Science.gov

Sample records for gel electrophoresis 2-d

  1. Spot identification on 2D electrophoresis gel images

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2006-09-01

    2-D electrophoresis gel images can be used for identifying and characterizing many forms of a particular protein encoded by a single gene. Conventional approaches to gel analysis require the three steps: (1) Spot detection on each gel; (2) Spot matching between gels; and (3) Spot quantification and comparison. Many researchers and developers attempt to automate all steps as much as possible, but errors in the detection and matching stages are common. In order to carry out gel image analysis, one first needs to accurately detect and measure the protein spots in a gel image. This paper presents the algorithms for automatically delineating gel spots. The fusion of two types of segmentation algorithms was implemented. One is edge (discontinuity) based type, and the other is region based type. The primary integration of the two types of image segmentation algorithms have been tested too, the test results clearly show that the integrated algorithm can automatically delineate gel spots not only on a simple image and also on a complex image, and it is much better that either only edge based algorithm or only region based algorithm. Based on the testing and analysis results, the fusion of edge information and region information for gel image segmentation is good for this kind of images.

  2. Total Protein Extraction and 2-D Gel Electrophoresis Methods for Burkholderia Species

    PubMed Central

    Velapatiño, Billie; Zlosnik, James E. A.; Hird, Trevor J.; Speert, David P.

    2013-01-01

    The investigation of the intracellular protein levels of bacterial species is of importance to understanding the pathogenic mechanisms of diseases caused by these organisms. Here we describe a procedure for protein extraction from Burkholderia species based on mechanical lysis using glass beads in the presence of ethylenediamine tetraacetic acid and phenylmethylsulfonyl fluoride in phosphate buffered saline. This method can be used for different Burkholderia species, for different growth conditions, and it is likely suitable for the use in proteomic studies of other bacteria. Following protein extraction, a two-dimensional (2-D) gel electrophoresis proteomic technique is described to study global changes in the proteomes of these organisms. This method consists of the separation of proteins according to their isoelectric point by isoelectric focusing in the first dimension, followed by separation on the basis of molecular weight by acrylamide gel electrophoresis in the second dimension. Visualization of separated proteins is carried out by silver staining. PMID:24192802

  3. Segmentation of 2D gel electrophoresis spots using a Markov random field

    NASA Astrophysics Data System (ADS)

    Hoeflich, Christopher S.; Corso, Jason J.

    2009-02-01

    We propose a statistical model-based approach for the segmentation of fragments of DNA as a first step in the automation of the primarily manual process of comparing two or more images resulting from the Restriction Landmark Genomic Scanning (RLGS) method. These 2D gel electrophoresis images are the product of the separation of DNA into fragments that appear as spots on X-ray films. The goal is to find instances where a spot appears in one image and not in another since a missing spot can be correlated with a region of DNA that has been affected by a disease such as cancer. The entire comparison process is typically done manually, which is tedious and very error prone. We pose the problem as the labeling of each image pixel as either a spot or non-spot and use a Markov Random Field (MRF) model and simulated annealing for inference. Neighboring spot labels are then connected to form spot regions. The MRF based model was tested on actual 2D gel electrophoresis images.

  4. A Novel Gaussian Extrapolation Approach for 2-D Gel Electrophoresis Saturated Protein Spots.

    PubMed

    Natale, Massimo; Caiazzo, Alfonso; Ficarra, Elisa

    2016-01-01

    Analysis of images obtained from two-dimensional gel electrophoresis (2-D GE) is a topic of utmost importance in bioinformatics research, since commercial and academic software currently available have proven to be neither completely effective nor fully automatic, often requiring manual revision and refinement of computer generated matches. In this chapter, we present an effective technique for the detection and the reconstruction of over-saturated protein spots. Firstly, the algorithm reveals overexposed areas, where spots may be truncated, and plateau regions caused by smeared and overlapping spots. Next, it reconstructs the correct distribution of pixel values in these overexposed areas and plateau regions, using a two-dimensional least-squares fitting based on a generalized Gaussian distribution. Pixel correction in saturated and smeared spots allows more accurate proteins quantification, providing more reliable image analysis results. The method is validated for processing highly exposed 2-D GE images, comparing reconstructed spots with the corresponding non-saturated image. The results demonstrate that the algorithm enables correct spot quantification. PMID:26611417

  5. Differential proteomic profiles from distinct Toxoplasma gondii strains revealed by 2D-difference gel electrophoresis.

    PubMed

    Zhou, Huaiyu; Zhao, Qunli; Das Singla, Lachhman; Min, Juan; He, Shenyi; Cong, Hua; Li, Ying; Su, Chunlei

    2013-04-01

    Toxoplasma gondii is an obligate intracellular protozoan that infects mammals and birds. Human infection during pregnancy may cause severe damage to the fetus. Reactivation of latent infection in immunocompromised patients can cause life-threatening encephalitis. T. gondii strains are highly diverse but only a few lineages (Type I, II and III) are widely spread. In mouse model, Type I strains are highly virulent, whereas Type II and III strains are intermediately or non virulent. It is not clear how much quantitative difference exists in proteomic profiles among these distinct T. gondii lineages. In the present study, the proteomic profiles of T. gondii tachyzoites from these lineages were investigated by two dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS) technologies. A total of 2321 protein spots were detected. Overall, the GT1 strain of Type I lineage and the strain PTG of Type II lineage have highly similar proteomic profiles and both are different from that of the CTG strain of Type III lineage. Eighty-four protein spots were differentially expressed by greater than 1.5-fold in relative abundance and 10 of them were identified to 7 T. gondii proteins in existing database. Investigation of the quantitative differences in proteomics among distinct T. gondii strains should facilitate our understanding of difference in biological processes and pathogenesis of distinct T. gondii genotypes, which will provide basic information to determine treatment regimen for different manifestation of toxoplasmosis. PMID:23340323

  6. Introducing Proteomics in the Undergraduate Curriculum: A Simple 2D Gel Electrophoresis Exercise with Serum Proteins

    ERIC Educational Resources Information Center

    Kim, Thomas D.; Craig, Paul A.

    2010-01-01

    Two-dimensional gel electrophoresis (2DGE) remains an important tool in the study of biological systems by proteomics. While the use of 2DGE is commonplace in research publications, there are few instructional laboratories that address the use of 2DGE for analyzing complex protein samples. One reason for this lack is the fact that the preparation…

  7. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics.

    PubMed

    Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R

    2016-07-15

    The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics. PMID:26826592

  8. Identification of Methanococcus Jannaschii Proteins in 2-D Gel Electrophoresis Patterns by Mass Spectrometry

    DOE R&D Accomplishments Database

    Liang, X.

    1998-06-10

    The genome of Methanococcus jannaschii has been sequenced completely and has been found to contain approximately 1,770 predicted protein-coding regions. When these coding regions are expressed and how their expression is regulated, however, remain open questions. In this work, mass spectrometry was combined with two-dimensional gel electrophoresis to identify which proteins the genes produce under different growth conditions, and thus investigate the regulation of genes responsible for functions characteristic of this thermophilic representative of the methanogenic Archaea.

  9. Identification of methanococcus jannaschii proteins in 2-D gel electrophoresis patterns by mass spectrometry.

    SciTech Connect

    Liang, X.

    1998-06-10

    The genome of Methanococcus jannaschii has been sequenced completely and has been found to contain approximately 1,770 predicted protein-coding regions. When these coding regions are expressed and how their expression is regulated, however, remain open questions. In this work, mass spectrometry was combined with two-dimensional gel electrophoresis to identify which proteins the genes produce under different growth conditions, and thus investigate the regulation of genes responsible for functions characteristic of this thermophilic representative of the methanogenic Archaea.

  10. Development of an open source laboratory information management system for 2-D gel electrophoresis-based proteomics workflow

    PubMed Central

    Morisawa, Hiraku; Hirota, Mikako; Toda, Tosifusa

    2006-01-01

    Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS) should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved. PMID:17018156

  11. Fuzzy watershed segmentation algorithm: an enhanced algorithm for 2D gel electrophoresis image segmentation.

    PubMed

    Rashwan, Shaheera; Sarhan, Amany; Faheem, Muhamed Talaat; Youssef, Bayumy A

    2015-01-01

    Detection and quantification of protein spots is an important issue in the analysis of two-dimensional electrophoresis images. However, there is a main challenge in the segmentation of 2DGE images which is to separate overlapping protein spots correctly and to find the weak protein spots. In this paper, we describe a new robust technique to segment and model the different spots present in the gels. The watershed segmentation algorithm is modified to handle the problem of over-segmentation by initially partitioning the image to mosaic regions using the composition of fuzzy relations. The experimental results showed the effectiveness of the proposed algorithm to overcome the over segmentation problem associated with the available algorithm. We also use a wavelet denoising function to enhance the quality of the segmented image. The results of using a denoising function before the proposed fuzzy watershed segmentation algorithm is promising as they are better than those without denoising. PMID:26510287

  12. Polyacrylamide gel plugs enabling 2-D microfluidic protein separations via isoelectric focusing and multiplexed sodium dodecyl sulfate gel electrophoresis.

    PubMed

    Liu, Jikun; Yang, Shuang; Lee, Cheng S; DeVoe, Don L

    2008-06-01

    In situ photopolymerized polyacrylamide (PAAm) gel plugs are used as hydrodynamic flow control elements in a multidimensional microfluidic system combining IEF and parallel SDS gel electrophoresis for protein separations. The PAAm gel plugs offer a simple method to reduce undesirable bulk flow and limit reagent/sample crosstalk without placing unwanted constraints on the selection of separation media, and without hindering electrokinetic ion migration in the complex microchannel network. In addition to improving separation reproducibility, the discrete gel plugs integrated into critical regions of the chip enable the use of a simple pressure-driven sample injection method which avoids electrokinetic injection bias. The gel plugs also serve to greatly simplify operation of the spatially multiplexed system by eliminating the need for complex external fluidic interfaces. Using an FITC-labeled Escherichia coli cell lysate as a model system, the use of gel plugs is shown to significantly enhance separation reproducibility in a chip containing five parallel CGE channels, with an average variance in peak elution time of only 4.1%. PMID:18449857

  13. Analysis of rRNA Gene Methylation in Arabidopsis thaliana by CHEF-Conventional 2D Gel Electrophoresis.

    PubMed

    Mohannath, Gireesha; Pikaard, Craig S

    2016-01-01

    Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb-9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes, and sub-chromosomal DNA fragments, etc. Here, we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  14. Polyacrylamide gel electrophoresis.

    PubMed

    Chrambach, A; Rodbard, D

    1971-04-30

    Polyacrylamide gel electrophoresis (PAGE) provides a versatile, gentle, high resolution method for fractionation and physical-chemical characterization of molecules on the basis of size, conformation, and net charge. The polymerization reaction can be rigorously controlled to provide uniform gels of reproducible, measurable pore size over a wide range. This makes it possible to obtain reproducible relative mobility (Rf) values as physical-chemical constants. Application and extension of Ogston's (random fiber) model for a gel allows for calculation of molecular volume, surface area, or radius, free mobility, and valence from RJ measurements at several gel concentrations, to calculate gel concentration for optimal resolution, and to predict behavior of macromolecules on gel gradients by computerized methods. Extension of classical moving boundary theory has been used to generate multiphasic buffer systems (providing selective stacking, unstacking, restacking, and preparative steady-state-stacking) with known operating characteristics for any pH at 0 degrees and 25 degrees C. A general strategy for isolation of macromolecules and for macromolecular mapping has been developed. Preparative scale PAGE is operational for milligram loads and feasible for gram quantities. PMID:4927678

  15. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry.

    PubMed

    Vanrobaeys, Frank; Van Coster, Rudy; Dhondt, Goedele; Devreese, Bart; Van Beeumen, Jozef

    2005-01-01

    The myelin sheath is an electrically insulating layer that consists of lipids and proteins. It plays a key role in the functioning of the nervous system by allowing fast saltatory conduction of nerve pulses. Profiling of the proteins present in myelin is an indispensable prerequisite to better understand the molecular aspects of this dynamic, functionally active membrane. Two types of protein, the myelin basic protein and the proteolipid protein, account for nearly 85% of the protein content in myelin. Identification and characterization of the other "minor" proteins is, in this respect, a real challenge. In the present work, two proteomic strategies were applied in order to study the protein composition of myelin from the murine central nervous system. First, the protein mixture was separated by 2D-gel electrophoresis and, after spot excision and in-gel digestion, samples were analyzed by mass spectrometry. Via this approach, we identified 57 protein spots, corresponding to 38 unique proteins. Alternatively, the myelin sample was digested by trypsin and the resulting peptide mixture was further analyzed by off-line 2D-liquid chromatography. After the second-dimension separation (nanoLC), the peptides were spotted "on-line" onto a MALDI target and analyzed by MALDI TOF-TOF mass spectrometry. We identified 812 peptides by MALDI MS/MS, representing 93 proteins. Membrane proteins, low abundant proteins, and highly basic proteins were all represented in this shotgun proteomic approach. By combining the results of both approaches, we can present a comprehensive proteomic map of myelin, comprising a total of 103 protein identifications, which is of utmost importance for the molecular understanding of white matter and its disorders. PMID:16335977

  16. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  17. Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome

    PubMed Central

    2009-01-01

    The in vitro stationary phase proteome of the human pathogen Shigella dysenteriae serotype 1 (SD1) was quantitatively analyzed in Coomassie Blue G250 (CBB)-stained 2D gels. More than four hundred and fifty proteins, of which 271 were associated with distinct gel spots, were identified. In parallel, we employed 2D-LC-MS/MS followed by the label-free computationally modified spectral counting method APEX for absolute protein expression measurements. Of the 4502 genome-predicted SD1 proteins, 1148 proteins were identified with a false positive discovery rate of 5% and quantitated using 2D-LC-MS/MS and APEX. The dynamic range of the APEX method was approximately one order of magnitude higher than that of CBB-stained spot intensity quantitation. A squared Pearson correlation analysis revealed a reasonably good correlation (R2 = 0.67) for protein quantities surveyed by both methods. The correlation was decreased for protein subsets with specific physicochemical properties, such as low Mr values and high hydropathy scores. Stoichiometric ratios of subunits of protein complexes characterized in E. coli were compared with APEX quantitative ratios of orthologous SD1 protein complexes. A high correlation was observed for subunits of soluble cellular protein complexes in several cases, demonstrating versatile applications of the APEX method in quantitative proteomics. PMID:19563668

  18. Improved method for identification of low abundance proteins using 2D-gel electrophoresis, MALDI-TOF and TOF/TOF

    EPA Science Inventory

    Introduction: Differential protein expression studies have been routinely performed in our laboratory to determine the health effects of environmentally-important chemicals. In this abstract, improvements in the in-gel protein digestion, MALDI plate spotting and data acquisition...

  19. Conducting Polymer Electrodes for Gel Electrophoresis

    PubMed Central

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D.

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation. PMID:24586761

  20. Fluorescence detection for gel and capillary electrophoresis

    SciTech Connect

    Hogan, B.

    1992-07-21

    First, an indirect fluorescence detection system for the separation of proteins via gel electrophoresis. Quantities as low as 50 nanograms of bovine serum albumin and soybean trypsin inhibitor are separated and detected visually without the need for staining of the analytes. This is very similar to levels of protein commonly separated with gel electrophoresis.

  1. Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata.

    PubMed

    Castillejo, Ma Ángeles; Fernández-Aparicio, Mónica; Rubiales, Diego

    2012-01-01

    Crenate broomrape (Orobanche crenata) is considered to be the major constraint for legume crops in Mediterranean countries. Strategies of control have been developed, but only marginal successes have been achieved. For the efficient control of the parasite, a better understanding of its interaction and associated resistance mechanisms at the molecular level is required. The pea response to this parasitic plant and the molecular basis of the resistance was studied using a proteomic approach based on 2D DIGE and MALDI-MSMS analysis. For this purpose, two genotypes showing different levels of resistance to O. crenata, as well as three time points (21, 25, and 30 d after inoculation) have been compared. Multivariate statistical analysis identified 43 differential protein spots under the experimental conditions (genotypes/treatments), 22 of which were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. Most of the proteins identified were metabolic and stress-related proteins and a high percentage of them (86%) matched with specific proteins of legume species. The behaviour pattern of the identified proteins suggests the existence of defence mechanisms operating during the early stages of infection that differed in both genotypes. Among these, several proteins were identified with protease activity which could play an important role in preventing the penetration and connection to the vascular system of the parasite. Our data are discussed and compared with those previously obtained in pea and Medicago truncatula. PMID:21920908

  2. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  3. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  4. The SWISS-2DPAGE database of two-dimensional polyacrylamide gel electrophoresis.

    PubMed Central

    Appel, R D; Sanchez, J C; Bairoch, A; Golaz, O; Ravier, F; Pasquali, C; Hughes, G J; Hochstrasser, D F

    1994-01-01

    SWISS-2DPAGE is a database of proteins identified on two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), created and maintained at the University Hospital of Geneva in collaboration with the Department of Medical Biochemistry of Geneva University. The proteins have been identified on various 2-D PAGE reference maps by microsequencing, immunoblotting, gel comparison and amino acid composition. Images PMID:7937063

  5. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry.

    PubMed

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0-10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana. PMID:27144024

  6. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    PubMed Central

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana. PMID:27144024

  7. Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose.

    PubMed

    Day, I N; Humphries, S E

    1994-11-01

    Electrophoresis of DNA has been performed traditionally in either an agarose or acrylamide gel matrix. Considerable effort has been directed to improved quality agaroses capable of high resolution, but for small fragments, such as those from polymerase chain reaction (PCR) and post-PCR digests, acrylamide still offers the highest resolution. Although agarose gels can easily be prepared in an open-faced format to gain the conveniences of horizontal electrophoresis, acrylamide does not polymerize in the presence of air and the usual configurations for gel preparation lead to electrophoresis in the vertical dimension. We describe here a very simple device and method to prepare and manipulate horizontal polyacrylamide gels (H-PAGE). In addition, the open-faced horizontal arrangement enables loading of arrays of wells. Since many procedures are undertaken in standard 96-well microtiter plates, we have also designed a device which preserves the exact configuration of the 8 x 12 array and enables electrophoresis in tracks following a 71.6 degrees diagonal between wells (MADGE, microtiter array diagonal gel electrophoresis), using either acrylamide or agarose. This eliminates almost all of the staff time taken in setup, loading, and recordkeeping and offers high resolution for genotyping pattern recognition. The nature and size of the gels allow direct stacking of gels in one tank, so that a tank used typically to analyze 30-60 samples can readily be used to analyze 1000-2000 samples. The gels would also enable robotic loading. Electrophoresis allows analysis of size and charge, parameters inaccessible to liquid-phase methods: thus, genotyping size patterns, variable length repeats, and haplotypes is possible, as well as adaptability to typing of point variations using protocols which create a difference detectable by electrophoresis. PMID:7864363

  8. Optimizing Human Bile Preparation for Two-Dimensional Gel Electrophoresis

    PubMed Central

    Cheng, Hao-Tsai; Sung, Chang-Mu; Pai, Betty Chien-Jung; Liu, Nai-Jen; Chen, Carl PC

    2016-01-01

    Aims. Bile is an important body fluid which assists in the digestion of fat and excretion of endogenous and exogenous compounds. In the present study, an improved sample preparation for human bile was established. Methods and Material. The method involved acetone precipitation followed by protein extraction using commercially available 2D Clean-Up kit. The effectiveness was evaluated by 2-dimensional electrophoresis (2DE) profiling quality, including number of protein spots and spot distribution. Results. The total protein of bile fluid in benign biliary disorders was 0.797 ± 0.465 μg/μL. The sample preparation method using acetone precipitation first followed by 2D Clean-Up kit protein extraction resulted in better quality of 2DE gel images in terms of resolution as compared with other sample preparation methods. Using this protocol, we obtained approximately 558 protein spots on the gel images and with better protein spots presentation of haptoglobin, serum albumin, serotransferrin, and transthyretin. Conclusions. Protein samples of bile prepared using acetone precipitation followed by 2D Clean-Up kit exhibited high protein resolution and significant protein profile. This optimized protein preparation protocol can effectively concentrate bile proteins, remove abundant proteins and debris, and yield clear presentation of nonabundant proteins and its isoforms on 2-dimensional electrophoresis gel images. PMID:26966686

  9. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling

    PubMed Central

    Tannu, Nilesh S; Hemby, Scott E

    2007-01-01

    Quantitative proteomics is the workhorse of the modern proteomics initiative. The gel-based and MuDPIT approaches have facilitated vital advances in the measurement of protein expression alterations in normal and disease phenotypic states. The methodological advance in two-dimensional gel electrophoresis (2DGE) has been the multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). 2D-DIGE is based on direct labeling of lysine groups on proteins with cyanine CyDye DIGE Fluor minimal dyes before isoelectric focusing, enabling the labeling of 2–3 samples with different dyes and electrophoresis of all the samples on the same 2D gel. This capability minimizes spot pattern variability and the number of gels in an experiment while providing simple, accurate and reproducible spot matching. This protocol can be completed in 3–5 weeks depending on the sample size of the experiment and the level of expertise of the investigator. PMID:17487156

  10. Comparative proteomics and difference gel electrophoresis.

    PubMed

    Minden, Jonathan

    2007-12-01

    The goal of comparative proteomics is to analyze proteome changes in response to development, disease, or environment. This is a two-step process in which proteins within cellular extracts are first fractionated to reduce sample complexity, and then the proteins are identified by mass spectrometry. Two-dimensional electrophoresis (2DE) is the long-time standard for protein separation, but it has suffered from poor reproducibility and limited sensitivity. Difference gel electrophoresis (DIGE), in which two protein samples are separately labeled with different fluorescent dyes and then co-electrophoresed on the same 2DE gel, was developed to overcome the reproducibility and sensitivity limitations. In this essay, I discuss the principles of comparative proteomics and the development of DIGE. PMID:18251249

  11. pI-Control in Comparative Fluorescence Gel Electrophoresis (CoFGE) using amphoteric azo dyes.

    PubMed

    Hanneken, Marina; Šlais, Karel; König, Simone

    2015-06-01

    Amphoteric azo dyes were used for internal control of pI values in Comparative two-dimensional Fluorescence Gel Electrophoresis (CoFGE) [1]. The 2D-gel images of separated Escherichia coli proteins as well as those of colored amphoteric dyes separated by isoelectric focussing are presented. The latter were used to correct for variation in the first electrophoretic dimension and further improve protein coordinate assignment in 2D-gel electrophoresis. Data tables are supplied to demonstrate pI-value calibration and the effect on the assignment of protein spot coordinates. PMID:26217748

  12. pI-Control in Comparative Fluorescence Gel Electrophoresis (CoFGE) using amphoteric azo dyes

    PubMed Central

    Hanneken, Marina; Šlais, Karel; König, Simone

    2015-01-01

    Amphoteric azo dyes were used for internal control of pI values in Comparative two-dimensional Fluorescence Gel Electrophoresis (CoFGE) [1]. The 2D-gel images of separated Escherichia coli proteins as well as those of colored amphoteric dyes separated by isoelectric focussing are presented. The latter were used to correct for variation in the first electrophoretic dimension and further improve protein coordinate assignment in 2D-gel electrophoresis. Data tables are supplied to demonstrate pI-value calibration and the effect on the assignment of protein spot coordinates. PMID:26217748

  13. RegStatGel: proteomic software for identifying differentially expressed proteins based on 2D gel images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise

    2011-01-01

    Image analysis of two-dimensional gel electrophoresis is a key step in proteomic workflow for identifying proteins that change under different experimental conditions. Since there are usually large amount of proteins and variations shown in the gel images, the use of software for analysis of 2D gel images is inevitable. We developed open-source software with graphical user interface for differential analysis of 2D gel images. The user-friendly software, RegStatGel, contains fully automated as well as interactive procedures. It was developed and has been tested under Matlab 7.01. Availability The database is available for free at http://www.mediafire.com/FengLi/2DGelsoftware PMID:21904427

  14. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGESBeta

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J.

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  15. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  16. Pulsed field gel electrophoresis for dairy propionibacteria.

    PubMed

    Chuat, Victoria; de Freitas, Rosangela; Dalmasso, Marion

    2015-01-01

    Pulsed field gel electrophoresis (PFGE) is a technique using alternating electric fields to migrate high molecular weight DNA fragments with a high resolution. This method consists of the digestion of bacterial chromosomal DNA with rare-cutting restriction enzymes and in applying an alternating electrical current between spatially distinct pairs of electrodes. DNA molecules migrate at different speeds according to the size of the fragments. Among other things, this technique is considered as the "gold standard" for genotyping, genetic fingerprinting, epidemiological studies, genome size estimation, and studying radiation-induced DNA damage and repair. This chapter describes a PFGE method that can be used to differentiate dairy propionibacteria. PMID:25862063

  17. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    ERIC Educational Resources Information Center

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  18. 2-D gel electrophoresis-based proteomic analysis reveals that ormeloxifen induces G0-G1 growth arrest and ERK-mediated apoptosis in chronic myeloid leukemia cells K562.

    PubMed

    Pal, Pooja; Kanaujiya, Jitendra K; Lochab, Savita; Tripathi, Shashi B; Bhatt, Madan L B; Singh, Pradhyumna K; Sanyal, Sabyasachi; Trivedi, Arun K

    2011-04-01

    Ormeloxifen is a nonsteroidal selective estrogen receptor modulator (SERM) and has been shown to possess anticancer activities in breast and uterine cancer. Here, we show that ormeloxifen induces apoptosis in dose-dependent manner in a variety of leukemia cells, more strikingly in K562. 2-DE-gel electrophoresis of K562 cells induced with ormeloxifen showed that 57 and 30% of proteins belong to apoptosis and cell-cycle pathways, respectively. Our data demonstrate that ormeloxifen-induced apoptosis in K562 cells involves activation of extracellular signal-regulated kinases (ERKs) and subsequent cytochrome c release, leading to mitochondria-mediated caspase-3 activation. Ormeloxifen-induced apoptosis via ERK activation was drastically inhibited by prior treatment of K562 cells with ERK inhibitor PD98059. Ormeloxifen also inhibits proliferation of K562 cells by blocking them in G0-G1 phase by inhibiting c-myc promoter via ormeloxifen-induced MBP-1 (c-myc promoter-binding protein) and upregulation of p21 expression. We further show that ormeloxifen-induced apoptosis in K562 is translatable to mononuclear cells isolated from chronic myeloid leukemia (CML) patients. Thus, ormeloxifen induces apoptosis in K562 cells via phosphorylation of ERK and arrests them in G0-G1 phase by reciprocal regulation of p21 and c-myc. Therefore, inclusion of ormeloxifen in the therapy of chronic myeloid leukemia can be of potential utility. PMID:21360677

  19. Micro-size polyacrylamide gel electrophoresis system

    NASA Astrophysics Data System (ADS)

    Hinson, W. G.; Pipkin, J. L.; Anson, J. F.; Casciano, D. A.; Burns, E. R.

    1987-09-01

    The development and characterization of a micro-size two-dimensional polyacrylamide gel electrophoresis system is described. Some of the techniques which have evolved with use of the system are also discussed. This apparatus has unique features which provide advantages over other small scale units. Up to ten first- and second-dimension gels can be processed simultaneously with excellent resolution of protein regions. Consistent reproducibility is possible from protein samples as small as 400 ng and individual protein regions as small as 1 pg can be visualized by silver staining of the two-dimensional gels. Similar sensitivities are achieved in autoradiographs of 3H-labeled proteins extracted from the nuclei of cultured cells. The application of this system in conjunction with flow cytometric examination of nuclear DNA and electrostatic cell sorting of specific cell nuclei to provide homogeneous sample populations, allows subtle variations in isotope incorporation in proteins to be detected; whereas many times in generalized tissue samples these changes are masked. Also, these techniques elucidate the effects of external stimuli (chemicals, drugs, or environment) on protein synthesis and phosphorylation for analyses and comparison. Fabrication drawings are available upon request.

  20. Comparison of non-electrophoresis grade with electrophoresis grade BIS in NIPAM polymer gel preparation

    PubMed Central

    Khodadadi, Roghayeh; Khajeali, Azim; Farajollahi, Ali Reza; Hajalioghli, Parisa; Raeisi, Noorallah

    2015-01-01

    Introduction:The main objective of this study was to investigate the possibility of replacing electrophoresis cross-linker with non-electrophoresis N, N′-methylenebisacrylamide (BIS) in N-isopropyl acrylamide (NIPAM) polymer gel and its possible effect on dose response. Methods: NIPAM polymer gel was prepared from non-electrophoresis grade BIS and the relaxation rate (R2) was measured by MR imaging after exposing the gel to gamma radiation from Co-60 source. To compare the response of this gel with the one that contains electrophoresis grade BIS, two sets of NIPAM gel were prepared using electrophoresis and non-electrophoresis BIS and irradiated to different gamma doses. Results: It was found that the dose–response of NIPAM gel made from the non-electrophoresis grade BIS is coincident with that of electrophoresis grade BIS. Conclusion:Taken all, it can be concluded that the non-electrophoresis grade BIS not only is a suitable alternative for the electrophoresis grade BIS but also reduces the cost of gel due to its lower price. PMID:26457250

  1. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  2. Inexpensive and Safe DNA Gel Electrophoresis Using Household Materials

    ERIC Educational Resources Information Center

    Ens, S.; Olson, A. B.; Dudley, C.; Ross, N. D., III; Siddiqi, A. A.; Umoh, K. M.; Schneegurt, M. A.

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic…

  3. The SWISS-2DPAGE database of two-dimensional polyacrylamide gel electrophoresis, its status in 1995.

    PubMed Central

    Appel, R D; Sanchez, J C; Bairoch, A; Golaz, O; Ravier, F; Pasquali, C; Hughes, G J; Hochstrasser, D F

    1996-01-01

    SWISS-2DPAGE is a database of proteins identified on two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The current release contains 343 entries of human, yeast (Saccharomyces cerevisiae) and Escherichia coli origin, as well as virtual entries for each of the protein sequences in the SWISS-PROT database. PMID:8594575

  4. Analysis of soybean embryonic axis proteins by two-dimensional gel electrophoresis and mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for protein separation and subsequent mass spectrometry (MS) for protein identification was applied to establish a proteomic reference map for the soybean embryonic axis. Proteins were extracted from dissecte...

  5. Ocular Proteomics with Emphasis on Two-Dimensional Gel Electrophoresis and Mass Spectrometry

    PubMed Central

    2010-01-01

    The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC) are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions. PMID:21406065

  6. Transverse agarose pore gradient gel electrophoresis of DNA.

    PubMed

    Fawcett, J S; Wheeler, D; Chrambach, A

    1992-06-01

    Transverse agarose pore gradient gels were prepared on GelBond in the concentration range of nominally 0.2-1.5% SeaKem GTG agarose, using density stabilization by glycerol and incorporation of a dye to define the gel concentration at each point on the pore gradient gel. The distribution of the dye was evaluated by photography, video-acquisition and digitization of the gradient mixture and by densitometry of the gel. The gel was applied to the electrophoresis of a 1-kb standard ladder of DNA fragments, using standard submarine apparatus. The method extends to agarose gel electrophoresis the benefits of semi-automated analysis of 'Ferguson curves' described in application to polyacrylamide gel by Wheeler et al. (J. Biochem. Biophys. Methods 24, 171-180). PMID:1640052

  7. Gel Electrophoresis on a Budget to Dye for

    ERIC Educational Resources Information Center

    Yu, Julie H.

    2010-01-01

    Gel electrophoresis is one of the most important tools used in molecular biology and has facilitated the entire field of genetic engineering by enabling the separation of nucleic acids and proteins. However, commercial electrophoresis kits can cost up to $800 for each setup, which is cost prohibitive for most classroom budgets. This article…

  8. Gel Electrophoresis--The Easy Way for Students

    ERIC Educational Resources Information Center

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  9. Gel Electrophoresis of Gold-DNA Nano-Conjugates

    SciTech Connect

    Pellegrino, T.; Sperling, R.A.; Alivisatos, A.P.; Parak, W.J.

    2006-01-10

    Single stranded DNA of different lengths and different amounts was attached to colloidal phosphine stabilized Au nanoparticles. The resulting conjugates were investigated in detail by a gel electrophoresis study based on 1200 gels. We demonstrate how these experiments help to understand the binding of DNA to Au particles. In particular we compare specific attachment of DNA via gold-thiol bonds with nonspecific adsorption of DNA. The maximum number of DNA molecules that can be bound per particle was determined. We also compare several methods to used gel electrophoresis for investigating the effective diameter of DNA-Au conjugates, such as using a calibration curve of particles with known diameters and Ferguson plots.

  10. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  11. THERMAL DETECTION OF DNA AND PROTEINS DURING GEL ELECTROPHORESIS

    SciTech Connect

    R. JOHNSTON

    2000-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to try to detect unstained, untagged, unlabeled DNA bands in real-time during gel electrophoresis using simple thermal measurements. The technical and ES&H advantages to this approach could potentially be quite significant, especially given the extreme importance of gel electrophoresis to a wide variety of practical and research fields. The project was unable to demonstrate sufficient thermal sensitivity to detect DNA bands. It is clear that we still do not understand the gel electrophoresis phenomenon very well. The temperature control techniques developed during the course of this project have other useful applications.

  12. Inexpensive and safe DNA gel electrophoresis using household materials.

    PubMed

    Ens, S; Olson, A B; Dudley, C; Ross, N D; Siddiqi, A A; Umoh, K M; Schneegurt, M A

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic containers are fitted with aluminum foil electrodes and 9-V batteries to run food-grade agar-agar gels using aquarium pH buffers and then stained with gentian violet. This activity was tested in a high school biology classroom with significantly positive responses on postactivity reflective surveys. The electrophoresis activity addresses several Life Science Content Standard C criteria, including aspects of cell biology, genetics, and evolution. It also can be used to teach aspects of motion and force in the physical science classroom. PMID:22615228

  13. A method for easily customizable gradient gel electrophoresis.

    PubMed

    Miller, Andrew J; Roman, Brandon; Norstrom, Eric

    2016-09-15

    Gradient polyacrylamide gel electrophoresis is a powerful tool for the resolution of polypeptides by relative mobility. Here, we present a simplified method for generating polyacrylamide gradient gels for routine analysis without the need for specialized mixing equipment. The method allows for easily customizable gradients which can be optimized for specific polypeptide resolution requirements. Moreover, the method eliminates the possibility of buffer cross contamination in mixing equipment, and the time and resources saved with this method in place of traditional gradient mixing, or the purchase of pre-cast gels, are noteworthy given the frequency with which many labs use gradient gel SDS-PAGE. PMID:27393767

  14. Sample collection system for gel electrophoresis

    SciTech Connect

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  15. Further characterization of filarial antigens by SDS polyacrylamide gel electrophoresis

    PubMed Central

    Dissanayake, S.; Galahitiyawa, S. C.; Ismail, M. M.

    1983-01-01

    SDS (sodium dodecyl sulfate)-polyacrylamide gel electrophoresis of an antigen isolated from sera of Wuchereria bancrofti-infected patients and Setaria digitata antigen SD2-4 is reported. Both antigens showed carbohydrate (glycoprotein) staining. The W. bancrofti antigen had an apparent relative molecular mass of 35 000 while the S. digitata antigen SD2-4 migrated at the marker dye position on SDS-polyacrylamide gel electrophoresis. SDS treatment of these antigens did not abolish the precipitation reaction with antibody. In the case of W. bancrofti antigen, SDS treatment probably exposed hitherto hidden antigen epitopes. PMID:6354508

  16. Topological patterns in two-dimensional gel electrophoresis of DNA knots

    PubMed Central

    Michieletto, Davide; Marenduzzo, Davide; Orlandini, Enzo

    2015-01-01

    Gel electrophoresis is a powerful experimental method to probe the topology of DNA and other biopolymers. Although there is a large body of experimental work that allows us to accurately separate different topoisomers of a molecule, a full theoretical understanding of these experiments has not yet been achieved. Here we show that the mobility of DNA knots depends crucially and subtly on the physical properties of the gel and, in particular, on the presence of dangling ends. The topological interactions between these and DNA molecules can be described in terms of an “entanglement number” and yield a nonmonotonic mobility at moderate fields. Consequently, in 2D electrophoresis, gel bands display a characteristic arc pattern; this turns into a straight line when the density of dangling ends vanishes. We also provide a novel framework to accurately predict the shape of such arcs as a function of molecule length and topological complexity, which may be used to inform future experiments. PMID:26351668

  17. Purification of DNA Oligos by denaturing polyacrylamide gel electrophoresis (PAGE).

    PubMed

    Lopez-Gomollon, Sara; Nicolas, Francisco Esteban

    2013-01-01

    After chemical synthesis, the oligonucleotide preparation contains the desired full-length oligonucleotide but also all of the DNA molecules that were aborted during each cycle in the synthesis, and the by-products generated during the chemical reactions. The purification of oligonucleotides is a critical step for demanding applications where the exact length or sequence of the oligonucleotide is important, or for oligonucleotides longer than 50 bases. There are several methods of increasing oligonucleotide purity, the choice of which will depend on modifications of the oligonucleotides and their intended use. Polyacrylamide gel purification (PAGE purification) is the method of choice when the highest percentage of full-length oligonucleotide is desired. This chapter describes a protocol for oligonucleotide purification using denaturing polyacrylamide gel electrophoresis, and includes oligonucleotide preparation, polyacrylamide gel electrophoresis, and purification from the gel slice by two different methods: by diffusion or by electroelution. This chapter also includes recommendations as well as protocol advice. PMID:24011037

  18. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis.

    PubMed

    Heng, See Kah; Heng, Chua Kek; Puthucheary, S D

    2009-01-01

    Pulsed field gel electrophoresis (PFGE), the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time) by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used. PMID:19384038

  19. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  20. The Gel Electrophoresis Markup Language (GelML) from the Proteomics Standards Initiative

    PubMed Central

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J. Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2011-01-01

    The Human Proteome Organisation’s Proteomics Standards Initiative (HUPO-PSI) has developed the GelML data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for mass spectrometry data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications. PMID:20677327

  1. Rapid DNA sequencing by horizontal ultrathin gel electrophoresis.

    PubMed Central

    Brumley, R L; Smith, L M

    1991-01-01

    A horizontal polyacrylamide gel electrophoresis apparatus has been developed that decreases the time required to separate the DNA fragments produced in enzymatic sequencing reactions. The configuration of this apparatus and the use of circulating coolant directly under the glass plates result in heat exchange that is approximately nine times more efficient than passive thermal transfer methods commonly used. Bubble-free gels as thin as 25 microns can be routinely cast on this device. The application to these ultrathin gels of electric fields up to 250 volts/cm permits the rapid separation of multiple DNA sequencing reactions in parallel. When used in conjunction with 32P-based autoradiography, the DNA bands appear substantially sharper than those obtained in conventional electrophoresis. This increased sharpness permits shorter autoradiographic exposure times and longer sequence reads. Images PMID:1870968

  2. Comparison of protein expression profiles between three Perkinsus spp., protozoan parasites of molluscs, through 2D electrophoresis and mass spectrometry.

    PubMed

    Fernández-Boo, S; Chicano-Gálvez, E; Alhama, J; Barea, J L; Villalba, A; Cao, A

    2014-05-01

    The genus Perkinsus includes protozoan parasites of a wide range of marine molluscs worldwide, some of which have been responsible for heavy mollusc mortalities and dramatic economic losses. This study was performed with the aim of increasing the knowledge of Perkinsus spp. proteome. Proteins extracted from in vitro cultured cells of three species of this genus, P. marinus, P. olseni and P. chesapeaki, were analysed using 2D electrophoresis. Four gels from each species were produced. Qualitative and quantitative comparisons among gels were performed with Proteamweaver software. Cluster analysis grouped the four gels of each Perkinsus sp.; furthermore, P. marinus and P. olseni gels were grouped in a cluster different from P. chesapeaki. Around 2000 spots of each species were considered, from which 213 spots were common to the 3 species; P. chesapeaki and P. marinus shared 310 spots, P. chesapeaki and P. olseni shared 315 spots and P. marinus and P. olseni shared 242 spots. A number of spots were exclusive of each Perkinsus species: 1161 spots were exclusive of P. chesapeaki, 1124 of P. olseni and 895 of P. marinus. A total of 84 spots, including common and species-specific ones, were excised from the gels and analysed using MALDI-TOF and nESI-IT (MS/MS) techniques. Forty-two spots were successfully sequenced, from which 28 were annotated, most of them clustered into electron transport, oxidative stress and detoxification, protein synthesis, carbohydrate metabolism, signal transduction, metabolic process and proteolysis. PMID:24607654

  3. The trajectories of spheres during agarose gel electrophoresis.

    PubMed

    Griess, G A; Harris, R A; Serwer, P

    1993-01-01

    To develop a physical description of the gel-induced retardation of spheres during gel electrophoresis, the microscopic motion of single electrically charged latex spheres is statistically quantified here, by digital image analysis. To obtain adequate resolution in space, comparatively large spheres, 240 nm in radius, are used. The following observations are made during electrophoresis in a 0.2% agarose gel at 22 degrees C: (a) When a comparatively high field (3.0 V cm-1) is used, inelastic collisions result in field-induced trapping of spheres; no elastic collisions are observed. (b) Reduction of the field from 3.0 to 0.0 V cm-1 results in reverse migration of previously trapped spheres. (c) In the absence of trapping, the electrical field does not cause an alteration in the tortuosity of motion (i.e. motion in a field-perpendicular direction). (d) When results are obtained for a constant time between images (0.2 s), gel-dependent deviations from a true random walk are not observed in the absence of trapping. (e) When results are obtained as a function of time between images, significant gel-dependent deviation from a random walk is observed. In the absence of trapping, the data presented here indicate that retardation is derived primarily from dissipative processes that are concentrated near gel fibers. However, steric effects have not yet been distinguished from hydrodynamic effects. PMID:8199223

  4. Thermally reversible gels in electrophoresis. I - Matrix characterization

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Snyder, Robert S.

    1988-01-01

    Two series of thermally reversible hydrogen-bonded gels have been characterized: (5 pct) PVA-(4 pct) PEG and (5 pct) PVA-(0.04 pct) borate gels. They both have extremely low melting points (16-17 C) and could be of potential interest for recovery of proteins after preparative electrophoresis. The PVA-borate gels can be exploited in the pH range 7-11 by progressively increasing the borate content in the pH interval 8 to 7 and concomitantly decreasing the borate levels in the pH zone 8 to 11. It is hypothesized that the low melting point of these gels is due to the fact that they are sparingly and sparsely hydrogen bonded along the PVA chain: on the average, 1 OH group out of 3 or 4 OH groups in the PVA polymer should be engaged in H-bond formation.

  5. Polyacrylamide Gel Electrophoresis for Purification of Large Amounts of RNA.

    PubMed

    Meyer, Mélanie; Masquida, Benoît

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) constitutes a powerful technique for the efficient purification of RNA molecules dedicated to applications that require high purity levels. PAGE allows for the fractionation of RNA obtained from cell extracts, chemical or enzymatic synthesis, or modification experiments. Native or denaturing conditions can be chosen for analytical or preparative-scale separations and the nucleotide resolution can be tuned by changing the percentage and reticulation of the gel material. In this protocol, we focus on the preparation of milligram-scale amounts of ~200 nucleotides (nt) RNA molecules that were used in subsequent crystallization experiments. PMID:26227037

  6. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis

    PubMed Central

    2014-01-01

    Gel- based proteomics is one of the most versatile methods for fractionating protein complexes. Among these methods, two dimensional- polyacrylamide gel electrophoresis (2-DE) represents a mainstay orthogonal approach, which is popularly used to simultaneously fractionate, identify, and quantify proteins when coupled with mass spectrometric identification or other immunological tests. Although 2-DE was first introduced more than three decades ago, several challenges and limitations to its utility still exist. This review discusses the principles of 2-DE as well as both recent methodological advances and new applications. PMID:24735559

  7. The electrophoresis of transferrins in urea/polyacrylamide gels.

    PubMed Central

    Evans, R W; Williams, J

    1980-01-01

    The denaturation of transferrin by urea has been studied by (a) electrophoresis in polyacrylamide gels incorporating a urea gradient, (b) measurements of the loss of iron-binding capacity and (c) u.v. difference spectrometry. In human serum transferrin and hen ovotransferrin the N-terminal and C-terminal domains of the iron-free protein were found to denature at different urea concentrations. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 7. PMID:7213345

  8. Band broadening of DNA fragments isolated by polyacrylamide gel electrophoresis in capillary electrophoresis.

    PubMed

    Kaneta, Takashi; Ogura, Takehito; Yamato, Shuhei; Imasaka, Totaro

    2012-02-01

    Polyacrylamide gel electrophoresis (PAGE) is used frequently for isolation and purification of DNA fragments. In the present study, DNA fragments extracted from polyacrylamide gels showed significant band broadening in capillary electrophoresis (CE). A pHY300PLK (a shuttle vector functioning in Escherichia coli and Bacillus subtilis) marker, which contained nine fragments ranging from 80 to 4870 bp, was separated by PAGE, and each fragment was isolated by phenol/chloroform extraction and ethanol precipitation. After extraction from the polyacrylamide gel, the peaks of the isolated DNA fragments exhibited band broadening in CE, where a linear poly(ethylene oxide) was used as a sieving matrix. The theoretical plate numbers of the DNA fragments contained in the pHY300PLK marker were >10(6) for all the fragments before extraction. However, the DNA fragments extracted from the polyacrylamide gel showed decreased theoretical plate numbers (5-20 times smaller). The degradation of the theoretical plate number was significant for middle sizes of the DNA fragments ranging from 489 to 1360 bp, whereas the largest and smallest fragments (80 and 4870 bp) had no obvious influence. The band broadening was attributed to contamination of the DNA fragments by polyacrylamide fibers during the separation and extraction process. PMID:22258810

  9. Resolution and identification of major peanut allergens using a combination of fluorescence two-dimensional differential gel electrophoresis, western blotting and Q-TOF mass spectrometry.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut allergy is triggered by several proteins known as allergens. The matching resolution and identification of major peanut allergens in 2D protein maps, was accomplished by the use of fluorescence two-dimensional differential gel electrophoresis (2D DIGE), Western blotting and quadrupole time-of...

  10. Comparative proteomics of E. coli O157:H7: two-dimensional gel electrophoresis vs. two-dimensional liquid chromatography separation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accepted method for comparing bacterial proteomes has traditionally been two-dimensional gel electrophoresis (2-D GE). However, in recent years, new procedures for protein separation have been introduced. One of these new procedures utilizes column-based liquid chromatography (2-D LC) separati...

  11. Electrophoresis and orientation of F-actin in agarose gels.

    PubMed Central

    Borejdo, J; Ortega, H

    1989-01-01

    F-Actin was electrophoresed on agarose gels. In the presence of 2 mM MgCl2 and above pH 8.5 F-actin entered 1% agarose; when the electric field was 2.1 V/cm and the pH was 8.8, F-actin migrated through a gel as a single band at a rate of 2.5 mm/h. Labeling of actin with fluorophores did not affect its rate of migration, but an increase in ionic strength slowed it down. After the electrophoresis actin was able to bind phalloidin and heavy meromyosin (HMM) and it activated Mg2+-dependent ATPase activity of HMM. The mobility of F-actin increased with the rise in pH. Acto-S-1 complex was also able to migrate in agarose at basic pH, but at a lower rate than F-actin alone. The orientation of fluorescein labeled F-actin and of fluorescein labeled S-1 which formed rigor bonds with F-actin was measured during the electrophoresis by the fluorescence detected linear dichroism method. The former showed little orientation, probably because the dye was mobile on the surface of actin, but we were able to measure the orientation of the absorption dipole of the dye bound to S-1 which was attached to F-actin, and found that it assumed an orientation largely parallel to the direction of the electric field. These results show that actin can migrate in agarose gels in the F form and that it is oriented during the electrophoresis. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:2528384

  12. Analysis of mutations using PCR and denaturing gradient gel electrophoresis

    SciTech Connect

    Cariello, N.F.; Swenberg, J.A. Duke Univ., Durham, NC ); DeBellis, A.; Skopek, T.R. )

    1991-01-01

    Denaturing gradient gel electrophoresis (DGGE) separates DNA molecules based on primary sequence. Under the appropriate conditions, all base pair (bp) substitutions, frameshifts, and deletions less than about 10 bp can be resolved from the wild type sequence using DGGE. Polymerase chain reaction (PCR) permits facile amplification of a given region of the genome. The authors have combined PCR and DGGE to: (1) localize mutations in the X-linked human androgen receptor gene; (2) analyze thousands of thioguanine-resistant mutants simultaneously; (3) examine the fidelity of several DNA polymerases used in PCR.

  13. Separation of radiolabelled glycosaminoglycan oligosaccharides by polyacrylamide-gel electrophoresis.

    PubMed Central

    Hampson, I N; Gallagher, J T

    1984-01-01

    Glycosaminoglycan oligosaccharides generated by treatment of biosynthetically radiolabelled dermatan sulphate and hyaluronic acid with chondroitin AC lyase or testicular hyaluronidase may be resolved into a series of discrete bands by polyacrylamide-gel electrophoresis. Bands were identified by fixation in glacial acetic acid containing 20% (w/v) 2,5-diphenyloxazole followed by fluorography. The bands represented glycans which differed in size by one disaccharide unit. For the larger oligosaccharides (decasaccharides and above) of similar charge: mass ratio, there was a linear relationship between electrophoretic mobility and log Mr. However, the smaller species showed anomalous migration patterns. Consideration of the structures of the fragments produced by the different enzyme treatments suggests that copolymeric and homopolymeric oligosaccharides may be separated by polyacrylamide-gel electrophoresis. There are many potential applications of this technique, foremost amongst them being studies on the molecular size heterogeneity and patterns of enzyme-mediated depolymerization of native glycosaminoglycan chains and investigations into rates of polymer chain elongation and post-polymerization modification reactions so essential to glycosaminoglycan function. Images Fig. 1. Fig. 2. Fig. 5. Fig. 6. PMID:6477495

  14. GELBANK : A database of annotated two-dimensional gel electrophoresis patterns of biological systems with completed genomes.

    SciTech Connect

    Babnigg, G.; Giometti, C. S.; Biosciences Division

    2004-01-01

    GELBANK is a publicly available database of two-dimensional gel electrophoresis (2DE) gel patterns of proteomes from organisms with known genome information (available at and ftp://bioinformatics.anl.gov/gelbank/). Currently it includes 131 completed, mostly microbial proteomes available from the National Center for Biotechnology Information. A web interface allows the upload of 2D gel patterns and their annotation for registered users. The images are organized by species, tissue type, separation method, sample type and staining method. The database can be queried based on protein or 2DE-pattern attributes. A web interface allows registered users to assign molecular weight and pH gradient profiles to their own 2D gel patterns as well as to link protein identifications to a given spot on the pattern. The website presents all of the submitted 2D gel patterns where the end-user can dynamically display the images or parts of images along with molecular weight, pH profile information and linked protein identification. A collection of images can be selected for the creation of animations from which the user can select sub-regions of interest and unlimited 2D gel patterns for visualization. The website currently presents 233 identifications for 81 gel patterns for Homo sapiens, Methanococcus jannaschii, Pyro coccus furiosus, Shewanella oneidensis, Escherichia coli and Deinococcus radiodurans.

  15. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). PMID:27251892

  16. The Application of Pulsed Field Gel Electrophoresis in Clinical Studies

    PubMed Central

    Parizad, Eskandar Gholami; Valizadeh, Azar

    2016-01-01

    Pulsed-field gel electrophoresis is a method applied in separating large segments of deoxyribonucleotide using an alternating and cross field. In a uniform magnetic field, components larger than 50kb pass a route through the gel and since the movement of DNA (Deoxyribonucleic acid) molecules are in a Zigzag form, separation of DNAs as bands carried out better via gel. PFGE in microbiology is a standard method which is used for typing of bacteria. It is also a very useful tool in epidemiological studies and gene mapping in microbes and mammalian cell, also motivated development of large-insert cloning system such as bacterial and yeast artifical chromosomes. In this method, close and similar species in terms of genetic patterns show alike profiles regarding DNA separation, and those ones which don’t have similarity or are less similar, reveal different separation profiles. So this feature can be used to determine the common species as the prevalence agent of a disease. PFGE can be utilized for monitoring and evaluating different micro-organisms in clinical samples and existing ones in soil and water. This method can also be a reliable and standard method in vaccine preparation. In recent decades, PFGE is highly regarded as a powerful tool in control, prevention and monitoring diseases in different populations. PMID:26894068

  17. Protein Separation by Capillary Gel Electrophoresis: A Review

    PubMed Central

    Zhu, Zaifang; Lu, Joann J.; Liu, Shaorong

    2011-01-01

    Capillary gel electrophoresis (CGE) has been used for protein separation for more than two decades. Due to the technology advancement, current CGE methods are becoming more and more robust and reliable for protein analysis, and some of the methods have been routinely used for the analysis of protein-based pharmaceuticals and quality controls. In light of this progress, we survey 147 papers related to CGE separations of proteins and present an overview of this technology. We first introduce briefly the early development of CGE. We then review the methodology, in which we specifically describe the matrices, coatings, and detection strategies used in CGE. CGE using microfabricated channels and incorporation of CGE with two-dimensional protein separations are also discussed in this section. We finally present a few representative applications of CGE for separating proteins in real-world samples. PMID:22122927

  18. [Detection of picobirnaviruses by electrophoresis of RNA in polyacrylamide gel].

    PubMed

    Novikova, N A; Epifanova, N V; Fedorova, O F; Golitsyna, L N; Kupriianova, N V

    2003-01-01

    Double-segment profiles typical of picobirnavirus (PBV) were detected (during 1994-2001) in nucleic acids extracted from feces of children (3 cases) and calf (1 case) with diarrhea by using the method of electrophoresis. The human genomic PBV segments migrated in the polyacrylamide gel (PAAG) as dsRNA segments sized 1.7 and 2.4 kbp for small and large segments, respectively; the similar calf sizes were 1.5 and 2.6 kbp. PBVs were detected in various places of the Nizhny Novgorod Region and at different time periods. It was for the first time that the PBV circulation was proven to be present in Russia's territory. However, their association with diarrhea was not reliably established, and the pathogenic PBV potential needs further investigations. PMID:14708231

  19. Simian Virus 40 Deoxyribonucleic Acid Synthesis: Analysis by Gel Electrophoresis

    PubMed Central

    Tegtmeyer, Peter; Macasaet, Francisco

    1972-01-01

    An agarose-gel electrophoresis technique has been developed to study simian virus 40 deoxyribonucleic acid (DNA) synthesis. Superhelical DNA I, relaxed DNA II, and replicative intermediate (RI) molecules were clearly resolved from one another for analytical purposes. Moreover, the RI molecules could be identified as early or late forms on the basis of their electrophoretic migration in relation to that of DNA II. The technique has been utilized to study the kinetics of simian virus 40 DNA synthesis in pulse and in pulse-chase experiments. The average time required to complete the replication of prelabeled RI molecules and to convert them into DNA I was approximately 10 min under the experimental conditions employed. PMID:4343542

  20. Application of multilocus enzyme gel electrophoresis to Haemophilus influenzae.

    PubMed Central

    Porras, O; Caugant, D A; Lagergård, T; Svanborg-Edén, C

    1986-01-01

    Multilocus enzyme electrophoresis was adapted to the study of Haemophilus influenzae. Protein extracts from sonicated whole bacteria were subjected to starch gel electrophoresis. After staining with substrates, the position of each isoenzyme (electromorph) was registered. Each isolate was assigned an electrophoretic type (ET) by the combination of electromorphs for the enzymes stained. Twenty-seven enzymes were tested; 12 were expressed in H. influenzae. Six enzymes were selected for subsequent study: malate dehydrogenase (MDH), phenylalanylleucine peptidase (PE2), 6-phosphogluconate dehydrogenase (6PG), adenylate kinase (AK), glucose 6-phosphate dehydrogenase (G6P), and phosphoglucose isomerase (PGI). They were polymorphic and occurred in all isolates. Six electromorphs were found for PE2, G6P, and PGI, five for MDH, four for 6PG, and three for AK. PE2, G6P, and PGI contributed most of the ET resolution (48 of 49 ETs). Multilocus enzyme electrophoresis showed several advantages over previous typing techniques. An ET could be assigned to both typable and nontypable (NT) isolates. The technique was powerful in resolving differences among isolates. The 94 isolates comprised 49 ETs, five biotypes, and six capsular types and NT isolates. Strains known to be related expressed the same ET, e.g., RAB b+ and b-, ET12; Ma a+ and a-, ET1. ET variability among type b isolates was low; 26 of 28 clinical isolates expressed ET14; 2 of 28 expressed ET13 and ET15, differing from ET14 by one electromorph each. In contrast, the 47 NT isolates comprised 38 different ETs. No ETs were shared between non-type b capsulated strains and type b or NT strains. Interestingly, five NT isolates expressed the same ET as type b strains. (iv) Strains of the same capsular type but different biotypes expressed different ETs. ET determinations will thus be useful in studying the epidemiology and evolution of H. influenzae. Images PMID:3522433

  1. 2D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases.

    PubMed

    Sheta, Essam A; Appel, Stanley H; Goldknopf, Ira L

    2006-02-01

    This review addresses the challenges of neuroproteomics and recent progress in biomarkers and tests for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The review will discuss how the application of quantitative 2D gel electrophoresis, combined with appropriate single-variable and multivariate biostatistics, allows for selection of disease-specific serum biomarkers. It will also address how the use of large cohorts of specifically targeted patient blood serum samples and complimentary age-matched controls, in parallel with the use of selected panels of these biomarkers, are being applied to the development of blood tests to specifically address unmet pressing needs in the differential diagnosis of these diseases, and to provide potential avenues for mechanism-based drug targeting and treatment monitoring. While exploring recent findings in this area, the review discusses differences in critical pathways of immune/inflammation and amyloid formation between Parkinson's disease and amyotrophic lateral sclerosis, as well as discernable synergistic relationships between these pathways that are revealed by this approach. The potential for pathway measurement in blood tests for differential diagnosis, disease burden and therapeutic monitoring is also outlined. PMID:16445350

  2. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.

    PubMed

    Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656

  3. Rifaximin-Mediated Changes to the Epithelial Cell Proteome: 2-D Gel Analysis

    PubMed Central

    Schrodt, Caroline; McHugh, Erin E.; Gawinowicz, Mary Ann; DuPont, Herbert L.; Brown, Eric L.

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656

  4. Stability measurements of antisense oligonucleotides by capillary gel electrophoresis.

    PubMed

    Bruin, G J; Börnsen, K O; Hüsken, D; Gassmann, E; Widmer, H M; Paulus, A

    1995-08-11

    The approach of using antisense oligonucleotides as potential drugs is based on hybridization of a short chemically-modified oligonucleotide with complementary cellular DNA or RNA sequences. A critical question is the stability of chemically modified antisense oligonucleotides in cellular environments. In a model system, resistance against various nucleases was evaluated by capillary gel electrophoresis (CGE). For some of the samples, matrix assisted laser desorption and ionization mass spectrometry (MALDI-MS) was used as an additional analytical tool to perform stability measurements. Using CGE, the enzymatic degradation of single nucleotides from the oligomer can be followed after different incubation times. 10% T polyacrylamide gels give baseline resolution for oligonucleotides ranging between 5 and 30 bases in length. The kinetic influence of a specific nuclease concentration and the antisense oligonucleotide structure on the cleavage reaction are discussed. Also, a simple desalting method to improve the injection efficiency and sensitivity of the method are described. Examples of measurements of chemically modified antisense 19-mers are presented. PMID:7581844

  5. DNA Length Ranges Exhibiting Distinct Separation Mechanisms in Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Beheshti, A.; van Winkle, D. H.; Rill, R. L.

    2003-03-01

    Electrophoresis was performed on double stranded DNA ranging from 200 to 194,000 bp in agarose gel concentrations from 0.4% - 1.3%. The electric field was varied from 0.62 to 6.21 V/cm. A wide range of electric fields and gel concentrations were used to study how the new interpolation equation, frac1μ(L) = frac1μL - (frac1μL - frac1μ_s)e^-L/γ (where μ_L, μ_s, and γ are independent free fitting parameters), helps to distinguish among different mechanisms of molecular transport. This exponential relation fits well when there is a smooth transition from Ogston sieving to reptation. These transitions are distinguished by so-called ``reptation plots" (plotting 3μ L/μ_rc vs. L) (J. Rousseau, G. Drouin, and G. W. Slater, Phys Rev Lett. 1997, 79, 1945-1948). Fits deviate from the data more than two characteristic trends are observed in the reptation plots. The failure of the fits to follow the data appears to be a consequence of another separation mechanism, ``entropic trapping," occurring between the sieving and reptation regimes. The boundaries between length and field ranges where different separation mechanisms dominate are extracted from reptation plots of the best fits and the data. ``Phase diagrams" expressing these boundaries are derived.

  6. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate

    SciTech Connect

    Lacks, S.A.; Springhorn, S.S.

    1980-08-10

    A number of enzymes, including amylases, dehydrogenases, and proteases, were shown to be renaturable after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Enzyme activity was detected in situ by action on substrates introduced into the gel and subsequent staining of either the product or unreacted substrate. Enzymes appeared to recover activity as soon as the detergent diffused out of the gel. Renatured enzymes were retained in gels after electrophoresis longer than native enzymes which had been subjected to electrophoresis in the absence of detergent. Re-electrophoresis of the renatured enzymes showed that part of the retained activity was physically anchored to the gel, possibly by the folding of polypeptides around the gel matrix as the enzymes were renatured.

  7. Adaptation of a 2D in-gel kinase assay to trace phosphotransferase activities in the human pathogen Leishmania donovani.

    PubMed

    Schmidt-Arras, Dirk; Leclercq, Olivier; Gherardini, Pier Federico; Helmer-Citterich, Manuela; Faigle, Wolfgang; Loew, Damarys; Späth, Gerald F

    2011-08-24

    The protozoan parasite Leishmania donovani undergoes various developmental transitions during its infectious cycle that are triggered by environmental signals encountered inside insect and vertebrate hosts. Intracellular differentiation of the pathogenic amastigote stage is induced by pH and temperature shifts that affect protein kinase activities and downstream protein phosphorylation. Identification of parasite proteins with phosphotransferase activity during intracellular infection may reveal new targets for pharmacological intervention. Here we describe an improved protocol to trace this activity in L. donovani extracts at high resolution combining in-gel kinase assay and two-dimensional gel electrophoresis. This 2D procedure allowed us to identify proteins that are associated with amastigote ATP-binding, ATPase, and phosphotransferase activities. The 2D in-gel kinase assay, in combination with recombinant phospho-protein substrates previously identified by phospho-proteomics analyses, provides a novel tool to establish specific protein kinase-substrate relationships thus improving our understanding of Leishmania signal transduction with relevance for future drug development. PMID:21443974

  8. Two-Dimensional Gel Electrophoresis: Discovering Biomolecules for Environmental Bioremediation

    NASA Astrophysics Data System (ADS)

    Singh, Om V.; Chandel, Anuj K.

    Environmental contamination has been viewed as an ecological malaise for which bioremediation can be prescribed as a “perfect medicine.” The solution to the problems with bioremediation lies in analyzing to what extent the microbes’ physiological machinery contributes to the degradation process and which biomolecules and their mechanisms are responsible for regulatory factors within the degradation system, such as protein, metabolite, and enzymatic chemical transformation. In the post-genomic era, recent advances in proteomics have allowed us to elucidate many complex biological mechanisms. Two-dimensional gel electrophoresis (2DE) in conjunction with mass spectrometry (MS) can be utilized to identify the biomolecules and their molecular mechanisms in bioremediation. A set of highly abundant global proteins over a pI range 4-7 was separated and compared by size fractionation (25-100 kDa) on 2DE. We identified a set of catabolic proteins, enzymes, and heat shock molecular chaperones associated with the regulatory network that was found to be overexpressed under phenol-stressed conditions. This chapter also offers optimized ideal directions for 2DE, followed by easy-to-follow directions for a protein identification strategy using MALDI-TOF and targeting novel proteins/enzymes for a universal set of experiments.

  9. Misincorporation during DNA synthesis, analyzed by gel electrophoresis.

    PubMed Central

    Hillebrand, G G; McCluskey, A H; Abbott, K A; Revich, G G; Beattie, K L

    1984-01-01

    A method has been developed for simultaneous comparison of the propensity of a DNA polymerase to misincorporate at different points on a natural template-primer. In this method elongation of a [5'-32P] primer, annealed to a bacteriophage template strand, is carried out in the presence of only three dNTPs (highly purified by HPLC). Under these conditions the rate of primer elongation (monitored by gel electrophoresis/autoradiography) is limited by the rate of misincorporation at template positions complementary to the missing dNTP. Variations in the rate of elongation (revealed by autoradiographic banding patterns) reflect variations in the propensity for misincorporation at different positions along the template. The effect on primer elongation produced by addition of a chemically modified dNTP to 'minus' reactions reveals the mispairing potential of the modified nucleotide during DNA synthesis. By use of this electrophoretic assay of misincorporation we have demonstrated that the fidelity of E. coli DNA polymerase I varies greatly at different positions along a natural template, and that BrdUTP and IodUTP can be incorporated in place of dCTP during chain elongation catalyzed by this enzyme. Images PMID:6326053

  10. The state of the art in the analysis of two-dimensional gel electrophoresis images

    PubMed Central

    Berth, Matthias; Moser, Frank Michael; Kolbe, Markus

    2007-01-01

    Software-based image analysis is a crucial step in the biological interpretation of two-dimensional gel electrophoresis experiments. Recent significant advances in image processing methods combined with powerful computing hardware have enabled the routine analysis of large experiments. We cover the process starting with the imaging of 2-D gels, quantitation of spots, creation of expression profiles to statistical expression analysis followed by the presentation of results. Challenges for analysis software as well as good practices are highlighted. We emphasize image warping and related methods that are able to overcome the difficulties that are due to varying migration positions of spots between gels. Spot detection, quantitation, normalization, and the creation of expression profiles are described in detail. The recent development of consensus spot patterns and complete expression profiles enables one to take full advantage of statistical methods for expression analysis that are well established for the analysis of DNA microarray experiments. We close with an overview of visualization and presentation methods (proteome maps) and current challenges in the field. PMID:17713763

  11. Insight of Saffron Proteome by Gel-Electrophoresis.

    PubMed

    Paredi, Gianluca; Raboni, Samanta; Marchesani, Francesco; Ordoudi, Stella A; Tsimidou, Maria Z; Mozzarelli, Andrea

    2016-01-01

    Saffron is a spice comprised of the dried stigmas and styles of Crocus sativus L. flowers and, since it is very expensive, it is frequently adulterated. So far, proteomic tools have never been applied to characterize the proteome of saffron or identify possible cases of fraud. In this study, 1D-Gel Electrophoresis was carried out to characterize the protein profile of (i) fresh stigmas and styles of the plant; (ii) dried stigmas and styles from different geographical origins (Spanish, Italian, Greek and Iranian) that had been stored for various periods of time after their processing; and (iii) two common plant adulterants, dried petals of Carthamus tinctorius L. and dried fruits of Gardenia jasminoides Ellis. A selective protein extraction protocol was applied to avoid interference from colored saffron metabolites, such as crocins, during electrophoretic analyses of saffron. We succeeded in separating and assigning the molecular weights to more than 20 proteins. In spite of the unavailability of the genome of saffron, we were able to identify five proteins by Peptide Mass Fingerprinting: phosphoenolpyruvate carboxylase 3, heat shock cognate 70 KDa protein, crocetin glucosyltransferase 2, α-1,4-glucan-protein synthase and glyceraldehydes-3-phosphate dehydrogenase-2. Our findings indicate that (i) few bands are present in all saffron samples independently of origin and storage time, with amounts that significantly vary among samples and (ii) aging during saffron storage is associated with a reduction in the number of detectable bands, suggesting that proteases are still active. The protein pattern of saffron was quite distinct from those of two common adulterants, such as the dried petals of Carthamus tinctorius and the dried fruits of Gardenia jasminoides indicating that proteomic analyses could be exploited for detecting possible frauds. PMID:26840283

  12. A versatile polyacrylamide gel electrophoresis based sulfotransferase assay

    PubMed Central

    2010-01-01

    Background Sulfotransferases are a large group of enzymes that regulate the biological activity or availability of a wide spectrum of substrates through sulfation with the sulfur donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS). These enzymes are known to be difficult to assay. A convenient assay is needed in order to better understand these enzymes. Results A universal sulfotransferase assay method based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is described. This assay has been successfully applied to substrates as small as α-naphthol and as big as proteoglycans. As examples, we present the assays for recombinant human CHST4, TPST1, CHST3 and HS6ST1. In order to assess whether a small molecule can be applicable to this type of assay, a method to estimate the relative mobility of a molecule to PAPS is also presented. The estimated relative mobilities of various sulfated small molecules generated by SULT1A1, SULT1E1, SULT2A1 and CHST4 are in the range of ± 0.2 of the actual relative mobilities. Conclusion The versatility of the current method comes from the ability that SDS-PAGE can separate proteins and small molecules according to different parameters. While mobilities of proteins during SDS-PAGE are inversely related to their sizes, mobilities of small molecules are positively related to their charge/mass ratios. The predicted relative mobility of a product to PAPS is a good indicator of whether a sulfotransferase can be assayed with SDS-PAGE. Because phosphorylation is most similar to sulfation in chemistry, the method is likely to be applicable to kinases as well. PMID:20146816

  13. Isolation, identification and characterisation of starch-interacting proteins by 2-D affinity electrophoresis.

    PubMed

    Kosar-Hashemi, Behjat; Irwin, Jennifer A; Higgins, Jody; Rahman, Sadequr; Morell, Matthew K

    2006-05-01

    A 2-D affinity electrophoretic technique (2-DAE) has been used to isolate proteins that interact with various starch components from total barley endosperm extracts. In the first dimension, proteins are separated by native PAGE. The second-dimensional gel contains polysaccharides such as amylopectin and glycogen. The migration of starch-interacting proteins in this dimension is determined by their affinity towards a particular polysaccharide and these proteins are therefore spatially separated from the bulk of proteins in the crude extract. Four distinct proteins demonstrate significant affinity for amylopectin and have been identified as starch branching enzyme I (SBEI), starch branching enzyme IIa (SBEIIa), SBEIIb and starch phosphorylase using polyclonal antibodies and zymogram activity analysis. In the case of starch phosphorylase, a protein spot was excised from a 2-DAE polyacrylamide gel and analysed using Q-TOF MS/MS, resulting in the alignment of three internal peptide sequences with the known sequence of the wheat plastidic starch phosphorylase isoform. This assignment was confirmed by the determination of the enzyme's function using zymogram analysis. Dissociation constants (Kd) were calculated for the three enzymes at 4 degrees C and values of 0.20, 0.21 and 1.3 g/L were determined for SBEI, SBEIIa and starch phosphorylase, respectively. Starch synthase I could also be resolved from the other proteins in the presence of glycogen and its identity was confirmed using a polyclonal antibody and by activity analysis. The 2-DAE method described here is simple, though powerful, enabling protein separation from crude extracts on the basis of function. PMID:16645949

  14. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.

    PubMed

    Suriano, R; Griffini, G; Chiari, M; Levi, M; Turri, S

    2014-02-01

    Two-dimensional (2-D) gel electrophoresis currently represents one of the most standard techniques for protein separation. In addition to the most commonly employed polyacrylamide crosslinked hydrogels, acrylamide-agarose copolymers have been proposed as promising systems for separation matrices in 2-D electrophoresis, because of the good resolution of both high and low molecular mass proteins made possible by careful control and optimization of the hydrogel pore structure. As a matter of fact, a thorough understanding of the nature of the hydrogel pore structure as well as of the parameters by which it is influenced is crucial for the design of hydrogel systems with optimal sieving properties. In this work, a series of acrylamide-based hydrogels covalently crosslinked with different concentrations of allyl agarose (0.2-1%) is prepared and characterized by creep-recovery measurements, dynamic rheology and tensile tests, in the attempt to gain a clearer understanding of structure-property relationships in crosslinked polyacrylamide-based hydrogels. The rheological and mechanical properties of crosslinked acrylamide-agarose hydrogels are found to be greatly affected by crosslinker concentration. Dynamic rheological tests show that hydrogels with a percentage of allyl agarose between 0.2% and 0.6% have a low density of elastically effective crosslinks, explaining the good separation of high molecular mass proteins in 2-D gel electrophoresis. Over the same range of crosslinker concentration, creep-recovery measurements reveal the presence of non-permanent crosslinks in the hydrogel network that justifies the good resolution of low molecular mass proteins as well. In tensile tests, the hydrogel crosslinked with 0.4% of allyl agarose exhibits the best results in terms of mechanical strength and toughness. Our results show how the control of the viscoelastic and the mechanical properties of these materials allow the design of mechanically stable hydrogels with improved

  15. Two-dimensional difference gel electrophoresis (DIGE) analysis of sera from visceral leishmaniasis patients

    PubMed Central

    2011-01-01

    Introduction Visceral leishmaniasis is a parasitic infection caused by Lesihmania donovani complex and transmitted by the bite of the phlebotomine sand fly. It is an endemic disease in many developing countries with more than 90% of the cases occurring in Bangladesh, India, Nepal, Sudan, Ethiopia and Brazil. The disease is fatal if untreated. The disease is conventionally diagnosed by demonstrating the intracellular parasite in bone marrow or splenic aspirates. This study was carried out to discover differentially expressed proteins which could be potential biomarkers. Methods Sera from six visceral leishmaniasis patients and six healthy controls were depleted of high abundant proteins by immunodepletion. The depleted sera were compared by 2-D Difference in gel electrophoresis (DIGE). Differentially expressed proteins were identified the by tandem mass spectrometry. Three of the identified proteins were further validated by western blotting. Results This is the first report of serum proteomics study using quantitative Difference in gel electrophoresis (DIGE) in visceral leishmaniasis. We identified alpha-1-acidglycoprotein and C1 inhibitor as up regulated and transthyretin, retinol binding protein and apolipoprotein A-I as down regulated proteins in visceral leishmaniasis sera in comparison with healthy controls. Western blot validation of C1 inhibitor, transthyretin and apolipoprotein A-I in a larger cohort (n = 29) confirmed significant difference in the expression levels (p < 0.05). Conclusions In conclusion, DIGE based proteomic analysis showed that several proteins are differentially expressed in the sera of visceral leishmaniasis. The five proteins identified here have potential, either independently or in combination, as prognostic biomarkers. PMID:21906353

  16. Electrophoresis of proteins and protein-protein complexes in native polyacrylamide gels using a horizontal gel apparatus.

    PubMed

    Su, C; Wang, F; Ciolek, D; Pan, Y C

    1994-11-15

    Electrophoresis of proteins and protein-protein complexes in polyacrylamide gels under native conditions using a horizontal gel apparatus is described. The advantage of this system is that it permits the detection of both negatively and positively charged proteins as well as protein-protein complexes in the same gel. During electrophoresis, a continuous gel sandwiched between two glass plates is placed horizontally on the platform and submerged in a reservoir buffer. The sample wells are made along the center of the gel, allowing positively and negatively charged proteins to migrate toward the cathode and anode, respectively. Several proteins with varying molecular weights and isoelectric point (pI) values and pairs of proteins capable of forming protein-protein complexes were chosen as model systems to illustrate the methodology. The effects of several parameters on the performance of the gel system including protein molecular weight, pI, and gel concentration were also examined and the results obtained by this method are comparable to those obtained by the vertical system. Following electrophoresis, both negatively and positively charged proteins as well as protein-protein complexes can be transferred by electroblotting onto polyvinylidene difluoride membranes for further analyses. PMID:7695108

  17. In-gel staining of proteins in native polyacrylamide gel electrophoresis using meso-tetrakis(4-sulfonatophenyl) porphyrin.

    PubMed

    Divakar, K; Devi, G Nandhini; Gautam, Pennathur

    2012-01-01

    Protein identification in polyacrylamide gel electrophoresis (PAGE) requires post-electrophoretic steps like fixing, staining, and destaining of the gel, which are time-consuming and cumbersome. A new method for direct visualization of protein bands in PAGE has been developed using meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) as a dye without the need for any post-electrophoretic steps; thus, separation and recovery of enzymes become much easier for further analysis. Activity staining was carried out to show that the biochemical activity of the enzymes was preserved after electrophoresis. PMID:22585523

  18. In-gel staining of proteins in native poly acryl amide gel electrophoresis using tetrakis(4-sulfonato phenyl)porphyrin.

    PubMed

    Divakar, Kalivarathan; Sujatha, Vijayan; Barath, Sridhar; Srinath, Krishnamurthy; Gautam, Pennathur

    2011-01-01

    Protein identification in polyacrylamide gel electrophoresis (PAGE) requires post-electrophoretic steps like fixing, staining and destaining of the gel, which are time-consuming and cumbersome. We have developed a method for direct visualization of protein bands in PAGE using tetrakis(4-sulfonato phenyl)porphyrin (TPPS) as a dye without the need for any post electrophoretic steps, where separation and recovery of enzymes become much easier for further analysis. Activity staining was done to prove that the biochemical activity of the enzymes was preserved after electrophoresis. PMID:21233569

  19. High-throughput genotyping using horizontal polyacrylamide gels with wells arranged for microplate array diagonal gel electrophoresis (MADGE).

    PubMed

    Day, I N; Humphries, S E; Richards, S; Norton, D; Reid, M

    1995-11-01

    Genotyping (typing of genetic variation) typically involves PCR followed by an allele-specific oligonucleotide-binding assay, restriction enzyme digest or direct check of the outcome of a PCR designed to distinguish genotype. Electrophoresis can resolve "bound" from "free" oligonucleotide, as well as resolve PCR fragments and digests, but it is traditionally regarded as cumbersome and laborious in comparison with solution assays. Here we describe simple horizontal polyacrylamide gels which can receive a 96-well array of samples directly, which can be stacked in tanks and which are bound to a robust support of glass. The line of electrophoresis is on a 71.6 degree diagonal relative to the columns of the array (microplate array diagonal gel electrophoresis [MADGE]). Several thousand reactions can conveniently be analyzed in a shoebox-sized apparatus in a couple of hours. High resolution is achieved in the range of 20-1000 bp, information processing is simplified and automation is possible. PMID:8588924

  20. Development of an integrated approach for evaluation of 2-D gel image analysis: Impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With 2-D gel mapping, it is often observed that essentially identical proteins migrate to different positions in the gel, while some seemingly well-resolved protein spots consist of multiple proteins. These observations can undermine the validity of gel-based comparative proteomic studies. Through...

  1. Separating DNA with different topologies by atomic force microscopy in comparison with gel electrophoresis.

    PubMed

    Jiang, Yong; Rabbi, Mahir; Mieczkowski, Piotr A; Marszalek, Piotr E

    2010-09-23

    Atomic force microscopy, which is normally used for DNA imaging to gain qualitative results, can also be used for quantitative DNA research, at a single-molecular level. Here, we evaluate the performance of AFM imaging specifically for quantifying supercoiled and relaxed plasmid DNA fractions within a mixture, and compare the results with the bulk material analysis method, gel electrophoresis. The advantages and shortcomings of both methods are discussed in detail. Gel electrophoresis is a quick and well-established quantification method. However, it requires a large amount of DNA, and needs to be carefully calibrated for even slightly different experimental conditions for accurate quantification. AFM imaging is accurate, in that single DNA molecules in different conformations can be seen and counted. When used carefully with necessary correction, both methods provide consistent results. Thus, AFM imaging can be used for DNA quantification, as an alternative to gel electrophoresis. PMID:20799746

  2. Generating high peak capacity 2-D maps of complex proteomes using PMMA microchip electrophoresis.

    PubMed

    Osiri, John K; Shadpour, Hamed; Park, Sunjung; Snowden, Brandy C; Chen, Zhi-Yuan; Soper, Steven A

    2008-12-01

    A high peak capacity 2-D protein separation system combining SDS micro-CGE (SDS micro-CGE) with microchip MEKC (micro-MEKC) using a PMMA microfluidic is reported. The utility of the 2-D microchip was demonstrated by generating a 2-D map from a complex biological sample containing a large number of constituent proteins using fetal calf serum (FCS) as the model system. The proteins were labeled with a thiol-reactive AlexaFluor 633 fluorophore (excitation/emission: 633/652 nm) to allow for ultra-sensitive on-chip detection using LIF following the 2-D separation. The high-resolution separation of the proteins was accomplished based on their size in the SDS micro-CGE dimension and their interaction with micelles in the micro-MEKC dimension. A comprehensive 2-D SDS micro-CGE x micro-MEKC separation of the FCS proteins was completed in less than <30 min using this 2-D microchip format, which consisted of 60 mm and 50 mm effective separation lengths for the first and second separation dimensions, respectively. Results obtained from the microchip separation were compared with protein maps acquired using conventional 2-D IEF and SDS-PAGE of a similar FCS sample. The microchip 2-D separation was found to be approximately 60x faster and yielded an average peak capacity of 2600 (+/- 149), nearly three times larger than that obtained using conventional IEF/SDS-PAGE. PMID:19130578

  3. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  4. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    PubMed Central

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  5. High performance CCD camera system for digitalisation of 2D DIGE gels.

    PubMed

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. PMID:27252121

  6. Proteomic profiling of Plasmodium falciparum through improved, semiquantitative two-dimensional gel electrophoresis.

    PubMed

    Smit, Salome; Stoychev, Stoyan; Louw, Abraham I; Birkholtz, Lyn-Marie

    2010-05-01

    Two-dimensional gel electrophoresis (2-DE) is one of the most commonly used technologies to obtain a snapshot of the proteome at any specific time. However, its application to study the Plasmodial (malaria parasite) proteome is still limited due to inefficient extraction and detection methods and the extraordinarily large size of some proteins. Here, we report an optimized protein extraction method, the most appropriate methods for Plasmodial protein quantification and 2-DE detection, and finally protein identification by mass spectrometry (MS). Linear detection of Plasmodial proteins in a optimized lysis buffer was only possible with the 2-D Quant kit, and of the four stains investigated, Flamingo Pink was superior regarding sensitivity, linearity, and excellent MS-compatibility. 2-DE analyses of the Plasmodial proteome using this methodology resulted in the reliable detection of 349 spots and a 95% success rate in MS/MS identification. Subsequent application to the analyses of the Plasmodial ring and trophozoite proteomes ultimately resulted in the identification of 125 protein spots, which constituted 57 and 49 proteins from the Plasmodial ring and trophozoite stages, respectively. This study additionally highlights the presence of various isoforms within the Plasmodial proteome, which is of significant biological importance within the Plasmodial parasite during development in the intraerythrocytic developmental cycle. PMID:20218691

  7. Identification of novel dipeptidyl peptidase 9 substrates by two-dimensional differential in-gel electrophoresis.

    PubMed

    Zhang, Hui; Maqsudi, Sadiqa; Rainczuk, Adam; Duffield, Nadine; Lawrence, Josie; Keane, Fiona M; Justa-Schuch, Daniela; Geiss-Friedlander, Ruth; Gorrell, Mark D; Stephens, Andrew N

    2015-10-01

    Dipeptidyl peptidase 9 (DPP9) is a member of the S9B/DPPIV (DPP4) serine protease family, which cleaves N-terminal dipeptides at an Xaa-Pro consensus motif. Cytoplasmic DPP9 has roles in epidermal growth factor signalling and in antigen processing, whilst the role of the recently discovered nuclear form of DPP9 is unknown. Mice lacking DPP9 proteolytic activity die as neonates. We applied a modified 2D differential in-gel electrophoresis approach to identify novel DPP9 substrates, using mouse embryonic fibroblasts lacking endogenous DPP9 activity. A total of 111 potential new DPP9 substrates were identified, with nine proteins/peptides confirmed as DPP9 substrates by MALDI-TOF or immunoblotting. Moreover, we also identified the dipeptide Val-Ala as a consensus site for DPP9 cleavage that was not recognized by DPP8, suggesting different in vivo roles for these closely related enzymes. The relative kinetics for the cleavage of these nine candidate substrates by DPP9, DPP8 and DPP4 were determined. This is the first identification of DPP9 substrates from cells lacking endogenous DPP9 activity. These data greatly expand the potential roles of DPP9 and suggest different in vivo roles for DPP9 and DPP8. PMID:26175140

  8. Physics and gel electrophoresis: using terminal velocity to characterize molecular weight

    NASA Astrophysics Data System (ADS)

    Viney, Christopher; Fenton, Richard A.

    1998-11-01

    Protein molecular weights are commonly characterized by gel electrophoresis. Biology textbooks typically quote an empirical, approximate relationship between migration rate and molecular weight, relying on an inappropriately simplistic model of spherical particles travelling at their terminal velocity through a viscous medium. We show how the model can be modified to derive a physically realistic equation that relates migration rate and molecular weight, and that mirrors experimentally observed behaviour. We suggest that gel electrophoresis provides an interesting interdisciplinary context in which to exercise several basic principles that are encountered through introductory physics courses. Finally, we provide additional examples of practical situations where the concept of terminal velocity can be elaborated and applied.

  9. The determination of molecular weights of biologically active proteins by cetyltrimethylammonium bromide-polyacrylamide gel electrophoresis.

    PubMed

    Akin, D T; Shapira, R; Kinkade, J M

    1985-02-15

    A novel cetyltrimethylammonium bromide-polyacrylamide gel electrophoresis system which is useful for the separation of native forms of proteins consistent with their molecular weights is reported here. Many proteins examined in this system demonstrated the same association patterns which have been shown by other techniques to exist under nondenaturing conditions. In addition, biological activity could be assayed directly in the gel after electrophoresis. Based on the peculiar characteristics of cetyltrimethylammonium bromide, a possible explanation which may account for the behavior of proteins in this system is presented. PMID:4003759

  10. Pulsed-field gel electrophoresis for epidemiologic studies of Campylobacter hyointestinalis isolates.

    PubMed Central

    Salama, S M; Tabor, H; Richter, M; Taylor, D E

    1992-01-01

    Campylobacter hyointestinalis was isolated from five members of the same family who had previously consumed raw milk. Pulsed-field gel electrophoresis of genomic DNAs from the five strains, after digestion with restriction endonuclease SalI, revealed that three strains had identical genome patterns and therefore appeared to be related, whereas the other two had completely different genome patterns and appeared to be unrelated. We report here for the first time the isolation of C. hyointestinalis from family members who had consumed raw milk. Our study also demonstrates the usefulness of pulsed-field gel electrophoresis for epidemiologic studies of this unusual campylobacter. Images PMID:1500503

  11. Highly sensitive method for specific, brief, and economical detection of glycoproteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis by the synthesis of a new hydrazide derivative.

    PubMed

    Cong, Weitao; Zhou, Ayi; Liu, Zhiguo; Shen, Jiayi; Zhou, Xuan; Ye, Weijian; Zhu, Zhongxin; Zhu, Xinliang; Lin, Jianjun; Jin, Litai

    2015-02-01

    A new hydrazide derivative was synthesized and used for the first time as a specific, brief, and economical probe to selectively visualize glycoproteins in 1-D and 2-D sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with high sensitivity. The detection limit of the newly developed staining method is 2- and 4-fold higher than that of the widely used Pro-Q Emerald 300 and 488 stains, respectively. PMID:25565298

  12. Phenols content and 2-D electrophoresis protein pattern: a promising tool to monitor Posidonia meadows health state

    PubMed Central

    Migliore, Luciana; Rotini, Alice; Randazzo, Davide; Albanese, Nadia N; Giallongo, Agata

    2007-01-01

    Background The endemic seagrass Posidonia oceanica (L.) Delile colonizes soft bottoms producing highly productive meadows that play a crucial role in coastal ecosystems dynamics. Human activities and natural events are responsible for a widespread meadows regression; to date the identification of "diagnostic" tools to monitor conservation status is a critical issue. In this study the feasibility of a novel tool to evaluate ecological impacts on Posidonia meadows has been tested. Quantification of a putative stress indicator, i.e. phenols content, has been coupled to 2-D electrophoretic protein analysis of rhizome samples. Results The overall expression pattern from Posidonia rhizome was determined using a preliminary proteomic approach, 437 protein spots were characterized by pI and molecular weight. We found that protein expression differs in samples belonging to sites with high or low phenols: 22 unique protein spots are peculiar of "low phenols" and 27 other spots characterize "high phenols" samples. Conclusion Posidonia showed phenols variations within the meadow, that probably reflect the heterogeneity of environmental pressures. In addition, comparison of the 2-D electrophoresis patterns allowed to highlight qualitative protein expression differences in response to these pressures. These differences may account for changes in metabolic/physiological pathways as adaptation to stress. A combined approach, based on phenols content determination and 2-D electrophoresis protein pattern, seems a promising tool to monitor Posidonia meadows health state. PMID:17663776

  13. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  14. [Characterization of Acholeplasma Strains by Horizontal Polyacrylamide Flat Gel Electrophoresis (author's transl)].

    PubMed

    Boden, K; Kirchhoff, H

    1977-01-01

    Proteins extracted with phenol-acetic acid-water (2:1:0.5, w/v/v) from Acholeplasma laidlawii (PG 8), A. granularum (BTS-39), A. oculi (19L), A. modicum (PG 49), A. axanthum (S743) and the Acholeplasma strains C1 and C112 (which were isolated from aborted horse foetuses) were compared by electrophoresis in horizontal acidic polyacylamide flat gel using the electrophoresis equipment LKB Multiphor 2117. In this system the gels are not prepared in the electrophoresis chamber but between glas plates. For electrophoresis they are applied onto a special cooling plate. This makes it possible to produce a number of identical gels (from the same gel mixture and polymerized under the same conditions) what can be important for comparing investigations. The gels can be stored for more than 4 weeks in the refrigerator at +4 degrees C. Marked differences were observed between the electrophoretic patterns of each of the established species and the horse strains C1 and C112. The results are in agreement with those obtained in serological investigations in which the strains C1 and C112 were different from the established Acholeplasma species. PMID:848216

  15. Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Fang; Li, Jianglin; Guo, Tianyao; Yang, Haiyan; Li, Maoyu; Sang, Shushan; Li, Xuejun; Desiderio, Dominic M.; Zhan, Xianquan

    2015-12-01

    Protein tyrosine nitration is involved in the pathogenesis of highly fatal astrocytomas, a type of brain cancer. To understand the molecular mechanisms of astrocytomas and to discover new biomarkers/therapeutic targets, we sought to identify nitroproteins in human astrocytoma tissue. Anti-nitrotyrosine immunoreaction-positive proteins from a high-grade astrocytoma tissue were detected with two-dimensional gel electrophoresis (2DGE)-based nitrotyrosine immunoblots, and identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty-seven nitrotyrosine immunopositive protein spots were detected. A total of 870 proteins (nitrated and non-nitrated) in nitrotyrosine-immunopositive 2D gel spots were identified, and 18 nitroproteins and their 20 nitrotyrosine sites were identified with MS/MS analysis. These nitroproteins participate in multiple processes, including drug-resistance, signal transduction, cytoskeleton, transcription and translation, cell proliferation and apoptosis, immune response, phenotypic dedifferentiation, cell migration, and metastasis. Among those nitroproteins that might play a role in astrocytomas was nitro-sorcin, which is involved in drug resistance and metastasis and might play a role in the spread and treatment of an astrocytoma. Semiquantitative immune-based measurements of different sorcin expressions were found among different grades of astrocytomas relative to controls, and a semiquantitative increased nitration level in high-grade astrocytoma relative to control. Nitro-β-tubulin functions in cytoskeleton and cell migration. Semiquantitative immunoreactivity of β-tubulin showed increased expression among different grades of astrocytomas relative to controls and semiquantitatively increased nitration level in high-grade astrocytoma relative to control. Each nitroprotein was rationalized and related to the corresponding functional system to provide new insights into tyrosine nitration and its potential role in the

  16. Electron Beam Sterilization of the Plates with Agaroze Gel Used for Electrophoresis

    NASA Astrophysics Data System (ADS)

    Ighigeanu, Daniel I.; Martin, Diana I.; Stan, Dana E.; Matei, Constantin I.; Manaila, Elena M.; Craciun, Gabriela D.; Iacob, Nicusor I.; Oproiu, Constantin V.; Ighigeanu, Adelina I.

    2007-04-01

    Electron beam (EB) sterilization applied to the plastic plates with agarose gel used for electrophoresis is presented. The effects of EB irradiation upon the agarose gel and on the process of the proteic fraction separation have been investigated. The investigation were focused on the concentration changes of the six proteic fractions, albumin, alpha 1, alpha 2, beta 1, beta 2 and gamma, versus the dose irradiation as compared with the unirradiated sample.

  17. Diffusion, Dispersion, and Mobility of Single-stranded DNA in Polyacrylamide Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lo, Roger; Ugaz, Victor

    2004-03-01

    The ability to perform DNA electrophoresis in miniaturized microfluidic systems has the potential to provide a new generation of low-cost high-throughput genomic analysis technology. Further progress toward improving separation performance under these conditions, however, requires a more detailed understanding of diffusion and dispersion phenomena in the gel matrix. Unfortunately, it has thus far proven difficult to obtain extensive measurements of these quantities due in large part to the lack of a convenient experimental platform. In this paper, we demonstrate the use of microfabricated gel electrophoresis devices to measure diffusion, dispersion, and mobility of single-stranded DNA fragments in crosslinked and uncrosslinked polyacrylamide gels. The microdevice format allows a complete set of diffusion and dispersion data to be collected in approximately one hour, as opposed to experiment times lasting several days using conventional sequencing equipment. By comparing runs using identical DNA samples, gel formulations, and operating conditions in both microfabricated electrophoresis devices and an ALF Express automated DNA sequencer, we are able to isolate the key factors governing separation performance in each system. The results of these experiments are then compared with biased reptation theory to extract information about the gel structure and predict achievable resolution. The effects of gel composition and polymerization chemistry are also explored.

  18. Disposable pen-shaped capillary gel electrophoresis cartridge for fluorescence detection of bio-molecules

    NASA Astrophysics Data System (ADS)

    Amirkhanian, Varoujan; Tsai, Shou-Kuan

    2014-03-01

    We introduce a novel and cost-effective capillary gel electrophoresis (CGE) system utilizing disposable pen-shaped gelcartridges for highly efficient, high speed, high throughput fluorescence detection of bio-molecules. The CGE system has been integrated with dual excitation and emission optical-fibers with micro-ball end design for fluorescence detection of bio-molecules separated and detected in a disposable pen-shaped capillary gel electrophoresis cartridge. The high-performance capillary gel electrophoresis (CGE) analyzer has been optimized for glycoprotein analysis type applications. Using commercially available labeling agent such as ANTS (8-aminonapthalene-1,3,6- trisulfonate) as an indicator, the capillary gel electrophoresis-based glycan analyzer provides high detection sensitivity and high resolving power in 2-5 minutes of separations. The system can hold total of 96 samples, which can be automatically analyzed within 4-5 hours. This affordable fiber optic based fluorescence detection system provides fast run times (4 minutes vs. 20 minutes with other CE systems), provides improved peak resolution, good linear dynamic range and reproducible migration times, that can be used in laboratories for high speed glycan (N-glycan) profiling applications. The CGE-based glycan analyzer will significantly increase the pace at which glycoprotein research is performed in the labs, saving hours of preparation time and assuring accurate, consistent and economical results.

  19. Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis

    ERIC Educational Resources Information Center

    Phillips, Allison R.; Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments…

  20. [Protein analysis of 6 crude drugs and their processed products by polyacrylamide gel electrophoresis technique].

    PubMed

    Shi, J; Sun, L; Jing, X

    1995-09-01

    In this paper, the proteins in 6 crude drugs (Prunus persica; P. armeniaca; Dolichos lablab; Strychnos nux-vomica; Mylabris phalerata; Whitmania pigra) and their processed products were analysed by polyacrylamide gel electrophoresis technique, and the effect of different processing methods on the quantity and kind of protein was explored. Protein electrophorograms of 20 samples are drawn. PMID:8679088

  1. Comparison of restriction enzymes for pulsed-field gel electrophoresis typing of Moraxella catarrhalis.

    PubMed

    Marti, Sara; Puig, Carmen; Domenech, Arnau; Liñares, Josefina; Ardanuy, Carmen

    2013-07-01

    NotI, the most prevalent restriction enzyme used for typing Moraxella catarrhalis, failed to digest genomic DNA from respiratory samples. An improved pulsed-field gel electrophoresis (PFGE) methodology determined SpeI as the best choice for typing this bacterial species, with a good restriction of clinical samples and a good clustering correlation with NotI. PMID:23678064

  2. Beverage-Agarose Gel Electrophoresis: An Inquiry-Based Laboratory Exercise with Virtual Adaptation

    ERIC Educational Resources Information Center

    Cunningham, Steven C.; McNear, Brad; Pearlman, Rebecca S.; Kern, Scott E.

    2006-01-01

    A wide range of literature and experience has shown that teaching methods that promote active learning, such as inquiry-based approaches, are more effective than those that rely on passive learning. Gel electrophoresis, one of the most common laboratory techniques in molecular biology, has a wide range of applications in the life sciences. As…

  3. Pulsed-field gel electrophoresis as a discriminatory typing technique for the biothreat agent burkholderia mallei.

    PubMed

    Chantratita, Narisara; Vesaratchavest, Mongkol; Wuthiekanun, Vanaporn; Tiyawisutsri, Rachaneeporn; Ulziitogtokh, Tsedev; Akcay, Erhan; Day, Nicholas P J; Peacock, Sharon J

    2006-03-01

    Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) was used to type 21 laboratory strains of Burkholderia mallei. We demonstrated good resolution by PFGE together with clustering of some geographically related isolates, and confirmed previous observations that B. mallei is clonal as defined by MLST. PMID:16525089

  4. Propagation and Separation of Charged Colloids by Cylindrical Passivated Gel Electrophoresis.

    PubMed

    Bikos, Dimitri; Mason, Thomas G

    2016-07-01

    We explore the electrophoretic propagation of charged colloidal objects, monodisperse anionically stabilized polystyrene spheres, in large-pore agarose gels that have been passivated using polyethylene glycol (PEG) when a radial electric field is applied in a cylindrical geometry. By contrast to standard Cartesian gel-electrophoresis geometries, in a cylindrical geometry, charged particles that start at a ring well near the central axis propagate outward more rapidly initially and then slow down as they move further away from the axis. By building a full-ring cylindrical gel electrophoresis chamber and taking movies of scattered light from propagating nanospheres undergoing electrophoresis, we experimentally demonstrate that the ring-like front of monodisperse nanospheres propagates stably in PEG-passivated agarose gels and that the measured ring radius as a function of time agrees with a simple model that incorporates the electric field of a cylindrical geometry. Moreover, we show that this cylindrical geometry offers a potential advantage when performing electrophoretic separations of objects that have widely different sizes: smaller objects can still be retained in a cylindrical gel that has a limited size over long electrophoretic run times required for separating larger objects. PMID:27109865

  5. Optimization of electric field strength for DNA sequencing in capillary gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Luckey, John A.; Smith, Lloyd M.

    1993-06-01

    Since its development, capillary gel electrophoresis has demonstrated the ability to separate DNA sequencing reactions at speeds roughly 25 times as great as conventional slab gel electrophoresis. These increased speeds are the result of using the more efficient dissipation of Joule heating by capillaries. However, to date there have been no studies which quantitate the advantages of disadvantages in operating these gels at high electric field strength. This work addresses this question by investigating the band-broadening of DNA sequencing reactions as they are separated through a fixed distance of gel at field strengths ranging from 50 V/cm to 400 V/cm. It is found that the bandwidths of DNA fragments do decrease with the higher field strengths due to a reduction in diffusional broadening. However, at sufficiently high electric field strengths, the bands begin to broaden again under the influence of an increasing thermal gradient across the diameter of the capillary. The result is an optimum electric field strength in the intermediate range of 100 - 250 V/cm depending on the length of fragments being separated. The relative importance of diffusion and thermal gradients are discussed and used to generate an equation that models the observed band broadening of DNA in capillary gel electrophoresis (CGE).

  6. A Systematic Study of Single-stranded DNA Electrophoresis in Photopolymerized Crosslinked Polyacrylamide Gels

    NASA Astrophysics Data System (ADS)

    Lo, Roger

    2005-03-01

    In this paper, we present a systematic investigation of mobility, diffusion, and dispersion in crosslinked polyacrylamide gels through parallel use of an automated DNA sequencer and a microfabricated electrophoresis device with integrated on-chip electrodes, heaters, and temperature sensors. DNA separations are conducted using the same sample, gel formulations, and operating conditions in both platforms. The microfabricated electrophoresis chip make it possible to collect a complete set of diffusion and dispersion data within about one hour, while it takes several days to finish the same work using a traditional sequencer under the same experimental conditions. By comparing data collected from these two platforms, we can isolate key parameters governing separation performance in both systems. These experimental results are compared with reptation theory to extract information on the gel structure and also predict achievable separation resolution under various operating conditions. We also investigate the effects of gel composition and polymerization chemistry and find that these photopolymerized crosslinked polyacrylamide gels provide good separation resolution at relatively low electric field strengths (10-20 V/cm). This makes it possible to customize the microfabricated electrophoresis chip for microdevice-based applications according to desired separation performance.

  7. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Vetcher, Alexandre A.; Srinivasan, Srimeenakshi; Vetcher, Ivan A.; Abramov, Semen M.; Kozlov, Mikhail; Baughman, Ray H.; Levene, Stephen D.

    2006-08-01

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  8. Short protocol for pulsed field gel electrophoresis of a variety of Clostridia species.

    PubMed

    Sperner, B; Schalch, B; Eisgruber, H; Stolle, A

    1999-07-01

    While pulsed field gel electrophoresis has become an important tool for genotyping of bacteria, one of its drawbacks is that standard methods are rather time-consuming. In order to overcome this problem, shortened procedures for DNA preparation have been developed for some bacterial species. The aim of this study was to examine if a short procedure used for pulsed field gel electrophoresis of Clostridium botulinum could be applied to other Clostridia species. For this, the protocol was modified and used to prepare the DNA of 34 strains of 25 different Clostridia species. In contrast to a standard procedure, which takes at least 5 days from DNA extraction to completion of the electrophoresis, this protocol yielded results within 2 days. In order to directly compare the results of the short protocol with those of the standard, long procedure, parallel DNA preparations were performed using both methods and the two DNA samples thus obtained per strain were then run on the same gel. Briefly, the procedure was as follows. After embedding the bacterial cells in agarose, the agarose blocks were incubated for 1 h in lysis solution containing lysozyme, mutanolysin, lysostaphin and RNase. This was followed by a 1-h proteinase K treatment. Then, slices were cut from the agarose blocks and washed for 15 min in TE buffer, these washes were repeated four times with fresh TE. After a 2-h restriction with SmaI, electrophoresis was carried out overnight. PMID:10397313

  9. Trapping and breaking of in vivo nicked DNA during pulsed field gel electrophoresis.

    PubMed

    Khan, Sharik R; Kuzminov, Andrei

    2013-12-15

    Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percentage of chromosomal DNA entering the gel. The degree of separation in pulsed field gel (PFG) depends on the size of DNA as well as various conditions of electrophoresis such as electric field strength, time of electrophoresis, switch time, and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that subchromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single-strand interruptions results in artifactual decrease in molecular weight of linear DNA making accurate determination of the number of double-strand breaks difficult. Although breakage of nicked subchromosomal fragments is field strength independent, some high-molecular-weight subchromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage. PMID:23770235

  10. Optimization of pulsed-field gel electrophoresis protocols for Salmonella Paratyphi A subtyping.

    PubMed

    Chen, Chunxia; Zhao, Yingwei; Han, Hui; Pang, Bo; Zhang, Jingyun; Yan, Meiying; Diao, Baowei; Cui, Zhigang; Zhou, Haijian; Liang, Weili; Feng, Yanfang; Kan, Biao

    2012-04-01

    Salmonella enterica serovar Paratyphi A infection has caused public health problems in some countries in recent years. Pulsed-field gel electrophoresis (PFGE) has been used for the subtyping and epidemiological investigations of some serotypes of Salmonella, mainly in outbreaks caused by non-typhoidal Salmonella. In this study, different restriction endonucleases and electrophoresis parameters were compared for the PFGE subtyping by using Salmonella Paratyphi A strain panels. Two protocols for the enzymes SpeI and XbaI showed higher discriminatory power, which may facilitate epidemiological analysis for more accurate case definition, and clonality study of Salmonella Paratyphi A. PMID:22443482

  11. Identification by mass spectrometry of two-dimensional gel electrophoresis-separated proteins extracted from lager brewing yeast.

    PubMed

    Joubert, R; Strub, J M; Zugmeyer, S; Kobi, D; Carte, N; Van Dorsselaer, A; Boucherie, H; Jaquet-Guffreund, L

    2001-08-01

    As two-dimensional (2-D) electrophoresis allows the separation of several hundred proteins in a single gel, this technique has become an important tool for proteome studies and for investigating the cellular physiology. In order to take advantage of information provided by the comparison of proteome pictures, the mass spectrometry technique is the way chosen for a rapid and an accurate identification of proteins of interest. Unfortunately, in the case of industrial yeasts, due to the high level of complexity of their genome, the whole DNA sequence is not yet available and all encoded protein sequences are still unknown. Nevertheless, this study presents here 30 lager brewing yeast proteins newly identified with matrix assisted laser desorption/ionization-time of flight (MALDI-TOF), tandem mass spectrometry (MS/MS) and database searching against the protein sequences of Saccharomyces cerevisiae. The identified proteins of the industrial strain correspond to proteins which do not comigrate with known proteins of S. cerevisiae separated on 2-D gels. This study presents an application of the MS technique for the identification of industrial yeast proteins which are only homologous to the corresponding S. cerevisiae proteins. PMID:11565791

  12. Two methods that facilitate autoradiography of small /sup 32/P-labeled DNA fragments following electrophoresis in agarose gels

    SciTech Connect

    Cockerill, P.N.

    1988-02-01

    Two methods which permit detection by autoradiography of small /sup 32/P-labeled DNA fragments resolved by agarose gel electrophoresis are described. Agarose gel electrophoresis poses problems for autoradiography as (i) the gels are normally too thick to allow autoradiography without being dried first, and (ii) fragments of DNA of 1000 bp or less in length are readily lost during drying. In this study DNA fragments as small as 121 bp have been retained in agarose gels upon drying. This has been achieved by either (i) first fixing the DNA with the cationic detergent cetyltrimethylammonium bromide, or (ii) drying the agarose gels onto Zeta-Probe charge-modified membranes.

  13. Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis

    PubMed Central

    Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions. PMID:18316813

  14. Passivated gel electrophoresis of charged nanospheres by light-scattering video tracking.

    PubMed

    Zhu, Xiaoming; Mason, Thomas G

    2014-08-15

    Gel electrophoresis (gel-EP) has been used for decades to separate charged biopolymers, such as DNA, RNA, and proteins, yet propagation of other charged colloidal objects, such as nanoparticles, during gel-EP has been studied comparatively little. Simply introducing anionic nanoparticles, such as sulfate-stabilized polystyrene nanospheres, in standard large-pore agarose gels commonly used for biomolecules does not automatically ensure propagation or size-separation because attractive interactions can exist between the gel and the nanoparticles. Whereas altering the surfaces of the nanoparticles is a possible solution, here, by contrast, we show that treating a common type I-A low-electroendoosmosis agarose gel with a passivation agent, such as poly-(ethyleneglycol), enables charged nanoparticles to propagate through large-pore passivated gels in a highly reproducible manner. Moreover, by taking advantage of the significant optical scattering from the nanoparticles, which is not easily measurable for biopolymers, relative to scattering from the gel, we perform real-time, light-scattering, video-tracking gel-EP. Continuous optical measurements of the propagation of bands of uniformly sized nanospheres in passivated gels provides the propagation distance, L, and velocity, v, as a function of time for different sphere radii, electric field strengths, gel concentrations, and passivation agent concentrations. The steady-state particle velocities vary linearly with applied electric field strength, E, for small E, but these velocities become non-linear for larger E, suggesting that strongly driven nanoparticles can become elastically trapped in the smaller pores of the gel, which act like blind holes, in a manner that thermal fluctuations cannot overcome. Based on this assumption, we introduce a simple model that fits the measured v(E) in both linear and non-linear regimes over a relevant range of applied voltages. PMID:24910054

  15. Diffusion of DNA during gel electrophoresis; a predictive function spanning the relevant regimes

    NASA Astrophysics Data System (ADS)

    McCormick, Laurette; Slater, Gary

    2004-03-01

    Gel electrophoresis is used extensively to separate DNA. Diffusion of the DNA bands during electrophoresis is an important phenomenon which reduces the resolution obtained. As with DNA mobility, the diffusion of DNA can be split into several different regimes, each described by relevant theory. Unfortunately, until recently there was no single formula for DNA mobility or diffusion that could be used in more than one regime. However, Van Winkle and co workers [Van Winkle DH, Beheshti A, Rill RL, ELECTROPHORESIS 23 (1): 15-19 JAN 2002] have successfully developed an analytical function to analyze DNA mobility data, throughout the relevant regimes. We present the development of a complementary function for the analysis of DNA diffusion. This function should be very useful both in analyzing DNA electrophoretic data, and as a predictive tool.

  16. Detection of Connexins in Liver Cells Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis and Immunoblot Analysis.

    PubMed

    Willebrords, Joost; Maes, Michaël; Yanguas, Sara Crespo; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the setup of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer, and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodium dodecyl sulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence. PMID:27207285

  17. Detection of connexins in liver cells using sodiumdodecylsulfate polyacrylamide gel electrophoresis and immunoblot analysis

    PubMed Central

    Willebrords, Joost; Maes, Michaël; Yanguas, Sara Crespo; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Summary Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the set-up of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodiumdodecylsulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence. PMID:27207285

  18. Gel Electrophoresis of DNA --- New Measurements and the Repton Model at High Fields

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Pasciak, P.; Dydejczyk, A.; Kulakowski, K.; Dulak, J.

    2005-05-01

    New experimental data are presented on the gel electrophoresis of DNA. Experiment was made for molecules of length 173 kbp, in 1 percent agarose gel, in TAE 1 × buffer and the field intensity between 5 and 9 V/cm. The results are compared with our computer simulations, performed within the repton model of Duke and Rubinstein. The ranges of field and molecule length are determined, where the geometration effect appears. We investigate also the field dependence of the velocity and the diffusion coefficient at the border of the geometration regime.

  19. First use of two-dimensional polyacrylamide gel electrophoresis to determine phylogenetic relationships.

    PubMed

    Dopson, Mark; Baker-Austin, Craig; Bond, Philip L

    2004-09-01

    Methods for microbial classification are not always capable of distinguishing between isolates at the species level. We have previously characterised four Ferroplasma isolates that were >98.9% similar at the 16S rDNA level, the isolates showed marked phenotypic differences, and one isolate was borderline on the 70% species boundary from DNA-DNA similarity data. In this study we have used statistical comparisons of two-dimensional polyacylamide gel electrophoresis gels for classification of closely related isolates. From the protein profile similarities an un-rooted tree was constructed that was congruent with a tree derived from DNA-DNA similarities. PMID:15279933

  20. Detection of Rifampin Resistance in Mycobacterium tuberculosis by Double Gradient-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Scarpellini, Paolo; Braglia, Sergio; Carrera, Paola; Cedri, Maura; Cichero, Paola; Colombo, Alessia; Crucianelli, Rosella; Gori, Andrea; Ferrari, Maurizio; Lazzarin, Adriano

    1999-01-01

    We applied double gradient-denaturing gradient gel electrophoresis (DG-DGGE) for the rapid detection of rifampin (RMP) resistance from rpoB PCR products of Mycobacterium tuberculosis isolates and clinical samples. The results of this method were fully concordant with those of DNA sequencing and susceptibility testing analyses. DG-DGGE is a valid alternative to the other methods of detecting mutations for predicting RMP resistance. PMID:10508043

  1. Polyacrylamide Slab Gel Electrophoresis of Soluble Proteins for Studies of Bacterial Floras

    PubMed Central

    Moore, W. E. C.; Hash, D. E.; Holdeman, Lillian V.; Cato, Elizabeth P.

    1980-01-01

    A polyacrylamide slab gel electrophoresis procedure was used to compare cellular proteins from bacterial isolates of gingival crevice floras. Isolates with identical protein patterns consistently were shown to be members of the same species. When used to screen isolates, the procedure reduced total analytical time and expense without sacrificing accuracy, and it provided additional verification of the identity of strains characterized by conventional phenotypic tests. Images PMID:16345555

  2. Optimization of separation and detection schemes for DNA with pulsed field slab gel and capillary electrophoresis

    SciTech Connect

    McGregor, D.A.

    1993-07-01

    The purpose of the Human Genome Project is outlined followed by a discussion of electrophoresis in slab gels and capillaries and its application to deoxyribonucleic acid (DNA). Techniques used to modify electroosmotic flow in capillaries are addressed. Several separation and detection schemes for DNA via gel and capillary electrophoresis are described. Emphasis is placed on the elucidation of DNA fragment size in real time and shortening separation times to approximate real time monitoring. The migration of DNA fragment bands through a slab gel can be monitored by UV absorption at 254 nm and imaged by a charge coupled device (CCD) camera. Background correction and immediate viewing of band positions to interactively change the field program in pulsed-field gel electrophoresis are possible throughout the separation. The use of absorption removes the need for staining or radioisotope labeling thereby simplifying sample preparation and reducing hazardous waste generation. This leaves the DNA in its native state and further analysis can be performed without de-staining. The optimization of several parameters considerably reduces total analysis time. DNA from 2 kb to 850 kb can be separated in 3 hours on a 7 cm gel with interactive control of the pulse time, which is 10 times faster than the use of a constant field program. The separation of {Phi}X174RF DNA-HaeIII fragments is studied in a 0.5% methyl cellulose polymer solution as a function of temperature and applied voltage. The migration times decreased with both increasing temperature and increasing field strength, as expected. The relative migration rates of the fragments do not change with temperature but are affected by the applied field. Conditions were established for the separation of the 271/281 bp fragments, even without the addition of intercalating agents. At 700 V/cm and 20{degrees}C, all fragments are separated in less than 4 minutes with an average plate number of 2.5 million per meter.

  3. DNA electrophoresis in agarose gels: A new mobility vs. DNA length dependence

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin

    2002-04-01

    Separations were performed on double stranded DNA (dsDNA) using electrophoresis. Electrophoresis is the steady transport of particles under the influence of an external electric field. Double stranded DNA fragments ranging in length from 200 base pairs (bp) to 194,000 bp (0.34 nm = 1 bp) were electrophoresed at agarose gel concentrations T = 0.4%--1.5%. The electric field was varied from 0.62 V/cm to 6.21 V/cm. A wide range of electric fields and gel concentrations were used to study the usefulness of a new interpolation equation, 1mL =1mL-( 1mL-1 ms)e-L/g , where mL,ms , and g are independent free fitting parameters. The long length mobility limit is interpreted as mL , the short length mobility limit is ms , and g is the crossover between the long length limit and the short length limit. This exponential relation fit very well (chi2 ≥ 0.999) when there are two smooth transitions observed in the "reptation plots" (plotting 3mL/m∘ vs. L) (J. Rousseau, G. Drouin, and G. W. Slater, Phys Rev Lett. 1997, 79, 1945--1948). Fits deviate from the data when three different slopes were observed in the reptation plots. Reptation plots were used to determine a phase diagram for dsDNA migration regimes. The phase diagrams define different regions where mechanisms for molecular transport affect the migration of dsDNA in agarose gels during electrophoresis. The parameters from the equation have also been interpreted to provide a physical description of the structure of the agarose gel by calculating the pore sizes. The relations between the values for the pore sizes and the phase diagrams are interpreted to better understand the migration of the DNA through agarose gels.

  4. Glutamine Synthetase Regulation, Adenylylation State, and Strain Specificity Analyzed by Polyacrylamide Gel Electrophoresis

    PubMed Central

    Bender, Robert A.; Streicher, Stanley L.

    1979-01-01

    We used polyacrylamide gel electrophoresis to examine the regulation and adenylylation states of glutamine synthetases (GSs) from Escherichia coli (GSE) and Klebsiella aerogenes (GSK). In gels containing sodium dodecyl sulfate (SDS), we found that GSK had a mobility which differed significantly from that of GSE. In addition, for both GSK and GSE, adenylylated subunits (GSK-adenosine 5′-monophosphate [AMP] and GSE-AMP) had lesser mobilities in SDS gels than did the corresponding non-adenylylated subunits. The order of mobilities was GSK-AMP < GSK < GSE-AMP < GSE. We were able to detect these mobility differences with purified and partially purified preparations of GS, crude cell extracts, and whole cell lysates. SDS gel electrophoresis thus provided a means of estimating the adenylylation state and the quantity of GS present independent of enzymatic activity measurements and of determining the strain origin. Using SDS gels, we showed that: (i) the constitutively produced GS in strains carrying the glnA4 allele was mostly adenylylated, (ii) the GS-like polypeptide produced by strains carrying the glnA51 allele was indistinguishable from wild-type GSK, and (iii) strains carrying the glnA10 allele contained no polypeptide having the mobility of GSK or GSK-AMP. Using native polyacrylamide gels, we detected the increased amount of dodecameric GS present in cells grown under nitrogen limitation compared with cells grown under conditions of nitrogen excess. In native gels there was neither a significant difference in the mobilities of adenylylated and non-adenylylated GSs nor a GS-like protein in cells carrying the glnA10 allele. Images PMID:33958

  5. High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Agarose Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeshi; Jin, Hehua; Miyata, Yasumitsu; Kataura, Hiromichi

    2008-11-01

    We have developed a novel separation method of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) using agarose gel electrophoresis. When the SWCNTs were isolated with sodium dodecyl sulfate (SDS) and embedded in agarose gel, only the metallic SWCNTs separated from the starting gel by an electric field. After 20 min, almost all SWCNTs applied to gel electrophoresis were separated into two fractions, containing ˜95% semiconducting and ˜70% metallic nanotubes. The difference in the response to the electric field between metallic and semiconducting SWCNTs can be explained by the higher affinity of semiconducting SWCNTs to agarose than to SDS.

  6. Two-dimensional gel electrophoresis analysis of the abundance of virulent exoproteins of group A streptococcus caused by environmental changes.

    PubMed

    Nakamura, Tadahiro; Hasegawa, Tadao; Torii, Keizo; Hasegawa, Yoshinori; Shimokata, Kaoru; Ohta, Michio

    2004-01-01

    Group A streptococci regulate the expression of virulence factors in response to environmental change. In order to investigate this mechanism, the growth of group A streptococci and the abundance of virulent exoprotein production in culture supernatant were analyzed by two-dimensional gel electrophoresis (2-D electrophoresis) under several culture conditions. Judging from alterations in their growth, group A streptococci were affected by various environmental stresses. Under high O(2) and low CO(2 )concentrations, streptococcal pyrogenic exotoxin B (SpeB) and streptococcal pyrogenic exotoxin F (SpeF) significantly decreased, and the streptococcal inhibitor of complement (Sic) increased. At 30 degrees C, increases in endo-beta- N-acetylglucosaminidase (EndoS) and alpha-amylase were also detected, while at 41 degrees C EndoS became undetectable and SpeB and SpeF decreased. Sic, SpeF and mitogenic factor 3 (Mf3) decreased when cells were cultured in higher NaCl concentrations, and EndoS disappeared following culture of the cells in high glucose concentration. An increase in acid phosphatase and a decrease in several other proteins were detected when the cells were cultivated in high iron concentrations. These results suggest that group A streptococci have a versatile adaptation system that responds to several environmental stresses by altering the level of exoprotein production. PMID:14673516

  7. A CCD-based system for the detection of DNA in electrophoresis gels by UV absorption

    NASA Astrophysics Data System (ADS)

    Mahon, Alex R.; MacDonald, John H.; Ott, Robert J.; Mainwood, Alison

    1999-06-01

    A method and apparatus for the detection and quantification of large fragments of unlabelled nucleic acids in agarose gels is presented. The technique is based on ultraviolet (UV) absorption by nucleotides. A deuterium source illuminates individual sample lanes of an electrophoresis gel via an array of optical fibres. As DNA bands pass through the illuminated region of the gel the amount of UV light transmitted is reduced because of absorption by the DNA. During electrophoresis the regions of DNA are detected on-line using a UV-sensitive charge coupled device (CCD). As the absorption coefficient is proportional to the mass of DNA the technique is inherently quantitative. The mass of DNA in a region of the gel is approximately proportional to the integrated signal in the corresponding section of the CCD image. This system currently has a detection limit of less than 1.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. In addition the DNA sample remains in its native state. The removal of the carcinogenic dye from the detection procedure greatly reduces associated biological hazards.

  8. Screening and identification of familial defective apolipoprotein B-100 in clinical samples by capillary gel electrophoresis.

    PubMed

    Lehmann, R; Koch, M; Pfohl, M; Voelter, W; Häring, H U; Liebich, H M

    1996-09-13

    Familial defective apolipoprotein B-100 (FDB) is a dominantly inherited disorder. It is characterized by a decreased affinity of low density lipoprotein (LDL) for the LDL receptor, as a consequence of a substitution of adenine by guanine in exon 26 of the apolipoprotein B-100 gene, coding for the putative LDL receptor-binding domain of the mature protein. This disorder is associated with a strikingly high incidence of arteriosclerosis and tends to cause disease and premature death. In this communication we describe a rapid capillary gel electrophoretic method in combination with molecular biology techniques to facilitate the diagnosis of FDB. Mutation screening for FDB is performed by an allele-specific amplification followed by capillary gel electrophoresis (CGE). For the combined polymerase chain reaction (PCR)-CGE method, a total analysis time of only 3 h is needed, a period that is normally necessary for the run and for staining of the gel only, not including the time for PCR, gel casting, etc. In our pilot study 4 of 43 hypercholesterolemic patients were found to have the predominant apoB 3500 codon mutation. The verification is demonstrated by DNA-sequencing. This pilot study will be followed by a large cohort analysis of the south-west German population to determine the frequency of FDB in this area. The PCR-CGE method on the Dionex capillary electrophoresis system (CES I) allows rapid, fully automated detection of the mutation resulting in the unequivocal diagnosis of FDB. PMID:8843667

  9. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    SciTech Connect

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  10. Proteomic Profiling Of Two-Dimensional Gel Electrophoresis Protein Expression Data

    NASA Astrophysics Data System (ADS)

    Ahmad, Norhaiza; Zhang, J.; Brown, P. J.; James, D. C.; Birch, J. R.; Racher, A. J.; Smales, C. M.

    2008-01-01

    We have undertaken two-dimensional gel electrophoresis (2-DE) proteomic profiling on a series of cell lines with different recombinant antibody production rates. Due to the nature of 2-DE proteomic investigations there will always be `process variability' factors in any data set collected in this way. Some of this variation will arise during sample preparation, gel running and staining, while further variation will arise from the gel analysis procedure. Therefore, in order to identify all significant changes in protein expression between biological samples when analysed by 2-DE, the system precision or `error', and how this correlates to protein abundance, must be known. Only then can the system be considered robust and investigators accurately and confidently report all observable statistically significant changes in protein expression. We introduce an expression variability test to identify protein spots whose expression correlates with increased antibody production. The results have highlighted a small number of candidate proteins for further investigation.

  11. Fractionation of heparin-derived oligosaccharides by gradient polyacrylamide-gel electrophoresis.

    PubMed Central

    Rice, K G; Rottink, M K; Linhardt, R J

    1987-01-01

    Heparin-derived oligosaccharides, prepared by using flavobacterial heparinase, having a high degree of heterogeneity (sequence variability) were resolved into sharp well-defined bands by using polyacrylamide gel electrophoresis (PAGE). The use of a stacking gel and a high-density-pore-gradient resolving gel was primarily responsible for the success of this separation. Low-Mr standards of known structure and having a degree of polymerization (dp) 2-6 were used to establish that the separation on gradient PAGE was primarily dependent on molecular size. High-Mr oligosaccharides (dp 8-20) were prepared using strong-anion-exchange h.p.l.c. and were used to help characterize the gradient PAGE separation. Kinetic profiles were obtained for the depolymerization of heparin and heparan sulphate with heparinase and heparitinase respectively. The utility of this approach in sequencing oligosaccharides derived from glycosaminoglycans is discussed. Images Fig. 3. Fig. 5. Fig. 7. PMID:3446173

  12. Previsible silver staining of protein in electrophoresis gels with mass spectrometry compatibility.

    PubMed

    Jin, Li-Tai; Li, Xiao-Kun; Cong, Wei-Tao; Hwang, Sun-Young; Choi, Jung-Kap

    2008-12-15

    A convenient silver staining method for protein in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels is described. The method is previsible, sensitive, and mass spectrometry (MS) compatible. Two visible counter ion dyes, ethyl violet (EV) and zincon (ZC), were used in the first staining solution with a detection limit of 2 to 8 ng/band in approximately 1h. The dye-stained gel can be further stained by silver staining, which is based on acidic silver staining employing ZC with sodium thiosulfate as silver ion sensitizers. Especially, ZC has silver ion reducing power by cleavage of the diazo bond of the dye during silver reduction. The second silver staining can be completed in approximately 1h with a detection limit of 0.2 ng/band. PMID:18804088

  13. Detection of genotoxic insult as DNA strand breaks in fish blood cells by agarose gel electrophoresis

    SciTech Connect

    Theodorakis, C.W. ); D'Surney, S.J. . Dept. of Biology); Shugart, L.R. . Environmental Sciences Division)

    1994-07-01

    DNA, isolated from the blood cells of bluegill sunfish (Lepomis macrochirus) exposed in the lab to bedded sediment collected from a site contaminated with genotoxic compounds (i.e., PAHs, PCBs, and heavy metals), was examined for strand breakage by agarose gel electrophoresis. Before electrophoresis the blood cells were embedded in agarose plugs and incubated with proteinase. After electrophoresis under both neutral (pH 7) or alkaline (pH 12) conditions, the median molecular length (MML) of the DNA distributed in the gel was determined. These quantitative measures were used to estimate the difference in the number of double- and single-strand breaks between DNA preparations. Both types of strand breakage were found to be greater in fish exposed to sediment contaminated with genotoxic compounds as compared to nonexposed fish. A statistically significant correlation was demonstrated between the MML value obtained by the electrophoretic assay reported here and the F value (measure of DNA double-strandedness) obtained by the alkaline unwinding assay.

  14. Mutations and a polymorphism in the factor VIII gene discovered by denaturing gradient gel electrophoresis

    SciTech Connect

    Kogan, S.; Gitschier, J. )

    1990-03-01

    Hemophilia A results from mutations in the gene coding for coagulation factor VIII. The authors gradient gel electrophoresis to screen for mutations in the region of the factor VIII gene coding for the first acidic domain. Amplification primers were designed employing the MELTMAP computer program to optimize the ability to detect mutations. Screening of amplified DNA from 228 unselected hemophilia A patients revealed two mutations and one polymorphism. Rescreening the same population by making heteroduplexes between amplified patient and control samples prior to electrophoresis revealed one additional mutation. The mutations include two missense and one 4-base-pair deletion, and each mutation was found in patients with severe hemophilia. The polymorphism, located adjacent to the adenine branch site in intron 7, is useful for genetic prediction in some cases where the Bcl I and Xba I polymorphisms are uninformative. These results suggest that DNA amplification and denaturing gradient gel electrophoresis should be an excellent strategy for identifying mutations and polymorphisms in defined regions of the factor VIII gene and other large genes.

  15. Genomic DNA detection using cycling probe technology and capillary gel electrophoresis with laser-induced fluorescence.

    PubMed

    Dickinson Laing, Terrina; Mah, David C W; Poirier, Robert T; Bekkaoui, Faouzi; Lee, William E; Bader, Douglas E

    2004-10-01

    Cycling probe technology (CPT) is an isothermal DNA analysis method that has been shown to be useful for identifying genetic markers of antibiotic-resistant bacteria in clinical settings. CPT assays have previously employed several assay methods that include polyacrylamide gel electrophoresis and magnetic beads for separations and radioisotopic and colorimetric detection for detection. Capillary gel electrophoresis with laser-induced fluorescence (CGE-LIF) is an alternative separation and detection method that offers attributes such as low sample consumption, short analysis times, no radiation hazards and potential for high throughput. We report on the development of a CGE-LIF CPT assay for genomic DNA from Erwinia herbicola and the comparison of this assay with a conventional 32p radioisotopic PAGE CPT assay. Separation and detection of intact and cleaved fluorescein-labeled CPT probe molecules by CGE-LIF was achieved in under 4 min through a gel-filled capillary (7 cm separation length to detector). Total time, from setup to detection, was about 1 h for the complete assay versus several hours (3-12 h) for the radioisotopic PAGE CPT assay. Similar detection limits of 10(5)-10(6) copies of genomic target DNA were observed with each assay method. This study demonstrated that CGE-LIF CPT is a suitable analysis method for the detection of genomic DNA sequences. PMID:15356906

  16. DNA electrophoresis in tri-block copolymer gels--experiments and Brownian dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wei, Ling; van Winkle, David H.

    2015-03-01

    The mobility of double-stranded DNA ladders in Pluronics®P105, P123 and F127, was measured by two-dimensional gel electrophoresis. Pluronics®are triblock copolymers which form gel-like phases of micelles arranged with cubic order at room temperature. A 10 base pair and a 25 base pair DNA ladder were used as samples in gel electrophoresis. The monotonically decreasing mobility with increasing length observed in the agarose separations is not observed in separations in Pluronics®. Rather, a complicated dependence of mobility on DNA length is observed, where mobility vs. length increases for short DNA molecules then decreases for longer molecules. There is also a variation of mobility with length correlated to the micelle diameter. Brownian dynamics simulations of a discrete wormlike chain model were performed to simulate short DNA molecules migrating in free solution and in a face-centered cubic matrix. By incorporating hydrodynamic interactions, the trend of simulated length-dependent mobility qualitatively agrees with experimental measurements.

  17. Dispersion functions and factors that determine resolution for DNA sequencing by gel electrophoresis

    SciTech Connect

    Sutherland, J.C.; Reynolds, K.J.; Fisk, D.J.

    1996-04-01

    The number of bases that can be read in a single run by a DNA sequencing instrument that detects fluorophore labeled DNA arriving at a ``finish-line`` located a fixed distance from the starting wells is influenced by numerous parameters. Strategies for improving the length-of-read of a DNA sequencer can be based on quantitative models of the separation of DNA by gel electrophoresis. The dispersion function of the electrophoretic system--the relationship between molecular contour length and time of arrival at the detector--is useful in characterizing the performance of a DNA sequencer. We adapted analytical representations of dispersion functions, originally developed for snapshot imaging of DNA gels, (samples electrophoresed for constant time), to finish-line imaging, and demonstrated that a logistic-type function with non-integral exponent is required to describe the experimental data. We use this dispersion function to determine the resolution length and resolving power of a LI-COR DNA sequencing system and a custom built capillary gel electrophoresis system, and discuss the factors that presently limit the number of bases that can be determined reliably in a single sequencing run.

  18. Oligosaccharide mapping of heparan sulphate by polyacrylamide-gradient-gel electrophoresis and electrotransfer to nylon membrane.

    PubMed Central

    Turnbull, J E; Gallagher, J T

    1988-01-01

    A new method that we have called 'oligosaccharide mapping' is described for the analysis of radiolabelled heparan sulphate and other glycosaminoglycans. The method involves specific enzymic or chemical scission of polysaccharide chains followed by high-resolution separation of the degradation products by polyacrylamide-gradient-gel electrophoresis. The separated oligosaccharides are immobilized on charged nylon membranes by electrotransfer and detected by fluorography. A complex pattern of discrete bands is observed covering an oligosaccharide size range from degree of polymerization (d.p.) 2 (disaccharide) to approximately d.p. 40. Separation is due principally to differences in Mr, though the method also seems to detect variations in conformation of oligosaccharide isomers. Resolution of oligosaccharides is superior to that obtained with isocratic polyacrylamide-gel-electrophoresis systems or gel chromatography, and reveals structural details that are not accessible by other methods. For example, in this paper we demonstrate a distinctive repeating doublet pattern of iduronate-rich oligosaccharides in heparitinase digests of mouse fibroblast heparan sulphate. This pattern may be a general feature of mammalian heparan sulphates. Oligosaccharide mapping should be a valuable method for the analysis of fine structure and sequence of heparan sulphate and other complex polysaccharides, and for making rapid assessments of the molecular distinctions between heparan sulphates from different sources. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:2969727

  19. Sodium dodecyl sulfate-capillary gel electrophoresis of proteins using non-cross-linked polyacrylamide.

    PubMed

    Wu, D; Regnier, F E

    1992-09-11

    Proteins with relative molecular masses of 14,000 to 205,000 were separated by sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) using non-cross-linked linear polyacrylamide gels on both coated and uncoated fused-silica capillaries. It was determined that viscosity of the acrylamide solution was a major factor affecting column stability with linear acrylamide gels. When the viscosity of the acrylamide solution reaches 100 cP, electro-osmotically driven displacement of the gels is insignificant. Uncoated capillaries provided better resolution, stability, and reproducibility than surface coated capillaries when the concentration of linear polyacrylamide was greater than 4%. At lower gel concentrations, non-cross-linked polyacrylamide is easily displaced from the columns. A calibration plot of log molecular mass vs. mobility with non-linear polyacrylamide was linear, which indicated that resolution was equivalent to that obtained with cross-linked acrylamide. Separations with model proteins indicated that baseline resolution between protein species that vary 10% in molecular mass can be achieved. PMID:1430034

  20. Performing Isoelectric Focusing and Simultaneous Fractionation of Proteins on A Rotary Valve Followed by Sodium Dodecyl – Polyacrylamide Gel Electrophoresis

    PubMed Central

    Wang, Wei; Lu, Joann J.; Gu, Congying; Zhou, Lei; Liu, Shaorong

    2013-01-01

    In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl – polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl – polyacrylamide gel electrophoresis (SDS-PAGE, the 2nd-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed. PMID:23819755

  1. Genetic profiling of Klebsiella pneumoniae: comparison of pulsed field gel electrophoresis and random amplified polymorphic DNA

    PubMed Central

    Ashayeri-Panah, Mitra; Eftekhar, Fereshteh; Ghamsari, Maryam Mobarak; Parvin, Mahmood; Feizabadi, Mohammad Mehdi

    2013-01-01

    In this study, the discriminatory power of pulsed field gel electrophoresis (PFGE) and random amplified polymorphic DNA (RAPD) methods for subtyping of 54 clinical isolates of Klebsiella pneumoniae were compared. All isolates were typeable by RAPD, while 3.6% of them were not typeable by PFGE. The repeatability of both typing methods were 100% with satisfying reproducibility (≥ 95%). Although the discriminatory power of PFGE was greater than RAPD, both methods showed sufficient discriminatory power (DI > 0.95) which reflects the heterogeneity among the K. pneumoniae isolates. An optimized RAPD protocol is less technically demanding and time consuming that makes it a reliable typing method and competitive with PFGE. PMID:24516423

  2. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis of microbial community structure in landfill leachate.

    PubMed

    Uchida, Miho; Hatayoshi, Haruna; Syuku-nobe, Aoi; Shimoyama, Takefumi; Nakayama, Toru; Okuwaki, Akitsugu; Nishino, Tokuzo; Hemmi, Hisashi

    2009-05-30

    The structures of microbial communities in water samples obtained from a landfill site that had been a source of environmental pollution by emitting hydrogen sulfide were elucidated using polymerase chain reaction-denaturing gradient gel electrophoresis. The microbial communities, which consisted of a limited number of major microorganisms, were stable for several months. Microorganisms capable of degrading such chemical compounds as 2-hydroxybenzothiazole and bisphenol A were observed in landfill leachate. Microorganisms responsible for the production of hydrogen sulfide were not the primary microbes detected, even in water samples obtained from the site of gas emission. PMID:18977596

  3. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  4. Quantitative hybridization to genomic DNA fractionated by pulsed-field gel electrophoresis.

    PubMed

    Leach, T J; Glaser, R L

    1998-10-15

    Hybridization to genomic DNA fractionated by CHEF electrophoresis can vary >100-fold if the DNA is acid depurinated prior to Southern blotting. The level of hybridization is high or low depending on whether the molecule being analyzed migrates at a size coincident with or different from the size of the majority of genomic DNA in the sample, respectively. Techniques that avoid acid depurination including in-gel hybridizations and UV irradiation of DNA prior to blotting provide more accurate quantitative results. CHEF analysis of DNA molecules containing repetitive satellite sequences is particularly prone to this effect. PMID:9753752

  5. Simple, time saving pulsed-field gel electrophoresis protocol for the typing of Stenotrophomonas maltophilia.

    PubMed

    Shueh, Chong Seng; Neela, Vasanthakumari; Hussin, Salasawati; Hamat, Rukman Awang

    2013-08-01

    We developed a time-saving and cost-efficient Pulsed Field Gel Electrophoresis (PFGE) method for the typing of Stenotrophomonas maltophilia by modifying the conventional procedures. Our modifications related to the cell suspension preparation, lysis of bacterial cells in plugs, washing steps, and consumption of restriction enzyme. Although few rapid PFGE protocols on Gram-negative bacteria are available, the use of comparatively large amounts of costly reagents prompted us to look for other alternative. Hence, by considering the speed, simplicity, and relatively low cost, the modified protocol may be of more practical value than other established protocols in investigating S. maltophilia nosocomial outbreaks. PMID:23756145

  6. Genome size of human oral Treponema species by pulsed-field gel electrophoresis.

    PubMed

    Correia, F F; Plummer, A R; Paster, B J; Dewhirst, F E

    2004-04-01

    The genome sizes of seven strains of oral treponemes were determined using pulsed-field gel electrophoresis (PFGE). These strains represent members from six of the currently known cultivable oral treponeme groups. The PFGE fragments were digitally recorded and then quantitated using GIMP v 1.2, an image manipulation program. The results show that the six oral treponeme genomes are comparable in size, ranging from approximately 2.2 to 2.5 Mbp. The genome sizes of these strains are 20-25% smaller than Treponema denticola strains, which have genome sizes of approximately 2.8-3.0 Mbp. PMID:14871355

  7. Molecular karyotype analysis of Perkinsus atlanticus (Phylum Perkinsozoa) by pulsed field gel electrophoresis.

    PubMed

    Leonor Teles-Grilo, M; Duarte, Sérgio M; Tato-Costa, Joana; Gaspar-Maia, Alexandre; Oliveira, Carla; Rocha, António A; Marques, Américo; Cordeiro-da-Silva, Anabela; Azevedo, Carlos

    2007-11-01

    Perkinsus atlanticus is a pathogenic protist that infects the clam Ruditapes decussatus. Although it was recently proposed that the genus Perkinsus belongs to a new phylum, Perkinsozoa, in the infra-kingdom Alveolata, there remain different opinions about whether this genus should form a phylum on its own and consequently divergent views about its taxonomic characterization. In this work, we have identified nine chromosomes by pulsed field gel electrophoresis (PFGE) combined with densitometry analysis. The obtained karyotype of Perkinsus atlanticus, like that of other early branches of the dinoflagellate lineage, displays a more conventional chromosome organization, different from that of most dinoflagellates. PMID:17822886

  8. Accommodating brightness and exposure levels in densitometry of stained polyacrylamide electrophoresis gels

    SciTech Connect

    Tan, Han Yen; Ng, Tuck Wah; Liew, Oi Wah

    2010-03-20

    Flatbed scanner densitometers can be operated under various illumination and recording exposure levels. In this work, we show that optical density measurement accuracy, sensitivity, and stability of stained polyacrylamide electrophoresis gel densitometry are crucially dependent on these two factors (brightness and exposure level), notwithstanding that the source is monochromatic, spatially uniform, and the measurements are made using an accurately calibrated step wedge in tandem. We further outline a method to accommodate the intensity deviations over a range of illumination and exposure levels in order to maintain sensitivity and repeatability in the computed optical densities. Comparisons were also made with results from a commercial densitometer.

  9. High-resolution preparative separation of glycosaminoglycan oligosaccharides by polyacrylamide gel electrophoresis1

    PubMed Central

    Laremore, Tatiana N.; Ly, Mellisa; Solakyildirim, Kemal; Zagorevski, Dmitri V.; Linhardt, Robert J.

    2010-01-01

    Separation of milligram amounts of heparin oligosaccharides ranging in degree of polymerization from 4 to 32 is achieved within 6 hours using continuous-elution polyacrylamide gel electrophoresis (CE-PAGE) on commercially available equipment. The purity and structural integrity of CE-PAGE-separated oligosaccharides are confirmed by strong-anion exchange high-pressure liquid chromatography, electrospray ionization Fourier transform mass spectrometry and two-dimensional nuclear magnetic resonance spectroscopy. The described method is straightforward and time-efficient, affording size-homogeneous oligosaccharides that can be used in sequencing, protein binding, and other structure-function relationship studies. PMID:20211145

  10. Application of denaturing gradient gel electrophoresis to detect DNA sequence differences encoding apolipoprotein E isoforms

    SciTech Connect

    Parker, S.; Angelico, M.C.; Laffel, L.; Krolewski, A.S. Harvard Medical School, Boston, MA )

    1993-04-01

    Apolipoprotein E (apoE) plays an important role in plasma lipid metabolism. Three common isoforms of this protein have been identified by the isoelectric focusing method. In this report the authors describe a new method for distinguishing these isoforms. Their method employs PCR amplification of the DNA sequence of exon 4 in the apoE gene followed by denaturing gradient gel electrophoresis (DGGE) to distinguish its different melting characteristics. Identification of the ApoE isoforms through DNA melting behavior rather than protein charge differences eliminates the problems associated with isoelectric focusing and facilitates screening for additional mutations at the apoE locus. 12 refs., 2 figs.

  11. Quantitation of pyrimidine dimer contents of nonradioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels

    SciTech Connect

    Sutherland, B.M.; Shih, A.G.

    1983-02-15

    We have developed a method of quantitating the pyrimidine dimer content of nonradioactive DNAs. DNA samples are treated with the UV-endonuclease from Micrococcus luteus and then separated according to molecular weight by electrophoresis on alkaline agarose gels. From their migration relative to known molecular weight standards, their median molecular weight and thus the number of dimers per DNA molecule in each sample can be calculated. Results of action spectra for dimer formation in T7 bacteriophage measured by this method agree well with action spectra for T7 killing. In addition, the method gives dimer yields in good agreement with those obtained by others using alkaline sucrose gradient sedimentation.

  12. Interlaboratory Agreement of Pulsed-Field Gel Electrophoresis Identification of Leptospira Serovars

    PubMed Central

    Mende, Katrin; Galloway, Renee L.; Becker, Sara J.; Beckius, Miriam L.; Murray, Clinton K.; Hospenthal, Duane R.

    2013-01-01

    Leptospirosis may be caused by > 250 Leptospira serovars. Serovar classification is a complex task that most laboratories cannot perform. We assessed the interlaboratory reproducibility of a pulsed-field gel electrophoresis (PFGE) identification technique developed by the Centers for Disease Control and Prevention (CDC). Blinded exchange of 93 Leptospiraceae strains occurred between San Antonio Military Medical Center (SAMMC) and the CDC. PFGE was performed and gel images were analyzed and compared with patterns present in each laboratory's database (CDC database: > 800 strain patterns; SAMMC database: > 300 strain patterns). Overall, 93.7% (74 of 79) of strains present in each receiving laboratory's database were correctly identified. Five isolates were misidentified, and two isolates did not match serovar PFGE patterns in the receiving laboratory's database. Patterns for these seven isolates were identical between laboratories; four serovars represented misidentified reference strains. The PFGE methodology studied showed excellent interlaboratory reproducibility, enabling standardization and data sharing between laboratories. PMID:23817329

  13. Studies on the bioactivity of radioiodinated highly purified bovine thyrotropin: analytical polyacrylamide gel electrophoresis

    SciTech Connect

    Takai, N.A.; Filetti, S.; Rapoport, B.

    1981-01-01

    Highly purified bovine TSH (stored in solution at -70 C) was radioiodinated by the stoichiometric chloroamine-T method. The iodinated material ws subjected to analytical polyacrylamide disc gel electrophoresis. TSH was eluted from gel slices (1 mm width) and was analyzed for radioactivity and bioactivity. The latter was determined using the cultured thyroid cell cAMP response assay. Radioactivity in the TSH preparation migrated separately from bioactivity, but concordant with the protein bands observed in gels run in parallel. Further studies performed on bovine TSH purified in our laboratory, as well as on a different TSH preparation of exceptionally high potency (both stored as lyophilized powder) revealed a different pattern, with TSH bioactivity and radioactivity eluting concurrently. Iodination of TSH did not alter its electrophoretic migration on disc gel electrophoresis. In all preparations polymorphism of TSH bioactivity was observed, with at least four separate protein bands containing TSH bioactivity being present in our preparation. The relationship between the degree of iodination and retention of TSH bioactivity was examined. Incorporation of /sup 125/I into TSH was greatly different at two different concentrations of chloramine-T. Despite this, however, the progressive loss of TSH bioactivity was similar at both concentrations, indicating that incorporation of iodine into the TSH molecule is not itself responsible for the decrease in bioactivity. These studies indicate variability among different TSH preparations in terms of their retention of bioactivity. Significant loss of TSH bioactivity appears to occur during storage in solution. The damage to the biological activity of TSH during the iodination procedure is more likely related to the oxidation process than to the incorporation of iodine.

  14. Simplified protocol for pulsed-field gel electrophoresis analysis of Streptococcus pneumoniae.

    PubMed

    McEllistrem, M C; Stout, J E; Harrison, L H

    2000-01-01

    A variety of pulsed-field gel electrophoresis (PFGE) protocols for the molecular subtyping of Streptococcus pneumoniae have been reported; most are time-consuming and complex. We sought to modify reference PFGE protocols to reduce the time required while creating high-quality gels. Only protocol modifications that resulted in high-quality banding patterns were considered. The following protocol components were modified. Lysis enzymes (lysozyme, mutanolysin, and RNase A) were deleted in a stepwise fashion, and then the lysis buffer was deleted. Lysis and digestion were accomplished in a single step with EDTA and N-lauroyl sarcosine (ES; pH 8.5 to 9.3) incubation at 50 degrees C in the absence of proteinase K. All enzymes except the restriction enzyme were omitted. A minimum incubation time of 6 h was required to achieve high-quality gels. All of the reactions were performed within 9 h, and the total protocol time from lysis to gel completion was reduced from 3 days to only 36 h. Combining lysis and digestion into a single step resulted in a substantial reduction in the time required to perform PFGE for S. pneumoniae. The ES solution may have caused cell lysis by activating N-acetylmuramyl-L-alanine amidase, the pneumococcal autolysin. PMID:10618114

  15. Nanoparticle size distributions measured by optical adaptive-deconvolution passivated-gel electrophoresis.

    PubMed

    Zhu, Xiaoming; Mason, Thomas G

    2014-12-01

    We image visible light scattered from dispersions of charged spherical nanoparticles propagating through a passivated agarose gel during electrophoresis. By analyzing one-dimensional light intensities along different lanes, we measure the mobility distributions of the nanoparticles and thereby infer their size distributions, which become time-independent after adequate propagation and separation have occurred. For a given large-pore passivated agarose gel, experiments using monodisperse, surfactant-free, sulfate-stabilized, polystyrene nanopheres establish the propagation distance as a function of time for a range of different sphere radii having known surface charges. As bands of monodisperse nanospheres propagate through the gel, the bands become smeared, developing asymmetric tails as some nanospheres experience additional delays compared to others of the same size. After background subtraction, these bands, including their tails, can be fit well using a modified log-normal distribution, yielding deconvolution parameters that vary with propagation distance and transit time. To demonstrate the approach for complex nanosphere dispersions, such as a multi-modal mixture or a broadly polydisperse nanoemulsion, we measure scattered light intensities as a function of propagation distance and time during gel-EP. Iterative deconvolution using a modified log-normal point-spread function, which changes shape according to propagation distance and time, directly yields unsmeared, high-resolution electrophoretic mobility distributions, from which detailed particle size distributions are inferred. PMID:25218049

  16. Separation performance of single-stranded DNA electrophoresis in photopolymerized cross-linked polyacrylamide gels.

    PubMed

    Lo, Roger C; Ugaz, Victor M

    2006-02-01

    Considerable effort has been directed toward optimizing performance and maximizing throughput in ssDNA electrophoresis because it is a critical analytical step in a variety of genomic assays. Ultimately, it would be desirable to quantitatively determine the achievable level of separation resolution directly from measurements of fundamental physical properties associated with the gel matrix rather than by the trial and error process often employed. Unfortunately, this predictive capability is currently lacking, due in large part to the need for a more detailed understanding of the fundamental parameters governing separation performance (mobility, diffusion, and dispersion). We seek to address this issue by systematically characterizing electrophoretic mobility, diffusion, and dispersion behavior of ssDNA fragments in the 70-1,000 base range in a photopolymerized cross-linked polyacrylamide matrix using a slab gel DNA sequencer. Data are collected for gel concentrations of 6, 9, and 12%T at electric fields ranging from 15 to 40 V/cm, and resolution predictions are compared with corresponding experimentally measured values. The data exhibit a transition from behavior consistent with the Ogston model for small fragments to behavior in agreement with the biased reptation model at larger fragment sizes. Mobility data are also used to estimate the mean gel pore size and compare the predictions of several models. PMID:16331587

  17. Comparative analyses of amplicon migration behavior in differing denaturing gradient gel electrophoresis (DGGE) systems

    NASA Astrophysics Data System (ADS)

    Thornhill, D. J.; Kemp, D. W.; Sampayo, E. M.; Schmidt, G. W.

    2010-03-01

    Denaturing gradient gel electrophoresis (DGGE) is commonly utilized to identify and quantify microbial diversity, but the conditions required for different electrophoretic systems to yield equivalent results and optimal resolution have not been assessed. Herein, the influence of different DGGE system configuration parameters on microbial diversity estimates was tested using Symbiodinium, a group of marine eukaryotic microbes that are important constituents of coral reef ecosystems. To accomplish this, bacterial clone libraries were constructed and sequenced from cultured isolates of Symbiodinium for the ribosomal DNA internal transcribed spacer 2 (ITS2) region. From these, 15 clones were subjected to PCR with a GC clamped primer set for DGGE analyses. Migration behaviors of the resulting amplicons were analyzed using a range of conditions, including variation in the composition of the denaturing gradient, electrophoresis time, and applied voltage. All tests were conducted in parallel on two commercial DGGE systems, a C.B.S. Scientific DGGE-2001, and the Bio-Rad DCode system. In this context, identical nucleotide fragments exhibited differing migration behaviors depending on the model of apparatus utilized, with fragments denaturing at a lower gradient concentration and applied voltage on the Bio-Rad DCode system than on the C.B.S. Scientific DGGE-2001 system. Although equivalent PCR-DGGE profiles could be achieved with both brands of DGGE system, the composition of the denaturing gradient and application of electrophoresis time × voltage must be appropriately optimized to achieve congruent results across platforms.

  18. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products.

    PubMed

    Jimenez, Maria S; Luque-Alled, Jose M; Gomez, Teresa; Castillo, Juan R

    2016-05-01

    Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes-AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes-AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA-ICP-MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs-protein binding (what is not possible using SDS-PAGE). PMID:26864499

  19. A tunable isoelectric focusing via moving reaction boundary for two-dimensional gel electrophoresis and proteomics.

    PubMed

    Guo, Chen-Gang; Shang, Zhi; Yan, Jian; Li, Si; Li, Guo-Qing; Liu, Rong-Zhong; Qing, Ying; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi

    2015-05-01

    Routine native immobilized pH gradient isoelectric focusing (IPG-IEF) and two-dimensional gel electrophoresis (2DE) are still suffering from unfortunate reproducibility, poor resolution (caused by protein precipitation) and instability in characterization of intact protein isoforms and posttranslational modifications. Based on the concept of moving reaction boundary (MRB), we firstly proposed a tunable non-IPG-IEF system to address these issues. By choosing proper pairs of catholyte and anolyte, we could achieve desired cathodic and anodic migrating pH gradients in non-IPG-IEF system, effectively eliminating protein precipitation and uncertainty of quantitation existing in routine IEF and 2DE, and enhancing the resolution and sensitivity of IEF. Then, an adjustable 2DE system was developed by combining non-IPG-IEF with polyacrylamide gel electrophoresis (PAGE). The improved 2DE was evaluated by testing model proteins and colon cancer cell lysates. The experiments revealed that (i) a tunable pH gradient could be designed via MRB; (ii) up to 1.65 fold improvement of resolution was achieved via non-IPG-IEF; (iii) the sensitivity of developed techniques was increased up to 2.7 folds; and (iv) up to about 16.4% more protein spots could be observed via the adjustable 2DE as compared with routine one. The developed techniques might contribute to complex proteome research, especially for screening of biological marker and analysis of extreme acidic/alkaline proteins. PMID:25770625

  20. A control method to inspect the compositional authenticity of Minas Frescal cheese by gel electrophoresis.

    PubMed

    Magenis, Renata B; Prudêncio, Elane S; Molognoni, Luciano; Daguer, Heitor

    2014-08-20

    This study introduces a qualitative method to inspect the compositional authenticity of white nonripened cheeses like Minas Frescal, a typical Brazilian cheese, especially when irregular replacement of milk by whey is suspected. A sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) method, followed by image densitometry, was validated. Cheeses were freeze-dried to electrophoresis, and β-lactoglobulin (β-LG) was chosen as the adulteration marker. In gel trypsin digestion followed by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry provided its identification. Cheeses with a minimum of 14 mg·g(-1) of β-LG are considered to be adulterated. The method shows satisfactory precision with a detection limit of 7 mg·g(-1). Forty-two commercial samples from inspected establishments were then assessed and subjected to cluster analysis. Compliant and noncompliant groups were set with 24 (57%) authentic samples and 18 (43%) adulterated samples, respectively, showing that proper analytical monitoring is required to inhibit this practice. PMID:25096158

  1. The development of simple and sensitive small-molecule fluorescent probes for the detection of serum proteins after native polyacrylamide gel electrophoresis.

    PubMed

    Wang, Fangfang; Huang, Lingyun; Na, Na; He, Dacheng; Sun, Dezhi; Ouyang, Jin

    2012-05-21

    In this paper, a simple and sensitive small-molecule fluorescent probe, 2,5-dihydroxy-4'-dimethylaminochalcone (DHDMAC), was designed and synthesized for the detection of human serum proteins via hydrophobic interactions after polyacrylamide gel electrophoresis (PAGE). This probe produced lower fluorescence emission in the absence of proteins, and the emission intensity was significantly increased after the interaction with serum proteins. To demonstrate the imaging performance of this probe as a fluorescent dye, a series of experiments was conducted that included sensitivity comparison and 2D-PAGE. The results indicated that the sensitivity of DHDMAC staining is comparable to that of the most widely used fluorescent dye, SYPRO Ruby, and more protein spots (including thyroxine-binding globulin, angiotensinogen, afamin, zinc-α-2-glycoprotein and α-1-antichymotrypsin) were detected after 2D-PAGE. Therefore, DHDMAC is a good protein reporter due to its fast staining procedure, low detection limits and high resolution. PMID:22475746

  2. HP-Lattice QSAR for dynein proteins: experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a Leishmania infantum sequence.

    PubMed

    Dea-Ayuela, María Auxiliadora; Pérez-Castillo, Yunierkis; Meneses-Marcel, Alfredo; Ubeira, Florencio M; Bolas-Fernández, Francisco; Chou, Kuo-Chen; González-Díaz, Humberto

    2008-08-15

    The toxicity and inefficacy of actual organic drugs against Leishmaniosis justify research projects to find new molecular targets in Leishmania species including Leishmania infantum (L. infantum) and Leishmaniamajor (L. major), both important pathogens. In this sense, quantitative structure-activity relationship (QSAR) methods, which are very useful in Bioorganic and Medicinal Chemistry to discover small-sized drugs, may help to identify not only new drugs but also new drug targets, if we apply them to proteins. Dyneins are important proteins of these parasites governing fundamental processes such as cilia and flagella motion, nuclear migration, organization of the mitotic splinde, and chromosome separation during mitosis. However, despite the interest for them as potential drug targets, so far there has been no report whatsoever on dyneins with QSAR techniques. To the best of our knowledge, we report here the first QSAR for dynein proteins. We used as input the Spectral Moments of a Markov matrix associated to the HP-Lattice Network of the protein sequence. The data contain 411 protein sequences of different species selected by ClustalX to develop a QSAR that correctly discriminates on average between 92.75% and 92.51% of dyneins and other proteins in four different train and cross-validation datasets. We also report a combined experimental and theoretic study of a new dynein sequence in order to illustrate the utility of the model to search for potential drug targets with a practical example. First, we carried out a 2D-electrophoresis analysis of L. infantum biological samples. Next, we excised from 2D-E gels one spot of interest belonging to an unknown protein or protein fragment in the region M<20,200 and pI<4. We used MASCOT search engine to find proteins in the L. major data base with the highest similarity score to the MS of the protein isolated from L. infantum. We used the QSAR model to predict the new sequence as dynein with probability of 99.99% without

  3. Alkaline phosphatase isoenzymes in mouse plasma detected by polyacrylamide-gel disk electrophoresis.

    PubMed

    Hatayama, Kazuhisa; Nishihara, Yoshito; Kimura, Sayaka; Goto, Ken; Nakamura, Daichi; Wakita, Atsushi; Urasoko, Yoshinaka

    2011-04-01

    Plasma alkaline phosphatase (ALP) activity is frequently measured in toxicity studies. In the present study, we assessed the usefulness of a commercially available polyacrylamide-gel (PAG) disk electrophoresis kit used in humans (AlkPhor System, Jokoh Co., Ltd., Tokyo, Japan) for identifying plasma ALP isoenzymes in mice of the Crlj:CD1 strain (ICR mice), which are commonly used in toxicity studies. We also examined age-related changes in plasma ALP isoenzymes in ICR mice. Electrophoresis was performed according to the manufacturer's instructions. In order to identify the origin of each ALP isoenzyme, in addition to plasma samples, tissue ALP extracts from the liver, bone and small intestine were treated with neuraminidase, anti-small intestinal ALP antibody, ALP inhibitor levamisole and/or wheat germ agglutinin (WGA). The kit revealed that main plasma ALP isoenzyme in intact ICR mice was bone-derived one, and it tended to decrease with age. On the other hand, liver-derived ALP isoenzyme greatly increased in plasma of cholestasis model mice induced by bile duct ligation. This model mouse had also a large molecular ALP detected in the stacking gel. This ALP was thought to be of intestinal origin because its activity remained even after levamisole inhibition. In addition, a minimum sample volume for sufficient resolution of plasma ALP isoenzymes was only 14µl. The results of this study suggest that the present method is a useful tool for detecting plasma ALP isoenzymes in mice and that pre-treatment of plasma with neuraminidase and concomitant levamisole inhibition with another gel is applicable for the evaluation of organ toxicity. PMID:21467748

  4. Identification of cellular proteome using two-dimensional difference gel electrophoresis in ST cells infected with transmissible gastroenteritis coronavirus

    PubMed Central

    2013-01-01

    Background Transmissible gastroenteritis coronavirus (TGEV) is an enteropathogenic coronavirus that causes diarrhea in pigs, which is correlated with high morbidity and mortality in suckling piglets. Information remains limited about the comparative protein expression of host cells in response to TGEV infection. In this study, cellular protein response to TGEV infection in swine testes (ST) cells was analyzed, using the proteomic method of two-dimensional difference gel electrophoresis (2D DIGE) coupled with MALDI-TOF-TOF/MS identification. Results 33 differentially expressed protein spots, of which 23 were up-regulated and 10 were down-regulated were identified. All the protein spots were successfully identified. The identified proteins were involved in the regulation of essential processes such as cellular structure and integrity, RNA processing, protein biosynthesis and modification, vesicle transport, signal transduction, and the mitochondrial pathway. Western blot analysis was used to validate the changes of alpha tubulin, keratin 19, and prohibitin during TGEV infection. Conclusions To our knowledge, we have performed the first analysis of the proteomic changes in host cell during TGEV infection. 17 altered cellular proteins that differentially expressed in TGEV infection were identified. The present study provides protein-related information that should be useful for understanding the host cell response to TGEV infection and the underlying mechanism of TGEV replication and pathogenicity. PMID:23855489

  5. Buffer optimization for high resolution of human lung cancer tissue proteins by two-dimensional gel electrophoresis.

    PubMed

    Lee, Kibeom; Pi, Kyungbae; Lee, Keeman

    2009-01-01

    A problem in proteomic analysis of lung cancer tissue is the presence of complex components of different histological backgrounds (squamous cell carcinoma, small cell lung carcinoma, and adenocarcinoma). The efficient solubilization of protein components before two-dimensional electrophoresis (2-DE) is a very critical. Poor solubilization has been associated with a failure to detect proteins and diffuse, streaked and/or trailing protein spots. Here, we have optimized the solubilization of human lung cancer tissue to increase protein resolution. Isoelectric focusing (IEF) rehydration buffer containing a thiourea-urea mixture provided superior resolution, whereas a buffer without thiourea yielded consistently poor results. In addition, IEF rehydration buffers containing CHAPS and DTT gave superior resolution, whereas buffers containing Nonidet P-40 (NP-40) and/or Triton X-100 did not. A tributylphosphine-containing buffer gave consistently poor results. Using optimized conditions, we used 2-D gel analysis of human lung cancer tissue to identify 11 differentially-expressed protein spots by MALDI-mass spectrometry. This study provides a methodological tool to study the complex mammalian proteomes. PMID:18800191

  6. Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis.

    PubMed Central

    Gardella, T; Medveczky, P; Sairenji, T; Mulder, C

    1984-01-01

    A simple gel technique is described for the detection of large, covalently closed, circular DNA molecules in eucaryotic cells. The procedure is based on the electrophoretic technique of Eckhardt (T. Eckhardt, Plasmid 1:584-588, 1978) for detecting bacterial plasmids and has been modified for the detection of circular and linear extrachromosomal herpesvirus genomes in mammalian cells. Gentle lysis of suspended cells in the well of an agarose gel followed by high-voltage electrophoresis allows separation of extrachromosomal DNA from the bulk of cellular DNA. Circular viral DNA from cells which carry the genomes of Epstein-Barr virus, Herpesvirus saimiri, and Herpesvirus ateles can be detected in these gels as sharp bands which comigrate with bacterial plasmid DNA of 208 kilobases. Epstein-Barr virus producer cell lines also show a sharp band of linear 160-kilobase DNA. The kinetics of the appearance of this linear band after induction of viral replication after temperature shift parallels the known kinetics of Epstein-Barr virus production in these cell lines. Hybridization of DNA after transfer to filters shows that the circular and linear DNA bands are virus specific and that as little as 0.25 Epstein-Barr virus genome per cell can be detected. The technique is simple, rapid, and sensitive and requires relatively low amounts of cells (0.5 X 10(6) to 2.5 X 10(6)). Images PMID:6321792

  7. Phosphoproteome profiling using a fluorescent phosphosensor dye in two-dimensional polyacrylamide gel electrophoresis.

    PubMed

    Otani, Mieko; Taniguchi, Taizo; Sakai, Akiko; Seta, Jouji; Kadoyama, Keiichi; Nakamura-Hirota, Tooru; Matsuyama, Shogo; Sano, Keiji; Takano, Masaoki

    2011-07-01

    We validated the novel PhosphoQUANTI SolidBlue Complex (PQSC) dye for the sensitive fluorescent detection of phosphorylated proteins in polyacrylamide- and two-dimensional gel electrophoresis (PAGE and 2DE, respectively). PQSC can detect as little as 15.6 ng of ß-casein, a pentaphosphorylated protein, and 61.3 ng of ovalbumin, a diphosphorylated protein. Fluorescence intensity correlates with the number of phosphorylated residues on the protein. To demonstrate the specificity of PQSC for phosphoproteins, enzymatically dephosphorylated lysates of Swiss 3T3 cells were separated in 2DE gels and stained by PQSC. The fluorescence signals in these gels were markedly reduced following dephosphorylation. When the phosphorylated proteins in Swiss 3T3 cell lysates were concentrated using a phosphoprotein enrichment column, the majority of phosphoproteins showed fluorescence signals in the pI 4-5 range. Finally, we performed phosphoproteome analysis to study differences in the protein phosphorylation profiles of proliferating and quiescent Swiss 3T3 cells. Over 135 discernible protein spots were detected, from which a selection of 15 spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS). The PQSC staining procedure for phosphoprotein detection is simple, reversible, and fully compatible with MALDI TOF-MS. PMID:21384102

  8. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    PubMed

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions. PMID:25441888

  9. Quantitative analysis of plasma membrane proteome using two-dimensional difference gel electrophoresis.

    PubMed

    Tang, Wenqiang

    2012-01-01

    The plasma membrane (PM) controls cell's exchange of both material and information with the outside environment, and PM-associated proteins play key roles in cellular regulation. Numerous cell surface receptors allow cells to perceive and respond to various signals from neighbor cells, pathogens, or the environment; large numbers of transporter and channel proteins control material uptake or release. Quantitative proteomic analysis of PM-associated proteins can identify key proteins involved in signal transduction and cellular regulation. Here, we describe a protocol for quantitative proteomic analysis of PM proteins using two-dimensional difference gel electrophoresis. The protocol has been successfully employed to identify new components of the brassinosteroid signaling pathway, and should also be applicable to the studies of other plant signal transduction pathways and regulatory mechanisms. PMID:22576086

  10. Optimization of Pulsed-field Gel Electrophoresis Procedure for Bacillus cereus.

    PubMed

    Zhang, Hui Juan; Pan, Zhuo; Wei, Jian Chun; Zhang, En Min; Cai, Hong; Liang, Xu Dong; Li, Wei

    2016-03-01

    In order to develop a rapid and reliable method for B. cereus genotyping, factors influencing PFGE results, including preparation of bacterial cells embedded in agarose, lysis of embedded cells, enzymatic digestion of intact genomic DNA, and electrophoresis parameters allowing for reproducible and meaningful DNA fragment separation, were controlled. Optimal cellular growth (Luria-Bertani agar plates for 12-18 h) and lysis conditions (4 h incubation with 500 µg/mL lysozyme) produced sharp bands on the gel. Restriction enzyme NotI was chosen as the most suitable. Twenty-two isolates were analyzed by NotI digestion, using three electrophoretic parameters (EPs). The EP-a was optimal for distinguishing between isolates. The optimized protocol could be completed within 40 h which is a significant improvement over the previous methods. PMID:27109136

  11. Campylobacter coli pulsed field gel electrophoresis genotypic diversity among sows and piglets in a farrowing barn.

    PubMed

    Hume, Michael E; Droleskey, Robert E; Sheffield, Cynthia L; Harvey, Roger B

    2002-08-01

    Genotypes of Campylobacter coli isolates from feces of three sows and rectal swabs of 17 piglets were examined by pulsed field gel electrophoresis (PFGE). All of the animals originated from a single farrowing barn of a farrow-to-finish swine operation. Five Campylobacter colonies were picked from a single agar plate for each sample after broth enrichment and growth on Campy-Cefex agar. Genotypes were examined by PFGE after genomic DNA digestion with SmaI and SacII restriction endonucleases. Twenty SmaI genotypes and 12 SacII genotypes were detected among 99 Campylobacter coli isolates. There was no pattern of shared genotypes between sows and their respective piglets, nor between littermates. Results indicate that a high number of Campylobacter genotypes may coexist in related pigs from a single housing facility. PMID:12070692

  12. Microdisc gel electrophoresis in sodium dodecyl sulfate of organic material from rat otoconial complexes

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Pote, K. G.; Rarey, K. E.; Verma, L. M.

    1981-01-01

    The gravity receptors of all vertebrates utilize a 'test mass' consisting of a complex arrangement of mineral and organic substance that lies over the sensory receptor areas. In most vertebrates, the mineral is a polymorph of calcium carbonate in the form of minute, single crystals called otoconia. An investigation is conducted to determine the number of proteins in otoconial complexes and their molecular weights. The investigation makes use of a microdisk gel electrophoresis method reported by Gainer (1971). The most important finding of the reported research is that analysis of the proteins of the organic material of the otoconial complexes is possible when sensitive microanalytical methods are employed. Further modification of the basic technique employed and the inclusion of other sensitive staining methods should mean that, in the future, protein separation by molecular weight will be possible in sample pools containing only two otoconial masses.

  13. Molecular analysis of chromosomal rearrangements using pulsed field gel electrophoresis and somatic cell hybrids

    SciTech Connect

    Davis, L.M. )

    1991-01-01

    Many human genetic diseases, including some cancers, are characterized by consistent chromosome abnormalities, such as deletions and translocations. Analyses of these mutations often prove crucial to the eventual cloning and characterization of the gene(s) responsible for the disease. Two methods for analyzing these chromosome abnormalities have been developed in recent years: somatic cell hybridization and pulsed field gel electrophoresis (PFGE). Somatic cell hybridization is a technique for segregating an aberrant chromosome from its normal homologue in a cell derived from an unrelated species, which is usually a rodent. Demonstrations of these analytic techniques are presented, using as an example chromosomal abnormalities involving human chromosome band 11p13, the locus for the Wilms' tumor, aniridia, genitourinary abnormality, and mental retardation (WAGR) syndrome.

  14. Epidemiological investigation of Salmonella tilene by pulsed-field gel electrophoresis and polymerase chain reaction

    PubMed Central

    Anand, Chandar M; Fonseca, Kevin; Longmore, Ken; Rennie, Robert; Chui, Linda; Lingley, Mike; Woodward, David

    1997-01-01

    Pulsed-field gel electrophoresis (PFGE) and DNA fingerprinting by the polymerase chain reaction (PCR) were performed on 11 isolates of Salmonella tilene. Five strains were from a cluster of human patients, six from sugar gliders and pygmy hedgehogs kept as family pets or from local pet retailers, and one isolate from the first North American case of S tilene described in Washington State in 1994. The PFGE restriction patterns showed all isolates to be similar. However, PCR using primers to the 16S and 23S rRNA genes of Escherichia coli demonstrated that the Washington State isolate differed from the rest of the other isolates, which were all similar based upon their DNA fingerprint. This study indicates that reliance on one technique alone may be insufficient to show nuances between strains that are, in many respects, closely related. PMID:22346526

  15. Epidemiological typing of Flavimonas oryzihabitans by PCR and pulsed-field gel electrophoresis.

    PubMed

    Liu, P Y; Shi, Z Y; Lau, Y J; Hu, B S; Shyr, J M; Tsai, W S; Lin, Y H; Tseng, C Y

    1996-01-01

    Flavimonas oryzihabitans has emerged as a potential nosocomial pathogen in recent years. The typing method for characterization of this species has never been reported before. Pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus (ERIC)-based PCR were used to generate DNA fingerprints for 14F. oryzihabitans isolates obtained from eight episodes of nosocomial infections during a 2-year period. Both techniques successfully classified these clinical isolates into eight distinct genotypes, thus indicating that all of these episodes of infections were independent. In contrast, repeated isolates from the same patient were assigned to identical genotypes. The reproducibility of both techniques was good. Therefore, we conclude that both PFGE and ERIC-PCR have comparable reproducible and discriminatory powers for the typing of F. oryzihabitans and may be useful for clarifying the epidemiology of this species; however, ERIC-PCR has the advantages of both speed and simplicity. PMID:8748275

  16. Characterization of Listeria monocytogenes isolates from cattle and ground beef by pulsed-field gel electrophoresis.

    PubMed

    Foerster, Claudia; Vidal, Lorena; Troncoso, Miriam; Figueroa, Guillermo

    2012-01-01

    The aims of this study were to determine the occurrence of Listeria monocytogenes in cattle feces and ground beef, to characterize these strains by pulsed-field gel electrophoresis and to compare them to three listeria strains found in humans. Cattle from different origins (n = 250) and ground beef obtained from supermarkets (n = 40) were sampled. The results show low occurrence in cattle feces (0.4 %) but a higher presence in ground beef (37 %). An important part of the ground beef strains (80 %) had > 95 % similarity with a strain isolated from a human sporadic case and the ATCC 19115 used as control. The strain isolated from cattle feces had 93 % similarity to clone 009, previously associated with a listeriosis outbreak related to cheese. Cattle and ground beef can harbor virulent L. monocytogenes strains. Further studies in animals and animal products are needed to improve listeriosis control. PMID:23102469

  17. On-line coupling of capillary gel electrophoresis with electrospray mass spectrometry for oligonucleotide analysis.

    PubMed

    Freudemann, T; von Brocke, A; Bayer, E

    2001-06-01

    Homooligodeoxyribonucleotides differing one nucleotide in length from 12- to 15-mer and from 17- to 20-mer were separated by size with capillary gel electrophoresis (CGE) using an entangled polymer solution in coated capillaries. The resolved components were analyzed by on-line coupling of CGE with electrospray mass spectrometry (ES-MS), denoted as CGE/ES-MS, in the full-scan negative ion detection mode. Baseline separation was achieved for the 12-15-mer oligonucleotide mixtures. Both synthetic phosphodiester oligonucleotide mixtures as well as their phosphorothioate analogues, serving as model compounds for antisense oligonucleotides, could be analyzed by on-line CGE/ES-MS coupling. Terminally phosphorylated and nonphosphorylated synthetic failure sequences could be electrophoretically separated and mass spectrometically characterized as well. This methodology might be a useful tool for synthesis control of phosphodiester oligonucleotides as well as for analysis of phosphorothioate analogues as they are used in antisense drug development. PMID:11403304

  18. Surface Modification of Gel-Free Microchannel Surface Electrophoresis Device for DNA Identification

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ho; Kuo, Yue

    2008-04-01

    A gel-free microchannel electrophoresis device for DNA separation and identification was studied. DNA fragments ranging from 3.5 to 21.2 kbp were effectively separated and identified. The channel's bottom surface was composed of silicon wafer or glass, and the channel wall was composed of SU-8 photoresist. The channel surface was modified with various solutions or plasmas. The separated DNA on the detection electrode was confirmed by electron spectroscopy for chemical analysis. DNA mobility on the glass substrate was higher than that on the Si substrate. In addition, the increase of the ionic strength of the solution on the device decreased the mobility of DNA. In summary, this new device is applicable to large DNA samples.

  19. Electrophoresis of DNA-protein complexes in polymer solutions: from free-flow to gels

    NASA Astrophysics Data System (ADS)

    Slater, Gary W.; Desruisseaux, Claude; Drouin, Guy

    2000-03-01

    We previously showed that labeling one of the ends of single-stranded DNA molecules with a neutral label like the protein streptavidin increases the interband separation of these hybrid molecules when they are electrophoresed in gels because of strong steric trapping effects. In 1999, we also demonstrated that these labeled DNA molecules can be sequenced in free-solution, a novel separation process that we called ELFSE. Here, we examine the fascinating intermediate regime where the streptavidin-DNA molecules are electrophoresed in polymer solutions of increasing concentrations, from ultra-dilute to fully entangled conditions. Our capillary electrophoresis results clarify the respective roles of friction, polymer capture,reptation and steric trapping. In some cases, two separation regimes coexist and the mobility becomes a non-monotonic function of the DNA size. A universal relationship is found to relate the mobility of labeled and unlabeled DNA molecules for all systems.

  20. Gel electrophoresis of partially denatured DNA: split-ends, bubbles, and squids

    NASA Astrophysics Data System (ADS)

    Sean, David; Slater, Gary W.

    2011-03-01

    Gel electrophoresis separates partially denatured DNA fragments based on chemical sequence. Upon an increase in temperature, AT-rich regions melt into two strands which is thought to be the main contributor to the rapid reduction of the fragment's mobility. The reduction in mobility is often predicted from the average number of denatured bases regardless of their positions. We re-visit the theoretical basis of this approach and determine that the analysis only holds for denatured domains that occur at the ends. Langevin Dynamics simulations are used to study the effect that the placement of the melted regions has on the mobility by discriminating between denatured domains which occur in the middle of the fragment (bubbles) and at the ends (split-ends). It is found that the split-ends dominate the blocking mechanism. In addition, we find a novel conformation (the ``squid'') which seems to be responsible for the blocking at high fields.

  1. Recovery of functional DNA inserts by electroendosmotic elution during gel electrophoresis.

    PubMed Central

    Tan, H V; Kitzis, A; Berthollet, T; Hamard, G; Beldjord, C; Benarous, R

    1988-01-01

    In contrast to all previous preparative electrophoresis apparatus which used a pump, electroendosmotic elution uses bound electrical charges at the end of the separating gel to generate a buffer flow. The electroendosmotic flow increased with increasing currents and decreasing buffer concentrations: its exact characteristics for the built apparatus were determined. The electroendosmotic device was able to separate two DNA fragments differing in size by only 5% with a recovery over 95%. As demonstrated in practical examples of recovery and uses of DNA inserts, up to 10 micrograms of DNA per band can be loaded at a time. The recovered DNA can be used directly for nick-translation, ligation... without further treatment. The performances of the method are expected to improve still further if the charge density and pores of the electroendosmotic medium can be "made-to-order" to provide a better flow profile of the eluting buffer. Images PMID:2833722

  2. Non-denaturing gel electrophoresis system for the purification of membrane bound proteins

    SciTech Connect

    Cavinato, A.G.; Macleod, R.M.; Ahmed, M.S.

    1988-01-01

    A new method is described for the purification of a membrane bound glycoprotein, the kappa opioid receptor from human placental tissue. The method uses preparative slab-gel electrophoresis in the presence of the non-denaturing detergent CHAPS. A linear relationship between log molecular weight and SDS PAGE electrophoretic mobility of known molecular weight markers, in the presence of CHAPS, is observed. Using this method, we were able partially to purify an /sup 3/H-etorphine binding glycoprotein, from placental villus tissue, with an apparent molecular weight range of 60-70,000. The iodinated glycoprotein migrates in SDS PAGE with an apparent molecular weight of 63,000. This method may be useful for the isolation of membrane bound proteins, especially when an affinity ligand is not available.

  3. Strategies for a reliable biostatistical analysis of differentially expressed spots from two-dimensional electrophoresis gels.

    PubMed

    Eravci, Murat; Mansmann, Ulrich; Broedel, Oliver; Weist, Stephanie; Buetow, Sandra; Wittke, Janosch; Brunkau, Cindy; Hummel, Manuela; Eravci, Selda; Baumgartner, Andreas

    2009-05-01

    We performed quantitative comparisons with the two-dimensional gel electrophoresis technique and evaluated the reliability of biostatistical tests for the correction of "false significant" results (alpha-error) by performing repeated runs of an experiment. Results based on uncorrected p-values yielded numerous significant differences in spot intensity which could not be replicated in two additional runs. The best strategy for avoiding these "false-positive" results was strongly dependent on the type of result. In experiments yielding very marked group differences in spot intensity, calculation of the "False Discovery Rate" (FDR) by the Benjamini and Hochberg method corrected the results with sufficient reliability. In experiments yielding relatively small (p-values>0.001) group differences, up to 100% of all results which were significant in two repeated runs were excluded ("false-negative") by calculation of the FDR. In such experiments, significant differences need confirmation by repeated runs. PMID:19290622

  4. Derivation of clones close to met by preparative field inversion gel electrophoresis

    SciTech Connect

    Michiels, F.; Burmeister, M.; Lehrach, H.

    1987-06-05

    The molecular analysis of genes identified by mutations is a major problems in mammalian genetics. As a step toward this goal, preparative field inversion gel electrophoresis (FIGE) was used to selectively isolate clones from the environment of genetically linked markers, and to select a subset of these clones containing sequences next to specific restriction sites rare in mammalian DNA. This approach has been used to generate a library highly enriched in sequences closely linked to the cystic fibrosis marker met. One clone derived from the end of a Not I restriction fragment containing the met sequence was analyzed in detail and localized within a long range map to a position of 300 kilobase pairs 5' of the metD sequence.

  5. Epidemiologic study of Taylorella equigenitalis strains by field inversion gel electrophoresis of genomic restriction endonuclease fragments.

    PubMed

    Bleumink-Pluym, N; ter Laak, E A; van der Zeijst, B A

    1990-09-01

    Contagious equine metritis (CEM), a sexually transmitted bacterial disease, was first described in thoroughbred horses. It also occurs in nonthoroughbred horses, in which it produces isolated, apparently unrelated outbreaks. Thirty-two strains of Taylorella equigenitalis, the causative agent of CEM, from all over the world were characterized by field inversion gel electrophoresis of fragments of genomic DNA obtained by digestion with low-cleavage-frequency restriction enzymes. This resulted in a division into five clearly distinct groups. Strains from thoroughbred horses from all continents belonged to one group. Strains from nonthoroughbred horses from various countries were different from strains from thoroughbred horses; four groups could be determined. Two groups contained both streptomycin-resistant and streptomycin-susceptible strains. The data indicate that CEM in nonthoroughbreds did not originate from the thoroughbred population; also, the reverse was not demonstrated. Thus, extensive international transportation directives regarding the testing of nonthoroughbred horses for CEM may need reconsideration. PMID:2172296

  6. Molecular Fingerprinting of Dairy Microbial Ecosystems by Use of Temporal Temperature and Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Ogier, J.-C.; Lafarge, V.; Girard, V.; Rault, A.; Maladen, V.; Gruss, A.; Leveau, J.-Y.; Delacroix-Buchet, A.

    2004-01-01

    Numerous microorganisms, including bacteria, yeasts, and molds, constitute the complex ecosystem present in milk and fermented dairy products. Our aim was to describe the bacterial ecosystem of various cheeses that differ by production technology and therefore by their bacterial content. For this purpose, we developed a rapid, semisystematic approach based on genetic profiling by temporal temperature gradient electrophoresis (TTGE) for bacteria with low-G+C-content genomes and denaturing gradient gel electrophoresis (DGGE) for those with medium- and high-G+C-content genomes. Bacteria in the unknown ecosystems were assigned an identity by comparison with a comprehensive bacterial reference database of ∼150 species that included useful dairy microorganisms (lactic acid bacteria), spoilage bacteria (e.g., Pseudomonas and Enterobacteriaceae), and pathogenic bacteria (e.g., Listeria monocytogenes and Staphylococcus aureus). Our analyses provide a high resolution of bacteria comprising the ecosystems of different commercial cheeses and identify species that could not be discerned by conventional methods; at least two species, belonging to the Halomonas and Pseudoalteromonas genera, are identified for the first time in a dairy ecosystem. Our analyses also reveal a surprising difference in ecosystems of the cheese surface versus those of the interior; the aerobic surface bacteria are generally G+C rich and represent diverse species, while the cheese interior comprises fewer species that are generally low in G+C content. TTGE and DGGE have proven here to be powerful methods to rapidly identify a broad range of bacterial species within dairy products. PMID:15345452

  7. Pulsed-field gel electrophoresis of the genomic restriction fragments of coagulase-negative staphylococci.

    PubMed

    Snopková, S; Götz, F; Doskar, J; Rosypal, S

    1994-12-01

    The genomes of 47 coagulase-negative staphylococcal strains assigned to different species were analysed by pulsed-field electrophoresis. The strains were clustered on the basis of their similarity in the SmaI restriction patterns into various groups, each group consisting of the type strain and the strains whose SmaI restriction patterns were similar to that of the type of strain. The SmaI restriction groups seem to correspond to the following species: Staphylococcus warneri, S. hominis, S. xylosus, S. lugdunensis, S. kloosii, S. haemolyticus, S. lentus, S. cohnii, S. equorum, S. chromogenes, S. saprophyticus, S. simulans, S. carnosus, S. capitis and S. auricularis. The species S. sciuri, S. caseolyticus, S. gallinarum, S. epidermidis and S. schleiferi were represented only by their type strains and showed no similarity in their SmaI restriction patterns neither to each other nor to all the other species investigated here. Thus, the classification of coagulase-negative staphylococcal strains into the above species seems to be confirmed also by genome restriction analysis carried out by pulsed-field gel electrophoresis. PMID:7813882

  8. Conformational Entropy Mechanism for Periodic Motion of DNA under Constant-Field Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Azuma, Ryuzo; Takayama, Hajime

    2006-06-01

    Entropic elasticity of a single charged polymer undergoing gel electrophoresis is a fundamental theme of polymer statistical physics since the discovery of “periodic” behavior in constant field gel electrophoresis (CFGE). In the present work we address the problem numerically by two steps. In the first step, we carry out Brownian dynamics (BD) simulations on CFGE by solving semi-microscopic Langevin equations of a polymer consisting of beads separated by a mean distance much smaller than the Kuhn length. Results are analyzed based on coarse-graining over the Kuhn length scale. We show the averaged elongation-contraction motion involves asymmetric V-shaped configurations whose shorter arm length depends on the field and the temperature consistently with what is expected when the BD chain is described by the freely-jointed chain (FJC) model with a suitable Kuhn length. To our knowledge, this is the first numerical confirmation of the FJC model itself from a submicroscopic description of polymer motion. The saturation of chain mobility in high fields agrees well with the nonlinear dependence of this shorter arm length on the field. In the second step, we discuss the periodic elongation-contraction motion of the coarse-grained chain by such a simplified model as a one-dimensional chain consisting of beads, elastic strings, and obstacles. The results from these two chain models indicate that the periodic elongation-contraction motion of DNA under CFGE is self-organized by a balance between the field force and the conformational entropic force.

  9. Pulsed Field Gel Electrophoresis along with Antimicrobial Resistance pattern of Salmonella serotypes isolated from broiler whole carcass rinses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulsed field gel electrophoresis (PFGE) and antibiogram patterns have been used to evaluate the diversity within and between individual Salmonella serotypes. The objectives of the study were to evaluate the PFGE along with antimicrobial resistance patterns of Salmonella isolates originating from br...

  10. Application of multiplex PCR, pulsed-field gel electrophoresis (PFGE), and BOX-PCR for molecular analysis of enterococci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the study was to use band-based molecular methods including BOX-PCR (Polymerase Chain Reaction) and Pulsed-Field Gel Electrophoresis (PFGE) to determine if genetically related enterococci were found among different stores, food types, or years. Enterococci were also characterized f...

  11. Implementation of Salmonella serotype determination using pulsed-field gel electrophoresis in a state public health laboratory.

    PubMed

    Bopp, Dianna J; Baker, Deborah J; Thompson, Lisa; Saylors, Amy; Root, Timothy P; Armstrong, Leeanna; Mitchell, Kara; Dumas, Nellie B; Musser, Kimberlee Arruda

    2016-08-01

    We examined the use of pulsed-field gel electrophoresis (PFGE) to predict serotype for Salmonella isolates. Between 2012 and 2014 we assessed 4481 isolates, resulting in >90% assigned serotypes. PFGE is efficient for determining serotype in the majority of cases and results in expedited serotype determination, as well as cost savings. PMID:27220605

  12. Characterization of Salmonella isolates from retail foods based on serotyping, pulse field gel electrophoresis, antibiotic resistance and other phenotypic properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen Salmonella strains isolated from a variety of foods during 2000 and 2003, by the Florida State Department of Agriculture, were characterized by various genotypic and phenotypic tests. Among 16 isolates, 15 different serotypes were identified. Pulse-Field Gel Electrophoresis (PFGE) fingerpr...

  13. Improved Pulsed-Field Gel Electrophoresis Procedure for the Analysis of F. columnare Isolates Previously Affected by DNA Degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is a fresh water bacterium that causes columnaris diseases in over 36 fish species. Intra-species typing of F. columnare can be performed by pulsed-field gel electrophoresis (PFGE). However, this method is hampered by the degradation of chromosomal DNA in about 10% of strain...

  14. Evaluation of repetitive extragenic palindromic-PCR and denatured gradient gel electrophoresis in identifying Salmonella serotypes isolated from processed turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella has been reported as the leading foodborne pathogen in the US. A study was conducted to compare the use of automated repetitive extragenic palindromic (REP-PCR) and denaturing gradient gel electrophoresis (DGGE) as diagnostic tools for identifying Salmonella serotypes. The interspersed ...

  15. Genetic diversity demonstrated by pulsed field gel electrophoresis of Salmonella enterica isolates obtained from diverse sources in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the genetic diversity of Salmonella isolates recovered from a variety of sources using pulsed-field gel electrophoresis (PFGE) to assess their possible relatedness. Salmonella was isolated from ca. 52% of samples from a pepper var. Bell production system. A to...

  16. Serum protein electrophoresis by using high-resolution agarose gel in clinically healthy and Aspergillus species-infected falcons.

    PubMed

    Kummrow, Maya; Silvanose, Christudas; Di Somma, Antonio; Bailey, Thomas A; Vorbrüggen, Susanne

    2012-12-01

    Serum protein electrophoresis has gained importance in avian medicine during the past decade. Interpretation of electrophoretic patterns should be based on species-specific reference intervals and the electrophoresis gel system. In this study, serum protein electrophoresis by using high-resolution agarose gels was performed on blood samples collected from 105 falcons, including peregrine falcons (Falco peregrinus), gyrfalcons (Falco rusticolus), saker falcons (Falco cherrug), red-naped shaheens (Falco pelegrinoides babylonicus), and hybrid falcons, that were submitted to the Dubai Falcon Hospital (Dubai, United Arab Emirates) between 2003 and 2006. Reference values were established in clinically healthy birds and compared with values from falcons infected with Aspergillus species (n = 32). Falcons with confirmed aspergillosis showed significantly lower prealbumin values, which is a novel finding. Prealbumin has been documented in many avian species, but further investigation is required to illuminate the diagnostic significance of this negative acute-phase protein. PMID:23409432

  17. Identification of 2D-gel proteins : a comparison of MALDI/TOF peptide mass mapping to {mu} LC-ESI tandem mass spectrometry.

    SciTech Connect

    Lim, H.; Hays, L. G.; Eng, J.; Tollaksen, S. L.; Giometti, C. S.; Holden, J. F.; Adams, M. W. W.; Reich, C. I.; Olsen, G. J.; Yates, J. R.; Biosciences Division; The Scripps Research Inst.; Univ. of Georgia; Univ. of Illinois

    2003-09-01

    A comparative analysis of protein identification for a total of 162 protein spots separated by two-dimensional gel electrophoresis from two fully sequenced archaea, Methanococcus jannaschii and Pyrococcus furiosus, using MALDI-TOF peptide mass mapping (PMM) and mu LC-MS/MS is presented. 100% of the gel spots analyzed were successfully matched to the predicted proteins in the two corresponding open reading frame databases by mu LC-MS/MS while 97% of them were identified by MALDI-TOF PMM. The high success rate from the PMM resulted from sample desalting/concentrating with ZipTip(C18) and optimization of several PMM search parameters including a 25 ppm average mass tolerance and the application of two different protein molecular weight search windows. By using this strategy, low-molecular weight (<23 kDa) proteins could be identified unambiguously with less than 5 peptide matches. Nine percent of spots were identified as containing multiple proteins. By using mu LC-MS/MS, 50% of the spots analyzed were identified as containing multiple proteins. mu LC-MS/MS demonstrated better protein sequence coverage than MALDI-TOF PMM over the entire mass range of proteins identified. MALDI-TOF and PMM produced unique peptide molecular weight matches that were not identified by mu LC-MS/MS. By incorporating amino acid sequence modifications into database searches, combined sequence coverage obtained from these two complimentary ionization methods exceeded 50% for approximately 70% of the 162 spots analyzed. This improved sequence coverage in combination with enzymatic digestions of different specificity is proposed as a method for analysis of post-translational modification from 2D-gel separated proteins.

  18. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis.

    PubMed

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  19. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    PubMed Central

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  20. Two-dimensional polyacylamide gel electrophoresis of envelope proteins of Escherichia coli.

    PubMed

    Johnson, W C; Silhavy, T J; Boos, W

    1975-03-01

    A method of separating envelope proteins by two-dimensional polyacrylamide gel electrophoresis is described. Escherichia coli envelopes (inner and outer membranes) were prepared by French pressing and washed by repeated centrifugation. Membrane proteins were solubilized with guanidine thiocyanate and were dialyzed against urea prior to two-dimensional electrophoretic analysis. The slab gel apparatus and conditions were similar to the technique developed by Metz and Bogorad (1974) for the separation of ribosomal proteins. This separation occurs in 8 M urea for the first dimension and in 0.2% sodium dodecyl sulfate for the second dimension. The technique separates about 70 different membrane proteins in a highly reproducible fashion according to both intrinsic charge and molecular weight. Some examples of alterations in the membrane protein pattern are demonstrated. These alterations are caused by a mutation affecting a sugar transport system and by growth in the presence of D-fucose, inducer of the transport system. A further example of membrane protein changes introduced by growth at the nonpermissive temperature of a temperature-sensitive cell division mutant is shown. Finally, it is demonstrated that the major outer membrane component of Escherichia coli K-12 contains more than four proteins of similar molecular weight. PMID:803821

  1. Screening for amyloid aggregation by Semi-Denaturing Detergent-Agarose Gel Electrophoresis.

    PubMed

    Halfmann, Randal; Lindquist, Susan

    2008-01-01

    Amyloid aggregation is associated with numerous protein misfolding pathologies and underlies the infectious properties of prions, which are conformationally self-templating proteins that are thought to have beneficial roles in lower organisms. Amyloids have been notoriously difficult to study due to their insolubility and structural heterogeneity. However, resolution of amyloid polymers based on size and detergent insolubility has been made possible by Semi-Denaturing Detergent-Agarose Gel Electrophoresis (SDD-AGE). This technique is finding widespread use for the detection and characterization of amyloid conformational variants. Here, we demonstrate an adaptation of this technique that facilitates its use in large-scale applications, such as screens for novel prions and other amyloidogenic proteins. The new SDD-AGE method uses capillary transfer for greater reliability and ease of use, and allows any sized gel to be accomodated. Thus, a large number of samples, prepared from cells or purified proteins, can be processed simultaneously for the presence of SDS-insoluble conformers of tagged proteins. PMID:19066511

  2. Immunoreactivity and two-dimensional gel-electrophoresis characterization of Egyptian cobra venom proteome.

    PubMed

    Almehdar, Hussein Abduelrahman; Adel-Sadek, Mahmoud Abass; Redwan, Elrashdy Moustafa

    2015-01-01

    The first and second (two) dimensional gel electrophoresis has a broad protein resolution power. It was used to separate and identify cobra venom proteome. The importance of characterizing venom proteins contents from the Egyptian elapidae, specifically neurotoxins, is based on the need to produce effective anti-venom. About 30-55distinct protein spots were identified on silver stained two-dimensional gels. Around two-thirds of the venom proteins displayed low a molecular weight and a migration into hydrophobic side. The venoms from Naja haja and Naja nigricollus showed 45-55 spots, while Walternnesia aegyptia had less (31-37) spots. The commercial prepared polyclonal antivenom had a strong signal for anionic and cationic venom protein spots with molecular weight 20-115 kDa. However, it showed weak or non immunoreactivity toward anionic low molecular weight spots (2.5-15 kDa). These results suggest the need to change the immunization schedule to include low molecular weight toxin-proteomes as separate dose or sequester injection. PMID:25553707

  3. A novel multi-scale Hessian based spot enhancement filter for two dimensional gel electrophoresis images.

    PubMed

    Shamekhi, Sina; Miran Baygi, Mohammad Hossein; Azarian, Bahareh; Gooya, Ali

    2015-11-01

    Two dimensional gel electrophoresis (2DGE) is a useful method for studying proteins in a wide variety of applications including identifying post-translation modification (PTM), biomarker discovery, and protein purification. Computerized segmentation and detection of the proteins are the two main processes that are carried out on the scanned image of the gel. Due to the complexities of 2DGE images and the presence of artifacts, the segmentation and detection of protein spots in these images are non-trivial, and involve supervised and time consuming processes. This paper introduces a new spot filter for enhancing, and separating the closely overlapping spots of protein in 2DGE images based on the multi-scale eigenvalue analysis of the image Hessian. Using a Gaussian spot model, we have derived closed form equations to compute the eigen components of the image Hessian of two overlapping spots in a multi-scale fashion. Based on this analysis, we have proposed a novel filter that suppresses the overlapping area and results in a better spot separation. The performance of the proposed filter has been evaluated on the synthetic and real 2DGE images. The comparison with three conventional techniques and a commercial software package reveals the superiority and effectiveness of the proposed filter. PMID:26409228

  4. The monitoring of nucleotide diphosphate kinase activity by blue native polyacrylamide gel electrophoresis.

    PubMed

    Mailloux, Ryan J; Darwich, Rami; Lemire, Joseph; Appanna, Vasu

    2008-04-01

    Nucleoside diphosphate kinase (NDPK) has been shown to play a pivotal role in modulating a plethora of cellular processes. In this study, we report on a blue native (BN) PAGE technique which allows the facile assessment of NDPK activity and expression. The in-gel detection of NDPK relies on the precipitation of formazan at the site of immobilized enzyme activity. This is achieved by coupling the formation of ATP, as a consequence of gamma-phosphate transfer from NTP to ADP, to hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PDH), oxidized nicotinamide adenine dinucleotide phosphate (NADP), phenazine methosulfate (PMS), and iodonitrotetrazolium chloride (INT). 2-D denaturing gel analysis confirmed that the activity bands corresponded to NDPK as indicated by subunit composition. Furthermore, the sensitivity and specificity of this readily accessible procedure was assessed by monitoring the in-gel activity of NDPK using different concentrations of GTP and CTP as well as deoxynucleoside triphosphates. This electrophoretic technique allows the quick and easy detection of NDPK, a housekeeping enzyme crucial to cell survival. PMID:18324728

  5. Molecular Epidemiology of Mycobacterium tuberculosis Isolates in 100 Patients With Tuberculosis Using Pulsed Field Gel Electrophoresis

    PubMed Central

    Pooideh, Mohammad; Jabbarzadeh, Ismail; Ranjbar, Reza; Saifi, Mahnaz

    2015-01-01

    Background: Tuberculosis (TB) is a widespread infectious disease. Today, TB has created a public health crisis in the world. Genotyping of Mycobacterium tuberculosis isolates is useful for surveying the dynamics of TB infection, identifying new outbreaks, and preventing the disease. Different molecular methods for clustering of M. tuberculosis isolates have been used. Objectives: During a one year study of genotyping, 100 M. tuberculosis isolates from patients referred to Pasteur Institute of Iran were collected and their genotyping was accomplished using pulsed field gel electrophoresis (PFGE) method. Materials and Methods: Identification of all M. tuberculosis isolates was accomplished using standard biochemical and species-specific polymerase chain reaction (PCR) methods. Antibiotic susceptibility tests were performed using proportional method. After preparing PFGE plaques for each isolate of M. tuberculosis, XbaI restriction enzyme was applied for genome digestion. Finally, the digested DNA fragments were separated on 1% agarose gel and analyzed with GelCompar II software. Results: Genotyping of the studied isolates in comparison with the molecular weight marker revealed two common types; pulsotype A with 71 isolates and one multidrug resistant mycobacterium (MDR) case, and pulsotype B including 29 isolates and three MDR cases. No correlation between the antibiotypes and pulsotypes was observed. Conclusions: Molecular epidemiology studies of infectious diseases have been useful when bacterial isolates have been clustered in a period of time and in different geographical regions with variable antibiotic resistance patterns. In spite of high geographical differences and different antibiotic resistant patterns, low genetic diversity among the studied TB isolates may refer to the low rate of mutations in XbaI restriction sites in the mycobacterial genome. We also identified three MDR isolates in low-incidence pulsotype B, which could be disseminated and is highly

  6. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    PubMed

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-01-01

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins. PMID:27341489

  7. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from cellular lysates.

    PubMed

    Fiala, Gina J; Schamel, Wolfgang W A; Blumenthal, Britta

    2011-01-01

    Multiprotein complexes (MPCs) play a crucial role in cell signalling, since most proteins can be found in functional or regulatory complexes with other proteins (Sali, Glaeser et al. 2003). Thus, the study of protein-protein interaction networks requires the detailed characterization of MPCs to gain an integrative understanding of protein function and regulation. For identification and analysis, MPCs must be separated under native conditions. In this video, we describe the analysis of MPCs by blue native polyacrylamide gel electrophoresis (BN-PAGE). BN-PAGE is a technique that allows separation of MPCs in a native conformation with a higher resolution than offered by gel filtration or sucrose density ultracentrifugation, and is therefore useful to determine MPC size, composition, and relative abundance (Schägger and von Jagow 1991); (Schägger, Cramer et al. 1994). By this method, proteins are separated according to their hydrodynamic size and shape in a polyacrylamide matrix. Here, we demonstrate the analysis of MPCs of total cellular lysates, pointing out that lysate dialysis is the crucial step to make BN-PAGE applicable to these biological samples. Using a combination of first dimension BN- and second dimension SDS-PAGE, we show that MPCs separated by BN-PAGE can be further subdivided into their individual constituents by SDS-PAGE. Visualization of the MPC components upon gel separation is performed by standard immunoblotting. As an example for MPC analysis by BN-PAGE, we chose the well-characterized eukaryotic 19S, 20S, and 26S proteasomes. PMID:21403626

  8. Characterization of wheat gliadin proteins by combined two-dimensional gel electrophoresis and tandem mass spectrometry.

    PubMed

    Mamone, Gianfranco; Addeo, Francesco; Chianese, Lina; Di Luccia, Aldo; De Martino, Alessandra; Nappo, Annunziata; Formisano, Annarita; De Vivo, Pasqualina; Ferranti, Pasquale

    2005-07-01

    A proteomics-based approach was used for characterizing wheat gliadins from an Italian common wheat (Triticum aestivum) cultivar. A two-dimensional gel electrophoresis (2-DE) map of roughly 40 spots was obtained by submitting the 70% alcohol-soluble crude protein extract to isoelectric focusing on immobilized pH gradient strips across two pH gradient ranges, i.e., 3-10 or pH 6-11, and to sodium dodecyl sulfate-polyacrylamide electrophoresis in the second dimension. The chymotryptic digest of each spot was characterized by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and nano electrospray ionization-tandem mass spectrometry (MS/MS) analysis, providing a "peptide map" for each digest. The measured masses were subsequently sought in databases for sequences. For accurate identification of the parent protein, it was necessary to determine de novo sequences by MS/MS experiments on the peptides. By partial mass fingerprinting, we identified protein molecules such as alpha/beta-, gamma-, omega-gliadin, and high molecular weight-glutenin. The single spots along the 2-DE map were discriminated on the basis of their amino acid sequence traits. alpha-Gliadin, the most represented wheat protein in databases, was highly conserved as the relative N-terminal sequence of the components from the 2-DE map contained only a few silent amino acid substitutions. The other closely related gliadins were identified by sequencing internal peptide chains. The results gave insight into the complex nature of gliadin heterogeneity. This approach has provided us with sound reference data for differentiating gliadins amongst wheat varieties. PMID:15952231

  9. Two-Dimensional Differential Gel Electrophoresis to Identify Protein Biomarkers in Amniotic Fluid of Edwards Syndrome (Trisomy 18) Pregnancies

    PubMed Central

    Hsu, Te-Yao; Lin, Hao; Hung, Hsuan-Ning; Yang, Kuender D.; Ou, Chia-Yu; Tsai, Ching-Chang; Cheng, Hsin-Hsin; Chung, Su-Hai; Cheng, Bi-Hua; Wong, Yi-Hsun; Chou, An Kuo; Hsiao, Chang-Chun

    2016-01-01

    Background Edwards syndrome (ES) is a severe chromosomal abnormality with a prevalence of about 0.8 in 10,000 infants born alive. The aims of this study were to identify candidate proteins associated with ES pregnancies from amniotic fluid supernatant (AFS) using proteomics, and to explore the role of biological networks in the pathophysiology of ES. Methods AFS from six second trimester pregnancies with ES fetuses and six normal cases were included in this study. Fluorescence-based two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) were used for comparative proteomic analysis. The identified proteins were further validated by Western blotting and the role of biological networks was analyzed. Results Twelve protein spots were differentially expressed by more than 1.5-fold in the AFS of the ES pregnancies. MALDI-TOF/MS identified one up-regulated protein: apolipoprotein A1 (ApoA1), and four under-regulated proteins: vitamin D binding protein (VDBP), alpha-1-antitrypsin (A1AT), insulin-like growth factor-binding protein 1 (IGFBP-1), and transthyretin (TTR). Western blot and densitometric analysis of ApoA1, A1AT, IGFBP-1, and TTR confirmed the alteration of these proteins in the amniotic fluid samples. Biological network analysis revealed that the proteins of the ES AFS were involved mainly in lipid and hormone metabolism, immune response, and cardiovascular disease. Conclusions These five proteins may be involved in the pathogenesis of ES. Further studies are needed to explore. PMID:26752631

  10. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry.

    PubMed

    Mears, Rainy; Craven, Rachel A; Hanrahan, Sarah; Totty, Nick; Upton, Carol; Young, Sarah L; Patel, Poulam; Selby, Peter J; Banks, Rosamonde E

    2004-12-01

    Exosomes are 40-100 nm vesicles released by numerous cell types and are thought to have a variety of roles depending on their origin. Exosomes derived from antigen presenting cells have been shown to be capable of initiating immune responses in vivo and eradicating established tumours in murine models. Tumour-derived exosomes can be utilised as a source of tumour antigen for cross-priming to T-cells and are thus of interest for use in anti-tumour immunotherapy. Further exploration into the protein composition of exosomes may increase our understanding of their potential roles in vivo and this study has examined the proteome of exosomes purified from cell supernatants of the melanoma cell lines MeWo and SK-MEL-28. The vesicular nature and size (30-100 nm) of the purified exosomes was confirmed by electron microscopy and sucrose density gradient centrifugation. Western blotting demonstrated the absence of calnexin and cytochrome c, verifying the purity of the exosome preparations, as well as enrichment of MHC class I and the tumour-associated antigens Mart-1 and Mel-CAM. The two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) protein profiles of exosomes from the two cell lines were highly comparable and strikingly different from the profiles of the total cell lysates. Mass spectrometric sequencing identified proteins present in 49 protein spots in the exosome lysates. Several of these have been identified previously in exosomes but some are novel, including p120 catenin, radixin, and immunoglobulin superfamily member 8 (PGRL). Proteins present in whole-cell lysates that were significantly reduced or excluded from exosomes were also identified and included several mitochondrial and lysosomal proteins, again confirming the proposed endosomal origin of exosomes. This study presents a starting point for future more in-depth protein studies of tumour-derived exosomes which will aid the understanding of their biogenesis and targeting for use in anti

  11. A multi-channel gel electrophoresis and continuous fraction collection apparatus for high throughput protein separation and characterization

    SciTech Connect

    Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl; Dong, Ming; Biggin, Mark D.; Jin, Jian

    2009-10-02

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this system using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.

  12. Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis.

    PubMed

    Hong, Sung Wook; Choi, Yun-Jeong; Lee, Hae-Won; Yang, Ji-Hee; Lee, Mi-Ai

    2016-06-28

    Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341F(GC)-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species. PMID:26907755

  13. Identification of the Bacterial Microflora in Dairy Products by Temporal Temperature Gradient Gel Electrophoresis

    PubMed Central

    Ogier, Jean-Claude; Son, Olivier; Gruss, Alexandra; Tailliez, Patrick; Delacroix-Buchet, Agnes

    2002-01-01

    Numerous microorganisms, including bacteria, yeasts, and molds, are present in cheeses, forming a complex ecosystem. Among these organisms, bacteria are responsible for most of the physicochemical and aromatic transformations that are intrinsic to the cheesemaking process. Identification of the bacteria that constitute the cheese ecosystem is essential for understanding their individual contributions to cheese production. We used temporal temperature gradient gel electrophoresis (TTGE) to identify different bacterial species present in several dairy products, including members of the genera Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus, and Staphylococcus. The TTGE technique is based on electrophoretic separation of 16S ribosomal DNA (rDNA) fragments by using a temperature gradient. It was optimized to reveal differences in the 16S rDNA V3 regions of bacteria with low-G+C-content genomes. Using multiple control strains, we first set up a species database in which each species (or group of species) was characterized by a specific TTGE fingerprint. TTGE was then applied to controlled dairy ecosystems with defined compositions, including liquid (starter), semisolid (home-made fermented milk), and solid (miniature cheese models) matrices. Finally, the potential of TTGE to describe the bacterial microflora of unknown ecosystems was tested with various commercial dairy products. Subspecies, species, or groups of species of lactic acid bacteria were distinguished in dairy samples. In conclusion, TTGE was shown to distinguish bacterial species in vitro, as well as in both liquid and solid dairy products. PMID:12147461

  14. [Studies on human alpha-2 macroglobulin structure and its complexes with proteases, using polyacrylamide gel electrophoresis].

    PubMed

    Fine, J M; Lambin, P; Steinbuch, M

    1975-09-01

    Pure alpha2M is prepared with fresh plasma as starting material, to prevent the interaction of alpha2M from proteolytic enzymes of plasma such as thrombin, plasmin and kallikrein. During the purification steps, polybrene and aprotin are used as inhibitors and plasminogen is absorbed onto bentonite. When alpha 2M is submitted to polyacrylamide gel electrophoresis (PAA) containing 0.1% SDS, a complete dissociation in two half-molecules of MW 380,000 occurs. When alpha2M is incubated in 1% SDS and 1% beta-mercaptoethanol as reducing agent, only one component of MW 190,000 is observed in PAA-SDS. This experiments show that the alpha2M molecule consist of two symetric halves of same MW (380,000) linked by non covalent bonds. Each two-half-molecules is made of two polypeptides chains MW 190,000 linked by disulfide bonds. Thus alpha2M molecule contains four polypeptides chains having a same MW. The same techniques were applied to the study of alaph2M proteinases complexes. Three different proteinases (plasmin, trypsin and papain) were used in these experiments. Trypsin and papain are commercialy available. Plasminogen was obtained by affinity chromatography and activated into plasmin by insoluble streptokinase fixed on PAB cellulose. PMID:59941

  15. Bacterial community dynamics of salted and fermented shrimp based on denaturing gradient gel electrophoresis.

    PubMed

    Han, Kook-Il; Kim, Yong Hyun; Hwang, Seon Gu; Jung, Eui-Gil; Patnaik, Bharat Bhusan; Han, Yeon Soo; Nam, Kung-Woo; Kim, Wan-Jong; Han, Man-Deuk

    2014-12-01

    The Korean traditional seafood jeotgal is consumed directly or as an additive in other foods to improve flavor or fermentation efficiency. Saeujot, made from salted and fermented tiny shrimp (SFS; Acetes japonicus), is the best-selling jeotgal in Korea. In this study, we reveal the microbial diversity and dynamics in naturally fermented shrimp by denaturing gradient gel electrophoresis (DGGE). The population fingerprints of the predominant microbiota and its succession were generated by DGGE analysis of universal V3 16S rDNA polymerase chain reaction (PCR) amplicons. Overall, 17 strains were identified from sequencing of 30 DGGE bands. The DGGE profiles showed diverse bacterial populations in the sample, throughout the fermentation of SFS. Staphylococcus equorum, Halanaerobium saccharolyticum, Salimicrobium luteum, and Halomonas jeotgali were the dominant bacteria, and their levels steadily increased during the fermentation process. Certain other bacteria, such as Psychrobacter jeotgali and Halomonas alimentaria appeared during the early-fermentation process, while Alkalibacterium putridalgicola, Tetragenococcus muriaticus, and Salinicoccus jeotgali appeared during the late-fermentation process. The members of the order Bacillales were found to be predominant during the fermentation of SFS. Furthermore, S. equorum was identified as the dominant bacterial isolate by the traditional method of culturing under aerobic and facultative anaerobic conditions. We expect that this information will facilitate the design of autochthonous starter cultures for the production of SFS with desired characteristic sensory profiles and shorter ripening times. PMID:25393163

  16. Molecular Analysis of Mycobacterium avium Isolates by Using Pulsed-Field Gel Electrophoresis and PCR

    PubMed Central

    Pestel-Caron, Martine; Graff, Gabriel; Berthelot, Gilles; Pons, Jean-Louis; Lemeland, Jean-François

    1999-01-01

    Genetic relationships among 46 isolates of Mycobacterium avium recovered from 37 patients in a 2,500-bed hospital from 1993 to 1998 were assessed by pulsed-field gel electrophoresis (PFGE) and PCR amplification of genomic sequences located between the repetitive elements IS1245 and IS1311. Each technique enabled the identification of 27 to 32 different patterns among the 46 isolates, confirming that the genetic heterogeneity of M. avium strains is high in a given community. Furthermore, this retrospective analysis of sporadic isolates allowed us (i) to suggest the existence of two remanent strains in our region, (ii) to raise the question of the possibility of nosocomial acquisition of M. avium strains, and (iii) to document laboratory contamination. The methods applied in the present study were found to be useful for the typing of M. avium isolates. In general, both methods yielded similar results for both related and unrelated isolates. However, the isolates in five of the six PCR clusters were distributed among two to three PFGE patterns, suggesting that this PCR-based method may have limitations for the analysis of strains with low insertion sequence copy numbers or for resolution of extended epidemiologic relationships. PMID:10405383

  17. [Determination of osteopontin at trace levels by non-gel sieving capillary electrophoresis].

    PubMed

    Zhao, Jingshan; Wen, Jinkun; Han, Mei

    2005-09-01

    A method of non-gel sieving capillary electrophoresis (NGSCE) was established to determine osteopontin at trace levels. The capillary used was uncoated fused silica with a size of 57 cm x 75 microm i. d. and an effective length of 50 cm. The electrode buffer was a 150 mmol/L boric acid-borate buffer containing 30 g/L polyethylene glycol 20000 (pH 10.0). Other conditions were as follows: separation voltage 23 kV; detection wavelength 214 nm; pressure of injecting sample 3.4 kPa (0.5 psi) x 5 s; and column temperature 25 degrees C. The NGSCE method had excellent linearity with correlation coefficient of 0. 996, and reproducibility with the relative standard deviation of migration time of osteopontin less than 5% . The recovery was 95% and better, the sensitivity was 0. 079 g/L. Osteopontin secreted by vascular smooth muscle cells was determined by the NGSCE method at different times after serum withdrawal, and the results were in agreement with those of Western blot method. The results indicate that NGSCE is a simple and rapid method of determining osteopontin at trace levels. This method only needs a micro-amount of sample and is easily automated. PMID:16350797

  18. Difference gel electrophoresis identifies differentially expressed proteins in endoscopically collected pancreatic fluid.

    PubMed

    Paulo, Joao A; Lee, Linda S; Banks, Peter A; Steen, Hanno; Conwell, Darwin L

    2011-08-01

    Alterations in the pancreatic fluid proteome of individuals with chronic pancreatitis (CP) may offer insights into the development and progression of the disease. The endoscopic pancreatic function test (ePFT) can safely collect large volumes of pancreatic fluid that are potentially amenable to proteomic analyses using difference gel electrophoresis (DIGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pancreatic fluid was collected endoscopically using the ePFT method following secretin stimulation from three individuals with severe CP and three chronic abdominal pain (CAP) controls. The fluid was processed to minimize protein degradation and the protein profiles of each cohort, as determined by DIGE and LC-MS/MS, were compared. This DIGE-LC-MS/MS analysis reveals proteins that are differentially expressed in CP compared with CAP controls. Proteins with higher abundance in pancreatic fluid from CP individuals include: actin, desmoplankin, α-1-antitrypsin, SNC73, and serotransferrin. Those of relatively lower abundance include carboxypeptidase B, lipase, α-1-antichymotrypsin, α-2-macroglobulin, actin-related protein (Arp2/3) subunit 4, glyceraldehyde-3-phosphate dehydrogenase, and protein disulfide isomerase. Endoscopic collection (ePFT) in tandem with DIGE-LC-MS/MS is a suitable approach for pancreatic fluid proteome analysis; however, further optimization of our protocol, as outlined herein, may improve proteome coverage in future analyses. PMID:21792986

  19. Rapid identification of Pseudomonas aeruginosa by pulsed-field gel electrophoresis

    PubMed Central

    Selim, Samy; El Kholy, Iman; Hagagy, Nashwa; El Alfay, Sahar; Aziz, Mohamed Abdel

    2015-01-01

    Twenty clinical Pseudomonas aeruginosa isolates recovered from patients admitted to The General Hospital in Ismailia Governorate (Egypt) were examined in this study. We analysed P. aeruginosa ATCC 9027 (as a control strain) and 19 of the isolates after digestion with SpeI restriction endonuclease. After this we conducted a pulsed-field gel electrophoresis (PFGE) and typed the obtained 10 unique patterns, designated as A, A1, B, B1, C, C1, D, D1, E and F. We evaluated the genetic relatedness between all strains, based on ≥87% band identity. As a result, the isolates were grouped in the 10 clusters as follows: patterns A, A1, B, B1, C contained two strains each and patterns C1, D, D1, E contained a single strain each; the five remaining strains were closely related (genomic pattern F). One isolate belonged to antibiotype ‘b’. The genotype patterns of the P. aeruginosa ATCC 9027 control strain and isolate no. 11 were closely related and had two different antibiotypes ‘d’ and ‘c’, respectively. PMID:26019629

  20. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis.

    PubMed

    Chang, Ho-Won; Kim, Kyoung-Ho; Nam, Young-Do; Roh, Seong Woon; Kim, Min-Soo; Jeon, Che Ok; Oh, Hee-Mock; Bae, Jin-Woo

    2008-08-15

    Kimchi is a traditional Korean food that is fermented from vegetables such as Chinese cabbage and radish. Many bacteria are involved in kimchi fermentation and lactic acid bacteria are known to perform significant roles. Although kimchi fermentation presents a range of environmental conditions that could support many different archaea and yeasts, their molecular diversity within this process has not been studied. Here, we use PCR-denaturing gradient gel electrophoresis (DGGE) targeting the 16S and 26S rRNA genes, to characterize bacterial, archaeal and yeast dynamics during various types of kimchi fermentation. The DGGE analysis of archaea expressed a change of DGGE banding patterns during kimchi fermentation, however, no significant change was observed in the yeast DGGE banding patterns during kimchi fermentation. No significant difference was indicated in the archaeal DGGE profile among different types of kimchi. In the case of yeasts, the clusters linked to the manufacturing corporation. Haloarchaea such as Halococcus spp., Natronococcus spp., Natrialba spp. and Haloterrigena spp., were detected as the predominant archaea and Lodderomyces spp., Trichosporon spp., Candida spp., Saccharomyces spp., Pichia spp., Sporisorium spp. and Kluyveromyces spp. were the most common yeasts. PMID:18562030

  1. Prokaryotic community composition revealed by denaturing gradient gel electrophoresis in the East Sea

    NASA Astrophysics Data System (ADS)

    Jang, Gwang Il; Choi, Dong Han

    2015-12-01

    To understand the temporal and spatial variation of the prokaryotic community in the East Sea, their composition was determined by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE)-sequencing techniques. The investigations were conducted twice annually in 2007 and 2009 in coastal and offshore stations. Prokaryotic abundance (PA), leucine incorporation rate, and other environmental parameters were also measured. By using the DGGE approach, we obtained 283 bacterial sequences and 160 archaeal sequences. The most frequently detected bacterial phylotypes during the investigations belonged to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. However, their relative compositions differed in time and space. Although Alphaproteobacteria and Bacteroidetes were the dominant groups in the surface water in May 2007 and in May and October 2007, Gammaproteobacteria was dominant in mesopelagic samples. However, Gammaproteobacteria was overwhelmingly dominant in most samples in August 2009. Although Deltaproteobacteria was rarely found as a dominant bacterial group, it occupied the highest fraction in a mesopelagic sample in October 2007. Epsilonproteobacteria also showed a similar trend, although its maximal dominance was found in a mesopelagic sample in August 2009. The archaeal community was dominated overwhelmingly by members of the Euryarchaeota in most of the investigations. However, Nitrosopumilales was dominant in aphotic samples in August 2009. Further, their spatiotemporal composition at the family level changed more dynamically in the East Sea. These temporal and spatial distributions of the prokaryotic community were influenced mainly by seawater temperature and depth in the East Sea.

  2. Characterization of adenohypophysial polypeptides by two-dimensional gel electrophoresis. II. Sulfated and glycosylated polypeptides.

    PubMed

    Rosa, P; Zanini, A

    1981-11-01

    Adenohypophysial sulfated and glycosylated polypeptides were studied by high-resolution two-dimensional polyacrylamide-gel electrophoresis followed by fluorography. The preparations analyzed were the following: (a) homogenates from cow and rat anterior pituitary slices labeled in vitro either with [35S]sulfate or D-[6-3H]glucosamine; (b) materials released from bovine adenohypophysis slices pulse labeled with [35S]sulfate; and (c) purified fractions of bovine prolactin granules stripped by detergent treatment of their limiting membrane. A heterogeneous family of sulfated components, almost all glycosylated, differing in their peptide moieties as well as in their isoelectric points, was revealed in the glandular tissue. The major of these components (apparent Mr approximately 70 000; pI approximately 4.8), which was also highly labeled by L-[3H]-leucine (Zanini, A., and Rosa, P. (1981) Mol. Cell. Endocrinol. 24), might be a secretory protein because it accumulates in the medium during chase incubation of bovine pituitary slices in vitro. This sulfated component, which was more concentrated in the bovine than in the rat gland, was present in purified bovine prolactin granules stripped of their limiting membrane. However, the available evidence suggests that this might not be the only subcellular location of the sulfated polypeptide in the pituitary tissue. PMID:7297761

  3. Analysis of Blastocladiella emersonii ribosomal proteins in four two-dimensional gel electrophoresis systems.

    PubMed

    Bonato, M C; Maia, J C; Juliani, M H

    1985-01-01

    Ribosomal proteins of the aquatic fungus Blastocladiella emersonii were isolated and characterized on four different two-dimensional polyacrylamide gel electrophoresis systems. 40S and 60S ribosomal subunit proteins from zoospores were identified. The position of every protein was determined in each electrophoretic system using the "four-corners" method (Madjar et al., Molecular and General Genetics, 171: 121-134, 1979). Thirty-two and 39 proteins were identified in the 40S and 60S ribosomal subunits, respectively. The molecular weights of individual proteins in the 40S subunit ranged from 10 000 to 37 000, with a number-average molecular weight of 20 000. The molecular weight range for the 60S subunit was 13 000-51 000 with a number-average molecular weight of 21 000. Proteins from ribosomes of different cell types were compared and found to be qualitatively indistinguishable. The only consistent difference in the patterns of proteins was in the S6 protein of the 40S subunit, which is the major phosphoprotein of Blastocladiella ribosomes. PMID:3830281

  4. Indirect fluorometric detection techniques on thin layer chromatography and effect of ultrasound on gel electrophoresis

    SciTech Connect

    Yinfa, Ma.

    1990-12-10

    Thin-layer chromatography (TLC) is a broadly applicable separation technique. It offers many advantages over high performance liquid chromatography (HPLC), such as easily adapted for two-dimensional separation, for whole-column'' detection and for handling multiple samples, etc. However, due to its draggy development of detection techniques comparing with HPLC, TLC has not received the attention it deserves. Therefore, exploring new detection techniques is very important to the development of TLC. It is the principal of this dissertation to present a new detection method for TLC -- indirect fluorometric detection method. This detection technique is universal sensitive, nondestructive, and simple. This will be described in detail from Sections 1 through Section 5. Section 1 and 3 describe the indirect fluorometric detection of anions and nonelectrolytes in TLC. In Section 2, a detection method for cations based on fluorescence quenching of ethidium bromide is presented. In Section 4, a simple and interesting TLC experiment is designed, three different fluorescence detection principles are used for the determination of caffeine, saccharin and sodium benzoate in beverages. A laser-based indirect fluorometric detection technique in TLC is developed in Section 5. Section 6 is totally different from Sections 1 through 5. An ultrasonic effect on the separation of DNA fragments in agarose gel electrophoresis is investigated. 262 refs.

  5. Identification of plant viruses using one-dimensional gel electrophoresis and peptide mass fingerprints.

    PubMed

    Luo, H; Wylie, S J; Jones, M G K

    2010-05-01

    A generic assay to detect and partially characterize unknown viruses from plants was developed. Proteins extracted from virus-infected and uninfected plants were separated in one dimension by SDS polyacrylamide gel electrophoresis. Differentially expressed protein bands were eluted after trypsin digestion and resulting peptide fragments separated according to their mass by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Resulting peptide mass fingerprints (PMF) were compared with those in protein databases. The assay was used to identify three known viruses: the potyviruses Zucchini yellow mosaic virus and Turnip mosaic virus, and an alfamovirus Alfalfa mosaic virus. It was also used to identify a virus that manifested symptoms in wild Cakile maritima plants, tentatively identified as Pelargonium zonate spot virus (PZSV) (genus Anulavirus) by its PMF, and then confirmed by nucleotide sequencing. The detection of PZSV constitutes a first record of this virus in Australia and in this host. It is proposed that this rapid and simple assay is a useful approach for analysis of plant samples known to harbor viruses that could not be identified using antisera or nucleic acid-based assays. PMID:20170682

  6. Molecular epidemiologic analysis of Vibrio cholerae O1 isolates by pulsed-field gel electrophoresis.

    PubMed Central

    Mahalingam, S; Cheong, Y M; Kan, S; Yassin, R M; Vadivelu, J; Pang, T

    1994-01-01

    Isolates of Vibrio cholerae O1 El Tor from two well-defined cholera outbreaks in Malaysia were analyzed by using pulsed-field gel electrophoresis (PFGE). Isolates from sporadic cases occurring during the same time period were also studied. Digestion of chromosomal DNA from these isolates of V. cholerae O1 with restriction endonucleases NotI (5'-GCGGCCGC-3') and SfiI (5'-GGCCNNNN-3'), followed by PFGE, produced restriction endonuclease analysis (REA) patterns consisting of 13 to 24 bands (ranging in size from 46 to 398 kbp). Analysis of the REA patterns generated by PFGE after digestion with NotI and SfiI suggested the clonal nature and close genetic identity of the isolates obtained during each of the two outbreaks (Dice coefficient, 0.93 to 1.0). Although they had very similar REA patterns, the two outbreak clones were not identical. Isolates of V. cholerae O1 from sporadic cases, on the other hand, appeared to be much more heterogeneous (five different REA patterns detected in the five isolates tested; Dice coefficient, 0.31 to 0.81) than those obtained during the two outbreaks. We conclude that PFGE of V. cholerae O1 chromosomal DNA digested with infrequently cutting restriction endonucleases is a useful method for molecular typing of V. cholerae isolates for epidemiological purposes. Images PMID:7883885

  7. Effects of Reusing Gel Electrophoresis and Electrotransfer Buffers on Western Blotting.

    PubMed

    Heda, Ghanshyam D; Omotola, Oluwabukola B; Heda, Rajiv P; Avery, Jamie

    2016-09-01

    SDS-PAGE and Western blotting are 2 of the most commonly used biochemical methods for protein analysis. Proteins are electrophoretically separated based on their MWs by SDS-PAGE and then electrotransferred to a solid membrane surface for subsequent protein-specific analysis by immunoblotting, a procedure commonly known as Western blotting. Both of these procedures use a salt-based buffer, with the latter procedure consisting of methanol as an additive known for its toxicity. Previous reports present a contradictory view in favor or against reusing electrotransfer buffer, also known as Towbin's transfer buffer (TTB), with an aim to reduce the toxic waste. In this report, we present a detailed analysis of not only reusing TTB but also gel electrophoresis buffer (EB) on proteins of low to high MW range. Our results suggest that EB can be reused for at least 5 times without compromising the electrophoretic separation of mixture of proteins in an MW standard, BSA, and crude cell lysates. Additionally, reuse of EB did not affect the quality of subsequent Western blots. Successive reuse of TTB, on the other hand, diminished the signal of proteins of different MWs in a protein standard and a high MW membrane protein cystic fibrosis transmembrane-conductance regulator (CFTR) in Western blotting. PMID:27582639

  8. Characterization of Erwinia amylovora strains from Bulgaria by pulsed-field gel electrophoresis.

    PubMed

    Atanasova, Iliana; Urshev, Zoltan; Hristova, Petya; Bogatzevska, Nevena; Moncheva, Penka

    2012-01-01

    The aim of this study was to characterize genetically Bulgarian Erwinia amylovora strains using pulsed-field gel electrophoresis (PFGE) analysis. Fifty E. amylovora strains isolated from different hosts, locations, as well as in different years were analysed by PFGE after XbaI, SpeI, and XhoI digestion of the genomic DNA. The strains were distributed into four groups according to their XbaI-generated profile. About 82% of the strains displayed a PFGE profile identical to that of type Pt2. Three strains belonged to the Central Europe Pt1 type. Two new PFGE profiles, not reported so far, were established--one for a strain isolated from Malus domestica and another for all Fragaria spp. strains. The same grouping of the strains was obtained after analysis of the SpeI digestion patterns. On the basis of PFGE profiles, after XbaI and SpeI digestion, a genetic differentiation between the strains associated with subfamily Maloideae and subfamily Rosoideae was revealed. The presence of more than one PFGE profile in the population of E. amylovora in Bulgaria suggests a multiple source of inoculum. PMID:22624335

  9. CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis.

    PubMed

    Melani, Rafael D; Seckler, Henrique S; Skinner, Owen S; Do Vale, Luis H F; Catherman, Adam D; Havugimana, Pierre C; Valle de Sousa, Marcelo; Domont, Gilberto B; Kelleher, Neil L; Compton, Philip D

    2016-01-01

    Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses. PMID:26967310

  10. Microscopic agglutination and polyacrylamide gel electrophoresis analyses of oral anaerobic spirochetes.

    PubMed Central

    Tall, B D; Nauman, R K

    1986-01-01

    Microscopic agglutination (MA) analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to determine strain and species similarities and dissimilarities among three species of oral anaerobic spirochetes, Treponema denticola, Treponema pectinovorum, and Treponema vincentii. The MA analysis revealed a diversity of serologic reactivity or sharing of common antigens within each species. However, there was no cross-reactivity or sharing of common antigens among the three species. Distinct SDS-PAGE whole-cell electrophoretograms for each species were obtained. The banding patterns for 16 T. denticola strains revealed 30 distinct proteins, while the banding patterns for 5 strains of T. pectinovorum and 2 strains of T. vincentii revealed 26 and 35 distinct proteins, respectively. Analysis of the electrophoretograms showed that their respective banding patterns could be used to distinguish the three species from one another. In addition, strain differences within each species could be detected. There was a correlation between MA analysis and SDS-PAGE analysis. It is thus suggested that both MA and SDS-PAGE analysis be included in classification schemes for the identification of oral spirochetes. Images PMID:3745424