Science.gov

Sample records for gene expression markers

  1. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    PubMed Central

    Takahara, Yoshiyuki; Takahashi, Mitsuo; Wagatsuma, Hiroki; Yokoya, Fumihiko; Zhang, Qing-Wei; Yamaguchi, Mutsuyo; Aburatani, Hiroyuki; Kawada, Norifumi

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylni-trosamine (DMN)-induced hepatic fibrosis. METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells), and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells. RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSC-specific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis, suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocyte-specific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis. CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis. PMID:17072980

  2. Novel Implant Coating Agent Promotes Gene Expression of Osteogenic Markers in Rats during Early Osseointegration

    PubMed Central

    Bougas, Kostas; Jimbo, Ryo; Xue, Ying; Mustafa, Kamal; Wennerberg, Ann

    2012-01-01

    The aim of this study was to evaluate the early bone response around laminin-1-coated titanium implants. Forty-five rats distributed in three equally sized groups were provided with one control (turned) and one test (laminin-1-coated) implant and were sacrificed after 3, 7, and 21 days. Real-time reverse-transcriptase polymerase chain reaction was performed for osteoblast markers (alkaline phosphatase, runt-related transcription factor 2, osteocalcin, type I collagen, and bone morphogenic protein 2), osteoclast markers (cathepsin K and tartrate-resistant acid phosphatase), inflammation markers (tumor necrosis factor α, interleukin 1β and interleukin 10), and integrin β1. Bone implant contact (BIC) and bone area (BA) were assessed and compared to the gene expression. After 3 days, the expression of bone markers was higher for the control group. After 7 days, the expression of integrin β1 and osteogenic markers was enhanced for the test group, while cathepsin K and inflammation markers were down-regulated. No significant differences in BIC or BA were detected between test and control at any time point. As a conclusion, implant coating with laminin-1 altered gene expression in the bone-implant interface. However, traditional evaluation methods, as histomorphometry, were not adequately sensitive to detect such changes due to the short follow-up time. PMID:23193408

  3. Highly informative marker sets consisting of genes with low individual degree of differential expression

    PubMed Central

    Galatenko, V. V.; Shkurnikov, M. Yu.; Samatov, T. R.; Galatenko, A. V.; Mityakina, I. A.; Kaprin, A. D.; Schumacher, U.; Tonevitsky, A. G.

    2015-01-01

    Genes with significant differential expression are traditionally used to reveal the genetic background underlying phenotypic differences between cancer cells. We hypothesized that informative marker sets can be obtained by combining genes with a relatively low degree of individual differential expression. We developed a method for construction of highly informative gene combinations aimed at the maximization of the cumulative informative power and identified sets of 2–5 genes efficiently predicting recurrence for ER-positive breast cancer patients. The gene combinations constructed on the basis of microarray data were successfully applied to data acquired by RNA-seq. The developed method provides the basis for the generation of highly efficient prognostic and predictive gene signatures for cancer and other diseases. The identified gene sets can potentially reveal novel essential segments of gene interaction networks and pathways implied in cancer progression. PMID:26446398

  4. A PSO-Based Approach for Pathway Marker Identification From Gene Expression Data.

    PubMed

    Mandal, Monalisa; Mondal, Jyotirmay; Mukhopadhyay, Anirban

    2015-09-01

    In this article, a new and robust pathway activity inference scheme is proposed from gene expression data using Particle Swarm Optimization (PSO). From microarray gene expression data, the corresponding pathway information of the genes are collected from a public database. For identifying the pathway markers, the expression values of each pathway consisting of genes, termed as pathway activity, are summarized. To measure the goodness of a pathway activity vector, t-score is widely used in the existing literature. The weakness of existing techniques for inferring pathway activity is that they intend to consider all the member genes of a pathway. But in reality, all the member genes may not be significant to the corresponding pathway. Therefore, those genes, which are responsible in the corresponding pathway, should be included only. Motivated by this, in the proposed method, using PSO, important genes with respect to each pathway are identified. The objective is to maximize the average t-score. For the pathway activities inferred from different percentage of significant pathways, the average absolute t -scores are plotted. In addition, the top 50% pathway markers are evaluated using 10-fold cross validation and its performance is compared with that of other existing techniques. Biological relevance of the results is also studied. PMID:25935045

  5. GFP as a marker for transient gene transfer and expression in Mycoplasma hyorhinis.

    PubMed

    Ishag, Hassan Z A; Liu, Maojun; Yang, Ruosong; Xiong, Qiyan; Feng, Zhixin; Shao, Guoqing

    2016-01-01

    Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pathogen of pigs and has been shown to transform cell cultures, which has increased the interest of researchers. The green florescence proteins (GFP) gene of Aquorea victoria, proved to be a vital marker to identify transformed cells in mixed populations. Use of GFP to observe gene transfer and expression in M. hyorhinis (strain HUB-1) has not been described. We have constructed a pMD18-O/MHRgfp plasmid containing the p97 gene promoter, origin of replication, tetracycline resistance marker and GFP gene controlled by the p97 gene promoter. The plasmid transformed into M. hyorhinis with a frequency of ~4 × 10(-3) cfu/µg plasmid DNA and could be detected by PCR amplification of the GFP gene from the total DNA of the transformant mycoplasmas. Analysis of a single clone grown on KM2-Agar containing tetracycline, showed a green fluorescence color. Conclusively, this report suggests the usefulness of GFP to monitor transient gene transfer and expression in M. hyorhinis, eventually minimizing screening procedures for gene transfer and expression. PMID:27386255

  6. Identification of Gene-Expression Signatures and Protein Markers for Breast Cancer Grading and Staging

    PubMed Central

    Yao, Fang; Zhang, Chi; Du, Wei; Liu, Chao; Xu, Ying

    2015-01-01

    The grade of a cancer is a measure of the cancer's malignancy level, and the stage of a cancer refers to the size and the extent that the cancer has spread. Here we present a computational method for prediction of gene signatures and blood/urine protein markers for breast cancer grades and stages based on RNA-seq data, which are retrieved from the TCGA breast cancer dataset and cover 111 pairs of disease and matching adjacent noncancerous tissues with pathologists-assigned stages and grades. By applying a differential expression and an SVM-based classification approach, we found that 324 and 227 genes in cancer have their expression levels consistently up-regulated vs. their matching controls in a grade- and stage-dependent manner, respectively. By using these genes, we predicted a 9-gene panel as a gene signature for distinguishing poorly differentiated from moderately and well differentiated breast cancers, and a 19-gene panel as a gene signature for discriminating between the moderately and well differentiated breast cancers. Similarly, a 30-gene panel and a 21-gene panel are predicted as gene signatures for distinguishing advanced stage (stages III-IV) from early stage (stages I-II) cancer samples and for distinguishing stage II from stage I samples, respectively. We expect these gene panels can be used as gene-expression signatures for cancer grade and stage classification. In addition, of the 324 grade-dependent genes, 188 and 66 encode proteins that are predicted to be blood-secretory and urine-excretory, respectively; and of the 227 stage-dependent genes, 123 and 51 encode proteins predicted to be blood-secretory and urine-excretory, respectively. We anticipate that some combinations of these blood and urine proteins could serve as markers for monitoring breast cancer at specific grades and stages through blood and urine tests. PMID:26375396

  7. Identification of Gene-Expression Signatures and Protein Markers for Breast Cancer Grading and Staging.

    PubMed

    Yao, Fang; Zhang, Chi; Du, Wei; Liu, Chao; Xu, Ying

    2015-01-01

    The grade of a cancer is a measure of the cancer's malignancy level, and the stage of a cancer refers to the size and the extent that the cancer has spread. Here we present a computational method for prediction of gene signatures and blood/urine protein markers for breast cancer grades and stages based on RNA-seq data, which are retrieved from the TCGA breast cancer dataset and cover 111 pairs of disease and matching adjacent noncancerous tissues with pathologists-assigned stages and grades. By applying a differential expression and an SVM-based classification approach, we found that 324 and 227 genes in cancer have their expression levels consistently up-regulated vs. their matching controls in a grade- and stage-dependent manner, respectively. By using these genes, we predicted a 9-gene panel as a gene signature for distinguishing poorly differentiated from moderately and well differentiated breast cancers, and a 19-gene panel as a gene signature for discriminating between the moderately and well differentiated breast cancers. Similarly, a 30-gene panel and a 21-gene panel are predicted as gene signatures for distinguishing advanced stage (stages III-IV) from early stage (stages I-II) cancer samples and for distinguishing stage II from stage I samples, respectively. We expect these gene panels can be used as gene-expression signatures for cancer grade and stage classification. In addition, of the 324 grade-dependent genes, 188 and 66 encode proteins that are predicted to be blood-secretory and urine-excretory, respectively; and of the 227 stage-dependent genes, 123 and 51 encode proteins predicted to be blood-secretory and urine-excretory, respectively. We anticipate that some combinations of these blood and urine proteins could serve as markers for monitoring breast cancer at specific grades and stages through blood and urine tests. PMID:26375396

  8. Application of GFAT as a Novel Selection Marker to Mediate Gene Expression

    PubMed Central

    Wu, Guogan; Sun, Yu; Qu, Wei; Huang, Ying; Lu, Ling; Li, Lun; Shao, Weilan

    2011-01-01

    The enzyme glutamine: fructose-6-phosphate aminotransferase (GFAT), also known as glucosamine synthase (GlmS), catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and is the first and rate-limiting enzyme of the hexosamine biosynthetic pathway. For the first time, the GFAT gene was proven to possess a function as an effective selection marker for genetically modified (GM) microorganisms. This was shown by construction and analysis of two GFAT deficient strains, E. coli ΔglmS and S. pombe Δgfa1, and the ability of the GFAT encoding gene to mediate plasmid selection. The gfa1 gene of the fission yeast Schizosaccharomyces pombe was deleted by KanMX6-mediated gene disruption and the Cre-loxP marker removal system, and the glmS gene of Escherichia coli was deleted by using λ-Red mediated recombinase system. Both E. coli ΔglmS and S. pombe Δgfa1 could not grow normally in the media without addition of glucosamine. However, the deficiency was complemented by transforming the plasmids that expressed GFAT genes. The xylanase encoding gene, xynA2 from Thermomyces lanuginosus was successfully expressed and secreted by using GFAT as selection marker in S. pombe. Optimal glucosamine concentration for E. coli ΔglmS and S. pombe Δgfa1 growth was determined respectively. These findings provide an effective technique for the construction of GM bacteria without an antibiotic resistant marker, and the construction of GM yeasts to be applied to complex media. PMID:21340036

  9. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker.

    PubMed

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; Zhang, Chen-Ping

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to normal bone tissues, including 1,200 upregulated genes and 681 downregulated genes. Pathway analysis indicated that obviously activated pathways are Ribosome and ECM-receptor interaction pathways; downregulated pathways are "Hepatitis C" and "cancer" signaling pathways. We further validated the expression of ADAMTS2, one of most differentiated expressed genes, by Immunohistochemistry (IHC) in 40 of FD cases. Results showed that ADAMTS2 was significantly overexpressed in FD tissues, but rarely expressed in normal bone tissues, suggesting that ADAMTS2 could be a potential biomarker for FD. Thus, this study uncovered differentially expressed candidate genes in FD, which provides pilot data for understanding FD pathogenesis, and developing novel biomarkers for diagnosis and targeting of FD. PMID:25674217

  10. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker

    PubMed Central

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; Zhang, Chen-Ping

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to normal bone tissues, including 1,200 upregulated genes and 681 downregulated genes. Pathway analysis indicated that obviously activated pathways are Ribosome and ECM-receptor interaction pathways; downregulated pathways are “Hepatitis C” and “cancer” signaling pathways. We further validated the expression of ADAMTS2, one of most differentiated expressed genes, by Immunohistochemistry (IHC) in 40 of FD cases. Results showed that ADAMTS2 was significantly overexpressed in FD tissues, but rarely expressed in normal bone tissues, suggesting that ADAMTS2 could be a potential biomarker for FD. Thus, this study uncovered differentially expressed candidate genes in FD, which provides pilot data for understanding FD pathogenesis, and developing novel biomarkers for diagnosis and targeting of FD. PMID:25674217

  11. Expression pattern of drought stress marker genes in soybean roots under two water deficit systems

    PubMed Central

    Neves-Borges, Anna Cristina; Guimarães-Dias, Fábia; Cruz, Fernanda; Mesquita, Rosilene Oliveira; Nepomuceno, Alexandre Lima; Romano, Eduardo; Loureiro, Marcelo Ehlers; de Fátima Grossi-de-Sá, Maria; Alves-Ferreira, Márcio

    2012-01-01

    The study of tolerance mechanisms for drought stress in soybean is fundamental to the understanding and development of tolerant varieties. Using in silico analysis, four marker genes involved in the classical ABA-dependent and ABA-independent pathways of drought response were identified in the Glycine max genome in the present work. The expression profiles of the marker genes ERD1-like, GmaxRD20A-like, GmaxRD22-like and GmaxRD29B-like were investigated by qPCR in root samples of drought sensitive and tolerant soybean cultivars (BR 16 and Embrapa 48, respectively), submitted to water deficit conditions in hydroponic and pot-based systems. Among the four putative soybean homologs to Arabidopsis genes investigated herein, only GmaxRD29B-like was not regulated by water deficit stress. Distinct expression profiles and different induction levels were observed among the genes, as well as between the two drought-inducing systems. Our results showed contrasting gene expression responses for the GmaxRD20A-like and GmaxRD22-like genes. GmaxRD20A-like was highly induced by continuous drought acclimating conditions, whereas GmaxRD22-like responses decreased after abrupt water deprivation. GmaxERD1-like showed a different expression profile for the cultivars in each system. Conversely, GmaxRD20A-like and GmaxRD22-like genes exhibited similar expression levels in tolerant plants in both systems. PMID:22802707

  12. PDIA3 and PDIA6 gene expression as an aggressiveness marker in primary ductal breast cancer.

    PubMed

    Ramos, F S; Serino, L T R; Carvalho, C M S; Lima, R S; Urban, C A; Cavalli, I J; Ribeiro, E M S F

    2015-01-01

    Changes in the expression of the protein disulfide isomerase genes PDIA3 and PDIA6 may increase endoplasmic reticulum stress, leading to cellular instability and neoplasia. We evaluated the expression of PDIA3 and PDIA6 in invasive ductal carcinomas. Using reverse transcription-quantitative polymerase chain reaction, we compared the mRNA expression level in 45 samples of invasive ductal carcinoma with that in normal breast samples. Increased expression of the PDIA3 gene in carcinomas (P = 0.0009) was observed. In addition, PDIA3 expression was increased in tumors with lymph node metastasis (P = 0.009) and with grade III (P < 0.02). The PDIA6 gene showed higher expression levels in the presence of lymph node metastasis (U = 99.00, P = 0.0476) and lower expression for negative hormone receptors status (P = 0.0351). Our results suggest that alterations in PDIA3/6 expression levels may be involved in the breast carcinogenic process and should be further investigated as a marker of aggressiveness. PMID:26125904

  13. Identification of Single- and Multiple-Class Specific Signature Genes from Gene Expression Profiles by Group Marker Index

    PubMed Central

    Tsai, Yu-Shuen; Aguan, Kripamoy; Pal, Nikhil R.; Chung, I-Fang

    2011-01-01

    Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing

  14. Reassessment of Blood Gene Expression Markers for the Prognosis of Relapsing-Remitting Multiple Sclerosis

    PubMed Central

    Hecker, Michael; Paap, Brigitte Katrin; Goertsches, Robert Hermann; Kandulski, Ole; Fatum, Christian; Koczan, Dirk; Hartung, Hans-Peter; Thiesen, Hans-Juergen; Zettl, Uwe Klaus

    2011-01-01

    Despite considerable advances in the treatment of multiple sclerosis, current drugs are only partially effective. Most patients show reduced disease activity with therapy, but still experience relapses, increasing disability, and new brain lesions. Since there are no reliable clinical or biological markers of disease progression, long-term prognosis is difficult to predict for individual patients. We identified 18 studies that suggested genes expressed in blood as predictive biomarkers. We validated the prognostic value of those genes with three different microarray data sets comprising 148 patients in total. Using these data, we tested whether the genes were significantly differentially expressed between patients with good and poor courses of the disease. Poor progression was defined by relapses and/or increase of disability during a two-year follow-up, independent of the administered therapy. Of 110 genes that have been proposed as predictive biomarkers, most could not be confirmed in our analysis. However, the G protein-coupled membrane receptor GPR3 was expressed at significantly lower levels in patients with poor disease progression in all data sets. GPR3 has therefore a high potential to be a biomarker for predicting future disease activity. In addition, we examined the IL17 cytokines and receptors in more detail and propose IL17RC as a new, promising, transcript-based biomarker candidate. Further studies are needed to better understand the roles of these receptors in multiple sclerosis and its treatment and to clarify the utility of GPR3 and IL17RC expression levels in the blood as markers of long-term prognosis. PMID:22216338

  15. Expression of Heat Shock Protein 70 Gene and Its Correlation with Inflammatory Markers in Essential Hypertension

    PubMed Central

    Srivastava, Kamna; Narang, Rajiv; Bhatia, Jagriti; Saluja, Daman

    2016-01-01

    Objectives Hypertension is characterized by systemic high blood pressure and is the most common and important risk factor for the development of cardiovascular diseases. Studies have shown that the circulating levels of certain inflammatory markers such as tumor necrosis factor-alpha (TNF-alpha), interlukin-6 (IL-6), c-reactive protein (CRP), and tumor suppressor protein-53 (p53) are upregulated and are independently associated with essential hypertension. However, mechanism of increase in the levels of HSP70 protein is not clear. No such studies are reported in the blood circulation of patients with essential hypertension. In the present study, we investigated the expression of circulating HSP70 at mRNA and protein levels and its relationship with other inflammatory markers in patients with essential hypertension. Materials and Methods We recruited 132 patients with essential hypertension and 132 normal controls from similar socio-economic-geographical background. The expression of HSP70 at mRNA levels was determined by Real Time PCR and at protein levels by indirect Elisa and Western Blot techniques. Results We found a significantly higher expression of HSP70 gene expression (approximately 6.45 fold, P < 0.0001) in hypertensive patients as compared to healthy controls. A significant difference (P < 0.0001) in the protein expression of HSP70 was also observed in plasma of patients as compared to that of controls. Conclusion Higher expression of HSP70 is positively correlated with inflammatory markers in patients with essential hypertension and this correlation could play an important role in essential hypertension. PMID:26989902

  16. Diagnostic usefulness of PCR profiling of the differentially expressed marker genes in thyroid papillary carcinomas.

    PubMed

    Hamada, Aiko; Mankovskaya, Svetlana; Saenko, Vladimir; Rogounovitch, Tatiana; Mine, Mariko; Namba, Hiroyuki; Nakashima, Masahiro; Demidchik, Yuri; Demidchik, Eugeny; Yamashita, Shunichi

    2005-06-28

    The study was set out to determine whether characteristic changes in the gene expression profile in papillary thyroid carcinoma (PTC) discovered by microarray assays can be used for conventional molecular diagnosis. Expression levels of five reported to be overexpressed and three underexpressed genes were examined in PTC and normal human tissues by real-time PCR and semi-quantitative duplex PCR. Stepwise logistic regression analysis, duplex PCR data evaluation with recursive partition machine algorithm and hierarchical cluster analysis identified SFTPB (upregulated) and TFF3 (downregulated) gene combination as most favorable for differential molecular diagnosis of PTC. Sensitivity, specificity and accuracy obtained in a series of histologically characterized thyroid tumor and normal tissue samples were 88.9, 96.7 and 94.9%, respectively. Applicability of the method to fine needle aspiration biopsy (FNAB) samples was demonstrated using a collection of needle washouts. In spite individual thyroid tumor and normal tissues as well as FNAB samples displayed a substantial degree of variability in the expression levels of analyzed genes, simultaneous molecular analysis of a panel of optimal markers allows making a high probability predictive estimate and may be considered as an informative method of preoperative PTC diagnosis. PMID:15914279

  17. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.

    PubMed

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Ayano; Satoh, Akira

    2015-01-01

    Axolotls (Ambystoma mexicanum) can completely regenerate lost limbs, whereas Xenopus laevis frogs cannot. During limb regeneration, a blastema is first formed at the amputation plane. It is thought that this regeneration blastema forms a limb by mechanisms similar to those of a developing embryonic limb bud. Furthermore, Xenopus laevis frogs can form a blastema after amputation; however, the blastema results in a terminal cone-shaped cartilaginous structure called a "spike." The causes of this patterning defect in Xenopus frog limb regeneration were explored. We hypothesized that differences in chondrogenesis may underlie the patterning defect. Thus, we focused on chondrogenesis. Chondrogenesis marker genes, type I and type II collagen, were compared in regenerative and nonregenerative environments. There were marked differences between axolotls and Xenopus in the expression pattern of these chondrogenesis-associated genes. The relative deficit in the chondrogenic capacity of Xenopus blastema cells may account for the absence of total limb regenerative capacity. PMID:26186213

  18. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer

    PubMed Central

    WANG, HAIYING; MOLINA, JULIAN; JIANG, JOHN; FERBER, MATTHEW; PRUTHI, SANDHYA; JATKOE, TIMOTHY; DERECHO, CARLO; RAJPUROHIT, YASHODA; ZHENG, JIAN; WANG, YIXIN

    2013-01-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  19. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    PubMed

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  20. Olfactory marker protein gene: its structure and olfactory neuron-specific expression in transgenic mice.

    PubMed Central

    Danciger, E; Mettling, C; Vidal, M; Morris, R; Margolis, F

    1989-01-01

    Olfactory marker protein (OMP) genomic clones were isolated from a Charon 4A phage lambda rat genomic library. A 16.5-kilobase (kb) fragment of the rat genome containing the gene was isolated and characterized. Sequence analysis of the gene showed the absence of introns and the lack of CAAT and TATA boxes in the 5' flanking region. The transcription initiation site was mapped, and two sites 55 and 58 base pairs upstream of the ATG were observed. The 5' flanking region is rich in G+C residues and contains a G+C-rich motif as well as direct and inverted repeats. Functional OMP regulatory sequences were demonstrated in transgenic mice. An 11-kb chimeric gene was constructed in which the coding region for OMP was replaced with that for Thy-1.1. In Thy-1.2 mice carrying this transgene, Thy-1.1 was expressed solely by olfactory receptor neurons and their axons and terminals in the olfactory bulb. Images PMID:2701951

  1. Gene Expression Changes in Phosphorus Deficient Potato (Solanum tuberosum L.) Leaves and the Potential for Diagnostic Gene Expression Markers

    PubMed Central

    Hammond, John P.; Broadley, Martin R.; Bowen, Helen C.; Spracklen, William P.; Hayden, Rory M.; White, Philip J.

    2011-01-01

    Background There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving

  2. A Transgenic Durum Wheat Line that is Free of Marker Genes and Expresses 1dy10

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a combination of “clean gene” technology and positive selection to generate transgenic durum wheat lines free of herbicide and antibiotic resistance marker genes. Biolistic transformation experiments were carried out using three “minimal gene cassettes” consisting of linear DNA fragments exc...

  3. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker.

    PubMed

    Nguyen, Tien-Thanh; Mathiesen, Geir; Fredriksen, Lasse; Kittl, Roman; Nguyen, Thu-Ha; Eijsink, Vincent G H; Haltrich, Dietmar; Peterbauer, Clemens K

    2011-05-25

    Food-grade gene expression systems for lactic acid bacteria are useful for applications in the food industry. We describe a new food-grade host/vector system for Lactobacillus plantarum based on pSIP expression vectors and the use of the homologous alanine racemase gene (alr) as selection marker. A new series of expression vectors were constructed by exchanging the erythromycin resistance gene (erm) in pSIP vectors by the L. plantarum WCFS1 alr gene. The vectors were applied for the overexpression of β-galactosidase genes from L. reuteri L103 and L. plantarum WCFS1 in an alr deletion mutant of L. plantarum WCFS1. The expression levels obtained in this way, i.e. without the use of antibiotics, were comparable to the levels obtained with the conventional system based on selection for erythromycin resistance. The new system is suitable for the production of ingredients and additives for the food industry. PMID:21504147

  4. A Rapid Molecular Test for Determining Yersinia pestis Susceptibility to Ciprofloxacin by the Quantification of Differentially Expressed Marker Genes

    PubMed Central

    Steinberger-Levy, Ida; Shifman, Ohad; Zvi, Anat; Ariel, Naomi; Beth-Din, Adi; Israeli, Ofir; Gur, David; Aftalion, Moshe; Maoz, Sharon; Ber, Raphael

    2016-01-01

    Standard antimicrobial susceptibility tests used to determine bacterial susceptibility to antibiotics are growth dependent and time consuming. The long incubation time required for standard tests may render susceptibility results irrelevant, particularly for patients infected with lethal bacteria that are slow growing on agar but progress rapidly in vivo, such as Yersinia pestis. Here, we present an alternative approach for the rapid determination of antimicrobial susceptibility, based on the quantification of the changes in the expression levels of specific marker genes following exposure to growth-inhibiting concentrations of the antibiotic, using Y. pestis and ciprofloxacin as a model. The marker genes were identified by transcriptomic DNA microarray analysis of the virulent Y. pestis Kimberley53 strain after exposure to specific concentrations of ciprofloxacin for various time periods. We identified several marker genes that were induced following exposure to growth-inhibitory concentrations of ciprofloxacin, and we confirmed the marker expression profiles at additional ciprofloxacin concentrations using quantitative RT-PCR. Eleven candidate marker transcripts were identified, of which four mRNA markers were selected for a rapid quantitative RT-PCR susceptibility test that correctly determined the Minimal Inhibitory Concentration (MIC) values and the categories of susceptibility of several Y. pestis strains and isolates harboring various ciprofloxacin MIC values. The novel molecular susceptibility test requires just 2 h of antibiotic exposure in a 7-h overall test time, in contrast to the 24 h of antibiotic exposure required for a standard microdilution test. PMID:27242774

  5. A Rapid Molecular Test for Determining Yersinia pestis Susceptibility to Ciprofloxacin by the Quantification of Differentially Expressed Marker Genes.

    PubMed

    Steinberger-Levy, Ida; Shifman, Ohad; Zvi, Anat; Ariel, Naomi; Beth-Din, Adi; Israeli, Ofir; Gur, David; Aftalion, Moshe; Maoz, Sharon; Ber, Raphael

    2016-01-01

    Standard antimicrobial susceptibility tests used to determine bacterial susceptibility to antibiotics are growth dependent and time consuming. The long incubation time required for standard tests may render susceptibility results irrelevant, particularly for patients infected with lethal bacteria that are slow growing on agar but progress rapidly in vivo, such as Yersinia pestis. Here, we present an alternative approach for the rapid determination of antimicrobial susceptibility, based on the quantification of the changes in the expression levels of specific marker genes following exposure to growth-inhibiting concentrations of the antibiotic, using Y. pestis and ciprofloxacin as a model. The marker genes were identified by transcriptomic DNA microarray analysis of the virulent Y. pestis Kimberley53 strain after exposure to specific concentrations of ciprofloxacin for various time periods. We identified several marker genes that were induced following exposure to growth-inhibitory concentrations of ciprofloxacin, and we confirmed the marker expression profiles at additional ciprofloxacin concentrations using quantitative RT-PCR. Eleven candidate marker transcripts were identified, of which four mRNA markers were selected for a rapid quantitative RT-PCR susceptibility test that correctly determined the Minimal Inhibitory Concentration (MIC) values and the categories of susceptibility of several Y. pestis strains and isolates harboring various ciprofloxacin MIC values. The novel molecular susceptibility test requires just 2 h of antibiotic exposure in a 7-h overall test time, in contrast to the 24 h of antibiotic exposure required for a standard microdilution test. PMID:27242774

  6. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    PubMed Central

    Kondo, Hiroshi; Miyoshi, Keiko; Sakiyama, Shoji; Tangoku, Akira; Noma, Takafumi

    2015-01-01

    Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII) cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12) were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC), an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5), an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1) expression levels were enhanced. After treatment with dexamethasone (DEX), 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine (IBMX), and keratinocyte growth factor (KGF), surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation. PMID:26167183

  7. Reverse Differentiation as a Gene Filtering Tool in Genome Expression Profiling of Adipogenesis for Fat Marker Gene Selection and Their Analysis

    PubMed Central

    Ullah, Mujib; Stich, Stefan; Häupl, Thomas; Eucker, Jan; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Background During mesenchymal stem cell (MSC) conversion into adipocytes, the adipogenic cocktail consisting of insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine not only induces adipogenic-specific but also genes for non-adipogenic processes. Therefore, not all significantly expressed genes represent adipogenic-specific marker genes. So, our aim was to filter only adipogenic-specific out of all expressed genes. We hypothesize that exclusively adipogenic-specific genes change their expression during adipogenesis, and reverse during dedifferentiation. Thus, MSC were adipogenic differentiated and dedifferentiated. Results Adipogenesis and reverse adipogenesis was verified by Oil Red O staining and expression of PPARG and FABP4. Based on GeneChips, 991 genes were differentially expressed during adipogenesis and grouped in 4 clusters. According to bioinformatic analysis the relevance of genes with adipogenic-linked biological annotations, expression sites, molecular functions, signaling pathways and transcription factor binding sites was high in cluster 1, including all prominent adipogenic genes like ADIPOQ, C/EBPA, LPL, PPARG and FABP4, moderate in clusters 2–3, and negligible in cluster 4. During reversed adipogenesis, only 782 expressed genes (clusters 1–3) were reverted, including 597 genes not reported for adipogenesis before. We identified APCDD1, CHI3L1, RARRES1 and SEMA3G as potential adipogenic-specific genes. Conclusion The model system of adipogenesis linked to reverse adipogenesis allowed the filtration of 782 adipogenic-specific genes out of total 991 significantly expressed genes. Database analysis of adipogenic-specific biological annotations, transcription factors and signaling pathways further validated and valued our concept, because most of the filtered 782 genes showed affiliation to adipogenesis. Based on this approach, the selected and filtered genes would be potentially important for characterization of adipogenesis and

  8. Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squamous cell carcinoma

    PubMed Central

    RODINI, CAMILA OLIVEIRA; XAVIER, FLÁVIA CALÓ AQUINO; PAIVA, KATIÚCIA BATISTA SILVA; DE SOUZA SETÚBAL DESTRO, MARIA FERNANDA; MOYSES, RAQUEL AJUB; MICHALUARTE, PEDRO; CARVALHO, MARCOS BRASILINO; FUKUYAMA, ERICA ERINA; TAJARA, ELOIZA HELENA; OKAMOTO, OSWALDO KEITH; NUNES, FABIO DAUMAS

    2012-01-01

    The search for molecular markers to improve diagnosis, individualize treatment and predict behavior of tumors has been the focus of several studies. This study aimed to analyze homeobox gene expression profile in oral squamous cell carcinoma (OSCC) as well as to investigate whether some of these genes are relevant molecular markers of prognosis and/or tumor aggressiveness. Homeobox gene expression levels were assessed by microarrays and qRT-PCR in OSCC tissues and adjacent non-cancerous matched tissues (margin), as well as in OSCC cell lines. Analysis of microarray data revealed the expression of 147 homeobox genes, including one set of six at least 2-fold up-regulated, and another set of 34 at least 2-fold down-regulated homeobox genes in OSCC. After qRT-PCR assays, the three most up-regulated homeobox genes (HOXA5, HOXD10 and HOXD11) revealed higher and statistically significant expression levels in OSCC samples when compared to margins. Patients presenting lower expression of HOXA5 had poorer prognosis compared to those with higher expression (P=0.03). Additionally, the status of HOXA5, HOXD10 and HOXD11 expression levels in OSCC cell lines also showed a significant up-regulation when compared to normal oral keratinocytes. Results confirm the presence of three significantly upregulated (>4-fold) homeobox genes (HOXA5, HOXD10 and HOXD11) in OSCC that may play a significant role in the pathogenesis of these tumors. Moreover, since lower levels of HOXA5 predict poor prognosis, this gene may be a novel candidate for development of therapeutic strategies in OSCC. PMID:22227861

  9. Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squamous cell carcinoma.

    PubMed

    Rodini, Camila Oliveira; Xavier, Flávia Caló Aquino; Paiva, Katiúcia Batista Silva; De Souza Setúbal Destro, Maria Fernanda; Moyses, Raquel Ajub; Michaluarte, Pedro; Carvalho, Marcos Brasilino; Fukuyama, Erica Erina; Tajara, Eloiza Helena; Okamoto, Oswaldo Keith; Nunes, Fabio Daumas

    2012-04-01

    The search for molecular markers to improve diagnosis, individualize treatment and predict behavior of tumors has been the focus of several studies. This study aimed to analyze homeobox gene expression profile in oral squamous cell carcinoma (OSCC) as well as to investigate whether some of these genes are relevant molecular markers of prognosis and/or tumor aggressiveness. Homeobox gene expression levels were assessed by microarrays and qRT-PCR in OSCC tissues and adjacent non-cancerous matched tissues (margin), as well as in OSCC cell lines. Analysis of microarray data revealed the expression of 147 homeobox genes, including one set of six at least 2-fold up-regulated, and another set of 34 at least 2-fold down-regulated homeobox genes in OSCC. After qRT-PCR assays, the three most up-regulated homeobox genes (HOXA5, HOXD10 and HOXD11) revealed higher and statistically significant expression levels in OSCC samples when compared to margins. Patients presenting lower expression of HOXA5 had poorer prognosis compared to those with higher expression (P=0.03). Additionally, the status of HOXA5, HOXD10 and HOXD11 expression levels in OSCC cell lines also showed a significant up-regulation when compared to normal oral keratinocytes. Results confirm the presence of three significantly upregulated (>4-fold) homeobox genes (HOXA5, HOXD10 and HOXD11) in OSCC that may play a significant role in the pathogenesis of these tumors. Moreover, since lower levels of HOXA5 predict poor prognosis, this gene may be a novel candidate for development of therapeutic strategies in OSCC. PMID:22227861

  10. Molecular characterization and expression pattern of a germ cell marker gene dnd in gibel carp (Carassius gibelio).

    PubMed

    Li, Shi-Zhu; Liu, Wei; Li, Zhi; Wang, Yang; Zhou, Li; Yi, Mei-Sheng; Gui, Jian-Fang

    2016-10-10

    As a germ cell marker gene, Dead end (dnd) has been identified and characterized in many vertebrates. Recently, we created a complete germ cell-depleted gonad model by the dnd-specific morpholino-mediated knockdown approach, and revealed sex-biased gene expression alteration through utilizing unisexual gynogenetic superiority in polyploid gibel carp. However, dnd and its expression pattern are still unclear in the gibel carp. In this study, we further analyzed molecular characterization of gibel carp dnd and its dynamic expression pattern during gametogenesis and embryogenesis. Similar to other homologs in vertebrates, gibel carp dnd contains a conserved RRM motif and five other motifs, and is highly evolutionary conserved in genomic organization and neighborhood gene synteny. RT-PCR and Western blot analyses showed its gonad-specific expression intensively in testis and ovary. Section in situ hybridization (SISH) and immunofluorescence localization revealed its dynamic expression pattern specific to oogenic cells and spermatogenetic cells during oogenesis and spermatogenesis. Moreover, its temporal and spatial distribution specific to PGCs were also demonstrated by RT-PCR and whole mount in situ hybridization (WISH) during embryogenesis. Therefore, gibel carp Dnd is a conserved germ cell marker during gametogenesis, and its maternal transcript is also a useful marker for tracing PGC specification and migration. PMID:27418526

  11. Intersex related gene expression profiles in clams Scrobicularia plana: Molecular markers and environmental application.

    PubMed

    Ciocan, Corina M; Cubero-Leon, Elena; Langston, William J; Pope, Nick; Cornelius, Keith; Hill, E M; Alvarez-Munoz, Diana; Indiveri, Paolo; Lerebours, Adelaide; Minier, Christophe; Rotchell, Jeanette M

    2015-06-30

    Intersex, the appearance of female characteristics in male gonads, has been identified in several aquatic species. It is a widespread phenomenon in populations of the bivalve, Scrobicularia plana, from the southwest coast of the U.K. Genes previously identified as differentially expressed (ferritin, testicular haploid expressed gene, THEG, proliferating cell nuclear antigen, PCNA; receptor activated protein kinase C, RACK; cytochrome B, CYB; and cytochrome c oxidase 1, COX1) in intersex clams relative to normal male clams, were selected for characterisation and an environmental survey of the Channel region. Transcripts were significantly differentially expressed at sites with varying intersex incidence and contaminant burdens. Significant correlations between specific gene expressions, key contaminants and sampling locations have been identified, though no single gene was associated with intersex incidence. The results highlight the difficulty in understanding the intersex phenomenon in molluscs where there is still a lack of knowledge on the control of normal reproduction. PMID:25746199

  12. Generation and evaluation of a chimeric classical swine fever virus expressing a visible marker gene.

    PubMed

    Li, Yongfeng; Wang, Xiao; Sun, Yuan; Li, Lian-Feng; Zhang, Lingkai; Li, Su; Luo, Yuzi; Qiu, Hua-Ji

    2016-03-01

    Classical swine fever virus (CSFV) is a noncytopathogenic virus, and the incorporation of an enhanced green fluorescent protein (EGFP) tag into the viral genome provides a means of direct monitoring of viral infection without immunostaining. It is well established that the 3' untranslated region (3'-UTR) of the CSFV plays an important role in viral RNA replication. Although CSFV carrying a reporter gene and chimeric CSFV have been generated and evaluated, a chimeric CSFV with a visible marker has not yet been reported. Here, we generated and evaluated a chimeric virus containing the EGFP tag and the 3'-UTR from vaccine strain HCLV (C-strain) in the genetic background of the highly virulent CSFV Shimen strain. The chimeric marker CSFV was fluorescent and had an approximately 100-fold lower viral titer, lower replication level of viral genome, and weaker fluorescence intensity than the recombinant CSFV with only the EGFP tag or the parental virus. Furthermore, the marker chimera was avirulent and displayed no viremia in inoculated pigs, which were completely protected from lethal CSFV challenge as early as 15 days post-inoculation. The chimeric marker virus was visible in vitro and attenuated in vitro and in vivo, which suggests that CSFV can be engineered to produce attenuated variants with a visible marker to facilitate in vitro studies of CSFV infection and replication and to develop of novel vaccines against CSF. PMID:26614259

  13. Expression of Wilms tumor gene in high risk neuroblastoma: complementary marker to tyrosine hydroxylase for detection of minimal residual disease

    PubMed Central

    Chou, Pauline M.; Olszewski, Marie; Rademaker, Alfred W.; Khan, Sana

    2015-01-01

    Background Neuroblastoma (NB) is an enigmatic tumor that often presents with metastatic disease at diagnosis and it is this aggressive propensity which places it among the deadliest pediatric tumors despite intensive multimodal therapy including hematopoietic stem cell transplantation (HSCT). We have previously demonstrated that Wilms tumor 1 gene (WT1) is a surrogate marker of proliferation in leukemia. To determine the potential association between WT1 and a known marker of NB, tyrosine hydroxylase (TH) in this high risk group of patients. Methods A total of 141 random samples from 34 patients were obtained, at diagnosis (n=27), during therapy (n=95), in clinical remission (n=13), and at the time of relapse (n=6). Quantitative RT-PCR was used for the evaluation of the level of gene expression using specific primers. Results Although similar gene expressions were demonstrated in both controls when evaluating both genes, significant difference was found at each clinical time point. Furthermore, when comparing patient samples from diagnosis to clinical remission and diagnosis to clinical relapse, individual gene expression varied. WT1 demonstrated significance (P=0.0002) and insignificance (P=0.06) whereas TH remained non-significant (P=0.2, P=0.09) respectively. Conclusions WT1 gene is indicative of cellular proliferation in NB and for this reason it can be adjuvant to TH for the detection minimal residual disease (MRD). PMID:26835379

  14. Identifying diagnostic endocrine markers and changes in endometrial gene expressions during pyometra in cats.

    PubMed

    Jursza-Piotrowska, Ewelina; Siemieniuch, Marta J

    2016-06-01

    Pyometra is a significant reproductive problem in cats. The aims of this study were to evaluate (i) the immunological profile of queens by studying plasma concentrations of metabolites of prostacyclin I2 (6-keto-PGF1α), leukotriene B4 (LTB4) and leukotriene C4 (LTC4); and (ii) the gene transcription profiles of Toll-like receptors (TLRs) 2 and 4 (TLR2/4), PGE2-synthase (PGES), PGF2α-synthase (PGFS) and prostaglandin-endoperoxide synthase 2 (PTGS2) in the feline endometrium throughout the estrous cycle, after medroxyprogesterone acetate (MPA) treatment and during pyometra. The concentration of plasma 6-keto-PGF1α in pyometra was increased in comparison to other groups studied (p<0.01). Endometrial mRNA coding for TLR2 was up-regulated in cats suffering from pyometra compared to other groups (p<0.001). Expression of mRNA for TLR4 was up-regulated in endometria originating from MPA-treated cats, pyometra and late diestrus cats, compared with tissues from cats during estrus and anestrus (p<0.05). As expected, endometrial mRNA for PTGS2 was up-regulated only in pyometra, compared with other groups (p<0.001). Similarly, endometrial mRNA for PGFS was up-regulated in pyometra, compared with endometria from anestrus, late diestrus and from MPA-treated cats (p<0.05), or from cats during estrus (p<0.01). Overall, these results indicate that plasma concentrations of LTB4 and LTC4 are not useful diagnostic markers since they were not increased in queens with pyometra, in contrast to 6-keto-PGF1α. In addition, treatment with MPA evoked neither endocrine nor molecular changes in endometria of cats. PMID:27288342

  15. Integrated Analyses of Gene Expression Profiles Digs out Common Markers for Rheumatic Diseases

    PubMed Central

    Wang, Lan; Wu, Long-Fei; Lu, Xin; Mo, Xing-Bo; Tang, Zai-Xiang; Lei, Shu-Feng; Deng, Fei-Yan

    2015-01-01

    Objective Rheumatic diseases have some common symptoms. Extensive gene expression studies, accumulated thus far, have successfully identified signature molecules for each rheumatic disease, individually. However, whether there exist shared factors across rheumatic diseases has yet to be tested. Methods We collected and utilized 6 public microarray datasets covering 4 types of representative rheumatic diseases including rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, and osteoarthritis. Then we detected overlaps of differentially expressed genes across datasets and performed a meta-analysis aiming at identifying common differentially expressed genes that discriminate between pathological cases and normal controls. To further gain insights into the functions of the identified common differentially expressed genes, we conducted gene ontology enrichment analysis and protein-protein interaction analysis. Results We identified a total of eight differentially expressed genes (TNFSF10, CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH, PRF1), each associated with at least 3 of the 4 studied rheumatic diseases. Meta-analysis warranted the significance of the eight genes and highlighted the general significance of four genes (CX3CR1, LY96, TLR5, and PRF1). Protein-protein interaction and gene ontology enrichment analyses indicated that the eight genes interact with each other to exert functions related to immune response and immune regulation. Conclusion The findings support that there exist common factors underlying rheumatic diseases. For rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and osteoarthritis diseases, those common factors include TNFSF10, CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH, and PRF1. In-depth studies on these common factors may provide keys to understanding the pathogenesis and developing intervention strategies for rheumatic diseases. PMID:26352601

  16. Identification of potential general markers of disease resistance in American oysters, Crassostrea virginica through gene expression studies.

    PubMed

    Nikapitiya, Chamilani; McDowell, Ian C; Villamil, Luisa; Muñoz, Pilar; Sohn, SaeBom; Gomez-Chiarri, Marta

    2014-11-01

    Several diseases have a significant impact on American oyster populations in the Atlantic coasts of North America. Knowledge about the responses of oysters to pathogenic challenge could help in identifying potential markers of disease resistance and biomarkers of the health status of an oyster population. A previous analysis of the transcriptome of resistant and susceptible American oysters in response to challenge with the bacterial pathogen Roseovarius crassostreae, as well as sequencing of suppression subtractive hybridization libraries from oysters challenged with the protozoan parasite Perkinsus marinus, provided a list of genes potentially involved in disease resistance or susceptibility. We investigated the patterns of inducible gene expression of several of these genes in response to experimental challenge with the oyster pathogens R. crassostreae, Vibrio tubiashii, and P. marinus. Oysters showing differential susceptibility to R. crassostreae demonstrated differential patterns of expression of genes coding for immune (serine protease inhibitor-1, SPI1) and stress-related (heat shock protein 70, HSP70; arginine kinase) proteins 30 days after challenge with this bacterial pathogen. Differential patterns of expression of immune (spi1, galectin and a matrix metalloproteinase) and stress-related (hsp70, histone H4, and arginine kinase) genes was observed in hemocytes from adult oysters challenged with P. marinus, but not with V. tubiashii. While levels of spi1 expression in hemocytes collected 8 and 21 days after P. marinus challenge were negatively correlated with parasite load in oysters tissues at the end of the challenge (62 days), levels of expression of hsp70 in hemocytes collected 1-day after challenge were positively correlated with oyster parasite load at 62 days. Our results confirm previous research on the role of serine protease inhibitor-1 in immunity and disease resistance in oysters. They also suggest that HSP70 and histone H4 could be used

  17. Differential regulation of osteogenic marker gene expression by Wnt-3a in embryonic mesenchymal multipotential progenitor cells.

    PubMed

    Derfoul, Assia; Carlberg, Alyssa L; Tuan, Rocky S; Hall, David J

    2004-06-01

    The Wnt family of secreted glycoproteins plays an integral role in embryonic development and differentiation. To explore the role of Wnt's in one aspect of differentiation, namely osteogenesis, we employed a retroviral gene transfer approach to express Wnt-3a in the multipotent murine embryonic mesenchymal cell line C3H10T1/2. We found that expression of Wnt-3a in these cells had a significant, positive effect on cell growth in serum-containing medium, in that the cells grew to very high densities compared to the control cells. Additionally, apoptosis was markedly inhibited by Wnt-3a. However, when the cells were grown in serum-deficient medium, the Wnt-3a-expressing cells arrested efficiently in G1 phase, indicating that serum growth factors were needed in addition to Wnt-3a for enhanced proliferation. Wnt-3a-expressing cells exhibited high levels of alkaline phosphatase gene expression and enzymatic activity, but did not show any matrix mineralization. Unexpectedly, basal expression of bone sialoprotein, osteocalcin, and osteopontin were markedly inhibited by Wnt-3a, as were other known target genes of Wnt-3a, such as Brachyury, FGF-10, and Cdx1. When Wnt-3a-expressing cells were treated with osteogenic supplements in the presence of BMP-2, alkaline phosphatase gene expression and activity were further elevated. Additionally, BMP-2 was able to reverse the inhibitory effect of Wnt-3a on osteocalcin and osteopontin gene expression. These results indicate that while Wnt-3a represses basal expression of some osteogenic genes, this repression can be partially reversed by BMP-2. Finally, the enhanced gene expression of alkaline phosphatase induced by Wnt-3a could be effectively suppressed by the combined action of dexamethasone and 1,25-dihydroxyvitamin D(3). These data show for the first time that Wnt-3a has an unusual effect on multipotential embryonic cells, in that it enhances cellular proliferation and expression of alkaline phosphatase, while it represses most

  18. Up-Regulation of Oligodendrocyte Lineage Markers in the Cerebellum of Autistic Patients: Evidence from Network Analysis of Gene Expression.

    PubMed

    Zeidán-Chuliá, Fares; de Oliveira, Ben-Hur Neves; Casanova, Manuel F; Casanova, Emily L; Noda, Mami; Salmina, Alla B; Verkhratsky, Alexei

    2016-08-01

    Autism is a neurodevelopmental disorder manifested by impaired social interaction, deficits in communication skills, restricted interests, and repetitive behaviors. In neurodevelopmental, neurodegenerative, and psychiatric disorders, glial cells undergo morphological, biochemical, and functional rearrangements, which are critical for neuronal development, neurotransmission, and synaptic connectivity. Cerebellar function is not limited to motor coordination but also contributes to cognition and may be affected in autism. Oligodendrocytes and specifically oligodendroglial precursors are highly susceptible to oxidative stress and excitotoxic insult. In the present study, we searched for evidence for developmental oligodendropathy in the context of autism by performing a network analysis of gene expression of cerebellar tissue. We created an in silico network model (OLIGO) showing the landscape of interactions between oligodendrocyte markers and demonstrated that more than 50 % (16 out of 30) of the genes within this model displayed significant changes of expression (corrected p value <0.05) in the cerebellum of autistic patients. In particular, we found up-regulation of OLIG2-, MBP-, OLIG1-, and MAG-specific oligodendrocyte markers. We postulate that aberrant expression of oligodendrocyte-specific genes, potentially related to changes in oligodendrogenesis, may contribute to abnormal cerebellar development, impaired myelination, and anomalous synaptic connectivity in autism spectrum disorders (ASD). PMID:26189831

  19. Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes.

    PubMed

    Oliva, Norman; Chadha-Mohanty, Prabhjit; Poletti, Susanna; Abrigo, Editha; Atienza, Genelou; Torrizo, Lina; Garcia, Ruby; Dueñas, Conrado; Poncio, Mar Aristeo; Balindong, Jeanette; Manzanilla, Marina; Montecillo, Florencia; Zaidem, Maricris; Barry, Gerard; Hervé, Philippe; Shou, Huxia; Slamet-Loedin, Inez H

    2014-01-01

    Biofortification of rice (Oryza sativa L.) using a transgenic approach to increase the amount of iron in the grain is proposed as a low-cost, reliable, and sustainable solution to help developing countries combat anemia. In this study, we generated and evaluated a large number of rice or soybean ferritin over-accumulators in rice mega-variety IR64, including marker-free events, by introducing soybean or rice ferritin genes into the endosperm for product development. Accumulation of the protein was confirmed by ELISA, in situ immunological detection, and Western blotting. As much as a 37- and 19-fold increase in the expression of ferritin gene in single and co-transformed plants, respectively, and a 3.4-fold increase in Fe content in the grain over the IR64 wild type was achieved using this approach. Agronomic characteristics of a total of 1,860 progenies from 58 IR64 single independent transgenic events and 768 progenies from 27 marker-free transgenic events were evaluated and most trait characteristics did not show a penalty. Grain quality evaluation of high-Fe IR64 transgenic events showed quality similar to that of the wild-type IR64. To understand the effect of transgenes on iron homeostasis, transcript analysis was conducted on a subset of genes involved in iron uptake and loading. Gene expression of the exogenous ferritin gene in grain correlates with protein accumulation and iron concentration. The expression of NAS2 and NAS3 metal transporters increased during the grain milky stage. PMID:24482599

  20. Expression of Estrogen-Related Gene Markers in Breast Cancer Tissue Predicts Aromatase Inhibitor Responsiveness

    PubMed Central

    Moy, Irene; Lin, Zhihong; Rademaker, Alfred W.; Reierstad, Scott; Khan, Seema A.; Bulun, Serdar E.

    2013-01-01

    Aromatase inhibitors (AIs) are the most effective class of drugs in the endocrine treatment of breast cancer, with an approximate 50% treatment response rate. Our objective was to determine whether intratumoral expression levels of estrogen-related genes are predictive of AI responsiveness in postmenopausal women with breast cancer. Primary breast carcinomas were obtained from 112 women who received AI therapy after failing adjuvant tamoxifen therapy and developing recurrent breast cancer. Tumor ERα and PR protein expression were analyzed by immunohistochemistry (IHC). Messenger RNA (mRNA) levels of 5 estrogen-related genes–AKR1C3, aromatase, ERα, and 2 estradiol/ERα target genes, BRCA1 and PR–were measured by real-time PCR. Tumor protein and mRNA levels were compared with breast cancer progression rates to determine predictive accuracy. Responsiveness to AI therapy–defined as the combined complete response, partial response, and stable disease rates for at least 6 months–was 51%; rates were 56% in ERα-IHC-positive and 14% in ERα-IHC-negative tumors. Levels of ERα, PR, or BRCA1 mRNA were independently predictive for responsiveness to AI. In cross-validated analyses, a combined measurement of tumor ERα and PR mRNA levels yielded a more superior specificity (36%) and identical sensitivity (96%) to the current clinical practice (ERα/PR-IHC). In patients with ERα/PR-IHC-negative tumors, analysis of mRNA expression revealed either non-significant trends or statistically significant positive predictive values for AI responsiveness. In conclusion, expression levels of estrogen-related mRNAs are predictive for AI responsiveness in postmenopausal women with breast cancer, and mRNA expression analysis may improve patient selection. PMID:24223121

  1. A Balanced Tissue Composition Reveals New Metabolic and Gene Expression Markers in Prostate Cancer

    PubMed Central

    Tessem, May-Britt; Bertilsson, Helena; Angelsen, Anders; Bathen, Tone F.; Drabløs, Finn; Rye, Morten Beck

    2016-01-01

    Molecular analysis of patient tissue samples is essential to characterize the in vivo variability in human cancers which are not accessible in cell-lines or animal models. This applies particularly to studies of tumor metabolism. The challenge is, however, the complex mixture of various tissue types within each sample, such as benign epithelium, stroma and cancer tissue, which can introduce systematic biases when cancers are compared to normal samples. In this study we apply a simple strategy to remove such biases using sample selections where the average content of stroma tissue is balanced between the sample groups. The strategy is applied to a prostate cancer patient cohort where data from MR spectroscopy and gene expression have been collected from and integrated on the exact same tissue samples. We reveal in vivo changes in cancer-relevant metabolic pathways which are otherwise hidden in the data due to tissue confounding. In particular, lowered levels of putrescine are connected to increased expression of SRM, reduced levels of citrate are attributed to upregulation of genes promoting fatty acid synthesis, and increased succinate levels coincide with reduced expression of SUCLA2 and SDHD. In addition, the strategy also highlights important metabolic differences between the stroma, epithelium and prostate cancer. These results show that important in vivo metabolic features of cancer can be revealed from patient data only if the heterogeneous tissue composition is properly accounted for in the analysis. PMID:27100877

  2. A Balanced Tissue Composition Reveals New Metabolic and Gene Expression Markers in Prostate Cancer.

    PubMed

    Tessem, May-Britt; Bertilsson, Helena; Angelsen, Anders; Bathen, Tone F; Drabløs, Finn; Rye, Morten Beck

    2016-01-01

    Molecular analysis of patient tissue samples is essential to characterize the in vivo variability in human cancers which are not accessible in cell-lines or animal models. This applies particularly to studies of tumor metabolism. The challenge is, however, the complex mixture of various tissue types within each sample, such as benign epithelium, stroma and cancer tissue, which can introduce systematic biases when cancers are compared to normal samples. In this study we apply a simple strategy to remove such biases using sample selections where the average content of stroma tissue is balanced between the sample groups. The strategy is applied to a prostate cancer patient cohort where data from MR spectroscopy and gene expression have been collected from and integrated on the exact same tissue samples. We reveal in vivo changes in cancer-relevant metabolic pathways which are otherwise hidden in the data due to tissue confounding. In particular, lowered levels of putrescine are connected to increased expression of SRM, reduced levels of citrate are attributed to upregulation of genes promoting fatty acid synthesis, and increased succinate levels coincide with reduced expression of SUCLA2 and SDHD. In addition, the strategy also highlights important metabolic differences between the stroma, epithelium and prostate cancer. These results show that important in vivo metabolic features of cancer can be revealed from patient data only if the heterogeneous tissue composition is properly accounted for in the analysis. PMID:27100877

  3. Generation of expressed sequence tags under cadmium stress for gene discovery and development of molecular markers in chickpea.

    PubMed

    Gaur, Rashmi; Bhatia, Sabhyata; Gupta, Meetu

    2014-07-01

    Chickpea is the world's third most important legume crop and belongs to Fabaceae family but suffered from severe yield loss due to various biotic and abiotic stresses. Development of modern genomic tools such as molecular markers and identification of resistant genes associated with these stresses facilitate improvement in chickpea breeding towards abiotic stress tolerance. In this study, 1597 high-quality expressed sequence tags (ESTs) were generated from a cDNA library of variety Pusa 1105 root tissue after cadmium (Cd) treatment. Assembly of ESTs resulted in a total of 914 unigenes of which putative homology was obtained for 38.8 % of unigenes after BLASTX search. In terms of species distribution, majority of sequences found similarity with Medicago truncatula followed by Glycine max, Vitis vinifera and Populus trichocarpa and Pisum sativum sequences. Functional annotation was assigned using Blast2Go, and the Gene Ontology (GO) terms were categorized into biological process, molecular function and cellular component. Approximately 10.83 % of unigenes were assigned at least one GO term. Moreover, in the distribution of transcripts into various biological pathways, 20 of the annotated transcripts were assigned to ten pathways in KEGG database. A majority of the genes were found to be involved in sulphur and nitrogen metabolism. In the quantitative real-time PCR analysis, five of the transcription factors and three of the transporter genes were found to be highly expressed after Cd treatment. Besides, the utility of ESTs was demonstrated by exploiting them for the development of 83 genic molecular markers including EST-simple sequence repeats and intron targeted polymorphism that would assist in tagging of genes related to metal stress for future prospects. PMID:24414095

  4. Vigna unguiculata modulates cholesterol induced cardiac markers, genotoxicity and gene expressions profile in an experimental rabbit model.

    PubMed

    Janeesh, P A; Abraham, Annie

    2013-04-25

    Vigna unguiculata (VU) leaves are edible and used as a leafy vegetable in cuisine from traditional times in India. This study was designed to investigate the cardioprotective effect of VU in cholesterol fed rabbits. The animals were randomly divided into 4 groups of 6 animals each and the experimental period was 3 months. Group I-ND [normal diet 40 g feed], Group II-ND + FVU [flavanoid fraction of Vigna unguiculata (150 mg kg (-1) per body weight)], Group III-ND + CH [cholesterol (400 mg)] and Group IV-ND + CH (400 mg) +FVU (150 mg kg(-1) per body weight). After the experimental period, animals were sacrificed and the various parameters, such as cardiac markers, toxicity parameters, genotoxicity and gene expression, were investigated. Cholesterol feeding causes a significant increase in the levels of cardiac marker enzymes, namely lactate dehydrogenase (LDH) and creatine phospokinase (CPK), atherogenic index, toxicity parameters like serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) were elevated. Antioxidant enzyme levels were decreased, lipid peroxidation products in heart tissue and inflammatory markers, namely cyclooxygenase (COX2) and lipooxygenase (LOX15) in peripheral blood monocytes (PBMCs), were significantly increased. A genotoxicity study using a Comet assay and gene expression by reverse transcriptase-polymerase chain reaction (RT-PCR) of transforming growth factor-b1 (TGF-b1) and heme oxygenase-1 (HO-1) from heart tissue showed an altered expression in the disease group. The supplementation of the flavonoid fraction of Vigna unguiculata leaves (FVU) in the CH + FVU group caused the reversal of the above parameters and cardiotoxicity to near normal when compared with the CH group and FVU. This study revealed the cardioprotective nature of Vigna unguiculata in preventing cardiovascular diseases and this effect is attributed to the presence of antioxidants and the antihyperlipidemic properties of the

  5. Long and short photoperiod buds in hybrid aspen share structural development and expression patterns of marker genes

    PubMed Central

    Rinne, Päivi L.H.; Paul, Laju K.; Vahala, Jorma; Ruonala, Raili; Kangasjärvi, Jaakko; van der Schoot, Christiaan

    2015-01-01

    Tree architecture develops over time through the collective activity of apical and axillary meristems. Although the capacity of both meristems to form buds is crucial for perennial life, a comparative analysis is lacking. As shown here for hybrid aspen, axillary meristems engage in an elaborate process of axillary bud (AXB) formation, while apical dominance prevents outgrowth of branches. Development ceased when AXBs had formed an embryonic shoot (ES) with a predictable number of embryonic leaves at the bud maturation point (BMP). Under short days, terminal buds (TBs) formed an ES similar to that of AXBs, and both the TB and young AXBs above the BMP established dormancy. Quantitative PCR and in situ hybridizations showed that this shared ability and structural similarity was reflected at the molecular level. TBs and AXBs similarly regulated expression of meristem-specific and bud/branching-related genes, including CENTRORADIALIS-LIKE1 (CENL1), BRANCHED1 (BRC1), BRC2, and the strigolactone biosynthesis gene MORE AXILLARY BRANCHES1 (MAX1). Below the BMP, AXBs maintained high CENL1 expression at the rib meristem, suggesting that it serves to maintain poise for growth. In support of this, decapitation initiated outgrowth of CENL1-expressing AXBs, but not of dormant AXBs that had switched CENL1 off. This singles out CENL1 as a rib meristem marker for para-dormancy. BRC1 and MAX1 genes, which may counterbalance CENL1, were down-regulated in decapitation-activated AXBs. The results showed that removal of apical dominance shifted AXB gene expression toward that of apices, while developing TBs adopted the expression pattern of para-dormant AXBs. Bud development thus follows a shared developmental pattern at terminal and axillary positions, despite being triggered by short days and apical dominance, respectively. PMID:26248666

  6. Corosolic acid suppresses the expression of inflammatory marker genes in CCL4-induced-hepatotoxic rats.

    PubMed

    Balakrishnan, Aristatile; Al-Assaf, Abdullah Hassan

    2016-07-01

    The aim of the study was to asses the anti-inflammatory effects of corosolic acid on the carbon tetrachloride (CCL4) toxicity in rats. Liver toxicity was induced by administered CCL4 (single dose (1:1 in liquid paraffin) orally at 1.25 ml/kg. Rats were pretreated with CRA for 7 days before made CCL(4) toxicity at 20 mg/kg BW. The mRNA levels of TNF-α, IL-6, iNOS, COX-2 and NF-kB were assayed by reverse transcriptase PCR analysis. The mRNA levels of proinflammatory cytokines such as TNF-α, IL-6, and the inflammatory markers such as iNOS, COX-2 and NF-kB were significantly up regulated in CCl(4) induced rats and treatment with corosolic acid significantly reduced the expression of the above indicators. Our results suggest that the inhibition of TNF-α, IL-6, iNOS, COX-2 and NF-κB by corosolic acid, a potential candidate could possess anti-inflammatory activity besides its hepatoprotective effect in CCl4 liver toxicity in rats. PMID:27393448

  7. Differential gene expression of medullary thyroid carcinoma reveals specific markers associated with genetic conditions.

    PubMed

    Maliszewska, Agnieszka; Leandro-Garcia, Luis J; Castelblanco, Esmeralda; Macià, Anna; de Cubas, Aguirre; Goméz-López, Gonzalo; Inglada-Pérez, Lucía; Álvarez-Escolá, Cristina; De la Vega, Leticia; Letón, Rocío; Gómez-Graña, Álvaro; Landa, Iñigo; Cascón, Alberto; Rodríguez-Antona, Cristina; Borrego, Salud; Zane, Mariangela; Schiavi, Francesca; Merante-Boschin, Isabella; Pelizzo, Maria R; Pisano, David G; Opocher, Giuseppe; Matias-Guiu, Xavier; Encinas, Mario; Robledo, Mercedes

    2013-02-01

    Medullary thyroid carcinoma accounts for 2% to 5% of thyroid malignancies, of which 75% are sporadic and the remaining 25% are hereditary and related to multiple endocrine neoplasia type 2 syndrome. Despite a genotype-phenotype correlation with specific germline RET mutations, knowledge of pathways specifically associated with each mutation and with non-RET-mutated sporadic MTC remains lacking. Gene expression patterns have provided a tool for identifying molecular events related to specific tumor types and to different clinical features that could help identify novel therapeutic targets. Using transcriptional profiling of 49 frozen MTC specimens classified as RET mutation, we identified PROM1, LOXL2, GFRA1, and DKK4 as related to RET(M918T) and GAL as related to RET(634) mutation. An independent series of 19 frozen and 23 formalin-fixed, paraffin-embedded (FFPE) MTCs was used for validation by RT-qPCR. Two tissue microarrays containing 69 MTCs were available for IHC assays. According to pathway enrichment analysis and gene ontology biological processes, genes associated with the MTC(M918T) group were involved mainly in proliferative, cell adhesion, and general malignant metastatic effects and with Wnt, Notch, NFκB, JAK/Stat, and MAPK signaling pathways. Assays based on silencing of PROM1 by siRNAs performed in the MZ-CRC-1 cell line, harboring RET(M918T), caused an increase in apoptotic nuclei, suggesting that PROM1 is necessary for survival of these cells. This is the first report of PROM1 overexpression among primary tumors. PMID:23201134

  8. Gene expression profiling of single circulating tumor cells in ovarian cancer - Establishment of a multi-marker gene panel.

    PubMed

    Blassl, Christina; Kuhlmann, Jan Dominik; Webers, Alessandra; Wimberger, Pauline; Fehm, Tanja; Neubauer, Hans

    2016-08-01

    The presence of circulating tumor cells (CTCs) in the blood of ovarian cancer patients was shown to correlate with decreased overall survival, whereby CTCs with epithelial-mesenchymal-transition (EMT) or stem-like traits are supposed to be involved in metastatic progression and recurrence. Thus, investigating the transcriptional profiles of CTCs might help to identify therapy resistant tumor cells and to overcome treatment failure. For this purpose, we established a multi-marker panel for the molecular characterization of single CTCs, detecting epithelial (EpCAM, Muc-1, CK5/7), EMT (N-cadherin, Vimentin, Snai1/2, CD117, CD146, CD49f) and stem cell (CD44, ALDH1A1, Nanog, SOX2, Notch1/4, Oct4, Lin28) associated transcripts. First primer specificity and PCR-performance of the multiplex-RT-PCRs were successfully validated on genomic DNA and cDNA isolated from OvCar3 cells. The assay sensitivity of the epithelial panel was evaluated by adding defined numbers of tumor cells into the blood of healthy donors and performing a subsequent immunomagnetic tumor cell enrichment (AdnaTest OvarianCancerSelect), resulting in a 100% concordance for the epithelial markers EpCAM and Muc-1 to the AdnaTest OvarianCancerDetect. Additionally, by processing blood from ovarian cancer patients, high assay sensitivity could be verified. In blood of healthy donors no signals for epithelial markers were detected, for EMT and stem cell markers, however, signals were obtained mainly originating from leukocytes which calls for single cell analysis. To that aim by using the ovarian cancer cell line OvCar3, we successfully established a workflow enabling the characterization of single CTCs. It consists of a density gradient-dependent enrichment for nucleated cells, a depletion of CD45-positive cells of hematopoietic origin followed by immunofluorescent labeling of CTCs by EpCAM and Muc-1. Single CTCs are then isolated by micromanipulation and processed for panel gene expression profiling. Finally

  9. Cytoskeletal proteins and stem cell markers gene expression in human bone marrow mesenchymal stromal cells after different periods of simulated microgravity

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovich, J. G.; Zhambalova, A. P.; Romanov, Yu. A.; Buravkova, L. B.

    2012-01-01

    Mesenchymal stem (stromal) cells (MSCs) are present in a variety of tissues during prenatal and postnatal human development. In adult organism, they are prevalent in bone marrow and supposed to be involved in space-flight induced osteopenia. We studied expression of various genes in human bone marrow MSCs after different terms of simulated microgravity (SMG) provided by Random Positioning Machine. Simulated microgravity induced transient changes in expression level of genes associated with actin cytoskeleton, especially after 48 h of SMG. However, after 120 h exposure in SMG partial restoration of gene expression levels (relative to the control) was found. Similar results were obtained with bmMSCs subjected to 24 h readaptation in static state after 24 h in SMG. Analysis of 84 genes related to identification, growth and differentiation of stem cells revealed that expression of nine genes was changed slightly after 48 h in SMG. More pronounced changes in gene expression of "stem cells markers" were observed after 120 h of simulated microgravity. Among 84 investigated genes, 30 were up-regulated and 24 were down-regulated. Finally, MSCs osteogenesis induced by long-term (10-20 days) simulation of microgravity was accompanied by down-regulation of gene expression of the main osteogenic differentiation markers ( ALPL, OMD) and master transcription osteogenic factor of MSCs ( Runx2). Thus, our study demonstrated that changes in expression level of some genes associated with actin cytoskeleton and stem cell markers are supposed to be one of the mechanisms, which contribute to precursor's cellular adaptation to the microgravity conditions. These results can clarify genomic mechanisms through which SMG reduces osteogenic differentiation of bmMSCs.

  10. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression.

    PubMed

    Young, Rosanna E B; Purton, Saul

    2014-12-01

    Negative selectable markers are useful tools for forward-genetic screens aimed at identifying trans-acting factors that are required for expression of specific genes. Transgenic lines harbouring the marker fused to a gene element, such as a promoter, may be mutagenized to isolate loss-of-function mutants able to survive under selection. Such a strategy allows the molecular dissection of factors that are essential for expression of the gene. Expression of individual chloroplast genes in plants and algae typically requires one or more nuclear-encoded factors that act at the post-transcriptional level, often through interaction with the 5' UTR of the mRNA. To study such nuclear control further, we have developed the Escherichia coli cytosine deaminase gene codA as a conditional negative selectable marker for use in the model green alga Chlamydomonas reinhardtii. We show that a codon-optimized variant of codA with three amino acid substitutions confers sensitivity to 5-fluorocytosine (5-FC) when expressed in the chloroplast under the control of endogenous promoter/5' UTR elements from the photosynthetic genes psaA or petA. UV mutagenesis of the psaA transgenic line allowed recovery of 5-FC-resistant, photosynthetically deficient lines harbouring mutations in the nuclear gene for the factor TAA1 that is required for psaA translation. Similarly, the petA line was used to isolate mutants of the petA mRNA stability factor MCA1 and the translation factor TCA1. The codA marker may be used to identify critical residues in known nuclear factors and to aid the discovery of additional factors required for expression of chloroplast genes. PMID:25234691

  11. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice.

    PubMed

    Subramanian, Umadevi; Kumar, Prerna; Mani, Indra; Chen, David; Kessler, Isaac; Periyasamy, Ramu; Raghavaraju, Giri; Pandey, Kailash N

    2016-07-01

    The objective of the present study was to examine the genetically determined differences in the natriuretic peptide receptor-A (NPRA) gene (Npr1) copies affecting the expression of cardiac hypertrophic markers, proinflammatory mediators, and matrix metalloproteinases (MMPs) in a gene-dose-dependent manner. We determined whether stimulation of Npr1 by all-trans retinoic acid (RA) and histone deacetylase (HDAC) inhibitor sodium butyric acid (SB) suppress the expression of cardiac disease markers. In the present study, we utilized Npr1 gene-disrupted heterozygous (Npr1(+/-), 1-copy), wild-type (Npr1(+/+), 2-copy), gene-duplicated (Npr1(++/+), 3-copy) mice, which were treated intraperitoneally with RA, SB, and a combination of RA/SB, a hybrid drug (HB) for 2 wk. Untreated 1-copy mice showed significantly increased heart weight-body weight (HW/BW) ratio, blood pressure, hypertrophic markers, including beta-myosin heavy chain (β-MHC) and proto-oncogenes (c-fos and c-jun), proinflammatory mediator nuclear factor kappa B (NF-κB), and MMPs (MMP-2, MMP-9) compared with 2-copy and 3-copy mice. The heterozygous (haplotype) 1-copy mice treated with RA, SB, or HB, exhibited significant reduction in the expression of β-MHC, c-fos, c-jun, NF-κB, MMP-2, and MMP-9. In drug-treated animals, the activity and expression levels of HDAC were significantly reduced and histone acetyltransferase activity and expression levels were increased. The drug treatments significantly increased the fractional shortening and reduced the systolic and diastolic parameters of the Npr1(+/-) mice hearts. Together, the present results demonstrate that a decreased Npr1 copy number enhanced the expression of hypertrophic markers, proinflammatory mediators, and MMPs, whereas an increased Npr1 repressed the cardiac disease markers in a gene-dose-dependent manner. PMID:27199456

  12. Gene expression study using real-time PCR identifies an NTR gene as a major marker of resistance to benznidazole in Trypanosoma cruzi

    PubMed Central

    2011-01-01

    Background Chagas disease is a neglected illness, with limited treatments, caused by the parasite Trypanosoma cruzi. Two drugs are prescribed to treat the disease, nifurtimox and benznidazole, which have been previously reported to have limited efficacy and the appearance of resistance by T. cruzi. Acquisition of drug-resistant phenotypes is a complex physiological process based on single or multiple changes of the genes involved, probably in its mechanisms of action. Results The differential genes expression of a sensitive Trypanosoma cruzi strain and its induced in vitro benznidazole-resistant phenotypes was studied. The stepwise increasing concentration of BZ in the parental strain generated five different resistant populations assessed by the IC50 ranging from 10.49 to 93.7 μM. The resistant populations maintained their phenotype when the BZ was depleted from the culture for many passages. Additionally, the benznidazole-resistant phenotypes presented a cross-resistance to nifurtimox but not to G418 sulfate. On the other hand, four of the five phenotypes resistant to different concentrations of drugs had different expression levels for the 12 genes evaluated by real-time PCR. However, in the most resistant phenotype (TcR5x), the levels of mRNA from these 12 genes and seven more were similar to the parental strain but not for NTR and OYE genes, which were down-regulated and over-expressed, respectively. The number of copies for these two genes was evaluated for the parental strain and the TcR5x phenotype, revealing that the NTR gene had lost a copy in this last phenotype. No changes were found in the enzyme activity of CPR and SOD in the most resistant population. Finally, there was no variability of genetic profiles among all the parasite populations evaluated by performing low-stringency single-specific primer PCR (LSSP-PCR) and random amplified polymorphic DNA RAPD techniques, indicating that no clonal selection or drastic genetic changes had occurred for the

  13. Quantitative PCR marker genes for endometrial adenocarcinoma.

    PubMed

    Kölbl, Alexandra C; Victor, Lisa-Marie; Birk, Amelie E; Jeschke, Udo; Andergassen, Ulrich

    2016-09-01

    Endometrial adenocarcinoma is a common malignancy in women worldwide, with formation of remote metastasis occurring following oncological treatment. Circulating tumor cells (CTCs) are regarded to be the origin of haematogenous metastasis formation. The present study aimed to identify suitable marker genes using a quantitative polymerase chain reaction (qPCR) approach to detect CTCs from blood samples of patients with endometrial carcinoma. Therefore, RNA was isolated from endometrial adenocarcinoma cell lines and from healthy endometrial tissue and reverse transcribed to cDNA, which was then used in qPCR on a number of marker genes. Cytokeratin 19 and claudin 4 were identified as suitable marker genes for CTCs in endometrial adenocarcinoma, due to their high expression in the majority of the cell lines investigated. The expression values of the genes examined varied widely between the different cell lines, which is similar to the variation in the patient samples. Therefore, the necessity for a set of genes for CTC detection and not one single marker gene is demonstrated. qPCR is a fast, cost‑efficient and easy to perform technique, which may be used in the detection of CTCs. Investigation of the occurrence of CTCs in cancer patients would aid in the prevention of metastasis and thereby refine treatment. PMID:27431566

  14. Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation

    PubMed Central

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2014-01-01

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

  15. Identification by a Digital Gene Expression Displayer (DGED) and test by RT-PCR analysis of new mRNA candidate markers for colorectal cancer in peripheral blood.

    PubMed

    Lauriola, Mattia; Ugolini, Giampaolo; Rosati, Giancarlo; Zanotti, Simone; Montroni, Isacco; Manaresi, Alessio; Zattoni, Davide; Rivetti, Stefano; Mattei, Gabriella; Coppola, Domenico; Strippoli, Pierluigi; Taffurelli, Mario; Solmi, Rossella

    2010-08-01

    Evidence from the literature widely supports the efficacy of screening for colorectal cancer (CRC) in reducing mortality. A blood-based assay, potentially, represents a more accessible early detection tool for the identification of circulating tumour cells originating from a primary tumour site in the body. The present work aimed at identifying a set of specific mRNAs expressed in colon tissue but not in blood cells. These mRNAs may represent useful markers for early detection of circulating colon cancer cells by a simple, qualitative RT-PCR assay, following RNA extraction from peripheral blood samples. Using a data-mining tool called cDNA digital gene expression displayer (DGED), based on serial analysis of gene expression (SAGE) from the Cancer Genome Anatomy Project (CGAP) database, 4-colon and 14-blood cDNA libraries were analyzed. We selected 7 genes expressed in colon tissue but not in blood and were able to test 6 of them by RT-PCR in peripheral blood of CRC patients and healthy controls. We present a relatively easy and highly reproducible technique for the detection of mRNA expression of genes as candidate markers of malignancy in blood samples of patients with colon cancer. SAGE DGED provided a list of the best candidate mRNAs predicted to detect colon cells in the blood, namely those encoding the following proteins: hypothetical protein LOC644844 (LOC644844, whose cDNA was not amplifiable), fatty acid binding protein 1 (FABP1), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), mucin 13 cell surface associated (MUC13), guanylate cyclase activator 2A (GUCA2A), amiloride binding protein 1 (ABP1), galactoside-binding, solute carrier family 26, member 3 (SLC26A3). The mRNA expression of these genes was evaluated in 8 samples from subjects diagnosed with CRC and 9 from healthy controls. We observed the expression of 2 of the 6 investigated genes in the blood samples of the vast majority of patients considered, but also in a subset of the

  16. Analysis of Gene Expression Profiles in Leaf Tissues of Cultivated Peanuts and Development of EST-SSR Markers and Gene Discovery

    PubMed Central

    Guo, Baozhu; Chen, Xiaoping; Hong, Yanbin; Liang, Xuanqiang; Dang, Phat; Brenneman, Tim; Holbrook, Corley; Culbreath, Albert

    2009-01-01

    Peanut is vulnerable to a range of foliar diseases such as spotted wilt caused by Tomato spotted wilt virus (TSWV), early (Cercospora arachidicola) and late (Cercosporidium personatum) leaf spots, southern stem rot (Sclerotium rolfsii), and sclerotinia blight (Sclerotinia minor). In this study, we report the generation of 17,376 peanut expressed sequence tags (ESTs) from leaf tissues of a peanut cultivar (Tifrunner, resistant to TSWV and leaf spots) and a breeding line (GT-C20, susceptible to TSWV and leaf spots). After trimming vector and discarding low quality sequences, a total of 14,432 high-quality ESTs were selected for further analysis and deposition to GenBank. Sequence clustering resulted in 6,888 unique ESTs composed of 1,703 tentative consensus (TCs) sequences and 5185 singletons. A large number of ESTs (5717) representing genes of unknown functions were also identified. Among the unique sequences, there were 856 EST-SSRs identified. A total of 290 new EST-based SSR markers were developed and examined for amplification and polymorphism in cultivated peanut and wild species. Resequencing information of selected amplified alleles revealed that allelic diversity could be attributed mainly to differences in repeat type and length in the SSR regions. In addition, a few additional INDEL mutations and substitutions were observed in the regions flanking the microsatellite regions. In addition, some defense-related transcripts were also identified, such as putative oxalate oxidase (EU024476) and NBS-LRR domains. EST data in this study have provided a new source of information for gene discovery and development of SSR markers in cultivated peanut. A total of 16931 ESTs have been deposited to the NCBI GenBank database with accession numbers ES751523 to ES768453. PMID:19584933

  17. Expressed sequence tag analysis and development of gene associated markers in a near-isogenic plant system of Eragrostis curvula.

    PubMed

    Cervigni, Gerardo D L; Paniego, Norma; Díaz, Marina; Selva, Juan P; Zappacosta, Diego; Zanazzi, Darío; Landerreche, Iñaki; Martelotto, Luciano; Felitti, Silvina; Pessino, Silvina; Spangenberg, Germán; Echenique, Viviana

    2008-05-01

    Eragrostis curvula (Schrad.) Nees is a forage grass native to the semiarid regions of Southern Africa, which reproduces mainly by pseudogamous diplosporous apomixis. A collection of ESTs was generated from four cDNA libraries, three of them obtained from panicles of near-isogenic lines with different ploidy levels and reproductive modes, and one obtained from 12 days-old plant leaves. A total of 12,295 high-quality ESTs were clustered and assembled, rendering 8,864 unigenes, including 1,490 contigs and 7,394 singletons, with a genome coverage of 22%. A total of 7,029 (79.11%) unigenes were functionally categorized by BLASTX analysis against sequences deposited in public databases, but only 37.80% could be classified according to Gene Ontology. Sequence comparison against the cereals genes indexes (GI) revealed 50% significant hits. A total of 254 EST-SSRs were detected from 219 singletons and 35 from contigs. Di- and tri- motifs were similarly represented with percentages of 38.95 and 40.16%, respectively. In addition, 190 SNPs and Indels were detected in 18 contigs generated from 3 to 4 libraries. The ESTs and the molecular markers obtained in this study will provide valuable resources for a wide range of applications including gene identification, genetic mapping, cultivar identification, analysis of genetic diversity, phenotype mapping and marker assisted selection. PMID:18196464

  18. Assessment of esterase gene expression as a risk marker for insecticide resistance in Florida Culex nigripalpus (Diptera: Culicidae).

    PubMed

    Shin, Dongyoung; Smartt, Chelsea T

    2016-06-01

    Esterases are enzymatic proteins known to play a role in insecticide resistance formation. To further our understanding of the development of insecticide resistance, we tested the gene expression level of a gene implicated in insecticide resistance (Temsha est-1) from Culex nigripalpus Theobald (Diptera: Culicidae) in field mosquitoes. We found that the level of expression of TE-1 differed depending on the frequency of exposure to organophosphate insecticide through expression studies. Temsha est-1 cDNA is 1,808 base pairs and fully sequenced with up to 96% nucleotide sequence identity to esterase B genes of other mosquito species. The genes from five different species, including TE-1, were closely related by genetic distance and phylogenetic analysis. Differential expression of this gene that is correlated to differences in susceptibility towards organophosphate would provide the ability to use Temsha est-1 as an indicator of the formation of tolerance/resistance. This would greatly enhance mosquito control efforts by allowing targeted application of insecticides to mosquito populations that are most susceptible. Also, it would provide resistance information so that a rational design could be used for insecticide rotation schedules. PMID:27232126

  19. High expression of the Ets-related gene (ERG) is an independent prognostic marker for relapse-free survival in patients with acute promyelocytic leukemia.

    PubMed

    Hecht, Anna; Nowak, Daniel; Nowak, Verena; Hanfstein, Benjamin; Faldum, Andreas; Büchner, Thomas; Spiekermann, Karsten; Sauerland, Cristina; Lengfelder, Eva; Hofmann, Wolf-Karsten; Nolte, Florian

    2013-04-01

    In acute promyelocytic leukemia (APL), relapse occurs in about 15 % of cases and is a major cause for death. Molecular markers identifying patients at high risk for relapse are not well established. High expression of the transcription factor Ets-related gene (ERG) is associated with inferior overall survival (OS) and disease-free survival in different types of hematologic malignancies. There are no data available about the impact of ERG expression in APL. ERG expression levels were analyzed in bone marrow samples of 86 APL patients at initial diagnosis. High ERG expression was significantly associated with an inferior OS in patients who had reached first complete remission. It was also significantly correlated with inferior relapse-free survival (RFS) and time to relapse (i.e., relapse-free interval, RFI). In multivariate analysis, high ERG expression had an independent negative impact on RFS and RFI. High ERG expression was significantly associated with inferior OS, RFS, and RFI. Moreover, in multivariate analysis, it maintained its value as an independent negative prognostic factor with regard to RFS and RFI. Therefore, ERG expression might serve as a molecular marker for risk stratification in APL and might identify patients who could benefit from intensified treatment regimens. PMID:23250622

  20. Optical imaging of green fluorescent protein markers for tracking vascular gene expression: a feasibility study in human tissue-like phantoms

    NASA Astrophysics Data System (ADS)

    Kumar, Ananda; Chen, Hunter H.; Long, Erin; Wang, Danming; Yang, Xiaoming

    2002-06-01

    Vascular gene therapy is an exciting approach to the treatment of cardiovascular diseases. However, to date, there are no imaging modalities available for non-invasive detection of vascular gene expression. We have developed an optical imaging method to track vascular gene expression by detecting fluorescent signals emitted from arterial walls following gene transfer. To investigate the feasibility of this new technique, we performed experiments on a set of human tissue-like phantoms using a common biological marker in gene therapy, the green fluorescent protein (GFP). The phantoms were constructed to mimic the arterial geometry beneath a tissue layer. Human smooth muscle cells transfected with GFP were embedded in a capillary tube in the phantom. Monte Carlo modeling of the phantom experiment was performed to optimize the performance of the optical imaging system. We compared the fluence rates among three types of light beams, including ring beam, Gaussian beam, and flat beam. The results showed that our optical imaging system was able to detect fluorescent signals up to 5-mm depth in the phantom, and that flat beam geometry would produce the optimum fluorescence remittance. This study provides valuable insights for improvements to the optical imaging system and refinement of the new technique to non-invasively detect/track vascular gene expression.

  1. Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression.

    PubMed

    Lee, Minyoung; San Martín, Alejandra; Valdivia, Alejandra; Martin-Garrido, Abel; Griendling, Kathy K

    2016-01-01

    Vascular smooth muscle cells (VSMCs) undergo a phenotypic switch from a differentiated to synthetic phenotype in cardiovascular diseases such as atherosclerosis and restenosis. Our previous studies indicate that transforming growth factor-β (TGF-β) helps to maintain the differentiated phenotype by regulating expression of pro-differentiation genes such as smooth muscle α-actin (SMA) and Calponin (CNN) through reactive oxygen species (ROS) derived from NADPH oxidase 4 (Nox4) in VSMCs. In this study, we investigated the relationship between Nox4 and myocardin-related transcription factor-A (MRTF-A), a transcription factor known to be important in expression of smooth muscle marker genes. Previous work has shown that MRTF-A interacts with the actin-binding protein, palladin, although how this interaction affects MRTF-A function is unclear, as is the role of phosphorylation in MRTF-A activity. We found that Rho kinase (ROCK)-mediated phosphorylation of MRTF-A is a key event in the regulation of SMA and CNN in VSMCs and that this phosphorylation depends upon Nox4-mediated palladin expression. Knockdown of Nox4 using siRNA decreases TGF-β -induced palladin expression and MRTF-A phosphorylation, suggesting redox-sensitive regulation of this signaling pathway. Knockdown of palladin also decreases MRTF-A phosphorylation. These data suggest that Nox4-dependent palladin expression and ROCK regulate phosphorylation of MRTF-A, a critical factor in the regulation of SRF responsive gene expression. PMID:27088725

  2. Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression

    PubMed Central

    Lee, Minyoung; San Martín, Alejandra; Valdivia, Alejandra; Martin-Garrido, Abel; Griendling, Kathy K.

    2016-01-01

    Vascular smooth muscle cells (VSMCs) undergo a phenotypic switch from a differentiated to synthetic phenotype in cardiovascular diseases such as atherosclerosis and restenosis. Our previous studies indicate that transforming growth factor-β (TGF-β) helps to maintain the differentiated phenotype by regulating expression of pro-differentiation genes such as smooth muscle α-actin (SMA) and Calponin (CNN) through reactive oxygen species (ROS) derived from NADPH oxidase 4 (Nox4) in VSMCs. In this study, we investigated the relationship between Nox4 and myocardin-related transcription factor-A (MRTF-A), a transcription factor known to be important in expression of smooth muscle marker genes. Previous work has shown that MRTF-A interacts with the actin-binding protein, palladin, although how this interaction affects MRTF-A function is unclear, as is the role of phosphorylation in MRTF-A activity. We found that Rho kinase (ROCK)-mediated phosphorylation of MRTF-A is a key event in the regulation of SMA and CNN in VSMCs and that this phosphorylation depends upon Nox4-mediated palladin expression. Knockdown of Nox4 using siRNA decreases TGF-β -induced palladin expression and MRTF-A phosphorylation, suggesting redox-sensitive regulation of this signaling pathway. Knockdown of palladin also decreases MRTF-A phosphorylation. These data suggest that Nox4-dependent palladin expression and ROCK regulate phosphorylation of MRTF-A, a critical factor in the regulation of SRF responsive gene expression. PMID:27088725

  3. Comparison of Z and R3 antigen expression and of genes encoding other antigenic markers in invasive human and bovine Streptococcus agalactiae strains from Norway.

    PubMed

    Maeland, Johan A; Radtke, Andreas

    2013-12-27

    Streptococcus agalactiae (GBS) may cause a variety of infectious diseases in humans caused by human GBS and mastitis in cattle caused by bovine GBS. Over the last few years molecular testing has provided evidence that human and bovine GBS have evolved along diverse phylogenetic lines. In the present study 173 invasive human GBS strains and 52 invasive bovine strains were tested for altogether 18 strain-variable and surface-localized antigenic markers including all 10 capsular polysaccharides (CPS) and proteins including Cβ, the alpha-like proteins, R3 and the recently described Z1 and Z2 antigens. PCR was used to detect encoding genes and antibody-based methods to detect expression of antigens. Thirteen of the 18 markers were detected in isolates of both strain categories. Seven of the ten CPS antigens were detected in both groups with types III and V predominating in the human GBS strains, types IV and V in the bovine isolates. Z1, Z2 and/or R3 expression and the genes encoding Cβ, Cα, Alp1, Alp2/3 or R4 (Rib) were detected in both groups. Protein antigen-CPS associations well known for human strains were essentially the same in the bovine isolates. The results show that in spite of evolution along different lines, human and bovine GBS share a variety of surface-exposed antigenic markers, substantiating close relationship between the two GBS subpopulations. PMID:24120184

  4. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    PubMed

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells. PMID:27172749

  5. Suppression and restoration of primordial germ cell marker gene expression in channel catfish, Ictalurus punctatus, using knockdown constructs regulated by copper transport protein gene promoters: Potential for reversible transgenic sterilization.

    PubMed

    Su, Baofeng; Shang, Mei; Grewe, Peter M; Patil, Jawahar G; Peatman, Eric; Perera, Dayan A; Cheng, Qi; Li, Chao; Weng, Chia-Chen; Li, Ping; Liu, Zhanjiang; Dunham, Rex A

    2015-12-01

    Complementary DNA overexpression and short hairpin RNA interference approaches were evaluated for decreasing expression of primordial germ cell (PGC) marker genes and thereby sterilizing channel catfish, Ictalurus punctatus, by delivering knockdown constructs driven by a constitutive promoter from yeast and a copper transport protein gene into fish embryos by electroporation. Two PGC marker genes, nanos and dead end, were the target knockdown genes, and their expressions, along with that of an off-target gene, vasa, were evaluated temporally using real-time polymerase chain reaction. Copper sulfate was evaluated as a repressor compound. Some of the constructs knocked down PGC marker gene expression, and some of the constructs were partially repressed by application of 0.1-ppm copper sulfate. When the rate of sexual maturity was compared for three-year-old broodfish that had been exposed to the sterilizing constructs during embryologic development and controls that had not been exposed, several treatments had reduced sexual maturity for the exposed fish. Of two promoter systems evaluated, the one which had been designed to be less sensitive to copper generally was more effective at achieving sterilization and more responsive to repression. Knockdown constructs based on 3' nanos short hairpin RNA interference appeared to result in the best repression and restoration of normal sexual maturity. We conclude that these copper-based systems exhibited good potential for repressible transgenic sterilization. Optimization of this system could allow environmentally safe application of transgenic technology and might be applicable to other applications for aquatic organisms. PMID:26341409

  6. Differences in the spatiotemporal expression and epistatic gene regulation of the mesodiencephalic dopaminergic precursor marker PITX3 during chicken and mouse development.

    PubMed

    Klafke, Ruth; Prem Anand, A Alwin; Wurst, Wolfgang; Prakash, Nilima; Wizenmann, Andrea

    2016-02-15

    Mesodiencephalic dopaminergic (mdDA) neurons are located in the ventral mesencephalon and caudal diencephalon of all tetrapod species studied so far. They are the most prominent DA neuronal population and are implicated in control and modulation of motor, cognitive and rewarding/affective behaviors. Their degeneration or dysfunction is intimately linked to several neurological and neuropsychiatric human diseases. To gain further insights into their generation, we studied spatiotemporal expression patterns and epistatic interactions in chick embryos of selected marker genes and signaling pathways associated with mdDA neuron development in mouse. We detected striking differences in the expression patterns of the chick orthologs of the mouse mdDA marker genes Pitx3 and Aldh1a1, which suggests important differences between the species in the generation/generating of these cells. We also discovered that the sonic hedgehog signaling pathway is both necessary and sufficient for the induction of ectopic PITX3 expression in chick mesencephalon downstream of WNT9A-induced LMX1a transcription. These aspects of early chicken development resemble the ontogeny of zebrafish diencephalic DA neuronal populations, and suggest a divergence between birds and mammals during evolution. PMID:26755703

  7. CARD8 gene encoding a protein of innate immunity is expressed in human atherosclerosis and associated with markers of inflammation.

    PubMed

    Paramel, Geena Varghese; Folkersen, Lasse; Strawbridge, Rona J; Elmabsout, Ali Ateia; Särndahl, Eva; Lundman, Pia; Jansson, Jan-Håkan; Hansson, Göran K; Sirsjö, Allan; Fransén, Karin

    2013-10-01

    Inflammation is a key factor in the development of atherosclerotic coronary artery disease. It is promoted through the inflammasome, a molecular machine that produces IL (interleukin)-1β in response to cholesterol crystal accumulation in macrophages. The CARD8 (caspase recruitment domain 8) protein modulates this process by suppressing caspase 1 and the transcription factor NF-κB (nuclear factor κB). The expression of CARD8 mRNA was examined in atherosclerotic vascular tissue and the impact on MI (myocardial infarction) of a polymorphism in the CARD8 gene determined. CARD8 mRNA was analysed by microarray of human atherosclerotic tissue and compared with transplant donor arterial tissue. Microarray analysis was performed for proximal genes associated with the rs2043211 locus in plaque. The CARD8 rs2043211 polymorphism was analysed by genotyping of two Swedish MI cohorts, FIA (First Myocardial Infarction in Northern Sweden) and SCARF (Stockholm Coronary Atherosclerosis Risk Factor). The CRP (C-reactive protein) level was measured in both cohorts, but the levels of the pro-inflammatory cytokines IL-1β, IL-18, TNF (tumour necrosis factor) and MCP-1 (monocyte chemoattractant protein) were measured in sera available from the SCARF cohort. CARD8 mRNA was highly expressed in atherosclerotic plaques compared with the expression in transplant donor vessel (P<0.00001). The minor allele was associated with lower expression of CARD8 in the plaques, suggesting that CARD8 may promote inflammation. Carriers of the minor allele of the rs2043211 polymorphism also displayed lower circulating CRP and lower levels of the pro-atherosclerotic chemokine MCP-1. However, no significant association could be detected between this polymorphism and MI in the two cohorts. Genetic alterations in the CARD8 gene therefore seem to be of limited importance for the development of MI. PMID:23611467

  8. Expression of SCGB1C1 gene as a potential marker of susceptibility to upper respiratory tract infections in elite athletes - a pilot study.

    PubMed

    Orysiak, J; Malczewska-Lenczowska, J; Bik-Multanowski, M

    2016-06-01

    High levels of exercise in athletes result in temporary immunosuppression, which could increase the susceptibility to upper respiratory tract infections. Understanding of immunological mechanisms responsible for this phenomenon could enable optimization of training schemes for elite athletes and avoidance of infection-related episodes of absence during sports championships. The aim of this study was to detect genes that may be responsible for modulation of individual susceptibility to infections. The blood and saliva samples were collected from 10 healthy, medically examined kayakers (4 females and 6 males) aged 24.7 ± 2.3 years. All samples were taken in the morning, after overnight fasting, in a seated position. The ELISA method was used to determine the levels of secretory immunoglobulin A (sIgA) and interleukin 5 (IL-5). Whole genome expression in blood was assessed using microarrays. The study did not reveal any significant correlation between genome expression and sIgA concentration. However, low expression of a gene involved in protection against the common cold - secretoglobin 1C1 (SCGB1C1) - was detected in athletes with high IL-5 concentrations (corrected p = 0.00065; fold change = 3.17). Our results suggest that blood expression of the SCGB1C1 gene might be a marker of susceptibility to upper respiratory tract infections in athletes. PMID:27274102

  9. Expression of SCGB1C1 gene as a potential marker of susceptibility to upper respiratory tract infections in elite athletes – a pilot study

    PubMed Central

    Malczewska-Lenczowska, J; Bik-Multanowski, M

    2016-01-01

    High levels of exercise in athletes result in temporary immunosuppression, which could increase the susceptibility to upper respiratory tract infections. Understanding of immunological mechanisms responsible for this phenomenon could enable optimization of training schemes for elite athletes and avoidance of infection-related episodes of absence during sports championships. The aim of this study was to detect genes that may be responsible for modulation of individual susceptibility to infections. The blood and saliva samples were collected from 10 healthy, medically examined kayakers (4 females and 6 males) aged 24.7 ± 2.3 years. All samples were taken in the morning, after overnight fasting, in a seated position. The ELISA method was used to determine the levels of secretory immunoglobulin A (sIgA) and interleukin 5 (IL-5). Whole genome expression in blood was assessed using microarrays. The study did not reveal any significant correlation between genome expression and sIgA concentration. However, low expression of a gene involved in protection against the common cold – secretoglobin 1C1 (SCGB1C1) – was detected in athletes with high IL-5 concentrations (corrected p = 0.00065; fold change = 3.17). Our results suggest that blood expression of the SCGB1C1 gene might be a marker of susceptibility to upper respiratory tract infections in athletes. PMID:27274102

  10. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress

    PubMed Central

    Farcy, Émilie; Voiseux, Claire; Lebel, Jean-Marc

    2008-01-01

    During the annual cycle, oysters are exposed to seasonal slow changes in temperature, but during emersion at low tide on sunny summer days, their internal temperature may rise rapidly, resulting in acute heat stress. We experimentally exposed oysters to a 1-h acute thermal stress and investigated the transcriptional expression level of some genes involved in cell stress defence mechanisms, including chaperone proteins (heat shock proteins Hsp70, Hsp72 and Hsp90 (HSP)), regulation of oxidative stress (Cu-Zn superoxide dismutase, metallothionein (MT)), cell detoxification (glutathione S-transferase sigma, cytochrome P450 and multidrug resistance (MDR1)) and regulation of the cell cycle (p53). Gene mRNA levels were quantified by reverse transcription-quantitative polymerase chain reaction and expressed as their ratio to actin mRNA, used as a reference. Of the nine genes studied, HSP, MT and MDR1 mRNA levels increased in response to thermal stress. We compared the responses of oysters exposed to acute heat shock in summer and winter and observed differences in terms of magnitude and kinetics. A larger increase was observed in September, with recovery within 48 h, whereas in March, the increase was smaller and lasted more than 2 days. The results were also compared with data obtained from the natural environment. Though the functional molecule is the protein and information at the mRNA level only has limitations, the potential use of mRNAs coding for cell stress defence proteins as early sensitive biomarkers is discussed. PMID:19002605

  11. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat.

    PubMed

    Vendrame, Stefano; Zhao, Alice; Merrow, Thomas; Klimis-Zacas, Dorothy

    2015-06-01

    Impaired fasting blood glucose is one of the landmark signs of metabolic syndrome, together with hyperinsulinemia, dyslipidemia, hypertension, and a chronic proinflammatory, pro-oxidative, and prothrombotic environment. This study investigates the effect of wild blueberry (WB) consumption on blood glucose levels and other parameters involved in glucose metabolism in the obese Zucker rat (OZR), an experimental model of metabolic syndrome. Sixteen OZRs and 16 lean littermate controls (lean Zucker rat [LZR]) were fed an 8% enriched WB diet or a control (C) diet for 8 weeks. Plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4) were measured. Expression of the resistin, RBP4, and glucose transporter GLUT4 genes was also determined both in the liver and the abdominal adipose tissue (AAT). Plasma glycated hemoglobin HbA1c, RBP4, and resistin concentrations were significantly lower in OZRs following the WB diet (-20%, -22%, and -27%, respectively, compared to C diet, P<.05). Following WB consumption, resistin expression was significantly downregulated in the liver of both OZRs and LZRs (-28% and -61%, respectively, P<.05), while RBP4 expression was significantly downregulated in the AAT of both OZRs and LZRs (-87% and -43%, respectively, P<.05). All other markers were not significantly affected following WB consumption. In conclusion, WB consumption normalizes some markers related to glucose metabolism in the OZR model of metabolic syndrome, but has no effect on fasting blood glucose or insulin concentrations. PMID:25383490

  12. Elimination of Marker Genes from Transformed Filamentous Fungi by Unselected Transient Transfection with a Cre-expressing Plasmid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A convenient method to remove selectable markers from fungal transformants permits the markers to be used for sequential transformations, and should also reduce public concerns and regulatory impediments to applications involving environmental release of genetically modified fungi. We report a metho...

  13. Large-scale analysis of differential gene expression in coffee genotypes resistant and susceptible to leaf miner–toward the identification of candidate genes for marker assisted-selection

    PubMed Central

    2014-01-01

    Background A successful development of herbivorous insects into plant tissues depends on coordination of metabolic processes. Plants have evolved complex mechanisms to recognize such attacks, and to trigger a defense response. To understand the transcriptional basis of this response, we compare gene expression profiles of two coffee genotypes, susceptible and resistant to leaf miner (Leucoptera coffella). A total of 22000 EST sequences from the Coffee Genome Database were selected for a microarray analysis. Fluorescence probes were synthesized using mRNA from the infested and non-infested coffee plants. Array hybridization, scanning and data normalization were performed using Nimble Scan® e ArrayStar® platforms. Genes with foldchange values +/-2 were considered differentially expressed. A validation of 18 differentially expressed genes was performed in infected plants using qRT-PCR approach. Results The microarray analysis indicated that resistant plants differ in gene expression profile. We identified relevant transcriptional changes in defense strategies before insect attack. Expression changes (>2.00-fold) were found in resistant plants for 2137 genes (1266 up-regulated and 873 down-regulated). Up-regulated genes include those responsible for defense mechanisms, hypersensitive response and genes involved with cellular function and maintenance. Also, our analyses indicated that differential expression profiles between resistant and susceptible genotypes are observed in the absence of leaf-miner, indicating that defense is already build up in resistant plants, as a priming mechanism. Validation of selected genes pointed to four selected genes as suitable candidates for markers in assisted-selection of novel cultivars. Conclusions Our results show evidences that coffee defense responses against leaf-miner attack are balanced with other cellular functions. Also analyses suggest a major metabolic reconfiguration that highlights the complexity of this response. PMID

  14. Gene expression of INPP5F as an independent prognostic marker in fludarabine-based therapy of chronic lymphocytic leukemia

    PubMed Central

    Palermo, G; Maisel, D; Barrett, M; Smith, H; Duchateau-Nguyen, G; Nguyen, T; Yeh, R-F; Dufour, A; Robak, T; Dornan, D; Weisser, M

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is a heterogeneous disease. Various disease-related and patient-related factors have been shown to influence the course of the disease. The aim of this study was to identify novel biomarkers of significant clinical relevance. Pretreatment CD19-separated lymphocytes (n=237; discovery set) and peripheral blood mononuclear cells (n=92; validation set) from the REACH trial, a randomized phase III trial in relapsed CLL comparing rituximab plus fludarabine plus cyclophosphamide with fludarabine plus cyclophosphamide alone, underwent gene expression profiling. By using Cox regression survival analysis on the discovery set, we identified inositol polyphosphate-5-phosphatase F (INPP5F) as a prognostic factor for progression-free survival (P<0.001; hazard ratio (HR), 1.63; 95% confidence interval (CI), 1.35–1.98) and overall survival (P<0.001; HR, 1.47; 95% CI, 1.18–1.84), regardless of adjusting for known prognostic factors. These findings were confirmed on the validation set, suggesting that INPP5F may serve as a novel, easy-to-assess future prognostic biomarker for fludarabine-based therapy in CLL. PMID:26430724

  15. Preferential integration of a transfected marker gene into spontaneously expressed fragile sites of a breast cancer cell line.

    PubMed

    Matzner, Isabel; Savelyeva, Larissa; Schwab, Manfred

    2003-01-28

    Common fragile sites are non-randomly distributed unstable chromosomal regions thought to be hot spots for recombination. They appear as gaps, breaks and triradial figures when cells are cultured under conditions that inhibit replication or repair of DNA. The removal of replication-inhibitory challenges is followed by repair activation to restore the DNA damage at the fragile site. The breast cancer cell line MDA-MB-436 has a spontaneous and non-random expression pattern of fragile sites that appear to be related to the complex pattern of chromosomal rearrangements. The high frequency of which fragile sites are spontaneously activated should make MDA-MB-436 cells a powerful tool to study in greater detail the DNA sequences of a multiplicity of fragile sites. Here, we have explored if the DNA at spontaneously activated fragile sites in MDA-MB-436 cells can be genetically tagged by the repair-mediated insertion of an exogenously supplied drug resistance gene. The cells were transfected with pSV2Neo, stably transfected clones were selected with neomycin, and the sites of pSV2Neo integration were determined by fluorescent in situ hybridization. Eighty-eight of 100 isolated clones had a non-random distribution of a total of 112 pSV2Neo integrations. Of these, 95 integrations (85%) coincide with the position at which non-random gaps and breaks appear in the MDA-MB-436 cells. Forty-nine (44%) of the 112 integrations appeared to be at position of known fragile sites, 46 (41%) were at the non-random chromosomal sites not previously described as "true" fragile sites. It is possible, however, that these non-random instabilities signal of genomic regions equivalent to fragile sites, that either have not previously been detected due to low level expression or that are activated in a tissue- or cell-type-specific manner. Collectively, our results show a preferential integration of exogenous DNA into fragile sites and other non-random regions of high genomic instability in MDA

  16. Data on characterizing the gene expression patterns of neuronal ceroid lipofuscinosis genes: CLN1, CLN2, CLN3, CLN5 and their association to interneuron and neurotransmission markers: Parvalbumin and Somatostatin.

    PubMed

    Minye, Helena M; Fabritius, Anna-Liisa; Vesa, Jouni; Peltonen, Leena

    2016-09-01

    The article contains raw and analyzed data related to the research article "Neuronal ceroid lipofuscinosis genes, CLN2, CLN3, CLN5 are spatially and temporally co-expressed in a developing mouse brain" (Fabritius et al., 2014) [1]. The processed data gives an understanding of the development of the cell types that are mostly affected by defective function of CLN proteins, timing of expression of CLN1, CLN2, CLN3 and CLN5 genes in a murine model. The data shows relationship between the expression pattern of these genes during neural development. Immunohistochemistry was used to identify known interneuronal markers for neurotransmission and cell proliferation: parvalbumin, somatostatin subpopulations of interneurons. Non-radioactive in-situ hybridization detected CLN5 mRNA in the hippocampus. Throughout the development strong expression of CLN genes were identified in the germinal epithelium and in ventricle regions, cortex, hippocampus, and cerebellum. This provides supportive evidence that CLN1, CLN2, CLN3 and CLN5 genes may be involved in synaptic pruning. PMID:27508227

  17. Gene Expression Profiling Supports the Neural Crest Origin of Adult Rodent Carotid Body Stem Cells and Identifies CD10 as a Marker for Mesectoderm-Committed Progenitors.

    PubMed

    Navarro-Guerrero, Elena; Platero-Luengo, Aida; Linares-Clemente, Pedro; Cases, Ildefonso; López-Barneo, José; Pardal, Ricardo

    2016-06-01

    Neural stem cells (NSCs) are promising tools for understanding nervous system plasticity and repair, but their use is hampered by the lack of markers suitable for their prospective isolation and characterization. The carotid body (CB) contains a population of peripheral NSCs, which support organ growth during acclimatization to hypoxia. We have set up CB neurosphere (NS) cultures enriched in differentiated neuronal (glomus) cells versus undifferentiated progenitors to investigate molecular hallmarks of cell classes within the CB stem cell (CBSC) niche. Microarray gene expression analysis in NS is compatible with CBSCs being neural crest derived-multipotent progenitor cells able to sustain CB growth upon exposure to hypoxia. Moreover, we have identified CD10 as a marker suitable for isolation of a population of CB mesectoderm-committed progenitor cells. CD10 + cells are resting in normoxia, and during hypoxia they are activated to proliferate and to eventually complete maturation into mesectodermal cells, thus participating in the angiogenesis necessary for CB growth. Our results shed light into the molecular and cellular mechanisms involved in CBSC fate choice, favoring a potential use of these cells for cell therapy. Stem Cells 2016;34:1637-1650. PMID:26866353

  18. RELATIVE EXPRESSION AND STABILITY OF A CHROMOSOMALLY INTEGRATED AND PLASMID-BORNE MARKER GENE FUSION IN ENVIRONMENTALLY COMPETENT BACTERIA

    EPA Science Inventory

    A xyIE-iceC transcriptional fusion was created by ligating a DNA fragment harboring the cloned xyIE structural gene from the TOL plasmid of Pseudomonas putida mt-2 into the cloned iceC gene of Pseudomonas syringae Cit7. This fusion construct was integrated into chromosome of Pseu...

  19. Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees.

    PubMed

    Park, So-Young; Klimaszewska, Krystyna; Park, Ji-Young; Mansfield, Shawn D

    2010-11-01

    Of the various alternatives for cloning elite conifers, somatic embryogenesis (SE) appears to be the best option. In recent years, significant areas of lodgepole pine (Pinus contorta) forest have been devastated by the mountain pine beetle (MPB) in Western Canada. In an attempt to establish an SE propagation system for MPB-resistant lodgepole pine, several families displaying varying levels of resistance were selected for experimentation involving shoot bud and immature seed explants. In bud cultures, eight embryogenic lines were induced from 2 of 15 genotypes following various treatments. Genotype had an important influence on embryogenic culture initiation, and this effect was consistent over time. These lines were identified by microscopic observation and genetic markers. Despite the abundance of early somatic embryos, the cultures have yet to develop into mature embryos. In contrast, immature zygotic embryos (ZEs) cultured from megagametophytes initiated SE at an early dominance stage via nodule-type callus in 1 of 10 genotypes. As part of the study, putative embryogenesis-specific genes, WOX2 (WUSCHELL homeobox 2) and HAP3A, were analyzed in cultures of both shoot bud explants and ZEs. On the basis of these analyses, we postulate that PcHAP3A was expressed mainly in callus and may be involved in cell division, whereas WOX2 was expressed mainly in embryonal mass (EM)-like tissues. The findings from this study, based on molecular assessment, suggest that the cell lines derived from bud cultures were truly EM. Moreover, these experimental observations suggest that PcWOX2 could be used as an early genetic marker to discriminate embryogenic cultures from callus. PMID:20935320

  20. Gene Expression Profiling Soybean Stem Tissue Early Response to Sclerotinia sclerotiorum and in Silico Mapping in Relation to Resistance Markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White mold, caused by Sclerotinia sclerotiorum (Lib) de Bary, can be a serious disease of crops grown under cool moist environments. In many plants, like soybean [Glycine max (L.) Merr.], complete genetic resistance does not exist. To identify possible genes involved in defense against this pathogen...

  1. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model.

    PubMed

    Schedle, Karl; Pfaffl, Michael W; Plitzner, Christian; Meyer, Heinrich H D; Windisch, Wilhelm

    2008-12-01

    The effects of insoluble dietary fibre differing in lignin content on intestinal morphology and mRNA expression was tested in an animal model of 48 weaned piglets. Engaged fibre sources were wheat bran (rich in cellulose and hemicellulose) and pollen from Chinese Masson pine (Pinus massoniana) (rich in lignin), respectively. The fibre sources were added to a basal diet as follows: no addition (control), 3.0% wheat bran, 1.27% pine pollen, and 2.55% pine pollen. The 12 animals of each feeding group were fed four experimental diets ad libitum for 37 days and were then slaughtered for retrieving tissue samples from stomach, jejunum, ileum, colon and mesenterial lymph nodes. Both fibre sources increased villus height of mucosa in jejunum (+10% on average) and ileum (+16% on average). Results of mRNA expression rates of inflammatory, cell cycle and growth marker genes (NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4, IGF1) were specific to fibre source and tissue: wheat bran induced an up-regulation of NFkappaB in stomach and jejunum, as well as TNFalpha and TGFbeta, and Caspase3 in jejunum. Pine pollen induced down regulation of NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4 and IGF1 in the colon as well as up-regulation of NFkappaB and TGFbeta in mesenterial lymph nodes. Finally, an overall data comparison based on a hierarchical cluster analysis showed a close relation between gene regulation in different gut sections and organs, as well as between small intestine morphology and zootechnical performance. PMID:19143227

  2. Gene expression of markers of osteogenic differentiation of human mesenchymal cells on collagen I-modified microrough titanium surfaces.

    PubMed

    Morra, M; Cassinelli, C; Cascardo, G; Bollati, D; Baena, R Rodriguez Y

    2011-02-01

    Microrough, doubly acid etched titanium surfaces (Ti) were further modified by amination and covalent coupling of fibrillar collagen type I (ColTi). Human Mesenchymal Cells (HMC) adhesion and growth, and relevant osteogenic differentiation in nonosteogenic (basal) medium were evaluated by fluorescence microscopy, scanning electron microscopy, and RT-PCR for a three-week period. Results show strongly enhanced HMC adhesion and cell density at short experimental time on ColTi, together with complete spreading of the cell body over the microrough surface topography. RT-PCR analysis of several genes involved in osteogenesis indicate, since the first week of culturing, significant progression of HMC on ColTi along the osteogenic pathway. These results indicate that the adopted process of surface immobilization of collagen, mandatory to impart collagenase resistance in implant sites, does not impair biospecific interactions between HMC and collagen. Thus, it is possible to upgrade properties arising from the control of Ti surfaces topography by surface-chemistry driven enhanced recruitment of precursor osteogenic cells and pro-osteogenic stimula. PMID:21171164

  3. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration.

    PubMed

    Gayen, Srimonta; Mandal, Chandi Charan; Samanta, Milan Kumar; Dey, Avishek; Sen, Soumitra Kumar

    2016-04-01

    Emergence of resistant insects limits the sustainability of Bacillus thuringiensis (Bt) transgenic crop plants for insect management. Beside this, the presence of unwanted marker gene(s) in the transgenic crops is also a major environmental and health concern. Thus, development of marker free transgenic crop plants expressing a new class of toxin having a different mortality mechanism is necessary for resistance management. In a previous study, we generated an engineered Cry2Aa (D42/K63F/K64P) toxin which has a different mortality mechanism as compared to first generation Bt toxin Cry1A, and this engineered toxin was found to enhance 4.1-6.6-fold toxicity against major lepidopteran insect pests of crop plants. In the present study, we have tested the potency of this engineered synthetic Cry2Aa (D42/K63F/K64P) toxin as a candidate in the development of insect resistant transgenic tobacco plants. Simultaneously, we have eliminated the selectable marker gene from the Cry2Aa (D42/K63F/K64P) expressing tobacco plants by exploiting the Cre/lox mediated recombination methodology, and successfully developed marker free T2 transgenic tobacco plants expressing the engineered Cry2Aa toxin. Realtime and western blot analysis demonstrated the expression of engineered toxin gene in transgenic plants. Insect feeding assays revealed that the marker free T2 progeny of transgenic plants expressing Cry2Aa (D42/K63F/K64P) toxin showed 82-92 and 52-61 % mortality to cotton leaf worm (CLW) and cotton bollworm (CBW) respectively. Thus, this engineered Cry2Aa toxin could be useful for the generation of insect resistant transgenic Bt lines which will protect the crop damages caused by different insect pests such as CLW and CBW. PMID:26925624

  4. Short-term administration of rhGH increases markers of cellular proliferation but not milk protein gene expression in normal lactating women

    PubMed Central

    Maningat, Patricia D.; Sen, Partha; Rijnkels, Monique; Hadsell, Darryl L.; Bray, Molly S.

    2011-01-01

    Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7–10 days. PMID:21205870

  5. Short-term administration of rhGH increases markers of cellular proliferation but not milk protein gene expression in normal lactating women.

    PubMed

    Maningat, Patricia D; Sen, Partha; Rijnkels, Monique; Hadsell, Darryl L; Bray, Molly S; Haymond, Morey W

    2011-04-27

    Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7-10 days. PMID:21205870

  6. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells

    PubMed Central

    Brun, Juliane; Lutz, Katrin A.; Neumayer, Katharina M. H.; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K.; Hart, Melanie L.

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1–2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  7. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    PubMed

    Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  8. PVX-Cre-mediated marker gene elimination from transgenic plants.

    PubMed

    Kopertekh, L; Jüttner, G; Schiemann, J

    2004-07-01

    Cre recombinase gene from bacteriophage P1 was transiently expressed by a Potato Virus X (PVX)-based vector in transgenic lox -target Nicotiana benthamiana plants to remove the selectable marker gene. The target construct consisted of two directly oriented lox sites flanking a bar gene located between a gfp coding region and an upstream CaMV 35S promoter. The Cre-mediated excision of intervening sequence placed the gfp coding region under the transcriptional control of the CaMV 35S promoter. GFP activity was observed in PVX-Cre systemically infected leaves, regenerants from PVX-Cre infected explants and T1 progeny of these regenerants. PVX-Cre was removed efficiently from the regenerants by adding the nucleoside analogue ribavirin to the culture medium. Molecular data proved a correlation between gfp expression and precise site-specific excision of the bar gene in all examined transgenic lines. The frequency of recombination expressed as a percentage of regenerated plants exhibiting marker gene excision varied from 48% to 82%. These results demonstrate that a plant virus vector can be used efficiently to express cre recombinase in vivo providing an alternative method for the production of transgenic plants without marker genes. PMID:15604695

  9. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    PubMed Central

    Ichikawa, Tomotsugu; Högemanny, Dagmar; Saeki, Yoshinaga; Tyminski, Edyta; Terada, Kinya; Weissleder, Ralph; Chiocca, E Antonio; Basilion, James P

    2002-01-01

    Abstract Magnetic resonance imaging (MRI) can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR) whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1) ETR is a sensitive MR marker gene; 2) several transgenes can be efficiently expressed from a single amplicon; 3) expression of each transgene results in functional gene product; and 4) ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression. PMID:12407446

  10. mgm 1, the earliest sex-specific germline marker in Drosophila, reflects expression of the gene esg in male stem cells.

    PubMed

    Streit, Adrian; Bernasconi, Luca; Sergeev, Pavel; Cruz, Alex; Steinmann-Zwicky, Monica

    2002-01-01

    The pathway that controls sex in Drosophila has been well characterized. The elements of this genetic hierarchy act cell-autonomously in somatic cells. We have previously shown that the sex of germ cells is determined by a different mechanism and that somatic and autonomously acting elements interact to control the choice between spermatogenesis and oogenesis. A target for both types of signals is the enhancer-trap mgm1, which monitors male-specific gene expression in germ cells. Here we report that mgm1 reflects the expression of escargot (esg), a member of the snail gene family, which are transcription factors with zink finger motifs. Genes of this family partially redundantly control a number of processes involving cell fate choices. The regulation of gene expression in germ cells by sex-specific esg enhancers is already seen in embryos. Therefore, autonomous and non-autonomous sex-specific factors that participate in germline sex determination are already present at this early stage. esg is expressed in the male gonad, both in somatic cells and in germline stem cells. We show that esg expression in the male germline is not required for proper sex determination and spermatogenesis, as functional sperm is differentiated by mutant germ cells in wild type hosts. However, somatic esg expression is required for the maintenance of male germline stem cells. PMID:11902678

  11. Expression and prognostic value of the aldehyde dehydrogenase 1 (ALDH1) and N-myc downstream regulated gene 2 (NDRG2) as potential markers in human astrocytomas.

    PubMed

    Goudarzi, Peyman Karimi; Mehrabi, Farzad; Khoshnood, Reza Jalili; Bagheri, Ali Baradaran; Ahmadi, Koorosh; Yahaghi, Emad; Abdolhoseinpour, Hesam

    2016-05-01

    In this study, immunohistochemical analysis was used to evaluate the expression of ALDH1 and NDRG2 in astrocytoma tissue samples and normal brain tissues. ALDH1 protein staining displayed that AlDH1 expression was not detectable in eight astrocytoma tissues (8/36) and in all of normal brain tissues. There was a significant difference between ALDH1 expression and WHO grades (P = 0.03). Furthermore, no correlation was determined between expression levels of ALDH1 and other clinicopathological characteristics including age, sex, and tumor size. Immunohistochemistry showed that a high level of NDRG2 protein expression was markedly detected in normal brain tissues and expression of NDRG2 protein was significantly decreased in astrocytoma tissues. There was a significant association between pathological grading and NDRG2 expression level (P < 0.001, Table 1), but no correlation was determined between expression levels of NDRG2 and other clinicopathological characteristics including age, sex, and tumor size. We also obtained detailed follow-up data and evaluated the association of ALDH1/NDRG2 expressions with overall survival. Kaplan-Meier survival and log-rank analysis indicated that the patients with high proportion of ALDH1-positive cells and low proportion of NDRG2-positive had shorter overall survival (P < 0.001; P = 0.001). Univariate analysis indicated that the high proportion of ALDH1-positive cells (P < 0.001), the low proportion of NDRG2-positive cells (P = 0.009), and the advanced grade (P < 0.005) were markedly linked to the prognosis in patients. Furthermore, in the multivariate analysis, ALDH1 cells' expression (P = 0.012), low proportion of NDRG2-positive cells (P = 0.025), and advanced grade (P < 0.03) were linked to poor overall survival. Our results suggest that NDRG2 expression is related to decreased survival rates and NDRG2 may be a potential marker in the astrocytoma prognosis. NDRG2 may be a potential marker

  12. Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation

    PubMed Central

    2011-01-01

    Background Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results 8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of α-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource for studies

  13. Cellular Distribution and Gene Expression Pattern of Metastasin (S100A4), Calgranulin A (S100A8), and Calgranulin B (S100A9) in Oral Lesions as Markers for Molecular Pathology.

    PubMed

    Reckenbeil, Jan; Kraus, Dominik; Probstmeier, Rainer; Allam, Jean-Pierre; Novak, Natalija; Frentzen, Matthias; Martini, Markus; Wenghoefer, Matthias; Winter, Jochen

    2016-07-01

    The objective of this study was to analyze cellular localization and expression levels of oncologic relevant members of the S100 family in common oral lesions.Biopsies of various oral lesions were analyzed. S100A4 showed a higher expression rate in leukoplakias and oral squamous cell carcinomas. Transcript levels of S100A8 and S100A9 were significantly decreased in malignant OSCCs. A correlation could be drawn between the expression levels of these genes and the pathological characteristics of the investigated lesions. S100A4, A8, and A9 proteins represent promising marker genes to evaluate the risk potential of suspicious oral lesions in molecular pathology. PMID:27294692

  14. Short-term administration of rhGH increases markers of cellular proliferation, but not milk protein gene expression in normal lactating women.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained fro...

  15. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  16. Gene Expression Profiling of Burkholderia cenocepacia at the Time of Cepacia Syndrome: Loss of Motility as a Marker of Poor Prognosis?

    PubMed Central

    Kalferstova, Lucie; Kolar, Michal; Fila, Libor; Vavrova, Jolana

    2015-01-01

    Cepacia syndrome (CS) is a fatal septic condition that develops in approximately 20% of cystic fibrosis (CF) patients chronically infected with the Burkholderia cepacia complex (Bcc). The most common causative agent is Burkholderia cenocepacia, a clinically dominant Bcc species that contains the globally distributed epidemic strain sequence type 32 (ST32). Using microarrays, we compared the transcriptomes of ST32 isolates from the bloodstream at the time of CS with their sputum counterparts recovered 1 to 2 months prior to the development of CS. Global gene expression profiles of blood isolates revealed greater activities of the virulence genes involved in the type III secretion system, the bacterial exopolysaccharide cepacian, and quorum sensing, while reduced expression was demonstrated for flagellar genes. Furthermore, a nonmotile phenotype (as evaluated by a swimming motility assay) was identified in blood isolates from 6 out of 8 patients with CS; this phenotype was traceable to 24 months prior to the onset of CS. Loss of motility was not observed in any of the 89 ST32 isolates recovered over the course of chronic infection from 17 patients without CS. In conclusion, the gene expression of Bcc bacteria disseminated during CS has been elucidated for the first time. This study demonstrated marked differences at the transcriptome level between isogenic ST32 isolates that are attributable to the stage and site of infection. The finding of a nonmotile B. cenocepacia isolate may serve as a warning sign for the development of CS in the near future. PMID:25694518

  17. GENES FOR TUMOR MARKERS ARE CLUSTERED WITH CELLULAR PROTO-ONCOGENES ON HUMAN CHROMOSOMES

    EPA Science Inventory

    The relative mapping positions of genes for polypeptides expressed abnormally in tumors (tumor markers) and cellular proto-oncogenes were analyzed and a remarkable degree of co-mapping of tumor marker genes with oncogenes in the human karyotype were found. It is proposed that abe...

  18. SNP Marker Discovery in Koala TLR Genes

    PubMed Central

    Cui, Jian; Frankham, Greta J.; Johnson, Rebecca N.; Polkinghorne, Adam; Timms, Peter; O’Meally, Denis; Cheng, Yuanyuan; Belov, Katherine

    2015-01-01

    Toll-like receptors (TLRs) play a crucial role in the early defence against invading pathogens, yet our understanding of TLRs in marsupial immunity is limited. Here, we describe the characterisation of nine TLRs from a koala immune tissue transcriptome and one TLR from a draft sequence of the koala genome and the subsequent development of an assay to study genetic diversity in these genes. We surveyed genetic diversity in 20 koalas from New South Wales, Australia and showed that one gene, TLR10 is monomorphic, while the other nine TLR genes have between two and 12 alleles. 40 SNPs (16 non-synonymous) were identified across the ten TLR genes. These markers provide a springboard to future studies on innate immunity in the koala, a species under threat from two major infectious diseases. PMID:25799012

  19. SNP marker discovery in koala TLR genes.

    PubMed

    Cui, Jian; Frankham, Greta J; Johnson, Rebecca N; Polkinghorne, Adam; Timms, Peter; O'Meally, Denis; Cheng, Yuanyuan; Belov, Katherine

    2015-01-01

    Toll-like receptors (TLRs) play a crucial role in the early defence against invading pathogens, yet our understanding of TLRs in marsupial immunity is limited. Here, we describe the characterisation of nine TLRs from a koala immune tissue transcriptome and one TLR from a draft sequence of the koala genome and the subsequent development of an assay to study genetic diversity in these genes. We surveyed genetic diversity in 20 koalas from New South Wales, Australia and showed that one gene, TLR10 is monomorphic, while the other nine TLR genes have between two and 12 alleles. 40 SNPs (16 non-synonymous) were identified across the ten TLR genes. These markers provide a springboard to future studies on innate immunity in the koala, a species under threat from two major infectious diseases. PMID:25799012

  20. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  1. The roles of BTG3 expression in gastric cancer: a potential marker for carcinogenesis and a target molecule for gene therapy.

    PubMed

    Gou, Wen-feng; Yang, Xue-feng; Shen, Dao-fu; Zhao, Shuang; Liu, Yun-peng; Sun, Hong-zhi; Takano, Yasuo; Su, Rong-jian; Luo, Jun-sheng; Zheng, Hua-chuan

    2015-08-14

    BTG (B-cell translocation gene) can inhibit cell proliferation, metastasis and angiogenesis, cell cycle progression, and induce differentiation in various cells. Here, we found that BTG3 overexpression inhibited proliferation, induced S/G2 arrest, differentiation, autophagy, apoptosis, suppressed migration and invasion in MKN28 and MGC803 cells (p < 0.05). BTG3 transfectants showed a higher mRNA expression of p27, Bax, 14-3-3, Caspase-3, Caspase-9, Beclin 1, NF-κB, IL-1, -2, -4, -10 and -17, but a lower mRNA expression of p21, MMP-9 and VEGF than the control and mock (p < 0.05). At protein level, BTG3 overexpression increased the expression of CDK4, AIF, LC-3B, Beclin 1 and p38 (p < 0.05), but decreased the expression of p21 and β-catenin in both transfectants (p < 0.05). After treated with cisplatin, MG132, paclitaxel and SAHA, both BTG3 transfectants showed lower viability and higher apoptosis than the control in both time- and dose-dependent manners (p < 0.05). BTG3 expression was restored after 5-aza-2'-deoxycytidine or MG132 treatment in gastric cancer cells. BTG3 expression was decreased in gastric cancer in comparison to the adjacent mucosa (p < 0.05), and positively correlated with venous invasion and dedifferentiation of cancer (p < 0.05). It was suggested that BTG3 expression might contribute to gastric carcinogenesis. BTG3 overexpression might reverse the aggressive phenotypes and be employed as a potential target for gene therapy of gastric cancer. PMID:25904053

  2. Gene expression networks.

    PubMed

    Thomas, Reuben; Portier, Christopher J

    2013-01-01

    With the advent of microarrays and next-generation biotechnologies, the use of gene expression data has become ubiquitous in biological research. One potential drawback of these data is that they are very rich in features or genes though cost considerations allow for the use of only relatively small sample sizes. A useful way of getting at biologically meaningful interpretations of the environmental or toxicological condition of interest would be to make inferences at the level of a priori defined biochemical pathways or networks of interacting genes or proteins that are known to perform certain biological functions. This chapter describes approaches taken in the literature to make such inferences at the biochemical pathway level. In addition this chapter describes approaches to create hypotheses on genes playing important roles in response to a treatment, using organism level gene coexpression or protein-protein interaction networks. Also, approaches to reverse engineer gene networks or methods that seek to identify novel interactions between genes are described. Given the relatively small sample numbers typically available, these reverse engineering approaches are generally useful in inferring interactions only among a relatively small or an order 10 number of genes. Finally, given the vast amounts of publicly available gene expression data from different sources, this chapter summarizes the important sources of these data and characteristics of these sources or databases. In line with the overall aims of this book of providing practical knowledge to a researcher interested in analyzing gene expression data from a network perspective, the chapter provides convenient publicly accessible tools for performing analyses described, and in addition describe three motivating examples taken from the published literature that illustrate some of the relevant analyses. PMID:23086841

  3. Validation of hsp70 stress gene expression as a marker of metal effects in Deroceras reticulatum (Pulmonata): Correlation with demographic parameters

    SciTech Connect

    Koehler, H.R.; Eckwert, H.; Rahman, B.; Belitz, B.; Adam, R.; Trontelj, P. |

    1998-11-01

    The presence of a stress gene comprising a motif homologous to the hsp70 consensus sequence was proven for the grey garden slug, Deroceras reticulatum (Mueller). The induction of stress gene transcription (including mRNA stability) and the accumulation of the corresponding stress protein, Hsp70, was quantified in slugs exposed to cadmium- or zinc-enriched food for 2 to 3 weeks. To validate the suitability of these two aspects of the cellular stress response to act as early-warning markers for metal effects on life-history parameters, fecundity, offspring number, longevity, and mortality of slugs were recorded in life-cycle experiments. Quantitative reverse transcription-polymerase chain reaction and a standardized immunoblotting technique revealed higher sensitivity of changes in hsp70 transcription than stress protein accumulation in response to both metals. The elevation of the hsp70-mRNA level caused by short-term (14 d) metal exposure coincided with both diminished fecundity and reduced offspring production due to chronic metal exposure in terms of threshold concentrations for cadmium effects. As well, accumulation of Hsp70 after 3 weeks of exposure can be considered an early-warning signal for increased mortality when cadmium or zinc exposure is throughout the entire lifetime of the slugs.

  4. Seasonal Effects on Gene Expression

    PubMed Central

    Goldinger, Anita; Shakhbazov, Konstantin; Henders, Anjali K.; McRae, Allan F.; Montgomery, Grant W.; Powell, Joseph E.

    2015-01-01

    Many health conditions, ranging from psychiatric disorders to cardiovascular disease, display notable seasonal variation in severity and onset. In order to understand the molecular processes underlying this phenomenon, we have examined seasonal variation in the transcriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-month seasonal cycle were enriched for processes involved in DNA repair and binding. An additional 94 transcripts demonstrated significant seasonal variability that was largely influenced by blood cell count levels. These transcripts were enriched for immune function, protein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant association with a 12-month seasonal cycle. These results demonstrate that seasonal variation is an important environmental regulator of gene expression and blood cell composition. Notable changes in leukocyte counts and genes involved in immune function indicate that immune cell physiology varies throughout the year in healthy individuals. PMID:26023781

  5. Identification of reproduction-related genes and SSR-markers through expressed sequence tags analysis of a monsoon breeding carp rohu, Labeo rohita (Hamilton).

    PubMed

    Sahu, Dinesh K; Panda, Soumya P; Panda, Sujata; Das, Paramananda; Meher, Prem K; Hazra, Rupenangshu K; Peatman, Eric; Liu, Zhanjiang J; Eknath, Ambekar E; Nandi, Samiran

    2013-07-15

    Labeo rohita (Ham.) also called rohu is the most important freshwater aquaculture species on the Indian sub continent. Monsoon dependent breeding restricts its seed production beyond season indicating a strong genetic control about which very limited information is available. Additionally, few genomic resources are publicly available for this species. Here we sought to identify reproduction-relevant genes from normalized cDNA libraries of the brain-pituitary-gonad-liver (BPGL-axis) tissues of adult L. rohita collected during post preparatory phase. 6161 random clones sequenced (Sanger-based) from these libraries produced 4642 (75.34%) high-quality sequences. They were assembled into 3631 (78.22%) unique sequences composed of 709 contigs and 2922 singletons. A total of 182 unique sequences were found to be associated with reproduction-related genes, mainly under the GO term categories of reproduction, neuro-peptide hormone activity, hormone and receptor binding, receptor activity, signal transduction, embryonic development, cell-cell signaling, cell death and anti-apoptosis process. Several important reproduction-related genes reported here for the first time in L. rohita are zona pellucida sperm-binding protein 3, aquaporin-12, spermine oxidase, sperm associated antigen 7, testis expressed 261, progesterone receptor membrane component, Neuropeptide Y and Pro-opiomelanocortin. Quantitative RT-PCR-based analyses of 8 known and 8 unknown transcripts during preparatory and post-spawning phase showed increased expression level of most of the transcripts during preparatory phase (except Neuropeptide Y) in comparison to post-spawning phase indicating possible roles in initiation of gonad maturation. Expression of unknown transcripts was also found in prolific breeder common carp and tilapia, but levels of expression were much higher in seasonal breeder rohu. 3631 unique sequences contained 236 (6.49%) putative microsatellites with the AG (28.16%) repeat as the most

  6. Human Immunoglobulin (Ig)M+IgD+ Peripheral Blood B Cells Expressing the CD27 Cell Surface Antigen Carry Somatically Mutated Variable Region Genes: CD27 as a General Marker for Somatically Mutated (Memory) B Cells

    PubMed Central

    Klein, Ulf; Rajewsky, Klaus; Küppers, Ralf

    1998-01-01

    Immunoglobulin (Ig)M+IgD+ B cells are generally assumed to represent antigen-inexperienced, naive B cells expressing variable (V) region genes without somatic mutations. We report here that human IgM+IgD+ peripheral blood (PB) B cells expressing the CD27 cell surface antigen carry mutated V genes, in contrast to CD27-negative IgM+IgD+ B cells. IgM+IgD+CD27+ B cells resemble class-switched and IgM-only memory cells in terms of cell phenotype, and comprise ∼15% of PB B lymphocytes in healthy adults. Moreover, a very small population (<1% of PB B cells) of highly mutated IgD-only B cells was detected, which likely represent the PB counterpart of IgD-only tonsillar germinal center and plasma cells. Overall, the B cell pool in the PB of adults consists of ∼40% mutated memory B cells and 60% unmutated, naive IgD+CD27− B cells (including CD5+ B cells). In the somatically mutated B cells, VH region genes carry a two- to threefold higher load of somatic mutation than rearranged Vκ genes. This might be due to an intrinsically lower mutation rate in κ light chain genes compared with heavy chain genes and/or result from κ light chain gene rearrangements in GC B cells. A common feature of the somatically mutated B cell subsets is the expression of the CD27 cell surface antigen which therefore may represent a general marker for memory B cells in humans. PMID:9802980

  7. Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal Holstein heifer calves.

    PubMed

    Osorio, J S; Trevisi, E; Ballou, M A; Bertoni, G; Drackley, J K; Loor, J J

    2013-06-01

    A conventional approach in dairy cow nutrition programs during late gestation is to feed moderate-energy diets. The effects of the maternal plane of nutrition on immune function and metabolism in newborn calves are largely unknown. Holstein cows (n=20) were fed a controlled-energy (CON) diet (1.24 Mcal/kg) for the entire dry period (~50 d) or the CON diet during the first 29 d of the dry period followed by a moderate-energy (OVE) diet (1.47 Mcal/kg) during the last 21 d prepartum. All calves were weighed at birth before first colostrum intake. Calves chosen for this study (n=6 per maternal diet) had blood samples harvested before colostrum feeding (d 0) and at 2 and 7 d of age. Blood samples were used to determine metabolites, acute-phase proteins, oxidative stress markers, hormones, phagocytic capacity of polymorphonuclear leukocytes (PMN) and monocytes, and total RNA was isolated from PMN. Calves from OVE dams weighed, on average, 5kg less at birth (44.0 vs. 48.6kg) than calves from CON dams. Blood glucose concentration in OVE calves had a more pronounced increase between 0 and 2 d than CON, at which point phagocytosis by PMN averaged 85% in OVE and 62% in CON. Compared with CON, calves from OVE had greater expression of TLR4, but lower expression of PPARA and PPARD at birth. Expression of PPARG and RXRA decreased between 0 and 2 d in both groups. Concentrations of leptin, cholesterol, ceruloplasmin, reactive oxygen metabolites, myeloperoxidase, retinol, tocopherol, IgG, and total protein, as well as expression of SOD2 and SELL increased markedly by 2 d in both groups; whereas, cortisol, albumin, acid-soluble protein, NEFA, insulin, as well as expression of IL6, TLR4, IL1R2, LTC4S, and ALOX5 decreased by 2 d. By 7 d of age, the concentration of haptoglobin was greater than precolostrum and was lower for OVE than CON calves. Our data provide evidence for a carry-over effect of maternal energy overfeeding during the last 3 wk before calving on some measurements of

  8. Acute Effects of Dietary Fat on Inflammatory Markers and Gene Expression in First-Degree Relatives of Type 2 Diabetes Patients

    PubMed Central

    Pietraszek, Anna; Gregersen, Søren; Hermansen, Kjeld

    2011-01-01

    BACKGROUND: Subjects with type 2 diabetes (T2D) and their relatives (REL) carry an increased risk of cardiovascular disease (CVD). Low-grade inflammation, an independent risk factor for CVD, is modifiable by diet. Subjects with T2D show elevated postprandial inflammatory responses to fat-rich meals, while information on postprandial inflammation in REL is sparse. AIM: To clarify whether medium-chain saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) have differential acute effects on low-grade inflammation in REL compared to controls (CON). METHODS: In randomized order, 17 REL and 17 CON ingested two fat-rich meals, with 72 energy percent from MUFA and 79 energy percent from mainly medium-chain SFA, respectively. Plasma high sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), adiponectin, and leptin were measured at baseline, 15 min, 60 min, and 240 min postprandially. Muscle and adipose tissue biopsies were taken at baseline and 210 min after the test meal, and expression of selected genes was analyzed. RESULTS: Plasma IL-6 increased (p < 0.001) without difference between REL and CON and between the meals, whereas plasma adiponectin and plasma hs-CRP were unchanged during the 240 min observation period. Plasma leptin decreased slightly in response to medium-chain SFA in both groups, and to MUFA in REL. Several genes were differentially regulated in muscle and adipose tissue of REL and CON. CONCLUSIONS: MUFA and medium-chain SFA elicit similar postprandial circulating inflammatory responses in REL and CON. Medium-chain SFA seems more proinflammatory than MUFA, judged by the gene expression in muscle and adipose tissue of REL and CON. PMID:22580729

  9. Functional Analysis of Plant Promoter rpL34 Using the GUS Marker Gene in New Tr,tnsgene Expression Vector pZD428

    SciTech Connect

    Mauzey-Amato, Jacqueline M.; Dai, Ziyu )

    2000-11-01

    Optimization of the transgene expression system is one of the critical steps for the high level production of heterologous proteins in plants, where the promoter is a key component regulating transgene expression. In this study, the activity of the rpL34 promoter was analyzed in transgenic tobacco (Nicotiana tabacum) NTI calli. A DNA fragment containing the rpL34 promoter and the reporter gene B-D-glucuronidase (GUS) were cloned into binary vector pZD427 to generate the transgene expression vector pZD428. The insertion was verified by enzyme restriction digestion and agarose gel electrophoresis analyses. The DNA fragment containing the rpL34 promoter and GUS reporter gene was then integrated into the tobacco genomes via Agrobacterium funiefaciens-mediated NT suspension cell transformation. The transformed CaNi were induced on Murashige and Skoog (MS) plates containing proper amounts of 2,4-D, cefotoxime, and kanamycin. Two hundred and sixty transformed calli were harvested for GUS activity and protein concentration measurements. GUS activity analyses revealed the specific activity up to 278,358 units per milligram total soluble protein. The GUS activity under the control of the rpL34 promoter is much higher than that under the control of the cauliflower mosaic virus 35S promoter, a commonly used promoter in plant biology. These results suggest that the rpL34 promoter is one of the most active promoters that can be used for heterologous protein production in calli and suspension cells.

  10. Molecular markers for leaf rust resistance genes in wheat.

    PubMed

    Chełkowski, J; Stepień, L

    2001-01-01

    Over 100 genes of resistance to rust fungi: Puccinia recondita f. sp. tritici, (47 Lr - leaf rust genes), P. striiformis (18 Yr - yellow rust genes) and P. graminis f. sp. tritici (41 Sr - stripe rust genes) have been identified in wheat (Triticum aestivum L.) and its wild relatives according to recent papers. Sixteen Lr resistance genes have been mapped using restriction fragments length polymorphism (RFLP) markers on wheat chromosomes. More than ten Lr genes can be identified in breeding materials by sequence tagged site (STS) specific markers. Gene Lrk 10, closely linked to gene Lr 10, has been cloned and its function recognized. Available markers are presented in this review. The STS, cleaved amplified polymorphic sequence (CAPS) and sequence characterized amplified regions (SCAR) markers found in the literature should be verified using Triticum spp. with different genetic background. Simple sequence repeats (SSR) markers for Lr resistance genes are now also available. PMID:14564046

  11. Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1- nit2- strain.

    PubMed Central

    Blankenship, J E; Kindle, K L

    1992-01-01

    In Chlamydomonas reinhardtii, expression of the cabII-1 gene increases dramatically in response to light (cabII-1 encodes one of the light-harvesting chlorophyll a/b-binding proteins of photosystem II). We have used a region upstream of the cabII-1 gene in translational fusions to the bacterial uidA gene (encodes beta-glucuronidase) and transcriptional fusions to the Chlamydomonas nitrate reductase gene (nit1). Chlamydomonas transformants carrying intact copies of the chimeric uidA gene do not express beta-glucuronidase at the level of enzyme activity or mRNA accumulation. Methylation in the cabII-1 promoter region of the introduced gene is extensive in these strains, suggesting that newly introduced foreign genes may be recognized and silenced by a cellular mechanism that is correlated with increased methylation. Transformants that express the chimeric cabII-1/nit1 gene have been recovered. In contrast to the endogenous nit1 gene, the chimeric cabII-1/nit1 gene is expressed in ammonium-containing medium. Moreover, nit1 mRNA accumulation is dramatically stimulated by light, with a time course that is indistinguishable from that of the endogenous cabII-1 gene. The cabII-1/nit1 gene has been used to select transformants in a nit1- nit2- Chlamydomonas strain (CC400G) and should be useful for transformation of the large number of mutants in the Ebersold-Levine lineage, which carry the same mutations. Images PMID:1406696

  12. Expression of Stem Cell Markers in the Human Fetal Kidney

    PubMed Central

    Metsuyanim, Sally; Harari-Steinberg, Orit; Buzhor, Ella; Omer, Dorit; Pode-Shakked, Naomi; Ben-Hur, Herzl; Halperin, Reuvit; Schneider, David; Dekel, Benjamin

    2009-01-01

    In the human fetal kidney (HFK) self-renewing stem cells residing in the metanephric mesenchyme (MM)/blastema are induced to form all cell types of the nephron till 34th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2) are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24) in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (<10% of HFK cells) and were mostly present within the EpCAMneg and EpCAMdim fractions, indicating putative stem/progenitor markers. In contrast, single markers such as CD24 and CD133 as well as double-positive CD24+CD133+ cells comprise >50% of HFK cells and predominantly co-express EpCAMbright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM+EpCAM- and to a lesser extent in NCAM+EpCAM+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM+EpCAM+FZD7+), MM stem cells (NCAM+EpCAM-FZD7+) or both (NCAM+FZD7+). These results and

  13. Clinical Outcome 3 Years After Autologous Chondrocyte Implantation Does Not Correlate With the Expression of a Predefined Gene Marker Set in Chondrocytes Prior to Implantation but Is Associated With Critical Signaling Pathways

    PubMed Central

    Stenberg, Johan; de Windt, Tommy S.; Synnergren, Jane; Hynsjö, Lars; van der Lee, Josefine; Saris, Daniel B.F.; Brittberg, Mats; Peterson, Lars; Lindahl, Anders

    2014-01-01

    Background: There is a need for tools to predict the chondrogenic potency of autologous cells for cartilage repair. Purpose: To evaluate previously proposed chondrogenic biomarkers and to identify new biomarkers in the chondrocyte transcriptome capable of predicting clinical success or failure after autologous chondrocyte implantation. Study Design: Controlled laboratory study and case-control study; Level of evidence, 3. Methods: Five patients with clinical improvement after autologous chondrocyte implantation and 5 patients with graft failures 3 years after implantation were included. Surplus chondrocytes from the transplantation were frozen for each patient. Each chondrocyte sample was subsequently thawed at the same time point and cultured for 1 cell doubling, prior to RNA purification and global microarray analysis. The expression profiles of a set of predefined marker genes (ie, collagen type II α1 [COL2A1], bone morphogenic protein 2 [BMP2], fibroblast growth factor receptor 3 [FGFR3], aggrecan [ACAN], CD44, and activin receptor–like kinase receptor 1 [ACVRL1]) were also evaluated. Results: No significant difference in expression of the predefined marker set was observed between the success and failure groups. Thirty-nine genes were found to be induced, and 38 genes were found to be repressed between the 2 groups prior to autologous chondrocyte implantation, which have implications for cell-regulating pathways (eg, apoptosis, interleukin signaling, and β-catenin regulation). Conclusion: No expressional differences that predict clinical outcome could be found in the present study, which may have implications for quality control assessments of autologous chondrocyte implantation. The subtle difference in gene expression regulation found between the 2 groups may strengthen the basis for further research, aiming at reliable biomarkers and quality control for tissue engineering in cartilage repair. Clinical Relevance: The present study shows the possible

  14. Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

    SciTech Connect

    Catfish Genome Consortium; Wang, Shaolin; Peatman, Eric; Abernathy, Jason; Waldbieser, Geoff; Lindquist, Erika; Richardson, Paul; Lucas, Susan; Wang, Mei; Li, Ping; Thimmapuram, Jyothi; Liu, Lei; Vullaganti, Deepika; Kucuktas, Huseyin; Murdock, Christopher; Small, Brian C; Wilson, Melanie; Liu, Hong; Jiang, Yanliang; Lee, Yoona; Chen, Fei; Lu, Jianguo; Wang, Wenqi; Xu, Peng; Somridhivej, Benjaporn; Baoprasertkul, Puttharat; Quilang, Jonas; Sha, Zhenxia; Bao, Baolong; Wang, Yaping; Wang, Qun; Takano, Tomokazu; Nandi, Samiran; Liu, Shikai; Wong, Lilian; Kaltenboeck, Ludmilla; Quiniou, Sylvie; Bengten, Eva; Miller, Norman; Trant, John; Rokhsar, Daniel; Liu, Zhanjiang

    2010-03-23

    Background-Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results-A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35percent of the unique sequences had significant similarities to known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions-This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies.

  15. Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

    PubMed Central

    2010-01-01

    Background Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35% of the unique sequences had significant similarities to known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies. PMID:20096101

  16. Developement of gene and EST-based markers and their chromosomal localization in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular markers are being used extensively in genetic studies and breeding programs of cotton. To screen the limited genetic diversity in cotton germplasm, we focused our efforts to develop candidate gene and expressed sequence tag (EST) based markers and in finding polymorphisms between genotype...

  17. Development of new candidate gene and EST-based molecular markers for Gossypium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New source of molecular markers accelerates the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum expressed sequence tag (EST) sequences, and validated them through amplification, ge...

  18. Embryonic Corneal Schwann Cells Express Some Schwann Cell Marker mRNAs, but No Mature Schwann Cell Marker Proteins

    PubMed Central

    Conrad, Abigail H.; Albrecht, Michael; Pettit-Scott, Maya; Conrad, Gary W.

    2009-01-01

    Purpose Embryonic chick nerves encircle the cornea in pericorneal tissue until embryonic day (E)9, then penetrate the anterior corneal stroma, invade the epithelium, and branch over the corneal surface through E20. Adult corneal nerves, cut during transplantation or LASIK, never fully regenerate. Schwann cells (SCs) protect nerve fibers and augment nerve repair. This study evaluates SC differentiation in embryonic chick corneas. Methods Fertile chicken eggs were incubated from E0 at 38°C, 45% humidity. Dissected permeabilized corneas plus pericorneal tissue were immunostained for SC marker proteins. Other corneas were paraffin embedded, sectioned, and processed by in situ hybridization for corneal-, nerve-related, and SC marker gene expression. E9 to E20 corneas, dissected from pericorneal tissue, were assessed by real-time PCR (QPCR) for mRNA expression. Results QPCR revealed unchanging low to moderate SLIT2/ROBO and NTN/UNC5 family, BACE1, and CADM3/CADM4 expressions, but high NEO1 expression. EGR2 and POU3F1 expressions never surpassed PAX3 expression. ITGNA6/IT-GNB4 expressions increased 20-fold; ITGNB1 expression was high. SC marker S100 and MBP expressions increased; MAG, GFAP, and SCMP expressions were very low. Antibodies against the MPZ, MAG, S100, and SCMP proteins immunostained along pericorneal nerves, but not along corneal nerves. In the cornea, SLIT2 and SOX10 mRNAs were expressed in anterior stroma and epithelium, whereas PAX3, S100, MBP, and MPZL1 mRNAs were expressed only in corneal epithelium. Conclusions Embryonic chick corneas contain SCs, as defined by SOX10 and PAX3 transcription, which remain immature, at least in part because of stromal transcriptional and epithelial translational regulation of some SC marker gene expression. PMID:19387082

  19. Identification of putative gene based markers of renal toxicity.

    PubMed Central

    Amin, Rupesh P; Vickers, Alison E; Sistare, Frank; Thompson, Karol L; Roman, Richard J; Lawton, Michael; Kramer, Jeffrey; Hamadeh, Hisham K; Collins, Jennifer; Grissom, Sherry; Bennett, Lee; Tucker, C Jeffrey; Wild, Stacie; Kind, Clive; Oreffo, Victor; Davis, John W; Curtiss, Sandra; Naciff, Jorge M; Cunningham, Michael; Tennant, Raymond; Stevens, James; Car, Bruce; Bertram, Timothy A; Afshari, Cynthia A

    2004-01-01

    This study, designed and conducted as part of the International Life Sciences Institute working group on the Application of Genomics and Proteomics, examined the changes in the expression profile of genes associated with the administration of three different nephrotoxicants--cisplatin, gentamicin, and puromycin--to assess the usefulness of microarrays in the understanding of mechanism(s) of nephrotoxicity. Male Sprague-Dawley rats were treated with daily doses of puromycin (5-20 mg/kg/day for 21 days), gentamicin (2-240 mg/kg/day for 7 days), or a single dose of cisplatin (0.1-5 mg/kg). Groups of rats were sacrificed at various times after administration of these compounds for standard clinical chemistry, urine analysis, and histological evaluation of the kidney. RNA was extracted from the kidney for microarray analysis. Principal component analysis and gene expression-based clustering of compound effects confirmed sample separation based on dose, time, and degree of renal toxicity. In addition, analysis of the profile components revealed some novel changes in the expression of genes that appeared to be associated with injury in specific portions of the nephron and reflected the mechanism of action of these various nephrotoxicants. For example, although puromycin is thought to specifically promote injury of the podocytes in the glomerulus, the changes in gene expression after chronic exposure of this compound suggested a pattern similar to the known proximal tubular nephrotoxicants cisplatin and gentamicin; this prediction was confirmed histologically. We conclude that renal gene expression profiling coupled with analysis of classical end points affords promising opportunities to reveal potential new mechanistic markers of renal toxicity. PMID:15033597

  20. Selectable marker genes in transgenic plants: applications, alternatives and biosafety.

    PubMed

    Miki, Brian; McHugh, Sylvia

    2004-02-01

    Approximately fifty marker genes used for transgenic and transplastomic plant research or crop development have been assessed for efficiency, biosafety, scientific applications and commercialization. Selectable marker genes can be divided into several categories depending on whether they confer positive or negative selection and whether selection is conditional or non-conditional on the presence of external substrates. Positive selectable marker genes are defined as those that promote the growth of transformed tissue whereas negative selectable marker genes result in the death of the transformed tissue. The positive selectable marker genes that are conditional on the use of toxic agents, such as antibiotics, herbicides or drugs were the first to be developed and exploited. More recent developments include positive selectable marker genes that are conditional on non-toxic agents that may be substrates for growth or that induce growth and differentiation of the transformed tissues. Newer strategies include positive selectable marker genes which are not conditional on external substrates but which alter the physiological processes that govern plant development. A valuable companion to the selectable marker genes are the reporter genes, which do not provide a cell with a selective advantage, but which can be used to monitor transgenic events and manually separate transgenic material from non-transformed material. They fall into two categories depending on whether they are conditional or non-conditional on the presence of external substrates. Some reporter genes can be adapted to function as selectable marker genes through the development of novel substrates. Despite the large number of marker genes that exist for plants, only a few marker genes are used for most plant research and crop development. As the production of transgenic plants is labor intensive, expensive and difficult for most species, practical issues govern the choice of selectable marker genes that are

  1. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine. PMID:16886903

  2. Common Marker Genes Identified from Various Sample Types for Systemic Lupus Erythematosus

    PubMed Central

    Wang, Lan; Zhang, Yong-Hong; Lei, Shu-Feng; Deng, Fei-Yan

    2016-01-01

    Objective Systemic lupus erythematosus (SLE) is a complex auto-immune disease. Gene expression studies have been conducted to identify SLE-related genes in various types of samples. It is unknown whether there are common marker genes significant for SLE but independent of sample types, which may have potentials for follow-up translational research. The aim of this study is to identify common marker genes across various sample types for SLE. Methods Based on four public microarray gene expression datasets for SLE covering three representative types of blood-born samples (monocyte; peripheral blood mononuclear cell, PBMC; whole blood), we utilized three statistics (fold-change, FC; t-test p value; false discovery rate adjusted p value) to scrutinize genes simultaneously regulated with SLE across various sample types. For common marker genes, we conducted the Gene Ontology enrichment analysis and Protein-Protein Interaction analysis to gain insights into their functions. Results We identified 10 common marker genes associated with SLE (IFI6, IFI27, IFI44L, OAS1, OAS2, EIF2AK2, PLSCR1, STAT1, RNASE2, and GSTO1). Significant up-regulation of IFI6, IFI27, and IFI44L with SLE was observed in all the studied sample types, though the FC was most striking in monocyte, compared with PBMC and whole blood (8.82–251.66 vs. 3.73–74.05 vs. 1.19–1.87). Eight of the above 10 genes, except RNASE2 and GSTO1, interact with each other and with known SLE susceptibility genes, participate in immune response, RNA and protein catabolism, and cell death. Conclusion Our data suggest that there exist common marker genes across various sample types for SLE. The 10 common marker genes, identified herein, deserve follow-up studies to dissert their potentials as diagnostic or therapeutic markers to predict SLE or treatment response. PMID:27257790

  3. Myoglobin expression in prostate cancer is correlated to androgen receptor expression and markers of tumor hypoxia.

    PubMed

    Meller, Sebastian; Bicker, Anne; Montani, Matteo; Ikenberg, Kristian; Rostamzadeh, Babak; Sailer, Verena; Wild, Peter; Dietrich, Dimo; Uhl, Barbara; Sulser, Tullio; Moch, Holger; Gorr, Thomas A; Stephan, Carsten; Jung, Klaus; Hankeln, Thomas; Kristiansen, Glen

    2014-10-01

    Recent studies identified unexpected expression and transcriptional complexity of the hemoprotein myoglobin (MB) in human breast cancer but its role in prostate cancer is still unclear. Expression of MB was immunohistochemically analyzed in three independent cohorts of radical prostatectomy specimens (n = 409, n = 625, and n = 237). MB expression data were correlated with clinicopathological parameters and molecular parameters of androgen and hypoxia signaling. Expression levels of novel tumor-associated MB transcript variants and the VEGF gene as a hypoxia marker were analyzed using qRT-PCR. Fifty-three percent of the prostate cancer cases were MB positive and significantly correlated with androgen receptor (AR) expression (p < 0.001). The positive correlation with CAIX (p < 0.001) and FASN (p = 0.008) as well as the paralleled increased expression of the tumor-associated MB transcript variants and VEGF suggest that hypoxia participates in MB expression regulation. Analogous to breast cancer, MB expression in prostate cancer is associated with steroid hormone signaling and markers of hypoxia. Further studies must elucidate the novel functional roles of MB in human carcinomas, which probably extend beyond its classic intramuscular function in oxygen storage. PMID:25172328

  4. Identification of marker genes for intestinal immunomodulating effect of a fructooligosaccharide by DNA microarray analysis.

    PubMed

    Fukasawa, Tomoyuki; Murashima, Koichiro; Matsumoto, Ichiro; Hosono, Akira; Ohara, Hiroki; Nojiri, Chuhei; Koga, Jinnichiro; Kubota, Hidetoshi; Kanegae, Minoru; Kaminogawa, Shuichi; Abe, Keiko; Kono, Toshiaki

    2007-04-18

    Prebiotic fructooligosaccharides are noted for their intestinal immunodulating effects, and the identification of markers for the effects is a matter of great concern. This study aimed to identify marker genes for physiological effects of a particular fructooligosaccharide (FOS) on a host animal and also to define the target of its function in the small intestine. DNA microarray technology was used to screen candidate marker genes, and comprehensive changes in gene expressions in the ileum of mice fed with FOS were investigated. One of the major physiological effects of FOS was intestinal immunomodulation. Marker genes were then identified for major histocompatibility complex classes I and II, interferon, and phosphatidylinositol metabolites. Also, the ileum was segmented into Peyer's patch (PP) and the other ileal organ (DeltaPP), and these were analyzed by quantitative RT-PCR method, with the result that the site for recognizing the FOS function was the DeltaPP rather than the PP. This is the first paper showing the markers for the physiological effects of FOS in the small intestine at gene expression level. Applying these marker genes would make it possible to clarify the mechanisms of how the administration of dietary FOS and associated changes in the intestinal environment are recognized by host organisms as well as how its immunomodulating effects are expressed in the body. PMID:17378576

  5. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  6. Evolution of gene expression after gene amplification.

    PubMed

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-05-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  7. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  8. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  9. Efficient ectopic gene expression targeting chick mesoderm.

    PubMed

    Oberg, Kerby C; Pira, Charmaine U; Revelli, Jean-Pierre; Ratz, Beate; Aguilar-Cordova, Estuardo; Eichele, Gregor

    2002-07-01

    The chick model has been instrumental in illuminating genes that regulate early vertebrate development and pattern formation. Targeted ectopic gene expression is critical to dissect further the complicated gene interactions that are involved. In an effort to develop a consistent method to ectopically introduce and focally express genes in chick mesoderm, we evaluated and optimized several gene delivery methods, including implantation of 293 cells laden with viral vectors, direct adenoviral injection, and electroporation (EP). We targeted the mesoderm of chick wing buds between stages 19 and 21 (Hamburger and Hamilton stages) and used beta-galactosidase and green fluorescent protein (GFP) to document gene transfer. Expression constructs using the cytomegalovirus (CMV) promoter, the beta-actin promoter, and vectors with an internal ribosomal entry sequence linked to GFP (IRES-GFP) were also compared. After gene transfer, we monitored expression for up to 3 days. The functionality of ectopic expression was demonstrated with constructs containing the coding sequences for Shh, a secreted signaling protein, or Hoxb-8, a transcription factor, both of which can induce digit duplication when ectopically expressed in anterior limb mesoderm. We identified several factors that enhance mesodermal gene transfer. First, the use of a vector with the beta-actin promoter coupled to the 69% fragment of the bovine papilloma virus yielded superior mesodermal expression both by markers and functional results when compared with several CMV-driven vectors. Second, we found the use of mineral oil to be an important adjuvant for EP and direct viral injection to localize and contain vector within the mesoderm at the injection site. Lastly, although ectopic expression could be achieved with all three methods, we favored EP confined to the mesoderm with insulated microelectrodes (confined microelectroporation- CMEP), because vector construction is rapid, the method is efficient, and results

  10. Excision of plastid marker genes using directly repeated DNA sequences.

    PubMed

    Mudd, Elisabeth A; Madesis, Panagiotis; Avila, Elena Martin; Day, Anil

    2014-01-01

    Excision of marker genes using DNA direct repeats makes use of the predominant homologous recombination pathways present in the plastids of algae and plants. The method is simple, efficient, and widely applicable to plants and microalgae. Marker excision frequency is dependent on the length and number of directly repeated sequences. When two repeats are used a repeat size of greater than 600 bp promotes efficient excision of the marker gene. A wide variety of sequences can be used to make the direct repeats. Only a single round of transformation is required, and there is no requirement to introduce site-specific recombinases by retransformation or sexual crosses. Selection is used to maintain the marker and ensure homoplasmy of transgenic plastid genomes. Release of selection allows the accumulation of marker-free plastid genomes generated by marker excision, which is spontaneous, random, and a unidirectional process. Positive selection is provided by linking marker excision to restoration of the coding region of an herbicide resistance gene from two overlapping but incomplete coding regions. Cytoplasmic sorting allows the segregation of cells with marker-free transgenic plastids. The marker-free shoots resulting from direct repeat-mediated excision of marker genes have been isolated by vegetative propagation of shoots in the T0 generation. Alternatively, accumulation of marker-free plastid genomes during growth, development and flowering of T0 plants allows the collection of seeds that give rise to a high proportion of marker-free T1 seedlings. The simplicity and convenience of direct repeat excision facilitates its widespread use to isolate marker-free crops. PMID:24599849

  11. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  12. Identification of Predictive Gene Markers for Multipotent Stromal Cell Proliferation.

    PubMed

    Bellayr, Ian H; Marklein, Ross A; Lo Surdo, Jessica L; Bauer, Steven R; Puri, Raj K

    2016-06-01

    Multipotent stromal cells (MSCs) are known for their distinctive ability to differentiate into different cell lineages, such as adipocytes, chondrocytes, and osteocytes. They can be isolated from numerous tissue sources, including bone marrow, adipose tissue, skeletal muscle, and others. Because of their differentiation potential and secretion of growth factors, MSCs are believed to have an inherent quality of regeneration and immune suppression. Cellular expansion is necessary to obtain sufficient numbers for use; however, MSCs exhibit a reduced capacity for proliferation and differentiation after several rounds of passaging. In this study, gene markers of MSC proliferation were identified and evaluated for their ability to predict proliferative quality. Microarray data of human bone marrow-derived MSCs were correlated with two proliferation assays. A collection of 24 genes were observed to significantly correlate with both proliferation assays (|r| >0.70) for eight MSC lines at multiple passages. These 24 identified genes were then confirmed using an additional set of MSCs from eight new donors using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The proliferative potential of the second set of MSCs was measured for each donor/passage for confluency fraction, fraction of EdU+ cells, and population doubling time. The second set of MSCs exhibited a greater proliferative potential at passage 4 in comparison to passage 8, which was distinguishable by 15 genes; however, only seven of the genes (BIRC5, CCNA2, CDC20, CDK1, PBK, PLK1, and SPC25) demonstrated significant correlation with MSC proliferation regardless of passage. Our analyses revealed that correlation between gene expression and proliferation was consistently reduced with the inclusion of non-MSC cell lines; therefore, this set of seven genes may be more strongly associated with MSC proliferative quality. Our results pave the way to determine the quality of an MSC population for a

  13. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  14. Gene Expression in Oligodendroglial Tumors

    PubMed Central

    Shaw, Elisabeth J.; Haylock, Brian; Husband, David; du Plessis, Daniel; Sibson, D. Ross; Warnke, Peter C.; Walker, Carol

    2010-01-01

    Background: Oligodendroglial tumors with 1p/19q loss are more likely to be chemosensitive and have longer survival than those with intact 1p/19q, but not all respond to chemotherapy, warranting investigation of the biological basis of chemosensitivity. Methods: Gene expression profiling was performed using amplified antisense RNA from 28 oligodendroglial tumors treated with chemotherapy (26 serial stereotactic biopsy, 2 resection). Expression of differentially expressed genes was validated by real-time PCR. Results: Unsupervised hierarchical clustering showed clustering of multiple samples from the same case in 14/17 cases and identified subgroups associated with tumor grade and 1p/19q status. 176 genes were differentially expressed, 164 being associated with 1p/19q loss (86% not on 1p or 19q). 94 genes differed between responders and non-responders to chemotherapy; 12 were not associated with 1p/19q loss. Significant differential expression was confirmed in 11/13 selected genes. Novel genes associated with response to therapy included SSBP2, GFRA1, FAP and RASD1. IQGAP1, INA, TGIF1, NR2F2 and MYCBP were differentially expressed in oligodendroglial tumors with 1p/19q loss. Conclusion: Gene expression profiling using serial stereotactic biopsies indicated greater homogeneity within tumors than between tumors. Genes associated with 1p/19q status or response were identified warranting further elucidation of their role in oligodendroglial tumors. PMID:20966545

  15. Conservation of spermatogonial stem cell marker expression in undifferentiated felid spermatogonia.

    PubMed

    Vansandt, Lindsey M; Livesay, Janelle L; Dickson, Melissa Joy; Li, Lei; Pukazhenthi, Budhan S; Keefer, Carol L

    2016-09-01

    Spermatogonial stem cells (SSCs) are distinct in their ability to self-renew, transmit genetic information, and persist throughout the life of an individual. These characteristics make SSCs a useful tool for addressing diverse challenges such as efficient transgenic production in nonrodent, biomedical animal models, or preservation of the male genome for species in which survival of frozen-thawed sperm is low. A requisite first step to access this technology in felids is the establishment of molecular markers. This study was designed to evaluate, in the domestic cat (Felis catus), the expression both in situ and following enrichment in vitro of six genes (GFRA1, GPR125, ZBTB16, POU5F1, THY1, and UCHL1) that had been previously identified as SSC markers in other species. Antibodies for surface markers glial cell line-derived neurotrophic factor family receptor alpha 1, G protein-coupled receptor 125, and thymus cell antigen 1 could not be validated, whereas Western blot analysis of prepubertal, peripubertal, and adult cat testis confirmed protein expression for the intracellular markers ubiquitin carboxy-terminal hydrolase 1, zinc finger and BTB domain-containing protein 16, and POU domain, class 5, transcription factor 1. Colocalization of the markers by immunohistochemistry revealed that several cells within the subpopulation adjacent to the basement membrane of the seminiferous tubules and identified morphologically as spermatogonia, expressed all three intracellular markers. Studies performed on cheetah (Acinonyx jubatus) and Amur leopard (Panthera pardus orientalis) testis exhibited a conserved expression pattern in protein molecular weights, relative abundance, and localization of positive cells within the testis. The expression of the three intracellular SSC marker proteins in domestic and wild cat testes confirms conservation of these markers in felids. Enrichment of marker transcripts after differential plating was also observed. These markers will

  16. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma.

    PubMed

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers-CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin-by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  17. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    PubMed Central

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  18. Transgenic Arabidopsis tester lines with dominant marker genes.

    PubMed

    Van Lijsebettens, M; Wang, X; Cnops, G; Boerjan, W; Desnos, T; Höfte, H; Van Montagu, M

    1996-06-12

    The map positions of a set of eight T-DNA insertions in the Arabidopsis genome have been determined by using closely linked visible markers. The insertions are dispersed over four of the five chromosomes. Each T-DNA insert contains one or more of the chimeric marker genes neomycin phosphotransferase (neo), hygromycin phosphotransferase (hpt), phosphinothricin acetyltransferase (bar), beta-glucuronidase (gusA) and indole-3-acetamide hydrolase (iaaH). The neo, hpt and bar marker genes are dominant in a selective germination assay or when used as DNA markers in a polymerase chain reaction. These dominant markers will allow recombinants to be discerned in a germinating F2 population, one generation earlier than with a conventional recessive marker. The transgenic marker lines will speed up and simplify the isolation of recombinants in small genetic intervals, a rate-limiting step in positional cloning strategies. The transgenic lines containing the hpt marker will also be of interest for the isolation of deletion mutants at the T-DNA integration sites. PMID:8676880

  19. Current Gene Expression Studies in Esophageal Carcinoma

    PubMed Central

    Guo, Wei; Jiang, Yao-Guang

    2009-01-01

    Esophageal carcinoma is one of the deadliest cancers with highly aggressive potency, ranking as the sixth most common cancer among males and ninth most common cancer among females globally. Due to metastasis and invasion of surrounding tissues in early stage, the 5-year overall survival rate (14%) of esophageal cancer remains poor, even in comparison with the dismal survival rates (4%) from the 1970s. Numerous genes and proteins with abnormal expression and function involve in the pathogenesis of esophageal cancer, but the concrete process remains unclear. Microarray technique has been applied to investigating esophageal cancer. Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in esophageal cancer. Human tissues and cell lines were used in these geneprofiling studies and a very valuable and interesting set of data has resulted from various microarray experiments. These expression studies have provided increased understanding of the complex pathological mechanisms involved in esophageal cancer. The eventual goal of microarray is to discover new markers for therapy and to customize therapy based on an individual tumor genetic composition. This review summarized the current state of gene expression profile studies in esophageal cancer. PMID:20514215

  20. Molecular imaging of in vivo gene expression

    PubMed Central

    Harney, Allison S.; Meade, Thomas J.

    2015-01-01

    Background Advances in imaging technologies have taken a prominent role in experimental and translational research and provide essential information on how changes in gene expression are related to downstream developmental and disease states. Discussion Magnetic resonance imaging contrast agents and optical probes developed to enhance signal intensity in the presence of a specific enzyme, genetic marker, second messenger or metabolite can prove a facile method of advancing the understanding of molecular events in disease progression. Conclusion The ability to detect changes in gene expression at the early stages of disease will lead to a greater understanding of disease progression, the use of early therapeutic intervention to increase patient survival, and tailored therapies to the detected genetic alterations in individual patients. PMID:21426178

  1. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma

    PubMed Central

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers—CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin—by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  2. Insert sequence length determines transfection efficiency and gene expression levels in bicistronic mammalian expression vectors

    PubMed Central

    Payne, Andrew J; Gerdes, Bryan C; Kaja, Simon; Koulen, Peter

    2013-01-01

    Bicistronic expression vectors have been widely used for co-expression studies since the initial discovery of the internal ribosome entry site (IRES) about 25 years ago. IRES sequences allow the 5’ cap-independent initiation of translation of multiple genes on a single messenger RNA strand. Using a commercially available mammalian expression vector containing an IRES sequence with a 3’ green fluorescent protein fluorescent marker, we found that sequence length of the gene of interest expressed 5’ of the IRES site influences both expression of the 3’ fluorescent marker and overall transfection efficiency of the vector construct. Furthermore, we generated a novel construct expressing two distinct fluorescent markers and found that high expression of one gene can lower expression of the other. Observations from this study indicate that caution is warranted in the design of experiments utilizing an IRES system with a short 5’ gene of interest sequence (<300 bp), selection of single cells based on the expression profile of the 3’ optogenetic fluorescent marker, and assumptions made during data analysis. PMID:24380024

  3. Expression of squamous cell carcinoma markers and adenocarcinoma markers in primary pulmonary neuroendocrine carcinomas.

    PubMed

    Masai, Kyohei; Tsuta, Koji; Kawago, Mitsumasa; Tatsumori, Takahiro; Kinno, Tomoaki; Taniyama, Tomoko; Yoshida, Akihiko; Asamura, Hisao; Tsuda, Hitoshi

    2013-07-01

    Recent clinical trials have revealed that accurate histologic typing of non-small cell lung cancer is essential. Until now, squamous cell carcinoma (SQC) and adenocarcinoma (ADC) markers have not been thoroughly analyzed for pulmonary neuroendocrine carcinomas (NECs). We analyzed the expression of 8 markers [p63, cytokeratin (CK) 5/6, SOX2, CK7, desmocollin 3, thyroid transcription factor-1 (8G7G3/1 and SPT24), and napsin A] in 224 NECs. SOX2 (76.2%) had the greatest expression for NECs. CK5/6 (1.4%), desmocollin 3 (0.5%), and napsin A (0%) were expressed less or not at all in NECs. Although our investigated markers have been reported useful for differentiating between SQC and ADC, some of them were also present in a portion of pulmonary NECs. In our study, CK5/6 and desmocollin 3 were highly specific markers for SQC, and napsin A was highly specific for ADC. These markers are recommended for diagnosis of poorly differentiated non-small cell lung cancer. PMID:23060301

  4. Characterization of genes with increased expression in human glioblastomas.

    PubMed

    Kavsan, V; Shostak, K; Dmitrenko, V; Zozulya, Yu; Rozumenko, V; Demotes-Mainard, J

    2005-01-01

    In the present study, we have used the gene expression data available in the SAGE database in an attempt to identify glioblastoma molecular markers. Of 129 genes with more than 5-fold difference found by comparison of nine glioblastoma with five normal brain SAGE libraries, 44 increased their expression in glioblastomas. Most corresponding proteins were involved in angiogenesis, host-tumor immune interplay, multidrug resistance, extracellular matrix (ECM) formation, IGF-signalling, or MAP-kinase pathway. Among them, 16 genes had a high expression both in glioblastomas and in glioblastoma cell lines suggesting their expression in transformed cells. Other 28 genes had an increased expression only in glioblastomas, not in glioblastoma cell lines suggesting an expression possibly originated from host cells. Many of these genes are among the top transcripts in activated macrophages, and involved in immune response and angiogenesis. This altered pattern of gene expression in both host and tumor cells, can be viewed as a molecular marker in the analysis of malignant progression of astrocytic tumors, and as possible clues for the mechanism of disease. Moreover, several genes overexpressed in glioblastomas produce extracellular proteins, thereby providing possible therapeutic targets. Further characterization of these genes will thus allow them to be exploited in molecular classification of glial tumors, diagnosis, prognosis, and anticancer therapy. PMID:16396319

  5. Gene expression profiling in sinonasal adenocarcinoma

    PubMed Central

    2009-01-01

    Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and non-tumor sinusal tissue. Microarray results were validated by quantitative RT-PCR and immunohistochemistry on two additional sets of tumors. Results Among the genes with significant differential expression we selected LGALS4, ACS5, CLU, SRI and CCT5 for further exploration. The overexpression of LGALS4, ACS5, SRI, CCT5 and the downregulation of CLU were confirmed by quantitative RT-PCR. Immunohistochemistry was performed for LGALS4 (Galectin 4), ACS5 (Acyl-CoA synthetase) and CLU (Clusterin) proteins: LGALS4 was highly up-regulated, particularly in the most differentiated tumors, while CLU was lost in all tumors. The expression of ACS5, was more heterogeneous and no correlation was observed with the tumor type. Conclusion Within our microarray study in sinonasal adenocarcinoma we identified two proteins, LGALS4 and CLU, that were significantly differentially expressed in tumors compared to normal tissue. A further evaluation on a new set of tissues, including precancerous stages and low grade tumors, is necessary to evaluate the possibility of using them as diagnostic markers. PMID:19903339

  6. Nuclear Neighborhoods and Gene Expression

    PubMed Central

    Zhao, Rui; Bodnar, Megan S.; Spector, David L.

    2009-01-01

    Summary The eukaryotic nucleus is a highly compartmentalized and dynamic environment. Chromosome territories are arranged non-randomly within the nucleus and numerous studies have indicated that a gene’s position in the nucleus can impact its transcriptional activity. Here, we focus on recent advances in our understanding of the influence of specific nuclear neighborhoods on gene expression or repression. Nuclear neighborhoods associated with transcriptional repression include the inner nuclear membrane/nuclear lamina and peri-nucleolar chromatin, whereas neighborhoods surrounding the nuclear pore complex, PML nuclear bodies, and nuclear speckles seem to be transcriptionally permissive. While nuclear position appears to play an important role in gene expression, it is likely to be only one piece of a flexible puzzle that incorporates numerous parameters. We are still at a very early, yet exciting stage in our journey toward deciphering the mechanism(s) that govern the permissiveness of gene expression/repression within different nuclear neighborhoods. PMID:19339170

  7. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  8. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  9. Gene markers of cellular aging in human multipotent stromal cells in culture

    PubMed Central

    2014-01-01

    Introduction Human multipotent stromal cells (MSCs) isolated from bone marrow or other tissue sources have great potential to treat a wide range of injuries and disorders in the field of regenerative medicine and tissue engineering. In particular, MSCs have inherent characteristics to suppress the immune system and are being studied in clinical studies to prevent graft-versus-host disease. MSCs can be expanded in vitro and have potential for differentiation into multiple cell lineages. However, the impact of cell passaging on gene expression and function of the cells has not been determined. Methods Commercially available human MSCs derived from bone marrow from six different donors, grown under identical culture conditions and harvested at cell passages 3, 5, and 7, were analyzed with gene-expression profiling by using microarray technology. Results The phenotype of these cells did not change as reported previously; however, a statistical analysis revealed a set of 78 significant genes that were distinguishable in expression between passages 3 and 7. None of these significant genes corresponded to the markers established by the International Society for Cellular Therapy (ISCT) for MSC identification. When the significant gene lists were analyzed through pathway analysis, these genes were involved in the top-scoring networks of cellular growth and proliferation and cellular development. A meta-analysis of the literature for significant genes revealed that the MSCs seem to be undergoing differentiation into a senescent cell type when cultured extensively. Consistent with the differences in gene expression at passage 3 and 7, MSCs exhibited a significantly greater potential for cell division at passage 3 in comparison to passage 7. Conclusions Our results identified specific gene markers that distinguish aging MSCs grown in cell culture. Confirmatory studies are needed to correlate these molecular markers with biologic attributes that may facilitate the development

  10. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect

    PubMed Central

    Wang, Xingmin; Yang, Yonghong; Huycke, Mark M

    2015-01-01

    Objective Commensal bacteria and innate immunity play a major role in the development of colorectal cancer (CRC). We propose that selected commensals polarise colon macrophages to produce endogenous mutagens that initiate chromosomal instability (CIN), lead to expression of progenitor and tumour stem cell markers, and drive CRC through a bystander effect. Design Primary murine colon epithelial cells were repetitively exposed to Enterococcus faecalis-infected macrophages, or purified trans-4-hydroxy-2-nonenal (4-HNE)—an endogenous mutagen and spindle poison produced by macrophages. CIN, gene expression, growth as allografts in immunodeficient mice were examined for clones and expression of markers confirmed using interleukin (IL) 10 knockout mice colonised by E. faecalis. Results Primary colon epithelial cells exposed to polarised macrophages or 4-hydroxy-2-nonenal developed CIN and were transformed after 10 weekly treatments. In immunodeficient mice, 8 of 25 transformed clones grew as poorly differentiated carcinomas with 3 tumours invading skin and/or muscle. All tumours stained for cytokeratins confirming their epithelial cell origin. Gene expression profiling of clones showed alterations in 3 to 7 cancer driver genes per clone. Clones also strongly expressed stem/progenitor cell markers Ly6A and Ly6E. Although not differentially expressed in clones, murine allografts positively stained for the tumour stem cell marker doublecortin-like kinase 1. Doublecortin-like kinase 1 and Ly6A/E were expressed by epithelial cells in colon biopsies for areas of inflamed and dysplastic tissue from E. faecalis-colonised IL-10 knockout mice. Conclusions These results validate a novel mechanism for CRC that involves endogenous CIN and cellular transformation arising through a microbiome-driven bystander effect. PMID:24906974

  11. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker. PMID:16119567

  12. Cyclin D1 amplification and expression in human breast carcinoma: correlation with histological prognostic markers and oestrogen receptor expression

    PubMed Central

    Worsley, S D; Jennings, B A; Khalil, K H; Mole, M; Girling, A C

    1996-01-01

    Aims—To study the amplification of the Cyclin D1 gene (CCND1) in human breast carcinoma; to relate this to Cyclin D1 protein expression; to relate these parameters to recognised pathological prognostic factors, including oestrogen receptor (ER) status. Methods—DNA extracted from frozen sections of breast tumours (n = 36) was used for Southern blotting. Probes for CCND1, c-myc and the immunoglobulin heavy chain locus (IgH) were hybridised to tumour DNA. Immunocytochemical expression of Cyclin D1 protein and ER was studied in paraffin wax sections from the same tumours. Results—Amplification of CCND1 was observed in 11% (four of 36) of tumours studied. Over expression of Cyclin D1 protein was observed in 73% (30/41) of tumours. There was no correlation between recognised histological prognostic markers and either gene amplification or expression. However, a weak association was seen between Cyclin D1 expression and ER status. Conclusions—A disparity exists between locus amplification and over expression of Cyclin D1, suggesting the existence of another mechanism for raised protein expression. No significant correlation was detected between either Cyclin D1 amplification or over expression and established prognostic markers. Images PMID:16696045

  13. Variation of biochemical gene markers in the population of Tomsk

    SciTech Connect

    Kucher, A.N.; Ivanova, O.F.; Puzyrev, V.P.; Tsymbalyuk, I.V.; Trotsenko, B.A.

    1994-11-01

    Variation of seven biochemical gene markers (Tf, Gc, Hp, ACP1, PGM1, PGD, and EsD) in the population of Tomsk was examined. The genetic structure of this population is compared to that of other urban populations from different regions of Russia. 13 refs., 4 tabs.

  14. QUANTIFICATION OF TRANSGENIC PLANT MARKER GENE PERSISTENCE IN THE FIELD

    EPA Science Inventory

    Methods were developed to monitor persistence of genomic DNA in decaying plants in the field. As a model, we used recombinant neomycin phosphotransferase II (rNPT-II) marker genes present in genetically engineered plants. Polymerase chain reaction (PCR) primers were designed, com...

  15. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  16. A multi-gene transcriptional profiling approach to the discovery of cell signature markers

    PubMed Central

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C.; Dvorak, Harold F.

    2010-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed in 4 non-EC cell lines. A multi-gene transcriptional profile of these 6 genes clearly distinguishes ECs from non-ECs in vitro. We conclude that (i) a profile of mRNA copy numbers per cell from a well-chosen multi-gene panel can act as a sensitive and accurate cell type signature marker, and (ii) the method described here can be applied to in vivo cell fingerprinting and molecular diagnosis. PMID:20972619

  17. A multi-gene transcriptional profiling approach to the discovery of cell signature markers.

    PubMed

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C; Dvorak, Harold F; Shih, Shou-Ching

    2011-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed in 4 non-EC cell lines. A multi-gene transcriptional profile of these 6 genes clearly distinguishes ECs from non-ECs in vitro. We conclude that (i) a profile of mRNA copy numbers per cell from a well-chosen multi-gene panel can act as a sensitive and accurate cell type signature marker, and (ii) the method described here can be applied to in vivo cell fingerprinting and molecular diagnosis. PMID:20972619

  18. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  19. Expression of oligodendrocyte lineage genes in oligodendroglial and astrocytic gliomas.

    PubMed

    Riemenschneider, Markus J; Koy, Timmo H; Reifenberger, Guido

    2004-03-01

    The oligodendrocyte lineage genes OLIG1 and OLIG2 have been reported as potential diagnostic markers for oligodendrogliomas [Lu et al. (2001) Proc Natl Acad Sci USA 98:10851-10856; Marie et al. (2001) Lancet 358:298-300]. We investigated the mRNA expression of OLIG1 and OLIG2, as well as four other genes involved in oligodendrocyte development ( E2A, HEB, NKX2.2, and PDGFRA) in a panel of 70 gliomas, including 9 oligodendrogliomas, 11 anaplastic oligodendrogliomas, 5 oligoastrocytomas, 10 anaplastic oligoastrocytomas, 10 diffuse astrocytomas, 10 anaplastic astrocytomas, and 15 glioblastomas. Most tumors demonstrated higher transcript levels of these genes as compared to non-neoplastic adult brain tissue. Four glioblastomas showed markedly increased PDGFRA mRNA expression due to PDGFRA gene amplification. Statistical analyses revealed no significant expression differences between oligodendroglial and astrocytic tumors. In oligodendroglial tumors, expression of the six genes was not significantly correlated to loss of heterozygosity on chromosome arms 1p and 19q. Thus, expression of the investigated oligodendrocyte lineage genes is up-regulated relative to non-neoplastic brain tissue in the majority of oligodendroglial and astrocytic tumors, suggesting that glioma cells are arrested in or recapitulate molecular phenotypes corresponding to early stages of glial development. However, the determination of mRNA expression of these genes by means of reverse transcription-PCR does not appear to be diagnostically useful as a marker for oligodendrogliomas. PMID:14730454

  20. Gene expression during memory formation.

    PubMed

    Igaz, Lionel Muller; Bekinschtein, Pedro; Vianna, Monica M R; Izquierdo, Ivan; Medina, Jorge H

    2004-01-01

    For several decades, neuroscientists have provided many clues that point out the involvement of de novo gene expression during the formation of long-lasting forms of memory. However, information regarding the transcriptional response networks involved in memory formation has been scarce and fragmented. With the advent of genome-based technologies, combined with more classical approaches (i.e., pharmacology and biochemistry), it is now feasible to address those relevant questions--which gene products are modulated, and when that processes are necessary for the proper storage of memories--with unprecedented resolution and scale. Using one-trial inhibitory (passive) avoidance training of rats, one of the most studied tasks so far, we found two time windows of sensitivity to transcriptional and translational inhibitors infused into the hippocampus: around the time of training and 3-6 h after training. Remarkably, these periods perfectly overlap with the involvement of hippocampal cAMP/PKA (protein kinase A) signaling pathways in memory consolidation. Given the complexity of transcriptional responses in the brain, particularly those related to processing of behavioral information, it was clearly necessary to address this issue with a multi-variable, parallel-oriented approach. We used cDNA arrays to screen for candidate inhibitory avoidance learning-related genes and analyze the dynamic pattern of gene expression that emerges during memory consolidation. These include genes involved in intracellular kinase networks, synaptic function, DNA-binding and chromatin modification, transcriptional activation and repression, translation, membrane receptors, and oncogenes, among others. Our findings suggest that differential and orchestrated hippocampal gene expression is necessary in both early and late periods of long-term memory consolidation. Additionally, this kind of studies may lead to the identification and characterization of genes that are relevant for the pathogenesis

  1. Tracking neuronal marker expression inside living differentiating cells using molecular beacons

    PubMed Central

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole; Dufva, Martin

    2013-01-01

    Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized as 2'-O-methyl RNA backbone oligonucleotides. MBs were transfected into human mesencephalic cells (LUHMES) using streptolysin-O-based membrane permeabilization. Mathematical modeling, simulations and experiments indicated that MB concentration was equal to the MB in the transfection medium after 10 min transfection. The cells will then each contain about 60,000 MBs. Gene expression was detected at different time points using fluorescence microscopy. Nestin and NeuN mRNA were expressed in approximately 35% of the LUHMES cells grown in growth medium, and in 80–90% of cells after differentiation. MAP2 and tyrosine hydroxylase mRNAs were expressed 2 and 3 days post induction of differentiation, respectively. Oct 4 was not detected with MB in these cells and signal was not increased over time suggesting that MB are generally stable inside the cells. The gene expression changes measured using MBs were confirmed using qRT-PCR. These results suggest that MBs are simple to use sensors inside living cell, and particularly useful for studying dynamic gene expression in heterogeneous cell populations. PMID:24431988

  2. Tracking neuronal marker expression inside living differentiating cells using molecular beacons.

    PubMed

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole; Dufva, Martin

    2013-12-19

    Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized as 2'-O-methyl RNA backbone oligonucleotides. MBs were transfected into human mesencephalic cells (LUHMES) using streptolysin-O-based membrane permeabilization. Mathematical modeling, simulations and experiments indicated that MB concentration was equal to the MB in the transfection medium after 10 min transfection. The cells will then each contain about 60,000 MBs. Gene expression was detected at different time points using fluorescence microscopy. Nestin and NeuN mRNA were expressed in approximately 35% of the LUHMES cells grown in growth medium, and in 80-90% of cells after differentiation. MAP2 and tyrosine hydroxylase mRNAs were expressed 2 and 3 days post induction of differentiation, respectively. Oct 4 was not detected with MB in these cells and signal was not increased over time suggesting that MB are generally stable inside the cells. The gene expression changes measured using MBs were confirmed using qRT-PCR. These results suggest that MBs are simple to use sensors inside living cell, and particularly useful for studying dynamic gene expression in heterogeneous cell populations. PMID:24431988

  3. Construction of a BALB/c congenic mouse, C.C3H-Lpsd, that expresses the Lpsd allele: analysis of chromosome 4 markers surrounding the Lps gene.

    PubMed Central

    Vogel, S N; Wax, J S; Perera, P Y; Padlan, C; Potter, M; Mock, B A

    1994-01-01

    Development of a congenic BALB/c mouse strain that contains a segment of chromosome 4 including the Lpsd allele of the lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ strain is presented. On the basis of LPS-induced spleen cell mitogenesis, macrophage tumor necrosis factor secretion, and tyrosine phosphorylation in vitro and lethality in galactosamine-sensitized mice in vivo, the C.C3H-Lpsd strain provides a model of LPS hyporesponsiveness that is comparable to that of the parental C3H/HeJ strain. Analysis of markers in this region indicates that length of the donor fragment is approximately 5.5 centimorgans. Thus, the C.C3H-Lpsd strain provides an important genetic tool for analysis of markers in this region and for examining functional effects of Lpsd expression on the BALB/c background. Images PMID:7927709

  4. Effects of space flight on surface marker expression

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.

    1999-01-01

    Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.

  5. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  6. Epithelial and organ-related marker expression in pituitary adenomas.

    PubMed

    Cykowski, Matthew D; Takei, Hidehiro; Baskin, David S; Rivera, Andreana L; Powell, Suzanne Z

    2016-08-01

    The histologic expression of epithelial and organ-related immunohistochemical markers in primary sellar region tumors has received little attention to date. This lack of empirical data may lead to mistaken assumptions in the evaluation of sellar region neoplasms. To address this issue, the frequency and specificity of epithelial (cytokeratin 7(CK7), CK20) and organ-related differentiation markers (gross cystic disease fluid protein-15 (GCDFP-15), thyroid transcription factor-1 (TTF-1), Napsin A, paired box 8 (PAX-8), hepatocyte paraffin 1 (HepPar1) and estrogen receptor (ER)) were studied in 40 patients with adenomas comprising five hormonal sub-types. Non-parametric statistical procedures were used to examine associations between marker expression and tumor sub-type. CK7 and CK20 immunoreactivity were seen in 48% and 8% of tumors, respectively, although never in a diffuse pattern. CK20 expression was nearly exclusive to corticotrophs, whereas CK7 frequently highlighted cells with dendritic-type morphology. The specificity of organ-related differentiation markers was 100% (monoclonal Napsin A, GCDFP-15 and TTF-1), 97% (HepPar1 and PAX-8), 90% (polyclonal Napsin A) and 72% (ER); no tumors demonstrated significant co-expression of these organ-related markers with either CK7 or CK20. The first major conclusion of this study is that CK7 staining in adenoma is more frequent than has been previously than has been previously described. CK7 immunoreactive cells often displayed a dendritic-type morphology, including within large macroadenomas, which raises the question as to whether these represent tumor cells with folliculo-stellate cell-type differentiation, as these also have dendritic cell-type morphology and express CK7 in non-neoplastic glands. The second major conclusion, which confirms earlier findings, is that CK20 staining is a very infrequent immunohistochemical finding in adenomas that is virtually limited to corticotrophs and thus is helpful in diagnostic

  7. EST-PCR Markers Representing Watermelon Fruit Genes are Polymorphic among Watermelon Heirloom Cultivars Sharing a Narrow Genetic Base

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date there are only a few sequenced-tagged site (STS) markers associated with genes controlling fruit quality in watermelon. In this study, we examined polymorphism in coding regions of genes expressed in watermelon fruit. A normalized cDNA library was constructed for watermelon fruit (Citrullu...

  8. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  9. Control of Renin Gene Expression

    PubMed Central

    Glenn, Sean T.; Jones, Craig A.; Gross, Kenneth W.; Pan, Li

    2015-01-01

    Renin, as part of the renin-angiotensin system, plays a critical role in the regulation of blood pressure, electrolyte homeostasis, mammalian renal development and progression of fibrotic/hypertrophic diseases. Renin gene transcription is subject to complex developmental and tissue-specific regulation. Initial studies using the mouse As4.1 cell line, which has many characteristics of the renin-expressing juxtaglomerular cells of the kidney, have identified a proximal promoter region (−197 to −50 bp) and an enhancer (−2866 to −2625 bp) upstream of the Ren-1c gene, which are critical for renin gene expression. The proximal promoter region contains several transcription factor-binding sites including a binding site for the products of the developmental control genes Hox. The enhancer consists of at least 11 transcription factor-binding sites and is responsive to various signal transduction pathways including cAMP, retinoic acid, endothelin-1, and cytokines, all of which are known to alter renin mRNA levels. Furthermore, in vivo models have validated several of these key components found within the proximal promoter region and the enhancer as well as other key sites necessary for renin gene transcription. PMID:22576577

  10. Microdissection of the gene expression codes driving nephrogenesis

    PubMed Central

    Brunskill, Eric W; Patterson, Larry T

    2010-01-01

    The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution. PMID:21220959

  11. Microdissection of the gene expression codes driving nephrogenesis.

    PubMed

    Potter, S Steven; Brunskill, Eric W; Patterson, Larry T

    2010-01-01

    The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution. PMID:21220959

  12. Haplotype structure enables prioritization of common markers and candidate genes in autism spectrum disorder

    PubMed Central

    Vardarajan, B N; Eran, A; Jung, J-Y; Kunkel, L M; Wall, D P

    2013-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental condition that results in behavioral, social and communication impairments. ASD has a substantial genetic component, with 88–95% trait concordance among monozygotic twins. Efforts to elucidate the causes of ASD have uncovered hundreds of susceptibility loci and candidate genes. However, owing to its polygenic nature and clinical heterogeneity, only a few of these markers represent clear targets for further analyses. In the present study, we used the linkage structure associated with published genetic markers of ASD to simultaneously improve candidate gene detection while providing a means of prioritizing markers of common genetic variation in ASD. We first mined the literature for linkage and association studies of single-nucleotide polymorphisms, copy-number variations and multi-allelic markers in Autism Genetic Resource Exchange (AGRE) families. From markers that reached genome-wide significance, we calculated male-specific genetic distances, in light of the observed strong male bias in ASD. Four of 67 autism-implicated regions, 3p26.1, 3p26.3, 3q25-27 and 5p15, were enriched with differentially expressed genes in blood and brain from individuals with ASD. Of 30 genes differentially expressed across multiple expression data sets, 21 were within 10 cM of an autism-implicated locus. Among them, CNTN4, CADPS2, SUMF1, SLC9A9, NTRK3 have been previously implicated in autism, whereas others have been implicated in neurological disorders comorbid with ASD. This work leverages the rich multimodal genomic information collected on AGRE families to present an efficient integrative strategy for prioritizing autism candidates and improving our understanding of the relationships among the vast collection of past genetic studies. PMID:23715297

  13. Haplotype structure enables prioritization of common markers and candidate genes in autism spectrum disorder.

    PubMed

    Vardarajan, B N; Eran, A; Jung, J-Y; Kunkel, L M; Wall, D P

    2013-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental condition that results in behavioral, social and communication impairments. ASD has a substantial genetic component, with 88-95% trait concordance among monozygotic twins. Efforts to elucidate the causes of ASD have uncovered hundreds of susceptibility loci and candidate genes. However, owing to its polygenic nature and clinical heterogeneity, only a few of these markers represent clear targets for further analyses. In the present study, we used the linkage structure associated with published genetic markers of ASD to simultaneously improve candidate gene detection while providing a means of prioritizing markers of common genetic variation in ASD. We first mined the literature for linkage and association studies of single-nucleotide polymorphisms, copy-number variations and multi-allelic markers in Autism Genetic Resource Exchange (AGRE) families. From markers that reached genome-wide significance, we calculated male-specific genetic distances, in light of the observed strong male bias in ASD. Four of 67 autism-implicated regions, 3p26.1, 3p26.3, 3q25-27 and 5p15, were enriched with differentially expressed genes in blood and brain from individuals with ASD. Of 30 genes differentially expressed across multiple expression data sets, 21 were within 10 cM of an autism-implicated locus. Among them, CNTN4, CADPS2, SUMF1, SLC9A9, NTRK3 have been previously implicated in autism, whereas others have been implicated in neurological disorders comorbid with ASD. This work leverages the rich multimodal genomic information collected on AGRE families to present an efficient integrative strategy for prioritizing autism candidates and improving our understanding of the relationships among the vast collection of past genetic studies. PMID:23715297

  14. Ras protein expression as a marker for breast cancer

    PubMed Central

    CALAF, GLORIA M.; ABARCA-QUINONES, JORGE

    2016-01-01

    Breast cancer, the most common neoplasm in women of all ages, is the leading cause of cancer-related mortality in women worldwide. Markers to help to predict the risk of progression and ultimately provide non-surgical treatment options would be of great benefit. At present, there are no available molecular markers to predict the risk of carcinoma in situ progression to invasive cancer; therefore, all women diagnosed with this type of malignancy must undergo surgery. Breast cancer is a heterogeneous complex disease, and different patients respond differently to different treatments. In breast cancer, analysis using immunohistochemical markers remains an essential component of routine pathological examinations, and plays an import role in the management of the disease by providing diagnostic and prognostic strategies. The aim of the present study was to identify a marker that can be used as a prognostic tool for breast cancer. For this purpose, we firstly used an established breast cancer model. MCF-10F, a spontaneously immortalized breast epithelial cell line was transformed by exposure to estrogen and radiation. MCF-10F cells were exposed to low doses of high linear energy transfer (LET) α particles (150 keV/μm) of radiation, and subsequently cultured in the presence of 17β-estradiol. Three cell lines were used: i) MCF-10F cells as a control; ii) Alpha5 cells, a malignant and tumorigenic cell line; and iii) Tumor2 cells derived from Alpha5 cells injected into nude mice. Secondly, we also used normal, benign and malignant breast specimens obtained from biopsies. The results revealed that the MCF-10F cells were negative for c-Ha-Ras protein expression; however, the Alpha5 and Tumor2 cell lines were positive for c-Ha-Ras protein expression. The malignant breast samples were also strongly positive for c-Ha-Ras expression. The findings of our study indicate that c-Ha-Ras protein expression may be used as a marker to predict the progression of breast cancer; this

  15. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  16. The Physcomitrella patens System for Transient Gene Expression Assays.

    PubMed

    Thévenin, Johanne; Xu, Wenjia; Vaisman, Louise; Lepiniec, Loïc; Dubreucq, Bertrand; Dubos, Christian

    2016-01-01

    Transient expression assays are valuable techniques to study in vivo the transcriptional regulation of gene expression. These methods allow to assess the transcriptional properties of a given transcription factor (TF) or a complex of regulatory proteins against specific DNA motifs, called cis-regulatory elements. Here, we describe a fast, efficient, and reliable method based on the use of Physcomitrella patens protoplasts that allows the study of gene expression in a qualitative and quantitative manner by combining the advantage of GFP (green fluorescent protein) as a marker of promoter activity with flow cytometry for accurate measurement of fluorescence in individual cells. PMID:27557766

  17. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species. PMID:27178572

  18. Advances in plant gene-targeted and functional markers: a review

    PubMed Central

    2013-01-01

    Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the

  19. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  20. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  1. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  2. Producing a Mammalian GFP Expression Vector Containing Neomycin Resistance Gene.

    PubMed

    Izadi, Manizheh; Abiri, Maryam; Keramatipour, Mohammad

    2009-04-01

    The green fluorescent protein (GFP) was originally isolated from the Jellyfish Aequorea Victoria that fluoresces green when exposed to blue light. GFP protein is composed of 238 amino acids with the molecular mass of 26.9 kD. The GFP gene is frequently used in cellular and molecular biology as a reporter gene. To date, many bacterial, yeast, fungal, plants, fly and mammalian cells, including human, have been created which express GFP. Martin Chalfie, Osamu Shimomura, and Roger Tsien were awarded the 2008 noble prize in chemistry for their discovery and development of GFP. In many studies on mammalian cells, GFP gene is introduced into cells using vector-based systems or a recombinant virus to track the location of a target protein or to study the expression level of the gene of interest, but in these studies there is no selection marker to normalize transfection. According to the importance of neomycin gene as a selection marker in mammalian cells, we aimed to produce a GFP expression vector that contains neomycin gene. GFP gene was separated from pEGFP-N1 vector and was inserted in the back-bone of pCDNA3.1/His/LacZ vector that contained the neomycin gene. The resulted vector contained GFP beside neomycin gene. PMID:23407141

  3. Tumour endothelial marker-1 is expressed in canine Haemangiopericytomas.

    PubMed

    Fujii, Y; Tsuchiya, T; Morita, R; Kimura, M; Suzuki, K; Machida, N; Mitsumori, K; Shibutani, M

    2013-01-01

    The aim of this study was to characterize immunohistochemically 18 cases of canine haemangiopericytoma (CHP) using two new candidate markers for pericytes, tumour endothelial marker (TEM)-1 and new glue (NG)-2, as well as the conventional mesenchymal cellular markers, vimentin, α-smooth muscle actin (α-SMA), desmin and von Willebrand factor (vWF). Because pericytes may have the same origin as endothelial or smooth muscle cells or the same differentiation potential as myofibroblasts, 17 cases of leiomyosarcoma (LMS), 20 cases of haemangiosarcoma (HS) and three cases of myofibroblastic sarcoma (MFS) were also examined. Expression of TEM-1 by >10% of the neoplastic population was observed in 94.4% (17/18) of haemangiopericytomas, 23.5% (4/17) of LMSs, 30.0% (6/20) of HSs and 66.7% (2/3) of MFSs. NG-2 expression by >10% of the neoplastic population was observed in 16.7% (3/18) of haemangiopericytomas, 52.9% (9/17) of LMSs, 0% (0/20) of HSs and 33.3% (1/3) of MFSs. Vimentin was expressed by all of tumours. In haemangiopericytoma, the incidence of positive immunoreactivity in >10% of the neoplastic population was 5.6% (1/18) for both α-SMA and desmin and 0% (0/18) for vWF. Considering the phenotypic features of cells expressing TEM-1, CHPs are thought to originate from immature vascular mural cells sharing their phenotype with myofibroblasts. NG-2 expression may be a phenotype of smooth muscle cells rather than pericytes in dogs. PMID:23489680

  4. Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes

    PubMed Central

    Roy, Janine; Aust, Daniela; Knösel, Thomas; Rümmele, Petra; Jahnke, Beatrix; Hentrich, Vera; Rückert, Felix; Niedergethmann, Marco; Weichert, Wilko; Bahra, Marcus; Schlitt, Hans J.; Settmacher, Utz; Friess, Helmut; Büchler, Markus; Saeger, Hans-Detlev; Schroeder, Michael; Pilarsky, Christian; Grützmann, Robert

    2012-01-01

    Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice. PMID:22615549

  5. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  6. Classification of genes based on gene expression analysis

    NASA Astrophysics Data System (ADS)

    Angelova, M.; Myers, C.; Faith, J.

    2008-05-01

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  7. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  8. Gene expression profiling of the developing mouse kidney and embryo.

    PubMed

    Shaw, Lisa; Johnson, Penny A; Kimber, Susan J

    2010-02-01

    The metanephros is formed from the reciprocal inductive interaction of two precursor tissues, the metanephric mesenchyme (MM) and the ureteric bud (UB). The UB induces MM to condense and differentiate forming the glomerulus and renal tubules, whilst the MM induces the UB to differentiate into the collecting tubules of the mature nephron. Uninduced MM is considered the progenitor cell population of the developing metanephros because of its potential to differentiate into more renal cell types than the UB. Previous studies have identified the phenotype of renal precursor cells; however, expression of candidate marker genes have not been analysed in other tissues of the murine embryo. We have assayed up to 19 candidate genes in eight embryonic tissues at five gestation stages of the mouse embryo to identify markers definitively expressed by renal cells during metanephric induction and markers developmentally regulated during kidney maturation. We then analysed their expression in other developing tissues. Results show Dcn, Hoxc9, Mest, Wt1 and Ywhaq were expressed at moderate to high levels during the window of metanephric specification and early differentiation (E10.5-E12.5 dpc), and Hoxc9, Ren1 and Wt1 expression was characteristic of mature renal cells. We demonstrated Cd24a, Cdh11, Mest, Scd2 and Sim2 were regulated during brain development, and Scd2, Cd24a and Sip1 expression was enriched in developing liver. These markers may be useful negative markers of kidney development. Use of a combination of highly expressed and negative markers may aid in the identification and removal of non-renal cells from heterogeneous populations of differentiating stem cells. PMID:19998061

  9. Effect of HPV on tumor expression levels of the most commonly used markers in HNSCC.

    PubMed

    Polanska, Hana; Heger, Zbynek; Gumulec, Jaromir; Raudenska, Martina; Svobodova, Marketa; Balvan, Jan; Fojtu, Michaela; Binkova, Hana; Horakova, Zuzana; Kostrica, Rom; Adam, Vojtech; Kizek, Rene; Masarik, Michal

    2016-06-01

    Approximately 90 % of head and neck cancers are squamous cell carcinomas (HNSCC), and the overall 5-year survival rate is not higher than 50 %. There is much evidence that human papillomavirus (HPV) infection may influence the expression of commonly studied HNSCC markers. Our study was focused on the possible HPV-specificity of molecular markers that could be key players in important steps of cancerogenesis (MKI67, EGF, EGFR, BCL-2, BAX, FOS, JUN, TP53, MT1A, MT2A, VEGFA, FLT1, MMP2, MMP9, and POU5F). qRT-PCR analysis of these selected genes was performed on 74 biopsy samples of tumors from patients with histologically verified HNSCC (22 HPV-, 52 HPV+). Kaplan-Meier analysis was done to determine the relevance of these selected markers for HNSCC prognosis. In conclusion, our study confirms the impact of HPV infection on commonly studied HNSCC markers MT2A, MMP9, FLT1, VEGFA, and POU5F that were more highly expressed in HPV-negative HNSCC patients and also shows the relevance of studied markers in HPV-positive and HPV-negative HNSCC patients. PMID:26666815

  10. Functionally Relevant Microsatellite Markers From Chickpea Transcription Factor Genes for Efficient Genotyping Applications and Trait Association Mapping

    PubMed Central

    Kujur, Alice; Bajaj, Deepak; Saxena, Maneesha S.; Tripathi, Shailesh; Upadhyaya, Hari D.; Gowda, C.L.L.; Singh, Sube; Jain, Mukesh; Tyagi, Akhilesh K.; Parida, Swarup K.

    2013-01-01

    We developed 1108 transcription factor gene-derived microsatellite (TFGMS) and 161 transcription factor functional domain-associated microsatellite (TFFDMS) markers from 707 TFs of chickpea. The robust amplification efficiency (96.5%) and high intra-specific polymorphic potential (34%) detected by markers suggest their immense utilities in efficient large-scale genotyping applications, including construction of both physical and functional transcript maps and understanding population structure. Candidate gene-based association analysis revealed strong genetic association of TFFDMS markers with three major seed and pod traits. Further, TFGMS markers in the 5′ untranslated regions of TF genes showing differential expression during seed development had higher trait association potential. The significance of TFFDMS markers was demonstrated by correlating their allelic variation with amino acid sequence expansion/contraction in the functional domain and alteration of secondary protein structure encoded by genes. The seed weight-associated markers were validated through traditional bi-parental genetic mapping. The determination of gene-specific linkage disequilibrium (LD) patterns in desi and kabuli based on single nucleotide polymorphism-microsatellite marker haplotypes revealed extended LD decay, enhanced LD resolution and trait association potential of genes. The evolutionary history of a strong seed-size/weight-associated TF based on natural variation and haplotype sharing among desi, kabuli and wild unravelled useful information having implication for seed-size trait evolution during chickpea domestication. PMID:23633531

  11. Auxotrophic complementation as a selectable marker for stable expression of foreign antigens in Mycobacterium bovis BCG.

    PubMed

    Borsuk, Sibele; Mendum, Tom A; Fagundes, Michel Quevedo; Michelon, Marcelo; Cunha, Cristina Wetzel; McFadden, Johnjoe; Dellagostin, Odir Antônio

    2007-11-01

    Mycobacterium bovis BCG has the potential to be an effective live vector for multivalent vaccines. However, most mycobacterial cloning vectors rely on antibiotic resistance genes as selectable markers, which would be undesirable in any practical vaccine. Here we report the use of auxotrophic complementation as a selectable marker that would be suitable for use in a recombinant vaccine. A BCG auxotrophic for the amino acid leucine was constructed by knocking out the leuD gene by unmarked homologous recombination. Expression of leuD on a plasmid not only allowed complementation, but also acted as a selectable marker. Removal of the kanamycin resistance gene, which remained necessary for plasmid manipulations in Escherichia coli, was accomplished by two different methods: restriction enzyme digestion followed by re-ligation before BCG transformation, or by Cre-loxP in vitro recombination mediated by the bacteriophage P1 Cre Recombinase. Stability of the plasmid was evaluated during in vitro and in vivo growth of the recombinant BCG in comparison to selection by antibiotic resistance. The new system was highly stable even during in vivo growth, as the selective pressure is maintained, whereas the conventional vector was unstable in the absence of selective pressure. This new system will now allow the construction of potential recombinante vaccine strains using stable multicopy plasmid vectors without the inclusion of antibiotic resistance markers. PMID:17888740

  12. The transcriptional regulation of regucalcin gene expression.

    PubMed

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  13. Hygromycin-resistance vectors for gene expression in Pichia pastoris.

    PubMed

    Yang, Junjie; Nie, Lei; Chen, Biao; Liu, Yingmiao; Kong, Yimeng; Wang, Haibin; Diao, Liuyang

    2014-04-01

    Pichia pastoris is a common host organism for heterologous protein expression and metabolic engineering. Zeocin-, G418-, nourseothricin- and blasticidin-resistance genes are the only dominant selectable markers currently available for selecting P. pastoris transformants. We describe here new P. pastoris expression vectors that confer a hygromycin resistance base on the Klebsiella pneumoniae hph gene. To demonstrate the application of the vectors for intracellular and secreted protein expression, green fluorescent protein (GFP) and human serum albumin (HSA) were cloned into the vectors and transformed into P. pastoris cells. The resulting strains expressed GFP and HSA constitutively or inducibly. The hygromycin resistance marker was also suitable for post-transformational vector amplication (PTVA) for obtaining strains with high plasmid copy numbers. A strain with multiple copies of the HSA expression cassette after PTVA had increased HSA expression compared with a strain with a single copy of the plasmid. To demonstrate compatibility of the new vectors with other vectors bearing antibiotic-resistance genes, P. pastoris was transformed with the Saccharomyces cerevisiae genes GSH1, GSH2 or SAM2 on plasmids containing genes for resistance to Zeocin, G418 or hygromycin. The resulting strain produced glutathione and S-adenosyl-L-methionine at levels approximately twice those of the parent strain. The new hygromycin-resistance vectors allow greater flexibility and potential applications in recombinant protein production and other research using P. pastoris. PMID:24822243

  14. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  15. Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean

    PubMed Central

    2012-01-01

    Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron

  16. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    PubMed

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  17. A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers.

    PubMed

    Xu, Jianzhong; Xia, Xiuhua; Zhang, Junlan; Guo, Yanfeng; Qian, He; Zhang, Weiguo

    2014-03-01

    A method for the simultaneous replacement of a given gene by a target gene, leaving no genetic markers, has been developed. The method is based on insertional inactivation and double-crossover homologous recombination. With this method, the lysC(T311I), fbp and ddh genes were inserted into Corynebacterium glutamicum genome, and the pck, alaT and avtA genes were deleted. Mobilizable plasmids with lysC(T311I), fbp and ddh cassettes and two homologous arms on the ends of pck, alaT and avtA were constructed, and then transformed into C. glutamicum. The target-expression cassettes were inserted in the genome via the first homologous recombination, and the genetic markers were removed via the second recombination. The target-transformants were sequentially screened from kanamycin-resistance and sucrose-resistance plates. The enzyme activities of transformants were stably maintained for 30 generations under non-selective culture conditions, suggesting that the integrated cassettes in host were successfully expressed and maintained as stable chromosomal insertions in C. glutamicum. The target-transformants were used to optimize the l-lysine production, showing that the productions were strongly increased because the selected genes were closely linked to l-lysine production. In short, this method can be used to construct amino acid high-producing strains with unmarked gene amplification and simultaneous deletion in genome. PMID:24613758

  18. Expression Marker-Based Strategy to Improve Beef Quality

    PubMed Central

    Cassar-Malek, Isabelle; Picard, Brigitte

    2016-01-01

    For beef cattle research, a main objective is to control concomitantly the development of muscles and the qualities of beef cuts. Beef quality is a complex phenotype that is only detectable after slaughter and is highly variable. The beef industry is in need of tools to estimate beef quality of live cattle or online in abattoirs, with specific attention towards sensory attributes (tenderness, juiciness, flavour, and colour). Identification of relevant genetic and genomic markers is ongoing, especially for tenderness—a top priority quality attribute. In this paper, we describe the steps of an expression marker-based strategy to improve beef sensory quality, from the discovery of biomarkers that identify consistent beef and the biological functions governing beef tenderness to the integration of the knowledge into detection tests for desirable animals. These tools should soon be available for the management of sensory quality in the beef production chain for meeting market's demands and assuring good quality standards. PMID:27066527

  19. Gut microbiota, host gene expression, and aging.

    PubMed

    Patrignani, Paola; Tacconelli, Stefania; Bruno, Annalisa

    2014-01-01

    Novel concepts of disease susceptibility and development suggest an important role of gastrointestinal microbiota and microbial pathogens. They can contribute to physiological systems and disease processes, even outside of the gastrointestinal tract. There is increasing evidence that genetics of the host influence and interact with gut microbiota. Moreover, aging-associated oxidative stress may cause morphologic alterations of bacterial cells, thus influencing the aggressive potential and virulence markers of an anaerobic bacterium and finally the type of interaction with the host. At the same time, microbiota may influence host gene expression and it is becoming apparent that it may occur through the regulation of microRNAs. They are short single-stranded noncoding RNAs that regulate posttranscriptional gene expression by affecting mRNA stability and/or translational repression of their target mRNAs. The introduction of -omics approaches (such as metagenomics, metaproteomics, and metatranscriptomics) in microbiota research will certainly advance our knowledge of this area. This will lead to greatly deepen our understanding of the molecular targets in the homeostatic interaction between the gut microbiota and the host and, thereby, promises to reveal new ways to treat diseases and maintain health. PMID:25291121

  20. Regulated Expression of Adenoviral Vectors-Based Gene Therapies

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Muhammad, A. K. M.; Kroeger, Kurt; Mondkar, Sonali; Liu, Chunyan; Bondale, Niyati; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Summary Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the “OFF” state, and expression should quickly reach therapeutic levels in the “ON” state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA2S-M2 inducer and tTSKid silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo. PMID:18470649

  1. A regulatory gene as a novel visible marker for maize transformation

    SciTech Connect

    Ludwig, S.R.; Wessler, S.R. ); Bowen, B.; Beach, L. )

    1990-01-26

    The temporal and spatial patterns of anthocyanin pigmentation in the maize plant are determined by the presence or absence of the R protein product, a presumed transcriptional activator. At least 50 unique patterns of pigmentation, conditioned by members of the R gene family, have been described. In this study, microprojectiles were used to introduce into maize cells a vector containing the transcription unit from one of these genes (Lc) fused to a constitutive promoter. This chimeric gene induces cell autonomous pigmentation in tissues that are not normally pigmented by the Lc gene. As a reporter for gene expression studies in maize, R is unique because it can be quantified in living tissue simply by counting the number of pigmented cells following bombardment. R may also be useful as a visible marker for selecting stably transformed cell lineages that can give rise to transgenic plants.

  2. Development of expressed sequence tag and expressed sequence tag–simple sequence repeat marker resources for Musa acuminata

    PubMed Central

    Passos, Marco A. N.; de Oliveira Cruz, Viviane; Emediato, Flavia L.; de Camargo Teixeira, Cristiane; Souza, Manoel T.; Matsumoto, Takashi; Rennó Azevedo, Vânia C.; Ferreira, Claudia F.; Amorim, Edson P.; de Alencar Figueiredo, Lucio Flavio; Martins, Natalia F.; de Jesus Barbosa Cavalcante, Maria; Baurens, Franc-Christophe; da Silva, Orzenil Bonfim; Pappas, Georgios J.; Pignolet, Luc; Abadie, Catherine; Ciampi, Ana Y.; Piffanelli, Pietro; Miller, Robert N. G.

    2012-01-01

    Background and aims Banana (Musa acuminata) is a crop contributing to global food security. Many varieties lack resistance to biotic stresses, due to sterility and narrow genetic background. The objective of this study was to develop an expressed sequence tag (EST) database of transcripts expressed during compatible and incompatible banana–Mycosphaerella fijiensis (Mf) interactions. Black leaf streak disease (BLSD), caused by Mf, is a destructive disease of banana. Microsatellite markers were developed as a resource for crop improvement. Methodology cDNA libraries were constructed from in vitro-infected leaves from BLSD-resistant M. acuminata ssp. burmaniccoides Calcutta 4 (MAC4) and susceptible M. acuminata cv. Cavendish Grande Naine (MACV). Clones were 5′-end Sanger sequenced, ESTs assembled with TGICL and unigenes annotated using BLAST, Blast2GO and InterProScan. Mreps was used to screen for simple sequence repeats (SSRs), with markers evaluated for polymorphism using 20 diploid (AA) M. acuminata accessions contrasting in resistance to Mycosphaerella leaf spot diseases. Principal results A total of 9333 high-quality ESTs were obtained for MAC4 and 3964 for MACV, which assembled into 3995 unigenes. Of these, 2592 displayed homology to genes encoding proteins with known or putative function, and 266 to genes encoding proteins with unknown function. Gene ontology (GO) classification identified 543 GO terms, 2300 unigenes were assigned to EuKaryotic orthologous group categories and 312 mapped to Kyoto Encyclopedia of Genes and Genomes pathways. A total of 624 SSR loci were identified, with trinucleotide repeat motifs the most abundant in MAC4 (54.1 %) and MACV (57.6 %). Polymorphism across M. acuminata accessions was observed with 75 markers. Alleles per polymorphic locus ranged from 2 to 8, totalling 289. The polymorphism information content ranged from 0.08 to 0.81. Conclusions This EST collection offers a resource for studying functional genes, including

  3. Does inbreeding affect gene expression in birds?

    PubMed Central

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-01-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular. PMID:25232028

  4. Effect of age on expression of spermatogonial markers in bovine testis and isolated cells.

    PubMed

    Giassetti, Mariana Ianello; Goissis, Marcelo Demarchi; Moreira, Pedro Vale; de Barros, Flavia Regina Oliveira; Assumpção, Mayra Elena Ortiz D'Ávila; Visintin, José Antônio

    2016-07-01

    Spermatogonial stem cells (SSC) are the most undifferentiated germ cell present in adult male testes and, it is responsible to maintain the spermatogenesis. Age has a negative effect over stem cell, but the aging effect on SSC is not elucidated for bovine. The present study aim to evaluate the effect of age on the expression of undifferentiated spermatogonial markers in testis and in enriched testicular cells from prepubertal calves and adult bulls. In this matter, testicular parenchyma from calves (3-5 months) (n=5) and bulls with 3 years of age (n=5) were minced and, isolated cells were obtained after two enzymatic digestions. Differential platting was performed for two hours onto BSA coated dish. Cell viability was assessed by Trypan Blue solution exclusion method and testicular cells enriched for SSC was evaluated by expression of specific molecular markers by qRT-PCR (POU5F1, GDNF, CXCR4, UCHL1, ST3GAL, SELP, ICAM1 and ITGA6) and flow cytometry (GFRA1, CXCR4 and ITGA6). CXCR4 and UCHL1 expression was evaluated in fixated testes by immunohistochemistry. We observed that age just affected the expression of selective genes [SELP (Fold Change=5.61; p=0.0023) and UCHL1 (Fold Change=4.98; p=0.0127)]. By flow cytometry, age affected only the proportion of ITGA6+ cells (P<0.001), which was higher in prepubertal calves when compared to adult bulls. In situ, we observed an effect of age on the number of UCHL1+ (p=0.0006) and CXCR4+ (p=0.0139) cells per seminiferous tubule. At conclusion, age affects gene expression and the population of cells expressing specific spermatogonial markers in the bovine testis. PMID:27180120

  5. Expression of cartilage-specific markers in calcified and non-calcified atherosclerotic lesions.

    PubMed

    Aigner, Thomas; Neureiter, Daniel; Câmpean, Valentina; Soder, Stephan; Amann, Kerstin

    2008-01-01

    Recently, molecular mechanisms resembling endochondral ossification were suggested to be important for atherosclerotic vessel calcification. The aim of this study was to investigate in a series of human atherosclerotic (non-diabetic) lesions of the crural arteries the distribution and expression of classical marker genes of the endochondral ossification pathway. Immunostaining for marker proteins S-100 protein and collagen types II and X were performed on atherosclerotic lesions of different grades (according to Stary). Quantitative real-time PCR for human COL1A1, COL2A1, COL10A1, SOX9, and BMP-2 was applied on RNA isolated from atherosclerotic arteries. In most samples, no expression of collagen type II and S-100 protein was found. Exceptionally, S-100 protein and type II collagen expression was observed very focally within advanced atherosclerotic plaques. Type X collagen was not detected in any of the lesions investigated. Overall, in our study we found no evidence that chondrogenic differentiation pathways are generally active in atherosclerotic plaque formation. In particular type X collagen, one important molecule in cartilage calcification, was not expressed in any of the investigated specimens. Occasionally, however, chondrocytic differentiation markers occur within atherosclerotic lesions. This most likely represents a metaplastic event associated, but not causative for atherosclerotic vessel degeneration and calcification. PMID:17335825

  6. Canine cutaneous peripheral nerve sheath tumours versus fibrosarcomas can be differentiated by neuroectodermal marker genes in their transcriptome.

    PubMed

    Klopfleisch, R; Meyer, A; Lenze, D; Hummel, M; Gruber, A D

    2013-02-01

    The diagnostic differentiation between canine fibrosarcomas and peripheral nerve sheath tumours (PNSTs) is based on histopathological phenotype. Histological differentiation of these tumours can, however, be challenging and there is a lack of immunohistochemical markers to prove their histogenic origin. To identify possible PNST markers and to further characterize their histogenic origin we compared histologically well-defined canine fibrosarcomas and PNSTs by cDNA microarray analysis. Forty-five annotated gene products were significantly differentially expressed between both tumour types. Seven of these gene products, known to be specifically expressed in neuroectodermal tissues, had higher expression levels in PNSTs: FMN2, KIF1B, GLI1, ROBO1, NMUR2, DOK4 and HMG20B. Conversely, eight genes associated with carcinogenesis had higher expression in fibrosarcomas: FHL2, PLAGL1, FNBP1L, BAG2, HK1, CSK and Cox5A. Comparison of the fibrosarcoma and PNST transcriptome therefore identified PNST phenotype-associated genes involved in neuroectodermal differentiation, which may be useful as diagnostic markers. Furthermore, the genes associated with the fibrosarcoma phenotype may serve as markers to differentiate fibrosarcomas from other tumour types. PMID:22818216

  7. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.

    PubMed

    Bertalan, Ivo; Munder, Matthias C; Weiß, Caroline; Kopf, Judith; Fischer, Dirk; Johanningmeier, Udo

    2015-02-10

    In search of alternative expression platforms heterologous protein production in microalgae has gained increasing importance in the last years. Particularly, the chloroplast of the green alga Chlamydomonas reinhardtii has been adopted to successfully express foreign proteins like vaccines and antibodies. However, when compared with other expression systems, the development of the algal chloroplast to a powerful production platform for recombinant proteins is still in its early stages. In an effort to further improve methods for a reliable and rapid generation of transplastomic Chlamydomonas strains we constructed the key plasmid pMM2 containing the psbA gene and a multiple cloning site for foreign gene insertion. The psbA gene allows a marker-free selection procedure using as a recipient the Fud7 strain of Chlamydomonas, which grows on media containing acetate as a carbon source, but is unable to grow photoautotrophically due to the lack of an intact psbA gene. Biolistic transformation of Fud7 with vectors containing this gene restores photoautotrophic growth and thus permits selection in the light on media without carbon sources and antibiotics. The multiple cloning site with a BsaI recognition sequence allows type IIs restriction enzyme-based modular cloning which rapidly generates new gene constructs without sequences, which could influence the expression and characteristics of the foreign protein. In order to demonstrate the feasibility of this approach, a codon optimized version of the gene for the bacterial protein MPT64 has been integrated into the plastome. Several strains with different promoter/UTR combinations show a stable expression of the HA tagged MPT64 protein in Chlamydomonas chloroplasts. PMID:25554634

  8. User-friendly markers linked to Fusarium wilt race 1 resistance Fw gene for marker-assisted selection in pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker-assisted selection due to their map distance and l...

  9. Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1

    PubMed Central

    2009-01-01

    Background Lettuce (Lactuca saliva L.) is susceptible to dieback, a soilborne disease caused by two viruses from the family Tombusviridae. Susceptibility to dieback is widespread in romaine and leaf-type lettuce, while modern iceberg cultivars are resistant to this disease. Resistance in iceberg cultivars is conferred by Tvr1 - a single, dominant gene that provides durable resistance. This study describes fine mapping of the resistance gene, analysis of nucleotide polymorphism and linkage disequilibrium in the Tvr1 region, and development of molecular markers for marker-assisted selection. Results A combination of classical linkage mapping and association mapping allowed us to pinpoint the location of the Tvr1 resistance gene on chromosomal linkage group 2. Nine molecular markers, based on expressed sequence tags (EST), were closely linked to Tvr1 in the mapping population, developed from crosses between resistant (Salinas and Salinas 88) and susceptible (Valmaine) cultivars. Sequencing of these markers from a set of 68 cultivars revealed a relatively high level of nucleotide polymorphism (θ = 6.7 × 10-3) and extensive linkage disequilibrium (r2 = 0.124 at 8 cM) in this region. However, the extent of linkage disequilibrium was affected by population structure and the values were substantially larger when the analysis was performed only for romaine (r2 = 0.247) and crisphead (r2 = 0.345) accessions. The association mapping approach revealed that one of the nine markers (Cntg10192) in the Tvr1 region matched exactly with resistant and susceptible phenotypes when tested on a set of 200 L. sativa accessions from all horticultural types of lettuce. The marker-trait association was also confirmed on two accessions of Lactuca serriola - a wild relative of cultivated lettuce. The combination of three single-nucleotide polymorphisms (SNPs) at the Cntg10192 marker identified four haplotypes. Three of the haplotypes were associated with resistance and one of them was always

  10. Tolerance Associated Gene Expression following Allogeneic Hematopoietic Cell Transplantation

    PubMed Central

    Pidala, Joseph; Bloom, Gregory C.; Eschrich, Steven; Sarwal, Minnie; Enkemann, Steve; Betts, Brian C.; Beato, Francisca; Yoder, Sean; Anasetti, Claudio

    2015-01-01

    Biologic markers of immune tolerance may facilitate tailoring of immune suppression duration after allogeneic hematopoietic cell transplantation (HCT). In a cross-sectional study, peripheral blood samples were obtained from tolerant (n = 15, median 38.5 months post-HCT) and non-tolerant (n = 17, median 39.5 post-HCT) HCT recipients and healthy control subjects (n = 10) for analysis of immune cell subsets and differential gene expression. There were no significant differences in immune subsets across groups. We identified 281 probe sets unique to the tolerant (TOL) group and 122 for non-tolerant (non-TOL). These were enriched for process networks including NK cell cytotoxicity, antigen presentation, lymphocyte proliferation, and cell cycle and apoptosis. Differential gene expression was enriched for CD56, CD66, and CD14 human lineage-specific gene expression. Differential expression of 20 probe sets between groups was sufficient to develop a classifier with > 90% accuracy, correctly classifying 14/15 TOL cases and 15/17 non-TOL cases. These data suggest that differential gene expression can be utilized to accurately classify tolerant patients following HCT. Prospective investigation of immune tolerance biologic markers is warranted. PMID:25774806

  11. Gene Expression: Sizing it all up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic architecture appears to be a largely unexplored component of gene expression. Although surely not the end of the story, we are learning that when it comes to gene expression, size is important. We have been surprised to find that certain patterns of expression, tissue-specific versus constit...

  12. Gene expression as a biomarker for human radiation exposure.

    PubMed

    Omaruddin, Romaica A; Roland, Thomas A; Wallace, H James; Chaudhry, M Ahmad

    2013-03-01

    Accidental exposure to ionizing radiation can be unforeseen, rapid, and devastating. The detonation of a radiological device leading to such an exposure can be detrimental to the exposed population. The radiation-induced damage may manifest as acute effects that can be detected clinically or may be more subtle effects that can lead to long-term radiation-induced abnormalities. Accurate identification of the individuals exposed to radiation is challenging. The availability of a rapid and effective screening test that could be used as a biomarker of radiation exposure detection is mandatory. We tested the suitability of alterations in gene expression to serve as a biomarker of human radiation exposure. To develop a useful gene expression biomonitor, however, gene expression changes occurring in response to irradiation in vivo must be measured directly. Patients undergoing radiation therapy provide a suitable test population for this purpose. We examined the expression of CC3, MADH7, and SEC PRO in blood samples of these patients before and after radiotherapy to measure the in vivo response. The gene expression after ionizing radiation treatment varied among different patients, suggesting the complexity of the response. The expression of the SEC PRO gene was repressed in most of the patients. The MADH7 gene was found to be upregulated in most of the subjects and could serve as a molecular marker of radiation exposure. PMID:23446844

  13. EXPECTATIONS, VALIDITY, AND REALITY IN GENE EXPRESSION PROFILING

    PubMed Central

    Kim, Kyoungmi; Zakharkin, Stanislav O.; Allison, David B

    2010-01-01

    Objective: To provide a critical overview of gene expression profiling methodology and discuss areas of future development. Results: Gene expression profiling has been used extensively in biological research and has resulted in significant advances in the understanding of the molecular mechanisms of complex disorders, including cancer, heart disease, and metabolic disorders. However, translating this technology into genomic medicine for use in diagnosis and prognosis faces many challenges. In addition, gene expression profile analysis is frequently controversial, because its conclusions often lack reproducibility and claims of effective dissemination into translational medicine have, in some cases, been remarkably unjustified. In the last decade, a large number of methodological and technical solutions have been offered to overcome the challenges. Study Design and Setting: We consider the strengths, limitations, and appropriate applications of gene expression profiling techniques, with particular reference to the clinical relevance. Conclusion: Some studies have demonstrated the ability and clinical utility of gene expression profiling for use as diagnostic, prognostic, and predictive molecular markers. The challenges of gene expression profiling lie with the standardization of analytic approaches and the evaluation of the clinical merit in broader heterogeneous populations by prospective clinical trials. PMID:20579843

  14. Trichloroethylene effects on gene expression during cardiac development

    SciTech Connect

    Collier, John Michael; Selmin, Ornella; Johnson, Paula D.; Runyan, Raymond B.

    2003-05-09

    Background: Halogenated hydrocarbon exposure is associated with changes in gene expression in adult and embryonic tissue. The present study was undertaken to identify differentially expressed mRNA transcripts in embryonic hearts from Sprague-Dawley rats exposed to trichloroethylene (TCE) or potential bio-transformation products of TCE, Dichloroethylene (DCE) and Trichloroacetic acid (TCAA). Methods: cDNA subtractive hybridization was used to selectively amplify expressed mRNA in either control or day 11 embryonic rat hearts exposed to one of these halogenated hydrocarbons from day 0 to 11. The doses used were 1100 and 110 ppm (8300 and 830 mu M) TCE, 110 and 11 ppm (1100 and 110 mu M) DCE, 27.3 and 2.75 mg/ml (100 and 10 mM) TCAA. Control animals were given distilled drinking water throughout the period of experiments. Results: Sequencing of over 100 clones derived from halogenated hydrocarbon exposed groups=resulted in identification of numerous differentially regulate gene sequences. Up-regulated transcripts identified include genes associated with stress response (Hsp 70) and homeostasis (several ribosomal proteins). Down-regulated transcripts include extracellular matrix components (GPI-p137 and vimentin) and Ca2 + responsive proteins (Serca-2 Ca2+-ATPase and beta-catenin). Two possible markers for fetal TCE exposure were identified: Serca-2 and GPI-p137, a GPI-linked protein of unknown function. Both markers show a dose-related decrease in mRNA transcript levels associated with fetal exposure to TCE. Differential regulation of expression of both markers by TCE was confirmed by dot blot analysis and semi-quantitative RT-PCR. Levels of exposure between 100 and 250 ppb (0.76 and 1.9 mu M) TCE are sufficient to decrease expression of both the Ca2+-AT Pase and GPI-p137. Conclusion: Sequences down-regulated with TCE exposure appear to be those associated with cellular=housekeeping, cell adhesion and developmental processes, while TCE=exposure up-regulates expression

  15. Control of RANKL Gene Expression

    PubMed Central

    O'Brien, Charles A.

    2009-01-01

    Osteoclasts are highly specialized cells capable of degrading mineralized tissue and form at different regions of bone to meet different physiological needs, such as mobilization of calcium, modeling of bone structure, and remodeling of bone matrix. Osteoclast production is elevated in a number of pathological conditions, many of which lead to loss of bone mass. Whether normal or pathological, osteoclastogenesis strictly depends upon support from accessory cells which supply cytokines required for osteoclast differentiation. Only one of these cytokines, receptor activator of NFκB ligand (RANKL), is absolutely essential for osteoclast formation throughout life and is thus expressed by all cell types that support osteoclast differentiation. The central role of RANKL in bone resorption is highlighted by the fact that it is the basis for a new therapy to inhibit bone loss. This review will discuss mechanisms that control RANKL gene expression in different osteoclast-support cells and how the study of such mechanisms may lead to a better understanding of the cellular interactions that drive normal and pathological bone resorption. PMID:19716455

  16. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  17. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  18. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  19. Presence of FLT3-ITD and high BAALC expression are independent prognostic markers in childhood acute myeloid leukemia.

    PubMed

    Staffas, Anna; Kanduri, Meena; Hovland, Randi; Rosenquist, Richard; Ommen, Hans Beier; Abrahamsson, Jonas; Forestier, Erik; Jahnukainen, Kirsi; Jónsson, Ólafur G; Zeller, Bernward; Palle, Josefine; Lönnerholm, Gudmar; Hasle, Henrik; Palmqvist, Lars; Ehrencrona, Hans

    2011-11-24

    Mutation status of FLT3, NPM1, CEBPA, and WT1 genes and gene expression levels of ERG, MN1, BAALC, FLT3, and WT1 have been identified as possible prognostic markers in acute myeloid leukemia (AML). We have performed a thorough prognostic evaluation of these genetic markers in patients with pediatric AML enrolled in the Nordic Society of Pediatric Hematology and Oncology (NOPHO) 1993 or NOPHO 2004 protocols. Mutation status and expression levels were analyzed in 185 and 149 patients, respectively. Presence of FLT3-internal tandem duplication (ITD) was associated with significantly inferior event-free survival (EFS), whereas presence of an NPM1 mutation in the absence of FLT3-ITD correlated with significantly improved EFS. Furthermore, high levels of ERG and BAALC transcripts were associated with inferior EFS. No significant correlation with survival was seen for mutations in CEBPA and WT1 or with gene expression levels of MN1, FLT3, and WT1. In multivariate analysis, the presence of FLT3-ITD and high BAALC expression were identified as independent prognostic markers of inferior EFS. We conclude that analysis of the mutational status of FLT3 and NPM1 at diagnosis is important for prognostic stratification of patients with pediatric AML and that determination of the BAALC gene expression level can add valuable information. PMID:21967978

  20. Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision

    PubMed Central

    Nishizawa-Yokoi, Ayako; Endo, Masaki; Ohtsuki, Namie; Saika, Hiroaki; Toki, Seiichi

    2015-01-01

    Precise genome engineering via homologous recombination (HR)-mediated gene targeting (GT) has become an essential tool in molecular breeding as well as in basic plant science. As HR-mediated GT is an extremely rare event, positive–negative selection has been used extensively in flowering plants to isolate cells in which GT has occurred. In order to utilize GT as a methodology for precision mutagenesis, the positive selectable marker gene should be completely eliminated from the GT locus. Here, we introduce targeted point mutations conferring resistance to herbicide into the rice acetolactate synthase (ALS) gene via GT with subsequent marker excision by piggyBac transposition. Almost all regenerated plants expressing piggyBac transposase contained exclusively targeted point mutations without concomitant re-integration of the transposon, resulting in these progeny showing a herbicide bispyribac sodium (BS)-tolerant phenotype. This approach was also applied successfully to the editing of a microRNA targeting site in the rice cleistogamy 1 gene. Therefore, our approach provides a general strategy for the targeted modification of endogenous genes in plants. PMID:25284193

  1. Molecular Classification of Renal Tumors by Gene Expression Profiling

    PubMed Central

    Schuetz, Audrey N.; Yin-Goen, Qiqin; Amin, Mahul B.; Moreno, Carlos S.; Cohen, Cynthia; Hornsby, Christopher D.; Yang, Wen Li; Petros, John A.; Issa, Muta M.; Pattaras, John G.; Ogan, Kenneth; Marshall, Fray F.; Young, Andrew N.

    2005-01-01

    Renal tumor classification is important because histopathological subtypes are associated with distinct clinical behavior. However, diagnosis is difficult because tumor subtypes have overlapping microscopic characteristics. Therefore, ancillary methods are needed to optimize classification. We used oligonucleotide microarrays to analyze 31 adult renal tumors, including clear cell renal cell carcinoma (RCC), papillary RCC, chromophobe RCC, oncocytoma, and angiomyolipoma. Expression profiles correlated with histopathology; unsupervised algorithms clustered 30 of 31 tumors according to appropriate diagnostic subtypes while supervised analyses identified significant, subtype-specific expression markers. Clear cell RCC overexpressed proximal nephron, angiogenic, and immune response genes, chromophobe RCC oncocytoma overexpressed distal nephron and oxidative phosphorylation genes, papillary RCC overexpressed serine protease inhibitors, and extracellular matrix products, and angiomyolipoma overexpressed muscle developmental, lipid biosynthetic, melanocytic, and distinct angiogenic factors. Quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry of formalin-fixed renal tumors confirmed overexpression of proximal nephron markers (megalin/low-density lipoprotein-related protein 2, α-methylacyl CoA racemase) in clear cell and papillary RCC and distal nephron markers (β-defensin 1, claudin 7) in chromophobe RCC/oncocytoma. In summary, renal tumor subtypes were classified by distinct gene expression profiles, illustrating tumor pathobiology and translating into novel molecular bioassays using fixed tissue. PMID:15858144

  2. ALTERED GENE EXPRESSION AND DEVELOPMENT OF POTENTIAL BIOMARKERS IN MEDAKA (ORYZIAS LATIPES) BRAIN, LIVER AND TESTIS FOLLOWING EXPOSURE TO FIBRATE PHARMACEUTICALS

    EPA Science Inventory

    To help address the consequences of increasing levels of environmental contaminants and to identify potentially novel markers of toxicity, we examined gene expression profiles from medaka (Oryzias latipes) exposed to a prototypical fibrate pharmaceutical. Changes in gene express...

  3. Identification of Drought Tolerance Markers in a Diverse Population of Rice Cultivars by Expression and Metabolite Profiling

    PubMed Central

    Degenkolbe, Thomas; Do, Phuc T.; Kopka, Joachim; Zuther, Ellen; Hincha, Dirk K.; Köhl, Karin I.

    2013-01-01

    Rice provides about half of the calories consumed in Asian countries, but its productivity is often reduced by drought, especially when grown under rain-fed conditions. Cultivars with increased drought tolerance have been bred over centuries. Slow selection for drought tolerance on the basis of phenotypic traits may be accelerated by using molecular markers identified through expression and metabolic profiling. Previously, we identified 46 candidate genes with significant genotype × environment interaction in an expression profiling study on four cultivars with contrasting drought tolerance. These potential markers and in addition GC-MS quantified metabolites were tested in 21 cultivars from both indica and japonica background that varied in drought tolerance. Leaf blades were sampled from this population of cultivars grown under control or long-term drought condition and subjected to expression analysis by qRT-PCR and metabolite profiling. Under drought stress, metabolite levels correlated mainly negatively with performance parameters, but eight metabolites correlated positively. For 28 genes, a significant correlation between expression level and performance under drought was confirmed. Negative correlations were predominant. Among those with significant positive correlation was the gene coding for a cytosolic fructose-1,6-bisphosphatase. This enzyme catalyzes a highly regulated step in C-metabolism. The metabolic and transcript marker candidates for drought tolerance were identified in a highly diverse population of cultivars. Thus, these markers may be used to select for tolerance in a wide range of rice germplasms. PMID:23717458

  4. Gene expression in major depressive disorder.

    PubMed

    Jansen, R; Penninx, B W J H; Madar, V; Xia, K; Milaneschi, Y; Hottenga, J J; Hammerschlag, A R; Beekman, A; van der Wee, N; Smit, J H; Brooks, A I; Tischfield, J; Posthuma, D; Schoevers, R; van Grootheest, G; Willemsen, G; de Geus, E J; Boomsma, D I; Wright, F A; Zou, F; Sun, W; Sullivan, P F

    2016-03-01

    The search for genetic variants underlying major depressive disorder (MDD) has not yet provided firm leads to its underlying molecular biology. A complementary approach is to study gene expression in relation to MDD. We measured gene expression in peripheral blood from 1848 subjects from The Netherlands Study of Depression and Anxiety. Subjects were divided into current MDD (N=882), remitted MDD (N=635) and control (N=331) groups. MDD status and gene expression were measured again 2 years later in 414 subjects. The strongest gene expression differences were between the current MDD and control groups (129 genes at false-discovery rate, FDR<0.1). Gene expression differences across MDD status were largely unrelated to antidepressant use, inflammatory status and blood cell counts. Genes associated with MDD were enriched for interleukin-6 (IL-6)-signaling and natural killer (NK) cell pathways. We identified 13 gene expression clusters with specific clusters enriched for genes involved in NK cell activation (downregulated in current MDD, FDR=5.8 × 10(-5)) and IL-6 pathways (upregulated in current MDD, FDR=3.2 × 10(-3)). Longitudinal analyses largely confirmed results observed in the cross-sectional data. Comparisons of gene expression results to the Psychiatric Genomics Consortium (PGC) MDD genome-wide association study results revealed overlap with DVL3. In conclusion, multiple gene expression associations with MDD were identified and suggest a measurable impact of current MDD state on gene expression. Identified genes and gene clusters are enriched with immune pathways previously associated with the etiology of MDD, in line with the immune suppression and immune activation hypothesis of MDD. PMID:26008736

  5. Ameliorative Effects of Curcumin on Fibrinogen-Like Protein-2 Gene Expression, Some Oxido-Inflammatory and Apoptotic Markers in a Rat Model of l-Arginine-Induced Acute Pancreatitis.

    PubMed

    Shafik, Noha M; Abou-Fard, Ghada M

    2016-06-01

    The aim of the study was to investigate the ameliorative effects of curcumin on fibrinogen like protein-2 (fgl-2), some oxido-inflammatory and apoptotic markers in rat-induced acute pancreatitis (AP). Seventy-five albino rats were divided into control group, l-arginine (l-Arg)-induced AP group, curcumin pre-treated group before AP induction, curcumin post-treated group after AP induction, and curcumin injected group only. AP group showed severe necrotizing pancreatitis confirmed by histopathological changes and elevations in serum amylase and lipase activities, levels of epithelial neutrophil-activating peptide 78, tissue content of protein carbonyls, levels of tumor necrosis factor α, and caspase-3 as well as myeloperoxidase activity. Significant elevation in pancreatic fgl-2 mRNA expression was detected in AP group. Improvement of all parameters was detected with increase of caspase-3 in both curcumin-treated groups that confirmed curcumin ameliorative effects against AP through induction of apoptosis and inhibition of micro-thrombosis, inflammation, and oxidative stress. PMID:26862043

  6. Dietary wheat germ oil influences gene expression in larvae and eggs of the oriental fruit fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in animal nutrition, particularly essential dietary components, alter global gene expression patterns. Our goal is to identify molecular markers that serve as early indicators of the quality of insect culture media. Markers of deficient culture media will increase the efficiency of develop...

  7. Analysis of Gene Expression Patterns Using Biclustering.

    PubMed

    Roy, Swarup; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2016-01-01

    Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns. PMID:26350227

  8. Inferring Developmental Stage Composition from Gene Expression in Human Malaria

    PubMed Central

    Montgomery, Jacqui; Sidhu, Amar Bir; Oh, Keunyoung; Meyer, Evan; Pierre-Louis, Willythssa; Seydel, Karl; Milner, Danny; Williamson, Kim; Wiegand, Roger; Ndiaye, Daouda; Daily, Johanna; Wirth, Dyann; Taylor, Terrie; Huttenhower, Curtis; Marti, Matthias

    2013-01-01

    In the current era of malaria eradication, reducing transmission is critical. Assessment of transmissibility requires tools that can accurately identify the various developmental stages of the malaria parasite, particularly those required for transmission (sexual stages). Here, we present a method for estimating relative amounts of Plasmodium falciparum asexual and sexual stages from gene expression measurements. These are modeled using constrained linear regression to characterize stage-specific expression profiles within mixed-stage populations. The resulting profiles were analyzed functionally by gene set enrichment analysis (GSEA), confirming differentially active pathways such as increased mitochondrial activity and lipid metabolism during sexual development. We validated model predictions both from microarrays and from quantitative RT-PCR (qRT-PCR) measurements, based on the expression of a small set of key transcriptional markers. This sufficient marker set was identified by backward selection from the whole genome as available from expression arrays, targeting one sentinel marker per stage. The model as learned can be applied to any new microarray or qRT-PCR transcriptional measurement. We illustrate its use in vitro in inferring changes in stage distribution following stress and drug treatment and in vivo in identifying immature and mature sexual stage carriers within patient cohorts. We believe this approach will be a valuable resource for staging lab and field samples alike and will have wide applicability in epidemiological studies of malaria transmission. PMID:24348235

  9. Xenbase: gene expression and improved integration.

    PubMed

    Bowes, Jeff B; Snyder, Kevin A; Segerdell, Erik; Jarabek, Chris J; Azam, Kenan; Zorn, Aaron M; Vize, Peter D

    2010-01-01

    Xenbase (www.xenbase.org), the model organism database for Xenopus laevis and X. (Silurana) tropicalis, is the principal centralized resource of genomic, development data and community information for Xenopus research. Recent improvements include the addition of the literature and interaction tabs to gene catalog pages. New content has been added including a section on gene expression patterns that incorporates image data from the literature, large scale screens and community submissions. Gene expression data are integrated into the gene catalog via an expression tab and is also searchable by multiple criteria using an expression search interface. The gene catalog has grown to contain over 15,000 genes. Collaboration with the European Xenopus Research Center (EXRC) has resulted in a stock center section with data on frog lines supplied by the EXRC. Numerous improvements have also been made to search and navigation. Xenbase is also the source of the Xenopus Anatomical Ontology and the clearinghouse for Xenopus gene nomenclature. PMID:19884130

  10. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  11. HOXB homeobox gene expression in cervical carcinoma.

    PubMed

    López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M

    2006-01-01

    The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer. PMID:16445654

  12. Gene expression profiling in developing human hippocampus.

    PubMed

    Zhang, Yan; Mei, Pinchao; Lou, Rong; Zhang, Michael Q; Wu, Guanyun; Qiang, Boqin; Zhang, Zhengguo; Shen, Yan

    2002-10-15

    The gene expression profile of developing human hippocampus is of particular interest and importance to neurobiologists devoted to development of the human brain and related diseases. To gain further molecular insight into the developmental and functional characteristics, we analyzed the expression profile of active genes in developing human hippocampus. Expressed sequence tags (ESTs) were selected by sequencing randomly selected clones from an original 3'-directed cDNA library of 150-day human fetal hippocampus, and a digital expression profile of 946 known genes that could be divided into 16 categories was generated. We also used for comparison 14 other expression profiles of related human neural cells/tissues, including human adult hippocampus. To yield more confidence regarding differential expression, a method was applied to attach normalized expression data to genes with a low false-positive rate (<0.05). Finally, hierarchical cluster analysis was used to exhibit related gene expression patterns. Our results are in accordance with anatomical and physiological observations made during the developmental process of the human hippocampus. Furthermore, some novel findings appeared to be unique to our results. The abundant expression of genes for cell surface components and disease-related genes drew our attention. Twenty-four genes are significantly different from adult, and 13 genes might be developing hippocampus-specific candidate genes, including wnt2b and some Alzheimer's disease-related genes. Our results could provide useful information on the ontogeny, development, and function of cells in the human hippocampus at the molecular level and underscore the utility of large-scale, parallel gene expression analyses in the study of complex biological phenomena. PMID:12271469

  13. Development of marker genes for jasmonic acid signaling in shoots and roots of wheat.

    PubMed

    Liu, Hongwei; Carvalhais, Lilia Costa; Kazan, Kemal; Schenk, Peer M

    2016-05-01

    The jasmonic acid (JA) signaling pathway plays key roles in a diverse array of plant development, reproduction, and responses to biotic and abiotic stresses. Most of our understanding of the JA signaling pathway derives from the dicot model plant Arabidopsis thaliana, while corresponding knowledge in wheat is somewhat limited. In this study, the expression of 41 genes implicated in the JA signaling pathway has been assessed on 10 day-old bread wheat seedlings, 24 h, 48 h, and 72 h after methyl-jasmonate (MeJA) treatment using quantitative real-time PCR. The examined genes have been previously reported to be involved in JA biosynthesis and catabolism, JA perception and signaling, and pathogen defense in wheat shoots and roots. This study provides evidence to suggest that the effect of MeJA treatment is more prominent in shoots than roots of wheat seedlings, and substantial regulation of the JA pathway-dependent defense genes occurs at 72 h after MeJA treatment. Results show that the expression of 22 genes was significantly affected by MeJA treatment in wheat shoots. However, only PR1.1 and PR3 were significantly differentially expressed in wheat roots, both at 24 h post-MeJA treatment, with other genes showing large variation in their gene expression in roots. While providing marker genes on JA signaling in wheat, future work may focus on elucidating the regulatory function of JA-modulated transcription factors, some of which have well-studied potential orthologs in Arabidopsis. PMID:27115051

  14. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  15. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  16. Gene Expression Studies in Lygus lineolaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes are expressed in insect cells, as in all living organisms, by transcription of DNA into RNA followed by translation of RNA into proteins. The intricate patterns of differential gene expression in time and space directly influence the development and function of every aspect of the organism. Wh...

  17. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  18. Vitamin D receptor expression is linked to potential markers of human thyroid papillary carcinoma.

    PubMed

    Izkhakov, Elena; Somjen, Dalia; Sharon, Orli; Knoll, Esther; Aizic, Asaf; Fliss, Dan M; Limor, Rona; Stern, Naftali

    2016-05-01

    Genes regulated cell-cell and cell-matrix adhesion and degradation of the extracellular matrix (ECM) have been screened as potential markers of malignant thyroid nodules. The mRNA expression levels of two of them, the ECM protein-1 (ECM1) and the type II transmembrane serine protease-4 (TMPRSS4), were shown to be an independent predictor of an existing thyroid carcinoma. The vitamin D receptor (VDR) is expressed in epithelial cells of the normal thyroid gland, as well as in malignant dividing cells, which respond to the active metabolite of vitamin D by decreased proliferative activity in vitro. We evaluated the relationship between mRNA gene expressions of TMPRSS4, ECM1 and VDR in 21 papillary thyroid carcinoma samples and compared it to 21 normal thyroid tissues from the same patients. Gene expression was considered as up- or down-regulated if it varied by more or less than 2-fold in the cancer tissue relative to the normal thyroid tissue (Ca/N) from the same patient. We found an overall significant adjusted correlation between the mRNA expression ratio (ExR) of VDR and that of ECM1 in Ca/N thyroid tissue (R=0.648, P<0.001). There was a high ExR of VDR between Ca/N thyroid tissue from the same patient (3.06±2.9), which also exhibited a high Ca/N ExR of ECM1 and/or of TMPRSS4 (>2, P=0.05).The finding that increased VDR expression in human thyroid cancer cells is often linked to increased ECM1 and/or TPMRSS4 expression warrants further investigation into the potential role of vitamin D analogs in thyroid carcinoma. PMID:26907966

  19. Gearbox gene expression and growth rate.

    PubMed

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors. PMID:24420108

  20. Quality measures for gene expression biclusters.

    PubMed

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  1. Quality Measures for Gene Expression Biclusters

    PubMed Central

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S.

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  2. An integrated approach to gene discovery and marker development in Atlantic cod (Gadus morhua).

    PubMed

    Bowman, Sharen; Hubert, Sophie; Higgins, Brent; Stone, Cynthia; Kimball, Jennifer; Borza, Tudor; Bussey, Jillian Tarrant; Simpson, Gary; Kozera, Catherine; Curtis, Bruce A; Hall, Jennifer R; Hori, Tiago S; Feng, Charles Y; Rise, Marlies; Booman, Marije; Gamperl, A Kurt; Trippel, Edward; Symonds, Jane; Johnson, Stewart C; Rise, Matthew L

    2011-04-01

    Atlantic cod is a species that has been overexploited by the capture fishery. Programs to domesticate this species are underway in several countries, including Canada, to provide an alternative route for production. Selective breeding programs have been successfully applied in the domestication of other species, with genomics-based approaches used to augment conventional methods of animal production in recent years. Genomics tools, such as gene sequences and sets of variable markers, also have the potential to enhance and accelerate selective breeding programs in aquaculture, and to provide better monitoring tools to ensure that wild cod populations are well managed. We describe the generation of significant genomics resources for Atlantic cod through an integrated genomics/selective breeding approach. These include 158,877 expressed sequence tags (ESTs), a set of annotated putative transcripts and several thousand single nucleotide polymorphism markers that were developed from, and have been shown to be highly variable in, fish enrolled in two selective breeding programs. Our EST collection was generated from various tissues and life cycle stages. In some cases, tissues from which libraries were generated were isolated from fish exposed to stressors, including elevated temperature, or antigen stimulation (bacterial and viral) to enrich for transcripts that are involved in these response pathways. The genomics resources described here support the developing aquaculture industry, enabling the application of molecular markers within selective breeding programs. Marker sets should also find widespread application in fisheries management. PMID:20396923

  3. Mining, genetic mapping and expression analysis of EST-derived resistance gene homologs (RGHs) in cotton

    PubMed Central

    2014-01-01

    Background Cotton is the dominant textile crop and also serves as an important oil crop. An estimated 15% economic loss associated with cotton production in China has been caused by diseases, and no resistance genes have been cloned in this crop. Molecular markers developed from resistance gene homologues (RGHs) might be tightly linked with target genes and could be used for marker-assisted selection (MAS) or gene cloning. Results To genetically map expressed RGHs, 100 potential pathogenesis-related proteins (PRPs) and 215 resistance gene analogs (RGAs) were identified in the cotton expressed sequence tag database, and 347 specific primers were developed. Meanwhile, 61 cotton genome-derived RGA markers and 24 resistance gene analog polymorphism (RGAP) markers from published papers were included to view their genomic distribution. As a result, 38 EST-derived and 17 genome-derived RGH markers were added to our interspecific genetic map. These 55 markers were distributed on 18 of the 26 cotton chromosomes, with 34 markers on 6 chromosomes (Chr03, Chr04, Chr11, Chr17, Chr19 and Chr26). Homologous RGHs tended to be clustered; RGH clusters appeared on 9 chromosomes, with larger clusters on Chr03, Chr04 and Chr19, which suggests that RGH clusters are widely distributed in the cotton genome. Expression analysis showed that 19 RGHs were significantly altered after inoculation with the V991 stain of Verticillium dahliae. Comparative mapping showed that four RGH markers were linked with mapped loci for Verticillium wilt resistance. Conclusions The genetic mapping of RGHs confirmed their clustering in cotton genome. Expression analysis and comparative mapping suggest that EST-derived RGHs participate in cotton resistance. RGH markers are seemed to be useful tools to detected resistance loci and identify candidate resistance genes in cotton. PMID:25064562

  4. Considerations For Optimizing Microbiome Analysis Using a Marker Gene.

    PubMed

    de la Cuesta-Zuluaga, Jacobo; Escobar, Juan S

    2016-01-01

    Next-generation sequencing technologies have found a widespread use in the study of host-microbe interactions due to the increase in their throughput and their ever-decreasing costs. The analysis of human-associated microbial communities using a marker gene, particularly the 16S rRNA, has been greatly benefited from these technologies - the human gut microbiome research being a remarkable example of such analysis that has greatly expanded our understanding of microbe-mediated human health and disease, metabolism, and food absorption. 16S studies go through a series of in vitro and in silico steps that can greatly influence their outcomes. However, the lack of a standardized workflow has led to uncertainties regarding the transparency and reproducibility of gut microbiome studies. We, here, discuss the most common challenges in the archetypical 16S rRNA workflow, including the extraction of total DNA, its use as template in PCR with primers that amplify specific hypervariable regions of the gene, amplicon sequencing, the denoising and removal of low-quality reads, the detection and removal of chimeric sequences, the clustering of high-quality sequences into operational taxonomic units, and their taxonomic classification. We recommend the essential technical information that should be conveyed in publications for reproducibility of results and encourage non-experts to include procedures and available tools that mitigate most of the problems encountered in microbiome analysis. PMID:27551678

  5. Considerations For Optimizing Microbiome Analysis Using a Marker Gene

    PubMed Central

    de la Cuesta-Zuluaga, Jacobo; Escobar, Juan S.

    2016-01-01

    Next-generation sequencing technologies have found a widespread use in the study of host–microbe interactions due to the increase in their throughput and their ever-decreasing costs. The analysis of human-associated microbial communities using a marker gene, particularly the 16S rRNA, has been greatly benefited from these technologies – the human gut microbiome research being a remarkable example of such analysis that has greatly expanded our understanding of microbe-mediated human health and disease, metabolism, and food absorption. 16S studies go through a series of in vitro and in silico steps that can greatly influence their outcomes. However, the lack of a standardized workflow has led to uncertainties regarding the transparency and reproducibility of gut microbiome studies. We, here, discuss the most common challenges in the archetypical 16S rRNA workflow, including the extraction of total DNA, its use as template in PCR with primers that amplify specific hypervariable regions of the gene, amplicon sequencing, the denoising and removal of low-quality reads, the detection and removal of chimeric sequences, the clustering of high-quality sequences into operational taxonomic units, and their taxonomic classification. We recommend the essential technical information that should be conveyed in publications for reproducibility of results and encourage non-experts to include procedures and available tools that mitigate most of the problems encountered in microbiome analysis. PMID:27551678

  6. Aplysia californica neurons express microinjected neuropeptide genes.

    PubMed Central

    DesGroseillers, L; Cowan, D; Miles, M; Sweet, A; Scheller, R H

    1987-01-01

    Neuropeptide genes are expressed in specific subsets of large polyploid neurons in Aplysia californica. We have defined the transcription initiation sites of three of these neuropeptide genes (the R14, L11, and ELH genes) and determined the nucleotide sequence of the promoter regions. The genes contain the usual eucaryotic promoter signals as well as other structures of potential regulatory importance, including inverted and direct repeats. The L11 and ELH genes, which are otherwise unrelated, have homology in the promoter regions, while the R14 promoter was distinct. When cloned plasmids were microinjected into Aplysia neurons in organ culture, transitions between supercoiled, relaxed circular, and linear DNAs occurred along with ligation into high-molecular-weight species. About 20% of the microinjected neurons expressed the genes. The promoter region of the R14 gene functioned in expression of the microinjected DNA in all cells studied. When both additional 5' and 3' sequences were included, the gene was specifically expressed only in R14, suggesting that the specificity of expression is generated by a multicomponent repression system. Finally, the R14 peptide could be expressed in L11, demonstrating that it is possible to alter the transmitter phenotype of these neurons by introduction of cloned genes. Images PMID:3670293

  7. Methodological Limitations in Determining Astrocytic Gene Expression

    PubMed Central

    Peng, Liang; Guo, Chuang; Wang, Tao; Li, Baoman; Gu, Li; Wang, Zhanyou

    2013-01-01

    Traditionally, astrocytic mRNA and protein expression are studied by in situ hybridization (ISH) and immunohistochemically. This led to the concept that astrocytes lack aralar, a component of the malate-aspartate-shuttle. At least similar aralar mRNA and protein expression in astrocytes and neurons isolated by fluorescence-assisted cell sorting (FACS) reversed this opinion. Demonstration of expression of other astrocytic genes may also be erroneous. Literature data based on morphological methods were therefore compared with mRNA expression in cells obtained by recently developed methods for determination of cell-specific gene expression. All Na,K-ATPase-α subunits were demonstrated by immunohistochemistry (IHC), but there are problems with the cotransporter NKCC1. Glutamate and GABA transporter gene expression was well determined immunohistochemically. The same applies to expression of many genes of glucose metabolism, whereas a single study based on findings in bacterial artificial chromosome (BAC) transgenic animals showed very low astrocytic expression of hexokinase. Gene expression of the equilibrative nucleoside transporters ENT1 and ENT2 was recognized by ISH, but ENT3 was not. The same applies to the concentrative transporters CNT2 and CNT3. All were clearly expressed in FACS-isolated cells, followed by biochemical analysis. ENT3 was enriched in astrocytes. Expression of many nucleoside transporter genes were shown by microarray analysis, whereas other important genes were not. Results in cultured astrocytes resembled those obtained by FACS. These findings call for reappraisal of cellular nucleoside transporter expression. FACS cell yield is small. Further development of cell separation methods to render methods more easily available and less animal and cost consuming and parallel studies of astrocytic mRNA and protein expression by ISH/IHC and other methods are necessary, but new methods also need to be thoroughly checked. PMID:24324456

  8. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  9. Expression of Molecular Markers of Angiogenesis, Lymphangiogenesis, and Proliferation Depending on the Stage of Skin Melanoma.

    PubMed

    Bgatova, N P; Lomakin, A I; Fursov, S A; Kachesov, I V; Chepko, S A; Isakova, N B; Borodin, Yu I; Voytsitsky, V E; Konenkov, V I

    2016-08-01

    The expression of molecular markers characterizing activity of the tumor process and metastases (proliferation marker Ki-67, angiogenesis marker CD34, and lymphangiogenesis markers podoplanin and LYVE-1) was assessed by immunohictochemical method in the primary tumor specimens collected during surgery for cutaneous melanoma (40 patients). Proliferative activity of the tumor tissue and volume density of peritumoral blood and lymph vessels increased with increasing tumor malignancy, which could indicate the risk of metastases. PMID:27590758

  10. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. PMID:25058012

  11. A comparative gene expression database for invertebrates

    PubMed Central

    2011-01-01

    Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN) projects. PMID:21861937

  12. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops. PMID:23974493

  13. The expression of marker for endometrial stem cell and fibrosis was increased in intrauterine adhesious

    PubMed Central

    Hu, Jianguo; Zeng, Biao; Jiang, Xingwei; Hu, lina; Meng, Ying; Zhu, Yi; Mao, Min

    2015-01-01

    Objectives: The objective of the present study was to evaluate whether fibrotic markers and endometrial stem cell markers were abnormal expressed in endometrium of intrauterine adhesions and a female mouse model for intrauterine adhesions. Methods: We revaluated endometrial fibrosis using Masson’s stain. We detected the expression of endometrium stem cell markers (CD146 and CD140b) and fibrosis markers (TGF-Beta, CTGF, collagen protein I and collagen protein III) in endometrial tissue with intrauterine adhesions using real-time PCR and S-P (Streptavidin-Peroxidase) immunohistochemistry. We create a female mouse model for intrauterine adhesions using mechanical injury, and then revalue the expression of endometrial stem cell markers and fibrosis markers in endometrial tissue of mouse model for intrauterine adhesions. Results: The ratio of the area with endometrial fibrosis to total endometrial area in intrauterine adhesious significantly increased compared with the normal endometrial tissue (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue with intrauterine adhesious compared to normal endometrial tissue (P < 0.05). The animal experiments showed that the ratio of the area with endometrial fibrosis to total endometrial area significantly increased compared with the control group (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue compared to the control group (P < 0.05). Conclusion: Aberrant activation of fibrosis may be involved in the pathology of intrauterine adhesious. PMID:25973037

  14. Differential placental gene expression in severe preeclampsia.

    PubMed

    Sitras, V; Paulssen, R H; Grønaas, H; Leirvik, J; Hanssen, T A; Vårtun, A; Acharya, G

    2009-05-01

    We investigated the global placental gene expression profile in severe preeclampsia. Twenty-one women were randomly selected from 50 participants with uncomplicated pregnancies to match 21 patients with severe preeclampsia. A 30K Human Genome Survey Microarray v.2.0 (Applied Biosystems) was used to evaluate the gene expression profile. After RNA isolation, five preeclamptic placentas were excluded due to poor RNA quality. The series composed of 37 hybridizations in a one-channel detection system of chemiluminescence emitted by the microarrays. An empirical Bayes analysis was applied to find differentially expressed genes. In preeclamptic placentas 213 genes were significantly (fold-change>or=2 and pexpressed genes were associated with Alzheimer disease, angiogenesis, Notch-, TGFbeta- and VEGF-signalling pathways. Sixteen genes best discriminated preeclamptic from normal placentas. Comparison between early- (<34 weeks) and late-onset preeclampsia showed 168 differentially expressed genes with oxidative stress, inflammation, and endothelin signalling pathways mainly involved in early-onset disease. Validation of the microarray results was performed by RT-PCR, quantitative urine hCG measurement and placental histopathologic examination. In summary, placental gene expression is altered in preeclampsia and we provide a comprehensive list of the differentially expressed genes. Placental gene expression is different between early- and late-onset preeclampsia, suggesting differences in pathophysiology. PMID:19249095

  15. Genetic transformation of apple (Malus x domestica) without use of a selectable marker gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selectable marker genes are widely used for the efficient transformation of crop plants. In most cases, antibiotic or herbicide resistance marker genes are preferred, because they tend to be most efficient. Due mainly to consumer and grower concerns, considerable effort is being put into developin...

  16. Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and wasabi defensin genes.

    PubMed

    Khan, Raham Sher; Darwish, Nader Ahmed; Khattak, Bushra; Ntui, Valentine Otang; Kong, Kynet; Shimomae, Kazuki; Nakamura, Ikuo; Mii, Masahiro

    2014-09-01

    Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations. PMID:24802621

  17. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  18. The cancer marker neutrophil gelatinase-associated lipocalin is highly expressed in human endometrial hyperplasia.

    PubMed

    Liao, Chi-Jr; Huang, Yen Hua; Au, Heng-Kien; Wang, Le-Ming; Chu, Sin-Tak

    2012-02-01

    Recently, endometrial hyperplasia was identified as presenting a higher risk for progressing to endometrial carcinoma more readily than adenomyosis. The Lcn-2 gene encodes neutrophil gelatinase-associated lipocalin (NGAL), which promotes cell proliferation and serves as a cancer marker in some cancers. In our current study, we investigated the relationship between the expression of NGAL and that of pathogenic cytokines and cancer-related genes including cyclooxygenase-2 (COX-2), E-cadherin, β-catenin, and vimentin in patients with endometrial disorders. NGAL expression was examined by Western blotting, immunohistochemistry, and reverse-transcription polymerase chain reaction (RT-PCR) in hyperplasia and adenomyosis biopsy samples. Immunohistochemistry demonstrated the occurrence of NGAL in glandular epithelial cells but not in the stromal cells of hyperplasia biopsy samples. NGAL protein and mRNA expression were significantly greater in endometrial hyperplasia than in endometrial adenomyosis. Although our data showed no difference in pathogenic cytokines between patients with endometrial hyperplasia and endometrial adenomyosis, we observed high expression levels of COX-2, β-catenin, vimentin, and E-cadherin in patients with endometrial hyperplasia. NGAL mRNA expression correlated positively with COX-2 and E-cadherin mRNA expression (r = 0.41 and r = 0.57, respectively), but correlated negatively with vimentin and β-catenin mRNA expression (r = -0.42 and r = -0.61, respectively). Our data suggest that NGAL is up-regulated in patients with endometrial hyperplasia to prevent the transition from hyperplasia to carcinoma. PMID:21573795

  19. Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes.

    PubMed

    López-Noguera, Sonia; Petri, César; Burgos, Lorenzo

    2009-12-01

    The presence of marker genes conferring antibiotic resistance in transgenic plants represents a serious obstacle for their public acceptance and future commercialization. In addition, their elimination may allow gene stacking by the same selection strategy. In apricot, selection using the selectable marker gene nptII, that confers resistance to aminoglycoside antibiotics, is relatively effective. An attractive alternative is offered by the MAT system (multi-auto-transformation), which combines the ipt gene for positive selection with the recombinase system R/RS for removal of marker genes from transgenic cells after transformation. Transformation with an MAT vector has been attempted in the apricot cultivar 'Helena'. Regeneration from infected leaves with Agrobacterium harboring a plasmid containing the ipt gene was significantly higher than that from non-transformed controls in a non-selective medium. In addition, transformation efficiencies were much higher than those previously reported using antibiotic selection, probably due to the integration of the regeneration-promoting ipt gene. However, the lack of an ipt expression-induced differential phenotype in apricot made difficult in detecting the marker genes excision and plants had to be evaluated at different times. PCR analysis showed that cassette excision start occurring after 6 months approximately and 1 year in culture was necessary for complete elimination of the cassette in all the transgenic lines. Excision was confirmed by Southern blot analysis. We report here for the first time in a temperate fruit tree that the MAT vector system improves regeneration and transformation efficiency and would allow complete elimination of marker genes from transgenic apricot plants by site-specific recombination. PMID:19820947

  20. Comparative gene expression analysis of ovarian carcinoma and normal ovarian epithelium by serial analysis of gene expression.

    PubMed

    Peters, David G; Kudla, Donna M; Deloia, Julie A; Chu, Tian Jiao; Fairfull, Liane; Edwards, Robert P; Ferrell, Robert E

    2005-07-01

    Despite the poor prognosis of ovarian cancer and the importance of early diagnosis, there are no reliable noninvasive biomarkers for detection in the early stages of disease. Therefore, to identify novel ovarian cancer markers with potential utility in early-stage screening protocols, we have undertaken an unbiased and comprehensive analysis of gene expression in primary ovarian tumors and normal human ovarian surface epithelium (HOSE) using Serial Analysis of Gene Expression (SAGE). Specifically, we have generated SAGE libraries from three serous adenocarcinomas of the ovary and, using novel statistical tools, have compared these to SAGE data derived from two pools of normal HOSE. Significantly, in contrast to previous SAGE-based studies, our normal SAGE libraries are not derived from cultured cell lines. We have also compared our data with publicly available SAGE data obtained from primary tumors and "normal" HOSE-derived cell lines. We have thus identified several known and novel genes whose expressions are elevated in ovarian cancer. These include but are not limited to CLDN3, WFDC2, FOLR1, COL18A1, CCND1, and FLJ12988. Furthermore, we found marked differences in gene expression patterns in primary HOSE tissue compared with cultured HOSE. The use of HOSE tissue as a control for these experiments, along with hierarchical clustering analysis, identified several potentially novel biomarkers of ovarian cancer, including TACC3, CD9, GNAI2, AHCY, CCT3, and HMGA1. In summary, these data identify several genes whose elevated expressions have not been observed previously in ovarian cancer, confirm the validity of several existing markers, and provide a foundation for future studies in the understanding and management of this disease. PMID:16030107

  1. A thiostrepton resistance gene and its mutants serve as selectable markers in Geobacillus kaustophilus HTA426.

    PubMed

    Wada, Keisuke; Kobayashi, Jyumpei; Furukawa, Megumi; Doi, Katsumi; Ohshiro, Takashi; Suzuki, Hirokazu

    2016-01-01

    Effective utilization of microbes often requires complex genetic modification using multiple antibiotic resistance markers. Because a few markers have been used in Geobacillus spp., the present study was designed to identify a new marker for these thermophiles. We explored antibiotic resistance genes functional in Geobacillus kaustophilus HTA426 and identified a thiostrepton resistance gene (tsr) effective at 50 °C. The tsr gene was further used to generate the mutant tsr(H258Y) functional at 55 °C. Higher functional temperature of the mutant was attributable to the increase in thermostability of the gene product because recombinant protein produced from tsr(H258Y) was more thermostable than that from tsr. In fact, the tsr(H258Y) gene served as a selectable marker for plasmid transformation of G. kaustophilus. This new marker could facilitate complex genetic modification of G. kaustophilus and potentially other Geobacillus spp. PMID:26333661

  2. Transcriptional regulation of secretin gene expression.

    PubMed

    Nishitani, J; Rindi, G; Lopez, M J; Upchurch, B H; Leiter, A B

    1995-01-01

    Expression of the gene encoding the hormone secretin is restricted to a specific enteroendocrine cell type and to beta-cells in developing pancreatic islets. To characterize regulatory elements in the secretin gene responsible for its expression in secretin-producing cells, we used a series of reporter genes for transient expression assays in transfection studies carried out in secretin-producing islet cell lines. Analysis of the transcriptional activity of deletion mutants identified a positive cis regulatory domain between 174 and 53 base pairs upstream from the transcriptional initiation site which was required for secretin gene expression in secretin-producing HIT insulinoma cells. Within this enhancer were sequences resembling two binding sites for the transcription factor Sp1, as well as a consensus sequence for binding to helix-loop-helix proteins. Analysis of these three elements by site-directed mutagenesis suggests that each is important for full transcriptional activity. The role of proximal enhancer sequences in directing secretin gene expression to appropriate tissues is further supported by studies in transgenic mice revealing that 1.6 kilobases of the secretin gene 5' flanking sequence were sufficient to direct the expression of either human growth hormone or simian virus 40 large T-antigen reporter genes to all major secretin-producing tissues. PMID:8774991

  3. Sexual differences of imprinted genes' expression levels.

    PubMed

    Faisal, Mohammad; Kim, Hana; Kim, Joomyeong

    2014-01-01

    In mammals, genomic imprinting has evolved as a dosage-controlling mechanism for a subset of genes that play critical roles in their unusual reproduction scheme involving viviparity and placentation. As such, many imprinted genes are highly expressed in sex-specific reproductive organs. In the current study, we sought to test whether imprinted genes are differentially expressed between the two sexes. According to the results, the expression levels of the following genes differ between the two sexes of mice: Peg3, Zim1, Igf2, H19 and Zac1. The expression levels of these imprinted genes are usually greater in males than in females. This bias is most obvious in the developing brains of 14.5-dpc embryos, but also detected in the brains of postnatal-stage mice. However, this sexual bias is not obvious in 10.5-dpc embryos, a developmental stage before the sexual differentiation. Thus, the sexual bias observed in the imprinted genes is most likely attributable by gonadal hormones rather than by sex chromosome complement. Overall, the results indicate that several imprinted genes are sexually different in terms of their expression levels, and further suggest that the transcriptional regulation of these imprinted genes may be influenced by unknown mechanisms associated with sexual differentiation. PMID:24125951

  4. High expression hampers horizontal gene transfer.

    PubMed

    Park, Chungoo; Zhang, Jianzhi

    2012-01-01

    Horizontal gene transfer (HGT), the movement of genetic material from one species to another, is a common phenomenon in prokaryotic evolution. Although the rate of HGT is known to vary among genes, our understanding of the cause of this variation, currently summarized by two rules, is far from complete. The first rule states that informational genes, which are involved in DNA replication, transcription, and translation, have lower transferabilities than operational genes. The second rule asserts that protein interactivity negatively impacts gene transferability. Here, we hypothesize that high expression hampers HGT, because the fitness cost of an HGT to the recipient, arising from the 1) energy expenditure in transcription and translation, 2) cytotoxic protein misfolding, 3) reduction in cellular translational efficiency, 4) detrimental protein misinteraction, and 5) disturbance of the optimal protein concentration or cell physiology, increases with the expression level of the transferred gene. To test this hypothesis, we examined laboratory and natural HGTs to Escherichia coli. We observed lower transferabilities of more highly expressed genes, even after controlling the confounding factors from the two established rules and the genic GC content. Furthermore, expression level predicts gene transferability better than all other factors examined. We also confirmed the significant negative impact of gene expression on the rate of HGTs to 127 of 133 genomes of eubacteria and archaebacteria. Together, these findings establish the gene expression level as a major determinant of horizontal gene transferability. They also suggest that most successful HGTs are initially slightly deleterious, fixed because of their negligibly low costs rather than high benefits to the recipient. PMID:22436996

  5. Gene expression in periodontal tissues following treatment

    PubMed Central

    Beikler, Thomas; Peters, Ulrike; Prior, Karola; Eisenacher, Martin; Flemmig, Thomas F

    2008-01-01

    Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT) was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A), Versican (CSPG-2), Matrixmetalloproteinase-1 (MMP-1), Down syndrome critical region protein-1 (DSCR-1), Macrophage inflammatory protein-2β (Cxcl-3), Inhibitor of apoptosis protein-1 (BIRC-1), Cluster of differentiation antigen 38 (CD38), Regulator of G-protein signalling-1 (RGS-1), and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS); the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2), Complement component 3 (C3), Prostaglandin-endoperoxide synthase-2 (COX-2), Interleukin-8 (IL-8), Endothelin-1 (EDN-1), Plasminogen activator inhibitor type-2 (PAI-2), Matrix-metalloproteinase-14 (MMP-14), and Interferon regulating factor-7 (IRF-7). Conclusion Gene expression profiles found in periodontal tissues following therapy

  6. Transcriptome assembly and digital gene expression atlas of the rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Transcriptome analysis is a preferred method for gene discovery, marker development and gene expression profiling in non-model organisms. Previously, we sequenced a transcriptome reference using Sanger-based and 454-pyrosequencing, however, a transcriptome assembly is still incomplete an...

  7. EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9.

    PubMed

    Jessop-Fabre, Mathew M; Jakočiūnas, Tadas; Stovicek, Vratislav; Dai, Zongjie; Jensen, Michael K; Keasling, Jay D; Borodina, Irina

    2016-08-01

    Saccharomyces cerevisiae is an established industrial host for production of recombinant proteins, fuels and chemicals. To enable stable integration of multiple marker-free overexpression cassettes in the genome of S. cerevisiae, we have developed a vector toolkit EasyClone-MarkerFree. The integration of linearized expression cassettes into defined genomic loci is facilitated by CRISPR/Cas9. Cas9 is recruited to the chromosomal location by specific guide RNAs (gRNAs) expressed from a set of gRNA helper vectors. Using our genome engineering vector suite, single and triple insertions are obtained with 90-100% and 60-70% targeting efficiency, respectively. We demonstrate application of the vector toolkit by constructing a haploid laboratory strain (CEN.PK113-7D) and a diploid industrial strain (Ethanol Red) for production of 3-hydroxypropionic acid, where we tested three different acetyl-CoA supply strategies, requiring overexpression of three to six genes each. Among the tested strategies was a bacterial cytosolic pyruvate dehydrogenase complex, which was integrated into the genome in a single transformation. The publicly available EasyClone-MarkerFree vector suite allows for facile and highly standardized genome engineering, and should be of particular interest to researchers working on yeast chassis with limited markers available. PMID:27166612

  8. Expression and Prognostic Significance of a Panel of Tissue Hypoxia Markers in Head-and-Neck Squamous Cell Carcinomas

    SciTech Connect

    Le, Quynh-Thu Kong, Christina; Lavori, Phillip W.; O'Byrne, Ken; Erler, Janine T.; Huang Xin; Chen Yijun; Cao Hongbin; Tibshirani, Robert; Denko, Nic; Giaccia, Amato J.; Koong, Albert C.

    2007-09-01

    Purpose: To investigate the expression pattern of hypoxia-induced proteins identified as being involved in malignant progression of head-and-neck squamous cell carcinoma (HNSCC) and to determine their relationship to tumor pO{sub 2} and prognosis. Methods and Materials: We performed immunohistochemical staining of hypoxia-induced proteins (carbonic anhydrase IX [CA IX], BNIP3L, connective tissue growth factor, osteopontin, ephrin A1, hypoxia inducible gene-2, dihydrofolate reductase, galectin-1, I{kappa}B kinase {beta}, and lysyl oxidase) on tumor tissue arrays of 101 HNSCC patients with pretreatment pO{sub 2} measurements. Analysis of variance and Fisher's exact tests were used to evaluate the relationship between marker expression, tumor pO{sub 2}, and CA IX staining. Cox proportional hazard model and log-rank tests were used to determine the relationship between markers and prognosis. Results: Osteopontin expression correlated with tumor pO{sub 2} (Eppendorf measurements) (p = 0.04). However, there was a strong correlation between lysyl oxidase, ephrin A1, and galectin-1 and CA IX staining. These markers also predicted for cancer-specific survival and overall survival on univariate analysis. A hypoxia score of 0-5 was assigned to each patient, on the basis of the presence of strong staining for these markers, whereby a higher score signifies increased marker expression. On multivariate analysis, increasing hypoxia score was an independent prognostic factor for cancer-specific survival (p = 0.015) and was borderline significant for overall survival (p = 0.057) when adjusted for other independent predictors of outcomes (hemoglobin and age). Conclusions: We identified a panel of hypoxia-related tissue markers that correlates with treatment outcomes in HNSCC. Validation of these markers will be needed to determine their utility in identifying patients for hypoxia-targeted therapy.

  9. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.)

    PubMed Central

    2009-01-01

    Background Chickpea (Cicer arietinum L.), an important grain legume crop of the world is seriously challenged by terminal drought and salinity stresses. However, very limited number of molecular markers and candidate genes are available for undertaking molecular breeding in chickpea to tackle these stresses. This study reports generation and analysis of comprehensive resource of drought- and salinity-responsive expressed sequence tags (ESTs) and gene-based markers. Results A total of 20,162 (18,435 high quality) drought- and salinity- responsive ESTs were generated from ten different root tissue cDNA libraries of chickpea. Sequence editing, clustering and assembly analysis resulted in 6,404 unigenes (1,590 contigs and 4,814 singletons). Functional annotation of unigenes based on BLASTX analysis showed that 46.3% (2,965) had significant similarity (≤1E-05) to sequences in the non-redundant UniProt database. BLASTN analysis of unique sequences with ESTs of four legume species (Medicago, Lotus, soybean and groundnut) and three model plant species (rice, Arabidopsis and poplar) provided insights on conserved genes across legumes as well as novel transcripts for chickpea. Of 2,965 (46.3%) significant unigenes, only 2,071 (32.3%) unigenes could be functionally categorised according to Gene Ontology (GO) descriptions. A total of 2,029 sequences containing 3,728 simple sequence repeats (SSRs) were identified and 177 new EST-SSR markers were developed. Experimental validation of a set of 77 SSR markers on 24 genotypes revealed 230 alleles with an average of 4.6 alleles per marker and average polymorphism information content (PIC) value of 0.43. Besides SSR markers, 21,405 high confidence single nucleotide polymorphisms (SNPs) in 742 contigs (with ≥ 5 ESTs) were also identified. Recognition sites for restriction enzymes were identified for 7,884 SNPs in 240 contigs. Hierarchical clustering of 105 selected contigs provided clues about stress- responsive candidate genes

  10. Marker-free plasmids for gene therapeutic applications--lack of antibiotic resistance gene substantially improves the manufacturing process.

    PubMed

    Mairhofer, Jürgen; Cserjan-Puschmann, Monika; Striedner, Gerald; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Grabherr, Reingard

    2010-04-01

    Plasmid DNA is being considered as a promising alternative to traditional protein vaccines or viral delivery methods for gene therapeutic applications. DNA-based products are highly flexible, stable, are easily stored and can be manufactured on a large scale. Although, much safer than viral approaches, issues have been raised with regard to safety due to possible integration of plasmid DNA into cellular DNA or spread of antibiotic resistance genes to intestinal bacteria by horizontal gene transfer. Accordingly, there is interest in methods for the production of plasmid DNA that lacks the antibiotic resistance gene to further improve their safety profile. Here, we report for the first time the gram-scale manufacturing of a minimized plasmid that is devoid of any additional sequence elements on the plasmid backbone, and merely consists of the target expression cassette and the bacterial origin of replication. Three different host/vector combinations were cultivated in a fed-batch fermentation process, comparing the progenitor strain JM108 to modified strains JM108murselect, hosting a plasmid either containing the aminoglycoside phosphotransferase which provides kanamycin resistance, or a marker-free variant of the same plasmid. The metabolic load exerted by expression of the aminoglycoside phosphotransferase was monitored by measuring ppGpp- and cAMP-levels. Moreover, we revealed that JM108 is deficient of the Lon protease and thereby refined the genotype of JM108. The main consequences of Lon-deficiency with regard to plasmid DNA production are discussed herein. Additionally, we found that the expression of the aminoglycoside phosphotransferase, conferring resistance to kanamycin, was very high in plasmid DNA producing processes that actually inclusion bodies were formed. Thereby, a severe metabolic load on the host cell was imposed, detrimental for overall plasmid yield. Hence, deleting the antibiotic resistance gene from the vector backbone is not only beneficial

  11. Use of the alr Gene as a Food-Grade Selection Marker in Lactic Acid Bacteria

    PubMed Central

    Bron, Peter A.; Benchimol, Marcos G.; Lambert, Jolanda; Palumbo, Emmanuelle; Deghorain, Marie; Delcour, Jean; de Vos, Willem M.; Kleerebezem, Michiel; Hols, Pascal

    2002-01-01

    Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of d-alanine and l-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Δalr) showed auxotrophy for d-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented d-alanine auxotrophy in the L. plantarum Δalr and L. lactis Δalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to d-cycloserine, a competitive inhibitor of Alr (600 and 200 μg/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that d-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Δalr. The resulting strain could grow in the absence of d-alanine only when expression of the alr gene was induced with nisin. PMID:12406763

  12. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  13. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  14. Correlation between Gene Expression and Osteoarthritis Progression in Human.

    PubMed

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N

    2016-01-01

    Osteoarthritis (OA) is a multifactorial disease characterized by gradual degradation of joint cartilage. This study aimed to quantify major pathogenetic factors during OA progression in human cartilage. Cartilage specimens were isolated from OA patients and scored 0-5 according to the Osteoarthritis Research Society International (OARSI) guidelines. Protein and gene expressions were measured by immunohistochemistry and qPCR, respectively. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used to detect apoptotic cells. Cartilage degeneration in OA is a gradual progress accompanied with gradual loss of collagen type II and a gradual decrease in mRNA expression of SOX9, ACAN and COL2A1. Expression of WNT antagonists DKK1 and FRZB was lost, while hypertrophic markers (RUNX2, COL10A1 and IHH) increased during OA progression. Moreover, DKK1 and FRZB negatively correlated with OA grading, while RUNX2 and IHH showed a significantly positive correlation with OA grading. The number of apoptotic cells was increased with the severity of OA. Taken together, our results suggested that genetic profiling of the gene expression could be used as markers for staging OA at the molecular level. This helps to understand the molecular pathology of OA and may lead to the development of therapies based on OA stage. PMID:27428952

  15. Correlation between Gene Expression and Osteoarthritis Progression in Human

    PubMed Central

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N.

    2016-01-01

    Osteoarthritis (OA) is a multifactorial disease characterized by gradual degradation of joint cartilage. This study aimed to quantify major pathogenetic factors during OA progression in human cartilage. Cartilage specimens were isolated from OA patients and scored 0–5 according to the Osteoarthritis Research Society International (OARSI) guidelines. Protein and gene expressions were measured by immunohistochemistry and qPCR, respectively. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used to detect apoptotic cells. Cartilage degeneration in OA is a gradual progress accompanied with gradual loss of collagen type II and a gradual decrease in mRNA expression of SOX9, ACAN and COL2A1. Expression of WNT antagonists DKK1 and FRZB was lost, while hypertrophic markers (RUNX2, COL10A1 and IHH) increased during OA progression. Moreover, DKK1 and FRZB negatively correlated with OA grading, while RUNX2 and IHH showed a significantly positive correlation with OA grading. The number of apoptotic cells was increased with the severity of OA. Taken together, our results suggested that genetic profiling of the gene expression could be used as markers for staging OA at the molecular level. This helps to understand the molecular pathology of OA and may lead to the development of therapies based on OA stage. PMID:27428952

  16. Characterization of the Hansenula polymorpha PUR7 gene and its use as selectable marker for targeted chromosomal integration.

    PubMed

    Haan, Gert Jan; van Dijk, Ralf; Kiel, Jan A K W; Veenhuis, Marten

    2002-03-01

    The Hansenula polymorpha genes encoding the putative functional homologs of the enzymes involved in the seventh and eighth step in purine biosynthesis, HpPUR7 and HpPUR8, were cloned and sequenced. An overexpression vector designated pHIPA4 was constructed, which contains the HpPUR7 gene as selectable marker and allows expression of genes of interest via the strong, inducible alcohol oxidase promoter. An ade11 auxotrophic mutant that is affected in the activity of the HpPUR7 gene product was used to construct strain NCYC495 ade11.1 leu1.1 ura3. This strain grew on methanol at wild-type rates (doubling time of approximately 4 h) and is suitable for independent introduction of four expression cassettes, each using one of the markers for selection, in addition to the zeocin resistance marker. It was subsequently used as a host for overproduction of two endogenous peroxisomal matrix proteins, amine oxidase and catalase. Efficient site-specific integration of pHIPA4 and overproduction of amine oxidase and catalase is demonstrated. The expression cassette appeared to be pre-eminently suited to mediate moderate protein production levels. The advantages of pHIPA4 and the new triple auxotrophic strain in relation to the use of H. polymorpha as a versatile cell factory or as a model organism for fundamental studies on the principles of peroxisome homeostasis is discussed. PMID:12702317

  17. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  18. Dynamic modeling of gene expression data

    PubMed Central

    Holter, Neal S.; Maritan, Amos; Cieplak, Marek; Fedoroff, Nina V.; Banavar, Jayanth R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small. PMID:11172013

  19. Nucleosomal promoter variation generates gene expression noise

    PubMed Central

    Brown, Christopher R.; Boeger, Hinrich

    2014-01-01

    Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter’s deterministic response to variation in its molecular surroundings). Here, we show—by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies—that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect. PMID:25468975

  20. Identification of SSR markers for a broad-spectrum blast resistance gene Pi-20(t) for marker-assisted breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-20(t) gene in rice confers broad-spectrum resistance against diverse pathotypes (races) of Magnaporthe oryzae (formerly Magnaporthe grisea) in China. Two flanking, and three co-segregating SSR markers nearby the centromere region of chromosome 12 for Pi-20(t) were identified using 526 extrem...

  1. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  2. [Progress on biosafety assessment of marker genes in genetically modified foods].

    PubMed

    Yang, Lichen; Yang, Xiaoguang

    2003-05-01

    Marker genes are useful in facilitating the detection of genetically modified organisms(GMO). These genes play an important role during the early identification stage of GMO development, but they exist in the mature genetically modified crops. So the safety assessment of these genes could not be neglected. In this paper, all the study on the biosafety assessment of marker genes were reviewed, their possible hazards and risks were appraised, and the marker genes proved safe were list too. GMO Labeling the is one important regulations for the development of genetically modified foods in the market. The accurate detecting techniques for GMO are the basis for setting up labeling regulation. In addition, some methods used to remove marker genes in genetically modified foods were introduced in the paper, which can eliminate their biosafety concern thoroughly. PMID:12914289

  3. Markers

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  4. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  5. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  6. Homeobox genes expressed during echinoderm arm regeneration.

    PubMed

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems. PMID:24309817

  7. Reading Genomes and Controlling Gene Expression

    NASA Astrophysics Data System (ADS)

    Libchaber, Albert

    2000-03-01

    Molecular recognition of DNA sequences is achieved by DNA hybridization of complementary sequences. We present various scenarios for optimization, leading to microarrays and global measurement. Gene expression can be controlled using gene constructs immobilized on a template with micron scale temperature heaters. We will discuss and present results on protein microarrays.

  8. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  9. Molecular Linkage Mapping and Marker-Trait Associations with NlRPT, a Downy Mildew Resistance Gene in Nicotiana langsdorffii

    PubMed Central

    Zhang, Shouan; Gao, Muqiang; Zaitlin, David

    2012-01-01

    Nicotiana langsdorffii is one of two species of Nicotiana known to express an incompatible interaction with the oomycete Peronospora tabacina, the causal agent of tobacco blue mold disease. We previously showed that incompatibility is due to the hypersensitive response (HR), and plants expressing the HR are resistant to P. tabacina at all stages of growth. Resistance is due to a single dominant gene in N. langsdorffii accession S-4-4 that we have named NlRPT. In further characterizing this unique host-pathogen interaction, NlRPT has been placed on a preliminary genetic map of the N. langsdorffii genome. Allelic scores for five classes of DNA markers were determined for 90 progeny of a “modified backcross” involving two N. langsdorffii inbred lines and the related species N. forgetiana. All markers had an expected segregation ratio of 1:1, and were scored in a common format. The map was constructed with JoinMap 3.0, and loci showing excessive transmission distortion were removed. The linkage map consists of 266 molecular marker loci defined by 217 amplified fragment length polymorphisms (AFLPs), 26 simple-sequence repeats (SSRs), 10 conserved orthologous sequence markers, nine inter-simple sequence repeat markers, and four target region amplification polymorphism markers arranged in 12 linkage groups with a combined length of 1062 cM. NlRPT is located on linkage group three, flanked by four AFLP markers and one SSR. Regions of skewed segregation were detected on LGs 1, 5, and 9. Markers developed for N. langsdorffii are potentially useful genetic tools for other species in Nicotiana section Alatae, as well as in N. benthamiana. We also investigated whether AFLPs could be used to infer genetic relationships within N. langsdorffii and related species from section Alatae. A phenetic analysis of the AFLP data showed that there are two main lineages within N. langsdorffii, and that both contain populations expressing dominant resistance to P. tabacina. PMID

  10. Gene expression in rat brain.

    PubMed

    Milner, R J; Sutcliffe, J G

    1983-08-25

    191 randomly selected cDNA clones prepared from rat brain cytoplasmic poly (A)+ RNA were screened by Northern blot hybridization to rat brain, liver and kidney RNA to determine the tissue distribution, abundance and size of the corresponding brain mRNA. 18% hybridized to mRNAs each present equally in the three tissues, 26% to mRNAs differentially expressed in the tissues, and 30% to mRNAs present only in the brain. An additional 26% of the clones failed to detect mRNA in the three tissues at an abundance level of about 0.01%, but did contain rat cDNA as demonstrated by Southern blotting; this class probably represents rare mRNAs expressed in only some brain cells. Therefore, most mRNA expressed in brain is either specific to brain or otherwise displays regulation. Rarer mRNA species tend to be larger than the more abundant species, and tend to be brain specific; the rarest, specific mRNAs average 5000 nucleotides in length. Ten percent of the clones hybridize to multiple mRNAs, some of which are expressed from small multigenic families. From these data we estimate that there are probably at most 30,000 distinct mRNA species expressed in the rat brain, the majority of which are uniquely expressed in the brain. PMID:6193485

  11. Genetic transformation of Nannochloropsis oculata with a bacterial phleomycin resistance gene as dominant selective marker

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Pan, Kehou; Zhang, Lin; Zhu, Baohua; Yang, Guanpin; Zhang, Xiangyang

    2016-04-01

    The gene ble from Streptoalloteichus hindustanus is widely used as a selective antibiotic marker. It can control the phleomycin resistance, and significantly increase the tolerance of hosts to zeocin. The unicellular marine microalga Nannochloropsis oculata is extremely sensitive to zeocin. We selected ble as the selective marker for the genetic transformation of N. oculata. After the algal cells at a density of 2×107 cells mL-1 was digested with 4% hemicellulase and 2% driselase for 1 h, the protoplasts accounted for 90% of the total. The ble was placed at the downstream of promoter HSP70A-RUBS2 isolated from Chlamydomonas reinhardtii, yielding a recombinant expression construct pMS188. The construct was transferred into the protoplasts through electroporation (1 kV, 15 μS). The transformed protoplasts were cultured in fresh f/2 liquid medium, and selected on solid f/2 medium supplemented with 500 ng mL-1 zeocin. The PCR result proved that ble existed in the transformants. Three transformants had been cultured for at least 5 generations without losing ble. Southern blotting analysis showed that the ble has been integrated into the genome of N. oculata. The ble will serve as a new dominant selective marker in genetic engineering N. oculata.

  12. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species.

    PubMed

    Buyyarapu, Ramesh; Kantety, Ramesh V; Yu, John Z; Saha, Sukumar; Sharma, Govind C

    2011-01-01

    New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum  EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps. PMID:22315588

  13. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species

    PubMed Central

    Buyyarapu, Ramesh; Kantety, Ramesh V.; Yu, John Z.; Saha, Sukumar; Sharma, Govind C.

    2011-01-01

    New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum  EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps. PMID:22315588

  14. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included 'response to heat', 'response to reactive oxygen species (ROS)', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  15. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa

    PubMed Central

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5– 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included ‘response to heat’, ‘response to reactive oxygen species (ROS)’, ‘response to temperature stimulus’, ‘response to abiotic stimulus’, and ‘MAPKKK cascade’. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data

  16. Gene expression profiling reveals differentially expressed genes in ovarian cancer of the hen: support for oviductal origin?

    PubMed

    Treviño, Lindsey S; Giles, James R; Wang, Wei; Urick, Mary Ellen; Johnson, Patricia Ann

    2010-08-01

    Ovarian cancer has a high mortality rate due, in part, to the lack of early detection and incomplete understanding of the origin of the disease. The hen is the only spontaneous model of ovarian cancer and can therefore aid in the identification and testing of early detection strategies and therapeutics. Our aim was to combine the use of the hen animal model and microarray technology to identify differentially expressed genes in ovarian tissue from normal hens compared with hens with ovarian cancer. We found that the transcripts up-regulated in chicken ovarian tumors were enriched for oviduct-related genes. Quantitative real-time PCR and immunohistochemistry confirmed expression of oviduct-related genes in normal oviduct and in ovaries from hens with early- and late-stage ovarian tumors, but not in normal ovarian surface epithelium. In addition, one of the oviduct-related genes identified in our analysis, paired box 2 has been implicated in human ovarian cancer and may serve as a marker of the disease. Furthermore, estrogen receptor 1 mRNA is over-expressed in early-stage tumors, suggesting that expression of the oviduct-related genes may be regulated by estrogen. We have also identified oviduct-related genes that encode secreted proteins that could represent putative serum biomarkers. The expression of oviduct-related genes in early-stage tumors is similar to what is seen in human ovarian cancer, with tumors resembling normal Müllerian epithelium. These data suggest that chicken ovarian tumors may arise from alternative sites, including the oviduct. PMID:21761365

  17. Identification of histological markers for malignant glioma by genome-wide expression analysis: dynein, alpha-PIX and sorcin.

    PubMed

    Yokota, Takashi; Kouno, Jun; Adachi, Koji; Takahashi, Hiroshi; Teramoto, Akira; Matsumoto, Koshi; Sugisaki, Yuichi; Onda, Masamitsu; Tsunoda, Tatsuhiko

    2006-01-01

    Glioblastoma multiforme (GBM), the most malignant class of glial neoplasm (grade IV in WHO criteria), carries the worst clinical prognosis among primary brain tumors in adults. To identify a set of genes involved in the tumorigenesis of GBM, we evaluated expression profiles of GBM tissues from 11 patients using a cDNA microarray representing 25,344 human genes. By comparing the profiles with those of normal brain tissue, we identified a number of differentially expressed genes: 54 with increased expression and 45 with reduced expression in GBMs. Semi-quantitative RT-PCR experiments with 6 of those genes confirmed higher expression of DNCH2, ARHGEF6, NPM1 and SRI and lower expression of NRGN and TM4SF2 in GBM tumors. Immunohistochemical staining for 3 of the respective gene products, dynein (product of DNCH2), alpha-PIX (product of ARHGEF6), and sorcin (product of SRI) indicated that this technique might be useful for histological grading of glial tumors. To establish criteria for this diagnostic approach, we scored glial tumor tissues of different histological grades according to the staining results; the scores were significantly higher in anaplastic astrocytomas and GBMs than in diffuse astrocytomas or normal brain tissues. These findings indicated that levels of these three proteins might serve as histological markers for malignant glioma classification. PMID:16320026

  18. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta.

    PubMed

    Martin, Kathleen; Kopperud, Kristin; Chakrabarty, Romit; Banerjee, Rituparna; Brooks, Robert; Goodin, Michael M

    2009-07-01

    Here, we report on the construction of a novel series of Gateway-compatible plant transformation vectors containing genes encoding autofluorescent proteins, including Cerulean, Dendra2, DRONPA, TagRFP and Venus, for the expression of protein fusions in plant cells. To assist users in the selection of vectors, we have determined the relative in planta photostability and brightness of nine autofluorescent proteins (AFPs), and have compared the use of DRONPA and Dendra2 in photoactivation and photoconversion experiments. Additionally, we have generated transgenic Nicotiana benthamiana lines that express fluorescent protein markers targeted to nuclei, endoplasmic reticulum or actin filaments. We show that conducting bimolecular fluorescence complementation assays in plants that constitutively express cyan fluorescent protein fused to histone 2B provides enhanced data quality and content over assays conducted without the benefit of a subcellular marker. In addition to testing protein interactions, we demonstrate that our transgenic lines that express red fluorescent protein markers offer exceptional support in experiments aimed at defining nuclear or endomembrane localization. Taken together, the new combination of pSITE-BiFC and pSITEII vectors for studying intracellular protein interaction, localization and movement, in conjunction with our transgenic marker lines, constitute powerful tools for the plant biology community. PMID:19309457

  19. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  20. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  1. Phytochrome-regulated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent compre...

  2. Expression of Olfactory Signaling Genes in the Eye

    PubMed Central

    Velmeshev, Dmitry; Faghihi, Mohammad; Shestopalov, Valery I.; Slepak, Vladlen Z.

    2014-01-01

    Purpose To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. Methods Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. Results We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. Conclusions Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment. PMID:24789354

  3. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  4. Estimation of Prognostic Marker Genes by Public Microarray Data in Patients with Ovarian Serous Cystadenocarcinoma

    PubMed Central

    Yang, San-Duk; Jang, Se-Song; Han, Jeong A.; Park, Hyun-Seok

    2016-01-01

    Purpose Lymphatic invasion (LI) is regarded as a predictor of the aggressiveness of ovarian cancer (OC). However, LI is not always the major determinant of long-term patient survival. To establish proper diagnosis and treatment for OC, we analyzed differentially expressed genes (DEGs) for patients with serous epithelial OC, with or without LI, who did or did not survive for 5 years. Materials and Methods Gene expression data from 63 patients with OC and LI, and 35 patients with OC but without LI, were investigated using an Affymetrix Human Genome U133 Array and analyzed using The Cancer Genome Atlas (TCGA) database. Among these 98 patients, 16 survived for 5 years or more. DEGs were identified using the Bioconductor R package, and their functions were analyzed using the DAVID web tool. Results We found 55 significant DEGs (p<0.01) from the patients with LI and 20 highly significant DEGs (p<0.001) from those without it. Pathway analysis showed that DEGs associated with carbohydrate metabolism or with renal cell carcinoma pathways were enriched in the patients with and without LI, respectively. Using the top five prognostic marker genes, we generated survival scores that could be used to predict the 5-year survival of patients with OC without LI. Conclusion The DEGs identified in this study could be used to elucidate the mechanism of tumor progression and to guide the prognosis and treatment of patients with serous OC but without LI. PMID:27189279

  5. Regulation of immunoglobulin gene rearrangement and expression.

    PubMed

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching. PMID:2787158

  6. Leptin receptor expression and Gln223Arg polymorphism as prognostic markers in oral and oropharyngeal cancer.

    PubMed

    Rodrigues, P R S; Maia, L L; Santos, M; Peterle, G T; Alves, L U; Takamori, J T; Souza, R P; Barbosa, W M; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-01-01

    The leptin gene product is released into the blood stream, passes through the blood-brain barrier, and finds the leptin receptor (LEPR) in the central nervous system. This hormone regulates food intake, hematopoiesis, inflammation, immunity, differentiation, and cell proliferation. The LEPR Gln223Arg polymorphism has been reported to alter receptor function and expression, both of which have been related with prognostics in several tumor types. Furthermore, several studies have shown a relationship between the Gln223Arg polymorphism and tumor development, and its role in oral and oropharyngeal squamous cell carcinoma is now well understood. In this study, 315 DNA samples were used for LEPR Gln223Arg genotyping and 87 primary oral and oropharyngeal squamous cell carcinomas were used for immunohistochemical expression analysis, such that a relationship between these and tumor development and prognosis could be established. Homozygous LEPR Arg223 was found to be associated with a 2-fold reduction in oral and oropharyngeal cancer risk. In contrast, the presence of the Arg223 allele in tumors was associated with worse disease-free and disease-specific survival. Low LEPR expression was found to be an independent risk factor, increasing the risk for lymph node metastasis 4-fold. In conclusion, the Gln223Arg polymorphism and LEPR expression might be valuable markers for oral and oropharyngeal cancer, suggesting that LEPR might serve as a potential target for future therapies. PMID:26634459

  7. Heterelogous Expression of Plant Genes

    PubMed Central

    Yesilirmak, Filiz; Sayers, Zehra

    2009-01-01

    Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization. PMID:19672459

  8. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    SciTech Connect

    Stein, J.D.; Nelson, L.D.; Conner, B.J.

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B, twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.

  9. Introduction to the Gene Expression Analysis.

    PubMed

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  10. Globin gene expression in correlation with G protein-related genes during erythroid differentiation

    PubMed Central

    2013-01-01

    Background The guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) regulate cell growth, proliferation and differentiation. G proteins are also implicated in erythroid differentiation, and some of them are expressed principally in hematopoietic cells. GPCRs-linked NO/cGMP and p38 MAPK signaling pathways already demonstrated potency for globin gene stimulation. By analyzing erythroid progenitors, derived from hematopoietic cells through in vitro ontogeny, our study intends to determine early markers and signaling pathways of globin gene regulation and their relation to GPCR expression. Results Human hematopoietic CD34+ progenitors are isolated from fetal liver (FL), cord blood (CB), adult bone marrow (BM), peripheral blood (PB) and G-CSF stimulated mobilized PB (mPB), and then differentiated in vitro into erythroid progenitors. We find that growth capacity is most abundant in FL- and CB-derived erythroid cells. The erythroid progenitor cells are sorted as 100% CD71+, but we did not find statistical significance in the variations of CD34, CD36 and GlyA antigens and that confirms similarity in maturation of studied ontogenic periods. During ontogeny, beta-globin gene expression reaches maximum levels in cells of adult blood origin (176 fmol/μg), while gamma-globin gene expression is consistently up-regulated in CB-derived cells (60 fmol/μg). During gamma-globin induction by hydroxycarbamide, we identify stimulated GPCRs (PTGDR, PTGER1) and GPCRs-coupled genes known to be activated via the cAMP/PKA (ADIPOQ), MAPK pathway (JUN) and NO/cGMP (PRPF18) signaling pathways. During ontogeny, GPR45 and ARRDC1 genes have the most prominent expression in FL-derived erythroid progenitor cells, GNL3 and GRP65 genes in CB-derived cells (high gamma-globin gene expression), GPR110 and GNG10 in BM-derived cells, GPR89C and GPR172A in PB-derived cells, and GPR44 and GNAQ genes in mPB-derived cells (high beta-globin gene expression). Conclusions These results

  11. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application

    PubMed Central

    Sato, Shun; Maekawa, Ryo; Yamagata, Yoshiaki; Tamura, Isao; Lee, Lifa; Okada, Maki; Jozaki, Kosuke; Asada, Hiromi; Tamura, Hiroshi; Sugino, Norihiro

    2016-01-01

    Differential diagnosis of uterine leiomyomas and leiomyosarcomas is needed to determine whether the uterus can be retained. Therefore, biomarkers for uterine leiomyomas, and reliable and objective diagnostic methods have been desired besides the pathological diagnosis. In the present study, we identified 12 genes specific to uterine leiomyomas based on DNA methylation. Using these marker genes specific to uterine leiomyomas, we established a hierarchical clustering system based on the DNA methylation level of the marker genes, which could completely differentiate between uterine leiomyomas and normal myometrium. Furthermore, our hierarchical clustering system completely discriminated uterine cancers and differentiated between uterine leiomyosarcomas and leiomyomas with more than 70% accuracy. In conclusion, this study identified DNA methylation-based marker genes specific to uterine leiomyomas, and our hierarchical clustering system using these marker genes was useful for differential diagnosis of uterine leiomyomas and leiomyosarcomas. PMID:27498619

  12. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application.

    PubMed

    Sato, Shun; Maekawa, Ryo; Yamagata, Yoshiaki; Tamura, Isao; Lee, Lifa; Okada, Maki; Jozaki, Kosuke; Asada, Hiromi; Tamura, Hiroshi; Sugino, Norihiro

    2016-01-01

    Differential diagnosis of uterine leiomyomas and leiomyosarcomas is needed to determine whether the uterus can be retained. Therefore, biomarkers for uterine leiomyomas, and reliable and objective diagnostic methods have been desired besides the pathological diagnosis. In the present study, we identified 12 genes specific to uterine leiomyomas based on DNA methylation. Using these marker genes specific to uterine leiomyomas, we established a hierarchical clustering system based on the DNA methylation level of the marker genes, which could completely differentiate between uterine leiomyomas and normal myometrium. Furthermore, our hierarchical clustering system completely discriminated uterine cancers and differentiated between uterine leiomyosarcomas and leiomyomas with more than 70% accuracy. In conclusion, this study identified DNA methylation-based marker genes specific to uterine leiomyomas, and our hierarchical clustering system using these marker genes was useful for differential diagnosis of uterine leiomyomas and leiomyosarcomas. PMID:27498619

  13. PTK 7 is a transforming gene and prognostic marker for breast cancer and nodal metastasis involvement.

    PubMed

    Gärtner, Silvia; Gunesch, Angela; Knyazeva, Tatiana; Wolf, Petra; Högel, Bernhard; Eiermann, Wolfgang; Ullrich, Axel; Knyazev, Pjotr; Ataseven, Beyhan

    2014-01-01

    Protein Tyrosin Kinase 7 (PTK7) is upregulated in several human cancers; however, its clinical implication in breast cancer (BC) and lymph node (LN) is still unclear. In order to investigate the function of PTK7 in mediating BC cell motility and invasivity, PTK7 expression in BC cell lines was determined. PTK7 signaling in highly invasive breast cancer cells was inhibited by a dominant-negative PTK7 mutant, an antibody against the extracellular domain of PTK7, and siRNA knockdown of PTK7. This resulted in decreased motility and invasivity of BC cells. We further examined PTK7 expression in BC and LN tissue of 128 BC patients by RT-PCR and its correlation with BC related genes like HER2, HER3, PAI1, MMP1, K19, and CD44. Expression profiling in BC cell lines and primary tumors showed association of PTK7 with ER/PR/HER2-negative (TNBC-triple negative BC) cancer. Oncomine data analysis confirmed this observation and classified PTK7 in a cluster with genes associated with agressive behavior of primary BC. Furthermore PTK7 expression was significantly different with respect to tumor size (ANOVA, p = 0.033) in BC and nodal involvement (ANOVA, p = 0.007) in LN. PTK7 expression in metastatic LN was related to shorter DFS (Cox Regression, p = 0.041). Our observations confirmed the transforming potential of PTK7, as well as its involvement in motility and invasivity of BC cells. PTK7 is highly expressed in TNBC cell lines. It represents a novel prognostic marker for BC patients and has potential therapeutic significance. PMID:24409301

  14. PTK 7 Is a Transforming Gene and Prognostic Marker for Breast Cancer and Nodal Metastasis Involvement

    PubMed Central

    Knyazeva, Tatiana; Wolf, Petra; Högel, Bernhard; Eiermann, Wolfgang; Ullrich, Axel; Knyazev, Pjotr; Ataseven, Beyhan

    2014-01-01

    Protein Tyrosin Kinase 7 (PTK7) is upregulated in several human cancers; however, its clinical implication in breast cancer (BC) and lymph node (LN) is still unclear. In order to investigate the function of PTK7 in mediating BC cell motility and invasivity, PTK7 expression in BC cell lines was determined. PTK7 signaling in highly invasive breast cancer cells was inhibited by a dominant-negative PTK7 mutant, an antibody against the extracellular domain of PTK7, and siRNA knockdown of PTK7. This resulted in decreased motility and invasivity of BC cells. We further examined PTK7 expression in BC and LN tissue of 128 BC patients by RT-PCR and its correlation with BC related genes like HER2, HER3, PAI1, MMP1, K19, and CD44. Expression profiling in BC cell lines and primary tumors showed association of PTK7 with ER/PR/HER2-negative (TNBC-triple negative BC) cancer. Oncomine data analysis confirmed this observation and classified PTK7 in a cluster with genes associated with agressive behavior of primary BC. Furthermore PTK7 expression was significantly different with respect to tumor size (ANOVA, p = 0.033) in BC and nodal involvement (ANOVA, p = 0.007) in LN. PTK7 expression in metastatic LN was related to shorter DFS (Cox Regression, p = 0.041). Our observations confirmed the transforming potential of PTK7, as well as its involvement in motility and invasivity of BC cells. PTK7 is highly expressed in TNBC cell lines. It represents a novel prognostic marker for BC patients and has potential therapeutic significance. PMID:24409301

  15. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  16. Methodological aspects of the genetic dissection of gene expression

    SciTech Connect

    Carlborg, O; DeKoning, D; Manly, Kenneth; Chesler, Elissa J; Williams, Robert; Haley, C

    2004-01-01

    Motivation: Dissection of the genetics underlying gene expression utilizes techniques from microarray analyses as well as quantitative trait loci (QTL) mapping. Available QTL mapping methods are not tailored for the highly automated analyses required to deal with the thousands of gene transcripts encountered in the mapping of QTL affecting gene expression (sometimes referred to as eQTL). This report focuses on the adaptation of QTL mapping methodology to perform automated mapping of QTL affecting gene expression. Results: The analyses of expression data on>12 000 gene transcripts in BXD recombinant inbred mice found, on average, 629 QTL exceeding the genome-wide 5% threshold. Using additional information on trait repeatabilities and QTL location, 168 of these were classified as high confidence QTL. Current sample sizes of genetical genomics studies make it possible to detect a reasonable number of QTL using simple genetic models, but considerably larger studies are needed to evaluate more complex genetic models. After extensive analyses of real data and additional simulated data (altogether >300 000 genome scans) we make the following recommendations for detection of QTL for gene expression: (1) For populations with an unbalanced number of replicates on each genotype, weighted least squares should be preferred above ordinary least squares. Weights can be based on the repeatability of the trait and the number of replicates. (2) A genome scan based on multiple marker information but analysing only at marker locations is a good approximation to a full interval mapping procedure. (3) Significance testing should be based on empirical genome-wide significance thresholds that are derived for each trait separately. (4) The significant QTL can be separated into high and low confidence QTL using a false discovery rate that incorporates prior information such as transcript repeatabilities and co-localization of gene- ranscripts and QTL. (5) Including observations on the

  17. Heterochromatin Protein 1 Binding Protein 3 Expression as a Candidate Marker of Intrinsic 5-Fluorouracil Resistance

    PubMed Central

    HADAC, JAMIE N.; MILLER, DEVON D.; GRIMES, IAN C.; CLIPSON, LINDA; NEWTON, MICHAEL A.; SCHELMAN, WILLIAM R.; HALBERG, RICHARD B.

    2016-01-01

    Background Despite receiving post-operative 5-fluorouracil (5-FU)-based chemotherapy, approximately 50% of patients with stage IIIC colon cancer experience recurrence. Currently, no molecular signature can predict response to 5-FU. Materials and Methods Mouse models of colon cancer have been developed and characterized. Individual tumors in these mice can be longitudinally monitored and assessed to identify differences between those that are responsive and those that are resistant to therapy. Gene expression was analyzed in serial biopsies that were collected before and after treatment with 5-FU. Colon tumors had heterogeneous responses to treatment with 5-FU. Microarray analysis of pretreatment biopsies revealed that Hp1bp3, a gene encoding heterochromatin protein 1 binding protein 3, was differentially expressed between sensitive and resistant tumors. Conclusion Using mouse models of human colorectal cancer, Hp1bp3 was identified as a candidate marker of intrinsic 5-FU resistance and may represent a potential biomarker for patient stratification or a target of clinical importance. PMID:26976970

  18. Differential Expression of Complement Markers in Normal and AMD Transmitochondrial Cybrids

    PubMed Central

    Nashine, Sonali; Chwa, Marilyn; Kazemian, Mina; Thaker, Kunal; Lu, Stephanie; Nesburn, Anthony; Kuppermann, Baruch D.; Kenney, M. Cristina

    2016-01-01

    Purpose Variations in mitochondrial DNA (mtDNA) and abnormalities in the complement pathways have been implicated in the pathogenesis of age-related macular degeneration (AMD). This study was designed to determine the effects of mtDNA from AMD subjects on the complement pathway. Methods Transmitochondrial cybrids were prepared by fusing platelets from AMD and age-matched Normal subjects with Rho0 (lacking mtDNA) human ARPE-19 cells. Quantitative PCR and Western blotting were performed to examine gene and protein expression profiles, respectively, of complement markers in these cybrids. Bioenergetic profiles of Normal and AMD cybrids were examined using the Seahorse XF24 flux analyzer. Results Significant decreases in the gene and protein expression of complement inhibitors, along with significantly higher levels of complement activators, were found in AMD cybrids compared to Older-Normal cybrids. Seahorse flux data demonstrated that the bioenergetic profiles for Older-Normal and Older-AMD cybrid samples were similar to each other but were lower compared to Young-Normal cybrid samples. Conclusion In summary, since all cybrids had identical nuclei and differed only in mtDNA content, the observed changes in components of complement pathways can be attributed to mtDNA variations in the AMD subjects, suggesting that mitochondrial genome and retrograde signaling play critical roles in this disease. Furthermore, the similar bioenergetic profiles of AMD and Older-Normal cybrids indicate that the signaling between mitochondria and nuclei are probably not via a respiratory pathway. PMID:27486856

  19. Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers.

    PubMed

    Hsia, Lin-Ting; Ashley, Neil; Ouaret, Djamila; Wang, Lai Mun; Wilding, Jennifer; Bodmer, Walter F

    2016-04-12

    Pericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumor progression. Myofibroblasts previously have been distinguished from normal fibroblasts mostly by the expression of α smooth muscle actin (αSMA). We now have identified AOC3 (amine oxidase, copper containing 3), a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast-reacting mAb PR2D3. The normal and tumor tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by nonenzymatic procedures. Whole-genome microarray mRNA-expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly differentially expressed in these two cell types: NKX2-3 and LRRC17 in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. TGFβ substantially down-regulated AOC3 expression in myofibroblasts but in skin fibroblasts it dramatically increased the expression of αSMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and increased expression of the fibroblast-associated gene SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3, and other markers, are a distinctly different cell type from TGFβ-activated fibroblasts. PMID:27036009

  20. Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development

    PubMed Central

    Hasegawa, Yu; Taylor, Deanne; Ovchinnikov, Dmitry A.; Wolvetang, Ernst J.; de Torrenté, Laurence; Mar, Jessica C.

    2015-01-01

    An analysis of gene expression variability can provide an insightful window into how regulatory control is distributed across the transcriptome. In a single cell analysis, the inter-cellular variability of gene expression measures the consistency of transcript copy numbers observed between cells in the same population. Application of these ideas to the study of early human embryonic development may reveal important insights into the transcriptional programs controlling this process, based on which components are most tightly regulated. Using a published single cell RNA-seq data set of human embryos collected at four-cell, eight-cell, morula and blastocyst stages, we identified genes with the most stable, invariant expression across all four developmental stages. Stably-expressed genes were found to be enriched for those sharing indispensable features, including essentiality, haploinsufficiency, and ubiquitous expression. The stable genes were less likely to be associated with loss-of-function variant genes or human recessive disease genes affected by a DNA copy number variant deletion, suggesting that stable genes have a functional impact on the regulation of some of the basic cellular processes. Genes with low expression variability at early stages of development are involved in regulation of DNA methylation, responses to hypoxia and telomerase activity, whereas by the blastocyst stage, low-variability genes are enriched for metabolic processes as well as telomerase signaling. Based on changes in expression variability, we identified a putative set of gene expression markers of morulae and blastocyst stages. Experimental validation of a blastocyst-expressed variability marker demonstrated that HDDC2 plays a role in the maintenance of pluripotency in human ES and iPS cells. Collectively our analyses identified new regulators involved in human embryonic development that would have otherwise been missed using methods that focus on assessment of the average expression

  1. Aminoglycoside uptake increased by tet gene expression.

    PubMed Central

    Merlin, T L; Davis, G E; Anderson, W L; Moyzis, R K; Griffith, J K

    1989-01-01

    The expression of extrachromosomal tet genes not only confers tetracycline resistance but also increases the susceptibilities of gram-negative bacteria to commonly used aminoglycoside antibiotics. We investigated the possibility that tet expression increases aminoglycoside susceptibility by increasing bacterial uptake of aminoglycoside. Studies of [3H]gentamicin uptake in paired sets of Escherichia coli HB101 and Salmonella typhimurium LT2 expressing and not expressing tet showed that tet expression accelerates energy-dependent [3H]gentamicin uptake. Increased [3H]gentamicin uptake was accompanied by decreased bacterial protein synthesis and bacterial growth. Increased aminoglycoside uptake occurred whether tet expression was constitutive or induced, whether the tet gene was class B or C, and whether the tet gene was plasmid borne or integrated into the bacterial chromosome. tet expression produced no measurable change in membrane potential, suggesting that tet expression increases aminoglycoside uptake either by increasing the availability of specific carriers or by lowering the minimum membrane potential that is necessary for uptake. PMID:2684011

  2. Apramycin resistance as a selective marker for gene transfer in mycobacteria.

    PubMed Central

    Paget, E; Davies, J

    1996-01-01

    We have explored the potential of using the apramycin resistance gene as a marker in mycobacterial gene transfer studies. Shuttle plasmids available for both electroporation and conjugation studies have been constructed, and we have successfully validated the use of the apramycin resistance gene as a component of cloning vectors for Mycobacterium smegmatis, M. bovis BCG, and M. tuberculosis. PMID:8892841

  3. Assessing the quality of annotations in asthma gene expression experiments

    PubMed Central

    2010-01-01

    Background The amount of data deposited in the Gene Expression Omnibus (GEO) has expanded significantly. It is important to ensure that these data are properly annotated with clinical data and descriptions of experimental conditions so that they can be useful for future analysis. This study assesses the adequacy of documented asthma markers in GEO. Three objective measures (coverage, consistency and association) were used for evaluation of annotations contained in 17 asthma studies. Results There were 918 asthma samples with 20,640 annotated markers. Of these markers, only 10,419 had documented values (50% coverage). In one study carefully examined for consistency, there were discrepancies in drug name usage, with brand name and generic name used in different sections to refer to the same drug. Annotated markers showed adequate association with other relevant variables (i.e. the use of medication only when its corresponding disease state was present). Conclusions There is inadequate variable coverage within GEO and usage of terms lacks consistency. Association between relevant variables, however, was adequate. PMID:21044366

  4. Inferring differentiation pathways from gene expression

    PubMed Central

    Costa, Ivan G.; Roepcke, Stefan; Hafemeister, Christoph; Schliep, Alexander

    2008-01-01

    Motivation: The regulation of proliferation and differentiation of embryonic and adult stem cells into mature cells is central to developmental biology. Gene expression measured in distinguishable developmental stages helps to elucidate underlying molecular processes. In previous work we showed that functional gene modules, which act distinctly in the course of development, can be represented by a mixture of trees. In general, the similarities in the gene expression programs of cell populations reflect the similarities in the differentiation path. Results: We propose a novel model for gene expression profiles and an unsupervised learning method to estimate developmental similarity and infer differentiation pathways. We assess the performance of our model on simulated data and compare it with favorable results to related methods. We also infer differentiation pathways and predict functional modules in gene expression data of lymphoid development. Conclusions: We demonstrate for the first time how, in principal, the incorporation of structural knowledge about the dependence structure helps to reveal differentiation pathways and potentially relevant functional gene modules from microarray datasets. Our method applies in any area of developmental biology where it is possible to obtain cells of distinguishable differentiation stages. Availability: The implementation of our method (GPL license), data and additional results are available at http://algorithmics.molgen.mpg.de/Supplements/InfDif/ Contact: filho@molgen.mpg.de, schliep@molgen.mpg.de Supplementary information: Supplementary data is available at Bioinformatics online. PMID:18586709

  5. Identification of a set of genes showing regionally enriched expression in the mouse brain

    PubMed Central

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM

    2008-01-01

    Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066

  6. Regulatory hotspots are associated with plant gene expression under varying soil phosphorus supply in Brassica rapa.

    PubMed

    Hammond, John P; Mayes, Sean; Bowen, Helen C; Graham, Neil S; Hayden, Rory M; Love, Christopher G; Spracklen, William P; Wang, Jun; Welham, Sue J; White, Philip J; King, Graham J; Broadley, Martin R

    2011-07-01

    Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast- and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement. PMID:21527424

  7. Gene expression following acute morphine administration.

    PubMed

    Loguinov, A V; Anderson, L M; Crosby, G J; Yukhananov, R Y

    2001-08-28

    The long-term response to neurotropic drugs depends on drug-induced neuroplasticity and underlying changes in gene expression. However, alterations in neuronal gene expression can be observed even following single injection. To investigate the extent of these changes, gene expression in the medial striatum and lumbar part of the spinal cord was monitored by cDNA microarray following single injection of morphine. Using robust and resistant linear regression (MM-estimator) with simultaneous prediction confidence intervals, we detected differentially expressed genes. By combining the results with cluster analysis, we have found that a single morphine injection alters expression of two major groups of genes, for proteins involved in mitochondrial respiration and for cytoskeleton-related proteins. RNAs for these proteins were mostly downregulated both in the medial striatum and in lumbar part of the spinal cord. These transitory changes were prevented by coadministration of the opioid antagonist naloxone. Data indicate that microarray analysis by itself is useful in describing the effect of well-known substances on the nervous system and provides sufficient information to propose a potentially novel pathway mediating its activity. PMID:11526201

  8. Gene replacement and expression of foreign DNA in mycobacteria.

    PubMed Central

    Husson, R N; James, B E; Young, R A

    1990-01-01

    A system that permits molecular genetic manipulation of mycobacteria was developed on the basis of the yeast paradigm of gene replacement by homologous recombination. A shuttle vector that can replicate autonomously at a high copy number in Escherichia coli but must integrate into homologous DNA for survival in Mycobacterium smegmatis was constructed. The vector contains a ColE1 origin of replication, antibiotic resistance markers for ampicillin and kanamycin, a nutritional marker (pyrF) that allows both positive and negative selection in E. coli and M. smegmatis, and unique restriction sites that permit insertion of foreign DNA. Transformation of mycobacteria with this vector results in integration of its DNA into the genomic pyrF locus by either a single or a double homologous recombination event. With this system, the 65-kilodalton Mycobacterium leprae stress protein antigen was inserted into the M. smegmatis genome and expressed. This gene replacement technology, together with a uniquely useful pyrF marker, should be valuable for investigating mycobacterial pathobiology, for the development of candidate mycobacterial vaccine vehicles, and as a model for the development of molecular genetic systems in other pathogenic microorganisms. Images FIG. 2 FIG. 3 PMID:2153655

  9. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  10. Gene expression patterns during intramuscular fat development in cattle.

    PubMed

    Wang, Y H; Bower, N I; Reverter, A; Tan, S H; De Jager, N; Wang, R; McWilliam, S M; Cafe, L M; Greenwood, P L; Lehnert, S A

    2009-01-01

    provides clear evidence of early molecular changes associated with marbling and also identifies specific time frames when intramuscular fat development in cattle muscle can be detected by using gene expression. This information could be used by animal scientists to design optimal nutrition for high marbling potential. In addition, the genes found to be highly expressed during development of marbling could be used to develop genetic markers or biomarkers to assist with beef production strategies. PMID:18820161

  11. Alpha-adaptin, a marker for endocytosis, is expressed in complex patterns during Drosophila development.

    PubMed Central

    Dornan, S; Jackson, A P; Gay, N J

    1997-01-01

    A Drosophila cDNA encoding a structural homologue of the mammalian coated vesicle component alpha-adaptin (AP2 adaptor complex) has been cloned and sequenced. The mammalian and invertebrate sequences are highly conserved, especially within the amino terminal region, a domain that mediates interactions with other components within the AP2 complex and with specific receptors tails. Mammalian alpha-adaptins are encoded by two genes; however, Drosophila alpha-adaptin has a single gene locus, within polytene bands 21C2-C3 on the left arm of the chromosome 2, closely adjacent to the paired homeobox gene aristaless. There seem to be at least two Drosophila alpha-adaptin transcripts expressed, plausibly by alternative splicing. One of the transcripts is more abundant during early embryogenesis and may be of maternal origin. We have studied the distribution of the alpha-adaptin protein throughout embryogenesis and at the neuromuscular junction of the third instar larva. During cellularization of the blastoderm embryo, the protein is seen between and ahead of the elongating nuclei, and then redistributes to the cell surface during gastrulation. These observations suggest a role for endocytosis in cellularization and are consistent with the finding that dynamin (the shibire gene product), another component of the endocytic mechanism, is required for cellularization. At later stages of embryogenesis, alpha-adaptin is expressed in complex and dynamic patterns. It is strongly induced in elements of the central and peripheral nervous system (e.g., in neuroblasts, the presumptive stomatogastric nervous system, and the lateral chordotonal sense organs), in the Garland cells, the adult midgut precursors, the antenno-maxillary complex, the endoderm, the fat bodies, and the visceral mesoderm. In the larva, alpha-adaptin is localized at the plasma membrane in the synaptic boutons of the neuromuscular junctions. The cells expressing high levels of alpha-adaptin are known or expected to

  12. Alpha-adaptin, a marker for endocytosis, is expressed in complex patterns during Drosophila development.

    PubMed

    Dornan, S; Jackson, A P; Gay, N J

    1997-08-01

    A Drosophila cDNA encoding a structural homologue of the mammalian coated vesicle component alpha-adaptin (AP2 adaptor complex) has been cloned and sequenced. The mammalian and invertebrate sequences are highly conserved, especially within the amino terminal region, a domain that mediates interactions with other components within the AP2 complex and with specific receptors tails. Mammalian alpha-adaptins are encoded by two genes; however, Drosophila alpha-adaptin has a single gene locus, within polytene bands 21C2-C3 on the left arm of the chromosome 2, closely adjacent to the paired homeobox gene aristaless. There seem to be at least two Drosophila alpha-adaptin transcripts expressed, plausibly by alternative splicing. One of the transcripts is more abundant during early embryogenesis and may be of maternal origin. We have studied the distribution of the alpha-adaptin protein throughout embryogenesis and at the neuromuscular junction of the third instar larva. During cellularization of the blastoderm embryo, the protein is seen between and ahead of the elongating nuclei, and then redistributes to the cell surface during gastrulation. These observations suggest a role for endocytosis in cellularization and are consistent with the finding that dynamin (the shibire gene product), another component of the endocytic mechanism, is required for cellularization. At later stages of embryogenesis, alpha-adaptin is expressed in complex and dynamic patterns. It is strongly induced in elements of the central and peripheral nervous system (e.g., in neuroblasts, the presumptive stomatogastric nervous system, and the lateral chordotonal sense organs), in the Garland cells, the adult midgut precursors, the antenno-maxillary complex, the endoderm, the fat bodies, and the visceral mesoderm. In the larva, alpha-adaptin is localized at the plasma membrane in the synaptic boutons of the neuromuscular junctions. The cells expressing high levels of alpha-adaptin are known or expected to

  13. A reference genetic linkage map of apomictic Hieracium species based on expressed markers derived from developing ovule transcripts

    PubMed Central

    Shirasawa, Kenta; Hand, Melanie L.; Henderson, Steven T.; Okada, Takashi; Johnson, Susan D.; Taylor, Jennifer M.; Spriggs, Andrew; Siddons, Hayley; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Koltunow, Anna M. G.

    2015-01-01

    Background and Aims Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis. In H. praealtum, LOSS OF APOMEIOSIS (LOA) enables formation of embryo sacs without meiosis and LOSS OF PARTHENOGENESIS (LOP) enables fertilization-independent seed formation. A locus required for fertilization-independent endosperm formation (AutE) has been identified in H. piloselloides. Additional quantitative loci appear to influence the penetrance of the qualitative loci, although the controlling genes remain unknown. This study aimed to develop the first genetic linkage maps for sexual and apomictic Hieracium species using simple sequence repeat (SSR) markers derived from expressed transcripts within the developing ovaries. Methods RNA from microdissected Hieracium ovule cell types and ovaries was sequenced and SSRs were identified. Two different F1 mapping populations were created to overcome difficulties associated with genome complexity and asexual reproduction. SSR markers were analysed within each mapping population to generate draft linkage maps for apomictic and sexual Hieracium species. Key Results A collection of 14 684 Hieracium expressed SSR markers were developed and linkage maps were constructed for Hieracium species using a subset of the SSR markers. Both the LOA and LOP loci were successfully assigned to linkage groups; however, AutE could not be mapped using the current populations. Comparisons with lettuce (Lactuca sativa) revealed partial macrosynteny between the two Asteraceae species. Conclusions A collection of SSR markers and draft linkage maps were developed for two apomictic and one sexual Hieracium species. These maps will support cloning of controlling genes at LOA and LOP loci

  14. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  15. Redox signaling: globalization of gene expression

    PubMed Central

    Oh, Jeong-Il; Kaplan, Samuel

    2000-01-01

    Here we show that the extent of electron flow through the cbb3 oxidase of Rhodobacter sphaeroides is inversely related to the expression levels of those photosynthesis genes that are under control of the PrrBA two-component activation system: the greater the electron flow, the stronger the inhibitory signal generated by the cbb3 oxidase to repress photosynthesis gene expression. Using site-directed mutagenesis, we show that intramolecular electron transfer within the cbb3 oxidase is involved in signal generation and transduction and this signal does not directly involve the intervention of molecular oxygen. In addition to the cbb3 oxidase, the redox state of the quinone pool controls the transcription rate of the puc operon via the AppA–PpsR antirepressor–repressor system. Together, these interacting regulatory circuits are depicted in a model that permits us to understand the regulation by oxygen and light of photosynthesis gene expression in R.sphaeroides. PMID:10944106

  16. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. PMID:27189858

  17. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  18. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  19. CD45+/CD133+ positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency.

    PubMed

    Pessina, Augusto; Bonomi, Arianna; Sisto, Francesca; Baglio, Carolina; Cavicchini, Loredana; Ciusani, Emilio; Coccé, Valentina; Gribaldo, Laura

    2010-08-01

    UCB (human umbilical cord blood) contains cells able to differentiate into non-haematopoietic cell lineages. It also contains cells similar to primitive ESCs (embryonic stem cells) that can differentiate into pancreatic-like cells. However, few data have been reported regarding the possibility of expanding these cells or the differential gene expression occurring in vitro. In this study, we expanded formerly frozen UCB cells by treatment with SCF (stem cell factor) and GM-CSF (granulocyte-macrophage colony stimulating factor) in the presence of VPA (valproic acid). Gene expression profiles for beta cell differentiation and pluripotency (embryo stem cell phenotype) were analysed by RT-PCR and immunocytochemistry. The results show a dramatic expansion (>150-fold) of haematopoietic progenitors (CD45+/CD133+) which also expressed embryo markers of pluripotency (nanog, kfl-4, sox-2, oct-3/4 and c-myc), nestin, and pancreatic markers such as pax-4, ngn-3, pdx-1 and syt-1 (that is regulated by pdx-1 and provides the cells with a Ca++ regulation mechanism essential for insulin exocytosis). Our results show that UCB cells can be expanded to produce large numbers of cells of haematopoietic lineage that naturally (without the need of retroviral vectors or transposons) express a gene pattern compatible with endocrine pancreatic precursors and markers of pluripotency. Further investigations are necessary to clarify, first, whether in this context, the embryogenes expressed are functional or not, and secondly, since these cells are safer than cells transfected with retroviral vectors or transposons, whether they would represent a potential tool for clinical application. PMID:20397976

  20. Facilitated diffusion buffers noise in gene expression

    PubMed Central

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-01-01

    Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise. PMID:25314467

  1. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  2. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  3. Seamless Genome Editing in Rice via Gene Targeting and Precise Marker Elimination.

    PubMed

    Nishizawa-Yokoi, Ayako; Saika, Hiroaki; Toki, Seiichi

    2016-01-01

    Positive-negative selection using hygromycin phosphotransferase (hpt) and diphtheria toxin A-fragment (DT-A) as positive and negative selection markers, respectively, allows enrichment of cells harboring target genes modified via gene targeting (GT). We have developed a successful GT system employing positive-negative selection and subsequent precise marker excision via the piggyBac transposon derived from the cabbage looper moth to introduce desired modifications into target genes in the rice genome. This approach could be applied to the precision genome editing of almost all endogenous genes throughout the genome, at least in rice. PMID:27557691

  4. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons.

    PubMed Central

    Buiakova, O I; Baker, H; Scott, J W; Farbman, A; Kream, R; Grillo, M; Franzen, L; Richman, M; Davis, L M; Abbondanzo, S; Stewart, C L; Margolis, F L

    1996-01-01

    Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade. Images Fig. 1 Fig. 2 PMID:8790421

  5. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons.

    PubMed

    Buiakova, O I; Baker, H; Scott, J W; Farbman, A; Kream, R; Grillo, M; Franzen, L; Richman, M; Davis, L M; Abbondanzo, S; Stewart, C L; Margolis, F L

    1996-09-01

    Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade. PMID:8790421

  6. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  7. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  8. Opportunities of marker-assisted selection for rice fragrance through marker-trait association analysis of microsatellites and gene-based markers.

    PubMed

    Golestan Hashemi, F S; Rafii, M Y; Razi Ismail, M; Mohamed, M T M; Rahim, H A; Latif, M A; Aslani, F

    2015-09-01

    Developing fragrant rice through marker-assisted/aided selection (MAS) is an economical and profitable approach worldwide for the enrichment of an elite genetic background with a pleasant aroma. The PCR-based DNA markers that distinguish the alleles of major fragrance genes in rice have been synthesised to develop rice scent biofortification through MAS. Thus, the present study examined the aroma biofortification potential of these co-dominant markers in a germplasm panel of 189 F2 progeny developed from crosses between a non-aromatic variety (MR84) and a highly aromatic but low-yielding variety (MRQ74) to determine the most influential diagnostic markers for fragrance biofortification. The SSRs and functional DNA markers RM5633 (on chromosome 4), RM515, RM223, L06, NKSbad2, FMbadh2-E7, BADEX7-5, Aro7 and SCU015RM (on chromosome 8) were highly associated with the 2AP (2-acetyl-1-pyrroline) content across the population. The alleles traced via these markers were also in high linkage disequilibrium (R(2) > 0.70) and explained approximately 12.1, 27.05, 27.05, 27.05, 25.42, 25.42, 20.53, 20.43 and 20.18% of the total phenotypic variation observed for these biomarkers, respectively. F2 plants harbouring the favourable alleles of these effective markers produced higher levels of fragrance. Hence, these rice plants can be used as donor parents to increase the development of fragrance-biofortified tropical rice varieties adapted to growing conditions and consumer preferences, thus contributing to the global rice market. PMID:25865409

  9. Genomic distribution of AFLP markers relative to gene locations for different eukaryotic species

    PubMed Central

    2013-01-01

    Background Amplified fragment length polymorphism (AFLP) markers are frequently used for a wide range of studies, such as genome-wide mapping, population genetic diversity estimation, hybridization and introgression studies, phylogenetic analyses, and detection of signatures of selection. An important issue to be addressed for some of these fields is the distribution of the markers across the genome, particularly in relation to gene sequences. Results Using in-silico restriction fragment analysis of the genomes of nine eukaryotic species we characterise the distribution of AFLP fragments across the genome and, particularly, in relation to gene locations. First, we identify the physical position of markers across the chromosomes of all species. An observed accumulation of fragments around (peri) centromeric regions in some species is produced by repeated sequences, and this accumulation disappears when AFLP bands rather than fragments are considered. Second, we calculate the percentage of AFLP markers positioned within gene sequences. For the typical EcoRI/MseI enzyme pair, this ranges between 28 and 87% and is usually larger than that expected by chance because of the higher GC content of gene sequences relative to intergenic ones. In agreement with this, the use of enzyme pairs with GC-rich restriction sites substantially increases the above percentages. For example, using the enzyme system SacI/HpaII, 86% of AFLP markers are located within gene sequences in A. thaliana, and 100% of markers in Plasmodium falciparun. We further find that for a typical trait controlled by 50 genes of average size, if 1000 AFLPs are used in a study, the number of those within 1 kb distance from any of the genes would be only about 1–2, and only about 50% of the genes would have markers within that distance. Conclusions The high coverage of AFLP markers across the genomes and the high proportion of markers within or close to gene sequences make them suitable for genome scans and

  10. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    PubMed Central

    Bisognin, Andrea; Bortoluzzi, Stefania; Danieli, Gian Antonio

    2004-01-01

    Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers. PMID:15176974

  11. Transgenic control of perforin gene expression

    SciTech Connect

    Lichtenheld, M.G.; Podack, E.R.; Levy, R.B.

    1995-03-01

    Perforin is a pore-forming effector molecule of CTL and NK cells. To characterize perforin gene expression and its transcriptional control mechanisms in vivo, expression of a cell surface tag, i.e., human CD4, was driven by 5.1 kb of the murin perforin 5{prime} flanking and promoter region in transgenic mice. Six out of seven transgenic lines expressed the perforin-tag hybrid gene at low to intermediate levels, depending on the integration site. Transgene expression occurred in all cells that physiologically are able to express perforin. At the whole organ level, significant amounts of transgenic mRNA and endogenous perforin mRNA were co-expressed in the lymphoid organs, as well as in the lung, the ileum, the oviduct/uterus, and the bone marrow. At the single cell level, the perforin tag was present on NK cells and on CD8{sup +}, as well as on CD4{sup +} cells. Also targeted were Thy-1.2{sup +} {gamma}{delta} T cells, but not Thy-1.2{sup -} {gamma}{delta} T cells, B cells, nor monocytes. During thymic T cell development, transgene expression occurred in double negative (CD4{sup -}CD8{sup -}) thymocytes and was detected at all subsequent stages, but exceeded the expression levels of the endogenous gene in the thymus. In conclusion, the analyzed perforin 5{prime} flanking and promoter region contains important cis-acting sequences that restrict perforin expression to T cells and NK cells, and therefore provides a unique tool for manipulating T cell and/or Nk cell-mediated immune responses in transgenic mice. On the other hand, the normal control of perforin gene expression involves at least one additional negative control mechanism that was not mediated by the transgenic promoter and upstream region. This control restricts perforin gene expression in thymically developing T cells and in most resting peripheral T cells, but can be released upon T cell activation. 43 refs., 7 figs., 1 tab.

  12. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain

    PubMed Central

    Sprecher, Simon G.; Reichert, Heinrich; Hartenstein, Volker

    2014-01-01

    The brain of Drosophila is formed by approximately 100 lineages, each lineage being derived from a stem cell-like neuroblast that segregates from the procephalic neurectoderm of the early embryo. A neuroblast map has been established in great detail for the early embryo, and a suite of molecular markers has been defined for all neuroblasts included in this map (Urbach and Technau, 2003a). However, the expression of these markers was not followed into later embryonic or larval stages, mainly due to the fact that anatomical landmarks to which expression patterns could be related had not been defined. Such markers, in the form of stereotyped clusters of neurons whose axons project along cohesive bundles (“primary axon bundles” or “PABs”) are now available (Younossi-Hartenstein et al., 2006). In the present study we have mapped the expression of molecular markers in relationship to primary neuronal clusters and their PABs. The markers we analyzed include many of the genes involved in patterning of the brain along the anteroposterior axis (cephalic gap genes, segment polarity genes) and dorso-ventral axis (columnar patterning genes), as well as genes expressed in the dorsal protocerebrum and visual system (early eye genes). Our analysis represents an important step along the way to identify neuronal lineages of the mature brain with genes expressed in the early embryo in discrete neuroblasts. Furthermore, the analysis helped us to reconstruct the morphogenetic movements that transform the two-dimensional neuroblast layer of the early embryo into the three-dimensional larval brain and provides the basis for deeper understanding of how the embryonic brain develops. PMID:17300994

  13. Gene expression profiling analysis of ovarian cancer

    PubMed Central

    YIN, JI-GANG; LIU, XIAN-YING; WANG, BIN; WANG, DAN-YANG; WEI, MAN; FANG, HUA; XIANG, MEI

    2016-01-01

    As a gynecological oncology, ovarian cancer has high incidence and mortality. To study the mechanisms of ovarian cancer, the present study analyzed the GSE37582 microarray. GSE37582 was downloaded from Gene Expression Omnibus and included data from 74 ovarian cancer cases and 47 healthy controls. The differentially-expressed genes (DEGs) were screened using linear models for microarray data package in R and were further screened for functional annotation. Next, Gene Ontology and pathway enrichment analysis of the DEGs was conducted. The interaction associations of the proteins encoded by the DEGs were searched using the Search Tool for the Retrieval of Interacting Genes, and the protein-protein interaction (PPI) network was visualized by Cytoscape. Moreover, module analysis of the PPI network was performed using the BioNet analysis tool in R. A total of 284 DEGs were screened, consisting of 145 upregulated genes and 139 downregulated genes. In particular, downregulated FBJ murine osteosarcoma viral oncogene homolog (FOS) was an oncogene, while downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A) was a tumor suppressor gene and upregulated cluster of differentiation 44 (CD44) was classed as an ‘other’ gene. The enriched functions included collagen catabolic process, stress-activated mitogen-activated protein kinases cascade and insulin receptor signaling pathway. Meanwhile, FOS (degree, 15), CD44 (degree, 9), B-cell CLL/lymphoma 2 (BCL2; degree, 7), CDKN1A (degree, 7) and matrix metallopeptidase 3 (MMP3; degree, 6) had higher connectivity degrees in the PPI network for the DEGs. These genes may be involved in ovarian cancer by interacting with other genes in the module of the PPI network (e.g., BCL2-FOS, BCL2-CDKN1A, FOS-CDKN1A, FOS-CD44, MMP3-MMP7 and MMP7-CD44). Overall, BCL2, FOS, CDKN1A, CD44, MMP3 and MMP7 may be correlated with ovarian cancer. PMID:27347159

  14. Conditional Gene Expression in Mycobacterium abscessus

    PubMed Central

    Cortes, Mélanie; Singh, Anil Kumar; Gaillard, Jean-Louis; Nassif, Xavier; Herrmann, Jean-Louis

    2011-01-01

    Mycobacterium abscessus is an emerging human pathogen responsible for lung infections, skin and soft-tissue infections and disseminated infections in immunocompromised patients. It may exist either as a smooth (S) or rough (R) morphotype, the latter being associated with increased pathogenicity in various models. Genetic tools for homologous recombination and conditional gene expression are desperately needed to allow the study of M. abscessus virulence. However, descriptions of knock-out (KO) mutants in M. abscessus are rare, with only one KO mutant from an S strain described so far. Moreover, of the three major tools developed for homologous recombination in mycobacteria, only the one based on expression of phage recombinases is working. Several conditional gene expression tools have recently been engineered for Mycobacterium tuberculosis and Mycobacterium smegmatis, but none have been tested yet in M. abscessus. Based on previous experience with genetic tools allowing homologous recombination and their failure in M. abscessus, we evaluated the potential interest of a conditional gene expression approach using a system derived from the two repressors system, TetR/PipOFF. After several steps necessary to adapt TetR/PipOFF for M. abscessus, we have shown the efficiency of this system for conditional expression of an essential mycobacterial gene, fadD32. Inhibition of fadD32 was demonstrated for both the S and R isotypes, with marginally better efficiency for the R isotype. Conditional gene expression using the dedicated TetR/PipOFF system vectors developed here is effective in S and R M. abscessus, and may constitute an interesting approach for future genetic studies in this pathogen. PMID:22195042

  15. Identification of marker genes for lipid-lowering effect of a short-chain fructooligosaccharide by DNA microarray analysis.

    PubMed

    Fukasawa, Tomoyuki; Murashima, Koichiro; Nemoto, Tomoko; Matsumoto, Ichiro; Koga, Jinichiro; Kubota, Hidetoshi; Kanegae, Minoru

    2009-01-01

    Administration of short-chain fructooligosaccharide (scFOS) is known to lower serum triglyceride levels in rats fed a high-fat diet, but the molecular mechanisms remain unclear. This study aimed to identify marker genes for lipid-lowering effect of scFOS administration. The changes in hepatic gene expressions in rats fed scFOS were investigated using DNA microarray and quantitative RT-PCR analysis. The DNA microarray showed that phytanoyl-CoA 2-hydroxylase 2 (Phyh2), lipoprotein lipase (Lpl) and tyrosine aminotransferase (Tat) were significantly affected by scFOS administration (p < .05). Since Lpl is involved in lipid metabolism, the up-regulation of Lpl in the liver can be a potential marker of the lipid-lowering effect of scFOS. PMID:22435477

  16. Tob1 is expressed in developing and adult gonads and is associated with the P-body marker, Dcp2.

    PubMed

    Shapouri, Farnaz; Saeidi, Shaghayegh; de Iongh, Robb U; Casagranda, Franca; Western, Patrick S; McLaughlin, Eileen A; Sutherland, Jessie M; Hime, Gary R; Familari, Mary

    2016-05-01

    Tob1 is a member of the BTG/TOB family of proteins with established antiproliferative function. In Danio rerio and Xenopus laevis, the Tob1 gene is expressed from the one-cell stage through to early gastrula stages, followed in later development by discrete expression in many tissues including the notochord and somites. In both mouse and human, Tob1 is expressed in many adult tissues including the testis and ovary; however, the specific cell types are unknown. We examine Tob1 gene expression in mouse in developing germ cells and in sorted male germ cells (gonocytes, spermatogonia, pachytene spermatocytes and round spermatids) by reverse transcription and droplet digital polymerase chain reaction (RT-ddPCR) and in adult ovary and testis by immunofluorescence with anti-Tob1 protein staining. By RT-ddPCR, Tob1 expression was low in developing male germ cells but was highly expressed in round spermatids. In developing female germ cells undergoing entry into meiosis, it increased 10-fold. Tob1 was also highly expressed in round spermatids and in oocytes in all stages of folliculogenesis. Notably, a marker for P-bodies, Dcp-2, was also highly expressed in round spermatids and all oocyte stages examined. The cytoplasmic presence of Tob1 protein in round spermatids and oocytes and the association of Tob1 protein with Dcp2 in both cell types suggest that Tob1 protein plays a role in post-transcriptional mechanisms. PMID:26662055

  17. Progesterone 5β-reductase genes of the Brassicaceae family as function-associated molecular markers.

    PubMed

    Munkert, J; Costa, C; Budeanu, O; Petersen, J; Bertolucci, S; Fischer, G; Müller-Uri, F; Kreis, W

    2015-11-01

    This study aimed to define progesterone 5β-reductases (P5βR, EC 1.3.99.6, enone 1,4-reductases) as function-associated molecular markers at the plant family level. Therefore cDNAs were isolated from 25 Brassicaceae species, including two species, Erysimum crepidifolium and Draba aizoides, known to produce cardiac glycosides. The sequences were used in a molecular phylogeny study. The cladogram created is congruent to the existing molecular analyses. Recombinant His-tagged forms of the P5βR cDNAs from Aethionema grandiflorum, Draba aizoides, Nasturtium officinale, Raphanus sativus and Sisymbrium officinale were expressed in E. coli. Enone 1,4-reductase activity was demonstrated in vitro using progesterone and 2-cyclohexen-1-one as substrates. Evidence is provided that functional P5βRs are ubiquitous in the Brassicaceae. The recombinant P5βR enzymes showed different substrate preferences towards progesterone and 2-cyclohexen-1-one. Sequence comparison of the catalytic pocket of the P5βR enzymes and homology modelling using Digitalis lanata P5βR (PDB ID: 2V6G) as template highlighted the importance of the hydrophobicity of the binding pocket for substrate discrimination. It is concluded that P5βR genes or P5βR proteins can be used as valuable function-associated molecular markers to infer taxonomic relationship and evolutionary diversification from a metabolic/catalytic perspective. PMID:26108256

  18. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  19. Spatial reconstruction of single-cell gene expression

    PubMed Central

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  20. Development of expressed sequence tag-simple sequence repeat markers for Chrysanthemum morifolium and closely related species.

    PubMed

    Liu, H; Zhang, Q X; Sun, M; Pan, H T; Kong, Z X

    2015-01-01

    With the development of chrysanthemum breeding in recent years, an increasing number of wild species in genera related to Chrysanthemum were introduced to extend the genetic resources and facilitate the genetic improvement of chrysanthemums via hybridization. However, few simple sequence repeat (SSR) markers are available for marker-assisted breeding and population genetic studies of chrysanthemum and closely related species. Expressed sequence tags (ESTs) in public databases and cross-species transferable markers are considered to be a cost-effective means for developing sequence-based markers. In this study, 25 EST-SSRs were successfully developed from Chrysanthemum EST sequences for Chrysanthemum morifolium and closely related species. In total, 4164 unigene sequences were assembled from 7180 ESTs of chrysanthemum in GenBank, which were subsequently used to screen for the presence of microsatellites with the SSRIT software. The screening criteria were 8, 5, 4, and 3 repeating units for di-, tri-, tetra-, and penta- and higher-order nucleotides, respectively. Moreover, 310 SSR loci from 296 sequences were identified, and 198 primer pairs for SSR amplification were designed with the Primer Premier 5.0 software, of which 25 SSR loci showed polymorphic amplification in 52 species and varieties belonging to Chrysanthemum, Ajania, and Opisthopappus. The application of EST-SSR markers to the identification of intergeneric hybrids between Chrysanthemum and Ajania was demonstrated. Therefore, EST-SSRs can be developed for species that lack gene sequences or ESTs by utilizing ESTs of closely related species. PMID:26214436

  1. Integrating heterogeneous gene expression data for gene regulatory network modelling.

    PubMed

    Sîrbu, Alina; Ruskin, Heather J; Crane, Martin

    2012-06-01

    Gene regulatory networks (GRNs) are complex biological systems that have a large impact on protein levels, so that discovering network interactions is a major objective of systems biology. Quantitative GRN models have been inferred, to date, from time series measurements of gene expression, but at small scale, and with limited application to real data. Time series experiments are typically short (number of time points of the order of ten), whereas regulatory networks can be very large (containing hundreds of genes). This creates an under-determination problem, which negatively influences the results of any inferential algorithm. Presented here is an integrative approach to model inference, which has not been previously discussed to the authors' knowledge. Multiple heterogeneous expression time series are used to infer the same model, and results are shown to be more robust to noise and parameter perturbation. Additionally, a wavelet analysis shows that these models display limited noise over-fitting within the individual datasets. PMID:21948152

  2. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  3. Population-level control of gene expression

    NASA Astrophysics Data System (ADS)

    Nevozhay, Dmitry; Adams, Rhys; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    Gene expression is the process that translates genetic information into proteins, that determine the way cells live, function and even die. It was demonstrated that cells with identical genomes exposed to the same environment can differ in their protein composition and therefore phenotypes. Protein levels can vary between cells due to the stochastic nature of intracellular biochemical events, indicating that the genotype-phenotype connection is not deterministic at the cellular level. We asked whether genomes could encode isogenic cell populations more reliably than single cells. To address this question, we built two gene circuits to control three cell population-level characteristics: gene expression mean, coefficient of variation and non-genetic memory of previous expression states. Indeed, we found that these population-level characteristics were more predictable than the gene expression of single cells in a well-controlled environment. This research was supported by the NIH Director's New Innovator Award 1DP2 OD006481-01 and Welch Foundation Grant C-1729.

  4. Gene expression analysis of the embryonic subplate

    PubMed Central

    Oeschger, Franziska M.; Wang, Wei-Zhi; Lee, Sheena; García-Moreno, Fernando; Goffinet, André M.; Arbones, Mariona; Rakic, Sonia; Molnár, Zoltán

    2015-01-01

    The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later stages, they are involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared to the cortical plate at this stage. Using quantitative RT-PCR, in situ hybridization and immunohistochemistry, we have confirmed specific expression in the E15.5 subplate for 13 selected genes which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 out of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to the maturation and electrophysiological properties of subplate cells and to axonal growth and guidance. PMID:21862448

  5. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  6. Trigger finger, tendinosis, and intratendinous gene expression.

    PubMed

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis. PMID:22882155

  7. Gene expression analysis of the embryonic subplate.

    PubMed

    Oeschger, Franziska M; Wang, Wei-Zhi; Lee, Sheena; García-Moreno, Fernando; Goffinet, André M; Arbonés, Maria L; Rakic, Sonja; Molnár, Zoltán

    2012-06-01

    The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells. PMID:21862448

  8. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  9. The low noise limit in gene expression

    DOE PAGESBeta

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  10. Digital gene expression signatures for maize development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  11. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  12. Coordination of plastid and nuclear gene expression.

    PubMed Central

    Gray, John C; Sullivan, James A; Wang, Jun-Hui; Jerome, Cheryl A; MacLean, Daniel

    2003-01-01

    The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre-eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis-related proteins is regulated by signals from plastids. Perturbation of several plastid-located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesis-related genes. Characterization of arabidopsis gun (genomes uncoupled) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis-related proteins. PMID:12594922

  13. Novel recombinant binary vectors harbouring Basta (bar) gene as a plant selectable marker for genetic transformation of plants.

    PubMed

    Nada, Reham M

    2016-04-01

    Genetic transformation is one of the most widely used technique in crop improvement. However, most of the binary vectors used in this technique, especially cloning based, contain antibiotic genes as selection marker that raise serious consumer and environmental concerns; moreover, they could be transferred to non-target hosts with deleterious effects. Therefore, the goal of this study was reconstruction of the widely used pBI121 binary vector by substituting the harmful antibiotic selection marker gene with a less-harmful selection marker, Basta (herbicide resistance gene). The generated vectors were designated as pBI121NB and pBI121CB, in which Basta gene was expressed under the control of Nos or CaMV 35S promoter, respectively. The successful integration of the new inserts into both the vectors was confirmed by PCR, restriction digestion and sequencing. Both these vectors were used in transforming Arabidopsis, Egyptian wheat and barley varieties using LBA4404 and GV3101 Agrobacterium strains. The surfactant Tween-20 resulted in an efficient transformation and the number of Arabidopsis transformants was about 6-9 %. Soaked seeds of wheat and barley were transformed with Agrobacterium to introduce the bacteria to the growing shoot apices. The percentage of transgenic lines was around 16-17 and 14-15 % for wheat and barley, respectively. The quantitative studies presented in this work showed that both LBA4404 and GV3101 strains were suitable for transforming Egyptian wheat and barley. PMID:27436915

  14. Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes.

    PubMed

    Deutsch, Samuel; Lyle, Robert; Dermitzakis, Emmanouil T; Attar, Homa; Subrahmanyan, Lakshman; Gehrig, Corinne; Parand, Leila; Gagnebin, Maryline; Rougemont, Jacques; Jongeneel, C Victor; Antonarakis, Stylianos E

    2005-12-01

    Inter-individual differences in gene expression are likely to account for an important fraction of phenotypic differences, including susceptibility to common disorders. Recent studies have shown extensive variation in gene expression levels in humans and other organisms, and that a fraction of this variation is under genetic control. We investigated the patterns of gene expression variation in a 25 Mb region of human chromosome 21, which has been associated with many Down syndrome (DS) phenotypes. Taqman real-time PCR was used to measure expression variation of 41 genes in lymphoblastoid cells of 40 unrelated individuals. For 25 genes found to be differentially expressed, additional analysis was performed in 10 CEPH families to determine heritabilities and map loci harboring regulatory variation. Seventy-six percent of the differentially expressed genes had significant heritabilities, and genomewide linkage analysis led to the identification of significant eQTLs for nine genes. Most eQTLs were in trans, with the best result (P=7.46 x 10(-8)) obtained for TMEM1 on chromosome 12q24.33. A cis-eQTL identified for CCT8 was validated by performing an association study in 60 individuals from the HapMap project. SNP rs965951 located within CCT8 was found to be significantly associated with its expression levels (P=2.5 x 10(-5)) confirming cis-regulatory variation. The results of our study provide a representative view of expression variation of chromosome 21 genes, identify loci involved in their regulation and suggest that genes, for which expression differences are significantly larger than 1.5-fold in control samples, are unlikely to be involved in DS-phenotypes present in all affected individuals. PMID:16251198

  15. Gene expression during normal and FSHD myogenesis

    PubMed Central

    2011-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non

  16. Differential expression of myrosinase gene families.

    PubMed Central

    Lenman, M; Falk, A; Rödin, J; Höglund, A S; Ek, B; Rask, L

    1993-01-01

    In mature seeds of Brassica napus three major and three minor myrosinase isoenzymes were identified earlier. These myrosinases are known to be encoded by at least two different families of myrosinase genes, denoted MA and MB. In the work described in this paper the presence of different myrosinase isoenzymes in embryos, seedlings, and vegetative mature tissues of B. napus was studied and related to the expression of myrosinase MA and MB genes in the same tissues to facilitate future functional studies of these enzymes. In developing seeds, myrosinases of 75, 73, 70, 68, 66, and 65 kD were present. During seedling development there was a turnover of the myrosinase pool such that in 5-d-old seedlings the 75-, 70-, 66-, and 65-kD myrosinases were present, with the 70- and 75-kD myrosinases predominating. In 21-d-old seedlings the same myrosinases were present, but the 66- and 65-kD myrosinase species were most abundant. At flowering the mature organs of the plant contained only a 72-kD myrosinase. MA genes were expressed only in developing seeds, whereas MB genes were most highly expressed in seeds, seedling cotyledons, young leaves, and to a lesser extent other organs of the mature plant. During embryogenesis of B. napus, myrosinase MA and MB gene transcripts started to accumulate approximately 20 d after pollination and reached their highest level approximately 15 d later. MB transcripts accumulated to about 3 times the amount of MA transcripts. In situ hybridization analysis of B. napus embryos showed that MA transcripts were present predominatly in myrosin cells in the axis, whereas MB genes were expressed in myrosin cells of the entire embryo. The embryo axiz contained 75-, 70-, and 65-kD myrosinases, whereas the cotyledons contained mainly 70- and 65-kD myrosinases. Amino acid sequencing revealed the 75-kD myrosinase to be encoded by the MA gene family. The high degree of cell and tissue specificity of the expression of myrosinase genes suggests that studies of

  17. Fluid Mechanics, Arterial Disease, and Gene Expression

    NASA Astrophysics Data System (ADS)

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid mechanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  18. Control mechanisms of plastid gene expression

    SciTech Connect

    Gruissem, W.; Tonkyn, J.C.

    1993-12-31

    Plastid DNAs of higher plants contain approximately 150 genes that encode RNAs and proteins for genetic and photosynthetic functions of the organelle. Results published in the last few years illustrate that the spatial and temporal expression of these plastid genes is regulated, in part, at the transcriptional level, but that developmentally controlled changes in mRNA stability, translational activity, and protein phosphorylation also have an important role in the control of plastid functions. This comprehensive review summarizes and discusses the mechanisms by which regulation of gene expression is exerted at the transcriptional and post-transcriptional levels. It provides an overview of our current knowledge, but also emphasizes areas that are controversial and in which information on regulatory mechanisms is still incomplete. 455 refs., 3 figs., 3 tabs.

  19. Fluid Mechanics, Arterial Disease, and Gene Expression

    PubMed Central

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

  20. Methods to improve cardiac gene therapy expression.

    PubMed

    Scimia, Maria Cecilia; Sydnes, Kate E; Zuppo, Daniel A; Koch, Walter J

    2014-11-01

    Gene therapy strategies are becoming a valuable approach for the treatment of heart failure. Some trials are ongoing and others are being organized. Vascular access in clinical experimentation is still the chosen modality of delivery, but many other approaches are in research and development. A successful gene therapy strategy involves not only the choice of the right vector and gene, but also the correct delivery strategy that allows for transduction of the highest percentage of cardiomyocytes, limited spilling of virus into other organs and the possibility to correlate the amount of injected virus to the rate of the expression within the cardiac tissue. The authors will first concentrate on clarifying what the barriers are that the virus has to overcome in order to reach the nuclei of the target organs and methodologies that have been tested to improve the range of expression. PMID:25340284

  1. Genomewide gene-associated microsatellite markers for the model invasive ascidian, Ciona intestinalis species complex.

    PubMed

    Lin, Yaping; Chen, Yiyong; Xiong, Wei; Zhan, Aibin

    2016-05-01

    The vase tunicate, Ciona intestinalis species complex, has become a good model for ecological and evolutionary studies, especially those focusing on microevolution associated with rapidly changing environments. However, genomewide genetic markers are still lacking. Here, we characterized a large set of genomewide gene-associated microsatellite markers for C. intestinalis spA (=C. robusta). Bioinformatic analysis identified 4654 microsatellites from expressed sequence tags (ESTs), 2126 of which successfully assigned to chromosomes were selected for further analysis. Based on the distribution evenness on chromosomes, function annotation and suitability for primer design, we chose 545 candidate microsatellites for further characterization. After amplification validation and variation assessment, 218 loci were polymorphic in at least one of the two populations collected from the coast of Arenys de Mar, Spain (N = 24-48), and Cape Town, South Africa (N = 24-33). The number of alleles, observed heterozygosity and expected heterozygosity ranged from 2 to 11, 0 to 0.833 and 0.021 to 0.818, and from 2 to 10, 0 to 0.879 and 0.031 to 0.845 for the Spanish and African populations, respectively. When all microsatellites were tested for cross-species utility, only 60 loci (25.8%) could be successfully amplified and all loci were polymorphic in C. intestinalis spB. A high level of genomewide polymorphism is likely responsible for the low transferability. The large set of microsatellite markers characterized here is expected to provide a useful genomewide resource for ecological and evolutionary studies using C. intestinalis as a model. PMID:26505988

  2. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme

    PubMed Central

    Liang, Yu; Diehn, Maximilian; Watson, Nathan; Bollen, Andrew W.; Aldape, Ken D.; Nicholas, M. Kelly; Lamborn, Kathleen R.; Berger, Mitchel S.; Botstein, David; Brown, Patrick O.; Israel, Mark A.

    2005-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by genetic instability, intratumoral histopathological variability, and unpredictable clinical behavior. We investigated global gene expression in surgical samples of brain tumors. Gene expression profiling revealed large differences between normal brain samples and tumor tissues and between GBMs and lower-grade oligodendroglial tumors. Extensive differences in gene expression were found among GBMs, particularly in genes involved in angiogenesis, immune cell infiltration, and extracellular matrix remodeling. We found that the gene expression patterns in paired specimens from the same GBM invariably were more closely related to each other than to any other tumor, even when the paired specimens had strikingly divergent histologies. Survival analyses revealed a set of ≈70 genes more highly expressed in rapidly progressing tumors that stratified GBMs into two groups that differed by >4-fold in median duration of survival. We further investigated one gene from the group, FABP7, and confirmed its association with survival in two unrelated cohorts totaling 105 patients. Expression of FABP7 enhanced the motility of glioma-derived cells in vitro. Our analyses thus identify and validate a prognostic marker of both biologic and clinical significance and provide a series of putative markers for additional evaluation. PMID:15827123

  3. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    PubMed Central

    2013-01-01

    Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression. PMID:23369200

  4. Development and Validation of Single Nucleotide Polymorphism (SNP) Markers from an Expressed Sequence Tag (EST) Database in Olive Flounder (Paralichthys olivaceus)

    PubMed Central

    Kim, Jung Eun; Lee, Young Mee; Lee, Jeong-Ho; Noh, Jae Koo; Kim, Hyun Chul; Park, Choul-Ji; Park, Jong-Won; Kim, Kyung-Kil

    2014-01-01

    To successful molecular breeding, identification and functional characterization of breeding related genes and development of molecular breeding techniques using DNA markers are essential. Although the development of a useful marker is difficult in the aspect of time, cost and effort, many markers are being developed to be used in molecular breeding and developed markers have been used in many fields. Single nucleotide polymorphisms (SNPs) markers were widely used for genomic research and breeding, but has hardly been validated for screening functional genes in olive flounder. We identified single nucleotide polymorphisms (SNPs) from expressed sequence tag (EST) database in olive flounder; out of a total 4,327 ESTs, 693 contigs and 514 SNPs were detected in total EST, and these substitutions include 297 transitions and 217 transversions. As a result, 144 SNP markers were developed on the basis of 514 SNP to selection of useful gene region, and then applied to each of eight wild and culture olive flounder (total 16 samples). In our experimental result, only 32 markers had detected polymorphism in sample, also identified 21 transitions and 11 transversions, whereas indel was not detected in polymorphic SNPs. Heterozygosity of wild and cultured olive flounder using the 32 SNP markers is 0.34 and 0.29, respectively. In conclusion, we identified SNP and polymorphism in olive flounder using newly designed marker, it supports that developed markers are suitable for SNP detection and diversity analysis in olive flounder. The outcome of this study can be basic data for researches for immunity gene and characteristic with SNP. PMID:25949198

  5. Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9.

    PubMed

    Iskender, Banu; Izgi, Kenan; Karaca, Halit; Canatan, Halit

    2015-10-01

    Cancer and stem cells exhibit similar features, including self-renewal, differentiation and immortality. The expression of stem-cell-related genes in cancer cells is demonstrated to be potentially correlated with cancer cell behaviour, affecting both drug response and tumor recurrence. There is an emerging body of evidence that subpopulations of tumors carry a distinct molecular sign and are selectively resistant to chemotherapy. Therefore, it is important to find novel therapeutic agents that could suppress the stem-like features of cancer cells while inhibiting their proliferation. Myrtucommulone-A (MC-A) is an active compound of a nonprenylated acylphloroglucinol isolated from the leaves of myrtle. Here we have investigated the potential of MC-A in inhibiting the expression of self-renewal regulatory factors and cancer stem cell markers in a bladder cancer cell line HTB-9. We used RT-PCR, immunocytochemistry, flow cytometry and western blotting to examine the expression of pluripotency- and multipotency-associated markers with or without treatment with MC-A. Treatment with MC-A not only decreased cancer cell viability and proliferation but also resulted in a decrease in the expression of pluripotency- and multipotency-associated markers such as NANOG, OCT-4, SOX-2, SSEA-4, TRA-1-60, CD90, CD73 and CD44. MC-A treatment was also observed to decrease the sphere-forming ability of HTB-9 cells. In summary, this study provides valuable information on the presence of stem-cell marker expression in HTB-9 cells and our results imply that MC-A could be utilized to target cancer cells with stem-like characteristics. PMID:26054707

  6. From gene expressions to genetic networks

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  7. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  8. Activating Transcription Factor 3 Expression as a Marker of Response to the Histone Deacetylase Inhibitor Pracinostat.

    PubMed

    Sooraj, Dhanya; Xu, Dakang; Cain, Jason E; Gold, Daniel P; Williams, Bryan R G

    2016-07-01

    Improved treatment strategies are required for bladder cancer due to frequent recurrence of low-grade tumors and poor survival rate from high-grade tumors with current therapies. Histone deacetylase inhibitors (HDACi), approved as single agents for specific lymphomas, have shown promising preclinical results in solid tumors but could benefit from identification of biomarkers for response. Loss of activating transcription factor 3 (ATF3) expression is a feature of bladder tumor progression and correlates with poor survival. We investigated the utility of measuring ATF3 expression as a marker of response to the HDACi pracinostat in bladder cancer models. Pracinostat treatment of bladder cancer cell lines reactivated the expression of ATF3, correlating with significant alteration in proliferative, migratory, and anchorage-dependent growth capacities. Pracinostat also induced growth arrest at the G0-G1 cell-cycle phase, coincident with the activation of tumor suppressor genes. In mouse xenograft bladder cancer models, pracinostat treatment significantly reduced tumor volumes compared with controls, accompanied by reexpression of ATF3 in nonproliferating cells from early to late stage of therapy and in parallel induced antiangiogenesis and apoptosis. Importantly, cells in which ATF3 expression was depleted were less sensitive to pracinostat treatment in vitro, exhibiting significantly higher proliferative and migratory properties. In vivo, control xenograft tumors were significantly more responsive to treatment than ATF3 knockdown xenografts. Thus, reactivation of ATF3 is an important factor in determining sensitivity to pracinostat treatment, both in vitro and in vivo, and could serve as a potential biomarker of response and provide a rationale for therapeutic utility in HDACi-mediated treatments for bladder cancer. Mol Cancer Ther; 15(7); 1726-39. ©2016 AACR. PMID:27196751

  9. Topological features in cancer gene expression data.

    PubMed

    Lockwood, S; Krishnamoorthy, B

    2015-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topological structures that capture persistent, i.e., topologically significant, features of the data set in its first homology group. Furthermore, we demonstrate that many members of these loops have been implicated for cancer biogenesis in scientific literature. We illustrate our method on five different data sets belonging to brain, breast, leukemia, and ovarian cancers. PMID:25592573

  10. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  11. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    PubMed Central

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  12. Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages.

    PubMed

    Heller, N; Brändli, A W

    1999-01-01

    Pax genes are a family of transcription factors playing fundamental roles during organogenesis. We have recently demonstrated the expression of Pax-2 during Xenopus embryogenesis [Heller N, Brändli AW (1997): Mech Dev 69: 83-104]. Here we report the cloning and characterization of Xenopus Pax-5 and Pax-8, two orthologues of the Pax-2/5/8 gene family. Molecular phylogenetic analysis indicates that the amphibian Pax-2/5/8 genes are close relatives of their mammalian counterparts and that all vertebrate Pax-2/5/8 genes are derived from a single ancestral gene. Xenopus Pax-2/5/8 genes are expressed in spatially and temporally overlapping patterns during development of at least seven distinct tissues. Most strikingly, Xenopus Pax-8 was identified as the earliest marker of the prospective otic placode and of the intermediate mesoderm, indicating that Pax-8 may play a central role in auditory and excretory system development. Comparison of the expression patterns of fish, amphibian, and mammalian Pax-2/5/8 genes revealed that the tissue specificity of Pax-2/5/8 gene family expression is overall evolutionarily conserved. The expression domains of individual orthologues can however vary in a species-specific manner. For example, the thyroid glands of mammals express Pax-8, while in Xenopus Pax-2 is expressed instead. Our findings indicate that differential silencing of Pax-2/5/8 gene expression may have occurred after the different classes of vertebrates began to evolve separately. PMID:10322629

  13. SNP discovery and marker development for disease resistance candidate genes in common carp (Cyprinus carpio)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers of susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpes virus 3 (CyHV-3) is highly contagious and virulent in common carp. With the aim to investigate the gene...

  14. Establishment of codominant markers for rice blast resistance gene Pi-ta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single nucleotide length polymorphism (SNLP) was identified at the intron region of the Pi-ta gene to develop a codominant Pi-ta gene marker suitable for genotyping with an ABI automated machine. The DNA primer specific to the resistance Pi-ta allele was labeled with the blue dye as a forward pr...

  15. New Marker Development for the Rice Blast Resistance Gene Pi-km

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The blast resistance (R) gene Pi-km protects rice against specific races of the fungal pathogen Magnaporthe oryzae. The use of blast R genes remains the most cost-effective method of disease control. To facilitate the breeding process, we developed a Pi-km specific molecular marker. For this purp...

  16. Establishment of codominant marker for rice blast resistance gene pi-ta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single nucleotide length polymorphism (SNLP) was identified at the intron region of the Pi-ta gene to develop a codominant Pi-ta gene marker suitable for genotyping with an ABI automated machine. The DNA primer specific to the resistance Pi-ta allele was labeled with the blue dye as a forward pr...

  17. Primary gene structure and expression studies of rodent paracellin-1.

    PubMed

    Weber, S; Schlingmann, K P; Peters, M; Nejsum, L N; Nielsen, S; Engel, H; Grzeschik, K H; Seyberth, H W; Gröne, H J; Nüsing, R; Konrad, M

    2001-12-01

    The novel member of the claudin multigene family, paracellin-1/claudin-16, encoded by the gene PCLN1, is a renal tight junction protein that is involved in the paracellular transport of magnesium and calcium in the thick ascending limb of Henle's loop. Mutations in human PCLN1 are associated with familial hypomagnesemia with hypercalciuria and nephrocalcinosis, an autosomal recessive disease that is characterized by severe renal magnesium and calcium loss. The complete coding sequences of mouse and rat Pcln1 and the murine genomic structure are here presented. Full-length cDNAs are 939 and 1514 bp in length in mouse and rat, respectively, encoding a putative open-reading frame of 235 amino acids in both species with 99% identity. Exon-intron analysis of the human and mouse genes revealed a 100% homology of coding exon lengths and splice-site loci. By radiation hybrid mapping, the murine Pcln1 gene was assigned directly to marker D16Mit133 on mouse chromosome 16 (syntenic to a locus on human chromosome 3q27, which harbors the human PCLN1 gene). Mouse multiple-tissue Northern blot showed Pcln1 expression exclusively in the kidney. The expression profile along the nephron was analyzed by reverse transcriptase-PCR on microdissected nephron segments and immunohistochemistry of rat kidney. Paracellin-1 expression was restricted to distal tubular segments including the thick ascending limb of Henle's loop, the distal tubule, and the collecting duct. The identification and characterization of the rodent Pcln1 genes provide the basis for further studies of paracellin-1 function in suitable animal models. PMID:11729235

  18. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  19. [Modifications of gene expression by tumor promoters].

    PubMed

    Zhang, C; Zhao, Q; Guo, S; Zhao, M; Cheng, S

    1995-02-01

    The modifications of gene expression by tumor promoters were analyzed in vitro and in vivo. The results of slot blot hybridizations showed that tumor promoter TPA induced c-fos and c-myc expressions in mouse fibroblast cell line BALB/3T3 and rat liver, decreased the levels of Rb RNA in BALB/3T3 cell line and of alpha 1-I3 RNA in rat liver. It was also demonstrated that tumor promoter phenobarbital influenced c-fos and c-myc expressions and decreased alpha 1I3 mRNA level in rat liver during a long term experiment. Phenobarbital was found to have no effect on c-fos and c-myc expressions in rat liver during a short experiment. Tumor promoters induced the expressions of c-fos and c-myc which were positively-related to cancer formation and inhibited the expressions of Rb and alpha 1-I3 which were negatively-related to cancer formation. This implied that tumor promotion played an important role in cancer development and tumor promoters exerted their effects selectively according to the attributes of different genes. PMID:7540119

  20. Gene expression in breastmilk cells is associated with maternal and infant characteristics

    PubMed Central

    Twigger, Alecia-Jane; Hepworth, Anna R.; Tat Lai, Ching; Chetwynd, Ellen; Stuebe, Alison M.; Blancafort, Pilar; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2015-01-01

    Breastmilk is a rich source of cells with a heterogeneous composition comprising early-stage stem cells, progenitors and more differentiated cells. The gene expression profiles of these cells and their associations with characteristics of the breastfeeding mother and infant are poorly understood. This study investigated factors associated with the cellular dynamics of breastmilk and explored variations amongst women. Genes representing different breastmilk cell populations including mammary epithelial and myoepithelial cells, progenitors, and multi-lineage stem cells showed great variation in expression. Stem cell markers ESRRB and CK5, myoepithelial marker CK14, and lactocyte marker α-lactalbumin were amongst the genes most highly expressed across all samples tested. Genes exerting similar functions, such as either stem cell regulation or milk production, were found to be closely associated. Infant gestational age at delivery and changes in maternal bra cup size between pre-pregnancy and postpartum lactation were associated with expression of genes controlling stemness as well as milk synthesis. Additional correlations were found between genes and dyad characteristics, which may explain abnormalities related to low breastmilk supply or preterm birth. Our findings highlight the heterogeneity of breastmilk cell content and its changes associated with characteristics of the breastfeeding dyad that may reflect changing infant needs. PMID:26255679

  1. Modulation of blood cell gene expression by DHA supplementation in hypertriglyceridemic men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous study with docosahexaenoic acid (DHA) supplementation to hypertriglyceridemic men showed that DHA reduced several risk factors for CVD, including the plasma concentration of inflammatory markers. To determine the effect of DHA supplementation on the global gene expression pattern, we pe...

  2. Sex-specific gonadal and gene expression changes throughout development in fathead minnow

    EPA Science Inventory

    Although fathead minnows (Pimephales promelas) are commonly used as a model fish in endocrine disruption studies, none have characterized sex-specific baseline expression of genes involved in sex differentiation during development in this species. Using a sex-linked DNA marker t...

  3. Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression.

    PubMed Central

    McLachlin, J R; Miller, L K

    1994-01-01

    We have identified a gene required for strong expression of the polyhedrin gene by characterizing a mutant, tsB837, of the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) which is temperature sensitive (ts) for occluded virus production at the nonpermissive temperature. Marker rescue experiments utilizing an overlapping set of AcMNPV genomic clones revealed that the gene responsible for the ts mutant phenotype mapped to a region between 46 and 48 map units. Fragments (2.2 kb) from both wild-type AcMNPV and tsB837 genomes spanning the mutated region were sequenced, and a single nucleotide difference was observed. This mutation is predicted to substitute a single amino acid within a 44.4-kDa polypeptide. Analysis of protein synthesis in wild-type- and mutant-infected cells at the nonpermissive temperature indicated that polyhedrin synthesis was dramatically reduced in the mutant. Northern (RNA) blot analysis revealed that the mutant had markedly reduced levels of polyhedrin transcripts. Transcripts of another very late gene, p10, were also reduced but to a lesser degree. The transcription of two late genes (603 ORF and vp39) was neither reduced nor temporally delayed. Thus, the gene encoding this very late expression factor, designated vlf-1, regulates the levels of very late gene transcripts, and the tsB837 mutation affects the levels of polyhedrin gene transcripts more strongly than those of p10 transcripts. The product of the newly identified gene has a surprising but significant relationship to a family of integrases and resolvases. Images PMID:7966564

  4. With current gene markers, presymptomatic diagnosis of heritable disease is still a family affair

    SciTech Connect

    Not Available

    1987-09-04

    In the last four years, genes or genetic markers have been identified for a host of disorders including Huntington's disease, cystic fibrosis, Duchenne muscular dystrophy, polycystic kidney disease, bipolar depressive disorder, retinoblastoma, Alzheimer's disease, and schizophrenia. Such discoveries have made it possible to diagnose in utero some 30 genetic diseases during the first trimester of pregnancy. Yet, while these newly discovered gene markers may be revolutionizing prenatal and presymptomatic diagnosis, they are in many respects halfway technology. Such was the opinion of several speakers at a conference sponsored by the American Medical Association in Washington, DC. At the conference, entitled DNA Probes in the Practice of Medicine, geneticists emphasized that gene markers - stretches of DNA that are usually inherited in tandem with a disease gene - are usually not sufficient for presymptomatic diagnosis of genetic disease in an individual.

  5. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. PMID:26663562

  6. Salt induced gene expression in Prosopis farcta

    SciTech Connect

    Heimer, I.M.; Golan, A.; Lips, H.

    1987-04-01

    The authors hypothesize that in facultative halophytes, the genes which impart salt tolerance are expressed when the plants are exposed to salt. As a first step towards possible identification of these genes, they examined salt induced changes of gene expression in the facultative halophyte Prosopis farcta at the protein level, by SDS-PAGE. Exposure to salt of aseptically grown, two-week old seedlings, was carried out in one of two ways: (1) a one step transfer of seedlings from medium without salt to that with the indicated concentrations followed by 5 hr or 24 hr incubation periods. During the last 2 hrs of each incubation period the seedlings were pulse-labelled with /sup 35/S Sulfate or L-Methionine; (2) a gradual increase of the salt concentration at 50 mM increments at 2-4 day intervals. Two days after reaching the desired salt concentration, the seedlings were pulse-labelled for 2 hrs with /sup 35/S sulfate or L-methionine. Protein from roots were extracted and analyzed. Polypeptides were visualized by staining with coomassie blue or by fluorography. Qualitative as well as quantitative changes of gene expression as induced by salt could be observed. Their significance regarding salt tolerance will be discussed.

  7. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  8. Consensus gene regulatory networks: combining multiple microarray gene expression datasets

    NASA Astrophysics Data System (ADS)

    Peeling, Emma; Tucker, Allan

    2007-09-01

    In this paper we present a method for modelling gene regulatory networks by forming a consensus Bayesian network model from multiple microarray gene expression datasets. Our method is based on combining Bayesian network graph topologies and does not require any special pre-processing of the datasets, such as re-normalisation. We evaluate our method on a synthetic regulatory network and part of the yeast heat-shock response regulatory network using publicly available yeast microarray datasets. Results are promising; the consensus networks formed provide a broader view of the potential underlying network, obtaining an increased true positive rate over networks constructed from a single data source.

  9. Gene expression profiling analysis of lung adenocarcinoma

    PubMed Central

    Xu, H.; Ma, J.; Wu, J.; Chen, L.; Sun, F.; Qu, C.; Zheng, D.; Xu, S.

    2016-01-01

    The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma. PMID:26840709

  10. The Discoidin I Gene Family of Dictyostelium Discoideum Is Linked to Genes Regulating Its Expression

    PubMed Central

    Welker, D. L.

    1988-01-01

    The discoidin I protein has been studied extensively as a marker of early development in the cellular slime mold Dictyostelium discoideum. However, like most other developmentally regulated proteins in this system, no reliable information was available on the linkage of the discoidin genes to other known genes. Analysis of the linkage of the discoidin I genes by use of restriction fragment length polymorphisms revealed that all three discoidin I genes as well as a pseudogene are located on linkage group II. This evidence is consistent with the discoidin I genes forming a gene cluster that may be under the control of a single regulatory element. The discoidin I genes are linked to three genetic loci (disA, motA, daxA) that affect the expression of the discoidin I protein. Linkage of the gene family members to regulatory loci may be important in the coordinate maintenance of the gene family and regulatory loci. A duplication affecting the entire discoidin gene family is also linked to group II; this appears to be a small tandem duplication. This duplication was mapped using a DNA polymorphism generated by insertion of the Tdd-3 mobile genetic element into a Tdd-2 element flanking the γ gene. A probe for Tdd-2 identified a restriction fragment length polymorphism in strain AX3K that was consistent with generation by a previously proposed Tdd-3 insertion event. A putative duplication or rearrangement of a second Tdd-2 element on linkage group IV of strain AX3K was also identified. This is the first linkage information available for mobile genetic elements in D. discoideum. PMID:3402731

  11. Keratins 17 and 19 expression as prognostic markers in oral squamous cell carcinoma.

    PubMed

    Coelho, B A; Peterle, G T; Santos, M; Agostini, L P; Maia, L L; Stur, E; Silva, C V M; Mendes, S O; Almança, C C J; Freitas, F V; Borçoi, A R; Archanjo, A B; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-01-01

    Five-year survival rates for oral squamous cell carcinoma (OSCC) are 30% and the mortality rate is 50%. Immunohistochemistry panels are used to evaluate proliferation, vascularization, apoptosis, HPV infection, and keratin expression, which are important markers of malignant progression. Keratins are a family of intermediate filaments predominantly expressed in epithelial cells and have an essential role in mechanical support and cytoskeleton formation, which is essential for the structural integrity and stability of the cell. In this study, we analyzed the expressions of keratins 17 and 19 (K17 and K19) by immunohistochemistry in tumoral and non-tumoral tissues from patients with OSCC. The results show that expression of these keratins is higher in tumor tissues compared to non-tumor tissues. Positive K17 expression correlates with lymph node metastasis and multivariate analysis confirmed this relationship, revealing a 6-fold increase in lymph node metastasis when K17 is expressed. We observed a correlation between K17 expression with disease-free survival and disease-specific death in patients who received surgery and radiotherapy. Multivariate analysis revealed that low expression of K17 was an independent marker for early disease relapse and disease-specific death in patients treated with surgery and radiotherapy, with an approximately 4-fold increased risk when compared to high K17 expression. Our results suggest a potential role for K17 and K19 expression profiles as tumor prognostic markers in OSCC patients. PMID:26634475

  12. Versatile Cosmid Vectors for the Isolation, Expression, and Rescue of Gene Sequences: Studies with the Human α -globin Gene Cluster

    NASA Astrophysics Data System (ADS)

    Lau, Yun-Fai; Kan, Yuet Wai

    1983-09-01

    We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.

  13. Organization of the pronephric kidney revealed by large-scale gene expression mapping

    PubMed Central

    Raciti, Daniela; Reggiani, Luca; Geffers, Lars; Jiang, Qiuhong; Bacchion, Francesca; Subrizi, Astrid E; Clements, Dave; Tindal, Christopher; Davidson, Duncan R; Kaissling, Brigitte; Brändli, André W

    2008-01-01

    Background The pronephros, the simplest form of a vertebrate excretory organ, has recently become an important model of vertebrate kidney organogenesis. Here, we elucidated the nephron organization of the Xenopus pronephros and determined the similarities in segmentation with the metanephros, the adult kidney of mammals. Results We performed large-scale gene expression mapping of terminal differentiation markers to identify gene expression patterns that define distinct domains of the pronephric kidney. We analyzed the expression of over 240 genes, which included members of the solute carrier, claudin, and aquaporin gene families, as well as selected ion channels. The obtained expression patterns were deposited in the searchable European Renal Genome Project Xenopus Gene Expression Database. We found that 112 genes exhibited highly regionalized expression patterns that were adequate to define the segmental organization of the pronephric nephron. Eight functionally distinct domains were discovered that shared significant analogies in gene expression with the mammalian metanephric nephron. We therefore propose a new nomenclature, which is in line with the mammalian one. The Xenopus pronephric nephron is composed of four basic domains: proximal tubule, intermediate tubule, distal tubule, and connecting tubule. Each tubule may be further subdivided into distinct segments. Finally, we also provide compelling evidence that the expression of key genes underlying inherited renal diseases in humans has been evolutionarily conserved down to the level of the pronephric kidney. Conclusion The present study validates the Xenopus pronephros as a genuine model that may be used to elucidate the molecular basis of nephron segmentation and human renal disease. PMID:18492243

  14. Effects of Stress and MDMA on Hippocampal Gene Expression

    PubMed Central

    Weber, Georg F.; Johnson, Bethann N.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature. PMID:24511526

  15. Association Between Expression of Cancer Stem Cell Markers and Poor Differentiation of Hepatocellular Carcinoma

    PubMed Central

    Liu, Rui; Shen, Yuan; Nan, Kejun; Mi, Baibing; Wu, Tao; Guo, Jinyue; Li, Miaojing; Lv, Yi; Guo, Hui

    2015-01-01

    Abstract The role of cancer stem cell (CSC) markers in differentiation of hepatocellular carcinoma (HCC) remains uncertain. We conducted a meta-analysis to first investigate the association between expression of CSC markers (CD133, CD90, CD44, and EpCAM) and poor differentiation of HCC, and second, to determine if these CSC markers can be classified as biomarkers for patient classification and HCC differentiated therapy. The relevant literature was searched using PubMed, EMBASE, Elsevier, and Chinese Biological Medicine databases for association between CSC markers and HCC from January 1, 2000 to June 30, 2014. Data were synthesized using random-effect or fixed-effect models. The effect sizes were estimated by measuring odds ratios (OR) with 95% confidence interval (CI). The meta-analysis included 27 studies consisting of 2897 patients with HCC. The positive expression of CSC markers was associated with poor differentiation (OR = 2.37, 95% CI = 2.03–2.77, P < 0.00001). Similarly, the positive expression of CSC markers was only associated with HCC tissues compared with noncancerous liver tissues (OR = 9.26, 95% CI = 3.10–27.65, P < 0.0001). CD90 has a specificity of 91.9% for HCC and a sensitivity of 48.22% in predicting poor differentiation. The positive expression of CSC markers is associated with poor differentiation and aggressive phenotype of patients with HCC. The CD90 marker might be a promising target for patient with HCC classification and differentiation therapy. PMID:26252310

  16. Less is more: strategies to remove marker genes from transgenic plants.

    PubMed

    Yau, Yuan-Yeu; Stewart, C Neal

    2013-01-01

    Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification. PMID:23617583

  17. Less is more: strategies to remove marker genes from transgenic plants

    PubMed Central

    2013-01-01

    Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification. PMID:23617583

  18. Gene expression in Pseudomonas aeruginosa swarming motility

    PubMed Central

    2010-01-01

    Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril

  19. [Specific molecular markers of the rust resistance gene M4 in flax].

    PubMed

    Bo, Tian-Yue; Ye, Hua-Zhi; Wang, Shi-Quan; Yang, Jian-Chun; Li, Xiao-Bing; Zhai, Wen-Xue

    2002-10-01

    Flax (Linum usitatissimum L.) is an important fiber and oil-producing crop. Flax rust, caused by Melampsora lini Ehrenb. Lev., occurs worldwide and can cause severe losses in seed yield and fiber quality. In order to identify molecular markers linked to the flax rust resistant gene M4, RAPD analysis of NM4, a near-isogenic line containing the M4 gene, and the recurrent parent Bison was carried out with 540 decamer primers. The primer OPA18 could stably amplify a specific fragment, OPA18(432), in the NM4 line. The OPA18(432) marker was testified to be closely linked to the M4 gene with a genetic distance of 2.1 cM through the analysis of the F2 mapping population derived from a cross of Bison x NM4. Based on the sequence of OPA18(432), the specific PCR primers were designed, and a SCAR marker for the M4 gene was produced. Amplification of different resistant materials proved that the maker is specific for the M4 gene. This marker has been used successfully in marker-assisted selection in the flax breeding program. PMID:12561479

  20. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.

    PubMed Central

    Van Gelder, R N; Krasnow, M A

    1996-01-01

    The Drosophila melanogaster period (per) gene is required for expression of endogenous circadian rhythms of locomotion and eclosion. per mRNA is expressed with a circadian rhythm that is dependent on Per protein; this feedback loop has been proposed to be essential to the central circadian pacemaker. This model would suggest the Per protein also controls the circadian expression of other genetic loci to generate circadian behavior and physiology. In this paper we describe Dreg-5, a gene whose mRNA is expressed in fly heads with a circadian rhythm nearly identical to that of the per gene. Dreg-5 mRNA continues to cycle in phase with that of per mRNA in conditions of total darkness and also when the daily feeding time is altered. Like per mRNA, Dreg-5 mRNA is not expressed rhythmically in per null mutant flies. Dreg-5 encodes a novel 298 residue protein and Dreg-5 protein isoforms also oscillate in abundance with a circadian rhythm. The phase of Dreg-5 protein oscillation, however, is different from that of Per protein expression, suggesting that Dreg-5 and per have common translational but different post-translational control mechanisms. These results demonstrate that the per gene is capable of modulating the rhythmic expression of other genes; this activity may form the basis of the output of circadian rhythmicity in Drosophila. Images PMID:8612586

  1. Aging: a portrait from gene expression profile in blood cells.

    PubMed

    Calabria, Elisa; Mazza, Emilia Maria Cristina; Dyar, Kenneth Allen; Pogliaghi, Silvia; Bruseghini, Paolo; Morandi, Carlo; Salvagno, Gian Luca; Gelati, Matteo; Guidi, Gian Cesare; Bicciato, Silvio; Schiaffino, Stefano; Schena, Federico; Capelli, Carlo

    2016-08-01

    The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process. A number of significant changes were found in the elderly compared to the adult group, including decreased levels of transcripts coding for components of the mitochondrial respiratory chain, which correlate with a parallel decline in the maximum rate of oxygen consumption (VO2max), as monitored in the same subjects. In addition, blood cells show age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress. These findings support the notion that the immune system has a major role in tissue homeostasis and repair, which appears to be impaired since early stages of the aging process. PMID:27545843

  2. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize.

    PubMed

    Asters, Matthew C; Williams, W Paul; Perkins, Andy D; Mylroie, J Erik; Windham, Gary L; Shan, Xueyan

    2014-01-01

    Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions. PMID:24770700

  3. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize

    PubMed Central

    Asters, Matthew C.; Williams, W. Paul; Perkins, Andy D.; Mylroie, J. Erik; Windham, Gary L.; Shan, Xueyan

    2014-01-01

    Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions. PMID:24770700

  4. A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

    PubMed Central

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-01-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167

  5. HMGB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation.

    PubMed

    Rouhiainen, Ari; Zhao, Xiang; Vanttola, Päivi; Qian, Kui; Kulesskiy, Evgeny; Kuja-Panula, Juha; Gransalke, Kathleen; Grönholm, Mikaela; Unni, Emmanual; Meistrich, Marvin; Tian, Li; Auvinen, Petri; Rauvala, Heikki

    2016-01-01

    HMGB4 is a new member in the family of HMGB proteins that has been characterized in sperm cells, but little is known about its functions in somatic cells. Here we show that HMGB4 and the highly similar rat Transition Protein 4 (HMGB4L1) are expressed in neuronal cells. Both proteins had slow mobility in nucleus of living NIH-3T3 cells. They interacted with histones and their differential expression in transformed cells of the nervous system altered the post-translational modification statuses of histones in vitro. Overexpression of HMGB4 in HEK 293T cells made cells more susceptible to cell death induced by topoisomerase inhibitors in an oncology drug screening array and altered variant composition of histone H3. HMGB4 regulated over 800 genes in HEK 293T cells with a p-value ≤0.013 (n = 3) in a microarray analysis and displayed strongest association with adhesion and histone H2A -processes. In neuronal and transformed cells HMGB4 regulated the expression of an oligodendrocyte marker gene PPP1R14a and other neuronal differentiation marker genes. In conclusion, our data suggests that HMGB4 is a factor that regulates chromatin and expression of neuronal differentiation markers. PMID:27608812

  6. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    PubMed Central

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  7. DNA supercoiling and bacterial gene expression.

    PubMed

    Dorman, Charles J

    2006-01-01

    DNA in bacterial cells is maintained in a negatively supercoiled state. This contributes to the organization of the bacterial nucleoid and also influences the global gene expression pattern in the cell through modulatory effects on transcription. Supercoiling arises as a result of changes to the linking number of the relaxed double-stranded DNA molecule and is set and reset by the action of DNA topoisomerases. This process is subject to a multitude of influences that are usually summarized as environmental stress. Responsiveness of linking number change to stress offers the promise of a mechanism for the wholesale adjustment of the transcription programme of the cell as the bacterium experiences different environments. Recent data from DNA microarray experiments support this proposition. The emerging picture is one of DNA supercoiling acting at or near the apex of a regulatory hierarchy where it collaborates with nucleoid-associated proteins and transcription factors to determine the gene expression profile of the cell. PMID:17338437

  8. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells. PMID:26869315

  9. Global Gene Expression in Staphylococcus aureus Biofilms

    PubMed Central

    Beenken, Karen E.; Dunman, Paul M.; McAleese, Fionnuala; Macapagal, Daphne; Murphy, Ellen; Projan, Steven J.; Blevins, Jon S.; Smeltzer, Mark S.

    2004-01-01

    We previously demonstrated that mutation of the staphylococcal accessory regulator (sarA) in a clinical isolate of Staphylococcus aureus (UAMS-1) results in an impaired capacity to form a biofilm in vitro (K. E. Beenken, J. S. Blevins, and M. S. Smeltzer, Infect. Immun. 71:4206-4211, 2003). In this report, we used a murine model of catheter-based biofilm formation to demonstrate that a UAMS-1 sarA mutant also has a reduced capacity to form a biofilm in vivo. Surprisingly, mutation of the UAMS-1 ica locus had little impact on biofilm formation in vitro or in vivo. In an effort to identify additional loci that might be relevant to biofilm formation and/or the adaptive response required for persistence of S. aureus within a biofilm, we isolated total cellular RNA from UAMS-1 harvested from a biofilm grown in a flow cell and compared the transcriptional profile of this RNA to RNA isolated from both exponential- and stationary-phase planktonic cultures. Comparisons were done using a custom-made Affymetrix GeneChip representing the genomic complement of six strains of S. aureus (COL, N315, Mu50, NCTC 8325, EMRSA-16 [strain 252], and MSSA-476). The results confirm that the sessile lifestyle associated with persistence within a biofilm is distinct by comparison to the lifestyles of both the exponential and postexponential phases of planktonic culture. Indeed, we identified 48 genes in which expression was induced at least twofold in biofilms over expression under both planktonic conditions. Similarly, we identified 84 genes in which expression was repressed by a factor of at least 2 compared to expression under both planktonic conditions. A primary theme that emerged from the analysis of these genes is that persistence within a biofilm requires an adaptive response that limits the deleterious effects of the reduced pH associated with anaerobic growth conditions. PMID:15231800

  10. Imaging gene expression in single living cells

    PubMed Central

    Shav-Tal, Yaron; Singer, Robert H.; Darzacq, Xavier

    2016-01-01

    Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time. PMID:15459666

  11. The systemic control of circadian gene expression.

    PubMed

    Gerber, A; Saini, C; Curie, T; Emmenegger, Y; Rando, G; Gosselin, P; Gotic, I; Gos, P; Franken, P; Schibler, U

    2015-09-01

    The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder. PMID:26332965

  12. Nuclear structure, gene expression and development.

    PubMed

    Brown, K

    1999-01-01

    This article considers the extent to which features of nuclear structure are involved in the regulation of genome function. The recent renaissance in imaging technology has inspired a new determination to assign specific functions to nuclear domains or structures, many of which have been described as "factories" to express the idea that they coordinate nuclear processes in an efficient way. Visual data have been combined with genetic and biochemical information to support the idea that nuclear organization has functional significance. Particular DNA sequences or chromatin structures may nucleate domains that are permissive or restrictive of transcription, to which active or inactive loci could be recruited. Associations within the nucleus, as well as many nuclear structures, are transient and change dynamically during cell cycle progression and development. Despite this complexity, elucidation of the possible structural basis of epigenetic phenomena, such as the inheritance of a "cellular memory" of gene expression status, is an important goal for cell biology. Topics for discussion include the regulatory effect of chromatin structure on gene expression, putative "nuclear addresses" for genes and proteins, the functional significance of nuclear bodies, and the role of the nuclear matrix in nuclear compartmentalization. PMID:10651237

  13. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    PubMed

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  14. Transition Metals in Control of Gene Expression

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas V.

    1993-08-01

    Metalloproteins play structural and catalytic roles in gene expression. The metalloregulatory proteins are a subclass that exerts metal-responsive control of genes involved in respiration, metabolism, and metal-specific homeostasis or stress-response systems, such as iron uptake and storage, copper efflux, and mercury detoxification. Two allosteric mechanisms for control of gene expression were first discovered in metalloregulatory systems: an iron-responsive translational control mechanism for ferritin production and a mercury-responsive DNA-distortion mechanism for transcriptional control of detoxification genes. These otherwise unrelated mechanisms give rise to a rapid physiological response when metal ion concentrations exceed a dangerous threshold. Molecular recognition in these allosteric metal ion receptors is achieved through atypical coordination geometries, cluster formation, or complexes with prosthetic groups, such as sulfide and heme. Thus, many of the inorganic assemblies that otherwise buttress the structure of biopolymers or catalyze substrate transformation in active sites of enzymes have also been adapted to serve sensor functions in the metalloregulatory proteins. Mechanistic studies of these metal-sensor protein interactions are providing new insights into fundamental aspects of inorganic chemistry, molecular biology, and cellular physiology.

  15. Gene expression profiling of inflammatory bladder disorders.

    PubMed

    Saban, Marcia R; Nguyen, Ngoc-Bich; Hurst, Robert E; Saban, Ricardo

    2003-03-01

    Inflammation underlies all major bladder pathologies including malignancy and represents a defense reaction to injury caused by physical damage, chemical substances, micro-organisms or other agents. During acute inflammation, activation of specific molecular pathways leads to an increased expression of selected genes whose products attack the insult, but ultimately should protect the tissue from the noxious stimulus. However, once the stimulus ceases, gene-expression should return to basal levels to avoid tissue damage, fibrosis, loss of function, and chronic inflammation. If this down-regulation does not occur, tissue fibrosis occurs as a serious complication of chronic inflammation. Although sensory nerve and most cells products are known to be key parts of the inflammatory puzzle, other key molecules are constantly being described that have a role in bladder inflammation. Therefore, as the database describing the repertoire of inflammatory mediators implicated in bladder inflammation increases, the central mechanisms by which injury can induce inflammation, cell damage, and repair often becomes less rather than more clear. To make sense of the vast knowledge of the genes involved in the inflammatory response may require analysis of the patterns of change and the elucidation of gene networks far more than definition of additional members of inflammatory cascades. This review discuss the appropriate use of microarray technology, which promises to solve both of these problems as well as identifying key molecules and mechanisms involved in the transition between acute and chronic inflammation. PMID:12647997

  16. Sleep deprivation affects inflammatory marker expression in adipose tissue

    PubMed Central

    2010-01-01

    Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C) group and a paradoxical sleep deprivation by 96 h (PSD) group. Ten rats were randomly assigned to either the control group (C) or the PSD. Mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL)-6, interleukin (IL)-10 and tumour necrosis factor (TNF)-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG), VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum. PMID:21034496

  17. Development and Characterization of 1,827 Expressed Sequence Tag-Derived Simple Sequence Repeat Markers for Ramie (Boehmeria nivea L. Gaud)

    PubMed Central

    Liu, Touming; Zhu, Siyuan; Fu, Lili; Tang, Qingming; Yu, Yongting; Chen, Ping; Luan, Mingbao; Wang, Changbiao; Tang, Shouwei

    2013-01-01

    Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fiber crops, and improvement of fiber yield and quality is the main goal in efforts to breed superior cultivars. However, efforts aimed at enhancing the understanding of ramie genetics and developing more effective breeding strategies have been hampered by the shortage of simple sequence repeat (SSR) markers. In our previous study, we had assembled de novo 43,990 expressed sequence tags (ESTs). In the present study, we searched these previously assembled ESTs for SSRs and identified 1,685 ESTs (3.83%) containing 1,878 SSRs. Next, we designed 1,827 primer pairs complementary to regions flanking these SSRs, and these regions were designated as SSR markers. Among these markers, dinucleotide and trinucleotide repeat motifs were the most abundant types (36.4% and 36.3%, respectively), whereas tetranucleotide, pentanucleotide, and hexanucleotide motifs represented <10% of the markers. The motif AG/CT was the most abundant, accounting for 28.74% of the markers. One hundred EST-SSR markers (97 SSRs located in genes encoding transcription factors and 3 SSRs in genes encoding cellulose synthases) were amplified using polymerase chain reaction for detecting 24 ramie varieties. Of these 100 markers, 98 markers were successfully amplified and 81 markers were polymorphic, with 2–6 alleles among the 24 varieties. Analysis of the genetic diversity of all 24 varieties revealed similarity coefficients that ranged from 0.51 to 0.80. The EST-SSRs developed in this study represent the first large-scale development of SSR markers for ramie. These SSR markers could be used for development of genetic and physical maps, quantitative trait loci mapping, genetic diversity studies, association mapping, and cultivar fingerprinting. PMID:23565230

  18. Transcriptional analysis of human survivin gene expression.

    PubMed Central

    Li, F; Altieri, D C

    1999-01-01

    The preservation of tissue and organ homoeostasis depends on the regulated expression of genes controlling apoptosis (programmed cell death). In this study, we have investigated the basal transcriptional requirements of the survivin gene, an IAP (inhibitor of apoptosis) prominently up-regulated in cancer. Analysis of the 5' flanking region of the human survivin gene revealed the presence of a TATA-less promoter containing a canonical CpG island of approximately 250 nt, three cell cycle dependent elements, one cell cycle homology region and numerous Sp1 sites. PCR-based analysis of human genomic DNA, digested with methylation-sensitive and -insensitive restriction enzymes, indicated that the CpG island was unmethylated in both normal and neoplastic tissues. Primer extension and S1 nuclease mapping of the human survivin gene identified two main transcription start sites at position -72 and within -57/-61 from the initiating ATG. Transfection of cervical carcinoma HeLa cells with truncated or nested survivin promoter-luciferase constructs revealed the presence of both enhancer and repressor sequences and identified a minimal promoter region within the proximal -230 nt of the human surviv