumdji, Souad; Colombelli, Raffaele; Beere, Harvey E.; Ritchie, David A.

    2013-06-01

    Graded photonic heterostructures (GPH) can be regarded as energy wells for photons. We show that judicious engineering of such photonic wells, obtained by tailoring the grading and the slit width of the GPH resonator, allows one to ensure spectrally single-mode emission on the fundamental symmetric mode in the whole lasing dynamical range of terahertz quantum cascade lasers. Furthermore, the radiative character of the symmetric mode leads to single-mode emission with mW output power in continuous-wave operation, as well as to single-lobed far-field beam patterns. A careful combination of theoretical analysis and experimental observations reveals that the results stem from interplay between mode competition and spatial hole burning effects.

  4. Single-mode operation of a long-pulse flashlamp pumped dye laser

    SciTech Connect

    Mandl, A.; Klimek, D.E.; Chou, H.P.; Litzenberger, L.; Wang, Y.

    1995-02-01

    The authors describe the achievement of single-mode operation of a flashlamp pumped long-pulse, {approximately} 700 ns dye laser, with output energy of about 350 mJ using a linear optical cavity with a ``twisted mode`` configuration. Measurements indicate that the laser frequency chirps by about 40 MHz over the entire pulse. Homodyne measurements indicate that the instantaneous bandwidth is close to the transform limit. This represents a significant advance in dye laser performance.

  5. Totem-Pole Power-Factor-Correction Converter under Critical-Conduction-Mode Interleaved Operation

    NASA Astrophysics Data System (ADS)

    Firmansyah, Eka; Tomioka, Satoshi; Abe, Seiya; Shoyama, Masahito; Ninomiya, Tamotsu

    This paper proposes a new power-factor-correction (PFC) topology, and explains its operation principle, its control mechanism, related application problems followed by experimental results. In this proposed topology, critical-conduction-mode (CRM) interleaved technique is applied to a bridgeless PFC in order to achieve high efficiency by combining benefits of each topology. This application is targeted toward low to middle power applications that normally employs continuous-conduction-mode boost converter.

  6. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    NASA Technical Reports Server (NTRS)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  7. Energy-efficient operation of a booster RF system for Taiwan light source operated in top-up mode

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Shu; Wang, Chaoen; Chang, Lung-Hai; Chung, Fu-Tsai; Yu, Tsung-Chi; Lin, Ming-Chyuan; Chen, Ling-Jhen; Yang, Tz-Te; Chang, Mei-Hsia; Lin, Yu-Han; Tsai, Ming-Hsun; Lo, Chih-Hung; Liu, Zong-Kai

    2015-03-01

    Contemporary light sources operate in a top-up mode to maintain their photon intensity quasi-constant so as to improve significantly the thermal stability of the photon beam and to maximize ultimately the average photon flux at a designed maximum operational beam current. Operating in a top-up mode requires frequent beam injection from the synchrotron booster to the storage ring of the light source, but the injection intervals occupy only a tiny portion of the operational time of the integrated machine. To maintain a high operational reliability, the booster RF system practically operates necessarily under injection conditions around the clock and consumes full electric power whether during top-up injection or not. How to decrease the power consumption of the booster RF system during its stand-by time but not to sacrifice the reliability and availability of the RF system is obviously of fundamental interest for routine operation of the light source in a top-up mode. Here, an energy-efficient operation of a booster RF system adaptive to top-up operation of a light source is proposed that has been developed, realized and integrated into the booster RF system of the Taiwan Light Source (TLS), and routinely operated since the end of year 2008. The klystron cathode current and RF gap voltage of the booster's accelerating RF cavity are both periodically modulated to adapt the injection rhythm during top-up operation, which results in decreased consumption of electric power of the booster RF system by more than 78%. The impact on the reliability and availability of the booster RF system has been carefully monitored during the past five operational years, delivering more than 5000 h scheduled user beam time per year. The booster RF system retains its excellent reliability and availability as previously. Neither a decrease of the service time nor an induced reliability issue from the klystron or any high-power high-voltage component of the transmitter has been experienced

  8. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    SciTech Connect

    X. Zhang; J. E. O'Brien; R. C. O'Brien; N. Petigny

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.

  9. Thermodynamic Analysis of Dual-Mode Scramjet Engine Operation and Performance

    NASA Technical Reports Server (NTRS)

    Riggins, David; Tacket, Regan; Taylor, Trent; Auslender, Aaron

    2006-01-01

    Recent analytical advances in understanding the performance continuum (the thermodynamic spectrum) for air-breathing engines based on fundamental second-law considerations have clarified scramjet and ramjet operation, performance, and characteristics. Second-law based analysis is extended specifically in this work to clarify and describe the performance characteristics for dual-mode scramjet operation in the mid-speed range of flight Mach 4 to 7. This is done by a fundamental investigation of the complex but predictable interplay between heat release and irreversibilities in such an engine; results demonstrate the flow and performance character of the dual mode regime and of dual mode transition behavior. Both analytical and computational (multi-dimensional CFD) studies of sample dual-mode flow-fields are performed in order to demonstrate the second-law capability and performance and operability issues. The impact of the dual-mode regime is found to be characterized by decreasing overall irreversibility with increasing heat release, within the operability limits of the system.

  10. Open-phase operating modes of power flow control topologies in a Smart Grid Distribution Network

    NASA Astrophysics Data System (ADS)

    Astashev, M. G.; Novikov, M. A.; Panfilov, D. I.; Rashitov, P. A.; Remizevich, T. V.; Fedorova, M. I.

    2015-12-01

    The power flow regulating circuit node in an alternating current system is reviewed. The circuit node is accomplished based on a thyristor controlled phase angle regulator (TCPAR) with controlled thyristor switch. Research results of the individual phase control of the output voltage for the TCPAR are presented. Analytical expressions for the overvoltage factor calculation in the thyristor switch circuit for open-phase operating modes are received. Based on evaluation of overvoltage in operational and emergency modes, the implementability conditions of the individual phase control of the output voltage are determined. Under these conditions, maximal performance and complete controllability are provided.

  11. High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode

    NASA Astrophysics Data System (ADS)

    Boyle, C.; Sigler, C.; Kirch, J. D.; Lindberg, D. F.; Earles, T.; Botez, D.; Mawst, L. J.

    2016-03-01

    Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%-41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ˜0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.

  12. Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers

    SciTech Connect

    Soda, H.; Kotaki, Y.; Sudo, H.; Ishikawa, H.; Yamakoshi, S.; Imai, H.

    1987-06-01

    A single longitudinal mode (SLM) operating condition for phase-adjusted (PA) DFB lasers has been made clear both experimentally and theoretically. As expected, the authors got a high SLM operation yield of 80 percent in a moderate coupled case up to a light output power of 10 mW. However, in the strongly coupled cases, the two-mode operation with the TEO mode and the TE + 1 mode occurred frequently. To explain the two-mode operation and to optimize the PA-DFB laser structure, they have developed a theory.

  13. Coordinate measuring method with two operation modes based on the adjustable articulated arms

    NASA Astrophysics Data System (ADS)

    Zhu, Lianqing; Li, Weixian; Pan, Zhikang; Guo, Yangkuan; Chen, Qingshan

    2014-12-01

    A coordinate measuring method with two operation modes, based on the adjustable articulated arms, is proposed to keep measurement capability in global space and improve the measurement precision in local space. The adjustable articulated arm coordinate measuring machine (AACMM) with an electromagnetic locking device can automatically switch between the all-free articulated arms operation mode and the partially bound articulated arms operation mode. In the former mode, three arms and six articulations can freely move and measure the coordinates of any point in global space. In the latter mode, the front two articulations are locked to improve the measurement precision by decreasing the importation of angle errors in the local space. A prototype of the adjustable AACMM has also been designed and developed. A mathematical model for the adjustable AACMM has been built. Theoretical analysis and numerical simulation show that the partially bound AACMM performed much better than the all-free AACMM in single point repeatability and length measurement precision in the local space. Therefore, the proposed coordinate measuring method based on the adjustable articulated arms is verified as being effective.

  14. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.

    2012-01-01

    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  15. THz quantum cascade lasers operating on the radiative modes of a 2D photonic crystal.

    PubMed

    Halioua, Y; Xu, G; Moumdji, S; Li, L H; Davies, A G; Linfield, E H; Colombelli, R

    2014-07-01

    Photonic-crystal lasers operating on Γ-point band-edge states of a photonic structure naturally exploit the so-called "nonradiative" modes. As the surface output coupling efficiency of these modes is low, they have relatively high Q factors, which favor lasing. We propose a new 2D photonic-crystal design that is capable of reversing this mode competition and achieving lasing on the radiative modes instead. Previously, this has only been shown in 1D structures, where the central idea is to introduce anisotropy into the system, both at unit-cell and resonator scales. By applying this concept to 2D photonic-crystal patterned terahertz frequency quantum cascade lasers, surface-emitting devices with diffraction-limited beams are demonstrated, with 17 mW peak output power. PMID:24978782

  16. Effect of water vapor on the performance of glass RPCs in avalanche mode operation

    NASA Astrophysics Data System (ADS)

    Raveendrababu, K.; Behera, P. K.; Satyanarayana, B.; Mukhopadhayay, S.; Majumdar, N.

    2016-08-01

    We studied the effect of water vapor on the performance of glass Resistive Plate Chambers (RPCs) in the avalanche mode operation. Controlled amount of water vapor was added to the RPC gas mixture that has C2H2F4 as the major component. The deterioration in the performance of RPC was observed while operating with the wet gas and recovered after switching to the standard gas.

  17. Study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge

    SciTech Connect

    Capri, M.A.L. Guimaraes, M.S. Lemes, V.E.R. Sorella, S.P. Tedesco, D.G.

    2014-05-15

    A study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge is presented in the case of the gauge group SU(2) and for different Euclidean space–time dimensions. Explicit examples of classes of normalizable zero modes and corresponding gauge field configurations are constructed by taking into account two boundary conditions, namely: (i) the finite Euclidean Yang–Mills action, (ii) the finite Hilbert norm. -- Highlights: •We study the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge. •For d=2 we obtain solutions with finite action but not finite Hilbert norm. •For d=3,4 we obtain solutions with finite action and finite Hilbert norm. •These results can be compared with those previously obtained in the Landau gauge.

  18. Impact of various operating modes on performance and emission parameters of small heat source

    NASA Astrophysics Data System (ADS)

    Vician, Peter; Holubčík, Michal; Palacka, Matej; Jandačka, Jozef

    2016-06-01

    Thesis deals with the measurement of performance and emission parameters of small heat source for combustion of biomass in each of its operating modes. As the heat source was used pellet boiler with an output of 18 kW. The work includes design of experimental device for measuring the impact of changes in air supply and method for controlling the power and emission parameters of heat sources for combustion of woody biomass. The work describes the main factors that affect the combustion process and analyze the measurements of emissions at the heat source. The results of experiment demonstrate the values of performance and emissions parameters for the different operating modes of the boiler, which serve as a decisive factor in choosing the appropriate mode.

  19. The Hubble Space Telescope fine guidance system operating in the coarse track pointing control mode

    NASA Technical Reports Server (NTRS)

    Whittlesey, Richard

    1993-01-01

    The Hubble Space Telescope (HST) Fine Guidance System has set new standards in pointing control capability for earth orbiting spacecraft. Two precision pointing control modes are implemented in the Fine Guidance System; one being a Coarse Track Mode which employs a pseudo-quadrature detector approach and the second being a Fine Mode which uses a two axis interferometer implementation. The Coarse Track Mode was designed to maintain FGS pointing error to within 20 milli-arc seconds (rms) when guiding on a 14.5 Mv star. The Fine Mode was designed to maintain FGS pointing error to less than 3 milli-arc seconds (rms). This paper addresses the HST FGS operating in the Coarse Track Mode. An overview of the implementation, the operation, and both the predicted and observed on orbit performance is presented. The discussion includes a review of the Fine Guidance System hardware which uses two beam steering Star Selector servos, four photon counting photomultiplier tube detectors, as well as a 24 bit microprocessor, which executes the control system firmware. Unanticipated spacecraft operational characteristics are discussed as they impact pointing performance. These include the influence of spherically aberrated star images as well as the mechanical shocks induced in the spacecraft during and following orbital day/night terminator crossings. Computer modeling of the Coarse Track Mode verifies the observed on orbit performance trends in the presence of these optical and mechanical disturbances. It is concluded that the coarse track pointing control function is performing as designed and is providing a robust pointing control capability for the Hubble Space Telescope.

  20. High-power single-mode laser operation using stimulated Rayleigh scattering

    SciTech Connect

    Denariez-Roberge, M.M.; Giuliani, G.

    1981-07-01

    We report single-mode high-power Nd:YAG laser operation by stimulated thermal Rayleigh Q switching. We also analyze the phase-conjugation properties of collinear four-wave mixing that is due to low-frequency excitations in absorbing liquids.

  1. A Typology of Actional-Operational Modes in Earth Science and Implications for Science Literacy Instruction

    ERIC Educational Resources Information Center

    Wilson, Amy Alexandra

    2013-01-01

    Framed in theories of social semiotics, this multiple case study describes and categorizes the actional-operational modes used by three middle school earth science teachers throughout the course of one school year. Data included fieldnotes, photographs, and video recordings of classroom instructions as well as periodic interviews with the…

  2. Operability test report for rotary mode core sampling system number 3

    SciTech Connect

    Corbett, J.E.

    1996-03-01

    This report documents the successful completion of operability testing for the Rotary Mode Core Sampling (RMCS) system {number_sign}3. The Report includes the test procedure (WHC-SD-WM-OTP-174), exception resolutions, data sheets, and a test report summary.

  3. Surveillance system and method having an operating mode partitioned fault classification model

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor)

    2005-01-01

    A system and method which partitions a parameter estimation model, a fault detection model, and a fault classification model for a process surveillance scheme into two or more coordinated submodels together providing improved diagnostic decision making for at least one determined operating mode of an asset.

  4. Eddy current inspection tool which is selectively operable in a discontinuity detection mode and a discontinuity magnitude mode

    DOEpatents

    Petrini, R.R.; Van Lue, D.F.

    1983-10-25

    A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises eddy current sensing equipment with a probe coil, and associated coaxial coil cable, coil energizing means, and circuit means responsive to impedance changes in the coil as effected by induced eddy currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube of fiberoptic scope. The scope is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The eddy current sensing equipment includes a tone generator 30 for generating audibly signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signaling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level. 5 figs.

  5. Eddy current inspection tool which is selectively operable in a discontinuity detection mode and a discontinuity magnitude mode

    DOEpatents

    Petrini, Richard R.; Van Lue, Dorin F.

    1983-01-01

    A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises eddy current sensing equipment (12) with a probe coil (11), and associated coaxial coil cable (13), coil energizing means (21), and circuit means (21, 12) responsive to impedance changes in the coil as effected by induced eddy currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube 17 of fiberoptic scope 10. The scope 10 is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means (19, 20) for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The eddy current sensing equipment includes a tone generator 30 for generating audibly signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signalling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level.

  6. Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique

    NASA Astrophysics Data System (ADS)

    Parsapour, Amir; Dehkordi, Behzad Mirzaeian; Moallem, Mehdi

    2015-03-01

    In applications in which the high torque per ampere at low speed and rated power at high speed are required, the continuous current method is the best solution. However, there is no report on calculating the core loss of SRM in continuous current mode of operation. Efficiency and iron loss calculation which are complex tasks in case of conventional mode of operation is even more involved in continuous current mode of operation. In this paper, the Switched Reluctance Motor (SRM) is modeled using finite element method and core loss and copper loss of SRM in discontinuous and continuous current modes of operation are calculated using improved analytical techniques to include the minor loop losses in continuous current mode of operation. Motor efficiency versus speed in both operation modes is obtained and compared.

  7. Techniques for setting modes of thermal and deformation effect at combined hardening and finishing operations

    NASA Astrophysics Data System (ADS)

    Rakhimyanov, Kh M.; Rakhimyanov, K. Kh; Rakhimyanov, A. Kh; Kutyshkin, A. V.

    2016-04-01

    This paper considers the issues of setting the modes of thermal and deformation effects in the basic schemes at combined hardening and finishing operations. On the basis of solving the thermal physical problem of material high rate heating, the parameters of a thermohardened layer were determined within the range of the investigated modes. An algorithm for setting the mode parameters of high rate heating responsible for the hardening effect at the combined processing was proposed. The analysis of the mathematical model for forming a surface microrelief at ultrasonic deformation showed that the sizes, the form of fragments and the density of a microrelief were determined by the processing kinematic parameters. An algorithm for setting the rotation speed and feeding at ultrasonic deformation according to microrelief characteristics was developed. The conditions to form a completely regular microrelief on the processed surface that represent the ratio between a single imprint diameter at the ultrasonic deformation and the processing kinematic parameters were determined. The complex of the algorithms suggested for setting the mode parameters of high rate heating and ultrasonic deformation constitutes the techniques for setting the modes of combined hardening and finishing operations.

  8. Single mode, short cavity, Pb-salt diode lasers operating in the 5, 10, and 30-microns spectral regions

    NASA Technical Reports Server (NTRS)

    Linden, K. J.

    1985-01-01

    Pb-salt diode lasers are being used as frequency-tunable infrared sources in high resolution spectroscopy and heterodyne detection applications. Recent advances in short cavity, stripe-geometry laser configurations have led to significant increases in maximum CW operating temperature, single mode operation, and increased single mode tuning range. This paper describes short cavity, stripe geometry lasers operating in the 5, 10, and 30-microns spectral regions, with single mode tuning ranges of over 6/cm.

  9. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  10. Gyrotron with a sectioned cavity based on excitation of a far-from-cutoff operating mode

    NASA Astrophysics Data System (ADS)

    Bandurkin, I. V.; Kalynov, Yu. K.; Osharin, I. V.; Savilov, A. V.

    2016-01-01

    A typical problem of weakly relativistic low-power gyrotrons (especially in the case of operation at high cyclotron harmonics) is the use of long cavities ensuring extremely high diffraction Q-factors for the operating near-cutoff waves. As a result, a great share of the rf power radiated by electrons is spent in Ohmic losses. In this paper, we propose to use a sectioned cavity with π-shifts of the wave phase between sections. In such a cavity, a far-from-cutoff axial mode of the operating cavity having a decreased diffraction Q-factor is excited by the electron beam in a gyrotron-like regime.

  11. MHSP in reversed-bias operation mode for ion blocking in gas-avalanche multipliers

    NASA Astrophysics Data System (ADS)

    Veloso, J. F. C. A.; Amaro, F. D.; Maia, J. M.; Lyashenko, A. V.; Breskin, A.; Chechik, R.; dos Santos, J. M. F.; Bouianov, O.; Bouianov, M.

    2005-08-01

    We present recent results on the operation of gas-avalanche detectors comprising a cascade of gas electron multipliers (GEMs) and Mico-Hole & Strip Plate (MHSP) multiplier operated in reversed-bias (R-MHSP) mode. The operation mechanism of the R-MHSP is explained and its potential contribution to ion-backflow (IBF) reduction is demonstrated. IBF values of 4×10 -3 were obtained in cascaded R-MHSP and GEM multipliers at gains of about 10 4, though at the expense of reduced effective gain in the first R-MHSP multiplier in the cascade.

  12. Status and new operation modes of the versatile VLT/NaCo

    NASA Astrophysics Data System (ADS)

    Girard, Julien H. V.; Kasper, Markus; Quanz, Sascha P.; Kenworthy, Matthew A.; Rengaswamy, Sridharan; Schödel, Rainer; Gallenne, Alexandre; Gillessen, Stefan; Huerta, Nicolas; Kervella, Pierre; Kornweibel, Nick; Lenzen, Rainer; Mérand, Antoine; Montagnier, Guillaume; O'Neal, Jared; Zins, Gérard

    2010-07-01

    This paper aims at giving an update on the most versatile Adaptive Optics fed instrument to date, the well known and successful NACO*. Although NACO is only scheduled for about two more years† at the Very Large Telescope (VLT), it keeps on evolving with additional operation modes bringing original astronomical results. The high contrast imaging community uses it creatively as a test-bench for SPHERE‡ and other second generation planet imagers. A new visible wavefront sensor (WFS) optimized for Laser Guide Star (LGS) operations has been installed and tested, the cube mode is more and more required for frame selection on bright sources, a seeing enhancer mode (no tip/tilt correction) is now offered to provide full sky coverage and welcome all kind of extragalactic applications, etc. The Instrument Operations Team (IOT) and Paranal engineers are currently working hard at maintaining the instrument overall performances but also at improving them and offering new capabilities, providing the community with a well tuned and original instrument for the remaining time it is being used. The present contribution delivers a non-exhaustive overview of the new modes and experiments that have been carried out in the past months.

  13. Relationship Between Absorber Layer Properties and Device Operation Modes For High Efficiency Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Ravichandran, Ram; Kokenyesi, Robert; Wager, John; Keszler, Douglas; CenterInverse Design Team

    2014-03-01

    A thin film solar cell (TFSC) can be differentiated into two distinct operation modes based on the transport mechanism. Current TFSCs predominantly exploit diffusion to extract photogenerated minority carriers. For efficient extraction, the absorber layer requires high carrier mobilities and long minority carrier lifetimes. Materials exhibiting a strong optical absorption onset near the fundamental band gap allows reduction of the absorber layer thickness to significantly less than 1 μm. In such a TFSC, a strong intrinsic electric field drives minority carrier extraction, resulting in drift-based transport. The basic device configuration utilized in this simulation study is a heterojunction TFSC with a p-type absorber layer. The diffusion/drift device operation modes are simulated by varying the thickness and carrier concentration of the absorber layer, and device performance between the two modes is compared. In addition, the relationship between device operation mode and transport properties, including carrier mobility and minority carrier lifetime are explored. Finally, candidate absorber materials that enable the advantages of a drift-based TFSC developed within the Center for Inverse Design are presented. School of Electrical Engineering and Computer Science.

  14. An operations manual for the Spinning Mode Synthesizer in the Langley Aircraft Noise Reduction Laboratory

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.

    1981-01-01

    The need for a dependable and controllable noise source and the consequent development of the Spinning Mode Synthesizer (SMS) is discussed. Configuration of the SMS incorporated into the flow duct facility is reported. Turbofan noise is composed of a series of fundamental acoustical modes, which are produced by acoustic drivers equispaced circumferentially around the flow duct. Pressure field is compared to an ideal result in an optimization algorithm, adjusting driver settings until system error is minimized. The following items are included: operating instructions, a detailed description of the system, and a user's guide to data acquisition packages available.

  15. Possibilities and testing of CPRNG in block cipher mode of operation PM-DC-LM

    NASA Astrophysics Data System (ADS)

    Zacek, Petr; Jasek, Roman; Malanik, David

    2016-06-01

    This paper discusses the chaotic pseudo-random number generator (CPRNG), which is used in block cipher mode of operation called PM-DC-LM. PM-DC-LM is one of possible subversions of general PM mode. In this paper is not discussed the design of PM-DC-LM, but only CPRNG as a part of it because designing is written in other papers. Possibilities, how to change or to improve CPRNG are mentioned. The final part is devoted for a little testing of CPRNG and some testing data are shown.

  16. A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Kevrekidis, Ioannis G.; Rowley, Clarence W.

    2015-12-01

    The Koopman operator is a linear but infinite-dimensional operator that governs the evolution of scalar observables defined on the state space of an autonomous dynamical system and is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. In this manuscript, we present a data-driven method for approximating the leading eigenvalues, eigenfunctions, and modes of the Koopman operator. The method requires a data set of snapshot pairs and a dictionary of scalar observables, but does not require explicit governing equations or interaction with a "black box" integrator. We will show that this approach is, in effect, an extension of dynamic mode decomposition (DMD), which has been used to approximate the Koopman eigenvalues and modes. Furthermore, if the data provided to the method are generated by a Markov process instead of a deterministic dynamical system, the algorithm approximates the eigenfunctions of the Kolmogorov backward equation, which could be considered as the "stochastic Koopman operator" (Mezic in Nonlinear Dynamics 41(1-3): 309-325, 2005). Finally, four illustrative examples are presented: two that highlight the quantitative performance of the method when presented with either deterministic or stochastic data and two that show potential applications of the Koopman eigenfunctions.

  17. Research of Operation Modes of Heat Storage Tank in CHP Plant Using Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Streckiene, Giedre; Miseviciute, Violeta

    2011-01-01

    The installation of a heat storage tank is a very cost-effective way to improve the performance and flexibility of a CHP plant. Such a heat storage tank usually accumulates heat by thermal stratification. This phenomenon is caused by the thermal buoyancy because of the difference in temperature between cold and hot water. The heat storage tank may have three operating modes, i. e. charge, discharge and storage in a CHP plant. When CHP units, which charge the heat storage tank, operate at full load, usually only two operation modes occur in the tank, i.e. charge and discharge. The paper presents numerical simulation of heat storage tank operation modes in a CHP plant using PHOENICS - a multi-purpose computation fluid dynamics (CFD) software. Two-dimensional and three-dimensional transient models were created and solved numerically. Three domain grids were tested. Several charging and discharging processes with different flow rates were simulated. The influence of flow rate on the degree of thermal stratification during charging and discharging processes is analyzed. The computation possibilities and limitations of the numerical experiments are pointed out. Special attention is given to the validation of the numerical solutions. The validation of simulated results is made by comparison with the real data from the heat storage installed in the Hvide Sande CHP plant.

  18. Investigation of pulsed mode operation with the frequency tuned CAPRICE ECRIS.

    PubMed

    Maimone, F; Tinschert, K; Endermann, M; Hollinger, R; Kondrashev, S; Lang, R; Mäder, J; Patchakui, P T; Spädtke, P

    2016-02-01

    In order to increase the intensity of the highly charged ions produced by the Electron Cyclotron Resonance Ion Sources (ECRISs), techniques like the frequency tuning and the afterglow mode have been developed and in this paper the effect on the ion production is shown for the first time when combining both techniques. Recent experimental results proved that the tuning of the operating frequency of the ECRIS is a promising technique to achieve higher ion currents of higher charge states. On the other hand, it is well known that the afterglow mode of the ECRIS operation can provide more intense pulsed ion beams in comparison with the continuous wave (cw) operation. These two techniques can be combined by pulsing the variable frequency signal driving the traveling wave tube amplifier which provides the high microwave power to the ECRIS. In order to analyze the effect of these two combined techniques on the ion source performance, several experiments were carried out on the pulsed frequency tuned CAPRICE (Compacte source A Plusiers Résonances Ionisantes Cyclotron Electroniques)-type ECRIS. Different waveforms and pulse lengths have been investigated under different settings of the ion source. The results of the pulsed mode have been compared with those of cw operation. PMID:26931930

  19. Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode.

    PubMed

    Iskra, Timothy; Sacramo, Ashley; Gallo, Chris; Godavarti, Ranga; Chen, Shuang; Lute, Scott; Brorson, Kurt

    2015-01-01

    Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow-rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach. PMID:25826186

  20. Communication: Effects of thermionic-gun parameters on operating modes in ultrafast electron microscopy.

    PubMed

    Kieft, Erik; Schliep, Karl B; Suri, Pranav K; Flannigan, David J

    2015-09-01

    Ultrafast electron microscopes with thermionic guns and LaB6 sources can be operated in both the nanosecond, single-shot and femtosecond, single-electron modes. This has been demonstrated with conventional Wehnelt electrodes and absent any applied bias. Here, by conducting simulations using the General Particle Tracer code, we define the electron-gun parameter space within which various modes may be optimized. The properties of interest include electron collection efficiency, temporal and energy spreads, and effects of laser-pulse duration incident on the LaB6 source. We find that collection efficiencies can reach 100% for all modes, despite there being no bias applied to the electrode. PMID:26798820

  1. Communication: Effects of thermionic-gun parameters on operating modes in ultrafast electron microscopy

    PubMed Central

    Kieft, Erik; Schliep, Karl B.; Suri, Pranav K.; Flannigan, David J.

    2015-01-01

    Ultrafast electron microscopes with thermionic guns and LaB6 sources can be operated in both the nanosecond, single-shot and femtosecond, single-electron modes. This has been demonstrated with conventional Wehnelt electrodes and absent any applied bias. Here, by conducting simulations using the General Particle Tracer code, we define the electron-gun parameter space within which various modes may be optimized. The properties of interest include electron collection efficiency, temporal and energy spreads, and effects of laser-pulse duration incident on the LaB6 source. We find that collection efficiencies can reach 100% for all modes, despite there being no bias applied to the electrode. PMID:26798820

  2. a Derivation of the Weyl Ordered Form of Two-Mode Fresnel Operator by Virtue of the Weyl Operator Ordering Method

    NASA Astrophysics Data System (ADS)

    Ren, Gang; Du, Jian-Ming

    2012-06-01

    Based on the technique of integration with a Weyl ordered product (IWWOP) for the two-mode operator, we derive out the Weyl ordered form of two-mode Fresnel operator (TFO). The multiplication rule for TFO and the matrix element of Weyl ordered form of TFO in coordinate eigenstates are also discussed.

  3. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. I.; Isakova, Y. I.; Khaylov, I. P.

    2014-07-01

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1-1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250-300 kV) and bipolar-pulse mode with the first negative (300-600 ns, 100-150 kV) followed by a second positive (120 ns, 250-300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode the shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3-4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9-0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.

  4. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode

    SciTech Connect

    Pushkarev, A. I. Isakova, Y. I.; Khaylov, I. P.

    2014-07-15

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1–1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250–300 kV) and bipolar-pulse mode with the first negative (300–600 ns, 100–150 kV) followed by a second positive (120 ns, 250–300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode the shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3–4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9–0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.

  5. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode.

    PubMed

    Pushkarev, A I; Isakova, Y I; Khaylov, I P

    2014-07-01

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1-1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250-300 kV) and bipolar-pulse mode with the first negative (300-600 ns, 100-150 kV) followed by a second positive (120 ns, 250-300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode the shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3-4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9-0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same. PMID:25085130

  6. Mode-hop-free operation of a distributed Bragg reflector diode laser in an external fiber-cavity configuration

    NASA Astrophysics Data System (ADS)

    Kawai, Yuji; Tanaka, Utako; Hayasaka, Kazuhiro; Urabe, Shinji

    2015-11-01

    We report on the mode-hop-free operation of a distributed Bragg reflector (DBR) diode laser with an external cavity consisting of an optical fiber. A simple method is implemented, using feedback to the DBR drive current, to suppress mode hops due to frequency mismatch between the intrinsic mode of the DBR laser and the resonant mode of the fiber cavity. The error signal is derived from the change in the output power of the whole system. The feedback allows long-term operation over hours without mode hops, as well as continuous frequency scans of about 1 GHz with a reduced short-term linewidth.

  7. Microwave cavity piezo-opto-mechanical resonators based on film thickness modes operating beyond 10 GHz

    NASA Astrophysics Data System (ADS)

    Han, Xu; Tang, Hong

    Micromechanical resonators, which support and confine microwave frequency phonons on a scale comparable to optical wavelength, provide a valuable intermediate platform facilitating interactions among electrical, optical, and mechanical domains. High-frequency mechanical resonances ease the refrigeration conditions for reaching quantum mechanical ground state and also hold promise for practical device applications. However, efficient actuation of the highly stiff mechanical motions above gigahertz frequencies remains a challenging task. Here, we demonstrate a high-performance piezo-opto-mechanical resonator operating at 10.4 GHz by exploiting the acoustic thickness mode of an aluminum nitride micro-disk. In contrast to the in-plane mechanical modes, the thickness mode can be easily scaled to high frequencies with low mechanical and optical dissipations. A high f . Q product of 1 . 9 ×1013 ?Hz is achieved in ambient air at room temperature. Moreover, strong piezo-electro-mechanical coupling can be achieved by coupling the thickness mode with a microwave resonator, making it possible for coherent signal conversion. The thickness mode-based piezo-opto-mechanical resonators can be expected to serve as essential elements for advanced hybrid information networks.

  8. SF 6 quenched gas mixtures for streamer mode operation of RPCs at very low voltages

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Di Stante, L.; Liberti, B.; Paoloni, A.; Pastori, E.; Santonico, R.

    2002-11-01

    In the present paper we describe a search for gases that allow to reduce the energy of the electrical discharge produced in Resistive Plate Chambers (RPCs) operated in streamer mode, by reducing both the operating voltage and the released charge. This can be achieved, with current gas mixtures of argon, tetrafluoroethane (TFE) and isobutane, by reducing the total amount of quenching components (TFE+isobutane) down to 10-15% and compensating for the lower gas quenching power with the addition of small amounts of SF 6. We show here that SF 6, even for concentrations as low as 1% or less, has a strong effect in reducing the delivered charge in low quenched gases and allows to achieve a proper working mode of the RPC even at voltages as low as 4- 5 kV over a 2 mm gas gap.

  9. Performance of an ion-cyclotron-wave plasma apparatus operated in the radiofrequency sustained mode

    NASA Technical Reports Server (NTRS)

    Swett, C. C.; Woollett, R. R.

    1973-01-01

    An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode, that is, a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave propagation and wave damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of five times 10 to the 12th power cu cm and RF power of 90 kW. Coupling efficiency is 70 percent.

  10. Reactor issues for tandem mirrors operating in the negative-potential mode

    SciTech Connect

    Perkins, L.J.; Campbell, R.B.

    1985-12-02

    During 1985, interest has been revived at LLNL in tandem mirrors operating in the negative-potential mode. The negative tandem is formed by combining ECRH-sustained hot electron end cell plasmas with pumping mechanisms to remove trapped ions from the end cells. No sloshing ions are required. The resulting negative potential in the end cells confines the central cell electrons. The requirement of charge neutrality causes the ambipolar potential of the central cell to become negative relative to the end wall (hence, the name ''negative' tandem mirror), thereby providing central cell ion confinement. This potential distribution is the exact inverse of the axial distribution for the conventional (positive) tandem mirror without thermal barriers. In the negative tandem mirror, central cell electrons are confined electrostatically, end cell electrons are confined magnetically, and ions are confined electrostatically everywhere. In this report, we briefly assess the reactor issues pertinent to the operation of the tandem mirror in the negative mode. 7 refs., 5 figs.

  11. The Challenges of New Observing/Operating Modes at Ground Based Optical Observatories

    NASA Astrophysics Data System (ADS)

    Veillet, C.

    2012-09-01

    Over the past years, many ground-based optical observatories have moved away from the traditional “observing visitor mode” where the astronomer comes to the telescopes to carry the observations for which a given number of nights have been allocated. Remote observing, queued observations, service observing, remote or automated operations, these new observational modes are mainly implemented to minimize the operating costs, increase the efficiency of the observations, or better serve the users, leading ultimately to better data and hopefully better science. We will review these modes and the challenges of their implementation for the facilities as well as the users, stressing the need for the required appropriate software tools to keep the users satisfied while optimizing the use of the telescopes and their instrumentation.

  12. Simplified analytical model for open-phase operating mode of thyristor-controlled phase angle regulator

    NASA Astrophysics Data System (ADS)

    Astashev, M. G.; Novikov, M. A.; Panfilov, D. I.; Rashitov, P. A.; Fedorova, M. I.

    2015-12-01

    In this paper, an approach to the development of a simplified analytical model for the analysis of electromagnetic processes of a thyristor-controlled phase angle regulator with an individual phase-controlled thyristor switch is considered. The analytical expressions for the calculation of electrical parameters in symmetrical and open-phase operating mode are obtained. With a concrete example, the verification of the developed analytical model is carried out. It is accomplished by means of comparison between current and voltage calculation results when the thyristor-controlled phase angle regulator is in an open-phase operating mode with the simulation results in the MatLab software environment. Adequacy check of the obtained analytical model is carried out by comparison between the analytical calculation and experimental data received from the actual physical model.

  13. Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes.

    PubMed

    Li, Zhiwei; Hao, Jiaming; Huang, Lirong; Li, Hu; Xu, Hao; Sun, Yan; Dai, Ning

    2016-04-18

    In this work, plasmonic metasurfaces with abrupt phase discontinuities operating in high order modes are investigated for manipulating the wavefront of light. We first design two types of meta-super-cells consisting of V-shaped antennas with the phase shift coverage larger than 2π. And then, we create two linear gradient phased metasurfaces using the designed cells, which exhibit exceptional abilities for light-steering functioned as meta-echelette gratings operating in high order diffraction modes, may be valuable for using in high resolution spectrographs and advantage to achieve high numerical aperture plasmonic lenses. Based on the new designed super cells we further build another two azimuthal gradient phased metasurfaces that are able to generate high order optical vortex beams. Our results could lead to wide applications in photonic research. PMID:27137313

  14. A standing wave linear ultrasonic motor operating in face-diagonal-bending mode

    NASA Astrophysics Data System (ADS)

    Ci, Penghong; Liu, Guoxi; Chen, Zhijiang; Dong, Shuxiang

    2013-09-01

    We report a piezoelectric standing wave linear ultrasonic motor with double driving tips for generating precision motion. The motor's piezoelectric actuator was made of a simple Pb(Zr,Ti)O3 square-plate (15 × 15 × 2 mm3) operating in a single face-diagonal-bending standing wave mode to produce symmetric, bi-directional linear motion. The motor generated a driving force of 3.0 N and a moving speed of up to 165 mm/s under a relatively low applied electric field of 75 Vpp/mm at a resonance frequency of 141.5 kHz. This motor is superior to those previously reported because of the double friction-tip standing wave driving mechanism and the operating mode.

  15. Operational modes for a wave injection facility aboard spacelab and a sub-satellite

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.

    1978-01-01

    Various modes of operation are described for an orbiting wave injection facility planned to measure the properties of waves propagating in space plasma. Such a facility would cover a wide frequency range including MF and HF. Phase shift and Doppler shift measurements will yield more accurate measurements of echo time delay and the angle of arrival. Because Spacelab will involve some sub-satellites, some consideration is given to propagation between two vehicles both at HF and VHF.

  16. Retrieval of original signals for superconducting quantum interference device operating in flux locked mode

    NASA Astrophysics Data System (ADS)

    Liu, Dang-Ting; Tian, Ye; Zhao, Shi-Ping; Ren, Yu-Feng; Chen, Geng-Hua

    2015-04-01

    We discuss a simple relation between the input and output signals of a superconducting quantum interference device magnetometer operating in flux locked mode in a cosine curve approximation. According to this relation, an original fast input signal can be easily retrieved from its distorted output response. This technique can be used in some areas such as sensitive and fast detection of magnetic or metallic grains in medicine and food security checking.

  17. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    NASA Astrophysics Data System (ADS)

    Kirillov, E. Ya.; Ogloblin, B. G.; Shalaev, A. I.

    1996-03-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated.

  18. Study of avalanche mode operation of resistive plate chambers with different gas gap structures

    NASA Astrophysics Data System (ADS)

    Ammosov, V. V.; Gapienko, V. A.; Konstantinov, V. F.; Sviridov, Yu. M.; Zaets, V. G.

    2000-03-01

    The operation of narrow gap, wide gap and multigap resistive plate chambers in an avalanche mode was studied. No advantage in avalanche-streamer separation was found for the wide gap and multigap chambers operating with Ar-based mixture as compared with the narrow gap chamber. For dense tetrafluoroethane-based mixture, proportionality was observed between streamer-free plateau width and total gas thickness, in rough agreement with corresponding shift of the maximum of avalanche charge distributions from zero. The best result was obtained for double-gap chamber with the read-out electrode located between two subgaps.

  19. Sensitivity-based operational mode shape normalisation: Application to a bridge

    NASA Astrophysics Data System (ADS)

    Parloo, E.; Cauberghe, B.; Benedettini, F.; Alaggio, R.; Guillaume, P.

    2005-01-01

    Recently, an innovative sensitivity-based technique was introduced for the normalisation of operational mode shapes purely on a basis of output-only data. The technique is based on the use of a controlled mass modification experiment and does not involve any analytical models. Moreover, it allows to extend the applicability of many modal analysis based applications towards the domain of in-operation modal testing. Previously, this method was successfully tested by means of experiments on various mechanical engineering structures. The focus of this contribution is the validation of the sensitivity-based normalisation technique on a civil structure. For this purpose, measurements were performed on a bridge.

  20. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    SciTech Connect

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-03-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. {copyright} {ital 1996 American Institute of Physics.}

  1. N Reactor thermal plume characterization during Pu-only mode of operation

    SciTech Connect

    Ecker, R.M.; Thompson, F.L.; Whelan, G.

    1983-04-01

    Pacific Northwest Laboratories (PNL) performed field and modeling studies -from March 1982 through June 1983 to characterize the thermal plume from the N Reactor heated water outfall while the N Reactor operated in the Pu-only mode. Part 1 of this report deals with the field studies conducted to characterize the N Reactor thermal plume while in the Pu-only mode of operation. It includes a description of the study area, a description of field tasks and procedures, and data collection results and discussion. Part 2 describes the computer simulation of the thermal plume under different flow conditions and the calibration of the model used. It includes a description of the computer model and the assumptions on which it is based, a presentation of the input data used in this application, and a discussion of modeling results. Because the field studies were restricted by the NPOES permit variance to the spring months when high Columbia River flows prevail the mathematical modeling of the N Reactor thermal plume while the reactor operates in the Pu-only mode is instrumental in characterizing the plume during low Columbia River flows.

  2. Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator

    NASA Astrophysics Data System (ADS)

    Liu, Hu-Chen; Liu, Long; Li, Ping

    2014-10-01

    Failure mode and effects analysis (FMEA) has shown its effectiveness in examining potential failures in products, process, designs or services and has been extensively used for safety and reliability analysis in a wide range of industries. However, its approach to prioritise failure modes through a crisp risk priority number (RPN) has been criticised as having several shortcomings. The aim of this paper is to develop an efficient and comprehensive risk assessment methodology using intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED) operator to overcome the limitations and improve the effectiveness of the traditional FMEA. The diversified and uncertain assessments given by FMEA team members are treated as linguistic terms expressed in intuitionistic fuzzy numbers (IFNs). Intuitionistic fuzzy weighted averaging (IFWA) operator is used to aggregate the FMEA team members' individual assessments into a group assessment. IFHWED operator is applied thereafter to the prioritisation and selection of failure modes. Particularly, both subjective and objective weights of risk factors are considered during the risk evaluation process. A numerical example for risk assessment is given to illustrate the proposed method finally.

  3. Dual-mode operation of 2D material-base hot electron transistors

    PubMed Central

    Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  4. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  5. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  6. Fifteen Years of Service Mode Operations: Closing the Loop with the Community

    NASA Astrophysics Data System (ADS)

    Primas, F.; Tacconi-Garman, L.; Marteau, S.; Mainieri, V.; Rejkuba, M.; Mysore, S.; Dumas, C.; Kaufer, A.; Patat, F.; Sterzik, M.

    2014-12-01

    The first Service Mode (SM) observations with the VLT were made by ISAAC in April 1999. Since then new instruments have become operational and first generation ones replaced, filling the 12 VLT foci and feeding the VLT Interferometer and its four Auxiliary Telescopes. Efficiently operating such a broad range of instruments, installed and available every night of each year, on four 8-metre telescopes offers many challenges. Although it may appear that little has changed since 1999, the underlying VLT operational model has evolved in order to accommodate different requirements from the user community and features of new instruments. As ESO and its Member States approach routine operations with ALMA, and at the same time prepare for the next challenge, the construction of the E-ELT, it seems timely to take a closer look at what SM has brought to the scientific arena, both in terms of science data and support. Did it fulfil its original goal, if so, how well, and what are the lessons learned? A careful analysis of statistics and trends in Phase 1 and Phase 2 are now being conducted in the DOME (Dashboard for Operational Metrics at ESO) project. We summarise the main findings, concentrating on the handling of Service Mode.

  7. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.

    PubMed

    Jacobson, Kyle S; Kelly, Patrick T; He, Zhen

    2015-03-01

    Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output. PMID:25842536

  8. Neutron production from a mobile linear accelerator operating in electron mode for intraoperative radiation therapy

    NASA Astrophysics Data System (ADS)

    Loi, G.; Dominietto, M.; Cannillo, B.; Ciocca, M.; Krengli, M.; Mones, E.; Negri, E.; Brambilla, M.

    2006-02-01

    Intraoperative electron beam radiotherapy is increasingly performed using mobile linac delivering therapeutic radiation doses in unshielded operating rooms. While no special neutron-shielding problem should arise for operation at 10 MeV or less, it is not clear whether this holds true for operation at higher energies. This paper reports the measured neutron production from a Mobetron mobile electron linac, operated at 12 MeV, and compares the results with those from a conventional linac, also operated at 12 MeV in electron mode. Neutron leakage measurements were performed by means of passive bubble detectors in the scattering foil, patient and floor planes. Neutron dose equivalent rates per unit of electron dose delivered by the Mobetron at its normal treatment distance (50 cm SSD) were 0.33 µSv Gy-1 at the accelerator head, 0.18 µSv Gy-1 in the patient plane at 15 cm from the beam axis and 0.31 µSv Gy-1 at the floor plane, on the beam axis and under the beam stopper. For a weekly workload of 250 Gy, the weekly neutron dose equivalents at 12 MeV for the Mobetron at a distance of 300 cm from the scattering foil were 14.3 and 1.7 µSv/week for floor below and adjoining areas on the same floor, respectively. Neutron dose equivalent rates generated from Mobetron are at least one order of magnitude lower than ones produced by a conventional linac operated at the same energy in electron mode. Mobetron can be used at 12 MeV in an unshielded operating room for a weekly workload of up to 250 Gy if the bremsstrahlung x-rays are shielded to negligible levels.

  9. Advances in H-mode physics for long-pulse operation on EAST

    NASA Astrophysics Data System (ADS)

    Wan, Baonian; Li, Jiangang; Guo, Houyang; Liang, Yunfeng; Xu, Guosheng; Wang, Liang; Gong, Xianzu; Andrea Garofalothe EAST Team; Collaborators

    2015-10-01

    Since the 2012 International Atomic Energy Agency Fusion Energy Conference (IAEA-FEC), significant advances in both physics and technology has been made on the Experimental Advanced Superconducting Tomakak (EAST) toward a long-pulse stable high-confinement (H-mode) plasma regime. The experimental capabilities of EAST have been technically upgraded with the power enhancement (source power up to 26 MW) of the continuous-wave heating and current drive system, replacement of the upper graphite divertor with an ITER-like W monoblock divertor, and installation of a new internal cryopump in the upper divertor and a set of 16 in-vessel resonant magnetic perturbation (RMP) coils. This new upgrade enables EAST to be a unique operating device capable of investigating ITER-relevant long-pulse high-performance operations with dominant electron heating and low torque input within the next 5 years. Remarkable physics progress in controlling transient and steady-state divertor heat fluxes has been achieved on EAST, e.g. (i) edge-localized mode (ELM) mitigation/suppression with a number of attractive methods including lower hybrid wave (LHW), supersonic molecular beam injection (SMBI), RMPs, and real-time Li aerosol injection; and (ii) active control of steady-state power distribution by the synergy of LHW and SMBI. In the 2014 experimental campaign, a long-pulse high-performance H-mode plasma with H98 ˜ 1.2 has been obtained with a duration over 28 s (˜200 times the energy confinement time). In addition, several new experimental advances have been achieved in the last EAST campaign, including: (i) high-performance H-mode with βN ˜ 2 and stored plasma energy ˜220 kJ (ii) H-mode plasma sustained by neutral beam injection (NBI) alone or modulated NBI with lower hybrid current drive (LHCD), for the first time in EAST; (iii) high current drive efficiency and nearly full noninductive plasmas maintained by the new 4.6 GHz LHCD system; (iv) demonstration of a quasi-snowflake divertor

  10. Using the Virtual Heart Model to validate the mode-switch pacemaker operation.

    PubMed

    Jiang, Zhihao; Connolly, Allison; Mangharam, Rahul

    2010-01-01

    Artificial pacemakers are one of the most widely-used implantable devices today, with millions implanted worldwide. The main purpose of an artificial pacemaker is to treat bradycardia, or slow heart beats, by pacing the atrium and ventricles at a faster rate. While the basic functionality of the device is fairly simple, there are many documented cases of death and injury due to device malfunctions. The frequency of malfunctions due to firmware problems will only increase as the pacemaker operations become more complex in an attempt to expand the use of the device. One reason these malfunctions arise is that there is currently no methodology for formal validation and verification of medical device software, as there are in the safety-critical domains of avionics and industrial control automation. We have developed a timed-automata based Virtual Heart Model (VHM) to act as platform for medical device software validation and verification. Through a case study involving multiple arrhythmias, this investigation shows how the VHM can be used with closed-loop operation of a pacemaker to validate the necessity and functionality of the complex mode-switch pacemaker operation. We demonstrate the correct pacemaker operation, to switch from one rhythm management mode to another, in patients with supraventricular tachycardias. (1). PMID:21096077

  11. Circuit breaker operation and potential failure modes during an earthquake: a preliminary investigation

    SciTech Connect

    Lambert, H.E.

    1984-04-09

    This study addresses the effect of a strong-motion earthquake on circuit breaker operation. It focuses on the loss of offsite power (LOSP) transient caused by a strong-motion earthquake at the Zion Nuclear Power Plant. This report also describes the operator action necessary to prevent core melt if the above circuit breaker failure modes occur simultaneously on three 4.16 KV buses. Numerous circuit breakers important to plant safety, such as circuit breakers to diesel generators and engineered safety systems, (ESS), must open and/or close during this transient while strong motion is occurring. Nearly 500 electrical drawings were examined to address the effects of earthquakes on circuit breaker operation. Due to the complexity of the problem, this study is not intended to be definitive but serves as a focusing tool for further work. 5 references, 9 figures, 3 tables.

  12. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.

    PubMed

    Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor. PMID:25832267

  13. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    PubMed

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  14. Operation modes of a hydro-generator as a part of the inverter micro hydropower plant

    NASA Astrophysics Data System (ADS)

    Lukutin, B. V.; Shandarova, E. B.; Matukhin, D. L.; Makarova, A. F.; Fuks, I. L.

    2016-04-01

    The paper dwells on the selection problem of power equipment for a stand-alone inverter micro hydropower plant, in particular a hydro-generator, and evaluation of its operation modes. Numerical experiments included the modes calculation of hydroelectric units of the same type with various nominal power, supplied to the consumer according to the unchanged electric load curve. The studies developed requirements for a hydro-turbine and a synchronous generator in terms of a speed range and installed capacity, depending on the load curve. The possibility of using general industrial hydroelectric units with nominal power equal to half-maximum capacity of a typical daily load curve in rural areas was shown.

  15. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  16. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    PubMed Central

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  17. Experimental researches of fiber Bragg gratings operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Kafarova, Anastasia M.; Faskhutdinov, Lenar M.; Kuznetzov, Artem A.; Minaeva, Alina Y.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Bourdine, Anton V.; Morozov, Oleg G.; Burdin, Vladimir A.

    2016-03-01

    This work presents results of experimental researches of fiber Bragg gratings (FBG) operating in a few-mode regime. We tested FBGs written on silica graded-index multimode fibers 50/125 Cat. OM2+/OM3 with Bragg wavelength 1550 nm by using them in a set of developed experimental schemes based on excitation of multimode fibers by corresponding laser sources. The researches were focused on analysis of both spectral and pulse responses under changing of selected mode mixing and power diffusion processes due to tension and/or stress local and distributed action to FBG or sensor fiber. Results of spectral and pulse response measurements at the output of schemes with installed described FBGs are represented.

  18. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Optical Operator Method in Two-Mode Case and Entangled Fresnel Operator's Decomposition

    NASA Astrophysics Data System (ADS)

    Ma, Shan-Jun; Hu, Li-Yun; Fan, Hong-Yi

    2010-05-01

    Based on the entangled Fresnel operator (EFO) proposed in [Commun. Theor. Phys. 46 (2006) 559], the optical operator method studied by the IWOP technique (Ma et al., Commun. Theor. Phys. 49 (2008) 1295) is extended to the two-mode case, which gives the decomposition of the entangled Fresnel operator, corresponding to the decomposition of ray transfer matrix [A, B, C, D]. The EFO can unify those optical operators in two-mode case. Various decompositions of EFO into the exponential canonical operators are obtained. The entangled state representation is useful in the research.

  19. Trickle-Charge: a New Operational Mode for PEP-II

    SciTech Connect

    Kozanecki, W.; Colocho, W.S.; Decker, F.-J.; Ecklund, S.; Fisher, A.S.; Iverson, R.H.; O'Grady, C.; Seeman, J.; Sullivan, M.K.; Turner, J.L.; Weaver, M.; Wienands, U.; /SLAC

    2005-05-09

    In regular top-up-and-coast operation, PEP-II average luminosity is about 70-75% of the peak luminosity due to detector ramp-down and ramp-up times plus the time it takes to top-up both beams. We recently commissioned a new operational mode where the Low Energy Ring is injected continuously without ramping down the detector. The benefits--increased luminosity lifetime and roughly half the number of top-ups per shift--were expected to give an increase in delivered luminosity of about 15% at the same peak luminosity; this was confirmed in test runs. In routine trickle operation, however, it appears that the increase in delivered luminosity is more than twice that due to an increase in availability credited to the more stable operating conditions during trickle operation. Further gains were made when continuous injection was extended to the high energy ring as well. In this paper we will present our operational experience as well as some of the diagnostics we use to monitor and maintain tuning of the machine in order to control injection background and protect the detector.

  20. New constant-temperature operating mode for graphite calorimeter at LNE-LNHB.

    PubMed

    Daures, J; Ostrowsky, A

    2005-09-01

    The realization of the unit of absorbed dose at LNE-LNHB is based on calorimetry with the present GR8 graphite calorimeter. For this reason the calorimetric technique must be maintained, developed and improved in the laboratory. The usual quasi-adiabatic operating mode at LNHB is based on the thermal feedback between the core (sensitive element) and the jacket (adjacent body). When a core-jacket temperature difference is detected, a commercially available analogue PID (Proportional, Integral, Derivative) controller sends to the jacket an amount of electrical power to reduce this difference. Nevertheless, the core and jacket temperatures increase with irradiations and electrical calibrations whereas the surrounding is maintained at a fixed temperature to shield against the room temperature variations. At radiotherapy dose rates, fewer than ten measurements, or electrical calibrations, per day can be performed. This paper describes the new constant-temperature operating mode which has been implemented recently to improve flexibility in use and, to some extent, accuracy. The core and the jacket temperatures are maintained at fixed temperatures. A steady state is achieved without irradiation. Then, under irradiation, the electrical power needed to maintain the assigned temperature in the core is reduced by the amount of heat generated by ionizing radiation. The difference between these electrical powers, without and with irradiation, gives the mean absorbed dose rate to the core. The quality of this electrical power substitution measurement is strongly dependent upon the quality of the core and jacket thermal control. The core temperature is maintained at the set value using a digital PID regulator developed at the laboratory with LabView software on PC for this purpose. This regulator is versatile and particularly well suited for calorimetry purposes. Measurements in a cobalt-60 beam have shown no significant difference (<0.09%) between the two operating modes, with

  1. First operation of an FEL in same-cell energy recovery mode

    SciTech Connect

    G.R. Neil; S. Benson; G. Biallas; C.L. Bohn; D. Douglas; H.F. Dylla; R. Evans; J. Fugitt; J. Gubeli; R. Hill; K. Jordan; G. Krafft; R. Li; L. Merminga; D. Oepts; P. Piot; J. Preble; Michelle D. Shinn; T. Siggins; R. Walker; B. Yunn

    1999-09-01

    The driver for Jefferson Lab's kW-level infrared free-electron laser (FEL) is a superconducting, recirculating accelerator that recovers 75% of the electron-beam power and converts it to radio frequency power. As reported in FEL'98, the accelerator operated ''straight-ahead'' to deliver 38 MeV, 1.1 mA cw current for lasing at wavelengths in the vicinity of 5 microns. The waste beam was sent directly to a dump, bypassing the recirculation loop. Stable operation at up to 311 W cw was achieved in this mode. The machine has now recirculated cw average current up to 4.6 mA and has lased cw with energy recovery up to 1,720 W output at 3.1 microns. This is the first FEL to ever operate in the ''same-cell'' energy recovery mode. Energy recovery offers several advantages (reduced RF power and dramatically reduced radio-nuclide production at the dump) and several challenges will be described. The authors have observed heating effects in the mirrors which will be described. They will also report on the additional performance measurements of the FEL that have been performed and connect those measurements to standard models.

  2. First operation of an FEL in same-cell energy recovery mode

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Benson, S.; Biallas, G.; Bohn, C. L.; Douglas, H. F. Dylla, D.; Evans, R.; Fugitt, J.; Gubeli, J.; Hill, R.; Jordan, K.; Krafft, G.; Li, R.; Merminga, L.; Oepts, D.; Piot, P.; Preble, J.; Shinn, M.; Siggins, T.; Walker, R.; Yunn, B.

    2000-05-01

    The driver for Jefferson Lab's kW-level infrared free-electron laser (FEL) is a superconducting, recirculating accelerator that recovers 75% of the electron-beam power and converts it to radio frequency power. As reported in FEL'98, the accelerator operated "straight-ahead" to deliver 38 MeV, 1.1 mA cw current for lasing at wavelengths in the vicinity of 5 μm. The waste beam was sent directly to a dump, bypassing the recirculation loop. Stable operation at up to 311 W cw was achieved in this mode. The machine has now recirculated cw average current up to 4.7 mA, and has lased cw with energy recovery up to 1720 W output at 3.1 μm. This is the first FEL to ever operate in the "same-cell" energy recovery mode. Energy recovery offers several advantages (reduced RF power and dramatically reduced radio-nuclide production at the dump) and several challenges (potential for instabilities and difficult beam transport due to large energy spreads). Solutions to these challenges will be described. We have observed heating effects in the mirrors which will be described. We will also report on the additional performance measurements of the FEL that have been performed and connect those measurements to standard models.

  3. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    SciTech Connect

    WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L

    2003-08-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

  4. Filamentation and Fundamental-Mode Operation in InGaN Quantum Well Lasers

    SciTech Connect

    CHOW,WENG W.; AMANO,H.; AKASAKI,I.

    1999-12-08

    Filamentation, and consequently output beam quality in InGaN quantum-well lasers are found to be strong functions of quantum-well width because of the interplay of quantum-confined Stark effect and many-body interactions. For an In{sub 0.2}Ga{sub 0.8}N/GaN gain medium the antiguiding factor in a thick 4nm quantum well is considerably smaller than that for a narrow 2nm one. As a result, lasers with the thicker quantum well maintain fundamental-mode operation with wider stripe widths and at significantly higher excitation levels.

  5. Strategies for the calibration and operational use of the ERS-1 SAR wave mode

    NASA Astrophysics Data System (ADS)

    Guignard, J. P.

    The ERS-1 wave mode has recently been optimised by tuning on-board operating parameters such as the transmitted power, leading to an along-track sample frequency of 200 to 300 km. It is shown that, despite this low sample frquency, imposed by on-board power limitations, efficient use can be made of the data by improving the quality of the spectral estimates by means of an optimal Kalman filter. The optimum filter (smoother) parameters are derived by fitting the data to a calibration pass featuring a high sampling frequency (e.g. a spectrum every 20 km along-track).

  6. High-power pulsed-current-mode operation of an overdriven tapered amplifier.

    PubMed

    Takase, Ken; Stockton, John K; Kasevich, Mark A

    2007-09-01

    We experimentally investigate the performance of a commercial tapered amplifier diode operating in a pulsed-current mode with a peak current that is significantly higher than the specified maximum continuous current. For a tapered amplifier rated at 500 mW of continuous power, we demonstrate 2.6 W of peak optical output power with 15 mW of injection light for 200 micros, 7 A current pulses. Different failure mechanisms for the tapered amplifier, including thermal and optical damage, are identified under these conditions. PMID:17767324

  7. The formation of liquid bridge in different operating modes of AFM

    NASA Astrophysics Data System (ADS)

    Wei, Zheng; Sun, Yan; Ding, WenXuan; Wang, ZaiRan

    2016-09-01

    The liquid bridge is one of the principal factors that cause artifacts in ambient-pressure atomic force microscope (AFM) images. Additionally, it is the main component of the adhesion force in ambient conditions. To understand the AFM imaging mechanism and the sample characteristics, it is essential to study the liquid bridge. This study interprets the physical mechanism involved in liquid bridge formation, which is composed of three different physical processes: the squeezing process, capillary condensation, and liquid film flow. We discuss the contributions of these three mechanisms to the volume and the capillary force of the liquid bridge in different AFM operation modes.

  8. Stable mode-locking operation in a Cr:forsterite laser with a five-mirror cavity.

    PubMed

    Miura, T; Kobayashi, K; Zhang, Z; Torizuka, K; Kannari, F

    1999-04-15

    The experimental finding of more-stable mode-locking operation in a five-mirror cavity than in a conventional four-mirror cavity for a Cr:forsterite laser [IEEE J. Quantum Electron. 33, 1975 (1997)] was interpreted by ABCD-matrix formalism. Since the optimum cavity configuration operation for mode-locking operation was attainable in the middle of the stable cavity condition, we conclude that one can easily achieve KLM alignment and stable mode locking with a five-mirror cavity. PMID:18071570

  9. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    NASA Astrophysics Data System (ADS)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang

    2016-04-01

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  10. An Educational Study of the Barometric Effect of Cosmic Rays with a Geiger Counter

    ERIC Educational Resources Information Center

    Famoso, Barbara; La Rocca, Paola; Riggi, Francesco

    2005-01-01

    An educational study of the barometric effect of cosmic rays was carried out using an inexpensive experimental set-up that allowed for long-term monitoring of atmospheric pressure and cosmic ray flux as measured in a Geiger counter. The investigation was intended as a pilot study in view of ongoing involvements of high-school teams operating…

  11. Science Fair Report: Detection of Solar X-Ray Flares with a Geiger Counter.

    ERIC Educational Resources Information Center

    Mims, Vicki Rae

    1991-01-01

    Described is a science fair project in which M- and X-class x-ray flares on the surface of the earth were detected using a Geiger counter. Background information, the problem, hypothesis, a list of needed materials, the procedure, observations, conclusions, and a critique are included. (KR)

  12. Updated world map of the Köppen-Geiger climate classification

    NASA Astrophysics Data System (ADS)

    Peel, M. C.; Finlayson, B. L.; McMahon, T. A.

    2007-10-01

    Although now over 100 years old, the classification of climate originally formulated by Wladimir Köppen and modified by his collaborators and successors, is still in widespread use. It is widely used in teaching school and undergraduate courses on climate. It is also still in regular use by researchers across a range of disciplines as a basis for climatic regionalisation of variables and for assessing the output of global climate models. Here we have produced a new global map of climate using the Köppen-Geiger system based on a large global data set of long-term monthly precipitation and temperature station time series. Climatic variables used in the Köppen-Geiger system were calculated at each station and interpolated between stations using a two-dimensional (latitude and longitude) thin-plate spline with tension onto a 0.1°×0.1° grid for each continent. We discuss some problems in dealing with sites that are not uniquely classified into one climate type by the Köppen-Geiger system and assess the outcomes on a continent by continent basis. Globally the most common climate type by land area is BWh (14.2%, Hot desert) followed by Aw (11.5%, Tropical savannah). The updated world Köppen-Geiger climate map is freely available electronically in the Supplementary Material Section.

  13. Updated world map of the Köppen-Geiger climate classification

    NASA Astrophysics Data System (ADS)

    Peel, M. C.; Finlayson, B. L.; McMahon, T. A.

    2007-03-01

    Although now over 100 years old, the classification of climate originally formulated by Wladimir Köppen and modified by his collaborators and successors, is still in widespread use. It is widely used in teaching school and undergraduate courses on climate. It is also still in regular use by researchers across a range of disciplines as a basis for climatic regionalisation of variables and for assessing the output of global climate models. Here we have produced a new global map of climate using the Köppen-Geiger system based on a large global data set of long-term monthly precipitation and temperature station time series. Climatic variables used in the Köppen-Geiger system were calculated at each station and interpolated between stations using a two-dimensional (latitude and longitude) thin-plate spline with tension onto a 0.1°×0.1° grid for each continent. We discuss some problems in dealing with sites that are not uniquely classified into one climate type by the Köppen-Geiger system and assess the outcomes on a continent by continent basis. Globally the most common climate type by land area is BWh (14.2%, Hot desert) followed by Aw (11.5%, Tropical savannah). The updated world Köppen-Geiger climate map is freely available electronically at http://www.hydrol-earth-syst-sci.net/????.

  14. Timing the Random and Anomalous Arrival of Particles in a Geiger Counter with GPS Devices

    ERIC Educational Resources Information Center

    Blanco, F.; La Rocca, P.; Riggi, F.; Riggi, S.

    2008-01-01

    The properties of the arrival time distribution of particles in a detector have been studied by the use of a small Geiger counter, with a GPS device to tag the event time. The experiment is intended to check the basic properties of the random arrival time distribution between successive events and to simulate the investigations carried out by…

  15. Cosmic Rays with Portable Geiger Counters: From Sea Level to Airplane Cruise Altitudes

    ERIC Educational Resources Information Center

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco

    2009-01-01

    Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive…

  16. Educational Studies of Cosmic Rays with a Telescope of Geiger-Muller Counters

    ERIC Educational Resources Information Center

    Wibig, T.; Kolodziejczak, K.; Pierzynski, R.; Sobczak, R.

    2006-01-01

    A group of high school students (XII Liceum) in the framework of the Roland Maze Project has built a compact telescope of three Geiger-Muller counters. The connection between the telescope and a PC computer was also created and programmed by students involved in the Project. This has allowed students to use their equipment to perform serious…

  17. Numerical study of the start-up scenario of a 670 GHz gyrotron operation at TE31,8 mode

    NASA Astrophysics Data System (ADS)

    Pu, Ruifeng; Sinitsyn, Oleksandr; Nusinovich, Gregory; Ireap Team

    2011-10-01

    In order to develop a system to detect concealed radioactive materials, we are designing a 670 GHz gyrotron with sufficient power to cause breakdown in the air. Design studies of the cavity and the magnetron injection gun (MIG) of this gyrotron had already been presented. We concluded study of simple start-up regime for this 670GHz gyrotron operating at TE31,8 mode and found that at the fundamental cyclotron harmonics, the operating mode can be excited and the competitor modes will be suppressed. Currently we are studying gyrotron operating on the second cyclotron harmonics using the same electron gun. Preliminary studies show that if the higher harmonics mode is excited first, it will suppress competitors of the fundamental mode. Using available MIG data, we are performing numerical simulation using MAGY. The results of these simulations can be illustrative for our future experiments, and the results of the study will be presented at the conference. Supported by ONR.

  18. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    SciTech Connect

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-15

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  19. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  20. Burst-mode-operated, sub-nanosecond fiber MOPA system incorporating direct seed-packet shaping.

    PubMed

    Chen, Tao; Liu, Hao; Kong, Wei; Shu, Rong

    2016-09-01

    We report a novel burst-mode-operated sub-nanosecond fiber Master Oscillator, Power Amplifier (MOPA) system incorporating direct seed-packet shaping without external modulators. A fast digital-to-analog converter with 1 Gsps sampling rate and 16 bit resolution was developed to control the pulse amplitudes and sequences of a distributed feedback semiconductor seed laser to realize packet-shaped burst mode operation. Optical pulses with durations as short as 700 ps and peak power as high as 1 W can be generated from the seed by applying proper reverse voltages after positive electrical pulses to the laser driver to cancel the residual charges at its gate electrode. The average power of the laser can be amplified to nearly 40 W with FWHM spectral linewidth of ~0.12 nm after three stages of polarization maintaining fiber amplifiers. Different packet shapes including ramp-off, Gaussian, square and double rectangle can be produced from the fiber MOPA by finely pre-shaping the seed pulse bursts. It is believed that such a laser has provided a cost-effective solution to the generation of pulse bursts with arbitrary packet shapes for different practical applications including material micromachining and nonlinear frequency conversion. PMID:27607699

  1. Reduced group delay dispersion in quantum dot passively mode-locked lasers operating at elevated temperature

    NASA Astrophysics Data System (ADS)

    Mee, J. K.; Raghunathan, R.; Murrell, D.; Braga, A.; Li, Y.; Lester, L. F.

    2014-09-01

    A detailed study of the pulse characteristics emitted from a monolithic Quantum Dot (QD) passively Mode-Locked Laser (MLL) has been performed using a state-of-the-art Frequency Resolved Optical Gating (FROG) pulse measurement system. While traditionally the time-domain pulse characteristics of semiconductor MLLs have been studied using digital sampling oscilloscope or intensity autocorrelation techniques, the FROG measurements allow for simultaneous characterization of time and frequency, which has been shown to be necessary and sufficient for true determination of mode-locked stability. In this paper, FROG pulse measurements are presented on a two-section QD MLL operating over wide temperature excursions. The FROG measurement allows for extraction of the temporal and spectral intensity and phase profiles from which the Group Delay Dispersion (GDD) can be determined. The magnitude of the GDD is found to decrease from 16.1 to 3.5 ps/nm when the temperature is increased from 20 to 50 oC, mirroring the trend of pulse width reduction at elevated temperature, which has been shown to correlate strongly with reduced unsaturated absorption. The possibility to further optimize pulse generation via intra-cavity dispersion compensation in a novel three-section MLL design is also examined, and shows strong potential toward providing valuable insight into the optimal cavity designs and operating parameters for QD MLLs.

  2. Fiber laser pumped burst-mode operated picosecond mid-infrared laser

    NASA Astrophysics Data System (ADS)

    Wei, Kai-Hua; Jiang, Pei-Pei; Wu, Bo; Chen, Tao; Shen, Yong-Hang

    2015-02-01

    We demonstrate a compact periodically poled MgO-doped lithium niobate (MgO:PPLN)-based optical parametric oscillator (OPO) quasi-synchronously pumped by a fiber laser system with burst-mode operation. The pump source is a peak-power-selectable pulse-multiplied picosecond Yb fiber laser. The chirped pulses from a figure of eight-cavity mode-locked fiber laser seed are narrowed to a duration of less than 50 ps using an FBG reflector and a circulator. The narrowed pulses are directed to pass through a pulse multiplier and to form pulse bunches, each of which is composed of 13 sub-pulses. The obtained pulse bunches are amplified by two-stage fiber pre-amplifiers: one-stage is core-pumped and the other is cladding-pumped. A fiberized acousto-optic modulator is inserted to control the pulse repetition rate (PRR) of the pulse bunches before they are power-amplified in the final amplifier stage with a large mode area (LMA) PM Yb-doped fiber. The maximum average powers from the final amplifier are 85 W, 60 W, and 45 W, respectively, corresponding to the PRR of 2.72 MHz, 1.36 MHz, and 0.68 MHz. The amplified pulses are directed to pump an MgO:PPLN-based optical parametric oscillator (OPO). A maximum peak power at 3.45 μm is obtained approximately to be 8.4 kW. Detailed performance characteristics are presented. Project supported by the National Natural Science Foundation of China (Grant No. 61078015) and the National Basic Research Program of China (Grant No. 2011CB311803).

  3. New Operational Modes to Increase Energy Efficiency in Capacitive Deionization Systems.

    PubMed

    García-Quismondo, Enrique; Santos, Cleis; Soria, Jorge; Palma, Jesús; Anderson, Marc A

    2016-06-01

    In order for capacitive deionization (CDI) as a water treatment technology to achieve commercial success, substantial improvements in the operational aspects of the system should be improved in order to efficiently recover the energy stored during the deionization step. In the present work, to increase the energy efficiency of the adsorption-desorption processes, we propose a new operational procedure that utilizes a concentrated brine stream as a washing solution during regeneration. Using this approach, we demonstrate that by replacing the electrolyte during regeneration for a solution with higher conductivity, it is possible to substantially increase round-trip energy efficiency. This procedure was experimentally verified in a flow cell reactor using a pair of carbon electrodes (10(2) cm geometric area) and NaCl solutions having concentrations between 50 and 350 mmol·L(-1). According to experimental data, this new operational mode allows for a better utilization of the three-dimensional structure of the porous material. This increases the energetic efficiency of the global CDI process to above 80% when deionization/regeneration currents ratio are optimized for brackish water treatment. PMID:27167689

  4. Aerated biofilter with seasonally varied operation modes for the production of irrigation water.

    PubMed

    Meda, A; Cornel, P

    2010-01-01

    Water reuse for agricultural irrigation can contribute to the conservation of valuable water resources and opens the possibility to reuse the wastewater's nutrients (N and P) at the same time. As irrigation is usually limited to vegetation periods, effluent requirements for treated wastewater may vary seasonally. A process concept for wastewater treatment with variable operation modes for the seasonal production of nutrient-rich irrigation water and nutrient-poor discharge water is proposed. It is shown that a two-step process consisting of organics removal followed by biological aerated filters (biofilters) for nitrogen removal is a promising combination which allows a flexible and seasonally varied operation with a fast re-start of biological nitrification after shut-down periods. To date, there is no commonly accepted practice amongst operators to take biofilters out of service for periods of time while - at the same time - maintaining biological activity to enable a quick start-up. This paper shows that during shut-down periods the activity drop rate is the smallest if the filter bed is maintained flooded and without aeration; then a very quick re-start is possible. PMID:20220239

  5. Energetic electron avalanches and mode transitions in planar inductively coupled radio-frequency driven plasmas operated in oxygen

    SciTech Connect

    Zaka-ul-Islam, M.; Niemi, K.; Gans, T.; O'Connell, D.

    2011-07-25

    Space and phase resolved optical emission spectroscopic measurements reveal that in certain parameter regimes, inductively coupled radio-frequency driven plasmas exhibit three distinct operation modes. At low powers, the plasma operates as an alpha-mode capacitively coupled plasma driven through the dynamics of the plasma boundary sheath potential in front of the antenna. At high powers, the plasma operates in inductive mode sustained through induced electric fields due to the time varying currents and associated magnetic fields from the antenna. At intermediate powers, close to the often observed capacitive to inductive (E-H) transition regime, energetic electron avalanches are identified to play a significant role in plasma sustainment, similar to gamma-mode capacitively coupled plasmas. These energetic electrons traverse the whole plasma gap, potentially influencing plasma surface interactions as exploited in technological applications.

  6. Numerical Examination of Silicon Avalanche Photodiodes Operated in Charge Storage Mode

    NASA Technical Reports Server (NTRS)

    Parks, Joseph W., Jr.; Brennan, Kevin F.

    1998-01-01

    The behavior of silicon-based avalanche photodiodes (APD's) operated in the charge storage mode is examined. In the charge storage mode, the diodes are periodically biased to a sub-breakdown voltage and then open-circuited. During this integration period, photo-excited and thermally generated carriers are accumulated within the structure. The dynamics of this accumulation and its effects upon the avalanching of the diode warrants a detailed, fully numerical analysis. The salient features of this investigation include device sensitivity to the input photo-current including the self-quenching effect of the diode and its limitations in sensing low light levels, the dependence of the response on the bulk lifetime and hence on the generation current within the device, the initial gain, transient response, dependence of the device uniformity upon performance, and the quantity of storable charge within the device. To achieve these tasks our device simulator, STEBS-2D, was utilized. A modified current-controlled boundary condition is employed which allows for the simulation of the isolated diode after the initial reset bias has been applied. With this boundary condition, it is possible to establish a steady-state voltage on the ohmic contact and then effectively remove the device from the external circuit while still including effects from surface recombination, trapped surface charge, and leakage current from the read-out electronics.

  7. Nanostethoscopy: A new mode of operation of the atomic force microscope

    SciTech Connect

    Keaton, A.; Holzrichter, J.F.; Balhorn, R.; Siekaus, W.J.

    1994-02-01

    The authors introduce a new mode of operation of the atomic force microscope (AFM). This detection scheme, a {open_quotes}Nano-Stethoscope{close_quotes}. Involves using the atomic force microscope in a novel acoustic mode not generally recognized. The Nano-Stethoscope uses the conventional scanning feature to locate a desired site, positions the AFM microscope tip over the site, holds the cantilever stationary (in x and v) and records the tip`s z-motion as a function of time. The tip/cantilever system thus functions as a micro-motion detector to respond to characteristic {open_quotes}pulsations{close_quotes}, nano-configurational chances, or any other event that influences the position of the tip as a function of time. The authors have demonstrated the feasibility of using the tip of an AFM in this manner in a biological system with a measurement of the vibrations of an emerging shrimp egg nauplius ({approximately}3 {mu}m. -10 Hz) and on the Angstrom scale in a non-biological system i.e.. the thermal expansion of metal interconnect lines on a microelectronic circuit.

  8. Output Feedback Fractional-Order Nonsingular Terminal Sliding Mode Control of Underwater Remotely Operated Vehicles

    PubMed Central

    Chen, Jiawang; Gu, Linyi

    2014-01-01

    For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time. PMID:24983004

  9. Argon gas-puff radius optimiaztion for Saturn operating in the long-pulse mode.

    SciTech Connect

    Apruzese, John P.; Jackson, S. L.; Commisso, Robert J.; Weber, Bruce V.; Mosher, Daniel A.

    2010-06-01

    Argon gas puff experiments using the long pulse mode of Saturn (230-ns rise time) have promise to increase the coupled energy and simplify operations because the voltage is reduced in vacuum and the forward-going energy is higher for the same Marx charge. The issue addressed in this work is to determine if the 12-cm-diameter triple nozzle used in Saturn long-pulse-mode experiments to date provides maximum K-shell yield, or if a different-radius nozzle provides additional radiation. Long-pulse implosions are modeled by starting with measured density distributions from the existing 12-cm-diameter nozzle, and then varying the outer radius in an implosion-energy-conserving self-similar manner to predict the gas-puff diameter that results in the maximum K-shell yield. The snowplow-implosions and multi-zone radiation transport models used in the analysis are benchmarked against detailed measurements from the 12-cm-diameter experiments. These calculations indicate that the maximum K-shell emission is produced with very nearly the existing nozzle radius.

  10. Analytical model for tilting proprotor aircraft dynamics, including blade torsion and coupled bending modes, and conversion mode operation

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1974-01-01

    An analytical model is developed for proprotor aircraft dynamics. The rotor model includes coupled flap-lag bending modes, and blade torsion degrees of freedom. The rotor aerodynamic model is generally valid for high and low inflow, and for axial and nonaxial flight. For the rotor support, a cantilever wing is considered; incorporation of a more general support with this rotor model will be a straight-forward matter.

  11. Does the ocean-atmosphere system have more than one stable mode of operation?

    NASA Technical Reports Server (NTRS)

    Broecker, W. S.; Peteet, D. M.; Rind, D.

    1985-01-01

    The climate record obtained from two long Greenland ice cores reveals several brief climate oscillations during glacial time. The most recent of these oscillations, also found in continental pollen records, has greatest impact in the area under the meteorological influence of the northern Atlantic, but none in the United States. This suggests that these oscillations are caused by fluctuations in the formation rate of deep water in the northern Atlantic. As the present production of deep water in this area is driven by an excess of evaporation over precipitation and continental runoff, atmospheric water transport may be an important element in climate change. Changes in the production rate of deep water in this sector of the ocean may push the climate system from one quasi-stable mode of operation to another.

  12. Dielectric Huygens’ Metasurface for High-Efficiency Hologram Operating in Transmission Mode

    PubMed Central

    Zhao, Wenyu; Jiang, Huan; Liu, Bingyi; Song, Jie; Jiang, Yongyuan; Tang, Chengchun; Li, Junjie

    2016-01-01

    Conventional metasurface holograms relying on metal antennas for phase manipulation suffer from strong Ohmic loss and incomplete polarization conversion. The efficiency is limited to rather small values when operating in transmission mode. Here, we implement a high-efficiency transmissive metasurface hologram by leveraging the recently developed Huygens’ metasurface to construct an electric and magnetic sheet with a transmission efficiency up to 86% and optical efficiency of 23.6%. The high-efficiency originates from the simultaneous excitations of the Mie-type electric and magnetic dipole resonances in the meta-atoms composed of silicon nanodisks. Our hologram shows high fidelity over a wide spectral range and promises to be an outstanding alternative for display applications. PMID:27457708

  13. Dielectric Huygens’ Metasurface for High-Efficiency Hologram Operating in Transmission Mode

    NASA Astrophysics Data System (ADS)

    Zhao, Wenyu; Jiang, Huan; Liu, Bingyi; Song, Jie; Jiang, Yongyuan; Tang, Chengchun; Li, Junjie

    2016-07-01

    Conventional metasurface holograms relying on metal antennas for phase manipulation suffer from strong Ohmic loss and incomplete polarization conversion. The efficiency is limited to rather small values when operating in transmission mode. Here, we implement a high-efficiency transmissive metasurface hologram by leveraging the recently developed Huygens’ metasurface to construct an electric and magnetic sheet with a transmission efficiency up to 86% and optical efficiency of 23.6%. The high-efficiency originates from the simultaneous excitations of the Mie-type electric and magnetic dipole resonances in the meta-atoms composed of silicon nanodisks. Our hologram shows high fidelity over a wide spectral range and promises to be an outstanding alternative for display applications.

  14. On the zero modes of the Faddeev-Popov operator in the Landau gauge

    SciTech Connect

    Landim, R. R.; Vilar, L. C. Q. Lemes, V. E. R.; Ventura, O. S.

    2014-02-15

    Following Henyey procedure [Phys. Rev. D 20, 1460 (1979)], we construct examples of zero modes of the Faddeev-Popov operator in the Landau gauge in Euclidean space in D dimensions, for both SU(2) and SU(3) groups. We obtain gauge field configurations A{sub μ}{sup a} which give rise to a field strength, F{sub μν}{sup a}=∂{sub μ}A{sub ν}{sup a}−∂{sub ν}A{sub μ}{sup a}+f{sup abc}A{sub μ}{sup b}A{sub ν}{sup c}, whose nonlinear term, f{sup abc}A{sub μ}{sup b}A{sub ν}{sup c}, turns out to be non-vanishing. To our knowledge, this is the first time where such a non-abelian configuration is explicitly obtained in the case of SU(3) in 4D.

  15. Dielectric Huygens' Metasurface for High-Efficiency Hologram Operating in Transmission Mode.

    PubMed

    Zhao, Wenyu; Jiang, Huan; Liu, Bingyi; Song, Jie; Jiang, Yongyuan; Tang, Chengchun; Li, Junjie

    2016-01-01

    Conventional metasurface holograms relying on metal antennas for phase manipulation suffer from strong Ohmic loss and incomplete polarization conversion. The efficiency is limited to rather small values when operating in transmission mode. Here, we implement a high-efficiency transmissive metasurface hologram by leveraging the recently developed Huygens' metasurface to construct an electric and magnetic sheet with a transmission efficiency up to 86% and optical efficiency of 23.6%. The high-efficiency originates from the simultaneous excitations of the Mie-type electric and magnetic dipole resonances in the meta-atoms composed of silicon nanodisks. Our hologram shows high fidelity over a wide spectral range and promises to be an outstanding alternative for display applications. PMID:27457708

  16. Transient validation of RELAP5 model with the DISS facility in once through operation mode

    NASA Astrophysics Data System (ADS)

    Serrano-Aguilera, J. J.; Valenzuela, L.

    2016-05-01

    Thermal-hydraulic code RELAP5 has been used to model a Solar Direct Steam Generation (DSG) system. Experimental data from the DISS facility located at Plataforma Solar de Almería is compared to the numerical results of the RELAP5 model in order to validate it. Both the model and the experimental set-up are in once through operation mode where no injection or active control is regarded. Time dependent boundary conditions are taken into account. This work is a preliminary study of further research that will be carried out in order to achieve a thorough validation of RELAP5 models in the context of DSG in line-focus solar collectors.

  17. Integrated Mode Choice, Small Aircraft Demand, and Airport Operations Model User's Guide

    NASA Technical Reports Server (NTRS)

    Yackovetsky, Robert E. (Technical Monitor); Dollyhigh, Samuel M.

    2004-01-01

    A mode choice model that generates on-demand air travel forecasts at a set of GA airports based on changes in economic characteristics, vehicle performance characteristics such as speed and cost, and demographic trends has been integrated with a model to generate itinerate aircraft operations by airplane category at a set of 3227 airports. Numerous intermediate outputs can be generated, such as the number of additional trips diverted from automobiles and schedule air by the improved performance and cost of on-demand air vehicles. The total number of transported passenger miles that are diverted is also available. From these results the number of new aircraft to service the increased demand can be calculated. Output from the models discussed is in the format to generate the origin and destination traffic flow between the 3227 airports based on solutions to a gravity model.

  18. Memristive operation mode of a site-controlled quantum dot floating gate transistor

    SciTech Connect

    Maier, P. Hartmann, F.; Mauder, T.; Emmerling, M.; Schneider, C.; Kamp, M.; Worschech, L.; Höfling, S.

    2015-05-18

    We have realized a floating gate transistor based on a GaAs/AlGaAs heterostructure with site-controlled InAs quantum dots. By short-circuiting the source contact with the lateral gates and performing closed voltage sweep cycles, we observe a memristive operation mode with pinched hysteresis loops and two clearly distinguishable conductive states. The conductance depends on the quantum dot charge which can be altered in a controllable manner by the voltage value and time interval spent in the charging region. The quantum dot memristor has the potential to realize artificial synapses in a state-of-the-art opto-electronic semiconductor platform by charge localization and Coulomb coupling.

  19. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology

    NASA Astrophysics Data System (ADS)

    Rajasekaran, Priyadarshini; Mertmann, Philipp; Bibinov, Nikita; Wandke, Dirk; Viöl, Wolfgang; Awakowicz, Peter

    2009-11-01

    Our dielectric barrier discharge (DBD) plasma source for bio-medical application comprises a copper electrode covered with ceramic. Objects of high capacitance such as the human body can be used as the opposite electrode. In this study, the DBD source is operated in single-filamentary mode using an aluminium spike as the opposite electrode, to imitate the conditions when the discharge is ignited on a raised point, such as hair, during therapeutic use on the human body. The single-filamentary discharge thus obtained is characterized using optical emission spectroscopy, numerical simulation, voltage-current measurements and microphotography. For characterization of the discharge, averaged plasma parameters such as electron distribution function and electron density are determined. Fluxes of nitric oxide (NO), ozone (O3) and photons reaching the treated surface are simulated. The calculated fluxes are finally compared with corresponding fluxes used in different bio-medical applications.

  20. Pilot/vehicle control optimization using averaged operational mode and subsystem relative performance index sensitivities

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.; Lehtinen, B.; Riehl, J. P.

    1972-01-01

    A method is presented for designing optimal feedback controllers for systems having subsystem sensitivity constraints. Such constraints reflect the presence of subsystem performance indices which are in conflict with the performance index of the overall system. The key to the approach is the use of relative performance index sensitivity (a measure of the deviation of a performance index from its optimum value). The weighted sum of subsystem and/or operational mode relative performance index sensitivies is defined as an overall performance index. A method is developed to handle linear systems with quadratic performance indices and either full or partial state feedback. The usefulness of this method is demonstrated by applying it to the design of a stability augmentation system (SAS) for a VTOL aircraft. A desirable VTOL SAS design is one that produces good VTOL transient response both with and without active pilot control. The system designed using this method is shown to effect a satisfactory compromise solution to this problem.

  1. Thermal Spray Using a High-Frequency Pulse Detonation Combustor Operated in the Liquid-Purge Mode

    NASA Astrophysics Data System (ADS)

    Endo, T.; Obayashi, R.; Tajiri, T.; Kimura, K.; Morohashi, Y.; Johzaki, T.; Matsuoka, K.; Hanafusa, T.; Mizunari, S.

    2016-02-01

    Experiments on thermal spray by pulsed detonations at 150 Hz were conducted. Two types of pulse detonation combustors were used, one operated in the inert gas purge (GAP) mode and the other in the liquid-purge (LIP) mode. In both modes, all gases were supplied in the valveless mode. The GAP mode is free of moving components, although the explosive mixture is unavoidably diluted with the inert gas used for the purge of the hot burned gas. In the LIP mode, pure fuel-oxygen combustion can be realized, although a liquid-droplet injector must be actuated cyclically. The objective of this work was to demonstrate a higher spraying temperature in the LIP mode. First, the temperature of CoNiCrAlY particles heated by pulsed detonations was measured. As a result, the spraying temperature in the LIP mode was higher than that in the GAP mode by about 1000 K. Second, the temperature of yttria-stabilized zirconia (YSZ) particles, whose melting point was almost 2800 °C, heated by pulsed detonations in the LIP mode was measured. As a result, the YSZ particles were heated up to about 2500 °C. Finally, a thermal spray experiment using YSZ particles was conducted, and a coating with low porosity was successfully deposited.

  2. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Zhou, Dong; Lu, Hai; Chen, Dun-Jun; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Dou

    2015-12-01

    Not Available Supported by the National Basic Research Program of China under Grant Nos 2011CB301900 and 2011CB922100, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  3. Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes.

    PubMed

    Stipcević, Mario

    2009-03-20

    In this paper a novel construction of an active quenching circuit intended for single-photon detection is presented, along with a few original methods for its evaluation. The circuit has been combined with a standard avalanche photodiode C30902S to form a single-photon detector. This detector has a dead time of 39 ns, maximum random counting frequency of 14 MHz, small afterpulsing probability, an estimated peak detection efficiency of over 20%, and a dark count rate of less than 100 Hz. This simple and robust active quenching circuit can be built from off-the-shelf electronic components and is presented with the detailed schematic diagram. PMID:19305468

  4. STOMP Sparse Vegetation Evapotranspiration Model for the Water-Air-Energy Operational Mode

    SciTech Connect

    Ward, Anderson L.; White, Mark D.; Freeman, Eugene J.; Zhang, Z. F.

    2005-09-15

    The Water-Air-Energy (WAE) Operational Mode of the Subsurface Transport Over Multiple Phases (STOMP) numerical simulator solves the coupled conservation equations for water mass, air mass, and thermal energy in multiple dimensions. This addendum describes the theory, input file formatting, and application of a soil-vegetation-atmosphere transfer (SVAT) scheme for STOMP that is based on a sparse vegetation evapotranspiration model. The SVAT scheme is implemented as a boundary condition on the upper surface of the computational domain and has capabilities for simulating evaporation from bare surfaces as well as evapotranspiration from sparsely vegetated surfaces populated with single or multiple plant species in response to meteorological forcings. With this extension, the model calculates water mass, air mass and thermal energy across a boundary surface in addition to root-water transport between the subsurface and atmosphere. This mode represents the barrier extension of the WAE mode and is designated as STOMP-WAE-B. Input for STOMP-WAE-B is specified via three input cards and include: atmospheric conditions through the Atmospheric Conditions Card; time-invariant plant species data through the Plant Properties Card; and time varying plant species data through the Boundary Conditions Card. Two optional cards, the Observed Data and UCODE Control Cards allow use of STOMP-WAE with UCODE in an inverse mode to estimate model parameters. STOMP-WAE was validated by solving a number of test problems from the literature that included experimental observations as well as analytical or numerical solutions. Several of the UNSAT-H verification problems are included along with a benchmark simulation derived from a recently published intercode comparison for barrier design tools. Results show that STOMP is able to meet, and in most cases, exceed performance of other commonly used simulation codes without having to resort to may of their simplifying assumptions. Use of the fully

  5. ADVANTG Shielding Analysis for Closure Operations in an Open-Mode Repository

    SciTech Connect

    Bevill, Aaron M; Radulescu, Georgeta; Scaglione, John M; Howard, Rob L

    2013-01-01

    en-mode repository concepts could require worker entry into access drifts after placement of fuel casks in order to perform activities related to backfill, plug emplacement, routine maintenance, or performance confirmation. An ideal emplacement-drift shielding configuration would minimize dose to workers while maximizing airflow through the emplacement drifts. This paper presents a preliminary investigation of the feasibility and effectiveness of radiation shielding concepts that could be employed to facilitate worker operations in an open-mode repository. The repository model for this study includes pressurized-water reactor fuel assemblies (60 GWd/MTU burnup, 40 year post-irradiation cooldown) in packages of 32 assemblies. The closest fuel packages are 5 meters from dosimetry voxels in the access drift. The unshielded dose to workers in the access drift is 73.7 rem/hour. Prior work suggests that open-mode repository concepts similar to this one would require 15 m3/s of ventilation airflow. Shielding concepts considered here include partial concrete plugs, labyrinthine shields, and stainless steel photon attenuator grids. Maximum dose to workers in the access drift was estimated for each shielding concept using MCNP5 with variance reduction parameters generated by ADVANTG. Because airflow through the shielding is important for open-mode repositories, a semi-empirical estimate of the head loss due to each shielding configuration was also calculated. Airflow and shielding performance vary widely among the proposed shielding configurations. Although the partial plug configuration had the best airflow performance, it allowed dose rates 1500 greater than the specified target. Labyrinthine shielding concepts yield doses on the order of 1 mrem/hour with configurations that impose 3 to 11 J/kg head loss. Adding 1 cm lead lining to the airflow channels of labyrinthine designs further reduces the worker dose by 65% to 95%. Photon-attenuator concepts may reduce worker dose

  6. Compensated Langmuir Probe Measurement of the Near-keeper Plasma of a Hollow Cathode Operating in Plume Mode

    NASA Astrophysics Data System (ADS)

    Taillefer, Zachary; Blandin, John; Szabo, James

    2014-10-01

    It has been reported that oscillations of the plasma potential, over a range of frequencies (<=1 kHz--2 MHz) are related to high energy ion production in the plume of a neutralizer hollow cathode when operating in plume mode. Impact of these high energy ions with the keeper electrode face is the dominant mechanism by which electrode erosion occurs over long periods of operation (~10,000 hours). Reliable measurement of the plasma properties in this operating mode is critical to development of computational models and efforts to mitigate the erosion and maximize lifetime of these cathodes. In this work, both plume and spot mode operating conditions of a low current (<=5 A), dispenser hollow cathode have been quantitatively identified. An emissive probe was used to characterize the plasma potential oscillations in the near-keeper plasma during plume mode operation. Large amplitude fluctuations (exceeding 70 V) of the plasma potential were observed, at a fundamental frequency of 55 kHz, along with 2nd and 3rd harmonics. In order to measure the local electron energy distribution function (EEDF) during plume mode operation, a compensated Langmuir probe was constructed, using RF chokes, to allow accurate measurement of the EEDF and calculation of the electron temperature.

  7. Testing to expand the rotary mode core sampling system operating envelope

    SciTech Connect

    Witwer, K.S.

    1998-01-21

    Rotary sampling using the Rotary Mode Core Sampling System (RMCSS) is constrained by what is referred to as the ``Operating Envelope``. The Operating Envelop defines the maximum downward force, maximum rotational speed and minimum purge gas flow allowed during operation of the RMCSS. The original values of 1170 lb. down force, 55 RPM rotational speed, and 30 SCFM nitrogen purge gas were determined during original envelope testing. This envelope was determined by observing the temperature rise on the bitface while drilling into waste simulants. The maximum temperature in single-shell tanks (SSTS) is considered to be approximately 9O C and the critical drill bit temperature, which is the temperature at which an exothermic reaction could be initiated in the tank waste, was previously determined to be 150 C. Thus, the drill bit temperature increase was limited to 60 C. Thermal properties of these simulants approximated typical properties of waste tank saltcake. Later, more detailed envelope testing which used a pumice block simulant, showed a notably higher temperature rise while drilling. This pumice material, which simulated a ``worst case`` foreign object embedded in the waste, has lower thermal conductivity and lower thermal diffusivity than earlier simulants. These properties caused a slower heat transfer in the pumice than in the previous simulants and consequently a higher temperature rise. The maximum downward force was subsequently reduced to 750 lb (at a maximum 55 RPM and minimum 30 SCFM purge gas flow) which was the maximum value at which the drill bit could be operated and still remain below the 60 C temperature rise.

  8. Performance of the TLS Vacuum Systems Operated at 300 mA of Top-up Mode

    SciTech Connect

    Hsiung, G. Y.; Chan, C. K.; Hsueh, H. P.; Yang, T. L.; Chang, C. C.; Hsu, S. N.; Yang, C. Y.; Chen, C. L.; Chen, J. R.

    2007-01-19

    The 1.5 GeV Taiwan Light Source (TLS) has been upgraded, subsequently increasing the beam current from 200 mA to 300 mA. Additionally, the operational mode changed from decay mode to the top-up mode in 2006 after the cavities were replaced by a superconducting RF cavity and the chambers in the injection straight section with new ones in 2005. The operation at 400 mA has been tested to ensure regular operations of a stored beam at 300 mA. Efforts have been made to replace the interlock systems, spare parts, utility systems and signal archiving systems to ensure the reliable operation of the storage ring and ultimately avoid damage incurred to the system. The beam test at a high current and the performance of the vacuum system will be described.

  9. Message Mode Operations for Spacecraft: A Proposal for Operating Spacecraft During Cruise and Mitigating the Network Loading Crunch

    NASA Technical Reports Server (NTRS)

    Greenberg, Ed; MacMedan, Marv; Kazz, Greg; Kallemeyn, Pieter

    2000-01-01

    The NASA Deep Space Network (DSN) is a world-class spacecraft tracking facility with stations located in Spain, Australia and USA, servicing Deep Space Missions of many space agencies. The current system of scheduling spacecraft during cruise for multiple 8 hour tracking sessions per week currently leads to an overcommitted DSN. Studies indicate that future projected mission demands upon the Network will only make the loading problem worse. Therefore, a more efficient scheduling of DSN resources is necessary in order to support the additional network loading envisioned in the next few years: The number of missions is projected to increase from 25 in 1998 to 34 by 2001. In fact given the challenge of the NASA administrator, Dan Goldin, of launching 12 spacecraft per year, the DSN would be tracking approximately 90 spacecraft by 2010. Currently a large amount of antenna time and network resources are subscribed by a project in order to have their mission supported during the cruise phase. The recently completed Mars Pathfinder mission was tracked 3 times a week (8 hours/day) during the majority of its cruise to Mars. This paper proposes an innovative approach called Message Mode Operations (MMO) for mitigating the Network loading problem while continuing to meet the tracking, reporting, time management, and scheduling requirements of these missions during Cruise while occupying very short tracking times. MMO satisfies these requirements by providing the following services: Spacecraft Health and Welfare Monitoring Service Command Delivery Service Adaptive Spacecraft Scheduling Service Orbit Determination Service Time Calibration Service Utilizing more efficient engineering telemetry summarization and filtering techniques on-board the spacecraft and collapsing the navigation requirements for Doppler and Range into shorter tracks, we believe spacecraft can be adequately serviced using short 10 to 30 minute tracking sessions. This claim assumes that certain changes would

  10. Helicon double layer thruster operation in a low magnetic field mode

    NASA Astrophysics Data System (ADS)

    Harle, T.; Pottinger, S. J.; Lappas, V. J.

    2013-02-01

    Direct thrust measurements are made of a helicon double layer thruster operating in a low magnetic field mode. The relationship between the imposed axial magnetic field and generated thrust is investigated for a radio frequency input power range 200-500 W for propellant flow rates of 16.5 and 20 sccm (0.46 and 0.55 mg s-1) of argon. The measured thrust shows a strong dependence on the magnetic field strength, increasing by up to a factor of 5 compared with the minimum thrust level recorded. A peak thrust of 0.4-1.1 mN depending on thruster operating conditions is obtained. This increase is observed to take place over a small range of peak magnetic field strengths in the region of 70-110 G. The magnitude of the thrust and the corresponding magnitude of the magnetic field at which the peak thrust occurs is shown to increase with increasing input power for a given propellant flow rate. The ion current determined using a retarding field energy analyser and the electron number density found using a microwave resonator probe both correlate with the observed trend in thrust as a function of applied magnetic field.

  11. Theoretical and experimental studies on a magnetorheological brake operating under compression plus shear mode

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Hirani, H.

    2013-11-01

    The torque characteristics of magnetorheological brakes, consisting of rotating disks immersed in a MR fluid and enclosed in an electromagnetic casing, are controlled by regulating the yield stress of the MR fluid. An increase in yield stress increases the braking torque, which means that the higher the yield strength of the MR fluid, the better the performance of the MR brake will be. In the present research an application of compressive force on MR fluid has been proposed to increase the torque capacity of MR brakes. The mathematical expressions to estimate the torque values for MR brake, operating under compression plus shear mode accounting Herschel-Bulkley shear thinning model, have been detailed. The required compressive force on MR fluid of the proposed brake has been applied using an electromagnetic actuator. The development of a single-plate MR disk brake and an experimental test rig are described. Experiments have been performed to illustrate braking torque under different control currents (0.0-2.0 A). The torque results have been plotted and compared with theoretical study. Experimental results as well as theoretical calculations indicate that the braking torque of the proposed MR brake is higher than that of the MR brake operating only under shear.

  12. Operational modes and control philosophy of the SSCL Magnet Test Lab. (MTL) cryogenic system

    SciTech Connect

    Ganni, V.; Than, R.; Thirumaleshwar, M.

    1993-05-01

    The MTL`s function is to test prototype and industrially manufactured magnets for the Superconducting Super Collider Laboratory (SSCL). The cryogenic system of the MTL has a main refrigeration system consisting of a two-stage compression system, a refrigerator/liquefier coldbox, a liquid helium dewar, warm gas storage, and a regeneration skid. The MTL cryogenic system also includes the following auxiliary equipment: two cleaning, cooling, warmup and purification (CCWP) coldbox modules with a regeneration skid for the charcoal beds, two CCWP compressors, a dehydration skid with its own regeneration system, a pump box, a refrigeration recovery unit, and five distribution boxes. At any given time, the refrigeration system has the capacity to simultaneously test at least six magnets under normally required testing conditions. Every magnet will undergo cleaning, cooldown, and filling prior to general testing, conditioning, quench testing, and other experiments. At the completion of general testing, etc., the magnet must be emptied prior to warming it up to ambient temperature. Furthermore, conditioning, training, and testing of the magnets can be carried out at different temperatures between 4.5 K and 2.5 K. The cryogenic system is designed to test multiple magnets, not all of which are necessarily in the same preparational or operational stage. This paper describes the different operational modes and the behavior and control of the total cryogenic system during multiple magnet tests.

  13. Comparison of biogas recovery from MSW using different aerobic-anaerobic operation modes.

    PubMed

    Xu, Qiyong; Tian, Ying; Kim, Hwidong; Ko, Jae Hac

    2016-10-01

    Aeration pretreatment was demonstrated as an efficient technology to promote methane recovery from a bioreactor landfill with high food waste content. In this study, a short-term experiment was conducted to investigate the effects of aerobic-anaerobic operation modes on biogas recovery. Three landfill-simulated columns (anaerobic control (A1), a constant aeration (C1) and a gradually reduced aeration (C2)) were constructed and operated for 130days. The aeration frequency was adjusted by oxygen consumption in an aerated MSW landfill. After aerobic pretreatment was halted, the methanogenic phase was rapidly developed in both the C1 and C2 columns, reducing the volatile fatty acid (VFA) concentrations and increasing pH. The methane volumes per dry MSW produced from the C1 and C2 columns were approximately 62L/kg VS and 75L/kg VS, respectively, while methane produced from the A1 column was almost negligible. The result clearly showed that aerobic pretreatment with gradual reduction of aeration rates could not only improve methane recovery from waste decomposition, but also enhance leachate COD and VFA removal. PMID:27426021

  14. Pseudo-Single-Bunch with Adjustable Frequency: A New Operation Mode for Synchrotron Light Sources

    NASA Astrophysics Data System (ADS)

    Sun, C.; Portmann, G.; Hertlein, M.; Kirz, J.; Robin, D. S.

    2012-12-01

    We present the concept and results of pseudo-single-bunch (PSB) operation—a new operational mode at the advanced light source—that can greatly expand the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In PSB operation, a single electron bunch is displaced transversely from the other electron bunches using a short-pulse, high-repetition-rate kicker magnet. Experiments that require light emitted only from a single bunch can stop the light emitted from the other bunches using a collimator. Other beam lines will only see a small reduction in flux due to the displaced bunch. As a result, PSB eliminates the need to schedule multibunch and timing experiments during different running periods. Furthermore, the time spacing of PSB pulses can be adjusted from milliseconds to microseconds with a novel “kick-and-cancel” scheme, which can significantly alleviate complications of using high-power choppers and substantially reduce the rate of sample damage.

  15. CMOS Geiger photodiode array with integrated signal processing for imaging of 2D objects using quantum dots

    NASA Astrophysics Data System (ADS)

    Stapels, Christopher J.; Lawrence, William G.; Gurjar, Rajan S.; Johnson, Erik B.; Christian, James F.

    2008-08-01

    Geiger-mode photodiodes (GPD) act as binary photon detectors that convert analog light intensity into digital pulses. Fabrication of arrays of GPD in a CMOS environment simplifies the integration of signal-processing electronics to enhance the performance and provide a low-cost detector-on-a-chip platform. Such an instrument facilitates imaging applications with extremely low light and confined volumes. High sensitivity reading of small samples enables twodimensional imaging of DNA arrays and for tracking single molecules, and observing their dynamic behavior. In this work, we describe the performance of a prototype imaging detector of GPD pixels, with integrated active quenching for use in imaging of 2D objects using fluorescent labels. We demonstrate the integration of on-chip memory and a parallel readout interface for an array of CMOS GPD pixels as progress toward an all-digital detector on a chip. We also describe advances in pixel-level signal processing and solid-state photomultiplier developments.

  16. Cosmic rays with portable Geiger counters: from sea level to airplane cruise altitudes

    NASA Astrophysics Data System (ADS)

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco

    2009-07-01

    Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive air showers induced by high-energy primary protons in the atmosphere were also carried out, involving undergraduate and graduate teaching levels.

  17. Integrator or coincidence detector --- what shapes the relation of stimulus synchrony and the operational mode of a neuron?

    PubMed

    Koutsou, Achilleas; Kanev, Jacob; Economidou, Maria; Christodoulou, Chris

    2016-06-01

    The operational mode of a neuron (i.e., whether a neuron is an integrator or a coincidence detector) is in part determined by the degree of synchrony in the firing of its pre-synaptic neural population. More specifically, it is determined by the degree of synchrony that causes the neuron to fire. In this paper, we investigate the relationship between the input and the operational mode. We compare the response-relevant input synchrony, which measures the operational mode and can be determined using a membrane potential slope-based measure [7], with the spike time distance of the spike trains driving the neuron, which measures spike train synchrony and can be determined using the multivariate SPIKE-distance metric [10]. We discover that the relationship between the two measures changes substantially based on the values of the parameters of the input (firing rate and number of spike trains) and the parameters of the post-synaptic neuron (synaptic weight, membrane leak time constant and spike threshold). More importantly, we determine how the parameters interact to shape the synchrony-operational mode relationship. Our results indicate that the amount of depolarisation caused by a highly synchronous volley of input spikes, is the most influential factor in defining the relationship between input synchrony and operational mode. This is defined by the number of input spikes and the membrane potential depolarisation caused per spike, compared to the spike threshold. PMID:27106185

  18. Continuous operation of monolithic dynamic-single-mode coupled-cavity lasers

    SciTech Connect

    Coldren, L.A.; Ebeling, K.J.; Rentschler, J.A.; Burrus, C.A.; Wilt, D.P.

    1984-02-15

    The first cw monolithic two-section lasers were fabricated using reactive-ion-etched grooves in buried-crescent wafers. Tunable single-mode selection with spurious mode levels down approx.20 dB was demonstrated under modulation.

  19. Topological effects and binding modes operating with multivalent iminosugar-based glycoclusters and mannosidases.

    PubMed

    Brissonnet, Yoan; Ortiz Mellet, Carmen; Morandat, Sandrine; Garcia Moreno, M Isabel; Deniaud, David; Matthews, Susan E; Vidal, Sébastien; Šesták, Sergej; El Kirat, Karim; Gouin, Sébastien G

    2013-12-11

    Multivalent iminosugars have been recently explored for glycosidase inhibition. Affinity enhancements due to multivalency have been reported for specific targets, which are particularly appealing when a gain in enzyme selectivity is achieved but raise the question of the binding mode operating with this new class of inhibitors. Here we describe the development of a set of tetra- and octavalent iminosugar probes with specific topologies and an assessment of their binding affinities toward a panel of glycosidases including the Jack Bean α-mannosidase (JBαMan) and the biologically relevant class II α-mannosidases from Drosophila melanogaster belonging to glycohydrolase family 38, namely Golgi α-mannosidase ManIIb (GM) and lysosomal α-mannosidase LManII (LM). Very different inhibitory profiles were observed for compounds with identical valencies, indicating that the spatial distribution of the iminosugars is critical to fine-tune the enzymatic inhibitory activity. Compared to the monovalent reference, the best multivalent compound showed a dramatic 800-fold improvement in the inhibitory potency for JBαMan, which is outstanding for just a tetravalent ligand. The compound was also shown to increase both the inhibitory activity and the selectivity for GM over LM. This suggests that multivalency could be an alternative strategy in developing therapeutic GM inhibitors not affecting the lysosomal mannosidases. Dynamic light scattering experiments and atomic force microscopy performed with coincubated solutions of the compounds with JBαMan shed light on the multivalent binding mode. The multivalent compounds were shown to promote the formation of JBαMan aggregates with different sizes and shapes. The dimeric nature of the JBαMan allows such intermolecular cross-linking mechanisms to occur. PMID:24224682

  20. Helium ELMy H-modes in Alcator C-Mod in Support of ITER Helium Operating Phases

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Wolfe, S. M.; Chilenski, M. A.; Hughes, J. W.; Lin, Y.; Reinke, M. L.; Wukitch, S. J.; C-Mod Team

    2015-11-01

    ITER will operate helium majority plasmas in its earlier phases to shakedown the facility and provide plasmas in both L-mode and H-mode for commissioning and preparation for DT burning plasma operation. Part of this activity is to produce ELMy H-modes to test ELM mitigation schemes and observe the ELM impacts on the plasma facing components. It is of interest to characterize helium ELMy H-modes on present experiments to provide some basis to project to ITER and anticipate the plasma performance and ability to obtain H-modes with sufficient performance. ELMy H-mode is accessed in C-Mod by using LSN with an elongation of about 1.55, and with high lower triangularity and low upper triangularity. These regimes were produced with 1.5-4.0 MW of ICRF heating, and with H-mode line average densities of 2.0-3.2x1020 /m3, producing higher frequency repetitive to large infrequent ELMs, respectively. The infrequent ELM regime showed a cross between EDA and ELMy H-mode, with the EDA signature of a quasi-coherent mode at about 200 kHz. Tungsten laser blow-off was done. The pedestal features, energy confinement, ELM character, L-H threshold (1.7-2.5 MW) and W confinement will be discussed. Comparisons with deuterium ELMy H-modes will be made. Work supported by DOE DE-AC02-09CH11466 and DE-FC02-99ER54512.

  1. A millimeter wave relativistic backward wave oscillator operating in TM03 mode with low guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Ye, Hu; Teng, Yan; Chen, Changhua; Ning, Hui; Song, Zhimin; Cao, Yibing; Wu, Ping

    2015-06-01

    A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM03 mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM03 mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM03 mode. In addition, the TM03 mode dominates over the other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM03 mode than on the TM01 mode.

  2. A millimeter wave relativistic backward wave oscillator operating in TM{sub 03} mode with low guiding magnetic field

    SciTech Connect

    Ye, Hu; Wu, Ping; Teng, Yan; Chen, Changhua; Ning, Hui; Song, Zhimin; Cao, Yibing

    2015-06-15

    A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over the other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.

  3. 50 mW stable single longitudinal mode operation of a 780 nm GaAlAs DFB laser

    SciTech Connect

    Takigawa, S.; Kume, M.; Hamada, K.; Yoshikawa, N.; Shimizu, H.; Gano, G.; Uno, T.

    1989-06-01

    Stable single longitudinal mode (SLM) operation has been attained with powers as high as 50 mW in a 780 nm GaAlAs distributed feedback laser. This excellent operation is due to the use of the buried twin-ridge substrate structure which allows the stable fundamental spatial mode operation even at high-power levels. The coupling strength designed is 0.5 from the viewpoint of obtaining a low operation current at 50 mW. The SLM operation in this laser was maintained for powers up to 50 mW at room temperature and in the temperature range from -17 to 37/sup 0/C at 50 mW. The maximum power attained was 62 mW.

  4. Compatible operation of the power system for steady state and pulse modes in a magnetic torus KT-5D

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Wang, Zhi-jiang; Xu, Min; Zhu, Zhen-hua; Lu, Rong-hua; Wen, Yi-zhi; Yu, Chang-xuan; Wan, Shu-de; Liu, Wan-dong; Wang, Jun; Xu, Xiao-yuan; Hu, Ling-ying

    2006-12-01

    Compatible operation of steady state mode and pulse mode is realized in the KT-5D device. New power supplies with the operation control systems for the steady state toroidal magnetic field as well as for the vertical field are added, and the rf wave injection systems for sustaining steady state plasmas are upgraded. After the modification, the device now can work not only as a tokomak with pulsed plasma currents as it was but also as a simple magnetized torus with steady state plasma discharges. It allows more flexible and efficient experimental researches on the magnetically confined plasmas to be carried on in the same device.

  5. Development of a numerical tool to study the mixing phenomenon occurring during mode one operation of a multi-mode ejector-augmented pulsed detonation rocket engine

    NASA Astrophysics Data System (ADS)

    Dawson, Joshua

    A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly

  6. Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode.

    PubMed

    Gao, Feng; Yang, Zhao-Hui; Li, Chen; Wang, Yu-jie; Jin, Wei-hong; Deng, Yi-bing

    2014-09-01

    This study investigated the microalgae biomass production and nutrients removal efficiency from treated sewage by newly developed membrane photobioreactor in which Chlorella vulgaris was cultured in batch flow mode. Its performance was compared with conventional photobioreactor. The results show that the volumetric microalgae productivity was 39.93 and 10.36 mg L(-1)d(-1) in membrane photobioreactor and conventional photobioreactor, respectively. The nutrients removal rate in membrane photobioreactor was 4.13 mg N L(-1)d(-1) and 0.43 mg P L(-1)d(-1), which was obviously higher than that in conventional photobioreactor (0.59 mg N L(-1)d(-1) and 0.08 mg P L(-1)d(-1)). The better performance of membrane photobioreactor was due to the submerged membrane module in the reactor which acted as a solid-liquid separator and thereby enabled the reactor to operate with higher supply flow rate of cultivation medium. Moreover, in the outflow stage of the membrane photobioreactor, the microalgae culture liquor in the reactor could be further concentrated. PMID:25006019

  7. Analysis and interpretation of the performance degradation of glass Resistive Plate Chambers operated in streamer mode

    NASA Astrophysics Data System (ADS)

    Calcaterra, A.; de Sangro, R.; Patteri, P.; Piccolo, M.; Della Mea, G.; Restello, S.; Ferri, F.; Musella, P.; Redaelli, N.; Tabarelli de Fatis, T.; Tinti, G.; Mannocchi, G.; Trinchero, G.

    2007-10-01

    The long-term stability of Resistive Plate Chambers (RPCs) with glass electrodes was studied for one year with a dedicated test station hosting about 10 m2 of detectors. RPCs were operated in streamer mode with a ternary gas mixture containing argon (27%), isobutane (9%) and tetrafluoroethane (64%). Environmental conditions were kept under control and, in particular, the water pollution in the gas, deemed responsible for the degradation of glass RPC performance, was monitored never to exceed 30 ppm in the exhaust line. Evidence for a substantial aging of the detectors was observed, resulting in a loss of efficiency correlated to an increased rate of spurious streamers. This can be ascribed to the chemical attack of the glass surface by hydrofluoric acid formed in the streamer process, as confirmed by detailed morphological and chemical analyses of the electrode surface. Our results strengthen the indication that the instability of glass RPCs in the long term is related to the use of fluorocarbons as quenching medium and is not due to external pollutants.

  8. Design Considerations of Istar Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2002-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system thai: produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  9. Design Considerations of ISTAR Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2003-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system that produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  10. Dual-mode Operation of a Rocket-Ramjet Combined Cycle Engine

    NASA Astrophysics Data System (ADS)

    Tomioka, Sadatake; Tani, Koichiro; Masumoto, Ryo; Ueda, Shuuichi

    One-dimensional evaluation of Ramjet-mode operation was carried out on a rocket-ramjet combined cycle engine model. For simplicity, instantaneous mixing between the airflow and rocket exhaust, instantaneous heat release, and pressure recovery by a normal-shock wave were assumed. Shock wave location was so decided that the heat release at the injection (heat addition) location was to thermally-choke the combustion gas flow. By changing the injection location, it was shown that a further downstream injection resulted in a further thrust production and a further fuel flow rate requirement for choking, and a lesser specific impulse. Balancing the thrust production and the specific impulse in terms of the launch vehicle acceleration performance should be pursued. The total pressure loss within the engine model was dominated by the shock wave location, not depended on injection location and fuel flow rate, so that having shock wave penetration to further upstream location was beneficial both for thrust production in the engine and at the external nozzle.

  11. Low-voltage operating mode of a high-current magnetized cold-cathode plasma

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy; Aceto, Steven; Smith, David; Hitchon, Nicholas; Lawler, James

    2015-09-01

    A series of approximations and simple models is used to estimate the properties of a cold-cathode plasma in a high-voltage, high-power gas switch for use in grid-scale electric power conversion. The active plasma volume is a plane-parallel gap ~1 cm filled with helium at a pressure on order 0.1 torr. A magnetic field in the region adjacent to the cathode is used to increase the current density to practical levels >1 A/cm2. The plasma can operate in a ``low voltage mode'' (~80 V) that has the appearance of a constricted attachment at the cathode surface and a more diffuse region toward the anode. Cathode material is absent from the plasma emission spectrum. Various attempts to model the spot indicate that the plasma in the constriction is near full ionization, and that there is a dynamic balance of neutral gas atoms between the constriction, the cathode surface, and the neighboring diffuse plasma. The electron emission mechanism is assumed to be conventional, by ion impact, but field emission may contribute. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  12. Performance of Single Electrode-Supported Cells Operating in the Electrolysis Mode

    SciTech Connect

    J. E. O'Brien; G. K. Housley; D. G. Milobar

    2009-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 – 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented.

  13. Report on Testing to Expand the Rotary Mode Core Sampling Operating Envelope

    SciTech Connect

    BOGER, R.M.

    1999-12-13

    The Tank Waste Remediation System (TWRS) Characterization Equipment Group requested that the Numatec Hanford Corporation--Engineering Testing Laboratory (ETL) perform Rotary Mode Core Sampling (RMCS) Operating Envelope (OE) testing. This testing was based upon Witwer 1998a and was performed at different time periods between May and September 1998. The purpose of this testing was to raise the maximum down force limit for rotary mode core sampling as outlined in the current OE. If testing could show that a higher down force could be used while drilling into a concrete/pumice block simulant while still remaining below the 60 C limitation, then the current OE could be revised to include the new, higher, down force limit. Although the Test Plan discussed varying the purge flow rate and rotation rate to find ''optimal'' drilling conditions, the number of drill bits that could be destructively tested was limited. Testing was subsequently limited in scope such that only the down force would be varied while the purge flow rate and rotation rate were kept constant at 30 scfm and 55 rpm respectively. A second objective, which was not part of the original test plan, was added prior to testing. The Bit Improvement testing, mentioned previously, revealed that the drill bits tested in the OE testing were made of a slightly different metal matrix than the ones currently used. The older bits, a Longyear part number 100IVD/5 (/5 bit), had tungsten carbide mixed into the metal matrix that forms the cutting teeth. The currently used bits, Longyear part number 100IVD/8 (/8 bit), instead have tungsten metal in the matrix and no tungsten carbide. Rockwell C hardness testing showed that the /5 bit was significantly harder than the /8 bit, with values of /8 vs. 8, respectively. The change from the /5 bit to the /8 bit was made immediately after the previous OE testing in 1996 because of sparking concerns with the tungsten carbide in the /5 bit. This difference in hardness between the two

  14. Photonic crystal fiber for fundamental mode operation of multicore fiber lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Chun-can; Zhang, Fan; Geng, Rui; Liu, Chu; Ning, Ti-gang; Tong, Zhi; Jian, Shui-sheng

    2008-11-01

    A mode-selection method based on a single-mode photonic crystal fiber (PCF) in the multicore fiber (MCF) lasers is presented. The designed PCF has a central core region formed by a missing air-hole, and three air-hole rings. With an appropriate choice of the design parameters of the PCF, the power coupling between the fundamental mode (FM) of the PCF and the fundamental MCF mode can be much higher than those between the FM and the other supermodes. As a result, the fundamental MCF mode has the maximum power reflection coefficient on the right-hand side of the MCF laser cavity, and dominates the output laser power. Since the maximum power of the fundamental MCF mode will lead to the desired laser beam profile, higher the fraction of the fundamental MCF mode power contained in the total output power contributes to higher beam quality. The numerical simulations show that the effectiveness of the fundamental MCF mode-selection is higher in the MCF lasers with the PCF as a mode-selection component than in the MCF lasers based on the free-space Talbot cavity method. Additionally, for the MCF amplifiers, an approach is presented to decrease the sensitivity of the amplifier performance to the variation of Gaussian beam waist utilizing the coupling between the Gaussian beam and the FM of the PCF. The numerical results show that this method can effectively increase the design flexibility for a broad range of the Gaussian beam waist.

  15. Persistent Operational Synchrony within Brain Default-Mode Network and Self-Processing Operations in Healthy Subjects

    ERIC Educational Resources Information Center

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.

    2011-01-01

    Based on the theoretical analysis of self-consciousness concepts, we hypothesized that the spatio-temporal pattern of functional connectivity within the default-mode network (DMN) should persist unchanged across a variety of different cognitive tasks or acts, thus being task-unrelated. This supposition is in contrast with current understanding…

  16. Reactor-relevant quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    SciTech Connect

    Burrell, K. H.; Garofalo, A. M; Osborne, T. H.; Schaffer, M. J.; Snyder, P. B.; Solomon, W. M.; Park, J.-K.; Fenstermacher, M. E.

    2012-05-15

    Results from recent experiments demonstrate that quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas. Using magnetic torque from n=3 fields to replace counter-I{sub p} torque from neutral beam injection (NBI), we have achieved long duration, counter-rotating QH-mode operation with NBI torque ranging from counter-I{sub p} to up to co-I{sub p} values of 1-1.3 Nm. This co-I{sub p} torque is 3 to 4 times the scaled torque that ITER will have. These experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values of {nu}{sub ped}{sup *} and {beta}{sub N}{sup ped}. These discharges exhibited confinement quality H{sub 98y2}=1.3, in the range required for ITER. In preliminary experiments using n=3 fields only from a coil outside the toroidal coil, QH-mode plasmas with low q{sub 95}=3.4 have reached fusion gain values of G={beta}{sub N}H{sub 89}/q{sub 95}{sup 2}=0.4, which is the desired value for ITER. Shots with the same coil configuration also operated with net zero NBI torque. The limits on G and co-I{sub p} torque have not yet been established for this coil configuration. QH-mode work to has made significant contact with theory. The importance of edge rotational shear is consistent with peeling-ballooning mode theory. Qualitative and quantitative agreements with the predicted neoclassical toroidal viscosity torque is seen.

  17. Comparison of different conditions, substrates and operation modes by dynamic simulation of a full-scale anaerobic SBR plant.

    PubMed

    Rönner-Holm, S G E; Zak, A; Holm, N C

    2012-01-01

    Simulation studies for a full-scale anaerobic unit of a wastewater treatment plant (WWTP) were performed using the anaerobic digestion model no. 1 (ADM1). The anaerobic full-scale plant consists of one mesophilic and one thermophilic digester, operated in an anaerobic sequential batch reactor (ASBR) mode, and sludge enrichment reactors (SER) for each digester. The digesters are fed with a mixture of vegetable waste and process wastewater from the food factory. Characteristics such as COD(total), N(total) and NH(4)-N concentrations in the influent and effluent of the digester and SERs were measured and used for input fractionation. Parameters such as level, pH, biogas amount and composition in the digester were measured online and used for calibration. For simulation studies, different temperatures and operation modes with varying chemical oxygen demand (COD) input loads corresponding to feedstocks such as fruits, vegetables and grain were analysed and compared. Higher gas production and digestion efficiency in the thermophilic reactor and in shorter cycles were found and confirmed at full scale. Serial operation mode increased the gas production, but pH inhibition occurred earlier. Feeding only biosolids into digester I and the effluent of digester I together with process water into digester II further improved gas production in serial operation mode. PMID:22258689

  18. Why solid oxide cells can be reversibly operated in solid oxide electrolysis cell and fuel cell modes?

    PubMed

    Chen, Kongfa; Liu, Shu-Sheng; Ai, Na; Koyama, Michihisa; Jiang, San Ping

    2015-12-14

    High temperature solid oxide cells (SOCs) are attractive for storage and regeneration of renewable energy by operating reversibly in solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes. However, the stability of SOCs, particularly the deterioration of the performance of oxygen electrodes in the SOEC operation mode, is the most critical issue in the development of high performance and durable SOCs. In this study, we investigate in detail the electrochemical activity and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes in cyclic SOEC and SOFC modes. The results show that the deterioration of LSM oxygen electrodes caused by anodic polarization can be partially or completely recovered by subsequent cathodic polarization. Using in situ assembled LSM electrodes without pre-sintering, we demonstrate that the deteriorated LSM/YSZ interface can be repaired and regenerated by operating the cells under cathodic polarization conditions. This study for the first time establishes the foundation for the development of truly reversible and stable SOCs for hydrogen fuel production and electricity generation in cyclic SOEC and SOFC operation modes. PMID:26548929

  19. Theory and analysis of operating modes in microplasmas assisted by field emitting cathodesa)

    NASA Astrophysics Data System (ADS)

    Venkattraman, Ayyaswamy

    2015-05-01

    Motivated by the recent interest in the development of novel diamond-based cathodes, we study microplasmas assisted by field emitting cathodes with large field enhancement factors using a simplified model and comparisons with particle-in-cell with Monte Carlo collision (PIC-MCC) simulations and experiments. The model used to determine current-voltage characteristics assumes a linearly varying electric field in the sheath and predicts transition from an abnormal glow to arc mode at moderate current densities in a 1 mm argon gap. The influence of an external circuit is also considered to show the dependence of current as a function of the applied voltage, including potential drop across external resistors. PIC-MCC simulations confirm the validity of the model and also show the significant non-equilibrium nature of these low-temperature microplasmas with electron temperatures ˜1 eV and ion temperatures ˜ 0.07 eV in the quasi-neutral region. The model is also used to explain experimental data reported for a 1 mm argon gap at a pressure of 2 Torr using three different diamond-based cathodes with superior field emitting properties. The comparison shows that operating conditions in the experiments may not result in significant field emission and the differences observed in current-voltage characteristics can be attributed to small differences in the secondary electron emission coefficient of the three cathodes. However, the model and simulations clearly indicate that field emission using novel cathodes with high field enhancement factors can be used to enhance microplasmas by significantly decreasing the power requirements to achieve a given plasma number density even in gaps at which field emission is traditionally not considered to be a dominant mechanism.

  20. Theory and analysis of operating modes in microplasmas assisted by field emitting cathodes

    SciTech Connect

    Venkattraman, Ayyaswamy

    2015-05-15

    Motivated by the recent interest in the development of novel diamond-based cathodes, we study microplasmas assisted by field emitting cathodes with large field enhancement factors using a simplified model and comparisons with particle-in-cell with Monte Carlo collision (PIC-MCC) simulations and experiments. The model used to determine current-voltage characteristics assumes a linearly varying electric field in the sheath and predicts transition from an abnormal glow to arc mode at moderate current densities in a 1 mm argon gap. The influence of an external circuit is also considered to show the dependence of current as a function of the applied voltage, including potential drop across external resistors. PIC-MCC simulations confirm the validity of the model and also show the significant non-equilibrium nature of these low-temperature microplasmas with electron temperatures ∼1 eV and ion temperatures ∼0.07 eV in the quasi-neutral region. The model is also used to explain experimental data reported for a 1 mm argon gap at a pressure of 2 Torr using three different diamond-based cathodes with superior field emitting properties. The comparison shows that operating conditions in the experiments may not result in significant field emission and the differences observed in current-voltage characteristics can be attributed to small differences in the secondary electron emission coefficient of the three cathodes. However, the model and simulations clearly indicate that field emission using novel cathodes with high field enhancement factors can be used to enhance microplasmas by significantly decreasing the power requirements to achieve a given plasma number density even in gaps at which field emission is traditionally not considered to be a dominant mechanism.

  1. Operation of Terahertz Quantum-cascade Lasers at 164 K in Pulsed Mode and at 117 K in Continuous-wave Mode

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.

  2. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  3. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes

    NASA Astrophysics Data System (ADS)

    Park, Jinhyuk; Yoon, Gun-Ha; Kang, Je-Won; Choi, Seung-Bok

    2016-08-01

    This paper proposes a new prosthesis operated in two different modes; the semi-active and active modes. The semi-active mode is achieved from a flow mode magneto-rheological (MR) damper, while the active mode is obtained from an electronically commutated (EC) motor. The knee joint part of the above knee prosthesis is equipped with the MR damper and EC motor. The MR damper generates reaction force by controlling the field-dependent yield stress of the MR fluid, while the EC motor actively controls the knee joint angle during gait cycle. In this work, the MR damper is designed as a two-end type flow mode mechanism without air chamber for compact size. On other hand, in order to predict desired knee joint angle to be controlled by EC motor, a polynomial prediction function using a statistical method is used. A nonlinear proportional-derivative controller integrated with the computed torque method is then designed and applied to both MR damper and EC motor to control the knee joint angle. It is demonstrated that the desired knee joint angle is well achieved in different walking velocities on the ground ground.

  4. Operation of the TFTR Pellet Charge Exchange Diagnostic in the Pulse Counting Mode during H+ RF-minority Heating

    SciTech Connect

    Medley, S.S., PPPL

    1998-05-01

    The Pellet Charge Exchange technique on TFTR has been used primarily to obtain active charge exchange measurements using a high energy (0.5 - 4.0 MeV) neutral particle analyzer (NPA) in conjunction with impurity pellet injection (Li and B) with the scintillator-photomultiplier detector system operated in the current mode. While passive measurements using pulse counting were also obtained using this instrumentation, operation in this mode was very restrictive with pulse counting rates limited to less than {approximately}10 kHz in the absence of any significant neutron and gamma induced background signal. An upgrade to a specialized pulse counting capability which was developed by the Ioffe Institute was implemented which consisted of CsI(Tl) scintillators having features designed to minimize signals induced by background neutron and gamma rays and 16-channel pulse height analysis electronics on each of the eight NPA energy channels. Passive measurements of RF-driven energetic hydrogen minority ions which served to verify operation of the pulse counting mode are reported. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an RF power of 2 MW to 0.35 MeV at 6 MW.

  5. Regularization of singular eigenfunctions of an operator with continuous spectra: With applications for ballooning modes in toroidally rotating tokamaks

    NASA Astrophysics Data System (ADS)

    Furukawa, M.; Yoshida, Z.; Tokuda, S.

    2005-07-01

    Eigenfunction expansions of fields encounter practical difficulty when the generating operator has continuous spectra (as is common in magnetohydrodynamics theories). An appropriate "weight function" may remove the singularity of the eigenfunctions belonging to the continuous spectrum and the complete set of regularized (square-integrable) eigenfunctions can be obtained. As an example, this method has been applied for ballooning modes in toroidally rotating tokamaks. While the weight function truncates the long-term behavior of modes, the regularized eigenfunctions can describe transient behavior within a finite time.

  6. OCO-2 Observation and Validation Overview: Observations Data Modes and Target Observations, Taken During the First 15 Months of Operations

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Fisher, B.; Wunch, D.; Eldering, A.; Wennberg, P. O.; Roehl, C. M.; Naylor, B. J.; Lee, R.; Pollock, R.; Gunson, M. R.

    2015-12-01

    The OCO-2 instrument was successfully launched on July 2, 2014 from Vandenberg Air Force Base in California. The instrument reached its observational orbit about three weeks later. The spacecraft is at the head of the A-train satellites and began collecting operational data on Sept 5, 2014. OCO-2 makes measurements in three modes: nadir, glint and target. Target observations are designed to provide large amounts of data in a small area near a ground validation site. The instruments of the Total Carbon Column Observing Network (TCCON) provide the ground validation data for the OCO-2 XCO2 observations and comparisons to TCCON form the basis of the OCO-2 validation plan. There are now 27 locations at which OCO-2 can perform target observations and CCON sites make up 23 of those possible target locations. For its first year in orbit, OCO-2 operated in nadir mode for 16 days and then in glint mode for 16 days. Each 16-day cycle spans 233 orbits. On July 1, 2015, OCO-2 changed to an observational mode of alternating nadir and glint measurements on an orbit-by-orbit basis. By December 2015, this operational mode may be modified such that orbits that measure only over ocean will always observed in glint mode. In this presentation we will provide information on the observations made by OCO-2 during its first 15 month in operations. We will show maps of the OCO-2 ground tracks and XCO2 data, calendars illustrating the observational schedule and statistics on the target observations taken. We will provide more information on what is involved in making target observations and how it affects the standard operational data acquisition patterns. Changes to the standard observational patterns of OCO-2 and to the list of locations for target observations will be discussed as well. We will provide an overview of some of the validation related analysis being done using nadir and glint mode OCO-2 data in addition to an overview on validation analyses that do not directly utilize TCCON

  7. Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess.

    PubMed

    Craven, Stephen; Shirsat, Nishikant; Whelan, Jessica; Glennon, Brian

    2013-01-01

    A Monod kinetic model, logistic equation model, and statistical regression model were developed for a Chinese hamster ovary cell bioprocess operated under three different modes of operation (batch, bolus fed-batch, and continuous fed-batch) and grown on two different bioreactor scales (3 L bench-top and 15 L pilot-scale). The Monod kinetic model was developed for all modes of operation under study and predicted cell density, glucose glutamine, lactate, and ammonia concentrations well for the bioprocess. However, it was computationally demanding due to the large number of parameters necessary to produce a good model fit. The transferability of the Monod kinetic model structure and parameter set across bioreactor scales and modes of operation was investigated and a parameter sensitivity analysis performed. The experimentally determined parameters had the greatest influence on model performance. They changed with scale and mode of operation, but were easily calculated. The remaining parameters, which were fitted using a differential evolutionary algorithm, were not as crucial. Logistic equation and statistical regression models were investigated as alternatives to the Monod kinetic model. They were less computationally intensive to develop due to the absence of a large parameter set. However, modeling of the nutrient and metabolite concentrations proved to be troublesome due to the logistic equation model structure and the inability of both models to incorporate a feed. The complexity, computational load, and effort required for model development has to be balanced with the necessary level of model sophistication when choosing which model type to develop for a particular application. PMID:23143896

  8. Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho:YAG/YAG ceramic laser

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Ju, Lin; Yao, Baoquan; Li, Jiang; Ge, Lin; Zhang, Zhenguo; Zhang, Ye; Xu, Liwei; Dai, Tongyu; Ju, Youlun

    2016-09-01

    We present a 2.09 μm single-longitudinal-mode sandwich-type YAG/Ho:YAG/YAG ceramic laser pumped by a Tm-doped fiber laser for the first time. A pair of F-P etalons was used to achieve tunable single-longitudinal-mode operation. The maximum single-longitudinal-mode output power of 530 mW at 2091.4 nm was obtained with an absorbed pump power of 8.06 W, corresponding to an optical conversion efficiency of 6.6% and a slope efficiency of 12.7%. Wavelength tunable was achieved by tuning the angle of etalons and the wavelength could be tuned from 2091.1 nm to 2092.1 nm, corresponding to a tuning frequency of 68 GHz. The M2 factor was measured to be 1.23.

  9. Wear modes active in angular contact ball bearings operating in liquid oxygen environment of the Space Shuttle turbopumps

    NASA Astrophysics Data System (ADS)

    Chase, Thaddeus J.

    1993-04-01

    Extensive experimental investigation has been carried out on used flight bearings of the high pressure oxidizer turbopumps (HPOTP) of the space shuttle main engine (SSME) in order to determine the dominant wear modes, their extent, and causes. The paper presents the methodology, various surface analysis techniques used, results, and discussion. The mode largely responsible for premature bearing wear has been identified as adhesive/shear peeling of the upper layers of bearing balls and rings. This mode relies upon the mechanisms of scale formation, breakdown, and removal, all of which are greatly enhanced by the heavy oxidation environment of the HPOTP. Major causes of the high wear rates appear to be lubrication and cooling, both inadequate for the imposed conditions of operation. Numerous illustrations and evidence are provided.

  10. Wear modes active in angular contact ball bearings operating in liquid oxygen environment of the Space Shuttle turbopumps

    NASA Technical Reports Server (NTRS)

    Chase, Thaddeus J.

    1993-01-01

    Extensive experimental investigation has been carried out on used flight bearings of the high pressure oxidizer turbopumps (HPOTP) of the space shuttle main engine (SSME) in order to determine the dominant wear modes, their extent, and causes. The paper presents the methodology, various surface analysis techniques used, results, and discussion. The mode largely responsible for premature bearing wear has been identified as adhesive/shear peeling of the upper layers of bearing balls and rings. This mode relies upon the mechanisms of scale formation, breakdown, and removal, all of which are greatly enhanced by the heavy oxidation environment of the HPOTP. Major causes of the high wear rates appear to be lubrication and cooling, both inadequate for the imposed conditions of operation. Numerous illustrations and evidence are provided.

  11. Empirical Mode Decomposition Technique with Conditional Mutual Information for Denoising Operational Sensor Data

    SciTech Connect

    Omitaomu, Olufemi A; Protopopescu, Vladimir A; Ganguly, Auroop R

    2011-01-01

    A new approach is developed for denoising signals using the Empirical Mode Decomposition (EMD) technique and the Information-theoretic method. The EMD technique is applied to decompose a noisy sensor signal into the so-called intrinsic mode functions (IMFs). These functions are of the same length and in the same time domain as the original signal. Therefore, the EMD technique preserves varying frequency in time. Assuming the given signal is corrupted by high-frequency Gaussian noise implies that most of the noise should be captured by the first few modes. Therefore, our proposition is to separate the modes into high-frequency and low-frequency groups. We applied an information-theoretic method, namely mutual information, to determine the cut-off for separating the modes. A denoising procedure is applied only to the high-frequency group using a shrinkage approach. Upon denoising, this group is combined with the original low-frequency group to obtain the overall denoised signal. We illustrate our approach with simulated and real-world data sets. The results are compared to two popular denoising techniques in the literature, namely discrete Fourier transform (DFT) and discrete wavelet transform (DWT). We found that our approach performs better than DWT and DFT in most cases, and comparatively to DWT in some cases in terms of: (i) mean square error, (ii) recomputed signal-to-noise ratio, and (iii) visual quality of the denoised signals.

  12. Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes.

    PubMed

    Mildren, R P; Piper, J A

    2008-03-01

    We report increased wavelength options from Raman lasers for Raman media having two Raman modes of similar gain coefficient. For an external-cavity potassium gadolinium tungstate Raman laser pumped at 532 nm, we show that two sets of Stokes orders are generated simultaneously by appropriate orientation of the Raman crystal, and also wavelengths that correspond to sums of the two Raman modes. Up to 14 visible Stokes lines were observed in the wavelength range 555-675 nm. The increase in Stokes wavelengths also enables a much greater selection of wavelengths to be accessed via intracavity nonlinear sum frequency and difference frequency mixing. For example, we demonstrate 30 output wavelength options for a wavelength-selectable 271-321 nm Raman laser with intracavity sum frequency mixing in BBO. We also present a theoretical analysis that enables prediction of wavelength options for dual Raman mode systems. PMID:18542414

  13. Effect of prism index on sensitivity of lossy mode resonance sensors operating in visible region

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Sharma, Vinod K.; Kapoor, Avinashi

    2015-01-01

    We present the theoretical results of the optimization of lossy mode resonance sensors at visible wavelengths. Both angular and spectral interrogations are carried out for absorbing indium tin oxide (ITO) films placed on glass prism. The inclusion of a low-index layer between the prism and the lossy (ITO) layer can produce an efficient refractive index sensor for bio/chemical applications. Further increase in sensitivity can be achieved by changing the index of the prism. It is shown that the sensitivity has strong dependence on the index of prism. Sensitivities as high as 4670 nm/RIU for spectral mode and 67 deg/RIU for angular mode with small values of full width at half maximum (FWHM) can be achieved. Dependence of sensitivity and FWHM on refractive index and thickness of low-index matching layer is also investigated.

  14. An investigation of dual-mode operation of a nuclear-thermal rocket engine

    SciTech Connect

    Kirk, W.L.; Hedstrom, J.C.; Moore, S.W.; McFarland, R.D.; Merrigan, M.A.; Buksa, J.J.; Cappiello, M.W.; Hanson, D.L.; Woloshun, K.A.

    1991-06-01

    A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on Rover-type reactors has been completed. Earlier studies have indicated that dual-mode systems appear attractive for electrical power levels of a few kilowatts. However, at the megawatt electrical power level considered in this study, it appears that extensive modifications to the nuclear-thermal engines would be required, the feasibility of which is unclear. Mass competitiveness at high electrical power levels is also uncertain. Further study of reactor and shield design in conjuction with mission and vehicle studies is necessary in order to determine a useful dual-mode power range. 9 refs., 20 figs., 4 tabs.

  15. H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Hubbard, A. E.; Hughes, J. W.; Bespamyatnov, I. O.; Biewer, T.; Cziegler, I.; LaBombard, B.; Lin, Y.; McDermott, R.; Rice, J. E.; Rowan, W. L.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S.

    2007-05-01

    This paper reports on studies of the edge transport barrier and transition threshold of the high confinement (H) mode of operation on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)], over a wide range of toroidal field (2.6-7.86T) and plasma current (0.4-1.7MA). The H-mode power threshold and edge temperature at the transition increase with field. Barrier widths, pressure limits, and confinement are nearly independent of field at constant current, but the operational space at high B shifts toward higher temperature and lower density and collisionality. Experiments with reversed field and current show that scrape-off-layer flows in the high-field side depend primarily on configuration. In configurations with the B ×∇B drift away from the active X-point, these flows lead to more countercurrent core rotation, which apparently contributes to higher H-mode thresholds. In the unfavorable case, edge temperature thresholds are higher, and slow evolution of profiles indicates a reduction in thermal transport prior to the transition in particle confinement. Pedestal temperatures in this case are also higher than in the favorable configuration. Both high-field and reversed-field results suggest that parameters at the L-H transition are influencing the evolution and parameters of the H-mode pedestal.

  16. Super H-mode: theoretical prediction and initial observations of a new high performance regime for tokamak operation

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Solomon, W. M.; Burrell, K. H.; Garofalo, A. M.; Grierson, B. A.; Groebner, R. J.; Leonard, A. W.; Nazikian, R.; Osborne, T. H.; Belli, E. A.; Candy, J.; Wilson, H. R.

    2015-08-01

    A new ‘Super H-mode’ regime is predicted, which enables pedestal height and predicted fusion performance substantially higher than for H-mode operation. This new regime is predicted to exist by the EPED pedestal model, which calculates criticality constraints for peeling-ballooning and kinetic ballooning modes, and combines them to predict the pedestal height and width. EPED usually predicts a single (‘H-mode’) pedestal solution for each set of input parameters, however, in strongly shaped plasmas above a critical density, multiple pedestal solutions are found, including the standard ‘H-mode’ solution, and a ‘Super H-Mode’ solution at substantially larger pedestal height and width. The Super H-mode regime is predicted to be accessible by controlling the trajectory of the density, and to increase fusion performance for ITER, as well as for DEMO designs with strong shaping. A set of experiments on DIII-D has identified the predicted Super H-mode regime, and finds pedestal height and width, and their variation with density, in good agreement with theoretical predictions from the EPED model. The very high pedestal enables operation at high global beta and high confinement, including the highest normalized beta achieved on DIII-D with a quiescent edge.

  17. Some Operational Characteristics of Glycine Release in Rat Retina: The Role of Reverse Mode Operation of Glycine Transporter Type-1 (GlyT-1) in Ischemic Conditions.

    PubMed

    Hanuska, Adrienn; Szénási, Gábor; Albert, Mihaly; Koles, Laszlo; Varga, Agoston; Szabo, Andras; Matyus, Peter; Harsing, Laszlo G

    2016-02-01

    Rat posterior eyecups containing the retina were prepared, loaded with [(3)H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [(3)H]glycine release, an effect that was found to be external Ca(2+)-independent. Whereas oxygen and glucose deprivation increased [(3)H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [(3)H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [(3)H]glycine release. Oxygen and glucose deprivation also evoked [(3)H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [(3)H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [(3)H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca(2+)-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na(+)-K(+)-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-D-glucose, led to increase of retinal [(3)H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-D-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of

  18. Experimental study of a W-band Gyroklystron amplifier operated in the high-order TE021 cavity mode

    NASA Astrophysics Data System (ADS)

    Zasypkin, E. V.; Gachev, I. G.; Antakov, I. I.

    2012-10-01

    We present experimental results for a 93.2-GHz gyroklystron amplifier operated in the high-order TE021 cavity mode in a cryomagnet. In a three-cavity gyroklystron, a peak output power of 340 kW with 27% efficiency, 23-dB saturated gain, and 0.41% (380 MHz) bandwidth was obtained with a 75-kV, 17-A electron beam. The output-power and efficiency restriction was due to the selfexcitation of the TE021 operating mode in the output cavity. The influence of the electron beam current and intermediate cavity Q-factor on output characteristics of a three-cavity gyroklystron has been studied experimentally.

  19. Recent performance data on the Tektronix TK1024A imager: back-illuminated, MPP, and non-MPP operating modes

    NASA Astrophysics Data System (ADS)

    Woody, Thomas W.; Hayes, Raymond; Gladhill, Kristie W.

    1992-08-01

    The TK1024 four quadrant readout imager has been in production for several years and has evolved into a device with a high level of performance. Current production volumes are several hundred wafer starts per year (4 devices per wafer). In the last year improvements have been made in dark current with the addition of MPP unpiants and the reduction of MOSFET read noise. The paper presented at last year''s symposium focused on general performance data (SPIE vol. 1447 pgs 298 - 309 ). This paper will discuss specific test data recently observed on devices fabricated with the current process. Data on read noise conversion gain and dark current versus temperature in both non-MPP and MPP modes will be the emphasis of this paper. In addition information wifi be presented on Full Well versus operating voltages and optimal timing for MPP operation in the typical slow scan (50 kilopixels/sec) readout mode. 1.

  20. Nanosecond pulses in a THz gyrotron oscillator operating in a mode-locked self-consistent Q-switch regime.

    PubMed

    Alberti, S; Braunmueller, F; Tran, T M; Genoud, J; Hogge, J-Ph; Tran, M Q; Ansermet, J-Ph

    2013-11-15

    An experimental study of a nanosecond pulsed regime in a THz gyrotron oscillator operating in a self-consistent Q-switch regime has been carried out. The gyrotron is operated in the TE(7,2) transverse mode radiating at a frequency of 260.5 GHz. The 5 W nanosecond pulses are obtained in a self-consistent Q-switch regime in which the cavity diffraction quality factor dynamically varies by nearly 2 orders of magnitude on a subnanosecond time scale via the nonlinear interaction of different mode-locked frequency-equidistant sidebands. The experimental results are in good agreement with numerical simulations performed with the TWANG code based on a slow time scale formulation of the self-consistent time-dependent nonlinear wave particle interaction equations. PMID:24289692

  1. Rating procedure for mixed-air-source unitary air conditioners and heat pumps operating in the cooling mode

    SciTech Connect

    Domanski, P.A.

    1986-02-01

    A procedure is presented for rating split, residential air conditioners and heat pumps operating in the cooling mode that are made up of an evaporator unit combined with a condensing unit that has been rated under current procedures in conjunction with a different evaporator unit. The procedure allows calculation of capacity at the 95/sup 0/ F rating point and seasonal energy efficiency ratio, SEER, without performing laboratory tests of the complete system.

  2. Efficient ways for setting up the operation of nuclear power stations in power systems in the base load mode

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Shkret, A. F.; Burdenkova, E. Yu.; Garievskii, M. V.

    2011-05-01

    The results obtained from studies of efficient ways and methods for organizing the operation of developing nuclear power stations in the base load mode are presented. We also show comparative efficiency of different scenarios for unloading condensing thermal power stations, cogeneration stations, combined-cycle power plants, nuclear power stations, and using off-peak electric energy for electricity-intensive loads: pumped-hydroelectric storage, electric-powered heat supply, and electrolysis of water for producing hydrogen and oxygen.

  3. Efficient TEM(00)-mode operation of a laser-diode side-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Welford, D.; Rines, D. M.; Dinerman, B. J.

    1991-01-01

    The operation of a laser-diode side-pumped Nd:YAG laser with a novel pumping geometry that ensures efficient conversion of pump energy into the TEM(00) mode is reported. Of the 1064-nm output, 11.8 microJ of energy was obtained in a 200-microsec pulse with 64 microJ of pump energy at 808 nm. The overall conversion and slope efficiencies were 18 and 23 percent, respectively.

  4. NO{sub x} and CO emissions from a pulse combustor operating in a lean premixed mode

    SciTech Connect

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.; Alvarez, J.

    1993-04-01

    Emission levels below 5.0 ppM NO{sub x}, with corresponding levels of 75 ppM CO (corrected to 3% O{sub 2}), were achieved in a pulse combustor operating in a lean premixed mode. Both NO{sub x} and CO concentrations were invariant with the total mass flow rate, but NO{sub x} and CO concentrations did vary with the rate of microscopic mixing.

  5. Discovery of multiple, ionization-created CS{sub 2} anions and a new mode of operation for drift chambers

    SciTech Connect

    Snowden-Ifft, Daniel P.

    2014-01-15

    This paper focuses on the surprising discovery of multiple species of ionization-created CS{sub 2} anions in gas mixtures containing electronegative CS{sub 2} and O{sub 2}, identified by their slightly different drift velocities. Data are presented to understand the formation mechanism and identity of these new anions. Regardless of the micro-physics, however, this discovery offers a new, trigger-less mode of operation for the drift chambers. A demonstration of trigger-less operation is presented.

  6. Operation of RF driven negative ion source in a pure-hydrogen mode

    NASA Astrophysics Data System (ADS)

    Abdrashitov, G.; Belchenko, Yu.; Ivanov, A. A.; Gusev, I.; Senkov, D.; Sanin, A.; Shikhovtsev, I.; Sotnikov, O.; Kondakov, A.

    2015-04-01

    The production of negative hydrogen ions in the radio-frequency driven long-pulsed source with external antenna is studied. RF drivers with various geometry of external antenna, Faraday shield and magnets at the rear flange were examined. H- beam extraction through the single emission aperture was performed in the source pure-hydrogen mode with no external seed of alkali additives. H- beam with ion emission current density up to 5 mA/cm2 and energy up to 75 keV was regularly obtained in the 1 s pulses of the pure-hydrogen mode. The regular temporal increase of H- ion production due to deposition of impurities on the plasma grid surface was recorded. The H- emission current density increased up to 9 mA/cm2 in this case.

  7. Operation of RF driven negative ion source in a pure-hydrogen mode

    SciTech Connect

    Abdrashitov, G.; Belchenko, Yu. Gusev, I.; Senkov, D.; Sanin, A.; Shikhovtsev, I.; Kondakov, A.; Ivanov, A. A.; Sotnikov, O.

    2015-04-08

    The production of negative hydrogen ions in the radio-frequency driven long-pulsed source with external antenna is studied. RF drivers with various geometry of external antenna, Faraday shield and magnets at the rear flange were examined. H- beam extraction through the single emission aperture was performed in the source pure-hydrogen mode with no external seed of alkali additives. H- beam with ion emission current density up to 5 mA/cm{sup 2} and energy up to 75 keV was regularly obtained in the 1 s pulses of the pure-hydrogen mode. The regular temporal increase of H- ion production due to deposition of impurities on the plasma grid surface was recorded. The H- emission current density increased up to 9 mA/cm{sup 2} in this case.

  8. Dynamic viscous behavior of magneto-rheological fluid in coupled mode operation

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Park, JinHyuk; Choi, Seung-Hyun; Kim, Pyunghwa; Choi, Seung-Bok

    2015-11-01

    A new method of measuring the coupled mode viscosity behavior of magneto-rheological (MR) fluid using the resonance concept is proposed. The coupled mode viscosity measurement device is designed as a resonant system using a cantilever beam probing with the rotating shaft mechanism. The ‘C’ shaped iron core of an electromagnetic coil, mounted in a resonating cantilever beam is used as a probing tip. The MR fluid between the probing tip and the rotating shaft mechanism experiences both squeeze and shear force. The vibration induced by the resonating cantilever beam creates only squeeze force on the MR fluid when the shaft is stationary. When the cantilever beam is vibrating at resonance and the shaft is rotating, the MR fluid experiences coupled (shear and squeeze) force. The cantilever beam is vibrated at its resonant frequency using the piezoelectric actuation technique and the resonance is maintained using simple closed loop resonator electronics. The input current to the probing coil is varied to produce a variable magnetic field which causes the viscosity change of the MR fluid. The viscosity change of the MR fluid produces a coupled force, which induces an additional stiffness on the resonating cantilever beam and alters its initial resonant frequency. The shift in resonant frequency due to the change in viscosity of the MR fluid is measured with the help of a resonator electronics circuit and its viscosity is related to the field dependent coupled mode yield stress of the MR fluid. The proposed measurement device is analytically derived and experimentally evaluated.

  9. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    SciTech Connect

    J. E. O'Brien; R. C. O'Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  10. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold

  11. 322 W single-mode Yb-doped all-fiber laser operated at 1120 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Hanwei; Xiao, Hu; Zhou, Pu; Zhang, Kun; Wang, Xiaolin; Xu, Xiaojun

    2014-05-01

    An all-fiber, high-power, spectrally clean, single-mode Yb-doped fiber oscillator at 1120 nm wavelength is demonstrated. By optimizing the reflectivity of the output coupler and the length of the gain fiber, an output power of 322 W and an optical efficiency of 71% have been achieved. The output power, spectra, and bandwidth broadening are presented and briefly discussed. The power scaling capability of the cavity is analyzed on the basis of the thermal effect, and a maximal thermal-damage-free output power of 450 W could be expected.

  12. Influence of variable operating modes of a steam turbine on the growth of creep cracks in the metal of shell parts made of austenitic steel

    NASA Astrophysics Data System (ADS)

    Gladshtein, V. I.

    2011-09-01

    Results obtained from assessing the crack resistance of type EI-612 VDP steel by testing notched cylindrical samples under the temperature and stress conditions simulating the loading of metal in shell parts in variable operating modes of a steam turbine are presented. Recommendations for conducting variable operating modes and for the time of carrying out operational checks are given taking into account the influence of cyclic loading on the growth of cracks.

  13. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  14. Operating principle, saturable loss, and self-frequency shift in Kerr-shift mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Herrmann, J.; Müller, M.

    1995-01-01

    The operating principle of a recently demonstrated new Kerr-induced ultrashort-pulse-generation technique called Kerr-shift mode locking is analyzed. It is shown that in Kerr-shift mode-locked lasers an intensity-dependent red shift of the central laser frequency is caused by the combined action of the self-phase modulation that is due to the nonlinear index laser host medium and the Lorentzian-shaped profile of the homogeneously broadened gain. The introduction of a long-pass wavelength filter (knife-edge) transforms this intensity-dependent frequency shift into fast self-amplitude modulation (SAM), which is accompanied by an additional linear red shift of the central laser frequency. The SAM parameter and the linear frequency shift are calculated and compared with the experimental results.

  15. Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal

    NASA Astrophysics Data System (ADS)

    Xu, J.-L.; Guo, S.-Y.; He, J.-L.; Zhang, B.-Y.; Yang, Y.; Yang, H.; Liu, S.-D.

    2012-04-01

    We have developed a diode-pumped passively mode-locked Nd3+:CLTGG laser operated at 1059 and 1061 nm with a semiconductor saturable absorber mirror (SESAM). The relative intensity of the two spectrum wavelengths is adjustable, allowing asynchronous and synchronous generation of the dual-wavelength pulses. In synchronous mode-locking regime, a total average output power of 383 mW was obtained with pulse duration of 3.5 ps and repetition rate of 42 MHz. The two spectral bands of 1059 and 1061 nm had the same intensities and areas, indicating 1:1 for the pulse energy ratio. It is desirable for efficiently generating a terahertz wave by difference-frequency generation.

  16. A linear operator method to compute the rotational modes of asymmetric 3D Earth by vector spherical harmonics

    NASA Astrophysics Data System (ADS)

    Zhang, Mian; Huang, Cheng-li

    2012-08-01

    Generalized spherical harmonics (GSH) are usually applied on the problems where the Earth model is elliptical and elastic stress tensor is involved in, as stress tensor can’t be represented in vector spherical harmonics. However, the divergence of the te ns or and a vector dot - product with the tensor are only needed on computation rotation modes of the Earth which can be written in the vector spherical harmonics. We extend the equations on the spherical Earth to asymmetric 3D model by means of linear operator method. This method doesn’t use the complicated generalized spherical harmonics nor Wigner 3 - j symbol. As a validation of this method, the practical calculation of rotational modes of 3D Earth will be made and discussed.

  17. Desert Rats 2011 Mission Simulation: Effects of Microgravity Operational Modes on Fields Geology Capabilities

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.

    2012-01-01

    Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.

  18. Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback

    NASA Astrophysics Data System (ADS)

    Ristanic, Daniela; Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2015-01-01

    A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm-1 at 1586 cm-1. The room temperature laser threshold current density is 3 kA/cm2 and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.

  19. Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback

    SciTech Connect

    Ristanic, Daniela; Schwarz, Benedikt Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2015-01-26

    A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm{sup −1} at 1586 cm{sup −1}. The room temperature laser threshold current density is 3 kA∕cm{sup 2} and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.

  20. L-H transition studies on DIII-D to determine H-mode access for operational scenarios in ITER

    SciTech Connect

    Gohil, P.; Evans, T.E.; Fenstermacher, M; Ferron, J.R.; Osborne, T.H.; Schmitz, O.; Scoville, J. T.

    2011-01-01

    A comprehensive set of L-H transition experiments has been performed on DIII-D to determine the requirements for access to H-mode plasmas in ITER's first (non-nuclear) operational phase with H and He plasmas and the second (activated) operational phase with D plasmas. The H-mode power threshold, P(TH), was evaluated for different operational configurations and auxiliary heating methods for the different main ion species. Helium plasmas have significantly higher P(TH) than deuterium plasmas at low densities for all heating schemes, but similar P(TH) as deuterium plasmas at high densities except for H-neutral beam injection-heated discharges, which are still higher. Changes in P(TH) are observed when helium concentration levels in deuterium plasmas exceed 40%. There is a strong dependence of P(TH) on the magnetic geometry in the vicinity of the divertor. The trend of decreasing P(TH) with decreasing X-point height is observed for all of the main ion species irrespective of the heating method, which appears to indicate that there is a common physics process behind this effect for all of the ion species. Helium and deuterium plasmas exhibit a significant increase in P(TH) for strong resonant magnetic perturbations. The application of a local magnetic ripple of 3% from test blanket module mock-up coils did not change P(TH) in deuterium plasmas.

  1. The effect of different operations modes on science capabilities during the 2010 Desert RATS test: Insights from the geologist crewmembers

    NASA Astrophysics Data System (ADS)

    Bleacher, Jacob E.; Hurtado, José M.; Young, Kelsey E.; Rice, James W.; Garry, W. Brent

    2013-10-01

    The 2010 Desert RATS field test utilized two Space Exploration Vehicles (prototype planetary rovers) and four crewmembers (2 per rover) to conduct a geologic traverse across northern Arizona while testing continuous and twice-per-day communications paired with operation modes of separating and exploring individually (Divide & Conquer) and exploring together (Lead & Follow), respectively. This report provides qualitative conclusions from the geologist crewmembers involved in this test as to how these modes of communications and operations affected our ability to conduct field geology. Each mode of communication and operation provided beneficial capabilities that might be further explored for future Human Spaceflight Missions to other solar system objects. We find that more frequent interactions between crews and an Apollo-style Science Team on the Earth best enables scientific progress during human exploration. However, during multiple vehicle missions, this communication with an Earth-based team of scientists, who represent "more minds on the problem", should not come at the exclusion of (or significantly decrease) communication between the crewmembers in different vehicles who have the "eyes on the ground". Inter-crew communications improved when discussions with a backroom were infrequent. Both aspects are critical and cannot be mutually exclusive. Increased vehicle separation distances best enable encounters with multiple geologic units. However, seemingly redundant visits by multiple vehicles to the same feature can be utilized to provide improved process-related observations about the development and modification of the local terrain. We consider the value of data management, transfer, and accessibility to be the most important lesson learned. Crews and backrooms should have access to all data and related interpretations within the mission in as close to real-time conditions as possible. This ensures that while on another planetary surface, crewmembers are as

  2. Wilsonville SRC-I pilot plant: I. Fractionation area corrosion studies; II. Hot vs. normal separation mode of operation

    SciTech Connect

    Lee, J.M.

    1981-04-01

    Extensive corrosion studies in solvent recovery columns have been done with different coals (mainly Kentucky number 9 Lafayette, Dotiki and Fies). Sodium carbonate (0.1 to 1.1% of coal) was added as neutralizer to control corrosion rate. Chloride balance runs were made for isolation of corrosive streams with high chlorine content. A caustic wash program of inlet streams has been developed for selective treatment of corrosive streams as an alternative means for possible replacement of sodium carbonate addition. High chlorine content coals such as Kentucky number 9 Lafayette and Dotiki (0.2 to 0.3%) were very corrosive, compared to low chlorine content coal, Kentucky number 9 Fies (< 0.1%). Sodium carbonate addition (0.6 to 0.7% of coal) reduced corrosion rate from 500 MPY to an insignificant level of less than 5 MPY. Caustic wash of solvents could reduce corrosion rate by 50%, removing most corrosive compounds present in the 440 to 480/sup 0/F boiling fraction. Extensive studies for the hot separator mode of operation have been done as a means of saving substantial energy by elimination of dissolver slurry cooling (0.3 MM Btu/hr) and reheating for solvent recovery (1 MM Btu/h). Impacts of the hot separator mode on plant operability, product quality and Kerr-McGee CSD Unit recovery have been studied. The hot separator mode of operation was carried out by controlling the V103 temperature to 740/sup 0/F. It was observed that preasphaltene contents increased in the SRC products such as V110 L/F SRC and CSD feed; CSD unit recovery was not affected significantly; solvent quality was not affected significantly.

  3. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGESBeta

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  4. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    SciTech Connect

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current, 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.

  5. Dual-wavelength operation of continuous-wave and mode-locked erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Pottiez, O.; Martinez-Rios, A.; Monzon-Hernandez, D.; Ibarra-Escamilla, B.; Kuzin, E. A.; Hernandez-Garcia, J. C.

    2012-06-01

    We study numerically and experimentally multiple-wavelength operation of an erbium-doped figure-eight fiber laser including a multiple-bandpass optical filter formed by two concatenated fiber tapers. Both continuous-wave and pulsed operations are considered. In the continuous-wave regime, stable long-term operation at multiple closely spaced wavelengths is only obtained if fine adjustments of the cavity losses are performed. Under these conditions, simultaneous lasing at up to four wavelengths separated by 1.5 nm was observed experimentally. Tunable single-wavelength operation over more than 20 nm is also observed in the continuous-wave regime. In the passive mode locking regime, numerical simulations indicate that mechanisms involving the filter losses and the nonlinear transmission characteristic of the NOLM contribute in principle to stabilize dual-wavelength operation, allowing less demanding cavity loss adjustments. In this regime, the problem of synchronization between the pulse trains generated at each wavelength adds an additional dimension to the problem. In presence of cavity dispersion, the pulses at each wavelength tend to be asynchronous if the wavelength separation is large, however they can be synchronous in the case of closely spaced wavelengths, if cross-phase modulation is able to compensate for the dispersion-induced walkoff. Experimentally, fundamental and 2nd-order harmonic mode locking was observed, characterized by the generation of noise-like pulses. Finally, a regime of multi-wavelength passive Q-switching was also observed. We believe that this work will be helpful to guide the design of multiple-wavelength fiber laser sources, which are attractive for a wide range of applications including Wavelength Division Multiplexing transmissions, signal processing and sensing.

  6. Operations analysis (study 2.1). Contingency analysis. [of failure modes anticipated during space shuttle upper stage planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Future operational concepts for the space transportation system were studied in terms of space shuttle upper stage failure contingencies possible during deployment, retrieval, or space servicing of automated satellite programs. Problems anticipated during mission planning were isolated using a modified 'fault tree' technique, normally used in safety analyses. A comprehensive space servicing hazard analysis is presented which classifies possible failure modes under the catagories of catastrophic collision, failure to rendezvous and dock, servicing failure, and failure to undock. The failure contingencies defined are to be taken into account during design of the upper stage.

  7. MFTF: a computer program for calculating the MARS mode operating parameters for the axicell MFTF-B

    SciTech Connect

    Jong, R.A.

    1983-01-13

    We describe the models used to calculate the equilibrium operating point for the MARS mode of the axicell MFTF-B, and present the model equations necessary to calculate the plasma and potential parameters in the central-cell, axicell, and anchor regions. In addition, we calculate the neutral beam, rf power, and gas inputs required to sustain the plasma and maintain the ion and electron-particle energy balance. After a brief description of the MFTF code, we present the results of a sample calculation using MFTF.

  8. Robotic Implementation of Realistic Reaching Motion Using a Sliding Mode/Operational Space Controller

    NASA Astrophysics Data System (ADS)

    Spiers, Adam; Herrmann, Guido; Melhuish, Chris; Pipe, Tony; Lenz, Alexander

    It has been shown that a task-level controller with minimal-effort posture control produces human-like motion in simulation. This control approach is based on the dynamic model of a human skeletal system superimposed with realistic muscle like actuators whose effort is minimised. In practical application, there is often a degree of error between the dynamic model of a system used for controller derivation and the actual dynamics of the system. We present a practical application of the task-level control framework with simplified posture control in order to produce life-like and compliant reaching motions for a redundant task. The addition of a sliding mode controller improves performance of the physical robot by compensating for unknown parametric and dynamic disturbances without compromising the human-like posture.

  9. A quadrupole ion trap with cylindrical geometry operated in the mass-selective instability mode.

    PubMed

    Wells, J M; Badman, E R; Cooks, R G

    1998-02-01

    A cylindrical geometry ion trap is used to record mass spectra in the mass-selective instability mode. The geometry of the cylindrical ion trap has been optimized to maximize the quadrupole field component relative to the higher-order field content through field calculations using the Poisson/Superfish code and through experimental variation of the electrode structure. The results correspond well with predictions of the calculations. The trap has been used to record mass spectra with better than unit mass resolution, high sensitivity, and a mass/charge range of ∼600 Th. Multistage (MS(3)) experiments have been performed, and the Mathieu stability region has been experimentally mapped. The performance of this device compares satisfactorily with that of the hyperbolic ion trap. PMID:21644742

  10. Optimal operating regime of saturable absorbers in mode-locked lasers

    SciTech Connect

    Narovlyanskaya, N.M.; Tikhonov, E.A.

    1982-01-01

    An investigation was made of ultrashort pulse generation by passive mode locking in a rhodamine 6G jet laser with pulsed laser pumping of up to 300 nsec duration. In order to obtain single ultrashort pulses per axial period in these systems, it was essential to reduce their time of formation to several loop passes. It was shown experimentally that the rate of formation of ultrashort pulses is influenced appreciably by the nonlinear absorber dye and, for a given intracavity intensity, the best dyes are those having a purely electronic transition near the lasing frequency. In this case, the critical bleaching intensity and relaxation time are minimized as a result of the increased role of stimulated resonance transitions in the dye modulator. Optimal types of polymethine dyes are suggested for nonlinear absorbers of tunable ultrashort-pulse rhodamine 6G lasers.

  11. HgCdTe APD-based linear-mode photon counting components and ladar receivers

    NASA Astrophysics Data System (ADS)

    Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.

    2011-05-01

    Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.

  12. Risk contribution from low power, shutdown, and other operational modes beyond full power

    SciTech Connect

    Whitehead, D.W.; Brown, T.D.; Chu, T.L.

    1995-04-01

    During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (a pressurized water reactor) and Grand Gulf (a boiling water reactor), were selected for study by Brookhaven National Laboratory and Sandia National Laboratories, respectively. The program objectives included assessing the risks of severe accidents initiated during plant operational states other than full power and comparing estimated core damage frequencies, important accident sequences, and other qualitative and quantitative results with full power accidents as assessed in NUREG-1150. The scope included a Level 3 probabilistic risk assessment (PRA) for traditional internal events and a Level 1 PRA on fire, flooding, and seismically induced core damage sequences. A phased approach was used in Level 1. In Phase 1 the concept of plant operational states (POSs) was developed to provide a better representation of the plant as it transitions from power to nonpower operation. This included a coarse screening analysis of all POSs to identify vulnerable plant configurations, to characterize (on a high, medium, or low basis) potential frequencies of core damage accidents, and to provide a foundation for a detailed Phase 2 analysis. In Phase 2, selected POSs from both Grand Gulf and Surry were chosen for detailed analysis. For Grand Gulf, POS 5 (approximately cold shutdown as defined by Grand Gulf Technical Specifications) during a refueling outage was selected. For Surry, three POSs representing the time the plant spends in midloop operation were chosen for analysis. These included POS 6 and POS 10 of a refueling outage and POS 6 of a drained maintenance outage. Level 1 and Level 2/3 results from both the Surry and Grand Gulf analyses are presented.

  13. Visualization of the operational space of edge-localized modes through low-dimensional embedding of probability distributions

    SciTech Connect

    Shabbir, A. Noterdaeme, J. M.; Verdoolaege, G.; Kardaun, O. J. W. F.; Collaboration: JET-EFDA Team

    2014-11-15

    Information visualization aimed at facilitating human perception is an important tool for the interpretation of experiments on the basis of complex multidimensional data characterizing the operational space of fusion devices. This work describes a method for visualizing the operational space on a two-dimensional map and applies it to the discrimination of type I and type III edge-localized modes (ELMs) from a series of carbon-wall ELMy discharges at JET. The approach accounts for stochastic uncertainties that play an important role in fusion data sets, by modeling measurements with probability distributions in a metric space. The method is aimed at contributing to physical understanding of ELMs as well as their control. Furthermore, it is a general method that can be applied to the modeling of various other plasma phenomena as well.

  14. Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography.

    PubMed

    Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Eigenwillig, Christoph M; Palte, Gesa; Huber, Robert

    2008-12-01

    We demonstrate a Raman-pumped Fourier-domain mode-locked (FDML) fiber laser and optical coherence tomography imaging with this source. The wavelength sweep range of only 30 nm centered around 1550 nm results in limited axial resolution, hence a nonbiological sample is imaged. An output power of 1.9 mW was achieved at a sweep rate of 66 kHz and a maximum ranging depth of ~2.5 cm. Roll-off characteristics are found to be similar to FDML lasers with semiconductor optical amplifiers as gain media. The application of Raman gain also enables unperturbed cavity ring-down experiments in FDML lasers for the first time, providing direct access to the photon lifetime in the laser cavity. Good agreement with nonswept cw operation is proof of the stationary operation of FDML lasers. PMID:19037436

  15. The high performance readout chain for the DSSC 1Megapixel detector, designed for high throughput during pulsed operation mode

    NASA Astrophysics Data System (ADS)

    Kirchgessner, M.; Soldat, J.; Kugel, A.; Donato, M.; Porro, M.; Fischer, P.

    2015-01-01

    The readout chain of the DSSC 1M pixel detector currently built at DESY, Hamburg for the European X-Ray Free Electron Laser is described. The system operates in pulsed operation mode comparable to the new ILC. Each 0.1 seconds 800 images of 1M pixels are produced and readout by the DSSC DAQ electronics. The total data production rate of the system is about 134 Gbit/s. In order to deal with the high data rates, latest technology components like the Xilinx Kintex 7 FPGA are used to implement fast DDR3-1600 image buffers, high speed serial FPGA to FPGA communication and 10 GB Ethernet links concentrated in one 40 Gbit/s QSFP+ transceiver.

  16. Pixel detector Timepix operated in pile-up mode for pulsed imaging with ultra-soft X-rays

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Jakubek, J.; Kroupa, M.; Bruza, P.; Panek, D.

    2012-12-01

    The hybrid semiconductor pixel detector Timepix operated in the Time-over-Threshold mode (ToT) enables direct energy measurement in each pixel. The advantage of noiseless position sensitive detection combined with per pixel spectroscopic capability opens the way to numerous new applications, which were till now, however, restricted to detection of radiation which is basically above the detector energy threshold (typically 3-4 keV). This limitation excludes application of the hybrid pixel technology to highly interesting fields such as plasma diagnostics or X-ray microscopy. In this contribution we demonstrate how the Timepix detector working in ToT mode can be operated as a detector for particles which are in principle below the detector threshold, namely for soft X-ray photons with energy typically 0.5 keV. The approach is based on the detection of a larger number of photons incoming in the pixel signal processing chain in a time significantly shorter than the shaping time of the pixel electronics, i.e. forming signal pile-up. The proposed approach enables a CCD-like integrating operation with the many advantages of the hybrid counting technology (direct conversion, high sensitivity, dark-current free, room temperature operation, fully digital output and possibility to utilize various read-out architectures). Using the proposed approach we performed single-shot X-ray radiography with a laser-induced plasma source in the spectral region of water window. The same technique was used for the characterization of the source itself.

  17. Diffractive phase-shift lithography photomask operating in proximity printing mode.

    PubMed

    Cirino, Giuseppe A; Mansano, Ronaldo D; Verdonck, Patrick; Cescato, Lucila; Neto, Luiz G

    2010-08-01

    A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 microm behind the mask. The results show a improvement of the achieved resolution--linewidth as good as 1.5 microm--what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source. PMID:20721026

  18. Operating modes of a hydrogen ion source based on a hollow-cathode pulsed Penning discharge

    NASA Astrophysics Data System (ADS)

    Oks, E. M.; Shandrikov, M. V.; Vizir, A. V.

    2016-02-01

    An ion source based on a hollow-cathode Penning discharge was switched to a high-current pulsed mode (tens of amperes and tens of microseconds) to produce an intense hydrogen ion beam. With molecular hydrogen (H2), the ion beam contained three species: H+, H2+, and H3+. For all experimental conditions, the fraction of H2+ ions in the beam was about 10 ÷ 15% of the total ion beam current and varied little with ion source parameters. At the same time, the ratio of H+ and H3+ depended strongly on the discharge current, particularly on its distribution in the gap between the hollow and planar cathodes. Increasing the discharge current increased the H+ fraction in ion beam. The maximum fraction of H+ reached 80% of the total ion beam current. Forced redistribution of the discharge current in the cathode gap for increasing the hollow cathode current could greatly increase the H3+ fraction in the beam. At optimum parameters, the fraction of H3+ ions reached 60% of the total ion beam current.

  19. Multi-echo processing by a bottlenose dolphin operating in "packet" transmission mode at long range.

    PubMed

    Finneran, James J; Schroth-Miller, Maddie; Borror, Nancy; Tormey, Megan; Brewer, Arial; Black, Amy; Bakhtiari, Kimberly; Goya, Gavin

    2014-11-01

    Bottlenose dolphins performing echolocation tasks at long ranges may utilize a transmission mode where bursts, or "packets," of echolocation clicks are emitted rather than single clicks. The clicks within each packet are separated by time intervals well below the two-way travel time, while the packets themselves are emitted at intervals greater than the two-way travel time. Packet use has been shown to increase with range; however, the exact function of packets and the advantages gained by their utilization remain unknown. In this study, the capability for dolphins to utilize multi-echo processing within packets of echoes was investigated by manipulating the number of available echoes within each packet as a dolphin performed a long-range echolocation task. The results showed an improvement in detectability with an increase in the number of echoes in each packet and suggest that packet use is an adaptation to allow multi-echo processing at long ranges without introducing range ambiguity. PMID:25373986

  20. Concept and realization of unmanned aerial system with different modes of operation

    SciTech Connect

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian

    2014-12-10

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.

  1. Concept and realization of unmanned aerial system with different modes of operation

    NASA Astrophysics Data System (ADS)

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian

    2014-12-01

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.

  2. Analytical expressions for chatter analysis in milling operations with one dominant mode

    NASA Astrophysics Data System (ADS)

    Iglesias, A.; Munoa, J.; Ciurana, J.; Dombovari, Z.; Stepan, G.

    2016-08-01

    In milling, an accurate prediction of chatter is still one of the most complex problems in the field. The presence of these self-excited vibrations can spoil the surface of the part and can also cause a large reduction in tool life. The stability diagrams provide a practical selection of the optimum cutting conditions determined either by time domain or frequency domain based methods. Applying these methods parametric or parameter traced representations of the linear stability limits can be achieved by solving the corresponding eigenvalue problems. In this work, new analytical formulae are proposed related to the parameter domains of both Hopf and period doubling type stability boundaries emerging in the regenerative mechanical model of time periodical milling processes. These formulae are useful to enrich and speed up the currently used numerical methods. Also, the destabilization mechanism of double period chatter is explained, creating an analogy with the chatter related to the Hopf bifurcation, considering one dominant mode and using concepts established by the Pioneers of chatter research.

  3. Elastomeric Microchip Electrospray Emitter for Stable Cone-Jet Mode Operation in the Nanoflow Regime.

    SciTech Connect

    Kelly, Ryan T.; Tang, Keqi; Irimia, Daniel; Toner, Mehmet; Smith, Richard D.

    2008-05-15

    Despite widespread interest in applying lab-on-a-chip technologies to mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact in the Taylor cone of the electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of small Taylor cones at the channel exit ensures sub-nL post-column dead volumes. While comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, stable cone-jet mode electrospray could be established over a far broader range of flow rates (from 50–1000 nL/min) and applied potentials using the microchip emitters. This special feature of the microchip emitter should minimize the fine tuning required for electrospray optimization and make the stable electrospray more resistant to external perturbations.

  4. Hydraulic torque on the guide vane within the slight opening of pump turbine in turbine operating mode

    NASA Astrophysics Data System (ADS)

    Fan, H. G.; Yang, H. X.; Li, F. C.; Chen, N. X.

    2014-03-01

    In a pumped storage power station, the units produce vibration and noise at times when the guide vanes rotate into the slight opening region during the turbine operating mode. According to this phenomenon, the simulation of transient flow in the units during the motion of the guide vane is carried out to investigate the variation of flow state in the process of startup and shutdown in turbine mode. The changing rate of hydraulic torque on a single guide vane is introduced to quantitatively represent the varying acuteness of the flow in the guide vanes and the possibility of the noise induced by the instable flow. The correlation between the frequency of noise and water head is summarized. The research indicates that the repeating reversal of fluid after load rejection is the hydraulic phenomenon which is the cause of the distributor vibration and noises within the slight opening, which is in accordance with the data recorded during the operation of the station. The effect of guide vanes closing law on the flow state in guide vanes and hydraulic torque on a single guide vane is analyzed.

  5. Evaluation of persistent-mode operation in a superconducting MgB2 coil in solid nitrogen

    NASA Astrophysics Data System (ADS)

    Patel, Dipak; Hossain, Md Shahriar Al; See, Khay Wai; Qiu, Wenbin; Kobayashi, Hiroki; Ma, Zongqing; Kim, Seong Jun; Hong, Jonggi; Park, Jin Yong; Choi, Seyong; Maeda, Minoru; Shahabuddin, Mohammed; Rindfleisch, Matt; Tomsic, Mike; Xue Dou, Shi; Kim, Jung Ho

    2016-04-01

    We report the fabrication of a magnesium diboride (MgB2) coil and evaluate its persistent-mode operation in a system cooled by a cryocooler with solid nitrogen (SN2) as a cooling medium. The main purpose of SN2 was to increase enthalpy of the cold mass. For this work, an in situ processed carbon-doped MgB2 wire was used. The coil was wound on a stainless steel former in a single layer (22 turns), with an inner diameter of 109 mm and height of 20 mm without any insulation. The two ends of the coil were then joined to make a persistent-current switch to obtain the persistent-current mode. After a heat treatment, the whole coil was installed in the SN2 chamber. During operation, the resultant total circuit resistance was estimated to be <7.4 × 10-14 Ω at 19.5 K ± 1.5 K, which meets the technical requirement for magnetic resonance imaging application.

  6. Microbial community composition of polyhydroxyalkanoate-accumulating organisms in full-scale wastewater treatment plants operated in fully aerobic mode.

    PubMed

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11-18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5-38.2 mg-C g-VSS(-1) h(-1)). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  7. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    PubMed

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-01

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments. PMID:12689228

  8. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    PubMed Central

    Li, Wen-Bing; Yao, Jun; Zhou, Gen-Di; Dong, Ming; Shen, Dong-Sheng

    2014-01-01

    The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation. PMID:24779006

  9. Impact of MSWI bottom ash codisposed with MSW on landfill stabilization with different operational modes.

    PubMed

    Li, Wen-Bing; Yao, Jun; Malik, Zaffar; Zhou, Gen-Di; Dong, Ming; Shen, Dong-Sheng

    2014-01-01

    The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation. PMID:24779006

  10. Study on nitrogen removal enhanced by shunt distributing wastewater in a constructed subsurface infiltration system under intermittent operation mode.

    PubMed

    Li, Yinghua; Li, Haibo; Sun, Tieheng; Wang, Xin

    2011-05-15

    Subsurface wastewater infiltration system is an efficient and economic technology in treating small scattered sewage. The removal rates are generally satisfactory in terms of COD, BOD(5), TP and SS removal; while nitrogen removal is deficient in most of the present operating SWIS due to the different requirements for the presence of oxygen for nitrification and denitrification processes. To study the enhanced nitrogen removal technologies, two pilot subsurface wastewater infiltration systems were constructed in a village in Shenyang, China. The filled matrix was a mixture of 5% activated sludge, 65% brown soil and 30% coal slag in volume ratio for both systems. Intermittent operation mode was applied in to supply sufficient oxygen to accomplish the nitrification; meanwhile sewage was supplemented as the carbon source to the lower part in to denitrify. The constructed subsurface wastewater infiltration systems worked successfully under wetting-drying ratio of 1:1 with hydraulic loading of 0.081 m(3)/(m(2)d) for over 4 months. Carbon source was supplemented with shunt ratio of 1:1 and shunt position at the depth of 0.5m. The experimental results showed that intermittent operation mode and carbon source supplementation could significantly enhance the nitrogen removal efficiency with little influence on COD and TP removal. The average removal efficiencies for NH(3)-N and TN were 87.7 ± 1.4 and 70.1 ± 1.0%, increased by 12.5 ± 1.0 and 8.6 ± 0.7%, respectively. PMID:21402440

  11. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    SciTech Connect

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L. )

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE{sub 15,2,1} interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs.

  12. Discovering operating modes in telemetry data from the Shuttle Reaction Control System

    NASA Technical Reports Server (NTRS)

    Manganaris, Stefanos; Fisher, Doug; Kulkarni, Deepak

    1994-01-01

    This paper addresses the problem of detecting and diagnosing faults in physical systems, for which suitable system models are not available. An architecture is proposed that integrates the on-line acquisition and exploitation of monitoring and diagnostic knowledge. The focus is on the component of the architecture that discovers classes of behaviors with similar characteristics by observing a system in operation. A characterization of behaviors based on best fitting approximation models is investigated. An experimental prototype has been implemented to test it. Preliminary results in diagnosing faults of the reaction control system of the space shuttle are presented. The merits and limitations of the approach are identified and directions for future work are set.

  13. Köppen-Geiger Climate Classification for Europe Recaptured via the Hölder Regularity of Air Temperature Data

    NASA Astrophysics Data System (ADS)

    Deliège, Adrien; Nicolay, Samuel

    2016-07-01

    In this paper, we make use of the monoHölder nature of surface air temperature data to recapture the Köppen-Geiger climate classification in Europe. Using data from the European Climate Assessment and Dataset (ECA&D), we first show that the Hölder exponents of surface air temperature data are statistically related to pressure anomalies. Then, we establish a climate classification based on these Hölder exponents in such a way that it allows to recover the Köppen-Geiger climate classification. We show that the two classifications match for a vast majority of stations, and we corroborate these observations with a confirmation test. We compare these results with those obtained with another dataset (NCEP-NCAR Reanalysis Project) to show that the new classification is still well-adapted, before eventually discussing these findings.

  14. Köppen-Geiger Climate Classification for Europe Recaptured via the Hölder Regularity of Air Temperature Data

    NASA Astrophysics Data System (ADS)

    Deliège, Adrien; Nicolay, Samuel

    2016-08-01

    In this paper, we make use of the monoHölder nature of surface air temperature data to recapture the Köppen-Geiger climate classification in Europe. Using data from the European Climate Assessment and Dataset (ECA&D), we first show that the Hölder exponents of surface air temperature data are statistically related to pressure anomalies. Then, we establish a climate classification based on these Hölder exponents in such a way that it allows to recover the Köppen-Geiger climate classification. We show that the two classifications match for a vast majority of stations, and we corroborate these observations with a confirmation test. We compare these results with those obtained with another dataset (NCEP-NCAR Reanalysis Project) to show that the new classification is still well-adapted, before eventually discussing these findings.

  15. PLZT block data composers operated in differential phase mode. [lanthanum-modified lead zirconate titanate ceramic device for digital holographic memory

    NASA Technical Reports Server (NTRS)

    Drake, M. D.; Klingler, D. E.

    1973-01-01

    The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.

  16. Smoke detector with a radiation source operated in a pulse-like or intermittent mode

    SciTech Connect

    Muggli, J.; Guttinger, H.

    1985-03-19

    A smoke detector contains a pulse-operated radiation source and a radiation receiver arranged externally of the region directly irradiated by the radiation source. The radiation receiver, in the presence of smoke in the radiation region, is impinged by scattered radiation and delivers output pulses. There is provided an evaluation circuit which generates a blocking pulse, and which inputs a resetting signal to a counter device in consequence of the difference of the blocking pulse and output pulse of the radiation receiver. The counter or counting device, in the absence of a resetting signal, is switched further and upon reaching a predetermined counter state triggers an alarm signal. High-frequency electrical disturbances which arise, as long as the radiation source delivers radiation pulses, at most can generate an additional resetting signal for the counter, so that the integrity of the smoke detector against triggering of false alarms is enhanced. If there is connected in parallel to the radiation receiver a NTC-resistor, then there is obtained a smoke detector which responds to a further combustion criterion (temperature).

  17. Experimental study of N{sub 2}O emission from gasoline engines at various operating modes

    SciTech Connect

    Zhao, Zheshi; Ozaki, Masuo; Danov, Stanislav; Matsunami, Aritaka; Arai, Norio

    1998-07-01

    Systematic investigations on N{sub 2}O emission from automotive internal combustion engines equipped with primary or secondary NO control techniques, are scarce or do not exist at all. In this study, experiments have been carried out to investigate the N{sub 2}O emission from a gasoline 4-stroke automotive engine equipped with a 3-way catalytic converter. The results obtained from laboratory studies on gasoline automotive engines show that the N{sub 2}O emission is strongly influenced by the operating conditions of the engine in terms of the rotating speed and load. Also, the technical status of the engine has significant impact with respect to the N{sub 2}O emission. The analysis show that some catalytic NO converters in the presence of ammonia can be considered as a potential source of N{sub 2}O. It was found that the 3-way catalytic converter produces some ammonia during the NO reduction, and also that N{sub 2}O formation is enhanced by the presence of H{sub 2} or/and CO. The N{sub 2}O production rate increases with an increase of rotating speed, but this increase can be explained by the increase of the air/fuel equivalence ratio, which also increases with the rise of engine rotating speed at constant load.

  18. Numerical simulation of hydrodynamics in a pump-turbine at off-design operating conditions in turbine mode

    NASA Astrophysics Data System (ADS)

    Yan, J. P.; Seidel, U.; Koutnik, J.

    2012-11-01

    The hydrodynamics of a reduced-scaled model of a radial pump-turbine is investigated under off-design operating conditions, involving runaway and "S-shape" turbine brake curve at low positive discharge. It is a low specific speed pump-turbine machine of Francis type with 9 impeller blades and 20 stay vanes as well as 20 guide vanes. The computational domain includes the entire water passage from the spiral casing inlet to the draft tube outlet. Completely structured hexahedral meshes generated by the commercial software ANSYS-ICEM are employed. The unsteady incompressible simulations are performed using the commercial code ANSYS-CFX13. For turbulence modeling the standard k-ε model is applied. The numerical results at different operating points are compared to the experimental results. The predicted pressure amplitude is in good agreement with the experimental data and the amplitude of normal force on impeller is in reasonable range. The detailed analysis reveals the onset of the flow instabilities when the machine is brought from a regular operating condition to runaway and turbine break mode. Furthermore, the rotating stall phenomena are well captured at runaway condition as well as low discharge operating condition with one stall cell rotating inside and around the impeller with about 70% of its frequency. Moreover, the rotating stall is found to be the effect of rotating flow separations developed in several consecutive impeller channels which lead to their blockage. The reliable simulation of S-curve characteristics in pump-turbines is a basic requirement for design and optimization at off-design operating conditions.

  19. Predator Stress Engages Corticotropin-releasing Factor and Opioid Systems to Alter the Operating Mode of Locus Coeruleus Norepinephrine Neurons

    PubMed Central

    Curtis, Andre L.; Leiser, Steven C.; Snyder, Kevin; Valentino, Rita J.

    2012-01-01

    The norepinephrine nucleus, locus coeruleus (LC), has been implicated in cognitive aspects of the stress response, in part through its regulation by the stress-related neuropeptide, corticotropin-releasing factor (CRF). LC neurons discharge in tonic and phasic modes that differentially modulate attention and behavior. Here, the effects of exposure to an ethologically relevant stressor, predator odor, on spontaneous (tonic) and auditory-evoked (phasic) LC discharge were characterized in unanesthetized rats. Similar to the effects of CRF, stressor presentation increased tonic LC discharge and decreased phasic auditory-evoked discharge, thereby decreasing the signal-to-noise ratio of the sensory response. This stress-induced shift in LC discharge towards a high tonic mode was prevented by a CRF antagonist. Moreover, CRF antagonism during stress unmasked a large decrease in tonic discharge rate that was opioid mediated because it was prevented by pretreatment with the opiate antagonist, naloxone. Elimination of both CRF and opioid influences with an antagonist combination rendered LC activity unaffected by the stressor. These results demonstrate that both CRF and opioid afferents are engaged during stress to fine-tune LC activity. The predominant CRF influence shifts the operational mode of LC activity towards a high tonic state that is thought to facilitate behavioral flexibility and may be adaptive in coping with the stressor. Simultaneously, stress engages an opposing opioid influence that restrains the CRF influence and may facilitate recovery towards pre-stress levels of activity. Changes in the balance of CRF:opioid regulation of the LC could have consequences for stress vulnerability. PMID:22210331

  20. Frequency-modulated atomic force microscopy operation by imaging at the frequency shift minimum: The dip-df mode

    SciTech Connect

    Rode, Sebastian; Schreiber, Martin; Kühnle, Angelika; Rahe, Philipp

    2014-04-15

    In frequency modulated non-contact atomic force microscopy, the change of the cantilever frequency (Δf) is used as the input signal for the topography feedback loop. Around the Δf(z) minimum, however, stable feedback operation is challenging using a standard proportional-integral-derivative (PID) feedback design due to the change of sign in the slope. When operated under liquid conditions, it is furthermore difficult to address the attractive interaction regime due to its often moderate peakedness. Additionally, the Δf signal level changes severely with time in this environment due to drift of the cantilever frequency f{sub 0} and, thus, requires constant adjustment. Here, we present an approach overcoming these obstacles by using the derivative of Δf with respect to z as the input signal for the topography feedback loop. Rather than regulating the absolute value to a preset setpoint, the slope of the Δf with respect to z is regulated to zero. This new measurement mode not only makes the minimum of the Δf(z) curve directly accessible, but it also benefits from greatly increased operation stability due to its immunity against f{sub 0} drift. We present isosurfaces of the Δf minimum acquired on the calcite CaCO{sub 3}(101{sup ¯}4) surface in liquid environment, demonstrating the capability of our method to image in the attractive tip-sample interaction regime.

  1. Long-term meditation training induced changes in the operational synchrony of default mode network modules during a resting state.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Kallio-Tamminen, Tarja

    2016-02-01

    Using theoretical analysis of self-consciousness concept and experimental evidence on the brain default mode network (DMN) that constitutes the neural signature of self-referential processes, we hypothesized that the anterior and posterior subnets comprising the DMN should show differences in their integrity as a function of meditation training. Functional connectivity within DMN and its subnets (measured by operational synchrony) has been measured in ten novice meditators using an electroencephalogram (EEG) recording in a pre-/post-meditation intervention design. We have found that while the whole DMN was clearly suppressed, different subnets of DMN responded differently after 4 months of meditation training: The strength of EEG operational synchrony in the right and left posterior modules of the DMN decreased in resting post-meditation condition compared to a pre-meditation condition, whereas the frontal DMN module on the contrary exhibited an increase in the strength of EEG operational synchrony. These findings combined with published data on functional-anatomic heterogeneity within the DMN and on trait subjective experiences commonly found following meditation allow us to propose that the first-person perspective and the sense of agency (the witnessing observer) are presented by the frontal DMN module, while the posterior modules of the DMN are generally responsible for the experience of the continuity of 'I' as embodied and localized within bodily space. Significance of these findings is discussed. PMID:26525051

  2. Multistage depressed collector with efficiency of 90 to 94 percent for operation of a dual-mode traveling wave tube in the linear region

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Fox, T. A.

    1980-01-01

    An axisymmetric, multistage, depressed collector of fixed geometric design was evaluated in conjunction with an octave bandwidth, dual mode traveling wave tube (TWT). The TWT was operated over a wide range of conditions to simulate different applications. The collector performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the TWT in the linear, low distortion range, 90 percent and greater collector efficiencies were obtained leading to TWT overall efficiencies of 20 to 35 percent, as compared with 2 to 5 percent with an undepressed collector. With collectors of this efficiency and minimized beam interception losses, it becomes practical to design dual mode TWT's such that the low mode can represent operation well below saturation. Consequently, the required pulse up in beam current can be reduced or eliminated, and this mitigates beam control and dual mode TWT circuit design problems. For operation of the dual mode TWT at saturation, average collector efficiencies in excess of 85 percent were obtained for both the low and high modes across an octave bandwidth, leading to a three to fourfold increase in the TWT overall efficiency.

  3. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes

    PubMed Central

    Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas

    2015-01-01

    The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines. PMID:26703623

  4. Comparative Performance Analysis of IADR Operating in Natural Gas-Fired and Waste-Heat CHP Modes

    SciTech Connect

    Petrov, Andrei Y; Sand, James R; Zaltash, Abdolreza

    2006-01-01

    Fuel utilization can be dramatically improved through effective recycle of 'waste' heat produced as a by-product of on-site or near-site power generation technologies. Development of modular compact cooling, heating, and power (CHP) systems for end-use applications in commercial and institutional buildings is a key part of the Department of Energy's (DOE) energy policy. To effectively use the thermal energy from a wide variety of sources which is normally discarded to the ambient, many components such as heat exchangers, boilers, absorption chillers, and desiccant dehumidification systems must be further developed. Recently a compact, cost-effective, and energy-efficient integrated active-desiccant vapor-compression hybrid rooftop (IADR) unit has been introduced in the market. It combines the advantages of an advanced direct-expansion cooling system with the dehumidification capability of an active desiccant wheel. The aim of this study is to compare the efficiency of the IADR operation in baseline mode, when desiccant wheel regeneration is driven by a natural gas burner, and in CHP mode, when the waste heat recovered from microturbine exhaust gas is used for desiccant regeneration. Comparative analysis shows an excellent potential for more efficient use of the desiccant dehumidification as part of a CHP system and the importance of proper sizing of the CHP components. The most crucial factor in exploiting the efficiency of this application is the maximum use of thermal energy recovered for heating of regeneration air.

  5. Bidirectional operation of 100 fs bound solitons in an ultra-compact mode-locked fiber laser.

    PubMed

    Li, Lei; Ruan, Qiujun; Yang, Runhua; Zhao, Luming; Luo, Zhengqian

    2016-09-01

    We report on the experimental observation of bidirectional 100-fs bound solitons from a nanotube-mode-locked dispersion-managed Er-fiber laser with an ultra-simple linear cavity. Two mode-locked pulse trains in opposite directions are delivered simultaneously from the linear cavity. Under the pump power of <74 mW, both the bidirectional outputs of the laser work at the single-soliton state with pulse duration of 173 fs and 182 fs, respectively. Once the pump power is more than 74 mW, both the bidirectional outputs evolve into the two-soliton bound states with soliton separation of 1.53 ps. Interestingly, the bidirectional operations can show the different bound states, i.e. the forward bound solitons with phase difference of + π/2, and the backward ones with phase difference of -π/2. This is, to the best of our knowledge, the first demonstration of such compact bidirectional soliton fiber laser with the sub-200 fs pulses. PMID:27607705

  6. HIGH POWER TEST OF A 3.9 GHZ 5-CELL DEFLECTING-MODE CAVITY IN A CRYOGENIC OPERATION

    SciTech Connect

    Shin, Young-Min; Church, Michael

    2013-11-24

    A 3.9 GHz deflecting mode (S, TM110) cavity has been long used for six-dimensional phase-space beam manipulation tests [1-5] at the A0 Photo-Injector Lab (16 MeV) in Fermilab and their extended applications with vacuum cryomodules are currently planned at the Advanced Superconducting Test Accelerator (ASTA) user facility (> 50 MeV). Despite the successful test results, the cavity, however, demonstrated limited RF performance during liquid nitrogen (LN2) ambient operation that was inferior to theoretical prediction. We have been performing full analysis of the designed cavity by analytic calculation and comprehensive system simulation analysis to solve complex thermodynamics and mechanical stresses. The re-assembled cryomodule is currently under the test with a 50 kW klystron at the Fermilab A0 beamline, which will benchmark the modeling analysis. The test result will be used to design vacuum cryomodules for the 3.9 GHz deflecting mode cavity that will be employed at the ASTA facility for beam diagnostics and phase-space control.

  7. High-power free-electron maser operated in a two-mode frequency-multiplying regime

    NASA Astrophysics Data System (ADS)

    Peskov, N. Yu.; Bandurkin, I. V.; Kaminsky, A. K.; Kuzikov, S. V.; Perelstein, E. A.; Savilov, A. V.; Sedykh, S. N.; Vikharev, A. A.

    2016-06-01

    The frequency multiplication effects in high-power free-electron masers (FEM) with Bragg cavities were studied to provide the advance of the oscillators into short-wavelength bands. Theoretical analysis of frequency-multiplying FEMs was carried out within the framework of the averaged coupled-wave approach. Proof-of-principle experiments were performed based on a moderately relativistic induction linac LIU-3000 (JINR). As a result, an FEM multiplier operated with a megawatt power level in the 6-mm and 4-mm wavelength bands at the second and third harmonics, respectively, was realized. The possibility of using two-mode bichromatic FEMs for powering a double-frequency accelerating structure was discussed.

  8. Enhancement mode operation in AlInN/GaN (MIS)HEMTs on Si substrates using a fluorine implant

    NASA Astrophysics Data System (ADS)

    Zaidi, Z. H.; Lee, K. B.; Guiney, I.; Qian, H.; Jiang, S.; Wallis, D. J.; Humphreys, C. J.; Houston, P. A.

    2015-10-01

    We have demonstrated enhancement mode operation of AlInN/GaN (MIS)HEMTs on Si substrates using the fluorine treatment technique. The plasma RF power and treatment time was optimized to prevent the penetration of the fluorine into the channel region to maintain high channel conductivity and transconductance. An analysis of the threshold voltage was carried out which defined the requirement for the fluorine sheet concentration to exceed the charge at the dielectric/AlInN interface to achieve an increase in the positive threshold voltage after deposition of the dielectric. This illustrates the importance of control of both the plasma conditions and the interfacial charge for a reproducible threshold voltage. A positive threshold voltage of +3 V was achieved with a maximum drain current of 367 mA mm-1 at a forward gate bias of 10 V.

  9. Visualization of electrical domains in semi-insulating GaAs:Cr and potential use for variable grating mode operation

    NASA Astrophysics Data System (ADS)

    Rajbenbach, H.; Verdiell, J. M.; Huignard, J. P.

    1988-08-01

    The results of an experimental optical technique for imaging the electrical domain repartition in semi-insulating GaAs:Cr are reported. The technique is based on the use of the crystal as the active component of a transverse electro-optic two-dimensional light modulator. Under dc applied voltage, the electrical domains are traveling from the cathode to the anode at a velocity that increases with the applied voltage and with the incident illumination (v≂10-100 mm/s). Results for ac applied voltages are also presented. In particular, the observation of stationary and periodically distributed high-field domains in GaAs:Cr is reported for sawtooth applied voltages (1 kV, 50-250 Hz). These high-field domains induce a phase structure whose period is shown to be electrically controllable. This is the first reported demonstration of the possibility of a variable grating mode operation in semiconductors.

  10. Development and Operation of Dual-Mode Analyzers for Wireless Power Consortium/Power Matters Alliance Wireless Power Systems.

    PubMed

    Um, Keehong

    2016-05-01

    We have designed a protocol analyzer to be used in wireless power systems and analyzed the operation of wireless chargers defined by standards of Qi of Wireless Power Consortium (WPC) and Power Matters Alliance (PMA) protocols. The integrated circuit (IC, or microchip) developed so far for wireless power transmission is not easily adopted by chargers for specific purposes. A device for measuring the performance of test equipment currently available is required to transform and expand the types of protocol. Since a protocol analyzer with these functions is required, we have developed a device that can analyze the two protocols of WPC and PMA at the same time. As a result of our research, we present a dual-mode system that can analyze the protocols of both WPC and PMA. PMID:27483911

  11. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    PubMed Central

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  12. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  13. Amplitude and timing properties of a Geiger discharge in a SiPM cell

    NASA Astrophysics Data System (ADS)

    Popova, E.; Buzhan, P.; Pleshko, A.; Vinogradov, S.; Stifutkin, A.; Ilyin, A.; Besson, D.; Mirzoyan, R.

    2015-07-01

    The amplitude and timing properties of a Geiger discharge in a stand-alone SiPM cell have been investigated in detail. Use of a single stand-alone SiPM cell allows us to perform measurements with better accuracy than the multicell structure of conventional SiPMs. We have studied the dependence of the output charge and amplitude from an SiPM cell illuminated by focused light vs the number of primary photoelectrons. We propose a SPICE model which explains the amplitude over saturation (when the SiPM's amplitude is greater than the sum over all cells) characteristics of SiPM signals for more than one initial photoelectrons. The time resolutions of a SiPM cell have been measured for the case of single (SPTR) and multiphoton light pulses. The Full Width Half Max (FWHM) for SPTR has been found to be at the level of 30 ps for focused and 40 ps for unfocused light (100 μm cell size).

  14. Operating Modes and Cooling Capabilities of the Flight ADR for the SXS Instrument on Astro-H

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; DiPirro, Michael

    2015-01-01

    The microcalorimeter array on the Soft X-ray Spectrometer instrument on Astro-H requires cooling to 50 mK, which will be accomplished by a 3-stage adiabatic demagnetization refrigerator (ADR). The ADR is surrounded by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and radiation shields within the cryostat. The unique ADR design allows the instrument to meet all of its science requirements using either the stored cryogen or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated in early 2014, and have since been extensively characterized and calibrated. At present, the four instruments are being integrated with the spacecraft in preparation for an early 2016 launch. This presentation summarizes the operation and performance of the ADR in all of its operating modes.

  15. Operating Characteristics in DIII-D ELM-Suppressed RMP H-modes with ITER Similar Shapes

    SciTech Connect

    Evans, T E; Fenstermacher, M E; Jakubowski, M; Moyer, R A; Osborne, T H; Schaffer, M J; Schmitz, O; Watkins, J G; Zeng, L; Baylor, L R; Boedo, J A; Burrell, K H; deGrassie, J S; Gohil, P; Joseph, I; Lasnier, C J; Leonard, A W; Mordijck, S; Petty, C C; Pinsker, R I; Rhodes, T L; Rost, J C; Snyder, P B; Unterberg, E; West, W P

    2008-10-13

    Fast energy transients, incident on the DIII-D divertors due to Type-I edge localized modes (ELMs), are eliminated using small dc currents in a simple set of non-axisymmetric coils that produce edge resonant magnetic perturbations (RMP). In ITER similar shaped (ISS) plasmas, with electron pedestal collisionalities matched to those expected in ITER a sharp resonant window in the safety factor at the 95 percent normalized poloidal flux surface is observed for ELM suppression at q{sub 95}=3.57 with a minimum width {delta}q{sub 95} of {+-}0.05. The size of this resonant window has been increased by a factor of 4 in ISS plasmas by increasing the magnitude of the current in an n=3 coil set along with the current in a separate n=1 coil set. The resonant ELM-suppression window is highly reproducible for a given plasma shape, coil configuration and coil current but can vary with other operating conditions such as {beta}{sub N}. Isolated resonant windows have also been found at other q95 values when using different RMP coil configurations. For example, when the I-coil is operated in an n=3 up-down asymmetric configuration rather than an up-down symmetric configuration a resonant window is found near q{sub 95}=7.4. A Fourier analysis of the applied vacuum magnetic field demonstrates a statistical correlation between the Chirikov island overlap parameter and ELM suppression. These results have been used as a guide for RMP coil design studies in various ITER operating scenarios.

  16. Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package.

    PubMed

    Rockwell, David A; Shkunov, Vladimir V; Marciante, John R

    2011-07-18

    A new class of optical fiber is presented that departs from the circular-core symmetry common to conventional fibers. By using a high-aspect-ratio (~30:1) rectangular core, the mode area can be significantly expanded well beyond 10,000 μm2. Moreover, by also specifying a very small refractive-index step at the narrow core edges, the core becomes "semi-guiding," i.e. it guides in the narrow dimension and is effectively un-guiding in the wide mm-scale dimension. The mode dependence of the resulting Fresnel leakage loss in the wide dimension strongly favors the fundamental mode, promoting single-mode operation. Since the modal loss ratios are independent of mode area, this core structure offers nearly unlimited scalability. The implications of using such a fiber in fiber laser and amplifier systems are also discussed. PMID:21934837

  17. A large-signal model for CMUT arrays with arbitrary membrane geometry operating in non-collapsed mode.

    PubMed

    Satir, Sarp; Zahorian, Jaime; Degertekin, F Levent

    2013-11-01

    A large-signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode. The model is based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response. For modeling of linear acoustic radiation and crosstalk effects, the boundary element method is used. The stiffness matrix in the vibroacoustics calculations is obtained using static finite element analysis of a single membrane which can have arbitrary geometry and boundary conditions. A lumped modeling approach is used to reduce the order of the system for modeling the transient nonlinear electrostatic actuation. To accurately capture the dynamics of the non-uniform electrostatic force distribution over the CMUT electrode during large deflections, the membrane electrode is divided into patches shaped to match higher order membrane modes, each introducing a variable to the system model. This reduced order nonlinear lumped model is solved in the time domain using commercial software. The model has two linear blocks to calculate the displacement profile of the electrode patches and the output pressure for a given force distribution over the array. The force-to-array-displacement block uses the linear acoustic model, and the Rayleigh integral is evaluated to calculate the pressure at any field point. Using the model, the time-domain transmitted pressure can be simulated for different large drive signal configurations. The acoustic model is verified by comparison to harmonic FEA in vacuum and fluid for high- and low-aspect-ratio membranes as well as mass-loaded membranes. The overall software model is verified by comparison to transient 3-D finite element analysis and experimental results for different large drive signals, and an example for a phased array simulation is given. PMID:24158297

  18. A Large Signal Model for CMUT Arrays with Arbitrary Membrane Geometries Operating in Non-Collapsed Mode

    PubMed Central

    Satir, Sarp; Zahorian, Jaime; Degertekin, F. Levent

    2014-01-01

    A large signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode. The model is based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response. For linear acoustic radiation and crosstalk effects, the boundary element method is used. The stiffness matrix in the vibroacoustics calculations is obtained using static finite element analysis of a single membrane which can have arbitrary geometry and boundary conditions. A lumped modeling approach is used to reduce the order of the system for modeling the transient nonlinear electrostatic actuation. To accurately capture the dynamics of the non-uniform electrostatic force distribution over the CMUT electrode during large deflections, the membrane electrode is divided into patches shaped to match higher order membrane modes, each introducing a variable to the system model. This reduced order nonlinear lumped model is solved in the time domain using Simulink. The model has two linear blocks to calculate the displacement profile of the electrode patches and the output pressure for a given force distribution over the array, respectively. The force to array displacement block uses the linear acoustic model, and the Rayleigh integral is evaluated to calculate the pressure at any field point. Using the model, the transient transmitted pressure can be simulated for different large signal drive signal configurations. The acoustic model is verified by comparison to harmonic FEA in vacuum and fluid for high and low aspect ratio membranes as well as mass-loaded membranes. The overall Simulink model is verified by comparison to transient 3D FEA and experimental results for different large drive signals; and an example for a phased array simulation is given. PMID:24158297

  19. Comparative analysis between overlapping and non-overlapping operation modes for the PWM buck converter using the three-state switching cell

    NASA Astrophysics Data System (ADS)

    Robles Balestero, Juan Paulo; Lessa Tofoli, Fernando; Mendes de Seixas, Claudiner; Torrico Bascopé, Grover Victor; José Mendes de Seixas, Falcondes

    2014-04-01

    This article presents a comparative study involving a buck converter derived from the three-state switching cell in both operation modes, i.e. non-overlapping and overlapping modes, since it is well known in literature that several advantages can be addressed to topologies based on this approach. In the case of the mentioned converter, only part of the load delivered to the load flows through the controlled switches, so that operation at high-current high-power levels is possible. Besides, the design of reactive elements such as very autotransformer and filter inductor is performed for twice the switching frequency, with consequent reduction of size, weight and volume. Another clear advantage is that the area for which the converter operates in continuous conduction mode is wider than that for the discontinuous conduction mode in comparison with the so-called classical non-isolated buck converter. The operation of the converter, which was previously proposed in literature, is analysed considering the aforementioned modes in terms of the efficiency, and similar approaches for the non-isolated dc-dc conversion are also investigated.

  20. Advanced LSI-based amperometric sensor array with light-shielding structure for effective removal of photocurrent and mode selectable function for individual operation of 400 electrodes.

    PubMed

    Inoue, Kumi Y; Matsudaira, Masahki; Nakano, Masanori; Ino, Kosuke; Sakamoto, Chika; Kanno, Yusuke; Kubo, Reyushi; Kunikata, Ryota; Kira, Atsushi; Suda, Atsushi; Tsurumi, Ryota; Shioya, Toshihito; Yoshida, Shinya; Muroyama, Masanori; Ishikawa, Tomohiro; Shiku, Hitoshi; Satoh, Shiro; Esashi, Masayoshi; Matsue, Tomokazu

    2015-02-01

    We have developed a large-scale integrated (LSI) complementary metal-oxide semiconductor (CMOS)-based amperometric sensor array system called "Bio-LSI" as a platform for electrochemical bio-imaging and multi-point biosensing with 400 measurement points. In this study, we newly developed a Bio-LSI chip with a light-shield structure and a mode-selectable function with the aim of extending the application range of Bio-LSI. The light shield created by the top metal layer of the LSI chip significantly reduces the noise generated by the photocurrent, whose value is less than 1% of the previous Bio-LSI without the light shield. The mode-selectable function enables the individual operation of 400 electrodes in off, electrometer, V1, and V2 mode. The off-mode cuts the electrode from the electric circuit. The electrometer-mode reads out the electrode potential. The V1-mode and the V2-mode set the selected sensor electrode at two different independent voltages and read out the current. We demonstrated the usefulness of the mode-selectable function. First, we displayed a dot picture based on the redox reactions of 2.0 mM ferrocenemethanol at 400 electrodes by applying two different independent voltages using the V1 and V2 modes. Second, we carried out a simultaneous detection of O2 and H2O2 using the V1 and V2 modes. Third, we used the off and V1 modes for the modification of the osmium-polyvinylpyridine gel polymer containing horseradish peroxidase (Os-HRP) at the selected electrodes, which act as sensors for H2O2. These results confirm that the advanced version of Bio-LSI is a promising tool that can be applied to a wide range of analytical fields. PMID:25483361

  1. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater.

    PubMed

    Pijuan, Maite; Torà, Josep; Rodríguez-Caballero, Adrián; César, Elvira; Carrera, Julián; Pérez, Julio

    2014-02-01

    Nitrous oxide (N2O) and methane emissions were monitored in a continuous granular airlift nitritation reactor from ammonium-rich wastewater (reject wastewater). N2O emissions were found to be dependent on dissolved oxygen (DO) concentration in the range of 1-4.5 mg O2/L, increasing within this range when reducing the DO values. At higher DO concentrations, N2O emissions remained constant at 2.2% of the N oxidized to nitrite, suggesting two different mechanisms behind N2O production, one dependent and one independent of DO concentration. Changes on ammonium, nitrite, free ammonia and free nitrous acid concentrations did not have an effect on N2O emissions within the concentration range tested. When operating the reactor in a sequencing batch mode under high DO concentration (>5 mg O2/L), N2O emissions increased one order of magnitude reaching values of 19.3 ± 7.5% of the N oxidized. Moreover, CH4 emissions detected were due to the stripping of the soluble CH4 that remained dissolved in the reject wastewater after anaerobic digestion. Finally, an economical and carbon footprint assessment of a theoretical scaled up of the pilot plant was conducted. PMID:24316179

  2. Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Characterization and Application of an Analyte Plug Formation Operational Mode

    NASA Astrophysics Data System (ADS)

    Elnaggar, Mariam S.; van Berkel, Gary J.

    2011-10-01

    The recently discovered sample plug formation and injection operational mode of a continuous flow, coaxial tube geometry, liquid microjunction surface sampling probe (LMJ-SSP) was further characterized and applied for concentration and mixing of analyte extracted from multiple areas on a surface and for nanoliter-scale chemical reactions of sampled material. A transparent LMJ-SSP was constructed and colored analytes were used so that the surface sampling process, plug formation, and the chemical reactions could be visually monitored at the sampling end of the probe before being analyzed by mass spectrometry of the injected sample plug. Injection plug peak widths were consistent for plug hold times as long as the 8 min maximum attempted (RSD below 1.5%). Furthermore, integrated injection peak signals were not significantly different for the range of hold times investigated. The ability to extract and completely mix individual samples within a fixed volume at the sampling end of the probe was demonstrated and a linear mass spectral response to the number of equivalent analyte spots sampled was observed. Using the color and mass changing chemical reduction of the redox dye 2,6-dichlorophenol-indophenol with ascorbic acid, the ability to sample, concentrate, and efficiently run reactions within the same plug volume within the probe was demonstrated.

  3. Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Characterization and Application of an Analyte Plug Formation Operational Mode

    SciTech Connect

    ElNaggar, Mariam S; Van Berkel, Gary J

    2011-01-01

    The recently discovered sample plug formation and injection operational mode of a continuous flow, coaxial tube geometry, liquid microjunction surface sampling probe (LMJ-SSP) (J. Am. Soc. Mass Spectrom, 2011) was further characterized and applied for concentration and mixing of analyte extracted from multiple areas on a surface and for nanoliter-scale chemical reactions of sampled material. A transparent LMJ-SSP was constructed and colored analytes were used so that the surface sampling process, plug formation, and the chemical reactions could be visually monitored at the sampling end of the probe before being analyzed by mass spectrometry of the injected sample plug. Injection plug peak widths were consistent for plug hold times as long as the 8 minute maximum attempted (RSD below 1.5%). Furthermore, integrated injection peak signals were not significantly different for the range of hold times investigated. The ability to extract and completely mix individual samples within a fixed volume at the sampling end of the probe was demonstrated and a linear mass spectral response to the number of equivalent analyte spots sampled was observed. Using the color and mass changing chemical reduction of the redox dye 2,6-dichlorophenol-indophenol with ascorbic acid, the ability to sample, concentrate, and efficiently run reactions within the same plug volume within the probe was demonstrated.

  4. Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 IITG under continuous mode of operation.

    PubMed

    Kumar, Vikram; Muthuraj, Muthusivaramapandian; Palabhanvi, Basavaraj; Das, Debasish

    2016-01-01

    Synchronized growth and neutral lipid accumulation with high lipid productivity under mixotrophic growth of the strain Chlorella sorokiniana FC6 IITG was achieved via manipulation of substrates feeding mode and supplementation of lipid elicitors in the growth medium. Screening and optimization of lipid elicitors resulted in lipid productivity of 110.59mgL(-1)day(-1) under the combined effect of lipid inducers sodium acetate and sodium chloride. Fed-batch cultivation of the strain in bioreactor with intermittent feeding of limiting nutrients and lipid inducer resulted in maximum biomass and lipid productivity of 2.08 and 0.97gL(-1)day(-1) respectively. Further, continuous production of biomass with concomitant lipid accumulation was demonstrated via continuous feeding of BG11 media supplemented with lipid inducers sodium acetate and sodium chloride. The improved biomass and lipid productivity in chemostat was found to be 2.81 and 1.27gL(-1)day(-1) respectively operated at a dilution rate of 0.54day(-1). PMID:26575619

  5. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

    NASA Astrophysics Data System (ADS)

    Charpak, G.; Benaben, P.; Breuil, P.; Peskov, V.

    2008-02-01

    Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 104). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but

  6. Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser.

    PubMed

    Kong, L C; Qin, Z P; Xie, G Q; Xu, X D; Xu, J; Yuan, P; Qian, L J

    2015-02-01

    We experimentally demonstrated dual-wavelength synchronous operation of a high-power passively mode-locked 2-μm Tm:CaYAlO4 (Tm:CYA) disordered crystal laser with semiconductor saturable absorber mirror (SESAM) as mode locker. The mode-locked laser emitted an average output power as high as 830 mW with pulse duration of 35.3 ps and repetition rate of 145.4 MHz. The mode-locking dual wavelengths were centered at 1958.9 nm and 1960.6 nm, respectively. Autocorrelation trace clearly shows beating pulses with pulse width of 3.5 ps and repetition rate of 0.13 THz. PMID:25680046

  7. Formal operational reasoning modes: Predictors of critical thinking abilities and grades assigned by teachers in science and mathematics for students in grades nine through twelve

    NASA Astrophysics Data System (ADS)

    Bitner, Betty L.

    To test the hypothesis that formal operational reasoning modes are predictors of critical thinking abilities and grades assigned by teachers in science and mathematics, in September 1986 the Group Assessment of Logical Thinking (GALT) and in December 1986 the Watson-Glaser Critical Thinking Appraisal (WGCTA) were administered to 101 rural students in Grades 9 through 12. The grades assigned by teachers were collected in May 1987. Construct and criterion-related validities and internal-consistency reliability using Cronbach's alpha method were established on the GALT. On the WGCTA, content and construct validities and internal consistency reliability using the split-half procedure, coefficient of stability, and coefficient of equivalence were established. The five formal operational reasoning modes in the GALT were found to be significant predictors of critical thinking abilities and grades assigned by teachers in science and mathematics. The variance in the five critical thinking abilities attributable to the five formal operational reasoning modes ranged between 28% and 70%. The five formal operational reasoning modes explained 29% of the variance in mathematics achievement and 62% of the variance in science achievement.

  8. The Middeck 0-gravity Dynamics Experiment (MODE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier

    1992-01-01

    Viewgraphs on the middeck 0-gravity dynamics experiment (MODE) are presented. Topics covered include: MODE flight hardware elements; MODE science objectives; MODE team; flight operations; and summary.

  9. Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation.

    PubMed

    Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka

    2012-10-12

    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode. PMID:23102316

  10. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    SciTech Connect

    De Doncker, Rik W. A. A.

    1992-01-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other.

  11. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    DOEpatents

    De Doncker, R.W.A.A.

    1992-09-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.

  12. Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Liu, Yan-ge; Wang, Zhi; Lou, Jiachang; Wang, Zhenhong; Liu, Zhibo

    2016-06-01

    A broadband wavelength tunable mode-locked Tm3+-doped fiber laser operating in the 2 μm region based on a graphene saturable absorber is experimentally investigated. A section of graphene film is transferred on a microfiber, which allows light-graphene interaction via evanescent field. The microfiber based graphene not only acts as an excellent saturable absorber for mode-locking, but also induces a polarizing effect to form an artificial birefringent filter for wavelength selection. By tuning the polarization states in the laser cavity, the laser exhibits tunable wavelength mode-locked pulses over a wide range from 1880 to 1940 nm. Such a system provides a compact, user friendly and low cost wavelength tunable ultrashort pulse source in the 2 μm region.

  13. Nanoscale spatially resolved simultaneous measurement of in-plane and out-of-plane force components on surfaces: a novel operational mode in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Watson, Gregory S.; Dinte, Bradley P.; Blach, Jolanta A.; Myhra, Sverre

    2002-11-01

    The atomic force microscope (AFM) allows investigation of the properties of surfaces and interfaces at atomic scale resolution. However, several different operational modes, (imaging, force versus distance and lateral force modes), need to be deployed in order to gain insight into the structure, tribological and mechanical properties. A new method, based on a variation of the force versus distance mode, has been developed. In essence, a coupling of the deformational modes of the probe is exploited whereby the tip is induced to undergo lateral travel in response to application of an out-of-plane force (and thus normal bending of the force-sensing lever). The lateral travel induces in-plane forces that are then measurable as a consequence of stimulation of the 'buckling' deformational mode of the lever. Due to the lever geometry, the technique offers an increase in resolution of an order of magnitude over existing AFM methods for measurement of atomic scale stick-slip events. In addition, the method allows measurement of the lateral deformation of the sample as well as scanner calibration. Outcomes will be demonstrated for atomically flat surfaces such as WTe2 and highly oriented pyrolytic graphite.

  14. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes.

    PubMed

    Li, Jianfeng; Zhang, Zuxing; Sun, Zhongyuan; Luo, Hongyu; Liu, Yong; Yan, Zhijun; Mou, Chengbo; Zhang, Lin; Turitsyn, Sergei K

    2014-04-01

    A self-starting all-fiber passively mode-locked Tm(3+)-doped fiber laser based on nonlinear loop mirror (NOLM) is demonstrated. Stable soliton pulses centered at 2017.33 nm with 1.56 nm FWHM were produced at a repetition rate of 1.514 MHz with pulse duration of 2.8 ps and pulse energy of 83.8 pJ. As increased pump power, the oscillator can also operate at noise-like (NL) regime. Stable NL pulses with coherence spike width of 341 fs and pulse energy of up to 249.32 nJ was achieved at a center wavelength of 2017.24 nm with 21.33 nm FWHM. To the best of our knowledge, this is the first 2 µm region NOLM-based mode-locked fiber laser operating at two regimes with the highest single pulse energy for NL pulses. PMID:24718163

  15. Numerical-experimental identification of the most effective dynamic operation mode of a vibration drilling tool for improved cutting performance

    NASA Astrophysics Data System (ADS)

    Ostasevicius, V.; Ubartas, M.; Gaidys, R.; Jurenas, V.; Samper, S.; Dauksevicius, R.

    2012-11-01

    This study is concerned with application of numerical-experimental approach for characterizing dynamic behavior of the developed piezoelectrically excited vibration drilling tool with the aim to identify the most effective conditions of tool vibration mode control for improved cutting efficiency. 3D finite element model of the tool was created on the basis of an elastically fixed pre-twisted cantilever (standard twist drill). The model was experimentally verified and used together with tool vibration measurements in order to reveal rich dynamic behavior of the pre-twisted structure, representing a case of parametric vibrations with axial, torsional and transverse natural vibrations accompanied by the additional dynamic effects arising due to the coupling of axial and torsional deflections ((un)twisting). Numerical results combined with extensive data from interferometric, accelerometric, dynamometric and surface roughness measurements allowed to determine critical excitation frequencies and the corresponding vibration modes, which have the largest influence on the performance metrics of the vibration drilling process. The most favorable tool excitation conditions were established: inducing the axial mode of the vibration tool itself through tailoring of driving frequency enables to minimize magnitudes of surface roughness, cutting force and torque. Research results confirm the importance of the tool mode control in enhancing the effectiveness of vibration cutting tools from the viewpoint of structural dynamics.

  16. Many small consumers, one growing problem: Achieving energy savings for electronic equipment operating in low power modes

    SciTech Connect

    Payne, Christopher T.; Meier, Alan K.

    2004-08-24

    An increasing amount of electricity is used by equipment that is neither fully ''on'' nor fully ''off.'' We call these equipment states low power modes, or ''lopomos.'' ''Standby'' and ''sleep'' are the most familiar lopomos, but some new products already have many modes. Lopomos are becoming common in household appliances, safety equipment, and miscellaneous products. Ross and Meier (2000) reports that several international studies have found standby power to be as much as 10 percent of residential energy consumption. Lopomo energy consumption is likely to continue growing rapidly as products with lopomos that use significant amounts of energy penetrate the market. Other sectors such as commercial buildings and industry also have lopomo energy use, perhaps totaling more in aggregate than that of households, but no comprehensive measurements have been made. In this paper, we propose a research agenda for study of lopomo energy consumption. This agenda has been developed with input from over 200 interested parties. Overall, there is consensus that lopomo energy consumption is an important area for research. Many see this as a critical time for addressing lopomo issues. As equipment designs move from the binary ''on/off'' paradigm to one that encompasses multiple power modes, there is a unique opportunity to address the issue of low power mode energy consumption while technology development paths are still flexible.

  17. Kraus Operator-Sum Solution to the Master Equation Describing the Single-Mode Cavity Driven by an Oscillating External Field in the Heat Reservoir

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-Guo; Wang, Ji-Suo; Gao, Hua-Chao

    2016-08-01

    Exploiting the thermo entangled state approach, we successfully solve the master equation for describing the single-mode cavity driven by an oscillating external field in the heat reservoir and then get the analytical time-evolution rule for the density operator in the infinitive Kraus operator-sum representation. It is worth noting that the Kraus operator M l, m is proved to be a trace-preserving quantum operation. As an application, the time-evolution for an initial coherent state ρ | β> = | β>< β| in such an environment is investigated, which shows that the initial coherent state decays to a new mixed state as a result of thermal noise, however the coherence can still be reserved for amplitude damping.

  18. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells

    PubMed Central

    Kreysing, Moritz; Ott, Dino; Schmidberger, Michael J.; Otto, Oliver; Schürmann, Mirjam; Martín-Badosa, Estela; Whyte, Graeme; Guck, Jochen

    2014-01-01

    The classical purpose of optical fibres is delivery of either optical power, as for welding, or temporal information, as for telecommunication. Maximum performance in both cases is provided by the use of single-mode optical fibres. However, transmitting spatial information, which necessitates higher-order modes, is difficult because their dispersion relation leads to dephasing and a deterioration of the intensity distribution with propagation distance. Here we consciously exploit the fundamental cause of the beam deterioration—the dispersion relation of the underlying vectorial electromagnetic modes—by their selective excitation using adaptive optics. This allows us to produce output beams of high modal purity, which are well defined in three dimensions. The output beam distribution is even robust against significant bending of the fibre. The utility of this approach is exemplified by the controlled rotational manipulation of live cells in a dual-beam fibre-optical trap integrated into a modular lab-on-chip system. PMID:25410595

  19. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells

    NASA Astrophysics Data System (ADS)

    Kreysing, Moritz; Ott, Dino; Schmidberger, Michael J.; Otto, Oliver; Schürmann, Mirjam; Martín-Badosa, Estela; Whyte, Graeme; Guck, Jochen

    2014-11-01

    The classical purpose of optical fibres is delivery of either optical power, as for welding, or temporal information, as for telecommunication. Maximum performance in both cases is provided by the use of single-mode optical fibres. However, transmitting spatial information, which necessitates higher-order modes, is difficult because their dispersion relation leads to dephasing and a deterioration of the intensity distribution with propagation distance. Here we consciously exploit the fundamental cause of the beam deterioration—the dispersion relation of the underlying vectorial electromagnetic modes—by their selective excitation using adaptive optics. This allows us to produce output beams of high modal purity, which are well defined in three dimensions. The output beam distribution is even robust against significant bending of the fibre. The utility of this approach is exemplified by the controlled rotational manipulation of live cells in a dual-beam fibre-optical trap integrated into a modular lab-on-chip system.

  20. Enhancement-mode operation of multilayer MoS2 transistors with a fluoropolymer gate dielectric layer

    NASA Astrophysics Data System (ADS)

    Yoo, Geonwook; Choi, Sol Lea; Lee, Suelbe; Yoo, Byungwook; Kim, Sunkook; Oh, Min Suk

    2016-06-01

    Enhancement-mode multilayer molybdenum disulfide (MoS2) field-effect transistors (FETs), which are an immensely important component toward low-power electronics based on a two-dimensional layered semiconductor, are demonstrated using the fluoropolymer CYTOP as a gate dielectric. The fabricated devices exhibit threshold voltage (VTH) of ˜5.7 V with field-effect mobility (μFE) of up to 82.3 cm2/V s, and the characteristics are compared with the depletion-mode characteristics of MoS2 FETs with the cross-linked Poly(4-vinylphenol) gate dielectric (VTH ˜ -7.8 V). UV photoelectron spectroscopy analysis indicates that increased surface potential due to the surface dipole effect of the fluorine group influences the positive VTH shift.

  1. Thermal load distribution on the ALT-II limiter of TEXTOR-94 during RI mode operation and during disruptions

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Denner, T.; Mank, G.

    2000-03-01

    Thermographic measurements using an IR scanner have been performed at the pump limiter ALT-II of TEXTOR-94 during RI mode discharges and during disruptions. The measurements on the RI mode discharges were done to complete the TEXTOR database which had shown a structured decay pattern of the deposited power. It was found that the underlying radial heat flux can be described by two exponential decay functions. This structure, which generates an unexpected heat component close to the tangent line, has been observed in all discharge conditions including the RI mode. During disruptions, the heat is released in short pulses with a typical duration of 0.01-0.1 ms. The radial decay length of these pulses has a similar shape to the heat flux during normal discharges: it consists again of a strong component close to the tangent line with a radial decay length of 2-5 mm and probably one with a decay length of the order of 1 cm. The heat is released at the time when the edge electron temperature of the plasma drops, when intense hydrogen and carbon fluxes occur near the walls, and when electrical currents in the limiter blades are excited. In a tentative interpretation, the temporal and spatial structure of the heat pulse is attributed to the presence and growth of a laminar zone at the plasma edge, which is connected with the ergodization of the plasma edge during a disruption.

  2. Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage

    SciTech Connect

    Li Xuechen; Niu Dongying; Yin Zengqian; Fang Tongzhen; Wang Long

    2012-08-15

    The characteristics of dielectric barrier discharge excited by a saw-tooth voltage are simulated in atmospheric pressure helium based on a one-dimensional fluid model. A stepped discharge is obtained per half voltage cycle with gas gap width less than 2 mm by the simulation, which is different to the pulsed discharge excited by a sinusoidal voltage. For the stepped discharge, the plateau duration increases with increasing the voltage amplitude and decreasing the gas gap. Therefore, uniform discharge with high temporal duty ratio can be realized with small gap through increasing the voltage amplitude. The maximal densities of both electron and ion appear near the anode and the electric field is almost uniformly distributed along the gap, which indicates that the stepped discharge belongs to a Townsend mode. In contrast to the stepped discharge with small gas gap, a pulsed discharge can be obtained with large gas gap. Through analyzing the spatial density distributions of electron and ion and the electric field, the pulsed discharge is in a glow mode. The voltage-current (V-I) characteristics are analyzed for the above mentioned discharges under different gas gaps, from which the different discharge modes are verified.

  3. Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Niu, Dongying; Yin, Zengqian; Fang, Tongzhen; Wang, Long

    2012-08-01

    The characteristics of dielectric barrier discharge excited by a saw-tooth voltage are simulated in atmospheric pressure helium based on a one-dimensional fluid model. A stepped discharge is obtained per half voltage cycle with gas gap width less than 2 mm by the simulation, which is different to the pulsed discharge excited by a sinusoidal voltage. For the stepped discharge, the plateau duration increases with increasing the voltage amplitude and decreasing the gas gap. Therefore, uniform discharge with high temporal duty ratio can be realized with small gap through increasing the voltage amplitude. The maximal densities of both electron and ion appear near the anode and the electric field is almost uniformly distributed along the gap, which indicates that the stepped discharge belongs to a Townsend mode. In contrast to the stepped discharge with small gas gap, a pulsed discharge can be obtained with large gas gap. Through analyzing the spatial density distributions of electron and ion and the electric field, the pulsed discharge is in a glow mode. The voltage-current (V-I) characteristics are analyzed for the above mentioned discharges under different gas gaps, from which the different discharge modes are verified.

  4. Mode-locking operation of quasi-continuous diode pumped TGT-grown Nd,Y-codoped:SrF2 crystal

    NASA Astrophysics Data System (ADS)

    Jelínek, Michal; Kubeček, Václav; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Zhang, Qian; Cao, Yuexin; Xu, Jun

    2015-01-01

    Fluoride-type crystals (CaF2, SrF2) doped with neodymium Nd3+ present interesting alternative as a laser active media for the diode-pumped mode-locked laser systems mainly because of their broad emission spectra as well as longer fluorescence lifetime in comparison with well-known materials as Nd:YAG or Nd:YVO4. In comparison with Nd:glass active material, SrF2 and CaF2 have better thermal conductivity. In spite of the thermal conductivity decreases with doping concentration, these crystal might be interesting alternative for the Nd:glass mode-locked laser systems. In this contribution we present the first results of the Nd,Y:SrF2 mode-locked laser diode-pumped at 796nm. Mode-locking operation using SESAM was successfully achieved in the pulsed pumping regime (pulse-duration 1.5 ms, frequency 10 Hz) with the overall average output power of 2.3 mW (corresponding to the power amplitude of 153 mW) in one output beam at the wavelength of ~1055 nm. The actual pulse-duration was 87 ps.

  5. Operations

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson; Boyce, Steven J.

    2013-01-01

    Previous research has documented schemes and operations that undergird students' understanding of fractions. This prior research was based, in large part, on small-group teaching experiments. However, written assessments are needed in order for teachers and researchers to assess students' ways of operating on a whole-class scale. In this…

  6. List mode multichannel analyzer

    DOEpatents

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  7. Power-gated 32 bit microprocessor with a power controller circuit activated by deep-sleep-mode instruction achieving ultra-low power operation

    NASA Astrophysics Data System (ADS)

    Koike, Hiroki; Ohsawa, Takashi; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2015-04-01

    A spintronic-based power-gated micro-processing unit (MPU) is proposed. It includes a power control circuit activated by the newly supported power-off instruction for the deep-sleep mode. These means enable the power-off procedure for the MPU to be executed appropriately. A test chip was designed and fabricated using 90 nm CMOS and an additional 100 nm MTJ process; it was successfully operated. The guideline of the energy reduction effects for this MPU was presented, using the estimation based on the measurement results of the test chip. The result shows that a large operation energy reduction of 1/28 can be achieved when the operation duty is 10%, under the condition of a sufficient number of idle clock cycles.

  8. Near-Diffraction-Limited Operation of Step-Index Large-Mode-Area Fiber Lasers Via Gain Filtering

    SciTech Connect

    Marciante, J.R.; Roides, R.G.; Shkunov, V.V.; Rockwell, D.A.

    2010-06-04

    We present, for the first time to our knowledge, an explicit experimental comparison of beam quality in conventional and confined-gain multimode fiber lasers. In the conventional fiber laser, beam quality degrades with increasing output power. In the confined-gain fiber laser, the beam quality is good and does not degrade with output power. Gain filtering of higher-order modes in 28 μm diameter core fiber lasers is demonstrated with a beam quality of M^2 = 1.3 at all pumping levels. Theoretical modeling is shown to agree well with experimentally observed trends.

  9. Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm

    NASA Astrophysics Data System (ADS)

    Li, Peng; Ruehl, Axel; Grosse-Wortmann, Uwe; Hartl, Ingmar

    2015-03-01

    We demonstrate a simple and compact Holmium-doped fiber (HDF) femtosecond oscillator with 35 MHz repetition rate. The oscillator is pumped by a Tm-doped fiber laser. A dispersion compensating fiber was utilized to set the net-intracavity dispersion to zero at 2.06 μm. The output pulses had an maximum average power of 40 mW and 160 fs FWHM pulse duration. To further shorten the pulse duration, we implemented a nonlinear compressor consisting of a solid core highly nonlinear fiber (HNLF) for SPM broadening and single mode fiber (SMF) for pulse compression. Sub-100 fs pulses were achieved.

  10. Measuring atmospheric dispersion with WLRS in multiple wavelength mode

    NASA Technical Reports Server (NTRS)

    Schreiber, Ulrich; Haufe, K. H.; Dassing, Reiner

    1993-01-01

    The WLRS (Wettzell Laser Ranging System) allows the simultaneous tracking of satellites on two different wavelengths. These are the fundamental frequency of Nd:YAG at 1.064 microns and the second harmonic at 532 nm. Range measurements to the satellite LAGEOS were carried out with different experimental set-ups, after developing a detector unit based on a silicon avalanche photodiode in Geiger mode, which is sufficiently sensitive in the infrared domain. An approach towards a quantitative interpretation of the data is suggested and discussed briefly.

  11. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    SciTech Connect

    Takahashi, Masato; Maeda, Hideaki; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Nakagome, Hideki; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Kiyoshi, Tsukasa; Yamazaki, Toshio

    2012-10-15

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb{sub 3}Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a {sup 7}Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  12. Azo dye load-shock on relative behavior of biofilm and suspended growth configured periodic discontinuous batch mode operations: critical evaluation with enzymatic and bio-electrocatalytic analysis.

    PubMed

    Naresh Kumar, A; Nagendranatha Reddy, C; Hari Prasad, R; Venkata Mohan, S

    2014-09-01

    Effect of dye (C.I.Acid Black 10B) load-shock was comparatively evaluated in biofilm (self-immobilized) and suspended growth systems operated in periodic discontinuous batch mode (PDBR, anoxic-aerobic-anoxic) was investigated. At higher dye load (1250 mg dye/l), biofilm system showed relatively higher dye (74.5%) and COD (46%) removal efficiencies than the corresponding suspended mode operation (dye/COD removal efficiency, 42%/65%). Increment in dye load showed increment in azo reductase and dehydrogenase enzyme activities. Voltammograms (cyclic) showed higher reduction currents (RC) with increment in dye load specifically in biofilm system. Derivative cyclic voltammograms analysis depicted the involvement of mediators (NAD (+), FAD(+), etc.) which presumably played a major role in electron transport chain and dye degradation. Disappearance of peak (1612 cm(-1)) specific to azo group in FTIR spectrum, at higher loading rate in both the systems indicates the non-inhibitory and robust nature of PDBR operation. PMID:24859232

  13. Discovery of Stationary Operation of Quiescent H-mode Plasmas with Net-Zero NBI Torque and High Energy Confinement on DIII-D

    NASA Astrophysics Data System (ADS)

    Burrell, Keith

    2015-11-01

    Experiments this summer in DIII-D have used edge turbulence control to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved outstanding tokamak performance, well above the H98 international tokamak energy confinement scaling (H98 =1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant betan =1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production. Supported by the US DOE under DE-FC02-04ER54698.

  14. The Effect of Different Operations Modes on Science Capabilities During the 2010 Desert-RATS Test: Insights from the Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Hurtado, Jose M., Jr.; Young, Kelsey E.; Rice, James W., Jr.; Garry, W. Brent

    2011-01-01

    The 2010 Desert RATS field test utilized two Space Exploration Vehicles (prototype planetary rovers) and four crewmembers (2 per rover) to conduct a geologic traverse across northern Arizona while testing continuous and twice-per-day communications paired with operation modes of separating and exploring individually (Divide & Conquer) and exploring together (Lead & Follow), respectively. This report provides qualitative conclusions from the geologist crewmembers involved in this test as to how these modes of communications and operations affected our ability to conduct field geology. Each mode of communication and operation provided beneficial capabilities that might be further explored for future Human Spaceflight Missions to other solar system objects. We find that more frequent interactions between crews and an Apollo-style Science Team on the Earth best enables scientific progress during human exploration. However, during multiple vehicle missions, this communication with an Earth-based team of scientists, who represent "more minds on the problem", should not come at the exclusion of (or significantly decrease) communication between the crewmembers in different vehicles who have the "eyes on the ground". Inter-crew communications improved when discussions with a backroom were infrequent. Both aspects are critical and cannot be mutually exclusive. Increased vehicle separation distances best enable encounters with multiple geologic units. However, seemingly redundant visits by multiple vehicles to the same feature can be utilized to provide improved process-related observations about the development and modification of the local terrain. We consider the value of data management, transfer, and accessibility to be the most important lesson learned. Crews and backrooms should have access to all data and related interpretations within the mission in as close to real-time conditions as possible. This ensures that while on another planetary surface, crewmembers are as

  15. Normal mode analysis of a rotating group of lashed turbine blades by substructures. [calculations for blades at rest and at operating speed

    NASA Technical Reports Server (NTRS)

    Filstrup, A. W.

    1973-01-01

    A group of 5 lashed identical stream turbine blades is studied through the use of single level substructuring using NASTRAN level 15.1. An altered version, similar to DMAP Program Number 3 of the NASTRAN Newsletter, of Rigid Format 13.0 was used. Steady-state displacements and stresses due to centrifugal loads are obtained both without and with consideration of differential stiffness. The normal mode calculations were performed for blades at rest and at operating speed. Substructuring lowered the computation costs of the analysis by a factor of four.

  16. Beam dynamics studies of the photo-injector in low-charge operation mode for the ERL test facility at IHEP

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Xiao, Ou-Zheng

    2014-06-01

    The energy recovery linac test facility (ERL-TF), which is a compact ERL-FEL (free electron laser) two-purpose machine, was proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector that started with a photocathode direct-current gun has been designed. In this paper, optimization of the injector beam dynamics in low-charge operation mode is performed with iterative scans using Impact-T. In addition, the dependencies between the optimized beam quality and the initial offset at cathode and element parameters are investigated. The tolerance of alignment and rotation errors is also analyzed.

  17. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  18. Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global temperature goals

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Christien J.; Engelbrecht, Francois A.

    2016-01-01

    Potential changes in Köppen-Geiger climate zones over southern Africa (Africa south of 22 °S) under future climate change are investigated using an ensemble of high-resolution projections of a regional climate model. The projections are performed under the A2 scenario of the Special Report on Emission Scenarios (SRES), and changes are presented for those times in the future when the increase in global average surface temperature reaches thresholds of 1, 2, and 3 °C, relative to the present-day baseline climatology. Widespread shifts in climate regimes are projected, of which the southern and eastern expansion of the hot desert and hot steppe zones is the most prominent. From occupying 33.1 and 19.4 % of southern Africa under present-day climate, these regions are projected to occupy between 47.3 and 59.7 % (hot desert zone) and 24.9 and 29.9 % (hot steppe zone) of the region in a future world where the global temperature has increased by 3 °C. The cold desert and cold steppe zones are projected to decrease correspondingly. The temperate regions of eastern South Africa, the Cape south coast, and winter rainfall region of the southwestern Cape are also projected to contract. An expansion of the hot steppe zone into the cold steppe and temperate zones may favor the intrusion of trees (and therefore the savanna biome) into the most pristine grasslands of southern Africa. However, the correlative climate-vegetation approach of using projected changes in Köppen-Geiger zones to infer future vegetation patterns is of limited value in the savanna complex of southern Africa, where complex feedbacks occur between carbon dioxide (CO2) concentrations, trees, C4 grasses, fire, and climate. The present-day temperate Cape Fynbos regime may come under increasing pressure as the encompassing temperate zone is invaded mainly from the east by the hot steppe climate regime under climate change, with the incidence of Fynbos fires also becoming more likely in a generally warmer and

  19. Recrystallization of bulk and plasma-coated tungsten with accumulated thermal energy relevant to Type-I ELM in ITER H-mode operation

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Su; Lim, Sun-Taek; Jin, Younggil; Lee, Jin Young; Song, Jae-Min; Kim, Gon-Ho

    2015-08-01

    The recrystallization of bulk tungsten is investigated under various thermal loads that are relevant to the accumulation energy during Type-I ELM in ITER H-mode operation. A thermal plasma torch is used to examine only the thermal load effect on the material; therefore, the charge and atomic effects are ignored. In this condition, recrystallization is observed in bulk W with a surface temperature above 1700 °C. The effect becomes severe with a finite recrystallization thickness near the surface, which introduces vertical cracking along grain boundaries with increasing thermal load. However, plasma-sprayed tungsten (PS-W) is not crystallized because neighboring lamellas merge, destroying their interlayer and producing no vertical cracks. This is attributed to an annealing effect in PS-W. Therefore, these results suggest that a multilayer W structure is advantageous in the fabrication of W, especially for long pulse operation in a future fusion reactor.

  20. Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor.

    PubMed

    Guendouz, J; Buffière, P; Cacho, J; Carrère, M; Delgenes, J-P

    2010-10-01

    A laboratory-scale (40 l) reactor was designed to investigate dry anaerobic digestion. The reactor is equipped with an intermittent paddle mixer, enabling complete mixing in the reactor. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions and compared to operation results obtained on a pilot-scale (21 m(3)) with the same feedstock. Biogas and methane production at the end of the tests were similar (around 200 m(3) CH(4)STP/tVS), and the dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in larger ones. Adaptation of micro-organisms to the waste and operating conditions was also pointed out along the consecutive batches. PMID:20096555

  1. Variability of heavy duty vehicle operating mode frequencies for prediction of mobile emissions. Report for March 1995--March 1996

    SciTech Connect

    Grant, C.D.; Guensler, R.; Meyer, M.D.

    1996-01-01

    The paper discusses a new geographic information system (GIS)-based modal emissions model being developed with EPA and Georgia Tech to account for vehicle load conditions that will significantly improve the spatial resolution of emissions estimates. The GIS-based modal research model employs detailed subfleet engine and emissions characteristics and the speed/acceleration profiles for vehicle activity along links in the transportation system. Composition of the vehicle subfleet affects the amount of emissions produced under various operating conditions, dependent upon the load induced by the vehicle and driver, and the physical constraints of the vehicle. The aggregate modal frequencies are compared across vehicle classes to show differences in how heavy duty vehicles are operated.

  2. Helicity-based particle-relabeling operator and normal mode expansion of the dissipationless incompressible Hall magnetohydrodynamics.

    PubMed

    Araki, Keisuke

    2015-12-01

    The dynamics of an incompressible, dissipationless Hall magnetohydrodynamic medium are investigated from Lagrangian mechanical viewpoint. The hybrid and magnetic helicities are shown to emerge, respectively, from the application of the particle relabeling symmetry for ion and electron flows to Noether's first theorem, while the constant of motion associated with the theorem is generally given by their arbitrary linear combination. Furthermore, integral path variation associated with the invariant action is expressed by the operation of an integrodifferential operator on the reference path. The eigenfunctions of this operator are double Beltrami flows, i.e., force-free stationary solutions to the equation of motion and provide a family of orthogonal function bases that yields the spectral representation of the equation of motion with a remarkably simple form. Among the double Beltrami flows, considering the influence of a uniform background magnetic field and the Hall term effect vanishing limit, the generalized Elsässer variables are found to be the most suitable for avoiding problems with singularities in the standard magnetohydrodynamic limit. PMID:26764837

  3. Helicity-based particle-relabeling operator and normal mode expansion of the dissipationless incompressible Hall magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Araki, Keisuke

    2015-12-01

    The dynamics of an incompressible, dissipationless Hall magnetohydrodynamic medium are investigated from Lagrangian mechanical viewpoint. The hybrid and magnetic helicities are shown to emerge, respectively, from the application of the particle relabeling symmetry for ion and electron flows to Noether's first theorem, while the constant of motion associated with the theorem is generally given by their arbitrary linear combination. Furthermore, integral path variation associated with the invariant action is expressed by the operation of an integrodifferential operator on the reference path. The eigenfunctions of this operator are double Beltrami flows, i.e., force-free stationary solutions to the equation of motion and provide a family of orthogonal function bases that yields the spectral representation of the equation of motion with a remarkably simple form. Among the double Beltrami flows, considering the influence of a uniform background magnetic field and the Hall term effect vanishing limit, the generalized Elsässer variables are found to be the most suitable for avoiding problems with singularities in the standard magnetohydrodynamic limit.

  4. Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm.

    PubMed

    Sampaolo, Angelo; Patimisco, Pietro; Kriesel, Jason M; Tittel, Frank K; Scamarcio, Gaetano; Spagnolo, Vincenzo

    2015-01-12

    Single mode beam delivery in the mid-infrared spectral range 5.1-10.5 μm employing flexible hollow glass waveguides of 15 cm and 50 cm lengths, with metallic/dielectric internal layers and a bore diameter of 200 μm were demonstrated. Three quantum cascade lasers were coupled with the hollow core fibers. For a fiber length of 15 cm, we measured losses down to 1.55 dB at 5.4 μm and 0.9 dB at 10.5 μm. The influence of the launch conditions in the fiber on the propagation losses and on the beam profile at the waveguide exit was analyzed. At 10.5 µm laser wavelength we found near perfect agreement between measured and theoretical losses, while at ~5 µm and ~6 µm wavelengths the losses were higher than expected. This discrepancy can be explained considering an additional scattering loss effect, which scales as 1/λ(2) and is due to surface roughness of the metallic layer used to form the high-reflective internal layer structure of the hollow core waveguide. PMID:25835666

  5. Modeling the Effects of (lambda)-gun on SSPX Operation: Mode Spectra, Internal Magnetic Field Structure, and Energy Confinement

    SciTech Connect

    Hooper, E

    2005-08-23

    The Sustained Spheromak Physics Experiment (SSPX) shows considerable sensitivity to the value of the injected (''gun'') current, I{sub gun}, parameterized by the relative values of {lambda}{sub gun} = {mu}{sub 0}I{sub gun}/{Psi}{sub gun} (with {Psi}{sub gun} the bias poloidal magnetic flux) to the lowest eigenvalue of {del} x B = {lambda}{sub FC}B in the flux conserver geometry. This report discusses modeling calculations using the NIMROD resistive-MHD code in the SSPX geometry. The behavior is found to be very sensitive to the profile of the safety factor, q, with the excitation of interior MHD modes at low-order resonant surfaces significantly affecting the evolution. Their evolution affects the fieldline topology (closed flux, islands, stochastic fieldlines confined by KAM surfaces, and open fieldlines), and thus electron temperature and other parameters. Because of this sensitivity, a major effect is the modification of the q-profile by the current on the open fieldlines in the flux core along the geometric axis. The time-history of a discharge can thus vary considerably for relatively small changes in I{sub gun}. The possibility of using this sensitivity for feedback control of the discharge evolution is discussed, but modeling of the process is left for future work.

  6. A Coupled Field Multiphysics Modeling Approach to Investigate RF MEMS Switch Failure Modes under Various Operational Conditions

    PubMed Central

    Sadek, Khaled; Lueke, Jonathan; Moussa, Walied

    2009-01-01

    In this paper, the reliability of capacitive shunt RF MEMS switches have been investigated using three dimensional (3D) coupled multiphysics finite element (FE) analysis. The coupled field analysis involved three consecutive multiphysics interactions. The first interaction is characterized as a two-way sequential electromagnetic (EM)-thermal field coupling. The second interaction represented a one-way sequential thermal-structural field coupling. The third interaction portrayed a two-way sequential structural-electrostatic field coupling. An automated substructuring algorithm was utilized to reduce the computational cost of the complicated coupled multiphysics FE analysis. The results of the substructured FE model with coupled field analysis is shown to be in good agreement with the outcome of previously published experimental and numerical studies. The current numerical results indicate that the pull-in voltage and the buckling temperature of the RF switch are functions of the microfabrication residual stress state, the switch operational frequency and the surrounding packaging temperature. Furthermore, the current results point out that by introducing proper mechanical approaches such as corrugated switches and through-holes in the switch membrane, it is possible to achieve reliable pull-in voltages, at various operating temperatures. The performed analysis also shows that by controlling the mean and gradient residual stresses, generated during microfabrication, in conjunction with the proposed mechanical approaches, the power handling capability of RF MEMS switches can be increased, at a wide range of operational frequencies. These design features of RF MEMS switches are of particular importance in applications where a high RF power (frequencies above 10 GHz) and large temperature variations are expected, such as in satellites and airplane condition monitoring. PMID:22408490

  7. A Coupled Field Multiphysics Modeling Approach to Investigate RF MEMS Switch Failure Modes under Various Operational Conditions.

    PubMed

    Sadek, Khaled; Lueke, Jonathan; Moussa, Walied

    2009-01-01

    In this paper, the reliability of capacitive shunt RF MEMS switches have been investigated using three dimensional (3D) coupled multiphysics finite element (FE) analysis. The coupled field analysis involved three consecutive multiphysics interactions. The first interaction is characterized as a two-way sequential electromagnetic (EM)-thermal field coupling. The second interaction represented a one-way sequential thermal-structural field coupling. The third interaction portrayed a two-way sequential structural-electrostatic field coupling. An automated substructuring algorithm was utilized to reduce the computational cost of the complicated coupled multiphysics FE analysis. The results of the substructured FE model with coupled field analysis is shown to be in good agreement with the outcome of previously published experimental and numerical studies. The current numerical results indicate that the pull-in voltage and the buckling temperature of the RF switch are functions of the microfabrication residual stress state, the switch operational frequency and the surrounding packaging temperature. Furthermore, the current results point out that by introducing proper mechanical approaches such as corrugated switches and through-holes in the switch membrane, it is possible to achieve reliable pull-in voltages, at various operating temperatures. The performed analysis also shows that by controlling the mean and gradient residual stresses, generated during microfabrication, in conjunction with the proposed mechanical approaches, the power handling capability of RF MEMS switches can be increased, at a wide range of operational frequencies. These design features of RF MEMS switches are of particular importance in applications where a high RF power (frequencies above 10 GHz) and large temperature variations are expected, such as in satellites and airplane condition monitoring. PMID:22408490

  8. Enhanced efficiency in the excitation of higher modes for atomic force microscopy and mechanical sensors operated in liquids

    SciTech Connect

    Penedo, M. Hormeño, S.; Fernández-Martínez, I.; Luna, M.; Briones, F.; Raman, A.

    2014-10-27

    Recent developments in dynamic Atomic Force Microscopy where several eigenmodes are simultaneously excited in liquid media are proving to be an excellent tool in biological studies. Despite its relevance, the search for a reliable, efficient, and strong cantilever excitation method is still in progress. Herein, we present a theoretical modeling and experimental results of different actuation methods compatible with the operation of Atomic Force Microscopy in liquid environments: ideal acoustic, homogeneously distributed force, distributed applied torque (MAC Mode™), photothermal and magnetostrictive excitation. From the analysis of the results, it can be concluded that magnetostriction is the strongest and most efficient technique for higher eigenmode excitation when using soft cantilevers in liquid media.

  9. The Membrane-anchoring Domain of Epidermal Growth Factor Receptor Ligands Dictates Their Ability to Operate in Juxtacrine Mode

    SciTech Connect

    Dong, Jianying; Opresko, Lee; Chrisler, William B.; Orr, Galya; Quesenberry, Ryan D.; Lauffenburger, Douglas A.; Wiley, H S.

    2005-06-01

    All ligands of the epidermal growth factor receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structural basis for these differences in ligand activity, we engineered a series of membrane-anchored ligands in which the core, receptor-binding domain of EGF was combined with different domains of both EGF and HB-EGF. We found that ligands having the N-terminal extension of EGF could not bind to the EGFR, even when released from the membrane. Ligands lacking an N-terminal extension, but possessing the membrane-anchoring domain of EGF still required proteolytic release for activity, whereas ligands with the membrane anchoring domain of HB-EGF could elicit full biological activity while still membrane anchored. Ligands containing the HB-EGF membrane anchor, but lacking an N-terminal extension, activated EGFR during their transit through the Golgi apparatus . However, cell-mixing experiments and fluorescence resonance energy transfer (FRET) studies showed that juxtacrine signaling typically occurred in trans at the cell surface, at points of cell-cell contact. Our data suggest that the membrane-anchoring domain of ligands selectively controls their ability to participate in juxtacrine signaling and thus, only a subclass of EGFR ligands can act in a juxtacrine mode.

  10. The Quorum-Sensing Molecules Farnesol/Homoserine Lactone and Dodecanol Operate via Distinct Modes of Action in Candida albicans▿

    PubMed Central

    Hall, Rebecca A.; Turner, Kara J.; Chaloupka, James; Cottier, Fabien; De Sordi, Luisa; Sanglard, Dominique; Levin, Lonny R.; Buck, Jochen; Mühlschlegel, Fritz A.

    2011-01-01

    Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C12-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C12-homoserine lactone, may be used by other quorum-sensing molecules. PMID:21666074

  11. Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory

    NASA Astrophysics Data System (ADS)

    Klymenko, M. V.; Klein, M.; Levine, R. D.; Remacle, F.

    2016-07-01

    A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states corresponds to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.

  12. Evaluation of Mixed-Mode Data-Link Communications for NextGen 4DT and Equivalent Visual Surface Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis, J., III; Bailey, Randall E.

    2010-01-01

    By 2025, U.S. air traffic is predicted to increase 3-fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or NextGen. Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research examining data-link communications during 4DT and equivalent visual surface operations.

  13. Dynamic MTF improvement scheme and its validation for CCD operating in TDI mode for Earth imaging applications

    NASA Astrophysics Data System (ADS)

    Dubey, Neeraj; Banerjee, Arup

    2016-05-01

    The paper presents the scheme for improving the image contrast in the remote sensing images and highlights the novelty in hardware & software design in the test system developed for measuring image contrast function. Modulation transfer function (MTF) is the most critical quality element of the high-resolution imaging payloads for earth observation consisting of TDI-CCD (Time Delayed Integration Charge Coupled Device) image. From the mathematical model for MTF Smear MTF of 65% (35% degradation) is observed. Then a operating method for TDI-CCD is developed, using which 96% of Motion Smear MTF will occur within the imaging operation. As a major part of the validation, indigenously designed and developed a test system for measuring the dynamic MTF of TDI Sensors which consists of the optical scanning system, TDI-CCD camera drive & video processing electronics, thermal control system and telecentric uniform illumination system. The experimental results confirm that image quality improvement can be achieved by this method. This method is now implemented in the flight model hardware of the remote sensing payload.

  14. Characterizing the species composition of European Culicoides vectors by means of the Köppen-Geiger climate classification

    PubMed Central

    2013-01-01

    Background Biting midges of the genus Culicoides spp. (Diptera: Ceratopogonidae) are vectors for the Bluetongue virus, the African horse sickness virus and the recently emerged Schmallenberg virus. Here, species of the C. obsoletus complex, the C. pulicaris complex and C. imicola were considered. The objective was to compile a map of these Culicoides species and their relation to the popular climate classification defined by Wladimir Köppen and Rudolf Geiger to provide a quick view on the species composition in Europe. Findings Major parts of Central and Northern Europe are covered by a warm temperate fully humid climate, characterized by warm summers. For this so-called Cfb climate fractions of 89% C. obsoletus complex and 11% C. pulicaris complex were estimated. Further investigations comprise the continental climate Dfb (76% C. obsoletus, 24% C. pulicaris), the warm temperate climate with hot summers Cfa (35% C. obsoletus, 65% C. pulicaris), the warm temperate dry climate, characterized by warm summers Csb (38% C. obsoletus, 51% C. pulicaris, 11% C. imicola) and the warm temperate dry climate with hot summers Csa of the Mediterranean area (11% C. obsoletus, 12% C. pulicaris, 77% C. imicola). Conclusions A highly significant association coefficient of RV = 0.64 (Cramer’s V) confirms the correlation between Culicoides spp. and climate zones. Moreover, climate projections for the end of the century give an impression on expected changes in the European Culicoides spp. composition. PMID:24267276

  15. Effects of electrokinetic operation mode on removal of polycyclic aromatic hydrocarbons (PAHs), and the indigenous fungal community in PAH-contaminated soil.

    PubMed

    Wang, Jian; Li, Fengmei; Li, Xu; Wang, Xiujuan; Li, Xinyu; Su, Zhencheng; Zhang, Huiwen; Guo, Shuhai

    2013-01-01

    Electrokinetic remediation is an emerging physical remediation technology for the removal of heavy metals and organic chemicals from contaminated soil. We set up a soil chamber (24 × 12 × 8 cm) with two stainless steel electrodes (12 × 0.5 cm), and a constant voltage gradient of 1.0 v cm(-1) or 2.0 v cm(-1) was applied to study the effects of unidirectional and altered directional electric field operation modes on the moisture content and pH, the removal rate of PAHs, and the abundance and diversity of indigenous fungi in a PAH-contaminated soil at the Benxi Iron and Steel Group Corporation (N41°17'24.4″, E123°43'05.8″), Liaoning Province, Northeast China. Electrokinetic remediation increased the PAH removal rate, but had less effect on soil moisture content and pH, in comparison with the control. In the 1 v cm(-1) altered directional operation, in particular, the PAH removal rate by the end of the experiment (on day 23) had increased from 5.2% of the control to 13.84% and 13.69% at distances of 4 and 20 cm from the anode, respectively, and to 18.97% in the middle region of the soil chamber. On day 23, the indigenous fungal 18S rRNA gene copy numbers and community diversity were significantly higher in a voltage gradient of 1 v cm(-1) than in a voltage gradient 2 v cm(-1). An altered directional operation was more conducive to the fungal community's uniform distribution than was a unidirectional operation of the electric field. We found the major PAH-degrading fungi Fusarium oxysporum and Rhizophlyctis rosea to be present under EK remediation. We suggest that a 1 v cm(-1) altered directional operation could be an appropriate electrokinetic operation mode for PAH removal, and the maintenance of abundance and diversity of the indigenous fungal community. PMID:23947706

  16. TMRBAR: a code to calculate plasma parameters for tandem-mirror reactors operating in the MARS mode

    SciTech Connect

    Campbell, R.B.

    1983-08-30

    The purpose of this report is to document the plasma power balance model currently used by LLNL to calculate steady state operating points for tandem mirror reactors. The code developed from this model, TMRBAR, has been used to predict the performance and define supplementary heating requirements for drivers used in the Mirror Advanced Reactor Study (MARS) and for the Fusion Power Demonstration (FPD) study. The equations solved included particle and energy balance for central cell and end cell species, quasineutrality at several cardinal points in the end cell region, as well as calculations of volumes, densities and average energies based on given constraints of beta profiles and fusion power output. Alpha particle ash is treated self-consistently, but no other impurity species is treated.

  17. The silicon vidicon: Integration, storage and slow scan capability - Experimental observation of a secondary mode of operation.

    NASA Technical Reports Server (NTRS)

    Ando, K. J.

    1971-01-01

    Description of the performance of the silicon diode array vidicon - an imaging sensor which possesses wide spectral response, high quantum efficiency, and linear response. These characteristics, in addition to its inherent ruggedness, simplicity, and long-term stability and operating life make this device potentially of great usefulness for ground-base and spaceborne planetary and stellar imaging applications. However, integration and charged storage for periods greater than approximately five seconds are not possible at room temperature because of diode saturation from dark current buildup. Since dark current can be reduced by cooling, measurements were made in the range from -65 to 25 C. Results are presented on the extension of integration, storage, and slow scan capabilities achievable by cooling. Integration times in excess of 20 minutes were achieved at the lowest temperatures. The measured results are compared with results obtained with other types of sensors and the advantages of the silicon diode array vidicon for imaging applications are discussed.

  18. Failure mode of valve-regulated lead-acid batteries under high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Haigh, N. P.; Phyland, C. G.; Urban, A. J.

    Within the next decade, there will be major changes in automotive technology with the introduction of several new features which will increase significantly the on-board power requirements. This high power demand is beyond the capability of present 14 V alternators and thus a 42 V power network is to be adopted. The new 'PowerNet' requires the lead-acid battery to be capable of providing a large number of shallow discharge-charge cycles at a high rate. High-rate discharge is necessary for engine cranking and power assist, while high-rate charge is associated with regenerative braking. The battery will operate at these high rates in a partial-state-of-charge condition, so-called HRPSoC duty. Under simulated HRPSoC duty, it is found that the valve-regulated lead-acid (VRLA) battery fails prematurely due to the progressive accumulation of lead sulfate mainly on the surfaces of the negative plates. This is because the lead sulfate cannot be converted efficiently back to sponge lead during charging either from the engine or from regenerative braking. Eventually, the layer of lead sulfate develops to such extent that the effective surface area of the plate is reduced markedly and the plate can no longer deliver the high cranking-current demanded by the automobile. A mechanistic analysis of battery operation during HRPSoC duty shows that high-rate discharge is the key factor responsible for the build-up of the lead sulfate layer. Such discharge causes a compact layer of tiny lead sulfate crystals to form on the surface of the negative plate and subsequent charging gives rise to an early evolution of hydrogen. Hydrogen evolution is further exacerbated when a high charging current is used.

  19. Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater

    DOE PAGESBeta

    Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.; Borole, Abhijeet P.

    2016-05-01

    Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8±0.06 A/m2 and an ACE of 39%±4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stable achieving anmore » ACE of 30% ± 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7±0.1 A/m2 and an ACE of 57% ± 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. Finally, the results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.« less

  20. Impact of ultrasonic pretreatment under different operational conditions on the mesophilic anaerobic digestion of sunflower oil cake in batch mode.

    PubMed

    Fernández-Cegrí, V; de la Rubia, M A; Raposo, F; Borja, R

    2012-09-01

    In this study ultrasonic (US) pretreatment was investigated with the aim of improving the anaerobic digestion of sunflower oil cake (SuOC), the solid waste derived from the extraction process of sunflower oil. Five ultrasonic pretreatment assays were conducted at specific energy (SE) and sonication times in a range from 24,000 kJ/kg TS and 16.6 min (assay 1: US1) to 597,600 kJ/kg TS and 331.2 min (assay 5: US5), respectively, all operating at a constant sonication frequency (20 kHz) and ultrasonic power (120 W). As regards ultrasonic pretreatment, the working conditions of the first assay (US1) using samples of SuOC at 2% (w/v) showed to be the most appropriate in terms of both lignin and hemicellulose degradation (57.7% and 66.7%, respectively) and cellulose increase (54% increase with respect to its initial concentration). The percentage of COD solubilization increased from only 14% to 21% when SE was 25 times higher. Results obtained in batch anaerobic digestion experiments (biochemical methane potential - BMP - tests) conducted at 35°C of the solid and liquid fractions released from the different ultrasonic conditions tested, indicated that for the first experiment (US1) the average ultimate methane yield obtained was 53.8% higher than that achieved for untreated SuOC. Finally, the kinetic constants of the anaerobic digestion of the solid and liquid fractions released after the ultrasonic pretreatment were virtually independent of the operation conditions assayed. PMID:22366228

  1. Analysis of thermohydrologic behavior for above-boiling and below-boiling thermal-operating modes for a repository at Yucca Mountain.

    PubMed

    Buscheck, T A; Rosenberg, N D; Blink, J A; Sun, Y; Gansemer, J

    2003-01-01

    We report results from a multi-scale thermohydrologic modeling study for two alternative thermal-operating modes for the potential repository system recently analyzed by the Yucca Mountain Project. These include a Higher-Temperature Operating Mode (HTOM), which results in a localized boiling zone around each emplacement drift, and a Lower-Temperature Operating Mode (LTOM), which always maintains sub-boiling temperatures throughout the repository. The HTOM places all waste packages nearly end to end, making the lineal power density greater than in the LTOM. The lower lineal power density in the LTOM was achieved by placing some waste packages farther apart (which results in a larger repository footprint), and through an increased reliance on pre-closure ventilation to remove the waste-package-generated heat. We focus on temperature T and relative humidity RH at the waste-package and drift-wall surfaces, and on in-drift evaporation. In general, HTOM temperatures are greater than corresponding LTOM temperatures, exhibit similar spatial variability and have a stronger dependence on infiltration flux. The duration of RH reduction on waste packages is similar for the LTOM and HTOM. A major difference between the LTOM and HTOM is the lower waste-package temperature at any given value of waste-package RH for the LTOM. Waste-package temperatures in the LTOM, by design, remain below approximately 85 degrees C; the absence of RH reduction arising from host-rock dryout causes waste-package RH to remain above about 40%. The HTOM waste packages experience higher temperatures and correspondingly lower RH conditions as a result of RH reduction arising from host-rock dryout. For most of the repository area, the HTOM delays the potential onset of gravity-driven seepage compared to the LTOM (as indicated by the duration of boiling at the drift wall). Boiling conditions in the HTOM also delays the onset of capillary-driven seepage into the granular invert, causing the HTOM to have

  2. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    NASA Astrophysics Data System (ADS)

    Burrell, K. H.; Barada, K.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Osborne, T. H.; Petty, C. C.; Rhodes, T. L.; Snyder, P. B.; Solomon, W. M.; Yan, Z.; Zeng, L.

    2016-05-01

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H98y2 international tokamak energy confinement scaling (H98y2 = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant βN = 1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with

  3. Multi-mode radio frequency device

    DOEpatents

    Gilbert, Ronald W.; Carrender, Curtis Lee; Anderson, Gordon A.; Steele, Kerry D.

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  4. Simulation of non-Gaussian optical pulse propagation over piece-wise regular fiber optic link with conventional laser-optimized multimode fiber operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.

    2016-03-01

    This work presents results of simulation of non-Gaussian pulse propagation over fiber optic link with irregular weakly guiding silica graded-index laser-optimized multimode optical fiber (OM2+/OM3 Cat.) operating in a few-mode regime. Here recently proposed model of irregular few-mode fiber optic link been introduced in the previous works was applied, which is based on split-step method approach combined with piece-wise regular representation. Model takes into account launch conditions, differential mode delay, both lower- and higher-order mode chromatic dispersion, differential mode attenuation, mode mixing and power diffusion occurring due to real fiber irregularity and micro-/macro-bends. Parabolic and triangular as well as Gaussian and hyperbolic secant shape laser-excited optical pulse propagation over conventional silica laser-optimized multimode fibers was simulated and researched. Some results of pulse dynamics comparison analysis are represented.

  5. Operation of a New Half-Bridge Gate Driver for Enhancement - Mode GaN FETs, Type LM5113, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.

  6. Current crowding impact at spatially and temporarily resolved thermal characters of large-area AlGaInP light emitting diodes operating in dimming/flashing modes

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.; Podoltsev, A. D.; Malyutenko, O. Yu.

    2015-10-01

    By exploring spatially (μm-scale) and temporarily (ms-scale) resolved light and 8-12 μm thermal imaging analyses, we demonstrate how current crowding alternates the thermal parameters of light emitting diodes (LEDs) operating in dimming/flashing mode. For example, in AlGaInP/GaAs high-current (I ≥ 1 A) large-area (≥1 mm2) LEDs, we measured the thermal time constant (2.5 ms), heat diffusion length (110 μm), current crowding length (≤75 μm), thermal diffusivity (0.08 cm2/s) of GaAs substrate, and current-dependent thermal patterns taken from the front and sidewall facet of chips. We discovered that even at I = 100 mA emitting ships are already divided by two regions with different temperatures, small area high-temperature central regions (effective volumes) with high current density and larger area lower-temperature peripheral regions with much lower current density. The experiments evidence that the simplified computer simulations of dimming mode based on mean chip temperature, mean thermal resistance, and average current density, as well as temperature-independent ABC-modeling must be regarded with skepticism.

  7. Analytical prediction and experimental verification of performance at various operating conditions of a dual-mode traveling wave tube with multistage depressed collectors

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.; Kosmahl, H. G.; Ramins, P.; Stankiewicz, N.

    1981-01-01

    A comparison of analytical and experimental results is presented for a high performance dual-mode traveling wave tube (TWT) operated over a wide range conditions. The computations are carried out with advanced multidimensional computer programs. These programs model the electron beam as a series of disks or rings of charge and follow their trajectories from the rf input of the TWT through the slow-wave structure refocusing system to their points of impacts in the depressed collector. TWT performance, collector efficiency, and collector current distribution are computed and compared with measurements. Very good agreement was obtained between computed and measured TWT performance and collector efficiencies, and the computer design of a highly efficient collector was demonstrated.

  8. Commissioning of the NPDGamma Detector Array: Counting Statistics in Current Mode Operation and Parity Violation in the Capture of Cold Neutrons on B4C and 27Al

    PubMed Central

    Gericke, M. T.; Bowman, J. D.; Carlini, R. D.; Chupp, T. E.; Coulter, K. P.; Dabaghyan, M.; Desai, D.; Freedman, S. J.; Gentile, T. R.; Gillis, R. C.; Greene, G. L.; Hersman, F. W.; Ino, T.; Ishimoto, S.; Jones, G. L.; Lauss, B.; Leuschner, M. B.; Losowski, B.; Mahurin, R.; Masuda, Y.; Mitchell, G. S.; Muto, S.; Nann, H.; Page, S. A.; Penttila, S. I.; Ramsay, W. D.; Santra, S.; Seo, P.-N.; Sharapov, E. I.; Smith, T. B.; Snow, W. M.; Wilburn, W. S.; Yuan, V.; Zhu, H.

    2005-01-01

    The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and 27Al are zero to with- in 2 × 10−6 and 7 × 10−7, respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary. PMID:27308124

  9. Sub-100  fs passively mode-locked holmium-doped fiber oscillator operating at 2.06  μm.

    PubMed

    Li, Peng; Ruehl, Axel; Grosse-Wortmann, Uwe; Hartl, Ingmar

    2014-12-15

    We demonstrate a simple and compact Holmium-doped fiber femtosecond oscillator, in-band pumped by a commercial Tm-doped fiber laser. The oscillator operates in the dispersion managed soliton regime at net zero intracavity dispersion and delivers >1  nJ pulse energy at 35 MHz repetition rate. The pulse duration directly at the oscillator output is 160 fs FWHM, close to the Fourier-limit of 145 fs FWHM. Using an additional nonlinear compressor stage, sub-100 fs FWHM pulse durations could be achieved. The nonlinear fiber compressor is implemented by a solid core highly nonlinear fiber for spectral broadening and a single mode fiber for pulse compression. PMID:25503015

  10. Improved semi-conductor laser device, operating, at room temperature, with an array of three lasers in the spatially coherent, free running mode

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1975-01-01

    The peak pulse power was increased by operating an array of three homostructure Ga As lasers in the laser device. A spatial filter in the laser device selects the spatially coherent, free running, mode. The optical peak power is 5 watts, which is three times the peak power of a single laser in the array. The far-field distribution of the three laser array is a single Gaussian beam of spatial coherence without sidelobes or grating lobes. The length of the optical pulses of spatial coherence was increased to 200 ns by improved heat transfer from the p-n junctions of the lasers to the metal housing of the pulse transformer, and by doubling the core area and increasing the turns of the primary windings of the pulse transformer. The mechanical stability of the laser device was improved and the transition from mechanical alignment to electro-mechanical alignment control, was facilitated.

  11. Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-β-1,3-glucanase from Thermotoga petrophila.

    PubMed

    Cota, Junio; Alvarez, Thabata M; Citadini, Ana P; Santos, Camila Ramos; de Oliveira Neto, Mario; Oliveira, Renata R; Pastore, Glaucia M; Ruller, Roberto; Prade, Rolf A; Murakami, Mario T; Squina, Fabio M

    2011-03-25

    1,3-β-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal β-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90°C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules. PMID:21352806

  12. Grating array systems having a plurality of gratings operative in a coherently additive mode and methods for making such grating array systems

    DOEpatents

    Kessler, Terrance J.; Bunkenburg, Joachim; Huang, Hu

    2007-02-13

    A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.

  13. Implementation of human thermal comfort information in Köppen-Geiger climate classification—the example of China

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Qi; Matzarakis, Andreas

    2016-03-01

    Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000-2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.

  14. Operating modes and cooling capabilities of the 3-stage ADR developed for the Soft-X-ray Spectrometer instrument on Astro-H

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2016-03-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 × 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.

  15. Dark current studies on a normal-conducting high-brightness very-high-frequency electron gun operating in continuous wave mode

    NASA Astrophysics Data System (ADS)

    Huang, R.; Filippetto, D.; Papadopoulos, C. F.; Qian, H.; Sannibale, F.; Zolotorev, M.

    2015-01-01

    We report on measurements and analysis of a field-emitted electron current in the very-high-frequency (VHF) gun, a room temperature rf gun operating at high field and continuous wave (CW) mode at the Lawrence Berkeley National Laboratory (LBNL). The VHF gun is the core of the Advanced Photo-injector Experiment (APEX) at LBNL, geared toward the development of an injector for driving the next generation of high average power x-ray free electron lasers. High accelerating fields at the cathode are necessary for the high-brightness performance of an electron gun. When coupled with CW operation, such fields can generate a significant amount of field-emitted electrons that can be transported downstream the accelerator forming the so-called "dark current." Elevated levels of a dark current can cause radiation damage, increase the heat load in the downstream cryogenic systems, and ultimately limit the overall performance and reliability of the facility. We performed systematic measurements that allowed us to characterize the field emission from the VHF gun, determine the location of the main emitters, and define an effective strategy to reduce and control the level of dark current at APEX. Furthermore, the energy spectra of isolated sources have been measured. A simple model for energy data analysis was developed that allows one to extract information on the emitter from a single energy distribution measurement.

  16. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    SciTech Connect

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  17. Ultrafine-Particle Emission Factors as a Function of Vehicle Mode of Operation for LDVs Based on Near-Roadway Monitoring.

    PubMed

    Zhai, Wenjuan; Wen, Dongqi; Xiang, Sheng; Hu, Zhice; Noll, Kenneth E

    2016-01-19

    This paper presents ultrafine-particle (UFP) emission factors (EFs) as a function of vehicle mode of operation (free flow and congestion) using (1) concurrent 5 min measurements of UFPs and carbon monoxide (CO) concentration, wind speed and direction, traffic volume and speed near a roadway that is restricted to light-duty vehicles (LDVs) and (2) inverse dispersion model calculations. Short-term measurements are required to characterize the highly variable and rapidly changing UFP concentration generated by vehicles. Under congestion conditions, the UFP vehicle EFs increased from 0.5 × 10(13) to 2 × 10(13) (particles km(-1) vehicle(-1)) when vehicle flow increased from 5500 to 7500 vehicles/h. For free-flow conditions, the EF is constant at 1.5 × 10(13) (particles km(-1) vehicle(-1)). The analysis is based on the assumption that air-quality models adequately describe the dilution process due to both traffic and atmospheric turbulence. The approach used to verify this assumption was to use an emission factor model to determine EFs for CO and then estimate dilution factors using measured CO concentrations. This procedure eliminates the need to rely only on air quality models to generate dilution factors. The EFs are suitable for fleet emissions under real-world traffic conditions. PMID:26674658

  18. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    SciTech Connect

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  19. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    PubMed

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions. PMID:23983449

  20. Study on the Interrater Reliability of an OSPE (Objective Structured Practical Examination) – Subject to the Evaluation Mode in the Phantom Course of Operative Dentistry

    PubMed Central

    Schmitt, Laura; Möltner, Andreas; Rüttermann, Stefan; Gerhardt-Szép, Susanne

    2016-01-01

    Introduction: The aim of the study presented here was to evaluate the reliability of an OSPE end-of-semester exam in the phantom course for operative dentistry in Frankfurt am Main taking into consideration different modes of evaluation (examiner’s checklist versus instructor’s manual) and number of examiners (three versus four). Methods: In an historic, monocentric, comparative study, two different methods of evaluation were examined in a real end-of-semester setting held in OSPE form (Group I: exclusive use of an examiner’s checklist versus Group II: use of an examiner’s checklist including an instructor’s manual). For the analysis of interrater reliability, the generalisability theory was applied that contains a generalisation of the concept of internal consistency (Cronbach’s alpha). Results: The results show that the exclusive use of the examiner’s checklist led to higher interrater reliability values than the in-depth instructor’s manual used in addition to the list. Conclusion: In summary it can be said that the examiner’s checklists used in the present study, without the instructor’s manual, resulted in the highest interrater reliability in combination with three evaluators within the context of the completed OSPE. PMID:27579361

  1. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    PubMed Central

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions. PMID:23983449

  2. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  3. Path planning during combustion mode switch

    SciTech Connect

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  4. Dual-Mode Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  5. Phase-polarization parallax barriers for an autostereo/stereo/monoscopic display with full-screen resolution at each operation mode.

    PubMed

    Ezhov, Vasily

    2015-10-01

    It is attractive to have a three-mode flat-panel 3D display capable of working in autostereoscopic, stereoscopic-with-passive-glasses, and monoscopic modes and providing full-screen resolution of images at each mode. The concept of autostereoscopic displays simultaneously reproducing two image elements in each display pixel based on information-dependent polarization coding and subsequent decoding was recently proposed. Such a concept allows full-screen resolution in each image view and flickerless 3D images to be observed even at a 60-Hz frame rate. The essential problem of such display implementation is to create the suitable structure of the phase-polarization parallax barrier (PPPB) capable of working properly at a variable polarization state of input light. This paper presents the results of theoretical research of an electrically switchable liquid crystal (LC) PPPB. The Jones matrix notation of the required performance function of the LC PPPB is found. The results of computer modeling of achromatic characteristics of suitable LC structures are discussed to determine the optimum structures for PPPB. The proposed layout of three-mode 3D display with LC PPPB allows it to go from autostereoscopic mode to "stereoscopic-with-passive-glasses" mode and backward by electrical switching the LC PPPB in combination with removing/inserting the output polaroid film. PMID:26479601

  6. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  7. Explosive Emission Cathode Based on a Carbon Fiber for Long-Term Pulsed-Periodic Mode of Operation and its Application in a High-Power Microwave Pulse Generator Without External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kutenkov, O. P.; Pegel, I. V.; Totmeninov, E. M.

    2014-09-01

    Current characteristics and operating lifetime of the explosive emission cathode based on a carbon microfiber are investigated in the pulsed-periodic mode of operation with pulse duration of about 5 ns. Long-term (for up to 3.6 million pulses) tests of the cathode operating lifetime are carried out. Specific ablation of the fiber material equal to 2.4·10-4 g/C is obtained. Change in the morphology of the fiber surface during long-time operation caused by deposition of carbon from the cathode plasma is revealed. The microscopic electric field strength on the fiber surface is estimated taking into account the surface microrelief. The efficiency of microwave generation comparable with that of a velvet cathode in low (200 kV/cm) average electric field in the gap is obtained for the Cherenkov microwave generator with vacuum diode without external magnetic field of decimeter wavelength range based on the SINUS-7 pulsed-periodic high-current electron accelerator with current pulse duration of 50 ns. The operating lifetime no less than 105 pulses is demonstrated for the carbon fiber-based cathode of the microwave generator operating in the mode of pulse batch with duration of several seconds and pulse repetition frequency of 20-50 Hz.

  8. Mode selective directional coupler for NLC

    SciTech Connect

    Tantawi, S.G.

    1994-10-01

    The design method for a high power, X-band, 50 dB, circular to rectangular directional coupler is presented. The circular guide is over moded and is intended to operate in TE{sub 01} mode. The rectangular guide operates at the fundamental TE{sub 10} mode. A small percentage of higher order modes in the circular guide can cause considerable errors in the measurements because the magnitude of the axial magnetic field of these modes is higher than that of the operating mode, especially near their cutoff. We used a Hamming window patten for the coupling slots to achieve mode selectivity. Comparison of theory and experiment will be presented.

  9. High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Wu, Pinghui; Wen, Ruhua; Song, Jiangxin; Guo, Yan; Lai, Xiaomin

    2016-02-01

    A master oscillator power amplification (MOPA) structured high power sub-nanosecond fiber laser with pulse bunch output is experimentally demonstrated. The seed was a figure-of-eight structured mode-locked fiber laser with a pulse duration of 700 ps and a repetition rate of 2.67 MHz. The seed pulse via two cascaded fiber couplers was multiplied to a pulse bunch, which was composed of 6 sub-pulses. The multiplied pulses were pre-amplified to an average power of 1.5 W through a cladding-pumping fiber amplifier. The pre-amplified laser was further amplified using a 20/125 μm large mode area (LMA) Yb-doped fiber. The laser emitted from the power-amplifier had an average power of 36 W, and a slope efficiency of 72%.

  10. Electrocautery Devices With Feedback Mode and Teflon-Coated Blades Create Less Surgical Smoke for a Quality Improvement in the Operating Theater

    PubMed Central

    Kisch, Tobias; Liodaki, Eirini; Kraemer, Robert; Mailaender, Peter; Brandenburger, Matthias; Hellwig, Veronika; Stang, Felix H.

    2015-01-01

    Abstract Monopolar electrocautery is a fast and elegant cutting option. However, as it creates surgical smoke containing polycyclic aromatic hydrocarbons (PAHs), it may be hazardous to the health of the surgical team. Although new technologies, such as feedback mode (FM) and Teflon-coated blades (TBs), reduce tissue damage, their impact on surgical smoke creation has not yet been elucidated. Therefore, we analyzed the plume at its source. The aim of this study was to evaluate if electrocautery FM and TBs create less surgical smoke. Porcine tissue containing skin was cut in a standardized manner using sharp-edged Teflon-coated blades (SETBs), normal-shaped TBs, or stainless steel blades (SSBs). Experiments were performed using FM and pure-cut mode. Surgical smoke was sucked through filters or adsorption tubes. Subsequently, filters were scanned and analyzed using a spectrophotometer. A high-performance liquid chromatography (HPLC-UV) was performed to detect benzo[a]pyrene (BaP) and phenanthrene as 2 of the most critical PAHs. Temperature changes at the cutting site were measured by an infrared thermometer. In FM, more surgical smoke was created using SSB compared with TBs (P < 0.001). Furthermore, differences between FM and pure-cut mode were found for SSB and TB (P < 0.001), but not for SETB (P = 0.911). Photometric analysis revealed differences in the peak heights of the PAH spectrum. In HLPC-UV, the amount of BaP and phenanthrene detected was lower for TB compared with SSB. Tissue temperature variations increased when SSB was used in FM and pure-cut mode. Furthermore, different modes revealed higher temperature variations with the use of SETB (P = 0.004) and TB (P = 0.005) during cutting, but not SSB (P = 0.789). We found that the use of both TBs and FM was associated with reduced amounts of surgical smoke created during cutting. Thus, the surgical team may benefit from the adoption of such new technologies, which could contribute to the

  11. Analytical investigations of transitional operating modes of the second circuit of units at NPP with water-moderated reactors with consideration of control systems

    SciTech Connect

    Pikin, M. A.; Nesterov, Yu. V.

    2007-05-15

    A mathematical model for analysis of process parameters of equipment in the second circuit of nuclear power plants is presented, and the structure of the program and principles used for analysis of the equipment are described. A mathematical model for analysis of the deaerator and steam generator is described in detail. A computational analysis of several transitional modes, which is made possible on the basis of the mathematical model in question, is also presented in this paper, and a comparison is made with test data.

  12. Measurement of radon decay products and thoron decay products in air by beta counting using end-window Geiger-Muller counter.

    PubMed

    Papp, Z; Daróczy, S

    1997-04-01

    A new grab sampling method has been developed for the simultaneous measurement of radon decay products and thoron decay products in air. It is based on direct beta counting of filtered aerosol sample over successive time intervals by end-window Geiger-Muller counter. Defined solid angle absolute counting was used to evaluate the efficiencies for the decay products one by one. Absolute activity concentrations can be determined with less than 10% systematic error. Glass-fiber filter, high sampling flow rate, and long duration of sampling can be used, as a result of which the detection limits are about 0.1, 0.2, and 0.01 Bq m(-3) for 214Pb, 214Bi, and 212Pb, respectively. Indoor saturated activity concentrations were measured in 86 buildings in Ajka town, Hungary, where industrial wastes rich in uranium had been used as building materials. Elevated radon decay product levels were found in houses built before 1960. Radon gas concentration was also measured simultaneously in 26 cases and the minimum, maximum, and average values of the equilibrium factor were 0.17, 0.73, and 0.40, respectively. PMID:9119685

  13. A measurement of the fast-neutron sensitivity of a Geiger - Müller detector in the pulsed neutron beam from a superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Maughan, R. L.; Yudelev, M.; Kota, C.

    1996-08-01

    The value of a commercially available miniature energy compensated Geiger - Müller (GM) detector has been determined using the modified lead attenuation method of Hough. The measurements were made in a d(48.5) - Be neutron beam produced by the superconducting cyclotron based neutron therapy facility at Harper Hospital. The unique problems associated with making measurements in a 2 ms duration pulsed beam with a 20% duty cycle are discussed. The beam monitoring system, which allows the beam pulse shape at low beam intensities to be measured, is described. By gating the GM output with a discriminator pulse derived from the beam pulse shape, the gamma-ray count rates and dead-time corrections within the 2 ms pulse and between pulses can be measured separately. The value of determined for this GM detector is consistent with the values measured by other workers with identical and similar detectors in neutron beams with comparable, but not identical, neutron spectra.

  14. Biosensing operations based on whispering-gallery-mode optical cavities in single 1.0-µm diameter hexagonal GaN microdisks grown by radio-frequency plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Sakai, Masaru; Kishino, Katsumi; Hara, Kazuhiko

    2016-05-01

    Biosensing operations based on a whispering-gallery-mode optical cavity in a single hexagonal GaN microdisk of approximately 1.0 µm diameter were demonstrated here. The sharp resonant peak in the photoluminescence spectrum obtained from the microdisk in aqueous sucrose solution redshifts with a change in sucrose concentration. The results indicate that an extremely small microdisk could be used as an optical transducer for sensing sugar, namely, as a biosensor. Furthermore, we investigate the relationship between the diameter of the microdisk and the sensitivity of the biosensor.

  15. Mode decomposition evolution equations

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  16. 20 kHz sonoelectrochemical degradation of perchloroethylene in sodium sulfate aqueous media: influence of the operational variables in batch mode.

    PubMed

    Sáez, Verónica; Esclapez, María Deseada; Tudela, Ignacio; Bonete, Pedro; Louisnard, Olivier; González-García, José

    2010-11-15

    A preliminary study of the 20 kHz sonoelectrochemical degradation of perchloroethylene in aqueous sodium sulfate has been carried out using controlled current density degradation sonoelectrolyses in batch mode. An important improvement in the viability of the sonochemical process is achieved when the electrochemistry is implemented, but the improvement of the electrochemical treatment is lower when the 20 kHz ultrasound field is simultaneously used. A fractional conversion of 100% and degradation efficiency around 55% are obtained independently of the ultrasound power used. The current efficiency is also enhanced compared to the electrochemical treatment and a higher speciation is also detected; the main volatile compounds produced in the electrochemical and sonochemical treatment, trichloroethylene and dichloroethylene, are not only totally degraded, but also at shorter times than in the sonochemical or electrochemical treatments. PMID:20705391

  17. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    SciTech Connect

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

    2011-11-01

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  18. RendezVous sensor for automatic guidance of transfer vehicles to ISS concept of the operational modes depending on actual optical and geometrical-dynamical conditions

    NASA Astrophysics Data System (ADS)

    Moebius, Bettina G.; Kolk, Karl-Hermann

    2000-10-01

    Based on an ATV RendezVous Predevelopment Program initiated by ESTEC, an automatically operating Rendez Vous Sensor has been developed. The sensor--a Scanning Tele-Goniometer--shall guide docking and retreat of the European Automatic Transfer Vehicle as well as berthing and retreat of the Japanese H-II Transfer Vehicle. The sensor performance will be strongly connected with the properties of cooperative targets, consisting of an arrangement of retro reflectors mounted on ISS each.

  19. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements.

    PubMed

    Chen, Chun-Yen; Chang, Hsin-Yueh

    2016-03-01

    Microalgae-based biodiesel has been recognized as a sustainable and promising alternative to fossil diesel. High lipid productivity of microalgae is required for economic production of biodiesel from microalgae. This study was undertaken to enhance the growth and oil accumulation of an indigenous microalga Chlorella sorokiniana CY1 by applying engineering strategies using deep-sea water as the medium. First, the microalga was cultivated using LED as the immersed light source, and the results showed that the immersed LED could effectively enhance the oil/lipid content and final microalgal biomass concentration to 53.8% and 2.5 g/l, respectively. Next, the semi-batch photobioreactor operation with deep-sea water was shown to improve lipid content and microalgal growth over those from using batch and continuous cultures under similar operating conditions. The optimal replacement ratio was 50%, resulting in an oil/lipid content and final biomass concentration of 61.5% and 2.8 g/l, respectively. A long-term semi-batch culture utilizing 50%-replaced medium was carried out for four runs. The final biomass concentration and lipid productivity were 2.5 g/L and 112.2 mg/L/d, respectively. The fatty acid composition of the microalgal lipids was predominant by palmitic acid, stearic acid, oleic acid and linoleic acid, and this lipid quality is suitable for biodiesel production. This demonstrates that optimizing light source arrangement, bioreactor operation and deep-sea water supplements could effectively promote the lipid production of C. sorokiniana CY1 for the applications in microalgae-based biodiesel industry. PMID:26632521

  20. Single mode acoustic fiber waveguide

    NASA Technical Reports Server (NTRS)

    Jackson, B. S.; May, R. G.; Claus, R. O.

    1984-01-01

    The single mode operation of a clad rod acoustic waveguide is described. Unlike conventional clad optical and acoustic waveguiding structures which use modes confined to a central core surrounded by a cladding, this guide supports neither core nor cladding modes but a single interface wave field on the core-cladding boundary. The propagation of this bound field and the potential improved freedom from spurious responses is discussed.