Science.gov

Sample records for gene expression modulation

  1. Arabidopsis gene co-expression network and its functional modules

    PubMed Central

    Mao, Linyong; Van Hemert, John L; Dash, Sudhansu; Dickerson, Julie A

    2009-01-01

    Background Biological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated. Results We constructed a genome-wide Arabidopsis gene co-expression network (AGCN) by using 1094 microarrays. We then analyzed the topological properties of AGCN and partitioned the network into modules by using an efficient graph clustering algorithm. In the AGCN, 382 hub genes formed a clique, and they were densely connected only to a small subset of the network. At the module level, the network clustering results provide a systems-level understanding of the gene modules that coordinate multiple biological processes to carry out specific biological functions. For instance, the photosynthesis module in AGCN involves a very large number (> 1000) of genes which participate in various biological processes including photosynthesis, electron transport, pigment metabolism, chloroplast organization and biogenesis, cofactor metabolism, protein biosynthesis, and vitamin metabolism. The cell cycle module orchestrated the coordinated expression of hundreds of genes involved in cell cycle, DNA metabolism, and cytoskeleton organization and biogenesis. We also compared the AGCN constructed in this study with a graphical Gaussian model (GGM) based Arabidopsis gene network. The photosynthesis, protein biosynthesis, and cell cycle modules identified from the GGM network had much smaller module sizes compared with the modules found in the AGCN, respectively. Conclusion This study reveals new insight into the topological properties of biological networks. The

  2. Modulation of gene expression by RNAi.

    PubMed

    Wójcik, Cezary; Fabunmi, Rosalind; DeMartino, George N

    2005-01-01

    RNA interference (RNAi) is a form of posttranscriptional gene silencing in which the presence within the cell of double-stranded RNA (dsRNA) leads to the specific degradation of mRNA with a complimentary sequence. RNAi is a natural phenomenon that can be exploited as a powerful tool to study gene function by generating gene "knockdowns" in various cell types. RNAi is mediated by short interfering RNAs (siRNAs), which are generated within cells from long dsRNAs. To avoid generalized toxic effects, mammalian cells are transfected directly with 21-23-bp-long siRNAs generated either by chemical synthesis or obtained by a series of enzymatic reactions. The present chapter deals with siRNA design, synthesis, transfection, and readout of efficiency in a mammalian cell culture system. The general principle is illustrated by the functional knockdown of p97/VCP (valosin-containing protein) in HeLa cells using five different siRNA sequences. PMID:16028696

  3. Modes and Modulations of Antibiotic Resistance Gene Expression

    PubMed Central

    Depardieu, Florence; Podglajen, Isabelle; Leclercq, Roland; Collatz, Ekkehard; Courvalin, Patrice

    2007-01-01

    Since antibiotic resistance usually affords a gain of function, there is an associated biological cost resulting in a loss of fitness of the bacterial host. Considering that antibiotic resistance is most often only transiently advantageous to bacteria, an efficient and elegant way for them to escape the lethal action of drugs is the alteration of resistance gene expression. It appears that expression of bacterial resistance to antibiotics is frequently regulated, which indicates that modulation of gene expression probably reflects a good compromise between energy saving and adjustment to a rapidly evolving environment. Modulation of gene expression can occur at the transcriptional or translational level following mutations or the movement of mobile genetic elements and may involve induction by the antibiotic. In the latter case, the antibiotic can have a triple activity: as an antibacterial agent, as an inducer of resistance to itself, and as an inducer of the dissemination of resistance determinants. We will review certain mechanisms, all reversible, that bacteria have elaborated to achieve antibiotic resistance by the fine-tuning of the expression of genetic information. PMID:17223624

  4. Sarcoptes scabiei Mites Modulate Gene Expression in Human Skin Equivalents

    PubMed Central

    Morgan, Marjorie S.; Arlian, Larry G.; Markey, Michael P.

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin. PMID:23940705

  5. Quantitative assessment of gene expression network module-validation methods.

    PubMed

    Li, Bing; Zhang, Yingying; Yu, Yanan; Wang, Pengqian; Wang, Yongcheng; Wang, Zhong; Wang, Yongyan

    2015-01-01

    Validation of pluripotent modules in diverse networks holds enormous potential for systems biology and network pharmacology. An arising challenge is how to assess the accuracy of discovering all potential modules from multi-omic networks and validating their architectural characteristics based on innovative computational methods beyond function enrichment and biological validation. To display the framework progress in this domain, we systematically divided the existing Computational Validation Approaches based on Modular Architecture (CVAMA) into topology-based approaches (TBA) and statistics-based approaches (SBA). We compared the available module validation methods based on 11 gene expression datasets, and partially consistent results in the form of homogeneous models were obtained with each individual approach, whereas discrepant contradictory results were found between TBA and SBA. The TBA of the Zsummary value had a higher Validation Success Ratio (VSR) (51%) and a higher Fluctuation Ratio (FR) (80.92%), whereas the SBA of the approximately unbiased (AU) p-value had a lower VSR (12.3%) and a lower FR (45.84%). The Gray area simulated study revealed a consistent result for these two models and indicated a lower Variation Ratio (VR) (8.10%) of TBA at 6 simulated levels. Despite facing many novel challenges and evidence limitations, CVAMA may offer novel insights into modular networks. PMID:26470848

  6. Modulation of R-gene expression across environments.

    PubMed

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  7. Modulation of R-gene expression across environments

    PubMed Central

    MacQueen, Alice; Bergelson, Joy

    2016-01-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription–PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment—be it a change in biotic or abiotic conditions—led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  8. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  9. Simvastatin modulates mesenchymal stromal cell proliferation and gene expression.

    PubMed

    Zanette, Dalila Lucíola; Lorenzi, Julio Cesar Cetrulo; Panepucci, Rodrigo Alexandre; Palma, Patricia Vianna Bonini; Dos Santos, Daiane Fernanda; Prata, Karen Lima; Silva, Wilson Araújo

    2015-01-01

    Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC) are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chondrocytes. MSC were isolated from amniotic membranes and bone marrows and characterized based on ISCT (International Society for Cell Therapy) minimal criteria. Simvastatin-treated cells and controls were directly assayed by CFSE (Carboxyfluorescein diacetate succinimidyl ester) staining to assess their cell proliferation and their RNA was used for microarray analyses and quantitative PCR (qPCR). These MSC were also evaluated for their ability to inhibit PBMC (peripheral blood mononuclear cells) proliferation. We show here that simvastatin negatively modulates MSC proliferation in a dose-dependent way and regulates the expression of proliferation-related genes. Importantly, we observed that simvastatin increased the percentage of a subset of smaller MSC, which also were actively proliferating. The association of MSC decreased size with increased pluripotency and the accumulating evidence that statins may prevent cellular senescence led us to hypothesize that simvastatin induces a smaller subpopulation that may have increased ability to maintain the entire pool of MSC and also to protect them from cellular senescence induced by long-term cultures/passages in vitro. These results may be important to better understand the pleiotropic effects of statins and its effects on the biology of cells with regenerative potential. PMID:25874574

  10. Gene expression profile of androgen modulated genes in the murine fetal developing lung

    PubMed Central

    2010-01-01

    Background Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. Methods To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. Results Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. Conclusion Our results show clearly that there is a real delay in lung maturation between male and female in this period

  11. Development of a synthetic gene network to modulate gene expression by mechanical forces

    PubMed Central

    Kis, Zoltán; Rodin, Tania; Zafar, Asma; Lai, Zhangxing; Freke, Grace; Fleck, Oliver; Del Rio Hernandez, Armando; Towhidi, Leila; Pedrigi, Ryan M.; Homma, Takayuki; Krams, Rob

    2016-01-01

    The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert the gene network into a high proportion of cells, a hybrid transfection procedure was developed that involves electroporation, plasmids replication in mammalian cells, mammalian antibiotic selection, a second electroporation and gene network activation. This procedure takes 1 week and yielded over 60% of cells with a functional gene network. To test gene network functionality, we developed a flow setup that exposes cells to linearly increasing shear stress along the length of the flow channel floor. Activation of the gene network varied logarithmically as a function of shear stress magnitude. PMID:27404994

  12. Development of a synthetic gene network to modulate gene expression by mechanical forces.

    PubMed

    Kis, Zoltán; Rodin, Tania; Zafar, Asma; Lai, Zhangxing; Freke, Grace; Fleck, Oliver; Del Rio Hernandez, Armando; Towhidi, Leila; Pedrigi, Ryan M; Homma, Takayuki; Krams, Rob

    2016-01-01

    The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert the gene network into a high proportion of cells, a hybrid transfection procedure was developed that involves electroporation, plasmids replication in mammalian cells, mammalian antibiotic selection, a second electroporation and gene network activation. This procedure takes 1 week and yielded over 60% of cells with a functional gene network. To test gene network functionality, we developed a flow setup that exposes cells to linearly increasing shear stress along the length of the flow channel floor. Activation of the gene network varied logarithmically as a function of shear stress magnitude. PMID:27404994

  13. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression.

    PubMed

    Amador, Ariadna; Wang, Yongjun; Banerjee, Subhashis; Kameneka, Theodore M; Solt, Laura A; Burris, Thomas P

    2016-01-01

    The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression. PMID:26963516

  14. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression

    PubMed Central

    Amador, Ariadna; Wang, Yongjun; Banerjee, Subhashis; Kameneka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression. PMID:26963516

  15. Genomic modulators of gene expression in human neutrophils.

    PubMed

    Naranbhai, Vivek; Fairfax, Benjamin P; Makino, Seiko; Humburg, Peter; Wong, Daniel; Ng, Esther; Hill, Adrian V S; Knight, Julian C

    2015-01-01

    Neutrophils form the most abundant leukocyte subset and are central to many disease processes. Technical challenges in transcriptomic profiling have prohibited genomic approaches to date. Here we map expression quantitative trait loci (eQTL) in peripheral blood CD16+ neutrophils from 101 healthy European adults. We identify cis-eQTL for 3281 neutrophil-expressed genes including many implicated in neutrophil function, with 450 of these not previously observed in myeloid or lymphoid cells. Paired comparison with monocyte eQTL demonstrates nuanced conditioning of genetic regulation of gene expression by cellular context, which relates to cell-type-specific DNA methylation and histone modifications. Neutrophil eQTL are markedly enriched for trait-associated variants particularly autoimmune, allergy and infectious disease. We further demonstrate how eQTL in PADI4 and NOD2 delineate risk variant function in rheumatoid arthritis, leprosy and Crohn's disease. Taken together, these data help advance understanding of the genetics of gene expression, neutrophil biology and immune-related diseases. PMID:26151758

  16. Genomic modulators of gene expression in human neutrophils

    PubMed Central

    Naranbhai, Vivek; Fairfax, Benjamin P.; Makino, Seiko; Humburg, Peter; Wong, Daniel; Ng, Esther; Hill, Adrian V. S.; Knight, Julian C.

    2015-01-01

    Neutrophils form the most abundant leukocyte subset and are central to many disease processes. Technical challenges in transcriptomic profiling have prohibited genomic approaches to date. Here we map expression quantitative trait loci (eQTL) in peripheral blood CD16+ neutrophils from 101 healthy European adults. We identify cis-eQTL for 3281 neutrophil-expressed genes including many implicated in neutrophil function, with 450 of these not previously observed in myeloid or lymphoid cells. Paired comparison with monocyte eQTL demonstrates nuanced conditioning of genetic regulation of gene expression by cellular context, which relates to cell-type-specific DNA methylation and histone modifications. Neutrophil eQTL are markedly enriched for trait-associated variants particularly autoimmune, allergy and infectious disease. We further demonstrate how eQTL in PADI4 and NOD2 delineate risk variant function in rheumatoid arthritis, leprosy and Crohn's disease. Taken together, these data help advance understanding of the genetics of gene expression, neutrophil biology and immune-related diseases. PMID:26151758

  17. Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes

    PubMed Central

    Reis, Surya A.; Ghosh, Balaram; Hendricks, J. Adam; Szantai-Kis, D. Miklos; Törk, Lisa; Ross, Kenneth N.; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, Hongtao; Salthouse, Christopher; Haggarty, Stephen J.; Mazitschek, Ralph

    2016-01-01

    Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatio-temporal control. Here, we present a novel and generalizable approach, referred to as ‘Chemo-Optical Modulation of Epigenetically-regulated Transcription’ (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may translate into novel therapeutic strategies for diseases where conditional and selective epigenome modulation is required. PMID:26974814

  18. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  19. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    PubMed Central

    Tawa, Gregory J.; AbdulHameed, Mohamed Diwan M.; Yu, Xueping; Kumar, Kamal; Ippolito, Danielle L.; Lewis, John A.; Stallings, Jonathan D.; Wallqvist, Anders

    2014-01-01

    Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects. PMID:25226513

  20. A co-expression modules based gene selection for cancer recognition.

    PubMed

    Lu, Xinguo; Deng, Yong; Huang, Lei; Feng, Bingtao; Liao, Bo

    2014-12-01

    Gene expression profiles are used to recognize patient samples for cancer diagnosis and therapy. Gene selection is crucial to high recognition performance. In usual gene selection methods the genes are considered as independent individuals and the correlation among genes is not used efficiently. In this description, a co-expression modules based gene selection method for cancer recognition is proposed. First, in the cancer dataset a weighted correlation network is constructed according to the correlation between each pair of genes, different modules from this network are identified and the significant modules are selected for following exploration. Second, based on these informative modules information gain is applied to selecting the feature genes for cancer recognition. Then using LOOCV, the experiments with different classification algorithms are conducted and the results show that the proposed method makes better classification accuracy than traditional gene selection methods. At last, via gene ontology enrichment analysis the biological significance of the co-expressed genes in specific modules was verified. PMID:24440175

  1. Calcium pantothenate modulates gene expression in proliferating human dermal fibroblasts.

    PubMed

    Wiederholt, Tonio; Heise, Ruth; Skazik, Claudia; Marquardt, Yvonne; Joussen, Sylvia; Erdmann, Kati; Schröder, Henning; Merk, Hans F; Baron, Jens Malte

    2009-11-01

    Topical application of pantothenate is widely used in clinical practice for wound healing. Previous studies identified a positive effect of pantothenate on migration and proliferation of cultured fibroblasts. However, these studies were mainly descriptive with no molecular data supporting a possible model of its action. In this study, we first established conditions for an in vitro model of pantothenate wound healing and then analysed the molecular effects of pantothenate. To test the functional effect of pantothenate on dermal fibroblasts, cells were cultured and in vitro proliferation tests were performed using a standardized scratch test procedure. For all three donors analysed, a strong stimulatory effect of pantothenate at a concentration of 20 microg/ml on the proliferation of cultivated dermal fibroblasts was observed. To study the molecular mechanisms resulting in the proliferative effect of pantothenate, gene expression was analysed in dermal fibroblasts cultivated with 20 microg/ml of pantothenate compared with untreated cells using the GeneChip Human Exon 1.0 ST Array. A number of significantly regulated genes were identified including genes coding for interleukin (IL)-6, IL-8, Id1, HMOX-1, HspB7, CYP1B1 and MARCH-II. Regulation of these genes was subsequently verified by quantitative real-time polymerase chain reaction analysis. Induction of HMOX-1 expression by pantothenol and pantothenic acid in dermal cells was confirmed on the protein level using immunoblots. Functional studies revealed the enhanced suppression of free radical formation in skin fibroblasts cultured with panthenol. In conclusion, these studies provided new insight in the molecular mechanisms linked to the stimulatory effect of pantothenate and panthenol on the proliferation of dermal fibroblasts. PMID:19397697

  2. Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression.

    PubMed

    Goodarzi, Hani; Nguyen, Hoang C B; Zhang, Steven; Dill, Brian D; Molina, Henrik; Tavazoie, Sohail F

    2016-06-01

    Transfer RNAs (tRNAs) are primarily viewed as static contributors to gene expression. By developing a high-throughput tRNA profiling method, we find that specific tRNAs are upregulated in human breast cancer cells as they gain metastatic activity. Through loss-of-function, gain-of-function, and clinical-association studies, we implicate tRNAGluUUC and tRNAArgCCG as promoters of breast cancer metastasis. Upregulation of these tRNAs enhances stability and ribosome occupancy of transcripts enriched for their cognate codons. Specifically, tRNAGluUUC promotes metastatic progression by directly enhancing EXOSC2 expression and enhancing GRIPAP1-constituting an "inducible" pathway driven by a tRNA. The cellular proteomic shift toward a pro-metastatic state mirrors global tRNA shifts, allowing for cell-state and cell-type transgene expression optimization through codon content quantification. TRNA modulation represents a mechanism by which cells achieve altered expression of specific transcripts and proteins. TRNAs are thus dynamic regulators of gene expression and the tRNA codon landscape can causally and specifically impact disease progression. PMID:27259150

  3. Exogenous isoprene modulates gene expression in unstressed Arabidopsis thaliana plants.

    PubMed

    Harvey, Christopher M; Sharkey, Thomas D

    2016-06-01

    Isoprene is a well-studied volatile hemiterpene that protects plants from abiotic stress through mechanisms that are not fully understood. The antioxidant and membrane stabilizing potential of isoprene are the two most commonly invoked mechanisms. However, isoprene also affects phenylpropanoid metabolism, suggesting an additional role as a signalling molecule. In this study, microarray-based gene expression profiling reveals transcriptional reprogramming of Arabidopsis thaliana plants fumigated for 24 h with a physiologically relevant concentration of isoprene. Functional enrichment analysis of fumigated plants revealed enhanced heat- and light-stress-responsive processes in response to isoprene. Isoprene induced a network enriched in ERF and WRKY transcription factors, which may play a role in stress tolerance. The isoprene-induced up-regulation of phenylpropanoid biosynthetic genes was specifically confirmed using quantitative reverse transcription polymerase chain reaction. These results support a role for isoprene as a signalling molecule, in addition to its possible roles as an antioxidant and membrane thermoprotectant. PMID:26477606

  4. Hybrid coexpression link similarity graph clustering for mining biological modules from multiple gene expression datasets

    PubMed Central

    2014-01-01

    Background Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. Results We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways. PMID:25221624

  5. Bordetella pertussis modulates human macrophage defense gene expression.

    PubMed

    Valdez, Hugo Alberto; Oviedo, Juan Marcos; Gorgojo, Juan Pablo; Lamberti, Yanina; Rodriguez, Maria Eugenia

    2016-08-01

    Bordetella pertussis, the etiological agent of whooping cough, still causes outbreaks. We recently found evidence that B. pertussis can survive and even replicate inside human macrophages, indicating that this host cell might serve as a niche for persistence. In this work, we examined the interaction of B. pertussis with a human monocyte cell line (THP-1) that differentiates into macrophages in culture in order to investigate the host cell response to the infection and the mechanisms that promote that intracellular survival. To that end, we investigated the expression profile of a selected number of genes involved in cellular bactericidal activity and the inflammatory response during the early and late phases of infection. The bactericidal and inflammatory response of infected macrophages was progressively downregulated, while the number of THP-1 cells heavily loaded with live bacteria increased over time postinfection. Two of the main toxins of B. pertussis, pertussis toxin (Ptx) and adenylate cyclase (CyaA), were found to be involved in manipulating the host cell response. Therefore, failure to express either toxin proved detrimental to the development of intracellular infections by those bacteria. Taken together, these results support the relevance of host defense gene manipulation to the outcome of the interaction between B. pertussis and macrophages. PMID:27465637

  6. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  7. Shigella dysenteriae Modulates BMP Pathway to Induce Mucin Gene Expression In Vivo and In Vitro

    PubMed Central

    Gopal, Ashidha; Iyer, Soumya Chidambaram; Gopal, Udhayakumar; Devaraj, Niranjali; Halagowder, Devaraj

    2014-01-01

    Mucosal epithelial cells in the intestine act as the first line of host defense against pathogens by increasing mucin production for clearance. Despite this fact, the underlying molecular mechanisms by which Shigella dysenteriae transduce mucin gene expression remain poorly defined. The goal of this study was to determine the role of Bone morphogenetic protein (BMP) pathway in mucin gene expression during S. dysenteriae infection. In this study we demonstrate that S. dysenteriae activates BMP signaling to induce MUC2 and MUC5AC gene expression in rat ileal loop model and in vitro. We also observed that BMP pathway regulates CDX2 expression which plays a critical role in induction of MUC2 gene during S. dysenteriae infection. In SMAD4 silenced cells S. dysenteriae infection did not abrogate MUC2 and MUC5AC gene expression whereas in CDX2 silenced cells it induces differential expression of MUC5AC gene. These results suggest that SMAD4-CDX2 induces MUC2 gene expression whereas SMAD4 directly influences differential expression of MUC5AC gene. Altogether, our results show that during S. dysenteriae infection the BMP pathway modulates inflammatory transcription factors CDX2 and SMAD4 to induce MUC2 and MUC5AC gene expression which plays a key role in the regulation of host mucosal defense thereby paving a cue for therapeutic application. PMID:25365201

  8. Investigating perturbed pathway modules from gene expression data via structural equation models

    PubMed Central

    2014-01-01

    Background It is currently accepted that the perturbation of complex intracellular networks, rather than the dysregulation of a single gene, is the basis for phenotypical diversity. High-throughput gene expression data allow to investigate changes in gene expression profiles among different conditions. Recently, many efforts have been made to individuate which biological pathways are perturbed, given a list of differentially expressed genes (DEGs). In order to understand these mechanisms, it is necessary to unveil the variation of genes in relation to each other, considering the different phenotypes. In this paper, we illustrate a pipeline, based on Structural Equation Modeling (SEM) that allowed to investigate pathway modules, considering not only deregulated genes but also the connections between the perturbed ones. Results The procedure was tested on microarray experiments relative to two neurological diseases: frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) and multiple sclerosis (MS). Starting from DEGs and dysregulated biological pathways, a model for each pathway was generated using databases information biological databases, in order to design how DEGs were connected in a causal structure. Successively, SEM analysis proved if pathways differ globally, between groups, and for specific path relationships. The results confirmed the importance of certain genes in the analyzed diseases, and unveiled which connections are modified among them. Conclusions We propose a framework to perform differential gene expression analysis on microarray data based on SEM, which is able to: 1) find relevant genes and perturbed biological pathways, investigating putative sub-pathway models based on the concept of disease module; 2) test and improve the generated models; 3) detect a differential expression level of one gene, and differential connection between two genes. This could shed light, not only on the mechanisms affecting variations in gene

  9. Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins

    PubMed Central

    Kehat, Izhak; Accornero, Federica; Aronow, Bruce J.

    2011-01-01

    Class IIa histone deacetylases (HDACs) can modulate chromatin architecture and transcriptional activity, thereby participating in the regulation of cellular responses such as cardiomyocyte hypertrophy. However, the target genes of class IIa HDACs that control inducible cardiac growth and the broader mechanisms whereby these deacetylases modulate locus-specific gene expression within chromatin remain a mystery. Here, we used genome-wide promoter occupancy analysis, expression profiling, and primary cell validation to identify direct class IIa HDAC4 targets in cardiomyocytes. Simultaneously, we identified nucleoporin155 (Nup155) as an HDAC4-interacting protein. Mechanistically, we show that HDAC4 modulated the association of identified target genes with nucleoporins through interaction with Nup155. Moreover, a truncated mutant of Nup155 that cannot bind HDAC4 suppressed HDAC4-induced gene expression patterns and chromatin–nucleoporin association, suggesting that Nup155-mediated localization was required for HDAC4’s effect on gene expression. We thus propose a novel mechanism of action for HDAC4, suggesting it can function to dynamically regulate gene expression through changes in chromatin–nucleoporin association. PMID:21464227

  10. Manipulations of cholinesterase gene expression modulate murine megakaryocytopoiesis in vitro.

    PubMed Central

    Patinkin, D; Seidman, S; Eckstein, F; Benseler, F; Zakut, H; Soreq, H

    1990-01-01

    Megakaryocytopoiesis was selectively inhibited in cultured murine bone marrow cells by a 15-mer oligodeoxynucleotide complementary to the initiator AUG region in butyrylcholinesterase mRNA. Furthermore, conditioned medium from Xenopus oocytes producing recombinant butyrylcholinesterase stimulated megakaryocytopoiesis. These observations implicate butyrylcholinesterase in megakaryocytopoiesis and suggest application of oligodeoxynucleotides for modulating bone marrow development. Images PMID:2233731

  11. Molecular Profiling: Catecholamine Modulation of Gene Expression in Enteropathogenic Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigations of the enteric pathogens Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium and Vibrio parahaemolyticus have demonstrated that these bacteria can respond to the presence of catecholamines, including norepinephrine and/or epinephrine, in their environment by modulating g...

  12. A homologue of the human MSS1 gene, a positive modulator of HIV-1 gene expression, is massively expressed in Xenopus oocytes.

    PubMed

    Nacken, W; Kingsman, A J; Kingsman, S M; Sablitzky, F; Sorg, C

    1995-04-01

    Here the nucleotide sequence of a Xenopus homologue of the human MSS1 gene, a positive modulator of the HIV-1 Tat mediated transactivation in mammalian cells, is presented. This gene is highly conserved and almost exclusively expressed in Xenopus oocytes. We speculate about a possible role of this gene in the HIV-1 Tat/TAR mediated transactivation in Xenopus oocytes. PMID:7711076

  13. Assessing the Biological Significance of Gene Expression Signatures and Co-Expression Modules by Studying Their Network Properties

    PubMed Central

    Minguez, Pablo; Dopazo, Joaquin

    2011-01-01

    Microarray experiments have been extensively used to define signatures, which are sets of genes that can be considered markers of experimental conditions (typically diseases). Paradoxically, in spite of the apparent functional role that might be attributed to such gene sets, signatures do not seem to be reproducible across experiments. Given the close relationship between function and protein interaction, network properties can be used to study to what extent signatures are composed of genes whose resulting proteins show a considerable level of interaction (and consequently a putative common functional role). We have analysed 618 signatures and 507 modules of co-expression in cancer looking for significant values of four main protein-protein interaction (PPI) network parameters: connection degree, cluster coefficient, betweenness and number of components. A total of 3904 gene ontology (GO) modules, 146 KEGG pathways, and 263 Biocarta pathways have been used as functional modules of reference. Co-expression modules found in microarray experiments display a high level of connectivity, similar to the one shown by conventional modules based on functional definitions (GO, KEGG and Biocarta). A general observation for all the classes studied is that the networks formed by the modules improve their topological parameters when an external protein is allowed to be introduced within the paths (up to the 70% of GO modules show network parameters beyond the random expectation). This fact suggests that functional definitions are incomplete and some genes might still be missing. Conversely, signatures are clearly not capturing the altered functions in the corresponding studies. This is probably because the way in which the genes have been selected in the signatures is too conservative. These results suggest that gene selection methods which take into account relationships among genes should be superior to methods that assume independence among genes outside their functional

  14. CBX7 Modulates the Expression of Genes Critical for Cancer Progression

    PubMed Central

    Pallante, Pierlorenzo; Sepe, Romina; Federico, Antonella; Forzati, Floriana; Bianco, Mimma; Fusco, Alfredo

    2014-01-01

    Background We have previously shown that the expression of CBX7 is drastically decreased in several human carcinomas and that its expression progressively decreases with the appearance of a highly malignant phenotype. The aim of our study has been to investigate the mechanism by which the loss of CBX7 expression may contribute to the emergence of a more malignant phenotype. Methods We analyzed the gene expression profile of a thyroid carcinoma cell line after the restoration of CBX7 and, then, analyzed the transcriptional regulation of identified genes. Finally, we evaluated the expression of CBX7 and regulated genes in a panel of thyroid and lung carcinomas. Results We found that CBX7 negatively or positively regulates the expression of several genes (such as SPP1, SPINK1, STEAP1, and FOS, FOSB, EGR1, respectively) associated to cancer progression, by interacting with their promoter regions and modulating their transcriptional activity. Quantitative RT-PCR analyses in human thyroid and lung carcinoma tissues revealed a negative correlation between CBX7 and its down-regulated genes, while a positive correlation was observed with up-regulated genes. Conclusion In conclusion, the loss of CBX7 expression might play a critical role in advanced stages of carcinogenesis by deregulating the expression of specific effector genes. PMID:24865347

  15. The Detection of Metabolite-Mediated Gene Module Co-Expression Using Multivariate Linear Models

    PubMed Central

    Padayachee, Trishanta; Khamiakova, Tatsiana; Shkedy, Ziv; Perola, Markus; Salo, Perttu; Burzykowski, Tomasz

    2016-01-01

    Investigating whether metabolites regulate the co-expression of a predefined gene module is one of the relevant questions posed in the integrative analysis of metabolomic and transcriptomic data. This article concerns the integrative analysis of the two high-dimensional datasets by means of multivariate models and statistical tests for the dependence between metabolites and the co-expression of a gene module. The general linear model (GLM) for correlated data that we propose models the dependence between adjusted gene expression values through a block-diagonal variance-covariance structure formed by metabolic-subset specific general variance-covariance blocks. Performance of statistical tests for the inference of conditional co-expression are evaluated through a simulation study. The proposed methodology is applied to the gene expression data of the previously characterized lipid-leukocyte module. Our results show that the GLM approach improves on a previous approach by being less prone to the detection of spurious conditional co-expression. PMID:26918614

  16. RASSF1C modulates the expression of a stem cell renewal gene, PIWIL1

    PubMed Central

    2012-01-01

    Background RASSF1A and RASSF1C are two major isoforms encoded by the Ras association domain family 1 (RASSF1) gene through alternative promoter selection and mRNA splicing. RASSF1A is a well established tumor suppressor gene. Unlike RASSF1A, RASSF1C appears to have growth promoting actions in lung cancer. In this article, we report on the identification of novel RASSF1C target genes in non small cell lung cancer (NSCLC). Methods Over-expression and siRNA techniques were used to alter RASSF1C expression in human lung cancer cells, and Affymetrix-microarray study was conducted using NCI-H1299 cells over-expressing RASSF1C to identify RASSF1C target genes. Results The microarray study intriguingly shows that RASSF1C modulates the expression of a number of genes that are involved in cancer development, cell growth and proliferation, cell death, and cell cycle. We have validated the expression of some target genes using qRT-PCR. We demonstrate that RASSF1C over-expression increases, and silencing of RASSF1C decreases, the expression of PIWIL1 gene in NSCLC cells using qRT-PCR, immunostaining, and Western blot analysis. We also show that RASSF1C over-expression induces phosphorylation of ERK1/2 in lung cancer cells, and inhibition of the MEK-ERK1/2 pathway suppresses the expression of PIWIL1 gene expression, suggesting that RASSF1C may exert its activities on some target genes such as PIWIL1 through the activation of the MEK-ERK1/2 pathway. Also, PIWIL1 expression is elevated in lung cancer cell lines compared to normal lung epithelial cells. Conclusions Taken together, our findings provide significant data to propose a model for investigating the role of RASSF1C/PIWIL1 proteins in initiation and progression of lung cancer. PMID:22591718

  17. Tracheal Occlusion Conditioning in Conscious Rats Modulates Gene Expression Profile of Medial Thalamus

    PubMed Central

    Bernhardt, Vipa; Hotchkiss, Mark T.; Garcia-Reyero, Natàlia; Escalon, B. Lynn; Denslow, Nancy; Davenport, Paul W.

    2011-01-01

    The thalamus may be the critical brain area involved in sensory gating and the relay of respiratory mechanical information to the cerebral cortex for the conscious awareness of breathing. We hypothesized that respiratory mechanical stimuli in the form of tracheal occlusions would modulate the gene expression profile of the thalamus. Specifically, it was reasoned that conditioning to the respiratory loading would induce a state change in the medial thalamus consistent with a change in sensory gating and the activation of molecular pathways associated with learning and memory. In addition, respiratory loading is stressful and thus should elicit changes in gene expressions related to stress, anxiety, and depression. Rats were instrumented with inflatable tracheal cuffs. Following surgical recovery, they underwent 10 days (5 days/week) of transient tracheal occlusion conditioning. On day 10, the animals were sacrificed and the brains removed. The medial thalamus was dissected and microarray analysis of gene expression performed. Tracheal obstruction conditioning modulated a total of 661 genes (p < 0.05, log2 fold change ≥0.58), 250 genes were down-regulated and 411 up-regulated. There was a significant down-regulation of GAD1, GAD2 and HTR1A, HTR2A genes. CCK, PRKCG, mGluR4, and KCJN9 genes were significantly up-regulated. Some of these genes have been associated with anxiety and depression, while others have been shown to play a role in switching between tonic and burst firing modes in the thalamus and thus may be involved in gating of the respiratory stimuli. Furthermore, gene ontology and pathway analysis showed a significant modulation of learning and memory pathways. These results support the hypothesis that the medial thalamus is involved in the respiratory sensory neural pathway due to the state change of its gene expression profile following repeated tracheal occlusions. PMID:21660287

  18. Essential nutrients suppress inflammation by modulating key inflammatory gene expression.

    PubMed

    Ivanov, V; Cha, J; Ivanova, S; Kalinovsky, T; Roomi, M W; Rath, M; Niedzwiecki, A

    2008-12-01

    We investigated the effects of a nutrient mixture (NM) consisting of ascorbic acid, quercetin, naringenin, hesperetin, tea catechins, lysine, proline, arginine and N-acetylcysteine on experimental in vivo and in vitro inflammation triggered by bacterial lipopolysaccharide (LPS). BALB/c mice (n=36) were administered NM (200 mg/kg BW) or ibuprofen (20 mg/kg BW) for two weeks. Blood plasma, collected three hours after a single intraperitoneal injection with LPS (1 mg/kg BW), was analyzed with 14 cytokine microarray. LPS inflammatory effects were analyzed in human U937 macrophages by cytokine release, cyclooxygenase (COX) enzymatic activity, COX protein expression (Western blot analysis), specific mRNA levels (RT-PCR), and nuclear factor kappabeta (NFkappabeta) activation (phosphorylated p65 immunoassay). Nutrient supplementation in mice altered the LPS-induced cytokine response in a manner similar to ibuprofen (r=0.4157, p=0.139). Cytokine response to LPS in cultured macrophages was similar to the in vivo study (r=0.718, p=0.023). NM inhibited COX-2 enzymatic activity, and COX-2 and pro-inflammatory cytokine protein expression levels were downregulated by NM at the transcription level complementing a blockade in NFkappabeta activation. NM demonstrated strong beneficial effects on the experimental inflammation by targeting multiple responsible mechanisms in the complex process involved in the inflammatory reaction to pathogens. PMID:19020770

  19. Levels of Lycopene β-Cyclase 1 Modulate Carotenoid Gene Expression and Accumulation in Daucus carota

    PubMed Central

    Moreno, Juan Camilo; Pizarro, Lorena; Fuentes, Paulina; Handford, Michael; Cifuentes, Victor; Stange, Claudia

    2013-01-01

    Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of lycopene. Carotenoids are produced in both carrot (Daucus carota) leaves and reserve roots, and high amounts of α-carotene and β-carotene accumulate in the latter. In some plant models, the presence of different isoforms of carotenogenic genes is associated with an organ-specific function. D. carota harbors two Lcyb genes, of which DcLcyb1 is expressed in leaves and storage roots during carrot development, correlating with an increase in carotenoid levels. In this work, we show that DcLCYB1 is localized in the plastid and that it is a functional enzyme, as demonstrated by heterologous complementation in Escherichia coli and over expression and post transcriptional gene silencing in carrot. Transgenic plants with higher or reduced levels of DcLcyb1 had incremented or reduced levels of chlorophyll, total carotenoids and β-carotene in leaves and in the storage roots, respectively. In addition, changes in the expression of DcLcyb1 are accompanied by a modulation in the expression of key endogenous carotenogenic genes. Our results indicate that DcLcyb1 does not possess an organ specific function and modulate carotenoid gene expression and accumulation in carrot leaves and storage roots. PMID:23555569

  20. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes

    PubMed Central

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE), instructive epigenetic marks need to be identified and their writers/erasers should then be fused to gene-specific DNA binding domains. The appropriate epigenetic mark(s) to change in order to efficiently modulate gene expression might have to be validated for any given chromatin context and should be (mitotically) stable. Various insights in such issues have been obtained by sequence-specific targeting of epigenetic enzymes, as is presented in this review. Features of such studies provide critical aspects for further improving EGE. An example of this is the direct effect of the edited mark versus the indirect effect of recruited secondary proteins by targeting epigenetic enzymes (or their domains). Proof-of-concept of expression modulation of an endogenous target gene is emerging from the few EGE studies reported. Apart from its promise in correcting disease-associated epi-mutations, EGE represents a powerful tool to address fundamental epigenetic questions. PMID:23002135

  1. Cigarette Smoke Modulates Expression of Human Rhinovirus-Induced Airway Epithelial Host Defense Genes

    PubMed Central

    Proud, David; Hudy, Magdalena H.; Wiehler, Shahina; Zaheer, Raza S.; Amin, Minaa A.; Pelikan, Jonathan B.; Tacon, Claire E.; Tonsaker, Tabitha O.; Walker, Brandie L.; Kooi, Cora; Traves, Suzanne L.; Leigh, Richard

    2012-01-01

    Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes. PMID:22808255

  2. An integrative ChIP-chip and gene expression profiling to model SMAD regulatory modules

    PubMed Central

    Qin, Huaxia; Chan, Michael WY; Liyanarachchi, Sandya; Balch, Curtis; Potter, Dustin; Souriraj, Irene J; Cheng, Alfred SL; Agosto-Perez, Francisco J; Nikonova, Elena V; Yan, Pearlly S; Lin, Huey-Jen; Nephew, Kenneth P; Saltz, Joel H; Showe, Louise C; Huang, Tim HM; Davuluri, Ramana V

    2009-01-01

    Background The TGF-β/SMAD pathway is part of a broader signaling network in which crosstalk between pathways occurs. While the molecular mechanisms of TGF-β/SMAD signaling pathway have been studied in detail, the global networks downstream of SMAD remain largely unknown. The regulatory effect of SMAD complex likely depends on transcriptional modules, in which the SMAD binding elements and partner transcription factor binding sites (SMAD modules) are present in specific context. Results To address this question and develop a computational model for SMAD modules, we simultaneously performed chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and mRNA expression profiling to identify TGF-β/SMAD regulated and synchronously coexpressed gene sets in ovarian surface epithelium. Intersecting the ChIP-chip and gene expression data yielded 150 direct targets, of which 141 were grouped into 3 co-expressed gene sets (sustained up-regulated, transient up-regulated and down-regulated), based on their temporal changes in expression after TGF-β activation. We developed a data-mining method driven by the Random Forest algorithm to model SMAD transcriptional modules in the target sequences. The predicted SMAD modules contain SMAD binding element and up to 2 of 7 other transcription factor binding sites (E2F, P53, LEF1, ELK1, COUPTF, PAX4 and DR1). Conclusion Together, the computational results further the understanding of the interactions between SMAD and other transcription factors at specific target promoters, and provide the basis for more targeted experimental verification of the co-regulatory modules. PMID:19615063

  3. Expression profile of genes modulated by Aloe emodin in human U87 glioblastoma cells.

    PubMed

    Haris, Khalilah; Ismail, Samhani; Idris, Zamzuri; Abdullah, Jafri Malin; Yusoff, Abdul Aziz Mohamed

    2014-01-01

    Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment. PMID:24969876

  4. Global variability in gene expression and alternative splicing is modulated by mitochondrial content.

    PubMed

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J

    2015-05-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype. PMID:25800673

  5. Electrical Stimulation Modulates the Expression of Multiple Wound Healing Genes in Primary Human Dermal Fibroblasts.

    PubMed

    Park, Hyun Jin; Rouabhia, Mahmoud; Lavertu, Denis; Zhang, Ze

    2015-07-01

    This study profiled multiple human dermal fibroblast wound-healing genes in response to electrical stimulation (ES) by using an RT(2) profiler PCR-Array system. Primary human skin fibroblasts were seeded on heparin (HE)-bioactivated polypyrrole (PPy)/poly(l-lactic acid) (PLLA) conductive membranes, cultured, and subsequently exposed to ES of 50 or 200 mV/mm for 6 h. Following ES, the cells were used to extract RNA for gene profiling, and culture supernatants were used to measure the level of the different wound healing mediators. A total of 57 genes were affected (activated/repressed) by ES; among these, 49 were upregulated and 8 were downregulated. ES intensities at 50 and 200 mV/mm activated/repressed different genes. The ES-modulated genes are involved in cell adhesion, remodeling and spreading, cytoskeletal activity, extracellular matrix metabolism, production of inflammatory cytokines/chemokines and growth factors, as well as signal transduction. The expression of several genes was supported by protein production. Protein analyses showed that ES increased CCL7, KGF, and TIMP2, but reduced MMP2. This study demonstrated that ES modulates the expression of a variety of genes involved in the wound healing process, confirming that ES is a useful tool in regenerative medicine. PMID:25873313

  6. H-Ferritin-Regulated MicroRNAs Modulate Gene Expression in K562 Cells

    PubMed Central

    Biamonte, Flavia; Zolea, Fabiana; Bisognin, Andrea; Di Sanzo, Maddalena; Saccoman, Claudia; Scumaci, Domenica; Aversa, Ilenia; Panebianco, Mariafranca; Faniello, Maria Concetta; Bortoluzzi, Stefania; Cuda, Giovanni; Costanzo, Francesco

    2015-01-01

    In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, “Cell Death and Survival, Hematological System Development and Function, Hematopoiesis”, is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs. PMID:25815883

  7. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    PubMed

    Biamonte, Flavia; Zolea, Fabiana; Bisognin, Andrea; Di Sanzo, Maddalena; Saccoman, Claudia; Scumaci, Domenica; Aversa, Ilenia; Panebianco, Mariafranca; Faniello, Maria Concetta; Bortoluzzi, Stefania; Cuda, Giovanni; Costanzo, Francesco

    2015-01-01

    In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs. PMID:25815883

  8. Long-term exercise modulates hippocampal gene expression in senescent female mice.

    PubMed

    Alvarez-López, María Jesús; Castro-Freire, Marco; Cosín-Tomás, Marta; Sanchez-Roige, Sandra; Lalanza, Jaume F; Del Valle, Jaume; Párrizas, Marcelina; Camins, Antonio; Pallás, Merce; Escorihuela, Rosa María; Kaliman, Perla

    2013-01-01

    The senescence-accelerated SAMP8 mouse is considered a useful non-transgenic model for studying aspects of progressive cognitive decline and Alzheimer's disease (AD). Using SAMR1 mice as controls, here we explored the effects of 6 months of voluntary wheel running in 10-month-old female SAMP8 mice. Exercise in SAMP8 mice improved phenotypic features associated with premature aging (i.e., skin color and body tremor) and enhanced vascularization and BDNF gene expression in the hippocampus compared with controls. With the aim of identifying genes involved in brain aging responsive to long-term exercise, we performed whole genome microarray studies in hippocampus from sedentary SAMP8 (P8sed), SAMR1 (R1sed), and exercised SAMP8 (P8run) mice. The genes differentially expressed in P8sed versus R1sed were considered as putative aging markers (i) and those differentially expressed in P8run versus P8sed were considered as genes modulated by exercise (ii). Genes differentially expressed in both comparisons (i and ii) were considered as putative aging genes responsive to physical exercise. We identified 34 genes which met both criteria. Gene ontology analysis revealed that they are mainly involved in functions related to extracellular matrix maintenance. Selected genes were validated by real-time quantitative PCR assays, i.e., collagen type 1 alpha 1 (col1a1), collagen type 1 alpha 2 (col1a2), fibromodulin (fmod), prostaglandin D(2) synthase (ptgds), and aldehyde dehydrogenase (Aldh1a2). As a whole, our study suggests that exercise training during adulthood may prevent or delay gene expression alterations and processes associated with hippocampal aging in at-risk subjects. PMID:23168450

  9. Light has a specific role in modulating Arabidopsis gene expression at low temperature

    PubMed Central

    Soitamo, Arto J; Piippo, Mirva; Allahverdiyeva, Yagut; Battchikova, Natalia; Aro, Eva-Mari

    2008-01-01

    Background Light and temperature are the key abiotic modulators of plant gene expression. In the present work the effect of light under low temperature treatment was analyzed by using microarrays. Specific attention was paid to the up and down regulated genes by using promoter analysis. This approach revealed putative regulatory networks of transcription factors behind the induction or repression of the genes. Results Induction of a few oxidative stress related genes occurred only under the Cold/Light treatment including genes encoding iron superoxide dismutase (FeSOD) and glutathione-dependent hydrogen peroxide peroxidases (GPX). The ascorbate dependent water-water cycle genes showed no response to Cold/Light or Cold/Dark treatments. Cold/Light specifically induced genes encoding protective molecules like phenylpropanoids and photosynthesis-related carotenoids also involved in the biosynthesis of hormone abscisic acid (ABA) crucial for cold acclimation. The enhanced/repressed transcript levels were not always reflected on the respective protein levels as demonstrated by dehydrin proteins. Conclusion Cold/Light up regulated twice as many genes as the Cold/Dark treatment and only the combination of light and low temperature enhanced the expression of several genes earlier described as cold-responsive genes. Cold/Light-induced genes included both cold-responsive transcription factors and several novel ones containing zinc-finger, MYB, NAC and AP2 domains. These are likely to function in concert in enhancing gene expression. Similar response elements were found in the promoter regions of both the transcription factors and their target genes implying a possible parallel regulation or amplification of the environmental signals according to the metabolic/redox state in the cells. PMID:18230142

  10. Genetic Background Modulates Gene Expression Profile Induced by Skin Irradiation in Ptch1 Mice

    SciTech Connect

    Galvan, Antonella; Noci, Sara; Mancuso, Mariateresa; Pazzaglia, Simonetta; Saran, Anna; Dragani, Tommaso A.

    2008-12-01

    Purpose: Ptch1 germ-line mutations in mice predispose to radiation-induced basal cell carcinoma of the skin, with tumor incidence modulated by the genetic background. Here, we examined the possible mechanisms underlying skin response to radiation in F1 progeny of Ptch1{sup neo67/+} mice crossed with either skin tumor-susceptible (Car-S) or -resistant (Car-R) mice and X-irradiated (3 Gy) at 2 days of age or left untreated. Methods and Materials: We conducted a gene expression profile analysis in mRNA samples extracted from the skin of irradiated or control mice, using Affymetrix whole mouse genome expression array. Confirmation of the results was done using real-time reverse-transcriptase polymerase chain reaction. Results: Analysis of the gene expression profile of normal skin of F1 mice at 4 weeks of age revealed a similar basal profile in the nonirradiated mice, but alterations in levels of 71 transcripts in irradiated Ptch1{sup neo67/+} mice of the Car-R cross and modulation of only eight genes in irradiated Ptch1{sup neo67/+} mice of the Car-S cross. Conclusions: These results indicate that neonatal irradiation causes a persistent change in the gene expression profile of the skin. The tendency of mice genetically resistant to skin tumorigenesis to show a more complex pattern of transcriptional response to radiation than do genetically susceptible mice suggests a role for this response in genetic resistance to basal cell tumorigenesis.

  11. Modulation of adipogenesis-related gene expression by estrogen-related receptor gamma during adipocytic differentiation.

    PubMed

    Kubo, Mayumi; Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Takeda, Satoru; Inoue, Satoshi

    2009-02-01

    Estrogen-related receptor gamma (ERRgamma) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in oxidative metabolism and mitochondrial biogenesis in brown adipose tissue and heart. However, the physiological role of ERRgamma in adipogenesis and the development of white adipose tissue has not been well studied. Here we show that ERRgamma was up-regulated in murine mesenchyme-derived cells, especially in ST2 and C3H10T1/2 cells, at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. The up-regulation of ERRgamma mRNA was also observed in inguinal white adipose and brown adipose tissues of mice fed a high-fat diet. Gene knockdown by ERRgamma-specific siRNA results in mRNA down-regulation of adipogenic marker genes including fatty acid binding protein 4, PPARgamma, and PGC-1beta in a preadipocyte cell line 3T3-L1 preadipocytes and mesenchymal ST2 and C3H10T1/2 cells in the adipogenesis medium. In contrast, stable expression of ERRgamma in 3T3-L1 cells resulted in up-regulation of these adipogenic marker genes under the adipogenic condition. These results suggest that ERRgamma positively regulate the adipocyte differentiation with modulating the expression of various adipogenesis-related genes. PMID:18809516

  12. Chromatin Modulation of Herpesvirus Lytic Gene Expression: Managing Nucleosome Density and Heterochromatic Histone Modifications.

    PubMed

    Kristie, Thomas M

    2016-01-01

    Like their cellular hosts, herpesviruses are subject to the regulatory impacts of chromatin assembled on their genomes. Upon infection, these viruses are assembled into domains of chromatin with heterochromatic signatures that suppress viral gene expression or euchromatic characteristics that promote gene expression. The organization and modulation of these chromatin domains appear to be intimately linked to the coordinated expression of the different classes of viral genes and thus ultimately play an important role in the progression of productive infection or the establishment and maintenance of viral latency. A recent report from the Knipe laboratory (J. S. Lee, P. Raja, and D. M. Knipe, mBio 7:e02007-15, 2016) contributes to the understanding of the dynamic modulation of chromatin assembled on the herpes simplex virus genome by monitoring the levels of characteristic heterochromatic histone modifications (histone H3 lysine 9 and 27 methylation) associated with a model viral early gene during the progression of lytic infection. Additionally, this study builds upon previous observations that the viral immediate-early protein ICP0 plays a role in reducing the levels of heterochromatin associated with the early genes. PMID:26884430

  13. Modulation of mgrB gene expression as a source of colistin resistance in Klebsiella oxytoca.

    PubMed

    Jayol, Aurélie; Poirel, Laurent; Villegas, Maria-Virginia; Nordmann, Patrice

    2015-07-01

    Gene modifications in the PmrAB and PhoPQ two-component regulatory systems, as well as inactivation of the mgrB gene, are known to be causes of colistin resistance in Klebsiella pneumoniae. The objective of this study was to characterise the mechanism involved in colistin resistance in a Klebsiella oxytoca isolate. A K. oxytoca clinical isolate showing resistance to colistin was recovered in Cali, Colombia. The pmrA, pmrB, phoP, phoQ and mgrB genes were amplified and sequenced. Wild-type mgrB genes from K. pneumoniae and K. oxytoca were cloned, and corresponding recombinant plasmids were used for complementation assays. By analysing the mgrB gene of the K. oxytoca isolate and its flanking sequences, an insertion sequence (IS) of 1196bp was identified in its promoter region. The insertion was located between nucleotides -39 and -38 when referring to the start codon of the mgrB gene, thus negatively interfering with expression of the mgrB gene by modifying its promoter structure. This IS was very similar to ISKpn26 (99% nucleotide identity) belonging to the IS5 family. Complementation assays with mgrB genes from wild-type K. pneumoniae or K. oxytoca restored full susceptibility to colistin. In conclusion, here we identified the mechanism involved in colistin resistance in a K. oxytoca isolate. Modulation of mgrB gene expression was the key factor for this acquired resistance to colistin. PMID:25982250

  14. Modulation of Gene Expression Regulated by the Transcription Factor NF-κB/RelA*

    PubMed Central

    Li, Xueling; Zhao, Yingxin; Tian, Bing; Jamaluddin, Mohammad; Mitra, Abhishek; Yang, Jun; Rowicka, Maga; Brasier, Allan R.; Kudlicki, Andrzej

    2014-01-01

    Modulators (Ms) are proteins that modify the activity of transcription factors (TFs) and influence expression of their target genes (TGs). To discover modulators of NF-κB/RelA, we first identified 365 NF-κB/RelA-binding proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We used a probabilistic model to infer 8349 (M, NF-κB/RelA, TG) triplets and their modes of modulatory action from our combined LC-MS/MS and ChIP-Seq (ChIP followed by next generation sequencing) data, published RelA modulators and TGs, and a compendium of gene expression profiles. Hierarchical clustering of the derived modulatory network revealed functional subnetworks and suggested new pathways modulating RelA transcriptional activity. The modulators with the highest number of TGs and most non-random distribution of action modes (measured by Shannon entropy) are consistent with published reports. Our results provide a repertoire of testable hypotheses for experimental validation. One of the NF-κB/RelA modulators we identified is STAT1. The inferred (STAT1, NF-κB/RelA, TG) triplets were validated by LC-selected reaction monitoring-MS and the results of STAT1 deletion in human fibrosarcoma cells. Overall, we have identified 562 NF-κB/RelA modulators, which are potential drug targets, and clarified mechanisms of achieving NF-κB/RelA multiple functions through modulators. Our approach can be readily applied to other TFs. PMID:24523406

  15. Modulation of gene expression regulated by the transcription factor NF-κB/RelA.

    PubMed

    Li, Xueling; Zhao, Yingxin; Tian, Bing; Jamaluddin, Mohammad; Mitra, Abhishek; Yang, Jun; Rowicka, Maga; Brasier, Allan R; Kudlicki, Andrzej

    2014-04-25

    Modulators (Ms) are proteins that modify the activity of transcription factors (TFs) and influence expression of their target genes (TGs). To discover modulators of NF-κB/RelA, we first identified 365 NF-κB/RelA-binding proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We used a probabilistic model to infer 8349 (M, NF-κB/RelA, TG) triplets and their modes of modulatory action from our combined LC-MS/MS and ChIP-Seq (ChIP followed by next generation sequencing) data, published RelA modulators and TGs, and a compendium of gene expression profiles. Hierarchical clustering of the derived modulatory network revealed functional subnetworks and suggested new pathways modulating RelA transcriptional activity. The modulators with the highest number of TGs and most non-random distribution of action modes (measured by Shannon entropy) are consistent with published reports. Our results provide a repertoire of testable hypotheses for experimental validation. One of the NF-κB/RelA modulators we identified is STAT1. The inferred (STAT1, NF-κB/RelA, TG) triplets were validated by LC-selected reaction monitoring-MS and the results of STAT1 deletion in human fibrosarcoma cells. Overall, we have identified 562 NF-κB/RelA modulators, which are potential drug targets, and clarified mechanisms of achieving NF-κB/RelA multiple functions through modulators. Our approach can be readily applied to other TFs. PMID:24523406

  16. Clock Gene Bmal1 Modulates Human Cartilage Gene Expression by Crosstalk With Sirt1.

    PubMed

    Yang, Wei; Kang, Xiaomin; Liu, Jiali; Li, Huixia; Ma, Zhengmin; Jin, Xinxin; Qian, Zhuang; Xie, Tianping; Qin, Na; Feng, Dongxu; Pan, Wenjie; Chen, Qian; Sun, Hongzhi; Wu, Shufang

    2016-08-01

    The critical regulation of the peripheral circadian gene implicated in osteoarthritis (OA) has been recently recognized; however, the causative role and clinical potential of the peripheral circadian rhythm attributable to such effects remain elusive. The purpose of this study was to elucidate the role of a circadian gene Bmal1 in human cartilage and pathophysiology of osteoarthritis. In our present study, the mRNA and protein levels of circadian rhythm genes, including nicotinamide adenine dinucleotide oxidase (NAD(+)) and sirtuin 1 (Sirt1), in human knee articular cartilage were determined. In OA cartilage, the levels of both Bmal1 and NAD(+) decreased significantly, which resulted in the inhibition of nicotinamide phosphoribosyltransferase activity and Sirt1 expression. Furthermore, the knockdown of Bmal1 was sufficient to decrease the level of NAD(+) and aggravate OA-like gene expression changes under the stimulation of IL-1β. The overexpression of Bmal1 relieved the alteration induced by IL-1β, which was consistent with the effect of the inhibition of Rev-Erbα (known as NR1D1, nuclear receptor subfamily 1, group D). On the other hand, the transfection of Sirt1 small interfering RNA not only resulted in a reduction of the protein expression of Bmal1 and a moderate increase of period 2 (per2) and Rev-Erbα but also further exacerbated the survival of cells and the expression of cartilage matrix-degrading enzymes induced by IL-1β. Overexpression of Sirt1 restored the metabolic imbalance of chondrocytes caused by IL-1β. These observations suggest that Bmal1 is a key clock gene to involve in cartilage homeostasis mediated through sirt1 and that manipulating circadian rhythm gene expression implicates an innovative strategy to develop novel therapeutic agents against cartilage diseases. PMID:27253997

  17. RNA-based, transient modulation of gene expression in human haematopoietic stem and progenitor cells

    PubMed Central

    Diener, Yvonne; Jurk, Marion; Kandil, Britta; Choi, Yeong-Hoon; Wild, Stefan; Bissels, Ute; Bosio, Andreas

    2015-01-01

    Modulation of gene expression is a useful tool to study the biology of haematopoietic stem and progenitor cells (HSPCs) and might also be instrumental to expand these cells for therapeutic approaches. Most of the studies so far have employed stable gene modification by viral vectors that are burdensome when translating protocols into clinical settings. Our study aimed at exploring new ways to transiently modify HSPC gene expression using non-integrating, RNA-based molecules. First, we tested different methods to deliver these molecules into HSPCs. The delivery of siRNAs with chemical transfection methods such as lipofection or cationic polymers did not lead to target knockdown, although we observed more than 90% fluorescent cells using a fluorochrome-coupled siRNA. Confocal microscopic analysis revealed that despite extensive washing, siRNA stuck to or in the cell surface, thereby mimicking a transfection event. In contrast, electroporation resulted in efficient, siRNA-mediated protein knockdown. For transient overexpression of proteins, we used optimised mRNA molecules with modified 5′- and 3′-UTRs. Electroporation of mRNA encoding GFP resulted in fast, efficient and persistent protein expression for at least seven days. Our data provide a broad-ranging comparison of transfection methods for hard-to-transfect cells and offer new opportunities for DNA-free, non-integrating gene modulation in HSPCs. PMID:26599627

  18. Modulation of Gene Expression in Actinobacillus pleuropneumoniae Exposed to Bronchoalveolar Fluid

    PubMed Central

    Lone, Abdul G.; Deslandes, Vincent; Nash, John H. E.; Jacques, Mario; MacInnes, Janet I.

    2009-01-01

    Background Actinobacillus pleuropneumoniae, the causative agent of porcine contagious pleuropneumonia, is an important pathogen of swine throughout the world. It must rapidly overcome the innate pulmonary immune defenses of the pig to cause disease. To better understand this process, the objective of this study was to identify genes that are differentially expressed in a medium that mimics the lung environment early in the infection process. Methods and Principal Findings Since bronchoalveolar lavage fluid (BALF) contains innate immune and other components found in the lungs, we examined gene expression of a virulent serovar 1 strain of A. pleuropneumoniae after a 30 min exposure to BALF, using DNA microarrays and real-time PCR. The functional classes of genes found to be up-regulated most often in BALF were those encoding proteins involved in energy metabolism, especially anaerobic metabolism, and in cell envelope, DNA, and protein biosynthesis. Transcription of a number of known virulence genes including apxIVA and the gene for SapF, a protein which is involved in resistance to antimicrobial peptides, was also up-regulated in BALF. Seventy-nine percent of the genes that were up-regulated in BALF encoded a known protein product, and of these, 44% had been reported to be either expressed in vivo and/or involved in virulence. Conclusions The results of this study suggest that in early stages of infection, A. pleuropneumoniae may modulate expression of genes involved in anaerobic energy generation and in the synthesis of proteins involved in cell wall biogenesis, as well as established virulence factors. Given that many of these genes are thought to be expressed in vivo or involved in virulence, incubation in BALF appears, at least partially, to simulate in vivo conditions and may provide a useful medium for the discovery of novel vaccine or therapeutic targets. PMID:19578537

  19. Computational Model of the Modulation of Gene Expression Following DNA Damage

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Dicello, J. F.; Nikjoo, H.; Cherubini, R.

    2002-01-01

    High linear energy transfer (LET) radiation, such as heavy ions or neutrons, has an increased biological effectiveness compared to X rays for gene mutation, genomic instability, and carcinogenesis. In the traditional paradigm, mutations or chromosomal aberrations are causative of late effects. However, in recent years experimental evidence has demonstrated the important role of the description of the modification of gene expression by radiation in understanding the mechanisms of radiation action. In this report, approaches are discussed to the mathematical description of mRNA and protein expression kinetics following DNA damage. Several hypotheses for models of radiation modulation of protein expression are discussed including possible non-linear processes that evolve from the linear dose responses that follow the initial DNA damage produced by radiation.

  20. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    PubMed Central

    2010-01-01

    Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM) to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated) and 901 (CAM treated) THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold), eliminated the common gene expression changes. A stringent comparison (≥2 fold) between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the pathogen whether or not

  1. Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress

    PubMed Central

    Feliciello, Isidoro; Akrap, Ivana; Ugarković, Đurđica

    2015-01-01

    Non-coding repetitive DNAs have been proposed to perform a gene regulatory role, however for tandemly repeated satellite DNA no such role was defined until now. Here we provide the first evidence for a role of satellite DNA in the modulation of gene expression under specific environmental conditions. The major satellite DNA TCAST1 in the beetle Tribolium castaneum is preferentially located within pericentromeric heterochromatin but is also dispersed as single repeats or short arrays in the vicinity of protein-coding genes within euchromatin. Our results show enhanced suppression of activity of TCAST1-associated genes and slower recovery of their activity after long-term heat stress relative to the same genes without associated TCAST1 satellite DNA elements. The level of gene suppression is not influenced by the distance of TCAST1 elements from the associated genes up to 40 kb from the genes’ transcription start sites, but it does depend on the copy number of TCAST1 repeats within an element, being stronger for the higher number of copies. The enhanced gene suppression correlates with the enrichment of the repressive histone marks H3K9me2/3 at dispersed TCAST1 elements and their flanking regions as well as with increased expression of TCAST1 satellite DNA. The results reveal transient, RNAi based heterochromatin formation at dispersed TCAST1 repeats and their proximal regions as a mechanism responsible for enhanced silencing of TCAST1-associated genes. Differences in the pattern of distribution of TCAST1 elements contribute to gene expression diversity among T. castaneum strains after long-term heat stress and might have an impact on adaptation to different environmental conditions. PMID:26275223

  2. Modulation of Macrophage Gene Expression via Liver X Receptor α Serine 198 Phosphorylation

    PubMed Central

    Wu, Chaowei; Hussein, Maryem A.; Shrestha, Elina; Leone, Sarah; Aiyegbo, Mohammed S.; Lambert, W. Marcus; Pourcet, Benoit; Cardozo, Timothy; Gustafson, Jan-Ake; Fisher, Edward A.

    2015-01-01

    In mouse models of atherosclerosis, normalization of hyperlipidemia promotes macrophage emigration and regression of atherosclerotic plaques in part by liver X receptor (LXR)-mediated induction of the chemokine receptor CCR7. Here we report that LXRα serine 198 (S198) phosphorylation modulates CCR7 expression. Low levels of S198 phosphorylation are observed in plaque macrophages in the regression environment where high levels of CCR7 expression are observed. Consistent with these findings, CCR7 gene expression in human and mouse macrophages cell lines is induced when LXRα at S198 is nonphosphorylated. In bone marrow-derived macrophages (BMDMs), we also observed induction of CCR7 by ligands that promote nonphosphorylated LXRα S198, and this was lost in LXR-deficient BMDMs. LXRα occupancy at the CCR7 promoter is enhanced and histone modifications associated with gene repression are reduced in RAW264.7 cells expressing nonphosphorylated LXRα (RAW-LXRα S198A) compared to RAW264.7 cells expressing wild-type (WT) phosphorylated LXRα (RAW-LXRα WT). Expression profiling of ligand-treated RAW-LXRα S198A cells compared to RAW-LXRα WT cells revealed induction of cell migratory and anti-inflammatory genes and repression of proinflammatory genes. Modeling of LXRα S198 in the nonphosphorylated and phosphorylated states identified phosphorylation-dependent conformational changes in the hinge region commensurate with the presence of sites for protein interaction. Therefore, gene transcription is regulated by LXRα S198 phosphorylation, including that of antiatherogenic genes such as CCR7. PMID:25825525

  3. Modulation of Macrophage Gene Expression via Liver X Receptor α Serine 198 Phosphorylation.

    PubMed

    Wu, Chaowei; Hussein, Maryem A; Shrestha, Elina; Leone, Sarah; Aiyegbo, Mohammed S; Lambert, W Marcus; Pourcet, Benoit; Cardozo, Timothy; Gustafson, Jan-Ake; Fisher, Edward A; Pineda-Torra, Ines; Garabedian, Michael J

    2015-06-01

    In mouse models of atherosclerosis, normalization of hyperlipidemia promotes macrophage emigration and regression of atherosclerotic plaques in part by liver X receptor (LXR)-mediated induction of the chemokine receptor CCR7. Here we report that LXRα serine 198 (S198) phosphorylation modulates CCR7 expression. Low levels of S198 phosphorylation are observed in plaque macrophages in the regression environment where high levels of CCR7 expression are observed. Consistent with these findings, CCR7 gene expression in human and mouse macrophages cell lines is induced when LXRα at S198 is nonphosphorylated. In bone marrow-derived macrophages (BMDMs), we also observed induction of CCR7 by ligands that promote nonphosphorylated LXRα S198, and this was lost in LXR-deficient BMDMs. LXRα occupancy at the CCR7 promoter is enhanced and histone modifications associated with gene repression are reduced in RAW264.7 cells expressing nonphosphorylated LXRα (RAW-LXRα S198A) compared to RAW264.7 cells expressing wild-type (WT) phosphorylated LXRα (RAW-LXRα WT). Expression profiling of ligand-treated RAW-LXRα S198A cells compared to RAW-LXRα WT cells revealed induction of cell migratory and anti-inflammatory genes and repression of proinflammatory genes. Modeling of LXRα S198 in the nonphosphorylated and phosphorylated states identified phosphorylation-dependent conformational changes in the hinge region commensurate with the presence of sites for protein interaction. Therefore, gene transcription is regulated by LXRα S198 phosphorylation, including that of antiatherogenic genes such as CCR7. PMID:25825525

  4. Modulation of Gene Expression by 3-Iodothyronamine: Genetic Evidence for a Lipolytic Pattern

    PubMed Central

    Mariotti, Veronica; Melissari, Erika; Iofrida, Caterina; Righi, Marco; Di Russo, Manuela; Donzelli, Riccardo; Saba, Alessandro; Frascarelli, Sabina; Chiellini, Grazia; Zucchi, Riccardo; Pellegrini, Silvia

    2014-01-01

    3-Iodothyronamine (T1AM) is an endogenous biogenic amine, structurally related to thyroid hormone, which is regarded as a novel chemical messenger. The molecular mechanisms underlying T1AM effects are not known, but it is possible to envisage changes in gene expression, since delayed and long-lasting phenotypic effects have been reported, particularly with regard to the modulation of lipid metabolism and body weight. To test this hypothesis we analysed gene expression profiles in adipose tissue and liver of eight rats chronically treated with T1AM (10 mg/Kg twice a day for five days) as compared with eight untreated rats. In vivo T1AM administration produced significant transcriptional effects, since 378 genes were differentially expressed in adipose tissue, and 114 in liver. The reported changes in gene expression are expected to stimulate lipolysis and beta-oxidation, while inhibiting adipogenesis. T1AM also influenced the expression of several genes linked to lipoprotein metabolism suggesting that it may play an important role in the regulation of cholesterol homeostasis. No effect on the expression of genes linked to toxicity was observed. The assay of tissue T1AM showed that in treated animals its endogenous concentration increased by about one order of magnitude, without significant changes in tissue thyroid hormone concentration. Therefore, the effects that we observed might have physiological or pathophysiological importance. Our results provide the basis for the reported effectiveness of T1AM as a lipolytic agent and gain importance in view of a possible clinical use of T1AM in obesity and/or dyslipidaemia. PMID:25379707

  5. Expression profiling of genes modulated by minocycline in a rat model of neuropathic pain

    PubMed Central

    2014-01-01

    Background The molecular mechanisms underlying neuropathic pain are constantly being studied to create new opportunities to prevent or alleviate neuropathic pain. The aim of our study was to determine the gene expression changes induced by sciatic nerve chronic constriction injury (CCI) that are modulated by minocycline, which can effectively diminish neuropathic pain in animal studies. The genes associated with minocycline efficacy in neuropathic pain should provide insight into the etiology of neuropathic pain and identify novel therapeutic targets. Results We screened the ipsilateral dorsal part of the lumbar spinal cord of the rat CCI model for differentially expressed genes. Out of 22,500 studied transcripts, the abundance levels of 93 transcripts were altered following sciatic nerve ligation. Percentage analysis revealed that 54 transcripts were not affected by the repeated administration of minocycline (30 mg/kg, i.p.), but the levels of 39 transcripts were modulated following minocycline treatment. We then selected two gene expression patterns, B1 and B2. The first transcription pattern, B1, consisted of 10 mRNA transcripts that increased in abundance after injury, and minocycline treatment reversed or inhibited the effect of the injury; the B2 transcription pattern consisted of 7 mRNA transcripts whose abundance decreased following sciatic nerve ligation, and minocycline treatment reversed the effect of the injury. Based on the literature, we selected seven genes for further analysis: Cd40, Clec7a, Apobec3b, Slc7a7, and Fam22f from pattern B1 and Rwdd3 and Gimap5 from pattern B2. Additionally, these genes were analyzed using quantitative PCR to determine the transcriptional changes strongly related to the development of neuropathic pain; the ipsilateral DRGs (L4-L6) were also collected and analyzed in these rats using qPCR. Conclusion In this work, we confirmed gene expression alterations previously identified by microarray analysis in the spinal cord and

  6. An ERRbeta/gamma agonist modulates GRalpha expression, and glucocorticoid responsive gene expression in skeletal muscle cells.

    PubMed

    Wang, Shu-Ching Mary; Myers, Stephen; Dooms, Cedric; Capon, Robert; Muscat, George E O

    2010-02-01

    Estrogen-related receptors (ERRs) are constitutively active orphan nuclear receptors. Natural ligands have not been identified, however, recent reports have demonstrated the synthetic phenolic acyl hydrazone, GSK4716, functions as a selective ERRbeta/gamma agonist. We demonstrate that ERRbeta is transiently induced, and ERRgamma is dramatically induced (and accumulates) in a differentiation-dependent manner in skeletal muscle cells. Treatment of differentiated skeletal muscle cells with the ERRbeta/gamma agonist (GSK4716) produced a significant increase in the expression of GRalpha (isoform D) protein. Quantitative RT-PCR (Q-RT-PCR) analysis after treatment with GSK4716, revealed induction of the mRNAs encoding the glucocorticoid receptor (GR), 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), the enzyme that converts inactive cortisone to cortisol and hexose-6-phosphate dehydrogenase expression (H6PDH) that stimulates oxoreduction by 11beta-HSD1. Candidate based expression profiling also demonstrated the mRNAs encoding characterized GR target genes, including C/EBP, ApoD and Monoamine oxidase-A (MAO-A) are induced in GSK4716 treated cells. In concordance with these observations, siRNA-mediated suppression of the mRNA encoding ERRgamma (but not ERRalpha and beta) attenuated the expression of mRNAs encoding GR, 11betaHSD1 and GR target gene(s). Similarly, treatment with the ERRgamma (and ERalpha) antagonist diethylstilbestrol (DES) suppressed glucocorticoid responsive gene expression in skeletal muscle cells. Interestingly, we observed that GSK4716 trans-activated GRE-TK-LUC in a GR-dependent manner. This study highlights the regulatory crosstalk between ERRgamma and GR signaling in skeletal muscle cells, and suggests the ERRgamma agonist modulates the expression of critical genes that control GR signaling and glucocorticoid sensitive gene expression. PMID:19631715

  7. Ocean acidification modulates expression of genes and physiological performance of a marine diatom

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhuang, S.; Wu, Y.; Ren, H.; Cheng, F.; Lin, X.; Wang, K.; Beardall, J.; Gao, K.

    2015-09-01

    Ocean Acidification (OA) is known to affect various aspects of the physiological performance of diatoms, but there is little information on the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum expression of the genes related to light harvesting, carbon acquisition and carboxylation, nitrite assimilation and ATP synthesis are modulated by OA. Growth and photosynthetic carbon fixation were enhanced by elevated CO2 (1000 μatm) under both constant indoor and fluctuating outdoor light regimes. The genetic expression of nitrite reductase (NiR) was up-regulated by OA regardless of light levels and/or regimes. The transcriptional expression of fucoxanthin chlorophyll a/c protein (lhcf type (FCP)) and mitochondrial ATP synthase (mtATP synthase) genes were also enhanced by OA, but only under high light intensity. OA treatment decreased the expression of β-carbonic anhydrase (β-CA) along with down-regulation of CO2 concentrating mechanisms (CCMs). Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expressions either under constant indoor light or fluctuating sunlight. Thus, OA enhanced photosynthetic and growth rates by stimulating nitrogen assimilation and indirectly by down-regulating the energy-costly inorganic carbon acquisition process.

  8. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  9. Leucocyte expression of genes implicated in the plasminogen activation cascade is modulated by yoghurt peptides.

    PubMed

    Theodorou, Georgios; Politis, Ioannis

    2016-08-01

    The urokinase-plasminogen activator (u-PA), its receptor (u-PAR) and the inhibitors of u-PA (PAI-1 and PAI-2) provide a multi-molecular system in leucocytes that exerts pleiotropic functions influencing the development of inflammatory and immune responses. The objective of the present study was to examine the ability of water soluble extracts (WSE) obtained from traditional Greek yoghurt made from bovine or ovine milk to modulate the expression of u-PA, u-PAR, PAI-1 and PAI-2 in ovine monocytes and neutrophils. WSE were obtained from 8 commercial traditional type Greek yoghurts made from ovine or bovine milk. WSE upregulated the expression of all 4 u-PA related genes in monocytes but the upregulation was much higher in the PAI-1 (10-fold) than in u-PA and u-PAR (3-4 fold) thus, shifting the system towards inhibition. In line with this observation, WSE reduced total and membrane-bound u-PA activity in monocytes. In neutrophils, WSE caused small (50-60%) but significant (P < 0·05) reductions in expression of u-PAR and PAI-2 but had no effect on expression of u-PA, PAI-1 and on total cell-associated and membrane-bound u-PA activity. WSE from yoghurts made from bovine or ovine milk were essentially equally effective in affecting the u-PA system except for the u-PAR gene in ovine neutrophils that was affected (reduced) by the ovine and not the bovine WSE. In conclusion, peptides present in WSE modulated the expression of u-PA related genes but the effect was much more prominent in monocytes than in neutrophils. PMID:27600972

  10. A Genome-Wide Screen Reveals that the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System Modulates Virulence Gene Expression

    PubMed Central

    Millet, Yves A.; Chao, Michael C.; Sasabe, Jumpei; Davis, Brigid M.

    2015-01-01

    Diverse environmental stimuli and a complex network of regulatory factors are known to modulate expression of Vibrio cholerae's principal virulence factors. However, there is relatively little known about how metabolic factors impinge upon the pathogen's well-characterized cascade of transcription factors that induce expression of cholera toxin and the toxin-coregulated pilus (TCP). Here, we used a transposon insertion site (TIS) sequencing-based strategy to identify new factors required for expression of tcpA, which encodes the major subunit of TCP, the organism's chief intestinal colonization factor. Besides identifying most of the genes known to modulate tcpA expression, the screen yielded ptsI and ptsH, which encode the enzyme I (EI) and Hpr components of the V. cholerae phosphoenolpyruvate phosphotransferase system (PTS). In addition to reduced expression of TcpA, strains lacking EI, Hpr, or the associated EIIAGlc protein produced less cholera toxin (CT) and had a diminished capacity to colonize the infant mouse intestine. The PTS modulates virulence gene expression by regulating expression of tcpPH and aphAB, which themselves control expression of toxT, the central activator of virulence gene expression. One mechanism by which PTS promotes virulence gene expression appears to be by modulating the amounts of intracellular cyclic AMP (cAMP). Our findings reveal that the V. cholerae PTS is an additional modulator of the ToxT regulon and demonstrate the potency of loss-of-function TIS sequencing screens for defining regulatory networks. PMID:26056384

  11. Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain

    PubMed Central

    Wang, Xiao-Min; Wu, Tian-Xia; Hamza, May; Ramsay, Edward S.; Wahl, Sharon M.; Dionne, Raymond A.

    2007-01-01

    New insights into the biological properties of cyclooxygenase-2 (COX-2) and its response pathway challenge the hypothesis that COX-2 is simply pro-inflammatory and inhibition of COX-2 solely prevents the development of inflammation and ameliorates inflammatory pain. The present study performed a comprehensive analysis of gene/protein expression induced by a selective inhibitor of COX-2, rofecoxib, compared with a non-selective COX inhibitor, ibuprofen, and placebo in a clinical model of acute inflammatory pain (the surgical extraction of impacted third molars) using microarray analysis followed by quantitative RT-PCR verification and Western blotting. Inhibition of COX-2 modulated gene expression related to inflammation and pain, the arachidonic acid pathway, apoptosis/angiogenesis, cell adhesion and signal transduction. Compared to placebo, rofecoxib treatment increased the gene expression of ANXA3 (annexin 3), SOD2 (superoxide dismutase 2), SOCS3 (suppressor of cytokine signaling 3) and IL1RN (IL1 receptor antagonist) which are associated with inhibition of phospholipase A2 and suppression of cytokine signaling cascades, respectively. Both rofecoxib and ibuprofen treatment increased the gene expression of the pro-inflammatory mediators, IL6 and CCL2 (chemokine C-C motif ligand 2), following tissue injury compared to the placebo treatment. These results indicate a complex role for COX-2 in the inflammatory cascade in addition to the well-characterized COX-dependent pathway, as multiple pathways are also involved in rofecoxib-induced anti-inflammatory and analgesic effects at the gene expression level. These findings may also suggest an alternative hypothesis for the adverse effects attributed to selective inhibition of COX-2. PMID:17070997

  12. Modulations of gene expression induced by daily ultraviolet light can be prevented by a broad spectrum sunscreen.

    PubMed

    Marionnet, Claire; Pierrard, Cécile; Lejeune, François; Bernerd, Françoise

    2012-11-01

    Realistic non-zenithal solar ultraviolet (UV) exposure, obtained using standard ultraviolet daylight spectrum (DUVR), has deleterious impact on epidermal and dermal compartments of human skin. The present study was designed to assess gene expression in human reconstructed skin following exposure to DUVR and the protective effect of a broad spectrum sunscreen. Reconstructed skins were exposed to a realistic daily UV dose of 12 J/cm(2) DUVR in the presence of a sunscreen product (Sun(burn) Protection Factor (SPF)=13 and UVA protection factor UVAPF (PPD) 10.5) or its vehicle. Six hours post exposure, gene expression was investigated in fibroblasts (225 genes) and keratinocytes (244 genes) separately using quantitative PCR arrays. DUVR exposure led to significant modulation of 35 and 66 genes in fibroblasts and keratinocytes, respectively. These genes were involved in extracellular matrix homeostasis, oxidative stress response, cell growth, inflammation and epidermal differentiation. Sunscreen use significantly reduced DUVR-induced gene modulation. Hierarchical clustering showed that gene expression profiles in protected and DUVR-exposed samples were very close to those of unexposed samples. The number of DUVR-modulated genes was significantly decreased by tested sunscreen (zero and four modulated genes in fibroblasts and keratinocytes, respectively). Our results demonstrate that a broad-spectrum sunscreen product is highly effective in protecting reconstructed human skin against DUVR-induced changes in gene expression. PMID:22960577

  13. A gene expression biomarker identifies in vitro and in vivo ERα modulators in a human gene expression compendium

    EPA Science Inventory

    We propose the use of gene expression profiling to complement the chemical characterization currently based on HTS assay data and present a case study relevant to the Endocrine Disruptor Screening Program. We have developed computational methods to identify estrogen receptor &alp...

  14. Identification of New SRF Binding Sites in Genes Modulated by SRF Over-Expression in Mouse Hearts

    PubMed Central

    Zhang, Xiaomin; Azhar, Gohar; Helms, Scott; Burton, Brian; Huang, Chris; Zhong, Ying; Gu, Xuesong; Fang, Hong; Tong, Weida; Wei, Jeanne Y.

    2011-01-01

    Background: To identify in vivo new cardiac binding sites of serum response factor (SRF) in genes and to study the response of these genes to mild over-expression of SRF, we employed a cardiac-specific, transgenic mouse model, with mild over-expression of SRF (Mild-O SRF Tg). Methodology: Microarray experiments were performed on hearts of Mild-O-SRF Tg at 6 months of age. We identified 207 genes that are important for cardiac function that were differentially expressed in vivo. Among them the promoter region of 192 genes had SRF binding motifs, the classic CArG or CArG-like (CArG-L) elements. Fifty-one of the 56 genes with classic SRF binding sites had not been previously reported. These SRF-modulated genes were grouped into 12 categories based on their function. It was observed that genes associated with cardiac energy metabolism shifted toward that of carbohydrate metabolism and away from that of fatty acid metabolism. The expression of genes that are involved in transcription and ion regulation were decreased, but expression of cytoskeletal genes was significantly increased. Using public databases of mouse models of hemodynamic stress (GEO database), we also found that similar altered expression of the SRF-modulated genes occurred in these hearts with cardiac ischemia or aortic constriction as well. Conclusion and significance: SRF-modulated genes are actively regulated under various physiological and pathological conditions. We have discovered that a large number of cardiac genes have classic SRF binding sites and were significantly modulated in the Mild-O-SRF Tg mouse hearts. Hence, the mild elevation of SRF protein in the heart that is observed during typical adult aging may have a major impact on many SRF-modulated genes, thereby affecting cardiac structure and performance. The results from our study could help to enhance our understanding of SRF regulation of cellular processes in the aged heart. PMID:21792293

  15. Chronic Exposure to Low-Dose Arsenic Modulates Lipogenic Gene Expression in Mice

    PubMed Central

    Adebayo, Adeola O.; Zandbergen, Fokko; Kozul-Horvath, Courtney D.; Gruppuso, Philip A.; Hamilton, Joshua W.

    2016-01-01

    Arsenic, a ubiquitous environmental toxicant, can affect lipid metabolism through mechanisms that are not well understood. We studied the effect of arsenic on serum lipids, lipid-regulating genes, and transcriptional regulator sterol regulatory element binding protein 1c (SREBP-1c). C57BL/6 mice were administered 0 or 100 ppb sodium arsenite in drinking water for 5 weeks. Arsenic exposure was associated with decreased liver weight but no change in body weight. Serum triglycerides level fell in arsenic-exposed animals, but not in fed animals, after short-term fasting. Hepatic expression of SREBP-1c was reduced in arsenic-exposed fed animals, with a 16-fold change in reduction. Similar effects were seen for SREBP-1c in white adipose tissue. However, fasting resulted in dissociation of the expression of SREBP-1c and its targets, and SREBP-1c protein content could not be shown to correlate with its mRNA expression. We conclude that arsenic modulates hepatic expression of genes involved in lipid regulation through mechanisms that are independent of SREBP-1c expression. PMID:25155036

  16. Membrane-targeted HrpNEa can modulate apple defense gene expression.

    PubMed

    Vergne, E; de Bernonville, T Dugé; Dupuis, F; Sourice, S; Cournol, R; Berthelot, P; Barny, M A; Brisset, M N; Chevreau, E

    2014-02-01

    Fire blight caused by Erwinia amylovora is the major bacterial disease of tribe Maleae, including apple. Among the proteins secreted by this bacterium, HrpNEa, also called harpin, is known to induce hypersensitive response in nonhost plants and to form amyloid oligomers leading to pore opening in the plasma membrane and alteration of membrane homeostasis. To better understand the physiological effects of HrpNEa in the host plant, we produced transgenic apple plants expressing HrpNEa with or without a secretion signal peptide (SP). HrpNEa expressed with a SP was found to be associated within the membrane fraction, in accordance with amyloidogenic properties and the presence of transmembrane domains revealed by in silico analysis. Expression analysis of 28 apple defense-related genes revealed gene modulations in the transgenic line expressing membrane-targeted HrpNEa. While apple transgenic trees displaying a high constitutive expression level of SP-HrpNEa showed a slight reduction of infection frequency after E. amylovora inoculation, there was no decrease in the disease severity. Thus HrpNEa seems to act as an elicitor of host defenses, when localized in the host membrane. PMID:24156770

  17. Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells

    SciTech Connect

    Reddy, M.K.; Baskaran, K.; Molteni, A.

    1995-12-01

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influenced the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.

  18. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis

    PubMed Central

    Kalyna, Maria; Simpson, Craig G.; Syed, Naeem H.; Lewandowska, Dominika; Marquez, Yamile; Kusenda, Branislav; Marshall, Jacqueline; Fuller, John; Cardle, Linda; McNicol, Jim; Dinh, Huy Q.; Barta, Andrea; Brown, John W. S.

    2012-01-01

    Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT–PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5′ or 3′UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3′-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes. PMID:22127866

  19. Plasticity of chemoreceptor gene expression: Sensory and circuit inputs modulate state-dependent chemoreceptors.

    PubMed

    Gruner, Matthew; van der Linden, Alexander M

    2015-01-01

    Animals dramatically modify their chemosensory behaviors when starved, which could allow them to alter and optimize their food-search strategies. Dynamic changes in the gene expression of chemoreceptors may be a general mechanism underlying food and state-dependent changes in chemosensory behaviors. In our recent study,(1) we identified chemoreceptors in the ADL sensory neuron type of C. elegans that are modulated by feeding state and food availability. Here, we highllight our recent findings by which sensory inputs into ADL, neuronal outputs from ADL, and circuit inputs from the RMG interneuron, which is electrically connected to ADL, are required to regulate an ADL-expressed chemoreceptor. This sensory and circuit-mediated regulation of chemoreceptor gene expression is dependent on cell-autonomous pathways acting in ADL, e.g. KIN-29, DAF-2, OCR-2 and calcium signaling, and circuit inputs from RMG mediated by NPR-1. Based on these findings, we propose an intriguing but speculative feedback modulatory circuit mechanism by which sensory perception of food and internal state signals may be coupled to regulate ADL-expressed chemoreceptors, which may allow animals to precisely regulate and fine-tune their chemosensory neuron responses as a function of feeding state. PMID:26430563

  20. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    PubMed Central

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  1. Dichotomous Metabolism of Enterococcus faecalis Induced by Hematin Starvation Modulates Colonic Gene Expression

    PubMed Central

    Allen, Toby D.; Moore, Danny R.; Wang, Xingmin; Casu, Viviana; May, Randal; Lerner, Megan R.; Houchen, Courtney; Brackett, Daniel J.; Huycke, Mark M.

    2009-01-01

    Summary Enterococcus faecalis is an intestinal commensal that cannot synthesize porphyrins and only expresses a functional respiratory chain when provided exogenous hematin. In the absence of hematin, E. faecalis reverts to fermentative metabolism and produces extracellular superoxide that can damage epithelial cell DNA. The acute response of the colonic mucosa to hematin-starved E. faecalis was identified by gene array. E. faecalis was inoculated into murine colons using a surgical ligation model that preserved tissue architecture and homeostasis. The mucosa was exposed to hematin-starved E. faecalis and compared to a control consisting of the same strain grown with hematin. At 1 hour post-inoculation six mucosal genes were differentially regulated and this increased to 42 genes at 6 hours. At 6 hours a highly significant biological interaction network was identified with functions that included NF-κB signaling, apoptosis, and cell cycle regulation. Colon biopsies showed no histological abnormalities by hematoxylin and eosin staining. Immunohistochemical staining, however, detected NF-κB activation in tissue macrophages using antibodies to the nuclear localization sequence for p65 and the F4/80 marker for murine macrophages. Similarly, hematin-starved E. faecalis strongly activated NF-κB in murine macrophages in vitro. Furthermore, primary and transformed colonic epithelial cells activated the G2/M checkpoint in vitro following exposure to hematin-starved E. faecalis. Modulation of this cell cycle checkpoint was due to extracellular superoxide produced as a result of the respiratory block in hematin-starved E. faecalis. These results demonstrate that the uniquely dichotomous metabolism of E. faecalis can significantly modulate gene expression in the colonic mucosa for pathways associated with inflammation, apoptosis, and cell cycle regulation. PMID:18809545

  2. Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons.

    PubMed

    Heman-Ackah, Sabrina Mahalia; Bassett, Andrew Roger; Wood, Matthew John Andrew

    2016-01-01

    The ability to reprogram adult somatic cells into induced pluripotent stem cells (iPSCs) and the subsequent development of protocols for their differentiation into disease-relevant cell types have enabled in-depth molecular analyses of multiple disease states as hitherto impossible. Neurons differentiated from patient-specific iPSCs provide a means to recapitulate molecular phenotypes of neurodegenerative diseases in vitro. However, it remains challenging to conduct precise manipulations of gene expression in iPSC-derived neurons towards modeling complex human neurological diseases. The application of CRISPR/Cas9 to mammalian systems is revolutionizing the utilization of genome editing technologies in the study of molecular contributors to the pathogenesis of numerous diseases. Here, we demonstrate that CRISPRa and CRISPRi can be used to exert precise modulations of endogenous gene expression in fate-committed iPSC-derived neurons. This highlights CRISPRa/i as a major technical advancement in accessible tools for evaluating the specific contributions of critical neurodegenerative disease-related genes to neuropathogenesis. PMID:27341390

  3. Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons

    PubMed Central

    Heman-Ackah, Sabrina Mahalia; Bassett, Andrew Roger; Wood, Matthew John Andrew

    2016-01-01

    The ability to reprogram adult somatic cells into induced pluripotent stem cells (iPSCs) and the subsequent development of protocols for their differentiation into disease-relevant cell types have enabled in-depth molecular analyses of multiple disease states as hitherto impossible. Neurons differentiated from patient-specific iPSCs provide a means to recapitulate molecular phenotypes of neurodegenerative diseases in vitro. However, it remains challenging to conduct precise manipulations of gene expression in iPSC-derived neurons towards modeling complex human neurological diseases. The application of CRISPR/Cas9 to mammalian systems is revolutionizing the utilization of genome editing technologies in the study of molecular contributors to the pathogenesis of numerous diseases. Here, we demonstrate that CRISPRa and CRISPRi can be used to exert precise modulations of endogenous gene expression in fate-committed iPSC-derived neurons. This highlights CRISPRa/i as a major technical advancement in accessible tools for evaluating the specific contributions of critical neurodegenerative disease-related genes to neuropathogenesis. PMID:27341390

  4. Retinyl Palmitate Supplementation Modulates T-bet and Interferon Gamma Gene Expression in Multiple Sclerosis Patients.

    PubMed

    Mohammadzadeh Honarvar, Niyaz; Harirchian, Mohammad Hossein; Abdolahi, Mina; Abedi, Elahe; Bitarafan, Sama; Koohdani, Fariba; Siassi, Feridoun; Sahraian, Mohammad Ali; Chahardoli, Reza; Zareei, Mahnaz; Salehi, Eisa; Geranmehr, Maziyar; Saboor-Yaraghi, Ali Akbar

    2016-07-01

    Vitamin A derivatives such as retinoic acid may improve the impaired balance of CD4+ T cells in autoimmune and inflammatory diseases. This study is a double-blind randomized trial to evaluate the effect of vitamin A (as form of retinyl palmitate) supplementation on multiple sclerosis (MS) patients. Thirty-nine patients were enrolled and randomly assigned to two groups. Both groups were followed for 6 months. The experimental group received 25,000 IU of retinyl palmitate daily, while the control group received a placebo. Before and after the study, the expression of interferon gamma (IFN-γ) and T-bet genes was evaluated in peripheral blood mononuclear cells of patients by RT-PCR. The results showed that after 6 months of supplementation, expression of IFN-γ and T-bet was significantly decreased. These data suggest that retinyl palmitate supplementation can modulate the impaired balance of Th1 and Th2 cells and vitamin A products that may be involved in the therapeutic mechanism of vitamin A in MS patients. This study provides information regarding the decreased gene expression of IFN-γ and T-bet in MS by retinyl palmitate supplementation. PMID:27122150

  5. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum

    PubMed Central

    2010-01-01

    Background The extracellular promastigote and the intracellular amastigote stages alternate in the digenetic life cycle of the trypanosomatid parasite Leishmania. Amastigotes develop inside parasitophorous vacuoles of mammalian phagocytes, where they tolerate extreme environmental conditions. Temperature increase and pH decrease are crucial factors in the multifactorial differentiation process of promastigotes to amastigotes. Although expression profiling approaches for axenic, cell culture- and lesion-derived amastigotes have already been reported, the specific influence of temperature increase and acidification of the environment on developmental regulation of genes has not been previously studied. For the first time, we have used custom L. infantum genomic DNA microarrays to compare the isolated and the combined effects of both factors on the transcriptome. Results Immunofluorescence analysis of promastigote-specific glycoprotein gp46 and expression modulation analysis of the amastigote-specific A2 gene have revealed that concomitant exposure to temperature increase and acidification leads to amastigote-like forms. The temperature-induced gene expression profile in the absence of pH variation resembles the profile obtained under combined exposure to both factors unlike that obtained for exposure to acidification alone. In fact, the subsequent fold change-based global iterative hierarchical clustering analysis supports these findings. Conclusions The specific influence of temperature and pH on the differential regulation of genes described in this study and the evidence provided by clustering analysis is consistent with the predominant role of temperature increase over extracellular pH decrease in the amastigote differentiation process, which provides new insights into Leishmania physiology. PMID:20074347

  6. Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression.

    PubMed

    Hossain, Mir A; Barrow, Joeva J; Shen, Yong; Haq, Md Imdadul; Bungert, Jörg

    2015-11-01

    Genome editing and alteration of gene expression by synthetic DNA binding activities gained a lot of momentum over the last decade. This is due to the development of new DNA binding molecules with enhanced binding specificity. The most commonly used DNA binding modules are zinc fingers (ZFs), TALE-domains, and the RNA component of the CRISPR/Cas9 system. These binding modules are fused or linked to either nucleases that cut the DNA and induce DNA repair processes, or to protein domains that activate or repress transcription of genes close to the targeted site in the genome. This review focuses on the structure, design, and applications of ZF DNA binding domains (ZFDBDs). ZFDBDs are relatively small and have been shown to penetrate the cell membrane without additional tags suggesting that they could be delivered to cells without a DNA or RNA intermediate. Advanced algorithms that are based on extensive knowledge of the mode of ZF/DNA interactions are used to design the amino acid composition of ZFDBDs so that they bind to unique sites in the genome. Off-target binding has been a concern for all synthetic DNA binding molecules. Thus, increasing the specificity and affinity of ZFDBDs will have a significant impact on their use in analytical or therapeutic settings. PMID:25989233

  7. Modulation of Cholesterol-Related Gene Expression by Dietary Fiber Fractions from Edible Mushrooms.

    PubMed

    Caz, Víctor; Gil-Ramírez, Alicia; Largo, Carlota; Tabernero, María; Santamaría, Mónica; Martín-Hernández, Roberto; Marín, Francisco R; Reglero, Guillermo; Soler-Rivas, Cristina

    2015-08-26

    Mushrooms are a source of dietary fiber (DF) with a cholesterol-lowering effect. However, their underlying mechanisms are poorly understood. The effect of DF-enriched fractions from three mushrooms species on cholesterol-related expression was studied in vitro. The Pleurotus ostreatus DF fraction (PDF) was used in mice models to assess its potential palliative or preventive effect against hypercholesterolemia. PDF induced a transcriptional response in Caco-2 cells, suggesting a possible cholesterol-lowering effect. In the palliative setting, PDF reduced hepatic triglyceride likely because Dgat1 was downregulated. However, cholesterol-related biochemical data showed no changes and no relation with the observed transcriptional modulation. In the preventive setting, PDF modulated cholesterol-related genes expression in a manner similar to that of simvastatin and ezetimibe in the liver, although no changes in plasma and liver biochemical data were induced. Therefore, PDF may be useful reducing hepatic triglyceride accumulation. Because it induced a molecular response similar to hypocholesterolemic drugs in liver, further dose-dependent studies should be carried out. PMID:26284928

  8. Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression

    PubMed Central

    Mozhui, Khyobeni; Ciobanu, Daniel C.; Schikorski, Thomas; Wang, Xusheng; Lu, Lu; Williams, Robert W.

    2008-01-01

    A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of ∼20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes. PMID:19008955

  9. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes.

    PubMed

    Nurbaeva, M K; Eckstein, M; Snead, M L; Feske, S; Lacruz, R S

    2015-10-01

    Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs. PMID:26232387

  10. Orf virus inhibits interferon stimulated gene expression and modulates the JAK/STAT signalling pathway.

    PubMed

    Harvey, Ryan; McCaughan, Catherine; Wise, Lyn M; Mercer, Andrew A; Fleming, Stephen B

    2015-10-01

    Interferons (IFNs) play a critical role as a first line of defence against viral infection. Activation of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) pathway by IFNs leads to the production of IFN stimulated genes (ISGs) that block viral replication. The Parapoxvirus, Orf virus (ORFV) induces acute pustular skin lesions of sheep and goats and is transmissible to man. The virus replicates in keratinocytes that are the immune sentinels of skin. We investigated whether or not ORFV could block the expression of ISGs. The human gene GBP1 is stimulated exclusively by type II IFN while MxA is stimulated exclusively in response to type I IFNs. We found that GBP1 and MxA were strongly inhibited in ORFV infected HeLa cells stimulated with IFN-γ or IFN-α respectively. Furthermore we showed that ORFV inhibition of ISG expression was not affected by cells pretreated with adenosine N1-oxide (ANO), a molecule that inhibits poxvirus mRNA translation. This suggested that new viral gene synthesis was not required and that a virion structural protein was involved. We next investigated whether ORFV infection affected STAT1 phosphorylation in IFN-γ or IFN-α treated HeLa cells. We found that ORFV reduced the levels of phosphorylated STAT1 in a dose-dependent manner and was specific for Tyr701 but not Ser727. Treatment of cells with sodium vanadate suggested that a tyrosine phosphatase was responsible for dephosphorylating STAT1-p. ORFV encodes a factor, ORFV057, with homology to the vaccinia virus structural protein VH1 that impairs the JAK/STAT pathway by dephosphorylating STAT1. Our findings show that ORFV has the capability to block ISG expression and modulate the JAK/STAT signalling pathway. PMID:26113305

  11. Current European Labyrinthula zosterae are not virulent and modulate seagrass (Zostera marina) defense gene expression.

    PubMed

    Brakel, Janina; Werner, Franziska Julie; Tams, Verena; Reusch, Thorsten B H; Bockelmann, Anna-Christina

    2014-01-01

    Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype × genotype interactions of host and pathogen from different regions (10-100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist × eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence. PMID:24691450

  12. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    NASA Astrophysics Data System (ADS)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    ), we investigated samples from sounding rocket experiments (5 min μ g) and show increased transcript levels for signalling proteins. By means of 2-dimensional SDS polyacrylamide gelelectrophoresis, coupled to spot identification after tryptic digest (MALDI-TOF), we further show that metabolic short-term responses can be adjusted by protein phosphorylation/dephosphorylation. Changes in gene expression / protein modulation are mirrored by respective alterations in metabolite pools. (Supported by a grant from the Deutsches Zentrum für Luft- und Raumfahrt (DLR, 50WB0143)).

  13. Pimecrolimus increases the expression of interferon-inducible genes that modulate human coronary artery cells proliferation.

    PubMed

    Hussner, Janine; Sünwoldt, Juliane; Seibert, Isabell; Gliesche, Daniel G; Zu Schwabedissen, Henriette E Meyer

    2016-08-01

    The pharmacodynamics of the loaded compounds defines clinical failure or success of a drug-eluting device. Various limus derivatives have entered clinics due to the observed positive outcome after stent implantation, which is explained by their antiproliferative activity resulting from inhibition of the cytosolic immunophilin FK506-binding protein 12. Although pimecrolimus also binds to this protein, pimecrolimus-eluting stents failed in clinics. However, despite its impact on T lymphocytes little is known about the pharmacodynamics of pimecrolimus in cultured human coronary artery cells. We were able to show that pimecrolimus exerts antiproliferative activity in human smooth muscle and endothelial cells. Furthermore in those cells pimecrolimus induced transcription of interferon-inducible genes which in part are known to modulate cell proliferation. Modulation of gene expression may be part of an interaction between calcineurin, the downstream target of the pimecrolimus/FK506-binding protein 12-complex, and the toll-like receptor 4. In accordance are our findings showing that silencing of toll-like receptor 4 by siRNA in A549 a lung carcinoma cell line reduced the activation of interferon-inducible genes upon pimecrolimus treatment in those cells. Based on our findings we hypothesize that calcineurin inhibition may induce the toll-like receptor 4 mediated activation of type I interferon signaling finally inducing the observed effect in endothelial and smooth muscle cells. The crosstalk of interferon and toll-like receptor signaling may be a molecular mechanism that contributed to the failure of pimecrolimus-eluting stents in humans. PMID:27212382

  14. γ-Glutamyl hydrolase modulation significantly influences global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells.

    PubMed

    Kim, Sung-Eun; Hinoue, Toshinori; Kim, Michael S; Sohn, Kyoung-Jin; Cho, Robert C; Cole, Peter D; Weisenberger, Daniel J; Laird, Peter W; Kim, Young-In

    2015-01-01

    γ-Glutamyl hydrolase (GGH) plays an important role in folate homeostasis by catalyzing hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence, GGH modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, and in chromatin modifications, and aberrant or dysregulation of DNA methylation has been mechanistically linked to the development of human diseases including cancer. Using a recently developed in vitro model of GGH modulation in HCT116 colon and MDA-MB-435 breast cancer cells, we investigated whether GGH modulation would affect global and gene-specific DNA methylation and whether these alterations were associated with significant gene expression changes. In both cell lines, GGH overexpression decreased global DNA methylation and DNA methyltransferase (DNMT) activity, while GGH inhibition increased global DNA methylation and DNMT activity. Epigenomic and gene expression analyses revealed that GGH modulation influenced CpG promoter DNA methylation and gene expression involved in important biological pathways including cell cycle, cellular development, and cellular growth and proliferation. Some of the observed altered gene expression appeared to be regulated by changes in CpG promoter DNA methylation. Our data suggest that the GGH modulation-induced changes in total intracellular folate concentrations and content of long-chain folylpolyglutamates are associated with functionally significant DNA methylation alterations in several important biological pathways. PMID:25502219

  15. Tumor necrosis factor-alpha modulates monocyte/macrophage apoprotein E gene expression.

    PubMed Central

    Duan, H; Li, Z; Mazzone, T

    1995-01-01

    apo E has been shown to modulate cholesterol balance in arterial wall cells. Production of apo E by macrophages in atherosclerotic plaques could thereby influence the development of the plaque lesion. Cytokines, including TNF alpha, have been identified in human lesions, therefore, we undertook a series of studies to evaluate the effect of TNF alpha on monocyte/macrophage apo E production. The addition of TNF alpha to freshly isolated human monocytes led to a four- to fivefold increase of apo E mRNA abundance. The addition of TNF alpha to fully differentiated macrophages either had no effect or modestly inhibited apo E mRNA expression. THP1 human monocytic cells also responded to TNF alpha in a phenotype-specific manner. Treatment of these cells with TNF alpha produced a dose- and time-dependent increase in apo E mRNA. This increase was reflected in apo E synthesis and was associated with inhibition of DNA synthesis, and with induction of c-fos and ICAM-1 gene expression. Cell-permanent analogues of ceramide did not reproduce TNF alpha effect on apo E, but antagonists of protein kinase C did inhibit its effect. TNF alpha induction of apo E mRNA abundance was associated with stimulation of apo E promoter-dependent gene transcription. In summary, TNF alpha stimulates apo E gene transcription, mRNA abundance, and protein synthesis in the monocyte/macrophage in a phenotype-specific manner. Such regulation could significantly modify the amount of apo E present in vessel wall lesions. Images PMID:7635986

  16. C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W

    PubMed Central

    2013-01-01

    Background Antimicrobial peptides have been the focus of much research over the last decade because of their effectiveness and broad-spectrum activity against microbial pathogens. These peptides also participate in inflammation and the innate host defense system by modulating the immune function that promotes immune cell adhesion and migration as well as the respiratory burst, which makes them even more attractive as therapeutic agents. This has led to the synthesis of various antimicrobial peptides, including KSL-W (KKVVFWVKFK-NH2), for potential clinical use. Because this peptide displays antimicrobial activity against bacteria, we sought to determine its antifungal effect on C. albicans. Growth, hyphal form, biofilm formation, and degradation were thus examined along with EFG1, NRG1, EAP1, HWP1, and SAP 2-4-5-6 gene expression by quantitative RT-PCR. Results This study demonstrates that KSL-W markedly reduced C. albicans growth at both early and late incubation times. The significant effect of KSL-W on C. albicans growth was observed beginning at 10 μg/ml after 5 h of contact by reducing C. albicans transition and at 25 μg/ml by completely inhibiting C. albicans transition. Cultured C. albicans under biofilm-inducing conditions revealed that both KSL-W and amphotericin B significantly decreased biofilm formation at 2, 4, and 6 days of culture. KSL-W also disrupted mature C. albicans biofilms. The effect of KSL-W on C. albicans growth, transition, and biofilm formation/disruption may thus occur through gene modulation, as the expression of various genes involved in C. albicans growth, transition and biofilm formation were all downregulated when C. albicans was treated with KSL-W. The effect was greater when C. albicans was cultured under hyphae-inducing conditions. Conclusions These data provide new insight into the efficacy of KSL-W against C. albicans and its potential use as an antifungal therapy. PMID:24195531

  17. Maternal diet modulates placenta growth and gene expression in a mouse model of diabetic pregnancy.

    PubMed

    Kappen, Claudia; Kruger, Claudia; MacGowan, Jacalyn; Salbaum, J Michael

    2012-01-01

    Unfavorable maternal diet during pregnancy can predispose the offspring to diseases later in life, such as hypertension, metabolic syndrome, and obesity. However, the molecular basis for this phenomenon of "developmental programming" is poorly understood. We have recently shown that a diet nutritionally optimized for pregnancy can nevertheless be harmful in the context of diabetic pregnancy in the mouse, associated with a high incidence of neural tube defects and intrauterine growth restriction. We hypothesized that placental abnormalities may contribute to impaired fetal growth in these pregnancies, and therefore investigated the role of maternal diet in the placenta. LabDiet 5015 diet was associated with reduced placental growth, commencing at midgestation, when compared to pregnancies in which the diabetic dam was fed LabDiet 5001 maintenance chow. Furthermore, by quantitative RT-PCR we identify 34 genes whose expression in placenta at midgestation is modulated by diet, diabetes, or both, establishing biomarkers for gene-environment interactions in the placenta. These results implicate maternal diet as an important factor in pregnancy complications and suggest that the early phases of placenta development could be a critical time window for developmental origins of adult disease. PMID:22701643

  18. Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium.

    PubMed

    Ryan, Natalia; Chorley, Brian; Tice, Raymond R; Judson, Richard; Corton, J Christopher

    2016-05-01

    Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats. Computational methods are described here to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including "very weak" agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals, the balanced accuracies were 95% and 98% for activation or suppression, respectively. These results demonstrate that the ERα gene expression biomarker can accurately identify ERα modulators in large collections of microarray data derived from MCF-7 cells. PMID:26865669

  19. Constitutive modulation of Raf-1 protein kinase is associated with differential gene expression of several known and unknown genes.

    PubMed Central

    Patel, S.; Wang, F. H.; Whiteside, T. L.; Kasid, U.

    1997-01-01

    BACKGROUND: Raf-1, a cytoplasmic serine/threonine protein kinase, plays an important role in mitogen- and damage-responsive cellular signal transduction pathways. Consistent with this notion is the fact that constitutive modulation of expression and/or activity of Raf-1 protein kinase modifies cell growth, proliferation, and cell survival. Although these effects are controlled at least in part by transcriptional mechanisms, the role of Raf-1 in the regulation of specific gene expression is unclear. MATERIALS AND METHODS: Differential display of mRNA was used to identify the genes differentially expressed in human head and neck squamous carcinoma cells (PCI-06A) transfected with either the antisense c-raf-1 cDNA (PCI-06A-Raf(AS)), or a portion of cDNA coding for the kinase domain of Raf-1 (PCI-06A-Raf(K)). The differentially expressed fragments were cloned and sequenced, and they were used as probes to compare the expression patterns in parent transfectants by Northern blot analysis. In addition, expression patterns of the novel genes were examined in normal tissues and cancer cell lines. RESULTS: Six differentially expressed cDNA fragments were identified and sequenced. Northern blot analysis revealed that four of these fragments representing human alpha 1-antichymotrypsin (alpha 1-ACT), mitochondrial cytochrome c oxidase subunit II (COX-II), and two as-yet unidentified cDNAs (KAS-110 and KAS-111) were relatively overexpressed in PCI-06A-Raf(AS) transfectants compared with PCI-06A-Raf(K) transfectants. The other two cDNA fragments representing human elongation factor-1 alpha (HEF-1 alpha) and ornithine decarboxylase antizyme (OAz) were overexpressed in PCI-06A-Raf(K) transfectants compared with PCI-06A-Raf(AS) transfectants. The KAS-110 (114 bp) and KAS-111 (202 bp) cDNAs did not show significant matches with sequences in the GenEMBL, TIGR, and HGS DNA databases, and these may represent novel genes. The KAS-110 and KAS-111 transcripts, approximately 0.9 kb and

  20. Modulation of Gene Expression by Polymer Nanocapsule Delivery of DNA Cassettes Encoding Small RNAs.

    PubMed

    Yan, Ming; Wen, Jing; Liang, Min; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2015-01-01

    Small RNAs, including siRNAs, gRNAs and miRNAs, modulate gene expression and serve as potential therapies for human diseases. Delivery to target cells remains the fundamental limitation for use of these RNAs in humans. To address this challenge, we have developed a nanocapsule delivery technology that encapsulates small DNA molecules encoding RNAs into a small (30 nm) polymer nanocapsule. For proof of concept, we transduced DNA expression cassettes for three small RNAs. In one application, the DNA cassette encodes an shRNA transcriptional unit that downregulates CCR5 and protects from HIV-1 infection. The DNA cassette nanocapsules were further engineered for timed release of the DNA cargo for prolonged knockdown of CCR5. Secondly, the nanocapsules provide an efficient means for delivery of gRNAs in the CRISPR/Cas9 system to mutate integrated HIV-1. Finally, delivery of microRNA-125b to mobilized human CD34+ cells enhances survival and expansion of the CD34+ cells in culture. PMID:26035832

  1. Molecular profiling: Catecholamine modulation of gene expression in Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigations of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium have demonstrated that these bacterial pathogens can respond to the presence of catecholamines including norepinephrine and/or epinephrine in their environment by modulating gene expression and exhibiting various ...

  2. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators.

    PubMed

    Hieronymus, Haley; Lamb, Justin; Ross, Kenneth N; Peng, Xiao P; Clement, Cristina; Rodina, Anna; Nieto, Maria; Du, Jinyan; Stegmaier, Kimberly; Raj, Srilakshmi M; Maloney, Katherine N; Clardy, Jon; Hahn, William C; Chiosis, Gabriela; Golub, Todd R

    2006-10-01

    Although androgen receptor (AR)-mediated signaling is central to prostate cancer, the ability to modulate AR signaling states is limited. Here we establish a chemical genomic approach for discovery and target prediction of modulators of cancer phenotypes, as exemplified by AR signaling. We first identify AR activation inhibitors, including a group of structurally related compounds comprising celastrol, gedunin, and derivatives. To develop an in silico approach for target pathway identification, we apply a gene expression-based analysis that classifies HSP90 inhibitors as having similar activity to celastrol and gedunin. Validating this prediction, we demonstrate that celastrol and gedunin inhibit HSP90 activity and HSP90 clients, including AR. Broadly, this work identifies new modes of HSP90 modulation through a gene expression-based strategy. PMID:17010675

  3. Gene expression signature of DMBA-induced hamster buccal pouch carcinomas: modulation by chlorophyllin and ellagic acid.

    PubMed

    Vidya Priyadarsini, Ramamurthi; Kumar, Neeraj; Khan, Imran; Thiyagarajan, Paranthaman; Kondaiah, Paturu; Nagini, Siddavaram

    2012-01-01

    Chlorophyllin (CHL), a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA), a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs) that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy. PMID:22485181

  4. Gene Expression Signature of DMBA-Induced Hamster Buccal Pouch Carcinomas: Modulation by Chlorophyllin and Ellagic Acid

    PubMed Central

    Vidya Priyadarsini, Ramamurthi; Kumar, Neeraj; Khan, Imran; Thiyagarajan, Paranthaman; Kondaiah, Paturu; Nagini, Siddavaram

    2012-01-01

    Chlorophyllin (CHL), a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA), a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs) that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy. PMID:22485181

  5. Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach.

    PubMed

    Fontenla, Francisco; Blanco-Abad, Verónica; Pardo, Belén G; Folgueira, Iria; Noia, Manuel; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José M; Lamas, Jesús

    2016-07-01

    We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination. PMID:27318565

  6. The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro.

    PubMed

    González-Castillo, Celia; Ortuño-Sahagún, Daniel; Guzmán-Brambila, Carolina; Márquez-Aguirre, Ana Laura; Raisman-Vozari, Rita; Pallás, Mercé; Rojas-Mayorquín, Argelia E

    2016-09-01

    Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro. PMID:27468976

  7. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    SciTech Connect

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  8. Solar simulated irradiation modulates gene expression and activity of antioxidant enzymes in cultured human dermal fibroblasts.

    PubMed

    Leccia, M T; Yaar, M; Allen, N; Gleason, M; Gilchrest, B A

    2001-08-01

    Exposure of skin to solar irradiation generates reactive oxygen species that damage DNA, membranes, mitochondria and proteins. To protect against such damage, skin cells have evolved antioxidant enzymes including glutathione peroxidase (GSH-Px), copper and zinc-dependent superoxide dismutase (SOD1), the mitochondrial manganese-dependent superoxide dismutase (SOD2), and catalase. This report examines the effect of a single low or moderate dose exposure to solar-simulating combined UVB and UVA irradiation on the gene expression and activities of these antioxidant enzymes in cultured normal human fibroblasts. We find that both doses initially decrease GSH-Px, SOD2 and catalase activities, but within 5 days after irradiation the activities of the enzymes return to pre-irradiation level (catalase) or are induced slightly (SOD1, GSH-Px) or substantially (SOD2) above the basal level. For SOD1, SOD2 and catalase, the higher dose also detectably modulates the mRNA level of these enzymes. Our results indicate that the effects of a single physiologic solar simulated irradiation dose persist for at least several days and suggest that skin cells prepare for subsequent exposure to damaging irradiation by upregulating this antioxidant defense system, in particular the mitochondrial SOD2. Our findings are consistent with the existence of a broad-based SOS-like response in irradiated human skin. PMID:11493316

  9. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes.

    PubMed

    Riquelme Medina, Ignacio; Lubovac-Pilav, Zelmina

    2016-01-01

    Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body's inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D. PMID:27257970

  10. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes

    PubMed Central

    Riquelme Medina, Ignacio; Lubovac-Pilav, Zelmina

    2016-01-01

    Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D. PMID:27257970

  11. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data

    PubMed Central

    2012-01-01

    Background Identification of protein complexes and functional modules from protein-protein interaction (PPI) networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI) data. A series of time-sequenced subnetworks (TSNs) is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology). The validation shows that the identified functional modules are statistically significant in terms of “Biological Process”. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and algorithms can distinguish

  12. Modulation of gene expression in MHCC97 cells by interferon alpha

    PubMed Central

    Wu, Wei-Zhong; Sun, Hui-Chuan; Wang, Lu; Chen, Jie; Liu, Kang-Da; Tang, Zhao-You

    2005-01-01

    AIM: To elucidate the molecular mechanisms of the inhibitory effects of IFN-α on tumor growth and metastasis in MHCC97 xenografts. METHODS: Three thousand international units per milliliter of IFN-α-treated and -untreated MHCC97 cells were enrolled for gene expression analysis using cDNA microarray. The mRNA levels of several differentially expressed genes in cDNA microarray were further identified by Northern blot and RT-PCR. RESULTS: A total of 190 differentially expressed genes including 151 IFN-α-repressed and 39 -stimulated genes or expressed sequence tags from 8 464 known human genes were found to be regulated by IFN-α in MHCC97. With a few exceptions, mRNA levels of the selected genes in RT-PCR and Northern blot were in good agreement with those in cDNA microarray. CONCLUSION: IFN-α might exert its complicated anti-tumor effects on MHCC97 xenografts by regulating the expression of functional genes involved in cell metabolism, proliferation, morphogenesis, angiogenesis, and signaling. PMID:16425353

  13. MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development.

    PubMed

    Giusti, Juliana; Pinhal, Danillo; Moxon, Simon; Campos, Camila Lovaglio; Münsterberg, Andrea; Martins, Cesar

    2016-05-01

    Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs). However, the mechanisms of miRNA-mediated regulation of these transcription factors during fish early development remain largely unknown. Here we have profiled three highly expressed miR-10 family members of Nile tilapia at early embryonic development, determined their genomic organization as well as performed functional experiments for validation of target genes. Quantitative analysis during developmental stages showed miR-10 family expression negatively correlates with the expression of HoxA3a, HoxB3a and HoxD10a genes, as expected for bona fide miRNA-mRNA interactions. Moreover, luciferase assays demonstrated that HoxB3a and HoxD10a are targeted by miR-10b-5p. Overall, our data indicate that the miR-10 family directly regulates members of the Hox gene family during Nile tilapia embryogenesis. PMID:26980108

  14. A new strategy for exploring the hierarchical structure of cancers by adaptively partitioning functional modules from gene expression network

    PubMed Central

    Xu, Junmei; Jing, Runyu; Liu, Yuan; Dong, Yongcheng; Wen, Zhining; Li, Menglong

    2016-01-01

    The interactions among the genes within a disease are helpful for better understanding the hierarchical structure of the complex biological system of it. Most of the current methodologies need the information of known interactions between genes or proteins to create the network connections. However, these methods meet the limitations in clinical cancer researches because different cancers not only share the common interactions among the genes but also own their specific interactions distinguished from each other. Moreover, it is still difficult to decide the boundaries of the sub-networks. Therefore, we proposed a strategy to construct a gene network by using the sparse inverse covariance matrix of gene expression data, and divide it into a series of functional modules by an adaptive partition algorithm. The strategy was validated by using the microarray data of three cancers and the RNA-sequencing data of glioblastoma. The different modules in the network exhibited specific functions in cancers progression. Moreover, based on the gene expression profiles in the modules, the risk of death was well predicted in the clustering analysis and the binary classification, indicating that our strategy can be benefit for investigating the cancer mechanisms and promoting the clinical applications of network-based methodologies in cancer researches. PMID:27349736

  15. Xenobiotic-metabolizing enzyme and transporter gene expression in primary cultures of human hepatocytes modulated by ToxCast chemicals.

    PubMed

    Rotroff, Daniel M; Beam, Andrew L; Dix, David J; Farmer, Adam; Freeman, Kimberly M; Houck, Keith A; Judson, Richard S; LeCluyse, Edward L; Martin, Matthew T; Reif, David M; Ferguson, Stephen S

    2010-02-01

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the concentration- and time-response of the 320 ToxCast chemicals for changes in expression of genes regulated by nuclear receptors. Fourteen gene targets were monitored in quantitative nuclease protection assays: six representative cytochromes P-450, four hepatic transporters, three Phase II conjugating enzymes, and one endogenous metabolism gene involved in cholesterol synthesis. These gene targets are sentinels of five major signaling pathways: AhR, CAR, PXR, FXR, and PPARalpha. Besides gene expression, the relative potency and efficacy for these chemicals to modulate cellular health and enzymatic activity were assessed. Results demonstrated that the culture system was an effective model of chemical-induced responses by prototypical inducers such as phenobarbital and rifampicin. Gene expression results identified various ToxCast chemicals that were potent or efficacious inducers of one or more of the 14 genes, and by inference the 5 nuclear receptor signaling pathways. Significant relative risk associations with rodent in vivo chronic toxicity effects are reported for the five major receptor pathways. These gene expression data are being incorporated into the larger ToxCast predictive modeling effort. PMID:20574906

  16. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays

    PubMed Central

    Guimond, Chantal; Trudel, Nathalie; Brochu, Christian; Marquis, Nathalie; Fadili, Amal El; Peytavi, Régis; Briand, Guylaine; Richard, Dave; Messier, Nadine; Papadopoulou, Barbara; Corbeil, Jacques; Bergeron, Michel G.; Légaré, Danielle; Ouellette, Marc

    2003-01-01

    In the protozoan parasite Leishmania, drug resistance can be a complex phenomenon. Several metabolic pathways and membrane transporters are implicated in the resistance phenotype. To monitor the expression of these genes, we generated custom DNA microarrays with PCR fragments corresponding to 44 genes involved with drug resistance. Transcript profiling of arsenite and antimony resistant mutants with these arrays pinpointed a number of genes overexpressed in mutants, including the ABC transporter PGPA, the glutathione biosynthesis genes γ-glutamylcysteine synthetase (GSH1) and the glutathione synthetase (GSH2). Competitive hybridisations with total RNA derived from sensitive and methotrexate resistant cells revealed the overexpression of genes coding for dihydrofolate reductase (DHFR-TS), pteridine reductase (PTR1) and S-adenosylmethionine synthase (MAT2) and a down regulation of one gene of the folate transporter (FT) family. By labelling the DNA of sensitive and resistant parasites we could also detect several gene amplification events using DNA microarrays including the amplification of the S-adenosyl homocysteine hydrolase gene (SAHH). Alteration in gene expression detected by microarrays was validated by northern blot analysis, while Southern blots indicated that most genes overexpressed were also amplified, although other mechanisms were also present. The microarrays were useful in the study of resistant parasites to pinpoint several genes linked to drug resistance. PMID:14530437

  17. Vascular Injury Post Stent Implantation: Different Gene Expression Modulation in Human Umbilical Vein Endothelial Cells (HUVECs) Model

    PubMed Central

    Campolo, Jonica; Vozzi, Federico; Penco, Silvana; Cozzi, Lorena; Caruso, Raffaele; Domenici, Claudio; Ahluwalia, Arti; Rial, Michela; Marraccini, Paolo; Parodi, Oberdan

    2014-01-01

    To explore whether stent procedure may influence transcriptional response of endothelium, we applied different physical (flow changes) and/or mechanical (stent application) stimuli to human endothelial cells in a laminar flow bioreactor (LFB) system. Gene expression analysis was then evaluated in each experimental condition. Human umbilical vein endothelial cells (HUVECs) were submitted to low and physiological (1 and 10 dyne/cm2) shear stress in absence (AS) or presence (PS) of stent positioning in a LFB system for 24 h. Different expressed genes, coming from Affymetrix results, were identified based on one-way ANOVA analysis with p values <0.01 and a fold changed >3 in modulus. Low shear stress was compared with physiological one in AS and PS conditions. Two major groups include 32 probes commonly expressed in both 1AS versus 10AS and 1PS versus 10PS comparison, and 115 probes consisting of 83 in addition to the previous 32, expressed only in 1PS versus 10PS comparison. Genes related to cytoskeleton, extracellular matrix, and cholesterol transport/metabolism are differently regulated in 1PS versus 10PS condition. Inflammatory and apoptotic mediators seems to be, instead, closely modulated by changes in flow (1 versus 10), independently of stent application. Low shear stress together with stent procedure are the experimental conditions that mainly modulate the highest number of genes in our human endothelial model. Those genes belong to pathways specifically involved in the endothelial dysfunction. PMID:24587287

  18. Myocardial Gene Transfer: Routes and Devices for Regulation of Transgene Expression by Modulation of Cellular Permeability

    PubMed Central

    Katz, Michael G.; Bridges, Charles R.

    2013-01-01

    Abstract Heart diseases are major causes of morbidity and mortality in Western society. Gene therapy approaches are becoming promising therapeutic modalities to improve underlying molecular processes affecting failing cardiomyocytes. Numerous cardiac clinical gene therapy trials have yet to demonstrate strong positive results and advantages over current pharmacotherapy. The success of gene therapy depends largely on the creation of a reliable and efficient delivery method. The establishment of such a system is determined by its ability to overcome the existing biological barriers, including cellular uptake and intracellular trafficking as well as modulation of cellular permeability. In this article, we describe a variety of physical and mechanical methods, based on the transient disruption of the cell membrane, which are applied in nonviral gene transfer. In addition, we focus on the use of different physiological techniques and devices and pharmacological agents to enhance endothelial permeability. Development of these methods will undoubtedly help solve major problems facing gene therapy. PMID:23427834

  19. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy.

    PubMed

    Nader, G A; von Walden, F; Liu, C; Lindvall, J; Gutmann, L; Pistilli, E E; Gordon, P M

    2014-03-15

    We sought to determine whether acute resistance exercise (RE)-induced gene expression is modified by RE training. We studied the expression patterns of a select group of genes following an acute bout of RE in naïve and hypertrophying muscle. Thirteen untrained subjects underwent supervised RE training for 12 wk of the nondominant arm and performed an acute bout of RE 1 wk after the last bout of the training program (training+acute). The dominant arm was either unexercised (control) or subjected to the same acute exercise bout as the trained arm (acute RE). Following training, men (14.8 ± 2.8%; P < 0.05) and women (12.6 ± 2.4%; P < 0.05) underwent muscle hypertrophy with increases in dynamic strength in the trained arm (48.2 ± 5.4% and 72.1 ± 9.1%, respectively; P < 0.01). RE training resulted in attenuated anabolic signaling as reflected by a reduction in rpS6 phosphorylation following acute RE. Changes in mRNA levels of genes involved in hypertrophic growth, protein degradation, angiogenesis, and metabolism commonly expressed in both men and women was determined 4 h following acute RE. We show that RE training can modify acute RE-induced gene expression in a divergent and gene-specific manner even in genes belonging to the same ontology. Changes in gene expression following acute RE are multidimensional, and may not necessarily reflect the actual adaptive response taking place during the training process. Thus RE training can selectively modify the acute response to RE, thereby challenging the use of gene expression as a marker of exercise-induced adaptations. PMID:24458751

  20. Alcohol Consumption Modulates Host Defense in Rhesus Macaques by Altering Gene Expression in Circulating Leukocytes.

    PubMed

    Barr, Tasha; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Grant, Kathleen; Messaoudi, Ilhem

    2016-01-01

    Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections, whereas moderate alcohol consumption decreases the incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations > 80 mg/dl) suppressed, whereas moderate alcohol consumption (blood ethanol concentrations < 50 mg/dl) enhanced, T and B cell responses to modified vaccinia Ankara vaccination in a nonhuman primate model of voluntary ethanol consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-modified vaccinia Ankara vaccination, the earliest time point at which we detected differences in T cell and Ab responses. Overall, chronic heavy alcohol consumption reduced the expression of immune genes involved in response to infection and wound healing and increased the expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated the expression of genes involved in immune response and reduced the expression of genes involved in cancer. To uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate the expression of mRNAs differentially expressed in our data set. PMID:26621857

  1. Resveratrol and fenofibrate ameliorate fructose-induced nonalcoholic steatohepatitis by modulation of genes expression

    PubMed Central

    Abd El-Haleim, Enas A; Bahgat, Ashraf K; Saleh, Samira

    2016-01-01

    AIM: To evaluate the effect of resveratrol, alone and in combination with fenofibrate, on fructose-induced metabolic genes abnormalities in rats. METHODS: Giving a fructose-enriched diet (FED) to rats for 12 wk was used as a model for inducing hepatic dyslipidemia and insulin resistance. Adult male albino rats (150-200 g) were divided into a control group and a FED group which was subdivided into 4 groups, a control FED, fenofibrate (FENO) (100 mg/kg), resveratrol (RES) (70 mg/kg) and combined treatment (FENO + RES) (half the doses). All treatments were given orally from the 9th week till the end of experimental period. Body weight, oral glucose tolerance test (OGTT), liver index, glucose, insulin, insulin resistance (HOMA), serum and liver triglycerides (TGs), oxidative stress (liver MDA, GSH and SOD), serum AST, ALT, AST/ALT ratio and tumor necrosis factor-α (TNF-α) were measured. Additionally, hepatic gene expression of suppressor of cytokine signaling-3 (SOCS-3), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), malonyl CoA decarboxylase (MCD), transforming growth factor-β1 (TGF-β1) and adipose tissue genes expression of leptin and adiponectin were investigated. Liver sections were taken for histopathological examination and steatosis area were determined. RESULTS: Rats fed FED showed damaged liver, impairment of glucose tolerance, insulin resistance, oxidative stress and dyslipidemia. As for gene expression, there was a change in favor of dyslipidemia and nonalcoholic steatohepatitis (NASH) development. All treatment regimens showed some benefit in reversing the described deviations. Fructose caused deterioration in hepatic gene expression of SOCS-3, SREBP-1c, FAS, MDA and TGF-β1 and in adipose tissue gene expression of leptin and adiponectin. Fructose showed also an increase in body weight, insulin resistance (OGTT, HOMA), serum and liver TGs, hepatic MDA, serum AST, AST/ALT ratio and TNF-α compared to control. All

  2. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression

    PubMed Central

    Li, Yan; Belshan, Michael

    2016-01-01

    A previous proteomic screen in our laboratory identified nuclear factor 45 (NF45) and nuclear factor 90 (NF90) as potential cellular factors involved in human immunodeficiency virus type 1 (HIV-1) replication. Both are RNA binding proteins that regulate gene expression; and NF90 has been shown to regulate the expression of cyclin T1 which is required for Tat-dependent trans-activation of viral gene expression. In this study the roles of NF45 and NF90 in HIV replication were investigated through overexpression studies. Ectopic expression of either factor potentiated HIV infection, gene expression, and virus production. Deletion of the RNA binding domains of NF45 and NF90 diminished the enhancement of HIV infection and gene expression. Both proteins were found to interact with the HIV RNA. RNA decay assays demonstrated that NF90, but not NF45, increased the half-life of the HIV RNA. Overall, these studies indicate that both NF45 and NF90 potentiate HIV infection through their RNA binding domains. PMID:26891316

  3. Rat Hepatocytes Weighted Gene Co-Expression Network Analysis Identifies Specific Modules and Hub Genes Related to Liver Regeneration after Partial Hepatectomy

    PubMed Central

    Zhou, Yun; Xu, Jiucheng; Liu, Yunqing; Li, Juntao; Chang, Cuifang; Xu, Cunshuan

    2014-01-01

    The recovery of liver mass is mainly mediated by proliferation of hepatocytes after 2/3 partial hepatectomy (PH) in rats. Studying the gene expression profiles of hepatocytes after 2/3 PH will be helpful to investigate the molecular mechanisms of liver regeneration (LR). We report here the first application of weighted gene co-expression network analysis (WGCNA) to analyze the biological implications of gene expression changes associated with LR. WGCNA identifies 12 specific gene modules and some hub genes from hepatocytes genome-scale microarray data in rat LR. The results suggest that upregulated MCM5 may promote hepatocytes proliferation during LR; BCL3 may play an important role by activating or inhibiting NF-kB pathway; MAPK9 may play a permissible role in DNA replication by p38 MAPK inactivation in hepatocytes proliferation stage. Thus, WGCNA can provide novel insight into understanding the molecular mechanisms of LR. PMID:24743545

  4. Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene co-expression modules.

    PubMed

    Te, Jerez A; AbdulHameed, Mohamed Diwan M; Wallqvist, Anders

    2016-09-01

    Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co-expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) - a toxicogenomics database containing organ-specific gene expression data matched to dose- and time-dependent chemical exposures and adverse histopathology assessments in Sprague-Dawley rats. We proposed a protocol for selecting gene modules associated with chemical-induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical-time-dose combination, correlated with the severity of histopathological damage in a dose-dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:26725466

  5. Temperature and light interactively modulate gene expression in Saccharina latissima (Phaeophyceae).

    PubMed

    Heinrich, Sandra; Valentin, Klaus; Frickenhaus, Stephan; Wiencke, Christian

    2015-02-01

    Macroalgae of the order Laminariales (kelp) are important components of cold-temperate coastal ecosystems. Major factors influencing their distribution are light (including UV radiation) and temperature. Therefore, future global environmental changes potentially will impact their zonation, distribution patterns, and primary productivity. Many physiological studies were performed on UV radiation and temperature stress in kelp but combinatory effects have not been analyzed and so far no study is available on the molecular processes involved in acclimation to these stresses. Therefore, sporophytes of Saccharina latissima were exposed for 2 weeks to 12 combinations of photosynthetically active radiation (PAR), UV radiation and temperature. Subsequently, microarray hybridizations were performed to determine changes in gene expression patterns. Several effects on the transcriptome were observed after exposure experiments. The strongest effect of temperature on gene expression was observed at 2°C. Furthermore, UV radiation had stronger effects on gene expression than high PAR, and caused stronger induction genes correlated with categories such as photosynthetic components and vitamin B6 biosynthesis. Higher temperatures ameliorated the negative effects of UV radiation in S. latissima. Regulation of reactive oxygen species (ROS) scavenging seems to work in a compartment specific way. Gene expression profiles of ROS scavengers indicated a high amount of oxidative stress in response to the 2°C condition as well as to excessive light at 12°C. Interestingly, stress levels that did not lead to physiological alterations already caused by a transcriptomic response. PMID:26986261

  6. Topoisomerase inhibitors modulate gene expression of B-cell translocation gene 2 and prostate specific antigen in prostate carcinoma cells.

    PubMed

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Chang, Phei-Lang; Chen, Wen-Tsung; Juang, Horng-Heng

    2014-01-01

    Camptothecin (CPT) and doxorubicin (DOX) have been demonstrated to have potent anti-tumor activity. The B-cell translocation gene 2 (BTG2) is involved in the regulation of cell cycle progression. We evaluated the molecular mechanisms of CPT and DOX on cell proliferation and the expressions of BTG2 and prostate specific antigen (PSA) in prostate carcinoma cells. Our results indicated that CPT or DOX treatments induced Go/G1 cell cycle arrest in LNCaP cells and apoptosis at higher dosage. Immunoblot and transient gene expression assay indicated that CPT or DOX treatments induced p53 and BTG2 gene expression, with the later effect dependent on the p53 response element within BTG2 promoter area since mutation of the p53 response element from GGGAAAGTCC to GGAGTCC or from GGCAGAGCCC to GGCACC by site-directed mutagenesis abolished the stimulation of CPT or DOX on the BTG2 promoter activity, which is also supported by our results that cotreatments of pifithrin-α, an inhibitor of p53 dependent transcriptional activation, blocked the induction of CPT or DOX on BTG2 gene expression. CPT or DOX also downregulated the protein expressions of androgen receptor (AR) and PSA. Transient gene expression assays suggested that CPT or DOX's attenuation of PSA promoter activity is dependent on both the androgen and p53 response elements within of the PSA promoter. Our results indicated that CPT and DOX attenuate cell proliferation via upregulation of BTG2 gene expression through the p53-dependent pathway. The CPT and DOX block the PSA gene expression by upregulation of p53 activity and downregulation of androgen receptor activity. PMID:24586533

  7. Topoisomerase Inhibitors Modulate Gene Expression of B-Cell Translocation Gene 2 and Prostate Specific Antigen in Prostate Carcinoma Cells

    PubMed Central

    Chung, Li-Chuan; Yeh, Chun-Nan; Chang, Phei-Lang; Chen, Wen-Tsung; Juang, Horng-Heng

    2014-01-01

    Camptothecin (CPT) and doxorubicin (DOX) have been demonstrated to have potent anti-tumor activity. The B-cell translocation gene 2 (BTG2) is involved in the regulation of cell cycle progression. We evaluated the molecular mechanisms of CPT and DOX on cell proliferation and the expressions of BTG2 and prostate specific antigen (PSA) in prostate carcinoma cells. Our results indicated that CPT or DOX treatments induced Go/G1 cell cycle arrest in LNCaP cells and apoptosis at higher dosage. Immunoblot and transient gene expression assay indicated that CPT or DOX treatments induced p53 and BTG2 gene expression, with the later effect dependent on the p53 response element within BTG2 promoter area since mutation of the p53 response element from GGGAAAGTCC to GGAGTCC or from GGCAGAGCCC to GGCACC by site-directed mutagenesis abolished the stimulation of CPT or DOX on the BTG2 promoter activity, which is also supported by our results that cotreatments of pifithrin-α, an inhibitor of p53 dependent transcriptional activation, blocked the induction of CPT or DOX on BTG2 gene expression. CPT or DOX also downregulated the protein expressions of androgen receptor (AR) and PSA. Transient gene expression assays suggested that CPT or DOX’s attenuation of PSA promoter activity is dependent on both the androgen and p53 response elements within of the PSA promoter. Our results indicated that CPT and DOX attenuate cell proliferation via upregulation of BTG2 gene expression through the p53-dependent pathway. The CPT and DOX block the PSA gene expression by upregulation of p53 activity and downregulation of androgen receptor activity. PMID:24586533

  8. Modulation of Gene Expression in Contextual Fear Conditioning in the Rat

    PubMed Central

    Macchi, Monica; Ciampini, Cristina; Bernardi, Rodolfo; Baldi, Elisabetta; Bucherelli, Corrado; Brunelli, Marcello; Scuri, Rossana

    2013-01-01

    In contextual fear conditioning (CFC) a single training leads to long-term memory of context-aversive electrical foot-shocks association. Mid-temporal regions of the brain of trained and naive rats were obtained 2 days after conditioning and screened by two-directional suppression subtractive hybridization. A pool of differentially expressed genes was identified and some of them were randomly selected and confirmed with qRT-PCR assay. These transcripts showed high homology for rat gene sequences coding for proteins involved in different cellular processes. The expression of the selected transcripts was also tested in rats which had freely explored the experimental apparatus (exploration) and in rats to which the same number of aversive shocks had been administered in the same apparatus, but temporally compressed so as to make the association between painful stimuli and the apparatus difficult (shock-only). Some genes resulted differentially expressed only in the rats subjected to CFC, others only in exploration or shock-only rats, whereas the gene coding for translocase of outer mitochondrial membrane 20 protein and nardilysin were differentially expressed in both CFC and exploration rats. For example, the expression of stathmin 1 whose transcripts resulted up regulated was also tested to evaluate the transduction and protein localization after conditioning. PMID:24278235

  9. Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators

    PubMed Central

    Muyan, Mesut; Güpür, Gizem; Yaşar, Pelin; Ayaz, Gamze; User, Sırma Damla; Kazan, Hasan Hüseyin; Huang, Yanfang

    2015-01-01

    Estrogen receptor α (ERα), as a ligand-dependent transcription factor, mediates 17β-estradiol (E2) effects. ERα is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ERα dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ERα-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ERα. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ERα or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ERα or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue. PMID:26295471

  10. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway.

    PubMed

    Nagai, Y; Limberis, M P; Zhang, H

    2014-02-01

    Virus vector-mediated gene transfer has been developed as a treatment for cystic fibrosis (CF) airway disease, a lethal inherited disorder caused by somatic mutations in the cystic fibrosis transmembrane conductance regulator gene. The pathological proinflammatory environment of CF as well as the naïve and adaptive immunity induced by the virus vector itself limits the effectiveness of gene therapy for CF airway. Here, we report the use of an HDAC inhibitor, valproic acid (VPA), to enhance the activity of the regulatory T cells (T(reg)) and to improve the expression of virus vector-mediated gene transfer to the respiratory epithelium. Our study demonstrates the potential utility of VPA, a drug used for over 50 years in humans as an anticonvulsant and mood-stabilizer, in controlling inflammation and improving the efficacy of gene transfer in CF airway. PMID:24385144

  11. Modulation of blood cell gene expression by DHA supplementation in hypertriglyceridemic men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous study with docosahexaenoic acid (DHA) supplementation to hypertriglyceridemic men showed that DHA reduced several risk factors for CVD, including the plasma concentration of inflammatory markers. To determine the effect of DHA supplementation on the global gene expression pattern, we pe...

  12. Preimplantation embryo-secreted factors modulate maternal gene expression in rat uterus.

    PubMed

    Yamagami, Kazuki; Islam, M Rashedul; Yoshii, Yuka; Mori, Kazuki; Tashiro, Kosuke; Yamauchi, Nobuhiko

    2016-05-01

    In mammalian reproduction, embryo implantation into the uterus is spatiotemporally regulated by a complex process triggered by a number of factors. Although previous studies have suggested that uterine receptivity is mediated by blastocyst-derived factors, specific functions of embryos remain to be defined during preimplantation. Therefore, the present study was conducted to identify the maternal genes regulated by embryo-secreted factors in the rat uterus. RNA-sequencing (RNA-seq) data revealed that 10 genes are up-regulated in the delayed implantation uterus compared with the pseudopregnancy uterus. The RNA-seq results were further verified by real-time quantitative polymerase chain reaction. Sulf1 expression is significantly (P < 0.05) induced in the delayed implantation uterus, although Areg, Calca, Fxyd4 and Lamc3 show a definite but non-statistically significant increase in their expression levels. During early pregnancy, the levels of Areg, Calca, Fxyd4, Lamc3 and Sulf1 expression at 3.5 days post coitus (dpc) are significantly (P < 0.05) higher than those at 1.5 dpc. Treatment with embryo-conditioned media revealed that Lamc3 and Sulf1 are up-regulated compared with the other genes studied. Thus, embryo-derived factors regulate maternal gene expression, with Lamc3 and Sulf1 possibly being suitable markers for a response study of embryo-secreted factors to improve our understanding of embryo-maternal communication. PMID:26685865

  13. Estrogenic status modulates aryl hydrocarbon receptor - mediated hepatic gene expression and carcinogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status is thought to influence the cancer risk in women and has been reported to affect toxicity of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in animals. The objective of this study was to examine the influence of estradiol (E2) on hepatic gene expression changes mediated by 7,...

  14. Resveratrol improves bone repair by modulation of bone morphogenetic proteins and osteopontin gene expression in rats.

    PubMed

    Casarin, R C; Casati, M Z; Pimentel, S P; Cirano, F R; Algayer, M; Pires, P R; Ghiraldini, B; Duarte, P M; Ribeiro, F V

    2014-07-01

    This study investigated the effect of resveratrol on bone healing and its influence on the gene expression of osteogenic markers. Two calvarial defects were created and one screw-shaped titanium implant was inserted in the tibia of rats that were assigned to daily administration of placebo (control group, n=15) or 10mg/kg of resveratrol (RESV group, n=15) for 30 days. The animals were then sacrificed. One of the calvarial defects was processed for histomorphometric analysis and the tissue relative to the other was collected for mRNA quantification of bone morphogenetic protein (BMP)-2, BMP-7, osteopontin (OPN), bone sialoprotein (BSP), osteoprotegrin (OPG), and receptor activator of NF-κB ligand (RANKL). Implants were removed by applying a counter-torque force. Histomorphometric analysis revealed higher remaining defect in the calvarial defects of the control group than the RESV group (P=0.026). Resveratrol increased the counter-torque values of implant removal when compared to control therapy (P=0.031). Gene expression analysis showed a higher expression of BMP-2 (P=0.011), BMP-7 (P=0.049), and OPN (P=0.002) genes in the RESV group than in the control group. In conclusion, resveratrol improved the repair of critical-sized bone defects and the biomechanical retention of implants. Indeed, this natural agent may up-regulate the gene expression of important osteogenic markers. PMID:24530035

  15. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    PubMed

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  16. Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation.

    PubMed

    Beck, Michaël; Rombouts, Charlotte; Moreels, Marjan; Aerts, An; Quintens, Roel; Tabury, Kevin; Michaux, Arlette; Janssen, Ann; Neefs, Mieke; Ernst, Eric; Dieriks, Birger; Lee, Ryonfa; De Vos, Winnok H; Lambert, Charles; Van Oostveldt, Patrick; Baatout, Sarah

    2014-10-01

    Ionizing radiation can elicit harmful effects on the cardiovascular system at high doses. Endothelial cells are critical targets in radiation-induced cardiovascular damage. Astronauts performing a long-term deep space mission are exposed to consistently higher fluences of ionizing radiation that may accumulate to reach high effective doses. In addition, cosmic radiation contains high linear energy transfer (LET) radiation that is known to produce high values of relative biological effectiveness (RBE). The aim of this study was to broaden the understanding of the molecular response to high LET radiation by investigating the changes in gene expression in endothelial cells. For this purpose, a human endothelial cell line (EA.hy926) was irradiated with accelerated nickel ions (Ni) (LET, 183 keV/µm) at doses of 0.5, 2 and 5 Gy. DNA damage was measured 2 and 24 h following irradiation by γ-H2AX foci detection by fluorescence microscopy and gene expression changes were measured by microarrays at 8 and 24 h following irradiation. We found that exposure to accelerated nickel particles induced a persistent DNA damage response up to 24 h after treatment. This was accompanied by a downregulation in the expression of a multitude of genes involved in the regulation of the cell cycle and an upregulation in the expression of genes involved in cell cycle checkpoints. In addition, genes involved in DNA damage response, oxidative stress, apoptosis and cell-cell signaling (cytokines) were found to be upregulated. An in silico analysis of the involved genes suggested that the transcription factors, E2F and nuclear factor (NF)-κB, may be involved in these cellular responses. PMID:25118949

  17. Diurnal Corticosterone Presence and Phase Modulate Clock Gene Expression in the Male Rat Prefrontal Cortex.

    PubMed

    Woodruff, Elizabeth R; Chun, Lauren E; Hinds, Laura R; Spencer, Robert L

    2016-04-01

    Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation. PMID:26901093

  18. Anti-tumor necrosis factor modulates anti-CD3-triggered T cell cytokine gene expression in vivo.

    PubMed Central

    Ferran, C; Dautry, F; Mérite, S; Sheehan, K; Schreiber, R; Grau, G; Bach, J F; Chatenoud, L

    1994-01-01

    De novo expression of TNF, IFN gamma, IL-3, IL-4, and IL-6 genes was initiated rapidly by treatment of mice with anti-CD3. A specific feature of this reaction was that TNF was derived exclusively from T cells. TNF was produced both as a mature soluble trimeric protein and as a 26-kD anti-TNF-reactive protein compatible with membrane-anchored TNF. Pretreatment with anti-TNF did not affect anti-CD3-triggered TNF mRNA expression in T cells. In contrast, in vivo and in vitro anti-TNF treatment upregulated anti-CD3-induced IFN gamma mRNA expression and inhibited IL-4 mRNA expression. These latter effects were not dependent on TNF neutralization: pretreatment with soluble recombinant 55-kD TNF receptor (TBPI) as an alternative TNF-neutralizing agent did not modify the anti-CD3-induced cytokine profile. These results suggest that a direct interaction between anti-TNF and T cell membrane-anchored TNF could account for the observed modulation of cytokine gene expression. The increased expression of INF gamma mRNA observed in anti-TNF-treated animals correlated with a decrease in IL-3 and IL-6 mRNA expression. Conversely, IFN gamma blockade by a neutralizing anti-IFN gamma mAb led to a substantial increase in both IL-3 and IL-6 gene expression induced by anti-CD3. Taken together, these results strongly argue for the existence, in the anti-CD3-induced cytokine cascade, of IFN gamma-dependent regulation of IL-3 production, which in turn modulates IL-6 production. Images PMID:8182150

  19. TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression

    SciTech Connect

    Kim, Eungseok; Ma, Wen-Lung; Lin, Din-Lii; Inui, Shigeki; Chen, Yuh-Ling; Chang, Chawnshang . E-mail: chang@urmc.rochester.edu

    2007-09-21

    While Bcl-2 plays an important role in cell apoptosis, its relationship to the orphan nuclear receptors remains unclear. Here we report that mouse embryonic fibroblast (MEF) cells prepared from TR4-deficient (TR4{sup -} {sup /-}) mice are more susceptible to UV-irradiation mediated apoptosis compared to TR4-Wildtype (TR4 {sup +/+}) littermates. Substantial increasing TR4{sup -} {sup /-} MEF apoptosis to UV-irradiation was correlated to the down-regulation of Bcl-2 RNA and protein expression and collaterally increased caspase-3 activity. Furthermore, this TR4-induced Bcl-2 gene expression can be suppressed by co-transfection with TR4 coregulators, such as androgen receptor (AR) and receptor-interacting protein 140 (RIP140) in a dose-dependent manner. Together, our results demonstrate that TR4 might function as an apoptosis modulator through induction of Bcl-2 gene expression.

  20. LIN28A Modulates Splicing and Gene Expression Programs in Breast Cancer Cells.

    PubMed

    Yang, Jun; Bennett, Brian D; Luo, Shujun; Inoue, Kaoru; Grimm, Sara A; Schroth, Gary P; Bushel, Pierre R; Kinyamu, H Karimi; Archer, Trevor K

    2015-09-01

    LIN28 is an evolutionarily conserved RNA-binding protein with critical functions in developmental timing and cancer. However, the molecular mechanisms underlying LIN28's oncogenic properties are yet to be described. RNA-protein immunoprecipitation coupled with genome-wide sequencing (RIP-Seq) analysis revealed significant LIN28 binding within 843 mRNAs in breast cancer cells. Many of the LIN28-bound mRNAs are implicated in the regulation of RNA and cell metabolism. We identify heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a protein with multiple roles in mRNA metabolism, as a LIN28-interacting partner. Subsequently, we used a custom computational method to identify differentially spliced gene isoforms in LIN28 and hnRNP A1 small interfering RNA (siRNA)-treated cells. The results reveal that these proteins regulate alternative splicing and steady-state mRNA expression of genes implicated in aspects of breast cancer biology. Notably, cells lacking LIN28 undergo significant isoform switching of the ENAH gene, resulting in a decrease in the expression of the ENAH exon 11a isoform. The expression of ENAH isoform 11a has been shown to be elevated in breast cancers that express HER2. Intriguingly, analysis of publicly available array data from the Cancer Genome Atlas (TCGA) reveals that LIN28 expression in the HER2 subtype is significantly different from that in other breast cancer subtypes. Collectively, our data suggest that LIN28 may regulate splicing and gene expression programs that drive breast cancer subtype phenotypes. PMID:26149387

  1. LIN28A Modulates Splicing and Gene Expression Programs in Breast Cancer Cells

    PubMed Central

    Yang, Jun; Bennett, Brian D.; Luo, Shujun; Inoue, Kaoru; Grimm, Sara A.; Schroth, Gary P.; Bushel, Pierre R.

    2015-01-01

    LIN28 is an evolutionarily conserved RNA-binding protein with critical functions in developmental timing and cancer. However, the molecular mechanisms underlying LIN28's oncogenic properties are yet to be described. RNA-protein immunoprecipitation coupled with genome-wide sequencing (RIP-Seq) analysis revealed significant LIN28 binding within 843 mRNAs in breast cancer cells. Many of the LIN28-bound mRNAs are implicated in the regulation of RNA and cell metabolism. We identify heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a protein with multiple roles in mRNA metabolism, as a LIN28-interacting partner. Subsequently, we used a custom computational method to identify differentially spliced gene isoforms in LIN28 and hnRNP A1 small interfering RNA (siRNA)-treated cells. The results reveal that these proteins regulate alternative splicing and steady-state mRNA expression of genes implicated in aspects of breast cancer biology. Notably, cells lacking LIN28 undergo significant isoform switching of the ENAH gene, resulting in a decrease in the expression of the ENAH exon 11a isoform. The expression of ENAH isoform 11a has been shown to be elevated in breast cancers that express HER2. Intriguingly, analysis of publicly available array data from the Cancer Genome Atlas (TCGA) reveals that LIN28 expression in the HER2 subtype is significantly different from that in other breast cancer subtypes. Collectively, our data suggest that LIN28 may regulate splicing and gene expression programs that drive breast cancer subtype phenotypes. PMID:26149387

  2. The SloR/Dlg Metalloregulator Modulates Streptococcus mutans Virulence Gene Expression

    PubMed Central

    Rolerson, Elizabeth; Swick, Adam; Newlon, Lindsay; Palmer, Cameron; Pan, Yong; Keeshan, Britton; Spatafora, Grace

    2006-01-01

    Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease. PMID:16816176

  3. The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression.

    PubMed

    Rolerson, Elizabeth; Swick, Adam; Newlon, Lindsay; Palmer, Cameron; Pan, Yong; Keeshan, Britton; Spatafora, Grace

    2006-07-01

    Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease. PMID:16816176

  4. Hepatic FoxOs Regulate Lipid Metabolism via Modulation of Expression of the Nicotinamide Phosphoribosyltransferase Gene*

    PubMed Central

    Tao, Rongya; Wei, Dan; Gao, Hanlin; Liu, Yunlong; DePinho, Ronald A.; Dong, X. Charlie

    2011-01-01

    FoxO transcription factors have been implicated in lipid metabolism; however, the underlying mechanisms are not well understood. Here, in an effort to elucidate such mechanisms, we examined the phenotypic consequences of liver-specific deletion of three members of the FoxO family: FoxO1, FoxO3, and FoxO4. These liver-specific triply null mice, designated LTKO, exhibited elevated triglycerides in the liver on regular chow diet. More remarkably, LTKO mice developed severe hepatic steatosis following placement on a high fat diet. Further analyses revealed that hepatic NAD+ levels and Sirt1 activity were decreased in the liver of the LTKO mice relative to controls. At the mechanistic level, expression profile analyses showed that LTKO livers had significantly down-regulated expression of the nicotinamide phosphoribosyltransferase (Nampt) gene encoding the rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis. Luciferase reporter assays and chromatin immunoprecipitation analyses demonstrated that Nampt is a transcriptional target gene of FoxOs. Significantly, overexpression of Nampt gene reduced, whereas knockdown increased, hepatic triglyceride levels in vitro and in vivo. Thus, FoxOs control the Nampt gene expression and the NAD+ signaling in the regulation of hepatic triglyceride homeostasis. PMID:21388966

  5. Light-controlled modulation of gene expression by chemical optoepigenetic probes.

    PubMed

    Reis, Surya A; Ghosh, Balaram; Hendricks, J Adam; Szantai-Kis, D Miklos; Törk, Lisa; Ross, Kenneth N; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, Hongtao; Salthouse, Christopher; Haggarty, Stephen J; Mazitschek, Ralph

    2016-05-01

    Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatiotemporal control. Here we present a generalizable approach, referred to as 'chemo-optical modulation of epigenetically regulated transcription' (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may be translated into new therapeutic strategies for diseases where conditional and selective epigenome modulation is required. PMID:26974814

  6. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice.

    PubMed

    Asare, Nana; Duale, Nur; Slagsvold, Hege H; Lindeman, Birgitte; Olsen, Ann Karin; Gromadzka-Ostrowska, Joanna; Meczynska-Wielgosz, Sylwia; Kruszewski, Marcin; Brunborg, Gunnar; Instanes, Christine

    2016-04-01

    Recently, we showed that silver nanoparticles (AgNPs) caused apoptosis, necrosis and DNA strand breaks in different cell models in vitro. These findings warranted analyses of their relevance in vivo. We investigated the genotoxic potential and gene expression profiles of silver particles of nano- (Ag20, 20 nm) and submicron- (Ag200, 200 nm) size and titanium dioxide nanoparticles (TiO2-NPs, 21 nm) in selected tissues from exposed male mice including the gonades. A single dose of 5 mg/kg bw nanoparticles was administered intravenously to male mice derived from C57BL6 (WT) and 8-oxoguanine DNA glycosylase knock-out (Ogg1(-/-) KO). Testis, lung and liver were harvested one and seven days post-exposure and analyzed for DNA strand breaks and oxidized purines employing the Comet assay with Formamidopyrimidine DNA glycosylase (Fpg) treatment, and sperm DNA fragmentation by the sperm chromatin structure assay (SCSA). Based on an initial screening of a panel of 21 genes, seven genes were selected and their expression levels were analyzed in all lung and testis tissues sampled from all animals (n = 6 mice/treatment group) using qPCR. AgNPs, in particular Ag200, caused significantly increased levels of DNA strand breaks and alkali labile sites in lung, seven days post-exposure. Fpg-sensitive lesions were significantly induced in both testis and lung. The transcript level of some key genes; Atm, Rad51, Sod1, Fos and Mmp3, were significantly induced compared to controls, particularly in lung samples from Ag200-exposed KO mice. We conclude that the Ag200 causes genotoxicity and distinct gene expression patterns in selected DNA damage response and repair related genes. PMID:26923343

  7. Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU).

    PubMed

    Chemello, Francesco; Mammucari, Cristina; Gherardi, Gaia; Rizzuto, Rosario; Lanfranchi, Gerolamo; Cagnin, Stefano

    2015-09-01

    The mitochondrial calcium uniporter (MCU) gene codifies for the inner mitochondrial membrane (IMM) channel responsible for mitochondrial Ca(2 +) uptake. Cytosolic Ca(2 +) transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca(2 +) regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca(2 +) transients elicit large increases in the [Ca(2 +)] of the mitochondrial matrix ([Ca(2 +)]mt). Mitochondrial Ca(2 +) uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca(2 +) uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca(2 +) uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection). Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/) (GSE60931). PMID:26484227

  8. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression.

    PubMed

    Soldner, Frank; Stelzer, Yonatan; Shivalila, Chikdu S; Abraham, Brian J; Latourelle, Jeanne C; Barrasa, M Inmaculada; Goldmann, Johanna; Myers, Richard H; Young, Richard A; Jaenisch, Rudolf

    2016-05-01

    Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases, but mechanistic insights are impeded by a lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale epigenetic studies have highlighted the enrichment of GWAS-identified variants in regulatory DNA elements of disease-relevant cell types. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells. By generating a genetically precisely controlled experimental system, we identify a common Parkinson's disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson's disease. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific transcription factors EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease-relevant phenotypes. PMID:27096366

  9. Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora.

    PubMed

    Brady, Aisling K; Willis, Bette L; Harder, Lawrence D; Vize, Peter D

    2016-04-01

    Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks. PMID:27132135

  10. A Quantitative High-Throughput Screen Identifies Potential Epigenetic Modulators of Gene Expression

    PubMed Central

    Johnson, Ronald L.; Huang, Wenwei; Jadhav, Ajit; Austin, Christopher P.; Inglese, James; Martinez, Elisabeth D.

    2008-01-01

    Epigenetic regulation of gene expression is essential in embryonic development and contributes to cancer pathology. We used a cell-based imaging assay that measures derepression of a silenced GFP reporter to identify novel classes of compounds involved in epigenetic regulation. This Locus Derepression (LDR) assay was screened against a 69,137-member chemical library using quantitative high-throughput screening (qHTS), a titration-response method that assays compounds at multiple concentrations. From structure-activity relationships of the 411 actives recovered from the qHTS, six distinct chemical series were chosen for further study. Forty-eight qHTS actives and analogs were counter screened using the parental line of the LDR cells, which lack the GFP reporter. Three series, 8-hydroxy quinoline, quinoline-8-thiol and 1,3,5-thiadiazinane-2-thione, were not fluorescent and re-confirmed activity in the LDR cells. The three active series did not inhibit histone deacetylase activity in nuclear extracts or reactivate the expression of the densely methylated p16 gene in cancer cells. However, one series induced expression of the methylated CDH13 gene and inhibited the viability of several lung cancer lines at submicromolar concentrations. These results suggest that the identified small molecules act on epigenetic or transcriptional components and validate our approach of using a cell-based imaging assay in conjunction with qHTS. PMID:18211814

  11. Low-dose oral interferon modulates expression of inflammatory and autoimmune genes in cattle.

    PubMed

    Mamber, Stephen W; Lins, Jeremy; Gurel, Volkan; Hutcheson, David P; Pinedo, Pablo; Bechtol, David; Krakowka, Steven; Fields-Henderson, Rachel; Cummins, Joseph M

    2016-04-01

    While the safety and efficacy profiles of orally administered bovine interferon (IFN) alpha have been documented, the mechanism(s) that result in clinical benefits remain elusive. One approach to delineating the molecular pathways of IFN efficacy is through the use of gene expression profiling technologies. In this proof-of-concept study, different (0, 50, 200 and 800 units) oral doses of natural bovine IFN (type I) were tested in cattle to determine if oral IFN altered the expression of genes that may be pivotal to the development of systemic resistance to viral infections such as foot-and-mouth disease (FMD). Oral IFN was administered twice: Time 0 and 8h later. Blood was collected at 0, 8 and 24h after the first IFN administration, and DNA isolated from peripheral blood mononuclear cells (PBMCs) was employed in quantitative polymerase chain reaction (qPCR) microarray assays. Within 8h, 50 and 200 units of oral IFN induced significant (P<0.05) changes in expression of 41 of 92 tested autoimmune and inflammatory response-associated genes. These data suggest that orally administered IFN is a viable approach for providing short-term antiviral immunity to livestock exposed to viruses such as FMD virus (FMDV) until such a time that an effective vaccine can be produced and distributed to producers. PMID:27032505

  12. Molecular Profiling: Catecholamine Modulation of Gene Expression in Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium.

    PubMed

    Bearson, Bradley L

    2016-01-01

    Investigations of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium have demonstrated that these bacterial pathogens can respond to the presence of catecholamines including norepinephrine and/or epinephrine in their environment by modulating gene expression and exhibiting various phenotypes. For example, one of the most intensively investigated phenotypes following exposure of E. coli and S. Typhimurium to norepinephrine is enhanced bacterial growth in a serum-based medium. Host-pathogen investigations have demonstrated that the mammalian host utilizes nutritional immunity to sequester iron and prevent extraintestinal growth by bacterial pathogens. However, Salmonella and certain E. coli strains have a genetic arsenal designed for subversion and subterfuge of the host. Norepinephrine enhances bacterial growth due, in part, to increased iron availability, and transcriptional profiling indicates differential expression of genes encoding iron acquisition and transport proteins. Bacterial motility of E. coli and S. Typhimurium is also enhanced in the presence of catecholamines and increased flagellar gene expression has been described. Furthermore, epinephrine and norepinephrine are chemoattractants for E. coli O157:H7. In S. Typhimurium, norepinephrine enhances horizontal gene transfer and increases expression of genes involved in plasmid transfer. Exposure of E. coli O157:H7 to norepinephrine increases expression of the genes encoding Shiga toxin and operons within the locus of enterocyte effacement (LEE). Alterations in the transcriptional response of enteric bacteria to catecholamine exposure in vivo are predicted to enhance bacterial colonization and pathogen virulence. This chapter will review the current literature on the transcriptional response of E. coli and S. Typhimurium to catecholamines. PMID:26589218

  13. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    SciTech Connect

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  14. Intracrine Androgens Enhance Decidualization and Modulate Expression of Human Endometrial Receptivity Genes

    PubMed Central

    Gibson, Douglas A.; Simitsidellis, Ioannis; Cousins, Fiona L.; Critchley, Hilary O. D.; Saunders, Philippa T. K.

    2016-01-01

    The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1–8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (5α-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/DHT. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment. PMID:26817618

  15. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  16. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  17. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development.

    PubMed

    Wu, Shan; Zhang, Xiaofeng; He, Yongqiang; Shuai, Jiangbing; Chen, Xiaomei; Ling, Erjun

    2010-11-01

    Although Bombyx mori systematic immunity is extensively studied, little is known about the silkworm's intestine-specific responses to bacterial infection. Antimicrobial peptides (AMPs) gene expression analysis of B. mori intestinal tissue to oral infection with the Gram-positive (Staphylococcus aureus) and -negative (Escherichia coli) bacteria revealed that there is specificity in the interaction between host immune responses and parasite types. Neither Att1 nor Leb could be stimulated by S. aureus and E. coli. However, CecA1, Glo1, Glo2, Glo3, Glo4 and Lys, could only be trigged by S. aureus. On the contrary, E. coli stimulation caused the decrease in the expression of CecA1, Glo3 and Glo4 in some time points. Interestingly, there is regional specificity in the silkworm local gut immunity. During the immune response, the increase in Def, Hem and LLP3 was only detected in the foregut and midgut. For CecB1, CecD, LLP2 and Mor, after orally administered with E. coli, the up-regulation was only limited in the midgut and hindgut. CecE was the only AMP that positively responses to the both bacteria in all the testing situations. With development, the expression levels of the AMPs were also changed dramatically. That is, at spinning and prepupa stages, a large increase in the expression of CecA1, CecB1, CecD, CecE, Glo1, Glo2, Glo3, Glo4, Leb, Def, Hem, Mor and Lys was detected in the gut. Unexpectedly, in addition to the IMD pathway genes, the Toll and JAK/STAT pathway genes in the silkworm gut can also be activated by microbial oral infection. But in the developmental course, corresponding to the increase in expression of AMPs at spinning and prepupa stages, only the Toll pathway genes in the gut exhibit the similar increasing trend. Our results imply that the immune responses in the silkworm gut are synergistically regulated by the Toll, JAK/STAT and IMD pathways. However, as the time for approaching pupation, the Toll pathway may play a role in the AMPs expression

  18. Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression

    SciTech Connect

    Ivanov, Vladimir N. Partridge, Michael A.; Johnson, Geoffrey E.; Huang, Sarah X.L.; Zhou, Hongning; Hei, Tom K.

    2008-03-10

    Although many human melanomas express the death receptors TRAIL-R2/DR5 or TRAIL-R1/DR4 on cell surface, they often exhibit resistance to exogenous TRAIL. One of the main contributors to TRAIL-resistance of melanoma cells is upregulation of transcription factors STAT3 and NF-{kappa}B that control the expression of antiapoptotic genes, including cFLIP and Bcl-xL. On the other hand, the JNK-cJun pathway is involved in the negative regulation of cFLIP (a caspase-8 inhibitor) expression. Our observations indicated that resveratrol, a polyphenolic phytoalexin, decreased STAT3 and NF-{kappa}B activation, while activating JNK-cJun that finally suppressed expression of cFLIP and Bcl-xL proteins and increased sensitivity to exogenous TRAIL in DR5-positive melanomas. Interestingly, resveratrol did not increase surface expression of DR5 in human melanomas, while {gamma}-irradiation or sodium arsenite treatment substantially upregulated DR5 expression. Hence, an initial increase in DR5 surface expression (either by {gamma}-irradiation or arsenite), and subsequent downregulation of antiapoptotic cFLIP and Bcl-xL (by resveratrol), appear to constitute an efficient approach to reactivate apoptotic death pathways in TRAIL-resistant human melanomas. In spite of partial suppression of mitochondrial function and the mitochondrial death pathway, melanoma cells still retain the potential to undergo the DR5-mediated, caspase-8-dependent death pathway that could be accelerated by either an increase in DR5 surface expression or suppression of cFLIP. Taken together, these results suggest that resveratrol, in combination with TRAIL, may have a significant efficacy in the treatment of human melanomas.

  19. Physiological oxygen tensions modulate expression of the mdr1b multidrug-resistance gene in primary rat hepatocyte cultures.

    PubMed Central

    Hirsch-Ernst, K I; Kietzmann, T; Ziemann, C; Jungermann, K; Kahl, G F

    2000-01-01

    P-Glycoprotein transporters encoded by mdr1 (multidrug resistance) genes mediate extrusion of an array of lipophilic xenobiotics from the cell. In rat liver, mdr transcripts have been shown to be expressed mainly in hepatocytes of the periportal region. Since gradients in oxygen tension (pO(2)) may contribute towards zonated gene expression, the influence of arterial and venous pO(2) on mRNA expression of the mdr1b isoform was examined in primary rat hepatocytes cultured for up to 3 days. Maximal mdr1b mRNA levels (100%) were observed under arterial pO(2) after 72 h, whereas less than half-maximal mRNA levels (40%) were attained under venous pO(2). Accordingly, expression of mdr protein and extrusion of the mdr1 substrate rhodamine 123 were maximal under arterial pO(2) and reduced under venous pO(2). Oxygen-dependent modulation of mdr1b mRNA expression was prevented by actinomycin D, indicating transcriptional regulation. Inhibition of haem synthesis by 25 microM CoCl(2) blocked mdr1b mRNA expression under both oxygen tensions, whereas 80 microM desferrioxamine abolished modulation by O(2). Haem (10 microM) increased mdr1b mRNA levels under arterial and venous pO(2). In hepatocytes treated with 50 microM H(2)O(2), mdr1b mRNA expression was elevated by about 1.6-fold at venous pO(2) and 1.5-fold at arterial pO(2). These results support the conclusion that haem proteins are crucial for modulation of mdr1b mRNA expression by O(2) in hepatocyte cultures and that reactive oxygen species may participate in O(2)-dependent signal transduction. Furthermore, the present study suggests that oxygen might be a critical modulator for zonated secretion of mdr1 substrates into the bile. PMID:10947958

  20. Candidate tumor suppressor LUCA-15/RBM5/H37 modulates expression of apoptosis and cell cycle genes

    SciTech Connect

    Mourtada-Maarabouni, Mirna . E-mail: bia19@biol.keele.ac.uk; Keen, Jennifer; Clark, Jeremy; Cooper, Colin S.; Williams, Gwyn T. . E-mail: g.t.williams@keele.ac.uk

    2006-06-10

    RBM5 (RNA-binding motif protein 5/LUCA-15/H37) is encoded at the lung cancer tumor suppressor locus 3p21.3 and itself has several important characteristics of a tumor suppressor, including both potentiation of apoptosis and inhibition of the cell cycle. Here, we report the effects of both upregulation and downregulation of LUCA-15/RBM5 on gene expression monitored using cDNA microarrays. Many of the genes modulated by LUCA-15/RBM5 are involved in the control of apoptosis, the cell cycle, or both. These effects were confirmed for the most significant genes using real-time RT-PCR and/or Western blotting. In particular, LUCA-15/RBM5 increased the expression of Stat5b and BMP5 and decreased the expression of AIB1 (Amplified In Breast Cancer 1), proto-oncogene Pim-1, caspase antagonist BIRC3 (cIAP-2, MIHC), and CDK2 (cyclin-dependent kinase 2). These effects on multiple genes controlling both apoptosis and proliferation are in line with the functional effects of LUCA-15/RBM5 and indicate that it plays a central role in regulating cell fate consistent with its tumor suppressor activity.

  1. Epigenetic modulation of gene expression governs the brain's response to injury.

    PubMed

    Simon, Roger P

    2016-06-20

    Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain's response to injury. PMID:26739198

  2. β2-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations

    PubMed Central

    2014-01-01

    Background The NF-κB signaling pathway orchestrates many of the intricate aspects of neuroinflammation. Astrocytic β2-adrenergic receptors have emerged as potential regulators in central nervous system inflammation and are potential targets for pharmacological modulation. The aim of this study was to elucidate the crosstalk between astrocytic β2-adrenergic receptors and the TNF-α induced inflammatory gene program. Methods Proinflammatory conditions were generated by the administration of TNF-α. Genes that are susceptible to astrocytic crosstalk between β2-adrenergic receptors (stimulated by clenbuterol) and TNF-α were identified by qPCR-macroarray-based gene expression analysis in a human 1321 N1 astrocytoma cell line. Transcriptional patterns of the identified genes in vitro were validated by RT-PCR on the 1321 N1 cell line as well as on primary rat astrocytes. In vivo expression patterns were examined by intracerebroventricular administration of clenbuterol and/or TNF-α in rats. To examine the impact on the inflammatory cell content of the brain we performed extensive FACS analysis of rat brain immune cells after intracerebroventricular clenbuterol and/or TNF-α administration. Results Parallel transcriptional patterns in vivo and in vitro confirmed the relevance of astrocytic β2-adrenergic receptors as modulators of brain inflammatory responses. Importantly, we observed pronounced effects of β2-adrenergic receptor agonists and TNF-α on IL-6, CXCL2, CXCL3, VCAM1, and ICAM1 expression, suggesting a role in inflammatory brain cell homeostasis. Extensive FACS-analysis of inflammatory cell content in the brain demonstrated that clenbuterol/TNF-α co-administration skewed the T cell population towards a double negative phenotype and induced a shift in the myeloid brain cell population towards a neutrophilic predominance. Conclusions Our results show that astrocytic β2-adrenergic receptors are potent regulators of astrocytic TNF-α-activated genes in

  3. Neural Androgen Receptors Modulate Gene Expression and Social Recognition But Not Social Investigation

    PubMed Central

    Karlsson, Sara A.; Studer, Erik; Kettunen, Petronella; Westberg, Lars

    2016-01-01

    The role of sex and androgen receptors (ARs) for social preference and social memory is rather unknown. In this study of mice we compared males, females and males lacking ARs specifically in the nervous system, ARNesDel, with respect to social preference, assessed with the three-chambered apparatus test, and social recognition, assessed with the social discrimination procedure. In the social discrimination test we also evaluated the tentative importance of the sex of the stimulus animal. Novel object recognition and olfaction were investigated to complement the results from the social tests. Gene expression analysis was performed to reveal molecules involved in the effects of sex and androgens on social behaviors. All three test groups showed social preference in the three-chambered apparatus test. In both social tests an AR-independent sexual dimorphism was seen in the persistence of social investigation of female conspecifics, whereas the social interest toward male stimuli mice was similar in all groups. Male and female controls recognized conspecifics independent of their sex, whereas ARNesDel males recognized female but not male stimuli mice. Moreover, the non-social behaviors were not affected by AR deficiency. The gene expression analyses of hypothalamus and amygdala indicated that Oxtr, Cd38, Esr1, Cyp19a1, Ucn3, Crh, and Gtf2i were differentially expressed between the three groups. In conclusion, our results suggest that ARs are required for recognition of male but not female conspecifics, while being dispensable for social investigation toward both sexes. In addition, the AR seems to regulate genes related to oxytocin, estrogen and William’s syndrome. PMID:27014003

  4. Celastrus treatment modulates antigen-induced gene expression in lymphoid cells of arthritic rats.

    PubMed

    Yu, H; Venkatesha, S H; Nanjundaiah, S; Tong, L; Moudgil, K D

    2012-01-01

    Rheumatoid arthritis (RA) is a debilitating autoimmune disease of global prevalence and the disease process primarily targets the synovial joints. Despite improvements in the treatment of RA over the past decade, there still is a need for new therapeutic agents that are efficacious, less expensive, and free of severe adverse reactions. Celastrus has been used in China for centuries for the treatment of rheumatic diseases. Furthermore, we previously reported that ethanol extract of Celastrus aculeatus Merr. (Celastrus) attenuates adjuvant-induced arthritis (AA) in rats. However, the mechanisms underlying the anti-arthritic activity of Celastrus have not yet been fully defined. We reasoned that microarray analysis might offer useful insights into the pathways and molecules targeted by Celastrus. We compared the gene expression profiles of the draining lymph node cells (LNC) of Celastrus-treated (Tc) versus water-treated (Tw) rats, and each group with untreated arthritic rats (T(0)). LNC were restimulated with mycobacterial heat shock protein-65 (Bhsp65). We identified 104 differentially expressed genes (DEG) (8 upregulated, 96 downregulated) when comparing Tc with T(0) rats, in contrast to 28 (12 upregulated, 16 downregulated) when comparing Tw and T(0) rats. Further, 20 genes (6 upregulated, 14 downregulated) were shared by both Tw and Tc groups. Thus, Celastrus treatment (Tc) significantly downregulated a large proportion of genes compared to controls (Tw). The DEG were mainly associated with the processes of immune response, cell proliferation and apoptosis, and cell signaling. These results provide novel insights into the mechanism of Celastrus anti-arthritic activity, and unravel potential therapeutic targets for arthritis. PMID:22697077

  5. Reactive oxygen species modulate the differential expression of methionine sulfoxide reductase genes in Chlamydomonas reinhardtii under high light illumination.

    PubMed

    Chang, Hsueh-Ling; Tseng, Yu-Lu; Ho, Kuan-Lin; Shie, Shu-Chiu; Wu, Pei-Shan; Hsu, Yuan-Ting; Lee, Tse-Min

    2014-04-01

    Illumination of Chlamydomonas reinhardtii cells at 1000 (high light, HL) or 3000 (very high light, VHL) µmol photons m(-2)  s(-1) intensity increased superoxide anion radical (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) production, and VHL illumination also increased the singlet oxygen ((1)O(2)) level. HL and VHL illumination decreased methionine sulfoxide reductase A4 (CrMSRA4) transcript levels but increased CrMSRA3, CrMSRA5 and CrMSRB2.1 transcripts levels. CrMSRB2.2 transcript levels increased only under VHL conditions. The role of reactive oxygen species (ROS) on CrMSR expression was studied using ROS scavengers and generators. Treatment with dimethylthiourea (DMTU), a H(2)O(2) scavenger, suppressed HL- and VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.1 expression, whereas H(2)O(2) treatment stimulated the expression of these genes under 50 µmol photons m(-2)  s(-1) conditions (low light, LL). Treatment with diphenylamine (DPA), a (1)O(2) quencher, reduced VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.2 expression and deuterium oxide, which delays (1)O(2) decay, enhanced these gene expression, whereas treatment with (1)O(2) (rose bengal, methylene blue and neutral red) or O(2)(•-) (menadione and methyl viologen) generators under LL conditions induced their expression. DPA treatment inhibited the VHL-induced decrease in CrMSRA4 expression, but other ROS scavengers and ROS generators did not affect its expression under LL or HL conditions. These results demonstrate that the differential expression of CrMSRs under HL illumination can be attributed to different types of ROS. H(2)O(2), O(2) (•-) and (1)O(2) modulate CrMSRA3 and CrMSRA5 expression, whereas H(2)O(2) and O(2)(•-) regulate CrMSRB2.1 and CrMSRB2.2 expression, respectively. (1)O(2) mediates the decrease of CrMSRA4 expression by VHL illumination, but ROS do not modulate its decrease under HL conditions. PMID:24102363

  6. Rosiglitazone modulates pigeon atherosclerotic lipid accumulation and gene expression in vitro

    PubMed Central

    Anderson, J. L.; Keeley, M. C.; Smith, S. C.; Smith, E. C.; Taylor, R. L.

    2014-01-01

    Atherosclerosis is a major contributor to the overall United States mortality rate, primarily in the form of heart attacks and stroke. Unlike the human disease, which is believed to be multifactorial, pigeon atherosclerosis is due to a single gene autosomal recessive trait. The White Carneau (WC-As) strain develops atherosclerotic plaques without the presence of known environmental risk factors such as diet and classic predictors such as blood pressure or blood cholesterol levels. With similar parameters, the Show Racer (SR-Ar) is resistant to plaque development. Thiazolidinediones, including rosiglitazone, activate the peroxisome proliferator-activated receptor gamma (PPARγ) raising cellular sensitivity to insulin. The effect of rosiglitazone was evaluated in aortic smooth muscle cells (SMC) from these 2 pigeon breeds. Primary SMC cultures were prepared from WC-As and SR-Ar squabs. Cell monolayers, which achieved confluence in 7 d, were treated with 0 or 4 µM rosiglitazone for 24 h. Cellular lipid accumulation was evaluated by oil red O staining. Control WC-As cells had significantly higher vacuole scores and lipid content than did the SR-Ar control cells. Rosiglitazone treatment decreased WC-As lipid vacuoles significantly compared with the control cells. On the other hand, lipid vacuoles in the treated and untreated SR-Ar cells did not differ significantly. The effect of rosiglitazone on WC-As SMC gene expression was compared with control SMC using representational difference analysis. Significant transcript increases were found for caveolin and RNA binding motif in the control cells compared with the rosiglitazone-treated cells as well as cytochrome p450 family 17 subfamily A polypeptide 1 (CYP171A) in the rosiglitazone-treated cells compared with the control cells. Although rosiglitazone was selected for these experiments because of its role as a PPARγ agonist, it appears that the drug also tempers c-myc expression, as genes related to this second

  7. Rosiglitazone modulates pigeon atherosclerotic lipid accumulation and gene expression in vitro.

    PubMed

    Anderson, J L; Keeley, M C; Smith, S C; Smith, E C; Taylor, R L

    2014-06-01

    Atherosclerosis is a major contributor to the overall United States mortality rate, primarily in the form of heart attacks and stroke. Unlike the human disease, which is believed to be multifactorial, pigeon atherosclerosis is due to a single gene autosomal recessive trait. The White Carneau (WC-As) strain develops atherosclerotic plaques without the presence of known environmental risk factors such as diet and classic predictors such as blood pressure or blood cholesterol levels. With similar parameters, the Show Racer (SR-Ar) is resistant to plaque development. Thiazolidinediones, including rosiglitazone, activate the peroxisome proliferator-activated receptor gamma (PPARγ) raising cellular sensitivity to insulin. The effect of rosiglitazone was evaluated in aortic smooth muscle cells (SMC) from these 2 pigeon breeds. Primary SMC cultures were prepared from WC-As and SR-Ar squabs. Cell monolayers, which achieved confluence in 7 d, were treated with 0 or 4 µM rosiglitazone for 24 h. Cellular lipid accumulation was evaluated by oil red O staining. Control WC-As cells had significantly higher vacuole scores and lipid content than did the SR-Ar control cells. Rosiglitazone treatment decreased WC-As lipid vacuoles significantly compared with the control cells. On the other hand, lipid vacuoles in the treated and untreated SR-Ar cells did not differ significantly. The effect of rosiglitazone on WC-As SMC gene expression was compared with control SMC using representational difference analysis. Significant transcript increases were found for caveolin and RNA binding motif in the control cells compared with the rosiglitazone-treated cells as well as cytochrome p450 family 17 subfamily A polypeptide 1 (CYP171A) in the rosiglitazone-treated cells compared with the control cells. Although rosiglitazone was selected for these experiments because of its role as a PPARγ agonist, it appears that the drug also tempers c-myc expression, as genes related to this second

  8. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development.

    PubMed

    Veldhoen, Nik; Skirrow, Rachel C; Osachoff, Heather; Wigmore, Heidi; Clapson, David J; Gunderson, Mark P; Van Aggelen, Graham; Helbing, Caren C

    2006-12-01

    We investigated whether exposure to environmentally relevant concentrations of the bactericidal agent, triclosan, induces changes in the thyroid hormone-mediated process of metamorphosis of the North American bullfrog, Rana catesbeiana and alters the expression profile of thyroid hormone receptor (TR) alpha and beta, basic transcription element binding protein (BTEB) and proliferating nuclear cell antigen (PCNA) gene transcripts. Premetamorphic tadpoles were immersed in environmentally relevant concentrations of triclosan and injected with 1 x 10(-11)mol/g body weight 3,5,3'-triiodothyronine (T3) or vehicle control. Morphometric measurements and steady-state mRNA levels obtained by quantitative polymerase chain reaction were determined. mRNA abundance was also examined in Xenopus laevis XTC-2 cells treated with triclosan and/or 10nM T3. Tadpoles pretreated with triclosan concentrations as low as 0.15+/-0.03 microg/L for 4 days showed increased hindlimb development and a decrease in total body weight following T3 administration. Triclosan exposure also resulted in decreased T3-mediated TRbeta mRNA expression in the tadpole tail fin and increased levels of PCNA transcript in the brain within 48 h of T3 treatment whereas TRalpha was unaffected [corrected] Triclosan alone altered thyroid hormone receptor alpha transcript levels in the brain of premetamorphic tadpoles and induced a transient weight loss. In XTC-2 cells, exposure to T3 plus nominal concentrations of triclosan as low as 0.03 microg/L for 24h resulted in altered thyroid hormone receptor mRNA expression. Exposure to low levels of triclosan disrupts thyroid hormone-associated gene expression and can alter the rate of thyroid hormone-mediated postembryonic anuran development. PMID:17011055

  9. Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes

    PubMed Central

    2012-01-01

    Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of

  10. The modulation of tissue-specific gene expression in rat nasal chondrocyte cultures by bioactive glasses.

    PubMed

    Asselin, Audrey; Hattar, Susan; Oboeuf, Martine; Greenspan, David; Berdal, Ariane; Sautier, Jean-Michel

    2004-11-01

    Since bone repair may occur, following endochondral ossification, we have investigated the behaviour of chondrocytes isolated from nasal septum cartilage of foetal rats and cultured up to 21 days in the presence of a melt-derived bioactive glass (Bioglass 45S5) and a less reactive glass with 60 wt% silica content (60S). In both cultures, chondrocytes proliferate and form typical cartilaginous nodules on day 5 of cultures. However, on day 12, the nodules in contact with 45S5 granules became darker than in 60S cultures, corresponding to the emergence of matrix biomineralization. Transmission electron microscopy showed a collagen-rich matrix composed of densely packed fibres and mineralized foci formed of needle-shaped crystals in contact with an electron-dense layer located at the periphery of the material. The specific activity of alkaline phosphatase was significant higher in 45S5 cultures on day 15 than in 60S cultures. Real time RT-PCR was used to monitor gene expression levels of specific chondrogenic markers. The transcription factor Sox9 was expressed throughout the culture period, but with no significant differences between the two kinds of cultures. In contrast, Runx2 expression was higher in experiment cultures on day 12. Type II collagen mRNA and aggrecan, showed an almost similar expression pattern with a strong expression at the beginning of cultures but higher in experiment cultures. Indian hedgehog was strongly expressed between day 9 and 12 with a significant stimulation in 45S5 cultures. Similarly, type X collagen mRNA seemed to be up-regulated in 45S5 cultures on day 20. In conclusion, this study shows hat 45S5 Bioglass has the ability to support the growth of chondrocytes and to stimulate some chondrogenic molecular markers. PMID:15159078

  11. Proteins and endotoxin in house dust mite extracts modulate cytokine secretion and gene expression by dermal fibroblasts.

    PubMed

    Rockwood, Jananie; Morgan, Marjorie S; Arlian, Larry G

    2013-11-01

    House dust mite extracts used for diagnostic tests and immunotherapy contain bioreactive molecules including proteins and endotoxin. These extracts can influence the cytokine secretion and adhesion molecule expression by cells in the skin and lung airways. The aim of this study was to determine the role of proteins and endotoxin in mite extracts in modulating gene expression and cytokine secretion by human dermal fibroblasts. Cultured normal human dermal fibroblasts were stimulated with whole mite extracts, mite extracts boiled to denature proteins, or mite extracts treated with polymyxin B to inactivate lipopolysaccharide. Gene expression and secretion of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein-1 (MCP-1) were determined after 6 h of stimulation. Whole Dermatophagoides farinae, D. pteronyssinus and Euroglyphus maynei extracts induced dose-dependent IL-6 and IL-8 secretion. In addition, D. farinae and E. maynei induced secretion of MCP-1. Dermatophagoides farinae and E. maynei also induced parallel cytokine gene expression. Cells stimulated with boiled D. farinae extract showed moderate to marked reductions in IL-6 and IL-8 secretion. In contrast, boiled D. pteronyssinus and E. maynei extracts induced equal or greater cytokine secretions than untreated extracts. The stimulating properties were reduced for all three extracts following treatment with polymyxin B. Our data suggest that both endotoxin and proteins in mite extracts modulate the secretion of cytokines by dermal fibroblasts. The biological activities of D. farinae, D. pteronyssinus, and E. maynei extracts are not equivalent. There appears to be a lipopolysaccharide-binding protein in some mite extracts. PMID:23640713

  12. Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K-562 leukemia cells.

    PubMed Central

    Olah, E; Natsumeda, Y; Ikegami, T; Kote, Z; Horanyi, M; Szelenyi, J; Paulik, E; Kremmer, T; Hollan, S R; Sugar, J

    1988-01-01

    Tiazofurin (2-beta-D-ribofuranosyl-4-thiazole-carboxamide; NSC 286193), an antitumor carbon-linked nucleoside that inhibits IMP dehydrogenase (IMP:NAD+ oxidoreductase; EC 1.1.1.205) and depletes guanylate levels, can activate the erythroid differentiation program of K-562 human leukemia cells. Tiazofurin-mediated cell differentiation is a multistep process. The inducer initiates early (less than 6 hr) metabolic changes that precede commitment to differentiation; among these early changes are decreases in IMP dehydrogenase activity and in GTP concentration, as well as alterations in the expression of certain protooncogenes (c-Ki-ras). K-562 cells do express commitment-i.e., cells exhibit differentiation without tiazofurin. Guanosine was effective in preventing the action of tiazofurin, thus providing evidence that the guanine nucleotides are critically involved in tiazofurin-initiated differentiation. Activation of transcription of the erythroid-specific gene that encodes A gamma-globin is a late (48 hr) but striking effect of tiazofurin. Down-regulation of the c-ras gene appears to be part of the complex process associated with tiazofurin-induced erythroid differentiation and relates to the perturbations of GTP metabolism. Images PMID:2901100

  13. 17β-Estradiol Modulates Gene Expression in the Female Mouse Cerebral Cortex

    PubMed Central

    Humphreys, Gwendolyn I.; Ziegler, Yvonne S.; Nardulli, Ann M.

    2014-01-01

    17β-estradiol (E2) plays critical roles in a number of target tissues including the mammary gland, reproductive tract, bone, and brain. Although it is clear that E2 reduces inflammation and ischemia-induced damage in the cerebral cortex, the molecular mechanisms mediating the effects of E2 in this brain region are lacking. Thus, we examined the cortical transcriptome using a mouse model system. Female adult mice were ovariectomized and implanted with silastic tubing containing oil or E2. After 7 days, the cerebral cortices were dissected and RNA was isolated and analyzed using RNA-sequencing. Analysis of the transcriptomes of control and E2-treated animals revealed that E2 treatment significantly altered the transcript levels of 88 genes. These genes were associated with long term synaptic potentiation, myelination, phosphoprotein phosphatase activity, mitogen activated protein kinase, and phosphatidylinositol 3-kinase signaling. E2 also altered the expression of genes linked to lipid synthesis and metabolism, vasoconstriction and vasodilation, cell-cell communication, and histone modification. These results demonstrate the far-reaching and diverse effects of E2 in the cerebral cortex and provide valuable insight to begin to understand cortical processes that may fluctuate in a dynamic hormonal environment. PMID:25372139

  14. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein

    PubMed Central

    Dulmage, Keely A.; Todor, Horia

    2015-01-01

    ABSTRACT In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. PMID:26350964

  15. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or {gamma}-rays

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei

    1994-05-01

    Previous work has shown that exposure of cells to ionizing radiations causes modulation of a variety of genes, including those encoding c-fos, interleukin-1, tumor necrosis factor, and cytoskeletal elements. The experiments reported herein were designed to examine the effects of either JANUS neutron or {gamma}-ray exposure on expression of genes encoding nucleus-associated proteins (H4-histone, c-jun, c-myc, Rb, and p53). Cycling Syrian hamster embryo cells were irradiated with varying doses and dose rates of either JANUS fission-spectrum neutrons or {gamma}-rays; after incubation of the cell cultures for 1 h following radiation exposure, mRNA was harvested and analyzed by Northern blot. Results revealed induction of transcripts for c-jun, H4-histone, and (to a lesser extent) Rb following {gamma}-ray but not following neutron exposure. Expression of p53 and c-myc genes was unaffected by radiation exposure. Radiations at different doses and dose rates were compared for each of the genes studied.

  16. Essential Oils Modulate Gene Expression and Ochratoxin A Production in Aspergillus carbonarius

    PubMed Central

    El Khoury, Rachelle; Atoui, Ali; Verheecke, Carol; Maroun, Richard; El Khoury, Andre; Mathieu, Florence

    2016-01-01

    Ochratoxin A (OTA) is a mycotoxin, mainly produced on grapes by Aspergillus carbonarius, that causes massive health problems for humans. This study aims to reduce the occurrence of OTA by using the ten following essential oils (E.Os): fennel, cardamom, anise, chamomile, celery, cinnamon, thyme, taramira, oregano and rosemary at 1 µL/mL and 5 µL/mL for each E.O.As a matter of fact, their effects on the OTA production and the growth of A. carbonarius S402 cultures were evaluated, after four days at 28 °C on a Synthetic Grape Medium (SGM). Results showed that A. carbonarius growth was reduced up to 100%, when cultured with the E.Os of cinnamon, taramira, and oregano at both concentrations and the thyme at 5 µL/mL. As for the other six E.Os, their effect on A. carbonarius growth was insignificant, but highly important on the OTA production. Interestingly, the fennel E.O at 5 µL/mL reduced the OTA production up to 88.9% compared to the control, with only 13.8% of fungal growth reduction. We further investigated the effect of these E.Os on the expression levels of the genes responsible for the OTA biosynthesis (acOTApks and acOTAnrps along with the acpks gene) as well as the two regulatory genes laeA and vea, using the quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) method. The results revealed that these six E.Os reduced the expression of the five studied genes, where the ackps was downregulated by 99.2% (the highest downregulation in this study) with 5 µL/mL of fennel E.O.As for the acOTApks, acOTAnrps, veA and laeA, their reduction levels ranged between 10% and 96% depending on the nature of the E.O and its concentration in the medium. PMID:27548221

  17. Essential Oils Modulate Gene Expression and Ochratoxin A Production in Aspergillus carbonarius.

    PubMed

    El Khoury, Rachelle; Atoui, Ali; Verheecke, Carol; Maroun, Richard; El Khoury, Andre; Mathieu, Florence

    2016-01-01

    Ochratoxin A (OTA) is a mycotoxin, mainly produced on grapes by Aspergillus carbonarius, that causes massive health problems for humans. This study aims to reduce the occurrence of OTA by using the ten following essential oils (E.Os): fennel, cardamom, anise, chamomile, celery, cinnamon, thyme, taramira, oregano and rosemary at 1 µL/mL and 5 µL/mL for each E.O.As a matter of fact, their effects on the OTA production and the growth of A. carbonarius S402 cultures were evaluated, after four days at 28 °C on a Synthetic Grape Medium (SGM). Results showed that A. carbonarius growth was reduced up to 100%, when cultured with the E.Os of cinnamon, taramira, and oregano at both concentrations and the thyme at 5 µL/mL. As for the other six E.Os, their effect on A. carbonarius growth was insignificant, but highly important on the OTA production. Interestingly, the fennel E.O at 5 µL/mL reduced the OTA production up to 88.9% compared to the control, with only 13.8% of fungal growth reduction. We further investigated the effect of these E.Os on the expression levels of the genes responsible for the OTA biosynthesis (acOTApks and acOTAnrps along with the acpks gene) as well as the two regulatory genes laeA and vea, using the quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) method. The results revealed that these six E.Os reduced the expression of the five studied genes, where the ackps was downregulated by 99.2% (the highest downregulation in this study) with 5 µL/mL of fennel E.O.As for the acOTApks, acOTAnrps, veA and laeA, their reduction levels ranged between 10% and 96% depending on the nature of the E.O and its concentration in the medium. PMID:27548221

  18. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    SciTech Connect

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  19. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.

    PubMed

    James, K M; MacDonald, K W; Chanyi, R M; Cadieux, P A; Burton, J P

    2016-04-01

    Oral candidiasis is a disease caused by opportunistic species of Candida that normally reside on human mucosal surfaces. The transition of Candida from budding yeast to filamentous hyphae allows for covalent attachment to oral epithelial cells, followed by biofilm formation, invasion and tissue damage. In this study, combinations of Lactobacillus plantarum SD5870, Lactobacillus helveticus CBS N116411 and Streptococcus salivarius DSM 14685 were assessed for their ability to inhibit the formation of and disrupt Candida albicans biofilms. Co-incubation with probiotic supernatants under hyphae-inducing conditions reduced C. albicans biofilm formation by >75 % in all treatment groups. Likewise, combinations of live probiotics reduced biofilm formation of C. albicans by >67 %. When live probiotics or their supernatants were overlaid on preformed C. albicans biofilms, biofilm size was reduced by >63 and >65 % respectively. Quantitative real-time PCR results indicated that the combined supernatants of SD5870 and CBS N116411 significantly reduced the expression of several C. albicans genes involved in the yeast-hyphae transition: ALS3 (adhesin/invasin) by 70 % (P < 0.0001), EFG1 (hyphae-specific gene activator) by 47 % (P = 0.0061), SAP5 (secreted protease) by 49 % (P < 0.0001) and HWP1 (hyphal wall protein critical to biofilm formation) by >99 % (P < 0.0001). These findings suggest the combination of L. plantarum SD5870, L. helveticus CBS N116411 and S. salivarius DSM 14685 is effective at both preventing the formation of and removing preformed C. albicans biofilms. Our novel results point to the downregulation of several Candida genes critical to the yeast-hyphae transition, biofilm formation, tissue invasion and cellular damage. PMID:26847045

  20. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines.

    PubMed

    Montazeri, Maryam; Sadeghizadeh, Majid; Pilehvar-Soltanahmadi, Yones; Zarghami, Faraz; Khodi, Samaneh; Mohaghegh, Mina; Sadeghzadeh, Hadi; Zarghami, Nosratollah

    2016-07-25

    The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment. PMID:27234697

  1. Soybean extract showed modulation of retinoic acid-related gene expression of skin and photo-protective effects in keratinocytes.

    PubMed

    Park, N-H; Park, J-S; Kang, Y-G; Bae, J-H; Lee, H-K; Yeom, M-H; Cho, J-C; Na, Y J

    2013-04-01

    Soy extracts are well known as medicinal and nutritional ingredients, and exhibit benefits towards human skin including depigmenting or anti-ageing effects. Despite the wrinkle decreasing effects of retinoids on skin as an anti-ageing ingredient, retinoid application can causes photo-sensitive responses such as skin irritation. Thus, their daytime usage is not recommended. The aim of this study is the investigation into the activities of soybean extract as an anti-ageing ingredient and their comparison to retinoids in this respect. Soybean extract decreased the relative ratio of MMP-1/TIMP-1 mRNA to the same degree as retinoic acid in normal human fibroblasts. It also affected mRNA levels of HAS2 and CRABP2 in normal human keratinocytes. Furthermore, we investigated its effect on mRNA expression of histidase, an enzyme that converts histidine into urocanic acid, the main UV light absorption factor of the stratum corneum. Unlike the complete inhibition of histidase exhibited by the mRNA expression of retinoic acid, the effect of soybean extract on histidase gene expression was weaker in normal human keratinocytes. Also, soybean extract pretreatment inhibited UVB-induced cyclobutane pyrimidine dimer formation dose-dependently in normal human keratinocytes. In this study, we found that soybean extract modulated retinoic acid-related genes and showed photo-protective effects. Our findings suggest that soybean extract could be an anti-ageing ingredient that can be safely used under the sunlight. PMID:23075113

  2. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes.

    PubMed

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties. PMID:25978735

  3. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes

    PubMed Central

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties. PMID:25978735

  4. Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference

    PubMed Central

    Mitra, Mautusi; Kirst, Henning; Dewez, David; Melis, Anastasios

    2012-01-01

    Truncated light-harvesting antenna 1 (TLA1) is a nuclear gene proposed to regulate the chlorophyll (Chl) antenna size in Chlamydomonas reinhardtii. The Chl antenna size of the photosystems and the chloroplast ultrastructure were manipulated upon TLA1 gene over-expression and RNAi downregulation. The TLA1 over-expressing lines possessed a larger chlorophyll antenna size for both photosystems and contained greater levels of Chl b per cell relative to the wild type. Conversely, TLA1 RNAi transformants had a smaller Chl antenna size for both photosystems and lower levels of Chl b per cell. Western blot analyses of the TLA1 over-expressing and RNAi transformants showed that modulation of TLA1 gene expression was paralleled by modulation in the expression of light-harvesting protein, reaction centre D1 and D2, and VIPP1 genes. Transmission electron microscopy showed that modulation of TLA1 gene expression impacts the organization of thylakoid membranes in the chloroplast. Over-expressing lines showed well-defined grana, whereas RNAi transformants possessed loosely held together and more stroma-exposed thylakoids. Cell fractionation suggested localization of the TLA1 protein in the inner chloroplast envelope and potentially in association with nascent thylakoid membranes, indicating a role in Chl antenna assembly and thylakoid membrane biogenesis. The results provide a mechanistic understanding of the Chl antenna size regulation by the TLA1 gene. PMID:23148270

  5. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11.

    PubMed

    Ngondo-Mbongo, Richard Patryk; Myslinski, Evelyne; Aster, Jon C; Carbon, Philippe

    2013-04-01

    ZNF143 is a zinc-finger protein involved in the transcriptional regulation of both coding and non-coding genes from polymerase II and III promoters. Our study deciphers the genome-wide regulatory role of ZNF143 in relation with the two previously unrelated transcription factors Notch1/ICN1 and thanatos-associated protein 11 (THAP11) in several human and murine cells. We show that two distinct motifs, SBS1 and SBS2, are associated to ZNF143-binding events in promoters of >3000 genes. Without co-occupation, these sites are also bound by Notch1/ICN1 in T-lymphoblastic leukaemia cells as well as by THAP11, a factor involved in self-renewal of embryonic stem cells. We present evidence that ICN1 binding overlaps with ZNF143 binding events at the SBS1 and SBS2 motifs, whereas the overlap occurs only at SBS2 for THAP11. We demonstrate that the three factors modulate expression of common target genes through the mutually exclusive occupation of overlapping binding sites. The model we propose predicts that the binding competition between the three factors controls biological processes such as rapid cell growth of both neoplastic and stem cells. Overall, our study establishes a novel relationship between ZNF143, THAP11 and ICN1 and reveals important insights into ZNF143-mediated gene regulation. PMID:23408857

  6. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11

    PubMed Central

    Ngondo-Mbongo, Richard Patryk; Myslinski, Evelyne; Aster, Jon C.; Carbon, Philippe

    2013-01-01

    ZNF143 is a zinc-finger protein involved in the transcriptional regulation of both coding and non-coding genes from polymerase II and III promoters. Our study deciphers the genome-wide regulatory role of ZNF143 in relation with the two previously unrelated transcription factors Notch1/ICN1 and thanatos-associated protein 11 (THAP11) in several human and murine cells. We show that two distinct motifs, SBS1 and SBS2, are associated to ZNF143-binding events in promoters of >3000 genes. Without co-occupation, these sites are also bound by Notch1/ICN1 in T-lymphoblastic leukaemia cells as well as by THAP11, a factor involved in self-renewal of embryonic stem cells. We present evidence that ICN1 binding overlaps with ZNF143 binding events at the SBS1 and SBS2 motifs, whereas the overlap occurs only at SBS2 for THAP11. We demonstrate that the three factors modulate expression of common target genes through the mutually exclusive occupation of overlapping binding sites. The model we propose predicts that the binding competition between the three factors controls biological processes such as rapid cell growth of both neoplastic and stem cells. Overall, our study establishes a novel relationship between ZNF143, THAP11 and ICN1 and reveals important insights into ZNF143-mediated gene regulation. PMID:23408857

  7. Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds

    SciTech Connect

    Gracia, Tannia Hilscherova, Klara; Jones, Paul D.; Newsted, John L.; Higley, Eric B.; Zhang, Xiaowei; Hecker, Markus; Murphy, Margaret B.; Yu, Richard M.K.; Lam, Paul K.S.; Wu, Rudolf S.S.; Giesy, John P.

    2007-12-01

    The H295R cell bioassay was used to evaluate the potential endocrine disrupting effects of 18 of the most commonly used pharmaceuticals in the United States. Exposures for 48 h with single pharmaceuticals and binary mixtures were conducted; the expression of five steroidogenic genes, 3{beta}HSD2, CYP11{beta}1, CYP11{beta}2, CYP17 and CYP19, was quantified by Q-RT-PCR. Production of the steroid hormones estradiol (E2), testosterone (T) and progesterone (P) was also evaluated. Antibiotics were shown to modulate gene expression and hormone production. Amoxicillin up-regulated the expression of CYP11{beta}2 and CYP19 by more than 2-fold and induced estradiol production up to almost 3-fold. Erythromycin significantly increased CYP11{beta}2 expression and the production of P and E2 by 3.5- and 2.4-fold, respectively, while production of T was significantly decreased. The {beta}-blocker salbutamol caused the greatest induction of CYP17, more than 13-fold, and significantly decreased E2 production. The binary mixture of cyproterone and salbutamol significantly down-regulated expression of CYP19, while a mixture of ethynylestradiol and trenbolone, increased E2 production 3.7-fold. Estradiol production was significantly affected by changes in concentrations of trenbolone, cyproterone, and ethynylestradiol. Exposures with individual pharmaceuticals showed the possible secondary effects that drugs may exert on steroid production. Results from binary mixture exposures suggested the possible type of interactions that may occur between drugs and the joint effects product of such interactions. Dose-response results indicated that although two chemicals may share a common mechanism of action the concentration effects observed may be significantly different.

  8. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression

    PubMed Central

    Chavali, Arvind K.; Wong, Victor C.; Miller-Jensen, Kathryn

    2015-01-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance. PMID:26666681

  9. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression.

    PubMed

    Chavali, Arvind K; Wong, Victor C; Miller-Jensen, Kathryn

    2015-01-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a 'molecular switch' controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance. PMID:26666681

  10. Salmonella Modulates Metabolism during Growth under Conditions that Induce Expression of Virulence Genes

    PubMed Central

    Kim, Young-Mo; Schmidt, Brian J.; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage Kaiser, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake. PMID:23559334

  11. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression

    NASA Astrophysics Data System (ADS)

    Chavali, Arvind K.; Wong, Victor C.; Miller-Jensen, Kathryn

    2015-12-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance.

  12. Drosophila Microbiota Modulates Host Metabolic Gene Expression via IMD/NF-κB Signaling

    PubMed Central

    Bozonnet, Noémie; Puthier, Denis; Royet, Julien; Leulier, François

    2014-01-01

    Most metazoans engage in mutualistic interactions with their intestinal microbiota. Despite recent progress the molecular mechanisms through which microbiota exerts its beneficial influences on host physiology are still largely uncharacterized. Here we use axenic Drosophila melanogaster adults associated with a standardized microbiota composed of a defined set of commensal bacterial strains to study the impact of microbiota association on its host transcriptome. Our results demonstrate that Drosophila microbiota has a marked impact on the midgut transcriptome and promotes the expression of genes involved in host digestive functions and primary metabolism. We identify the IMD/Relish signaling pathway as a central regulator of this microbiota-mediated transcriptional response and we reveal a marked transcriptional trade-off between the midgut response to its beneficial microbiota and to bacterial pathogens. Taken together our results indicate that microbiota association potentiates host nutrition and host metabolic state, two key physiological parameters influencing host fitness. Our work paves the way to subsequent mechanistic studies to reveal how these microbiota-dependent transcriptional signatures translate into host physiological benefits. PMID:24733183

  13. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain

    PubMed Central

    Sosnik, Julian; Zheng, Likun; Rackauckas, Christopher V; Digman, Michelle; Gratton, Enrico; Nie, Qing; Schilling, Thomas F

    2016-01-01

    Morphogen gradients induce sharply defined domains of gene expression in a concentration-dependent manner, yet how cells interpret these signals in the face of spatial and temporal noise remains unclear. Using fluorescence lifetime imaging microscopy (FLIM) and phasor analysis to measure endogenous retinoic acid (RA) directly in vivo, we have investigated the amplitude of noise in RA signaling, and how modulation of this noise affects patterning of hindbrain segments (rhombomeres) in the zebrafish embryo. We demonstrate that RA forms a noisy gradient during critical stages of hindbrain patterning and that cells use distinct intracellular binding proteins to attenuate noise in RA levels. Increasing noise disrupts sharpening of rhombomere boundaries and proper patterning of the hindbrain. These findings reveal novel cellular mechanisms of noise regulation, which are likely to play important roles in other aspects of physiology and disease. DOI: http://dx.doi.org/10.7554/eLife.14034.001 PMID:27067377

  14. Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites

    PubMed Central

    Ganesan, Suresh M.; Falla, Alejandra; Goldfless, Stephen J.; Nasamu, Armiyaw S.; Niles, Jacquin C.

    2016-01-01

    Synthetic posttranscriptional regulation of gene expression is important for understanding fundamental biology and programming new cellular processes in synthetic biology. Previous strategies for regulating translation in eukaryotes have focused on disrupting individual steps in translation, including initiation and mRNA cleavage. In emphasizing modularity and cross-organism functionality, these systems are designed to operate orthogonally to native control mechanisms. Here we introduce a broadly applicable strategy for robustly controlling protein translation by integrating synthetic translational control via a small-molecule-regulated RNA–protein module with native mechanisms that simultaneously regulate multiple facets of cellular RNA fate. We demonstrate that this strategy reduces ‘leakiness' to improve overall expression dynamic range, and can be implemented without sacrificing modularity and cross-organism functionality. We illustrate this in Saccharomyces cerevisae and the non-model human malarial parasite, Plasmodium falciparum. Given the limited functional genetics toolkit available for P. falciparum, we establish the utility of this strategy for defining essential genes. PMID:26925876

  15. The cis-regulatory system of the tbrain gene: alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo

    PubMed Central

    Wahl, Mary E.; Hahn, Julie; Gora, Kasia; Davidson, Eric H.; Oliveri, Paola

    2009-01-01

    The genomic cis-regulatory systems controlling regulatory gene expression usually include multiple modules. The regulatory output of such systems at any given time depends on which module is directing the function of the basal transcription apparatus, and ultimately on the transcription factor inputs into that module. Here we examine regulation of the S. purpuratus tbrain gene, a required activator of the skeletogenic specification state in the lineage descendant from the embryo micromeres. Alternate cis-regulatory modules were found to convey skeletogenic expression in reporter constructs. To determine their relative developmental functions in context, we made use of recombineered BAC constructs containing a GFP reporter, and of derivatives from which specific modules had been deleted. The outputs of the various constructs were observed spatially by GFP fluorescence and quantitatively over time by QPCR. In the context of the complete genomic locus, early skeletogenic expression is controlled by an intron enhancer plus a proximal region containing a HesC site as predicted from network analysis. From ingression onward, however, a dedicated distal module utilizing positive Ets1/2 inputs contributes to definitive expression in the skeletogenic mesenchyme. This module also mediates a newly-discovered negative Erg input which excludes non-skeletogenic mesodermal expression. PMID:19679118

  16. Nuclear Localization and Gene Expression Modulation by a Fluorescent Sequence-Selective p-Anisyl-benzimidazolecarboxamido Imidazole-Pyrrole Polyamide.

    PubMed

    Kiakos, Konstantinos; Pett, Luke; Satam, Vijay; Patil, Pravin; Hochhauser, Daniel; Lee, Moses; Hartley, John A

    2015-07-23

    Synthetic pyrrole (P)-imidazole (I) containing polyamides can target predetermined DNA sequences and modulate gene expression by interfering with transcription factor binding. We have previously shown that rationally designed polyamides targeting the inverted CCAAT box 2 (ICB2) of the topoisomerase IIα (topo IIα) promoter can inhibit binding of transcription factor NF-Y, re-inducing expression of the enzyme in confluent cells. Here, the A/T recognizing fluorophore, p-anisylbenzimidazolecarboxamido (Hx) was incorporated into the hybrid polyamide HxIP, which fluoresces upon binding to DNA, providing an intrinsic probe to monitor cellular uptake. HxIP targets the 5'-TACGAT-3' sequence of the 5' flank of ICB2 with high affinity and sequence specificity, eliciting an ICB2-selective inhibition/displacement of NF-Y. HxIP is readily taken up by NIH3T3 and A549 cells, and detected in the nucleus within minutes. Exposure to the polyamide at confluence resulted in a dose-dependent upregulation of topo IIα expression and enhanced formation of etoposide-induced DNA strand breaks. PMID:26119998

  17. Modulation of conidia production and expression of the gene bbrgs1 from Beauveria bassiana by oxygen pulses and light.

    PubMed

    Rodriguez-Gomez, Divanery; Marcial-Quino, Jaime; Loera, Octavio

    2015-09-01

    Light and oxidant states affect the conidiation in diverse fungi, although the response has not been described when both stimuli are applied simultaneously. Conidial production and quality in Beauveria bassiana were analysed under four conditions for a wild-type (wt) strain and a previously isolated mutant (mt): normal atmosphere (21% O2; NA) or oxygen-enriched pulses (26% O2; OEP), with either light (L) or darkness (D). The response was complemented by following the expression of the bbrgs1 gene, encoding a regulator of the G-protein signal associated to conidia production. Conidiation was not significantly affected in the mutant strain by any condition (highest value with NA-L: 2.7×10(8)concm(-2)). Relative to maximal levels under NA (NA-D: 4×10(7)concm(2)), the wt strain diminished conidiation by 34-fold under OEP. The expression of bbrgs1 was higher (up to 188 times) in the mutant strain in every condition relative to the wt strain, in fact expression levels were consistent with the conidiation yields between strains. Viability and hydrophobicity were less affected by culture conditions, although pathogenicity parameters improved in conidia from OEP. The response to OEP, either with light or darkness, was strain-dependent for conidial production, viability, hydrophobicity and infectivity of conidia, then these parameters could be modulated in mass production processes. PMID:26166809

  18. Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A.

    PubMed

    Wisnieski, Fernanda; Calcagno, Danielle Queiroz; Leal, Mariana Ferreira; Chen, Elizabeth Suchi; Gigek, Carolina Oliveira; Santos, Leonardo Caires; Pontes, Thaís Brilhante; Rasmussen, Lucas Trevizani; Payão, Spencer Luiz Marques; Assumpção, Paulo Pimentel; Lourenço, Laércio Gomes; Demachki, Sâmia; Artigiani, Ricardo; Burbano, Rommel Rodríguez; Smith, Marília Cardoso

    2014-07-01

    Gastric cancer is still the second leading cause of cancer-related death worldwide, even though its incidence and mortality have declined over the recent few decades. Epigenetic control using histone deacetylase inhibitors, such as trichostatin A (TSA), is a promising cancer therapy. This study aimed to assess the messenger RNA (mRNA) levels of three histone deacetylases (HDAC1, HDAC2, and HDAC3), two histone acetyltransferases (GCN5 and PCAF), and two possible targets of these histone modifiers (MYC and CDKN1A) in 50 matched pairs of gastric tumors and corresponding adjacent nontumors samples from patients with gastric adenocarcinoma, as well as their correlations and their possible associations with clinicopathological features. Additionally, we evaluated whether these genes are sensitive to TSA in gastric cancer cell lines. Our results demonstrated downregulation of HDAC1, PCAF, and CDKN1A in gastric tumors compared with adjacent nontumors (P < 0.05). On the other hand, upregulation of HDAC2, GCN5, and MYC was observed in gastric tumors compared with adjacent nontumors (P < 0.05). The mRNA level of MYC was correlated to HDAC3 and GCN5 (P < 0.05), whereas CDKN1A was correlated to HDAC1 and GCN5 (P < 0.05 and P < 0.01, respectively). In addition, the reduced expression of PCAF was associated with intestinal-type gastric cancer (P = 0.03) and TNM stages I/II (P = 0.01). The increased expression of GCN5 was associated with advanced stage gastric cancer (P = 0.02) and tumor invasion (P = 0.03). The gastric cell lines treated with TSA showed different patterns of histone deacetylase and acetyltransferase mRNA expression, downregulation of MYC, and upregulation of CDKN1A. Our findings suggest that alteration of histone modifier genes play an important role in gastric carcinogenesis, contributing to MYC and CDKN1A deregulation. In addition, all genes studied here are modulated by TSA, although this modulation appears to be dependent of the genetic background of the cell

  19. Protein arginine Methyltransferase 8 gene is expressed in pluripotent stem cells and its expression is modulated by the transcription factor Sox2.

    PubMed

    Solari, Claudia; Echegaray, Camila Vázquez; Luzzani, Carlos; Cosentino, María Soledad; Waisman, Ariel; Petrone, María Victoria; Francia, Marcos; Sassone, Alina; Canizo, Jésica; Sevlever, Gustavo; Barañao, Lino; Miriuka, Santiago; Guberman, Alejandra

    2016-04-22

    Addition of methyl groups to arginine residues is catalyzed by a group of enzymes called Protein Arginine Methyltransferases (Prmt). Although Prmt1 is essential in development, its paralogue Prmt8 has been poorly studied. This gene was reported to be expressed in nervous system and involved in neurogenesis. In this work, we found that Prmt8 is expressed in mouse embryonic stem cells (ESC) and in induced pluripotent stem cells, and modulated along differentiation to neural precursor cells. We found that Prmt8 promoter activity is induced by the pluripotency transcription factors Oct4, Sox2 and Nanog. Moreover, endogenous Prmt8 mRNA levels were reduced in ESC transfected with Sox2 shRNA vector. As a whole, our results indicate that Prmt8 is expressed in pluripotent stem cells and its transcription is modulated by pluripotency transcription factors. These findings suggest that besides its known function in nervous system, Prmt8 could play a role in pluripotent stem cells. PMID:27012206

  20. Age-Related Modulation of the Effects of Obesity on Gene Expression Profiles of Mouse Bone Marrow and Epididymal Adipocytes

    PubMed Central

    Liu, Li-Fen; Shen, Wen-Jun; Ueno, Masami; Patel, Shailja; Azhar, Salman; Kraemer, Fredric B.

    2013-01-01

    This study aimed to characterize and compare the effects of obesity on gene expression profiles in two distinct adipose depots, epididymal and bone marrow, at two different ages in mice. Alterations in gene expression were analyzed in adipocytes isolated from diet-induced obese (DIO) C57BL/6J male mice at 6 and 14 months of age and from leptin deficient mice (ob/ob) at 6 months of age using microarrays. DIO affected gene expression in both depots at 6 and 14 months, but more genes were altered in epididymal than bone marrow adipocytes at each age and younger mice displayed more changes than older animals. In epididymal adipocytes a total of 2789 (9.6%) genes were differentially expressed at 6-months with DIO, whereas 952 (3.3%) were affected at 14-months. In bone marrow adipocytes, 347 (1.2%) genes were differentially expressed at 6-months with DIO, whereas only 189 (0.66%) were changed at 14-months. 133 genes were altered by DIO in both fat depots at 6-months, and 37 genes at 14-months. Only four genes were altered in both depots at both ages with DIO. Bone marrow adipocytes are less responsive to DIO than epididymal adipocytes and the response of both depots to DIO declines with age. This loss of responsiveness with age is likely due to age-associated changes in expression of genes related to adipogenesis, inflammation and mitochondrial function that are similar to and obscure the changes commonly associated with DIO. Patterns of gene expression were generally similar in epididymal adipocytes from ob/ob and DIO mice; however, several genes were differentially expressed in bone marrow adipocytes from ob/ob and DIO mice, perhaps reflecting the importance of leptin signaling for bone metabolism. In conclusion, obesity affects age-associated alterations in gene expression in both epididymal and bone marrow adipocytes regardless of diet or genetic background. PMID:23967297

  1. Age-related modulation of the effects of obesity on gene expression profiles of mouse bone marrow and epididymal adipocytes.

    PubMed

    Liu, Li-Fen; Shen, Wen-Jun; Ueno, Masami; Patel, Shailja; Azhar, Salman; Kraemer, Fredric B

    2013-01-01

    This study aimed to characterize and compare the effects of obesity on gene expression profiles in two distinct adipose depots, epididymal and bone marrow, at two different ages in mice. Alterations in gene expression were analyzed in adipocytes isolated from diet-induced obese (DIO) C57BL/6J male mice at 6 and 14 months of age and from leptin deficient mice (ob/ob) at 6 months of age using microarrays. DIO affected gene expression in both depots at 6 and 14 months, but more genes were altered in epididymal than bone marrow adipocytes at each age and younger mice displayed more changes than older animals. In epididymal adipocytes a total of 2789 (9.6%) genes were differentially expressed at 6-months with DIO, whereas 952 (3.3%) were affected at 14-months. In bone marrow adipocytes, 347 (1.2%) genes were differentially expressed at 6-months with DIO, whereas only 189 (0.66%) were changed at 14-months. 133 genes were altered by DIO in both fat depots at 6-months, and 37 genes at 14-months. Only four genes were altered in both depots at both ages with DIO. Bone marrow adipocytes are less responsive to DIO than epididymal adipocytes and the response of both depots to DIO declines with age. This loss of responsiveness with age is likely due to age-associated changes in expression of genes related to adipogenesis, inflammation and mitochondrial function that are similar to and obscure the changes commonly associated with DIO. Patterns of gene expression were generally similar in epididymal adipocytes from ob/ob and DIO mice; however, several genes were differentially expressed in bone marrow adipocytes from ob/ob and DIO mice, perhaps reflecting the importance of leptin signaling for bone metabolism. In conclusion, obesity affects age-associated alterations in gene expression in both epididymal and bone marrow adipocytes regardless of diet or genetic background. PMID:23967297

  2. Modulation of Cellular and Viral Gene Expression by the Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus

    PubMed Central

    Renne, Rolf; Barry, Chris; Dittmer, Dirk; Compitello, Nicole; Brown, Patrick O.; Ganem, Don

    2001-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is the likely etiological agent of Kaposi's sarcoma and primary effusion lymphoma. Common to these malignancies is that tumor cells are latently infected with KSHV. Viral gene expression is limited to a few genes, one of which is the latency-associated nuclear antigen (LANA), the product of ORF73. Examination of the primary sequence of LANA reveals some structural features reminiscent of transcription factors, leading us to hypothesize that LANA may regulate viral and cellular transcription during latency. In reporter gene-based transient transfection assays, we found that LANA can have either positive or negative effects on gene expression. While expression of a reporter gene from several synthetic promoters was increased in the presence of LANA, expression from the human immunodeficiency virus (HIV) long terminal repeat (LTR)—and from NF-κB-dependent reporter genes—was reduced by LANA expression. In addition, the promoter of KSHV ORF73 itself is activated up to 5.5-fold by LANA. This autoregulation may be important in tumorigenesis, because two other genes (v-cyclin and v-FLIP) with likely roles in cell growth and survival are also controlled by this element. To identify cellular genes influenced by LANA, we employed cDNA array-based expression profiling. Six known genes (and nine expressed sequence tags) were found to be upregulated in LANA-expressing cell lines. One of these, Staf-50, is known to inhibit expression from the HIV LTR; most of the other known genes are interferon inducible, although the interferon genes themselves were not induced by LANA. These data demonstrate that LANA expression has effects on cellular and viral gene expression. We suggest that, whether direct or indirect in origin, these effects may play important roles in the pathobiology of KSHV infection. PMID:11119614

  3. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  4. Regulation and role of REST and REST4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models.

    PubMed

    Spencer, E M; Chandler, K E; Haddley, K; Howard, M R; Hughes, D; Belyaev, N D; Coulson, J M; Stewart, J P; Buckley, N J; Kipar, A; Walker, M C; Quinn, J P

    2006-10-01

    Repressor element-1 silencing transcription factor (REST) is a candidate modulator of gene expression during status epilepticus in the rodent. In such models, full-length REST and the truncated REST4 variant are induced and can potentially direct differential gene expression patterns. We have addressed the regulation of these REST variants in rodent hippocampal seizure models and correlated this with expression of the proconvulsant, substance P encoding, PPT-A gene. REST and REST4 were differentially regulated following kainic acid stimulus both in in vitro and in vivo models. REST4 was more tightly regulated than REST in both models and its transient expression correlated with that of the differential regulation of PPT-A. Consistent with this, overexpression of a truncated REST protein (HZ4, lacking the C-terminal repression domain) increased expression of the endogenous PPT-A gene. Similarly the proximal PPT-A promoter reporter gene construct was differentially regulated by the distinct REST isoforms in hippocampal cells with HZ4 being the major inducer of increased reporter expression. Furthermore, REST and REST4 proteins were differentially expressed and compartmentalized within rat hippocampal cells in vitro following noxious stimuli. This differential localization of the REST isoforms was confirmed in the CA1 region following perforant path and kainic acid induction of status epilepticus in vivo. We propose that the interplay between REST and REST4 alter the expression of proconvulsant genes, as exemplified by the PPT-A gene, and may therefore regulate the progression of epileptogenesis. PMID:16828291

  5. Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C3 and C4 Plant Species[C][W][OPEN

    PubMed Central

    Külahoglu, Canan; Denton, Alisandra K.; Sommer, Manuel; Maß, Janina; Schliesky, Simon; Wrobel, Thomas J.; Berckmans, Barbara; Gongora-Castillo, Elsa; Buell, C. Robin; Simon, Rüdiger; De Veylder, Lieven; Bräutigam, Andrea; Weber, Andreas P.M.

    2014-01-01

    C4 photosynthesis outperforms the ancestral C3 state in a wide range of natural and agro-ecosystems by affording higher water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by introducing the trait into C3 backgrounds. However, the genetic architecture of C4 photosynthesis remains largely unknown. To define the divergence in gene expression modules between C3 and C4 photosynthesis during leaf ontogeny, we generated comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C4) and Tarenaya hassleriana (C3), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C3 and C4 species. We found that known C4 genes were recruited to photosynthesis from different expression domains in C3, including typical housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we identified a structure-related module recruited from the C3 root. Comparison of gene expression patterns with anatomy during leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell cycle genes is associated with a higher degree of endoreduplication in enlarged C4 bundle sheath cells. A delay in mesophyll differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C4 leaf. PMID:25122153

  6. Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression.

    PubMed

    Serafini, Fausta; Turroni, Francesca; Ruas-Madiedo, Patricia; Lugli, Gabriele Andrea; Milani, Christian; Duranti, Sabrina; Zamboni, Nicole; Bottacini, Francesca; van Sinderen, Douwe; Margolles, Abelardo; Ventura, Marco

    2014-05-16

    Bifidobacteria constitute one of the dominant groups of microorganisms colonizing the human gut of infants. Their ability to utilize various host-derived glycans as well as dietary carbohydrates has received considerable scientific attention. However, very little is known about the role of fermented foods, such as kefir, or their constituent glycans, such as kefiran, as substrates for bifidobacterial growth and for the modulation of the expression of bifidobacterial host-effector molecules. Here, we show that Bifidobacterium bifidum PRL2010 exhibits high growth performance among the bifidobacterial strains tested when cultivated on kefir and/or kefiran polymer. Furthermore, a 16S rRNA metagenomic approach revealed that the microbiota of kefir is modified upon the addition of PRL2010 cells to the kefir matrix. Finally, our results show that kefir and kefiran are able to influence the transcriptome of B. bifidum PRL2010 causing increased transcription of genes involved in the metabolism of dietary glycans as well as genes that act as host-microbe effector molecules such as pili. Altogether, these data support the use of kefir as a valuable means for the delivery of effective microbial cells in probiotic therapy. PMID:24667318

  7. Osteopontin modulates inflammation, mucin production, and gene expression signatures after inhalation of asbestos in a murine model of fibrosis.

    PubMed

    Sabo-Attwood, Tara; Ramos-Nino, Maria E; Eugenia-Ariza, Maria; Macpherson, Maximilian B; Butnor, Kelly J; Vacek, Pamela C; McGee, Sean P; Clark, Jessica C; Steele, Chad; Mossman, Brooke T

    2011-05-01

    Inflammation and lung remodeling are hallmarks of asbestos-induced fibrosis, but the molecular mechanisms that control these events are unclear. Using laser capture microdissection (LCM) of distal bronchioles in a murine asbestos inhalation model, we show that osteopontin (OPN) is up-regulated by bronchiolar epithelial cells after chrysotile asbestos exposures. In contrast to OPN wild-type mice (OPN(+/+)) inhaling asbestos, OPN null mice (OPN(-/-)) exposed to asbestos showed less eosinophilia in bronchoalveolar lavage fluids, diminished lung inflammation, and decreased mucin production. Bronchoalveolar lavage fluid concentrations of inflammatory cytokines (IL-1β, IL-4, IL-6, IL-12 subunit p40, MIP1α, MIP1β, and eotaxin) also were significantly less in asbestos-exposed OPN(-/-) mice. Microarrays performed on lung tissues from asbestos-exposed OPN(+/+) and OPN(-/-) mice showed that OPN modulated the expression of a number of genes (Col1a2, Timp1, Tnc, Eln, and Col3a1) linked to fibrosis via initiation and cross talk between IL-1β and epidermal growth factor receptor-related signaling pathways. Novel targets of OPN identified include genes involved in cell signaling, immune system/defense, extracellular matrix remodeling, and cell cycle regulation. Although it is unclear whether the present findings are specific to chrysotile asbestos or would be observed after inhalation of other fibers in general, these results highlight new potential mechanisms and therapeutic targets for asbestosis and other diseases (asthma, smoking-related interstitial lung diseases) linked to OPN overexpression. PMID:21514415

  8. Experience Modulates the Effects of Histone Deacetylase Inhibitors on Gene and Protein Expression in the Hippocampus: Impaired Plasticity in Aging

    PubMed Central

    Sewal, Angila S.; Patzke, Holger; Perez, Evelyn J.; Park, Pul; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G.; Fletcher, Bonnie R.; Long, Jeffrey M.

    2015-01-01

    The therapeutic potential of histone deacetylase inhibitor (HDACi) treatment has attracted considerable attention in the emerging area of cognitive neuroepigenetics. The possibility that ongoing cognitive experience importantly regulates the cell biological effects of HDACi administration, however, has not been systematically examined. In an initial experiment addressing this issue, we tested whether water maze training influences the gene expression response to acute systemic HDACi administration in the young adult rat hippocampus. Training powerfully modulated the response to HDACi treatment, increasing the total number of genes regulated to nearly 3000, including many not typically linked to neural plasticity, compared with <300 following HDACi administration alone. Although water maze training itself also regulated nearly 1800 genes, the specific mRNAs, gene networks, and biological pathways involved were largely distinct when the same experience was provided together with HDACi administration. Next, we tested whether the synaptic protein response to HDACi treatment is similarly dependent on recent cognitive experience, and whether this plasticity is altered in aged rats with memory impairment. Whereas synaptic protein labeling in the young hippocampus was selectively increased when HDACi administration was provided in conjunction with water maze training, combined treatment had no effect on synaptic proteins in the aged hippocampus. Our findings indicate that ongoing experience potently regulates the molecular consequences of HDACi treatment and that the interaction of recent cognitive experience with histone acetylation dynamics is disrupted in the aged hippocampus. SIGNIFICANCE STATEMENT The possibility that interventions targeting epigenetic regulation could be effective in treating a range of neurodegenerative disorders has attracted considerable interest. Here we demonstrate in the rat hippocampus that ongoing experience powerfully modifies the molecular

  9. Modulation of rainbow trout (Oncorhynchus mykiss) intestinal immune gene expression following bacterial challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mucosal immune system of fish is still poorly understood, and defined models for studying natural host-pathogen interaction are lacking. The objective of this study was to evaluate different challenge paradigms and pathogens to examine the magnitude of change in intestinal immune gene expressio...

  10. ESTROGENIC STATUS MODULATES DMBA-MEDIATED HEPATIC GENE EXPRESSION: MICROARRAY-BASED ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status in women influences the metabolism and toxicity of polycyclic aromatic hydrocarbons (PAH). The objective of this study was to examine the influence of estradiol (E2) on 7,12 dimethylbenz(a)anthracene (DMBA), a ligand for aryl hydrocarbon receptor, mediated changes on gene expressio...

  11. Modulation of Cytokine Gene Expression and Secretion During the Periparturient Period in Dairy Cows Naturally Infected with Mycobacterium avium subsp. paratuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modulation of cytokine gene expression and secretion during the periparturient period in dairy cows naturally infected with Mycobacterium avium subsp. paratuberculosis Technical abstract Johne’s disease (JD), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is estimated to infect more t...

  12. Modulation of gene expression by alpha-tocopherol and alpha-tocopheryl phosphate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The naturally occurring vitamin E analogue, alpha-tocopheryl phosphate (alphaTP), has been reported to be more potent in reducing cell proliferation and the expression of the CD36 scavenger receptor than the un-phosphorylated alpha-tocopherol (alpha T). We have now assessed the effects of alpha T an...

  13. Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development.

    PubMed

    Ahn, Youngwook; Mullan, Hillary E; Krumlauf, Robb

    2014-04-01

    Retinoic acid (RA) signaling plays an important role in determining the anterior boundary of Hox gene expression in the neural tube during embryogenesis. In particular, RA signaling is implicated in a rostral expansion of the neural expression domain of 5׳ Hoxb genes (Hoxb9-Hoxb5) in mice. However, underlying mechanisms for this gene regulation have remained elusive due to the lack of RA responsive element (RARE) in the 5׳ half of the HoxB cluster. To identify cis-regulatory elements required for the rostral expansion, we developed a recombineering technology to serially label multiple genes with different reporters in a single bacterial artificial chromosome (BAC) vector containing the mouse HoxB cluster. This allowed us to simultaneously monitor the expression of multiple genes. In contrast to plasmid-based reporters, transgenic BAC reporters faithfully recapitulated endogenous gene expression patterns of the Hoxb genes including the rostral expansion. Combined inactivation of two RAREs, DE-RARE and ENE-RARE, in the BAC completely abolished the rostral expansion of the 5׳ Hoxb genes. Knock-out of endogenous DE-RARE lead to significantly reduced expression of multiple Hoxb genes and attenuated Hox gene response to exogenous RA treatment in utero. Regulatory potential of DE-RARE was further demonstrated by its ability to anteriorize 5׳ Hoxa gene expression in the neural tube when inserted into a HoxA BAC reporter. Our data demonstrate that multiple RAREs cooperate to remotely regulate 5׳ Hoxb genes during CNS development, providing a new insight into the mechanisms for gene regulation within the Hox clusters. PMID:24525295

  14. Modulation of Juvenile Hormone Esterase Gene Expression Against Development of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    2016-04-01

    The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a widespread and destructive pest of cruciferous crops. Owing to its increasing resistance to conventional pesticides, new strategies need to be developed for diamondback moth control. Here, we investigated factors that modulate juvenile hormone esterase (JHE) activity and jhe (Px004817) transcription, and determined the effects of these factors on subsequent growth and development in diamondback moth. Starvation inhibited JHE activity and jhe transcription, increased mortality, and decreased the rate of molting from the third- to the fourth-instar stages. Larvae kept at 32°C molted earlier and showed increased JHE activity and jhe transcription after 24-h treatment. Exposure to 1,325 mg/liter OTFP (3-octylthio-1,1,1-trifluoro-2-propanone) delayed molting and pupation, increased pupal weight, and decreased JHE activity and jhe transcription at both 24 and 48 h. Treatment with 500 mg/liter pyriproxyfen delayed molting, completely suppressed pupation, and significantly increased JHE activity at 48 h and jhe transcription at 24 and 48 h. A combination of OTFP (1,325 mg/liter) and pyriproxyfen (500 mg/liter) induced the highest mortality, delayed molting, completely suppressed pupation, and significantly increased JHE activity at 48 h and jhe transcription at 24 and 48 h. These effects on JHE activity and jhe transcription were similar to those in insects treated only with pyriproxyfen. The results demonstrated that JHE and jhe (Px004817) were involved in the responses of diamondback moth to external modulators and caused changes in growth and development. The combination of OTFP and pyriproxyfen increased the effectiveness of action against diamondback moth. PMID:26880398

  15. The Neuronal-Specific SGK1.1 (SGK1_v2) Kinase as a Transcriptional Modulator of BAG4, Brox, and PPP1CB Genes Expression

    PubMed Central

    González-Fernández, Rebeca; Ávila, Julio; Arteaga, María F.; Canessa, Cecilia M.; Martín-Vasallo, Pablo

    2015-01-01

    The Serum- and Glucocorticoid-induced Kinase 1, SGK1, exhibits a broad range of cellular functions that include regulation of the number of ion channels in plasma membrane and modulation of signaling pathways of cell survival. This diversity of functions is made possible by various regulatory processes acting upon the SGK1 gene, giving rise to various isoforms: SGK1_v1–5, each with distinct properties and distinct aminotermini that serve to target proteins to different subcellular compartments. Among cellular effects of SGK1 expression is to indirectly modulate gene transcription by phosphorylating transcriptional factors of the FOXO family. Here we examined if SGK1.1 (SGK1_v2; NM_001143676), which associates primarily to the plasma membrane, is also able to regulate gene expression. Using a differential gene expression approach we identified six genes upregulated by SGK1.1 in HeLa cells. Further analysis of transcript and protein levels validated two genes: BCL2-associated athanogene 4 (BAG-4) and Brox. The results indicate that SGK1.1 regulates gene transcription upon a different set of genes some of which participate in cell survival pathways (BAG-4) and others in intracellular vesicular traffic (Brox). PMID:25849655

  16. Genome-scale functional analysis of the human genes modulating p53 activity by regulating MDM2 expression in a p53-independent manner.

    PubMed

    Kim, Dong Min; Choi, Seung-Hyun; Yeom, Young Il; Min, Sang-Hyun; Kim, Il-Chul

    2016-09-16

    MDM2, a critical negative regulator of p53, is often overexpressed in leukemia, but few p53 mutations are found, suggesting that p53-independent MDM2 expression occurs due to alterations in MDM2 upstream regulators. In this study, a high MDM2 transcription level was observed (41.17%) regardless of p53 expression in patient with acute myeloid leukemia (AML). Therefore, we performed genome-scale functional screening of the human genes modulating MDM2 expression in a p53-independent manner. We searched co-expression profiles of genes showing a positive or negative pattern with MDM2 expression in a DNA microarray database, selected1089 links, and composed a screening library of 368 genes. Using MDM2 P1 and P2 promoter-reporter systems, we screened clones regulating MDM2 transcriptions in a p53-independent manner by overexpression. Nine clones from the screening library showed enhanced MDM2 promoter activity and MDM2 expression in p53-deficient HCT116 cells. Among them, six clones, including NTRK2, GNA15, SFRS2, EIF5A, ELAVL1, and YWHAB mediated MAPK signaling for expressing MDM2. These results indicate that p53-independent upregulation of MDM2 by increasing selected clones may lead to oncogenesis in AML and that MDM2-modulating genes are novel potential targets for AML treatment. PMID:27524244

  17. Strong Constraint on Human Genes Escaping X-Inactivation Is Modulated by their Expression Level and Breadth in Both Sexes.

    PubMed

    Slavney, Andrea; Arbiza, Leonardo; Clark, Andrew G; Keinan, Alon

    2016-02-01

    In eutherian mammals, X-linked gene expression is normalized between XX females and XY males through the process of X chromosome inactivation (XCI). XCI results in silencing of transcription from one ChrX homolog per female cell. However, approximately 25% of human ChrX genes escape XCI to some extent and exhibit biallelic expression in females. The evolutionary basis of this phenomenon is not entirely clear, but high sequence conservation of XCI escapers suggests that purifying selection may directly or indirectly drive XCI escape at these loci. One hypothesis is that this signal results from contributions to developmental and physiological sex differences, but presently there is limited evidence supporting this model in humans. Another potential driver of this signal is selection for high and/or broad gene expression in both sexes, which are strong predictors of reduced nucleotide substitution rates in mammalian genes. Here, we compared purifying selection and gene expression patterns of human XCI escapers with those of X-inactivated genes in both sexes. When we accounted for the functional status of each ChrX gene's Y-linked homolog (or "gametolog"), we observed that XCI escapers exhibit greater degrees of purifying selection in the human lineage than X-inactivated genes, as well as higher and broader gene expression than X-inactivated genes across tissues in both sexes. These results highlight a significant role for gene expression in both sexes in driving purifying selection on XCI escapers, and emphasize these genes' potential importance in human disease. PMID:26494842

  18. Prenatal Exposure to TCDD Triggers Significant Modulation of microRNA Expression Profile in the Thymus That Affects Consequent Gene Expression

    PubMed Central

    Singh, Narendra P.; Singh, Udai P.; Guan, Hongbing; Nagarkatti, Prakash; Nagarkatti, Mitzi

    2012-01-01

    Background MicroRNAs (miRs) are a class of small RNAs that regulate gene expression. There are over 700 miRs encoded in the mouse genome and modulate most of the cellular pathways and functions by controlling gene expression. However, there is not much known about the pathophysiological role of miRs. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), an environmental contaminant is well known to induce severe toxicity (acute and chronic) with long-term effects. Also, in utero exposure of fetus to TCDD has been shown to cause thymic atrophy and alterations in T cell differentiation. It is also relevant to understand “the fetal basis of adult disease” hypothesis, which proposes that prenatal exposure to certain forms of nutritional and environmental stress can cause increased susceptibility to clinical disorders later in life. In the current study, therefore, we investigated the effects of prenatal exposure to TCDD on miR profile in fetal thymocytes and searched for their possible role in causing thymic atrophy and alterations in the expression of apoptotic genes. Methodology/Principal Findings miR arrays of fetal thymocytes post exposure to TCDD and vehicle were performed. Of the 608 mouse miRs screened, 78 miRs were altered more than 1.5 fold and 28 miRs were changed more than 2 fold in fetal thymocytes post-TCDD exposure when compared to vehicle controls. We validated the expression of several of the miRs using RT-PCR. Furthermore, several of the miRs that were downregulated contained highly complementary sequence to the 3′-UTR region of AhR, CYP1A1, Fas and FasL. Also, the Ingenuity Pathway Analysis software and database was used to analyze the 78 miRs that exhibited significant expression changes and revealed that as many as 15 pathways may be affected. Conclusions/Significance These studies revealed that TCDD-mediated alterations in miR expression may be involved in the regulation of its toxicity including cancer, hepatic injury, apoptosis, and cellular

  19. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    PubMed

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (P<0.05) in LXSN rats (23+/-1, 37+/-2, and 52+/-2 at 0.5, 2, and 10 ng). Importantly, treating LSN-HHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli. PMID:15166181

  20. Coordinate Control of Expression of Nrf2-Modulated Genes in the Human Small Airway Epithelium Is Highly Responsive to Cigarette Smoking

    PubMed Central

    Hübner, Ralf-Harto; Schwartz, Jamie D; De Bishnu, P; Ferris, Barbara; Omberg, Larsson; Mezey, Jason G; Hackett, Neil R; Crystal, Ronald G

    2009-01-01

    Nuclear factor erythroid 2–related factor 2 (Nrf2) is an oxidant-responsive transcription factor known to induce detoxifying and antioxidant genes. Cigarette smoke, with its large oxidant content, is a major stress on the cells of small airway epithelium, which are vulnerable to oxidant damage. We assessed the role of cigarette smoke in activation of Nrf2 in the human small airway epithelium in vivo. Fiberoptic bronchoscopy was used to sample the small airway epithelium in healthy-nonsmoker and healthy-smoker, and gene expression was assessed using microarrays. Relative to nonsmokers, Nrf2 protein in the small airway epithelium of smokers was activated and localized in the nucleus. The human homologs of 201 known murine Nrf2-modulated genes were identified, and 13 highly smoking-responsive Nrf2-modulated genes were identified. Construction of an Nrf2 index to assess the expression levels of these 13 genes in the airway epithelium of smokers showed coordinate control, an observation confirmed by quantitative PCR. This coordinate level of expression of the 13 Nrf2-modulated genes was independent of smoking history or demographic parameters. The Nrf2 index was used to identify two novel Nrf2-modulated, smoking-responsive genes, pirin (PIR) and UDP glucuronosyltransferase 1-family polypeptide A4 (UGT1A4). Both genes were demonstrated to contain functional antioxidant response elements in the promoter region. These observations suggest that Nrf2 plays an important role in regulating cellular defenses against smoking in the highly vulnerable small airway epithelium cells, and that there is variability within the human population in the Nrf2 responsiveness to oxidant burden. PMID:19593404

  1. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Tessier, Shannon N; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B

    2015-04-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine. PMID:26093281

  2. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus

    PubMed Central

    Biggar, Kyle K.; Wu, Cheng-Wei; Tessier, Shannon N.; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B.

    2015-01-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine. PMID:26093281

  3. Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  4. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  5. Normalized lmQCM: An Algorithm for Detecting Weak Quasi-Cliques in Weighted Graph with Applications in Gene Co-Expression Module Discovery in Cancers

    PubMed Central

    Zhang, Jie; Huang, Kun

    2014-01-01

    In this paper, we present a new approach for mining weighted networks to identify densely connected modules such as quasi-cliques. Quasi-cliques are densely connected subnetworks in a network. Detecting quasi-cliques is an important topic in data mining, with applications such as social network study and biomedicine. Our approach has two major improvements upon previous work. The first is the use of local maximum edges to initialize the search in order to avoid excessive overlaps among the modules, thereby greatly reducing the computing time. The second is the inclusion of a weight normalization procedure to enable discovery of “subtle” modules with more balanced sizes. We carried out careful tests on multiple parameters and settings using two large cancer datasets. This approach allowed us to identify a large number of gene modules enriched in both biological functions and chromosomal bands in cancer data, suggesting potential roles of copy number variations (CNVs) involved in the cancer development. We then tested the genes in selected modules with enriched chromosomal bands using The Cancer Genome Atlas data, and the results strongly support our hypothesis that the coexpression in these modules are associated with CNVs. While gene coexpression network analyses have been widely adopted in disease studies, most of them focus on the functional relationships of coexpressed genes. The relationship between coexpression gene modules and CNVs are much less investigated despite the potential advantage that we can infer from such relationship without genotyping data. Our new approach thus provides a means to carry out deep mining of the gene coexpression network to obtain both functional and genetic information from the expression data. PMID:27486298

  6. The arabidopsis polyamine transporter LHRI/AtPUT3 modulates heat responsive gene expression by regulating mRNA stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyamines (PA) involve in the gene regulation by interacting with various anionic macromolecules such as DNA, RNA and proteins and modulating their structure and function. Previous studies have showed that changing in polyamine biosynthesis alters plant response to different abiotic stresses. Here,...

  7. Detection of Plant-Modulated Alterations in Antifungal Gene Expression in Pseudomonas fluorescens CHA0 on Roots by Flow Cytometry▿

    PubMed Central

    de Werra, Patrice; Baehler, Eric; Huser, Aurélie; Keel, Christoph; Maurhofer, Monika

    2008-01-01

    The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere. PMID:18165366

  8. Developmental and wound-, cold-, desiccation-, ultraviolet-B-stress-induced modulations in the expression of the petunia zinc finger transcription factor gene ZPT2-2

    PubMed

    van Der Krol AR; van Poecke RM; Vorst; Voogt; van Leeuwen W; Borst-Vrensen; Takatsuji; van Der Plas LH

    1999-12-01

    The ZPT2-2 gene belongs to the EPF gene family in petunia (Petunia hybrida), which encodes proteins with TFIIIA-type zinc-finger DNA-binding motifs. To elucidate a possible function for ZPT2-2, we analyzed its pattern of expression in relation to different developmental and physiological stress signals. The activity of the ZPT2-2 promoter was analyzed using a firefly luciferase (LUC) reporter gene, allowing for continuous measurements of transgene activity in planta. We show that ZPT2-2::LUC is active in all plant tissues, but is strongly modulated in cotyledons upon germination, in leaves in response to desiccation, cold treatment, wounding, or ultraviolet-B light, and in petal tissue in response to pollination of the stigma. Analysis of mRNA levels indicated that the modulations in ZPT2-2::LUC expression reflect modulations in endogenous ZPT2-2 gene expression. The change in ZPT2-2::LUC activity by cold treatment, wounding, desiccation, and ultraviolet-B light suggest that the phytohormones ethylene and jasmonic acid are involved in regulating the expression of ZPT2-2. Although up-regulation of expression of ZPT2-2 can be blocked by inhibitors of ethylene perception, expression in plants is not induced by exogenously applied ethylene. The application of jasmonic acid does result in an up-regulation of gene activity and, thus, ZPT2-2 may play a role in the realization of the jasmonic acid hormonal responses in petunia. PMID:10594102

  9. Early and sustained expression of latent and host modulating genes in coordinated transcriptional program of KSHV productive primary infection of human primary endothelial cells

    PubMed Central

    Yoo, Seung Min; Zhou, Fu-Chun; Ye, Feng-Chun; Pan, Hong-Yi; Gao, Shou-Jiang

    2009-01-01

    Coordinated expression of viral genes in primary infection is essential for successful infection of host cells. We examined the expression profiles of Kaposi’s sarcoma-associated herpesvirus (KSHV) transcripts in productive primary infection of primary human umbilical vein endothelial cells by whole-genome reverse-transcription real-time quantitative PCR. The latent transcripts were expressed early and sustained at high levels throughout the infection while the lytic transcripts were expressed in the order of immediate early, early, and lytic transcripts, all of which culminated before the production of infectious virions. Significantly, transcripts encoding genes with host modulating functions, including mitogenic and cell cycle-regulatory, immune-modulating, and anti-apoptotic genes, were expressed before those encoding viral structure and replication genes, and sustained at high levels throughout the infection, suggesting KSHV manipulation of host environment to facilitate infection. The KSHV transcriptional program in a primary infection defined in this study should provide a basis for further investigation of virus–cell interactions. PMID:16154170

  10. In the rat brain acetyl-L-carnitine treatment modulates the expression of genes involved in neuronal ceroid lipofuscinosis.

    PubMed

    Traina, Giovanna; Bernardi, Rodolfo; Cataldo, Enrico; Macchi, Monica; Durante, Mauro; Brunelli, Marcello

    2008-10-01

    Acetyl-L-carnitine (ALC) is a naturally occurring substance that, when administered at supraphysiological concentration, is neuroprotective. It is a molecule of considerable interest for its clinical application in various neural disorders, including Alzheimer's disease and painful neuropathies. Suppression subtractive hybridization methodology was used for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts in the rat brain after ALC treatment. The method generates an equalized representation of differentially expressed genes irrespective of their relative abundance and it is based on the construction of forward and reverse cDNA libraries that allow the identification of the genes which are regulated by ALC. We report that ALC treatment: (1) upregulates lysosomal H(+)/ATPase gene expression and (2) downregulates myelin basic protein gene expression. The expression of these genes is altered in some forms of neuronal ceroid lipofuscinosis (NCL) pathologies. In this case, ALC might rebalance the disorders underlying NCL disease represented by a disturbance in pH homeostasis affecting the acidification of vesicles transported to lysosomal compartment for degradation. This study provides evidence that ALC controls genes involved in these serious neurological pathologies and provides insights into the ways in which ALC might exert its therapeutic benefits. PMID:18726077

  11. Modulation of NADPH-oxidase gene expression in rolB-transformed calli of Arabidopsis thaliana and Rubia cordifolia.

    PubMed

    Veremeichik, Galina; Bulgakov, Victor; Shkryl, Yury

    2016-08-01

    Expression of rol genes from Agrobacterium rhizogenes induces reprogramming of transformed plant cells and provokes pleiotropic effects on primary and secondary metabolism. We have previously established that the rolB and rolC genes impair reactive oxygen species (ROS) generation in transformed cells of Rubia cordifolia and Arabidopsis thaliana. In the present investigation, we tested whether this effect is associated with changes in the expression levels of NADPH oxidases, which are considered to be the primary source of ROS during plant-microbe interactions. We identified two full-length NADPH oxidase genes from R. cordifolia and examined their expression in non-transformed and rolB-transformed calli. In addition, we examined the expression of their homologous genes from A. thaliana in non-transformed and rolB-expressing cells. The expression of Rboh isoforms was 3- to 7-fold higher in both R. cordifolia and A. thaliana rolB-transformed cells compared with non-transformed cells. Our results for the first time show that Agrobacterium rolB gene regulates particular NADPH oxidase isoforms. PMID:27208504

  12. miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells

    SciTech Connect

    Gao, Fei; Zhao, Zun-Lan; Zhao, Wen-Tao; Fan, Quan-Rong; Wang, Sheng-Chun; Li, Jing; Zhang, Yu-Qing; Shi, Jun-Wen; Lin, Xiao-Lin; Yang, Sheng; Xie, Rao-Ying; Liu, Wei; Zhang, Ting-Ting; Sun, Yong-Liang; Xu, Kang; Yao, Kai-Tai; Xiao, Dong

    2013-02-15

    Highlights: ► miR-9 can negatively or positively modulate interferon-induced gene expression. ► miR-9 can up-regulate major histocompatibility complex class I molecule expression. ► miR-9 can down-regulate the expression of interleukin-related genes. -- Abstract: The functions of miR-9 in some cancers are recently implicated in regulating proliferation, epithelial–mesenchymal transition (EMT), invasion and metastasis, apoptosis, and tumor angiogenesis, etc. miR-9 is commonly down-regulated in nasopharyngeal carcinoma (NPC), but the exact roles of miR-9 dysregulation in the pathogenesis of NPC remains unclear. Therefore, we firstly used miR-9-expressing CNE2 cells to determine the effects of miR-9 overexpression on global gene expression profile by microarray analysis. Microarray-based gene expression data unexpectedly demonstrated a significant number of up- or down-regulated immune- and inflammation-related genes, including many well-known interferon (IFN)-induced genes (e.g., IFI44L, PSMB8, IRF5, PSMB10, IFI27, PSB9{sub H}UMAN, IFIT2, TRAIL, IFIT1, PSB8{sub H}UMAN, IRF1, B2M and GBP1), major histocompatibility complex (MHC) class I molecules (e.g., HLA-B, HLA-C, HLA-F and HLA-H) and interleukin (IL)-related genes (e.g., IL20RB, GALT, IL7, IL1B, IL11, IL1F8, IL1A, IL6 and IL7R), which was confirmed by qRT-PCR. Moreover, the overexpression of miR-9 with the miRNA mimics significantly up- or down-regulated the expression of above-mentioned IFN-inducible genes, MHC class I molecules and IL-related genes; on the contrary, miR-9 inhibition by anti-miR-9 inhibitor in CNE2 and 5–8F cells correspondingly decreased or increased the aforementioned immune- and inflammation-related genes. Taken together, these findings demonstrate, for the first time, that miR-9 can modulate the expression of IFN-induced genes and MHC class I molecules in human cancer cells, suggesting a novel role of miR-9 in linking inflammation and cancer, which remains to be fully characterized.

  13. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    SciTech Connect

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin

  14. Estrogen-related receptor β deletion modulates whole-body energy balance via estrogen-related receptor γ and attenuates neuropeptide Y gene expression.

    PubMed

    Byerly, Mardi S; Al Salayta, Muhannad; Swanson, Roy D; Kwon, Kiwook; Peterson, Jonathan M; Wei, Zhikui; Aja, Susan; Moran, Timothy H; Blackshaw, Seth; Wong, G William

    2013-04-01

    Estrogen-related receptors (ERRs) α, β and γ are orphan nuclear hormone receptors with no known ligands. Little is known concerning the role of ERRβ in energy homeostasis, as complete ERRβ-null mice die mid-gestation. We generated two viable conditional ERRβ-null mouse models to address its metabolic function. Whole-body deletion of ERRβ in Sox2-Cre:ERRβ(lox/lox) mice resulted in major alterations in body composition, metabolic rate, meal patterns and voluntary physical activity levels. Nestin-Cre:ERRβ(lox/lox) mice exhibited decreased expression of ERRβ in hindbrain neurons, the predominant site of expression, decreased neuropeptide Y (NPY) gene expression in the hindbrain, increased lean body mass, insulin sensitivity, increased energy expenditure, decreased satiety and decreased time between meals. In the absence of ERRβ, increased ERRγ signaling decreased satiety and the duration of time between meals, similar to meal patterns observed for both the Sox2-Cre:ERRβ(lox/lox) and Nestin-Cre:ERRβ(lox/lox) strains of mice. Central and/or peripheral ERRγ signaling may modulate these phenotypes by decreasing NPY gene expression. Overall, the relative expression ratio between ERRβ and ERRγ may be important in modulating ingestive behavior, specifically satiety, gene expression, as well as whole-body energy balance. PMID:23360481

  15. Modulation of RIZ gene expression is associated to estradiol control of MCF-7 breast cancer cell proliferation.

    PubMed

    Gazzerro, Patrizia; Abbondanza, Ciro; D'Arcangelo, Andrea; Rossi, Mariangela; Medici, Nicola; Moncharmont, Bruno; Puca, Giovanni Alfredo

    2006-02-01

    The retinoblastoma protein-interacting zinc-finger (RIZ) gene, a member of the nuclear protein methyltransferase superfamily, is characterized by the presence of the N-terminal PR domain. The RIZ gene encodes for two proteins, RIZ1 and RIZ2. While RIZ1 contains the PR (PRDI-BF1 and RIZ homologous) domain, RIZ2 lacks it. RIZ gene expression is altered in a variety of human cancers and RIZ1 is now considered to be a candidate tumor suppressor. Estradiol treatment of MCF-7 cells produced a selective decrease of RIZ1 transcript and an increase of total RIZ mRNA. Experiments of chromatin immunoprecipitation indicated that RIZ2 protein expression was controlled by estrogen receptor and RIZ1 had a direct repressor function on c-myc gene expression. To investigate the role of RIZ gene products as regulators of the proliferation/differentiation transition, we analyzed the effects of forced suppression of RIZ1 induced in MCF-7 cells by siRNA of the PR domain-containing form. Silencing of RIZ1 expression stimulated cell proliferation, similar to the effect of estradiol on these cells, associated with a transient increase of c-myc expression. PMID:16356493

  16. Gene expression profiles modulated by the human carcinogen aristolochic acid I in human cancer cells and their dependence on TP53

    SciTech Connect

    Simoes, Maria L.; Hockley, Sarah L.; Schwerdtle, Tanja; Schmeiser, Heinz H.; Phillips, David H.; Arlt, Volker M.

    2008-10-01

    Aristolochic acid (AA) is the causative agent of urothelial tumours associated with aristolochic acid nephropathy. These tumours contain TP53 mutations and over-express TP53. We compared transcriptional and translational responses of two isogenic HCT116 cell lines, one expressing TP53 (p53-WT) and the other with this gene knocked out (p53-null), to treatment with aristolochic acid I (AAI) (50-100 {mu}M) for 6-48 h. Modulation of 118 genes was observed in p53-WT cells and 123 genes in p53-null cells. Some genes, including INSIG1, EGR1, CAV1, LCN2 and CCNG1, were differentially expressed in the two cell lines. CDKN1A was selectively up-regulated in p53-WT cells, leading to accumulation of TP53 and CDKN1A. Apoptotic signalling, measured by caspase-3 and -7 activity, was TP53-dependent. Both cell types accumulated in S phase, suggesting that AAI-DNA adducts interfere with DNA replication, independently of TP53 status. The oncogene MYC, frequently over-expressed in urothelial tumours, was up-regulated by AAI, whereas FOS was down-regulated. Observed modulation of genes involved in endocytosis, e.g. RAB5A, may be relevant to the known inhibition of receptor-mediated endocytosis, an early sign of AA-mediated proximal tubule injury. AAI-DNA adduct formation was significantly greater in p53-WT cells than in p53-null cells. Collectively, phenotypic anchoring of the AAI-induced expression profiles to DNA adduct formation, cell-cycle parameters, TP53 expression and apoptosis identified several genes linked to these biological outcomes, some of which are TP53-dependent. These results strengthen the importance of TP53 in AA-induced cancer, and indicate that other alterations, e.g. to MYC oncogenic pathways, may also contribute.

  17. Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway.

    PubMed

    Lin, Xiuyan; Zhou, Yin; Zhang, Jianjun; Lu, Xu; Zhang, Fangyuan; Shen, Qian; Wu, Shaoyan; Chen, Yunfei; Wang, Tao; Tang, Kexuan

    2011-01-01

    Tetraploid Artemisia annua plants were successfully inducted by using colchicine, and their ploidy was confirmed by flow cytometry. Higher stomatal length but lower frequency in tetraploids were revealed and could be considered as indicators of polyploidy. The average level of artemisinin in tetraploids was increased from 39% to 56% than that of the diploids during vegetation period, as detected by high-performance liquid chromatography-evaporative light scattering detector. Gene expressions of 10 key enzymes related to artemisinin biosynthetic pathway in different ploidy level were analyzed by semiquantitative polymerase chain reaction and significant upregulation of FPS, HMGR, and artemisinin metabolite-specific Aldh1 genes were revealed in tetraploids. Slight increased expression of ADS was also detected. Our results suggest that higher artemisinin content in tetraploid A. annua may result from the upregulated expression of some key enzyme genes related to artemisinin biosynthetic pathway. PMID:21446959

  18. Expression of the bmpB Gene of Borrelia burgdorferi Is Modulated by Two Distinct Transcription Termination Events

    PubMed Central

    Ramamoorthy, Ramesh; McClain, Natalie A.; Gautam, Aarti; Scholl-Meeker, Dorothy

    2005-01-01

    bmp gene family 36 of Borrelia burgdorferi, the agent of Lyme disease, comprises four paralogs: bmpA, bmpB, bmpC, and bmpD. The bmpA and bmpB genes constitute an operon. All four genes have been found to be transcribed in cultured spirochetes. Expression from the bmpAB operon results in three distinct transcripts of 1.1, 1.6, and 2.4 kb, and the relative expression of bmpA mRNA is three- to fourfold greater than that of bmpB mRNA. However, thus far only expression of the BmpA protein has been demonstrated. Therefore, in this study we characterized the origins of the three transcripts and compared the relative expression of the BmpA and BmpB proteins. Northern blotting revealed that the three distinct transcripts originated from a single promoter located upstream of bmpA but terminated either 3′ to the bmpA (1.1-kb RNA) or bmpB (2.4-kb RNA) gene or, most unusually, within the bmpB gene (1.6-kb RNA). Termination within the bmpB gene was associated with a functional Rho-independent transcription terminator. At the protein level, we also observed a 4.3-fold greater abundance of BmpA compared to that of BmpB. These studies identify a transcription termination mechanism in B. burgdorferi resulting in the disparate expression of the two genes of the bmpAB operon. PMID:15805505

  19. Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells*

    PubMed Central

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J.

    2016-01-01

    Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process. PMID:26769970

  20. Ability of xeno- and phytoestrogens to modulate expression of estrogen-sensitive genes in rat uterus: estrogenicity profiles and uterotropic activity.

    PubMed

    Diel, P; Schulz, T; Smolnikar, K; Strunck, E; Vollmer, G; Michna, H

    2000-05-01

    The function of the uterus is regulated by female sex steroids and it is, therefore, used as the classical target organ to detect estrogenic action. Uterine response to estrogens involves the activation of a large pattern of estrogen-sensitive genes. This fact offers the opportunity to analyze the estrogenic activity of xeno- and phytoestrogens, and the mechanisms of their molecular action by a correlation of the uterotropic activity and their ability to modulate the expression of estrogen-sensitive genes. We have analyzed the expression of androgen receptor (AR), progesterone receptor (PR), estrogen receptor (ER), clusterin (CLU), complement C3 (C3), and GAPDH mRNA in the rat uterus following oral administration of ethinylestradiol (EE), bisphenol A (BPA), o,p'-DDT (DDT), p-tert-octylphenol (OCT) and daidzein (DAI). A significant stimulation of the uterine wet weight could be observed after administration of all the substances. The activity of all analyzed compounds to stimulate uterine weight was low in comparison to EE. DDT has the highest activity to stimulate uterine weight whereas BPA and DAI turned out to be less potent. The analysis of gene expression revealed a very specific profile of molecular action in response to the different compounds which cannot be detected by judging the uterotropic response alone. A dose dependent analysis revealed that C3 mRNA is already modulated at doses where no uterotropic response was detectable. Although DAI and BPA were very weak stimulators of uterine growth, these substances were able to alter the expression of AR, ER and C3 very strongly. Based on these investigations the analyzed compounds can be subdivided into distinct classes: First, compounds which exhibit a similar gene expression fingerprint as EE (e.g. OCT); second, compounds exhibiting a significant uterotropic activity, but inducing a pattern of gene expression different from EE (e.g. DDT); and third, compounds like BPA and especially DAI which exhibit a very

  1. Long non-coding RNA LINC00628 functions as a gastric cancer suppressor via long-range modulating the expression of cell cycle related genes.

    PubMed

    Zhang, Zi-Zhen; Zhao, Gang; Zhuang, Chun; Shen, Yan-Ying; Zhao, Wen-Yi; Xu, Jia; Wang, Ming; Wang, Chao-Jie; Tu, Lin; Cao, Hui; Zhang, Zhi-Gang

    2016-01-01

    To discover new biomarkers for gastric cancer (GC) diagnose and treatment, we screened the lncRNAs in GC tissues from 5 patients. We found 6 lncRNAs had altered expression, and in the same time, the levels of their neighboring genes (located near 300 kb upstream or downstream of lncRNA locus) were significantly changed. After confirming the results of microarray by qRT-PCR in 82 GC patients, the biological function of LINC00628 was examined through cell proliferation and apoptosis, cell migration and invasion, colony formation assay and cell cycle detection. We confirmed that LINC00628 functions as a GC suppressor through suppressing proliferation, migration and colony formation of cancer cells. Furthermore, LINC00628 can also suppress the tumor size in mouse xenograft models. Although LINC00628 can modulate LRRN2 expression, the GC suppressor function of LINC00628 is not LRRN2 dependent. The result of mRNA microarray indicated that LINC00628 perform GC inhibitor function through long-range modulating cell cycle related genes. Importantly, we confirmed that LINC00628 mainly located in the nucleus and interacted with EZH2, and modulated genes expression by regulating H3K27me3 level. This research shed light on the role of dysregulated LINC00628 during GC process and may serve as a potential target for therapeutic intervention. PMID:27272474

  2. Long non-coding RNA LINC00628 functions as a gastric cancer suppressor via long-range modulating the expression of cell cycle related genes

    PubMed Central

    Zhang, Zi-Zhen; Zhao, Gang; Zhuang, Chun; Shen, Yan-Ying; Zhao, Wen-Yi; Xu, Jia; Wang, Ming; Wang, Chao-Jie; Tu, Lin; Cao, Hui; Zhang, Zhi-Gang

    2016-01-01

    To discover new biomarkers for gastric cancer (GC) diagnose and treatment, we screened the lncRNAs in GC tissues from 5 patients. We found 6 lncRNAs had altered expression, and in the same time, the levels of their neighboring genes (located near 300 kb upstream or downstream of lncRNA locus) were significantly changed. After confirming the results of microarray by qRT-PCR in 82 GC patients, the biological function of LINC00628 was examined through cell proliferation and apoptosis, cell migration and invasion, colony formation assay and cell cycle detection. We confirmed that LINC00628 functions as a GC suppressor through suppressing proliferation, migration and colony formation of cancer cells. Furthermore, LINC00628 can also suppress the tumor size in mouse xenograft models. Although LINC00628 can modulate LRRN2 expression, the GC suppressor function of LINC00628 is not LRRN2 dependent. The result of mRNA microarray indicated that LINC00628 perform GC inhibitor function through long-range modulating cell cycle related genes. Importantly, we confirmed that LINC00628 mainly located in the nucleus and interacted with EZH2, and modulated genes expression by regulating H3K27me3 level. This research shed light on the role of dysregulated LINC00628 during GC process and may serve as a potential target for therapeutic intervention. PMID:27272474

  3. Homeodomain-interacting protein kinase 2, a novel autoimmune regulator interaction partner, modulates promiscuous gene expression in medullary thymic epithelial cells.

    PubMed

    Rattay, Kristin; Claude, Janine; Rezavandy, Esmail; Matt, Sonja; Hofmann, Thomas G; Kyewski, Bruno; Derbinski, Jens

    2015-02-01

    Promiscuous expression of a plethora of tissue-restricted Ags (TRAs) by medullary thymic epithelial cells (mTECs) plays an essential role in T cell tolerance. Although the cellular mechanisms by which promiscuous gene expression (pGE) imposes T cell tolerance have been well characterized, the underlying molecular mechanisms remain poorly understood. The autoimmune regulator (AIRE) is to date the only validated molecule known to regulate pGE. AIRE is part of higher-order multiprotein complexes, which promote transcription, elongation, and splicing of a wide range of target genes. How AIRE and its partners mediate these various effects at the molecular level is still largely unclear. Using a yeast two-hybrid screen, we searched for novel AIRE-interacting proteins and identified the homeodomain-interacting protein kinase 2 (HIPK2) as a novel partner. HIPK2 partially colocalized with AIRE in nuclear bodies upon cotransfection and in human mTECs in situ. Moreover, HIPK2 phosphorylated AIRE in vitro and suppressed the coactivator activity of AIRE in a kinase-dependent manner. To evaluate the role of Hipk2 in modulating the function of AIRE in vivo, we compared whole-genome gene signatures of purified mTEC subsets from TEC-specific Hipk2 knockout mice with control mice and identified a small set of differentially expressed genes. Unexpectedly, most differentially expressed genes were confined to the CD80(lo) mTEC subset and preferentially included AIRE-independent TRAs. Thus, although it modulates gene expression in mTECs and in addition affects the size of the medullary compartment, TEC-specific HIPK2 deletion only mildly affects AIRE-directed pGE in vivo. PMID:25552543

  4. Decreased systemic IGF-1 in response to calorie restriction modulates murine tumor cell growth, nuclear factor-κB activation, and inflammation-related gene expression.

    PubMed

    Harvey, Alison E; Lashinger, Laura M; Otto, Glen; Nunez, Nomeli P; Hursting, Stephen D

    2013-12-01

    Calorie restriction (CR) prevents obesity and has potent anticancer effects associated with altered hormones and cytokines. We tested the hypothesis that CR inhibits MC38 mouse colon tumor cell growth through modulation of hormone-stimulated nuclear factor (NF)-κB activation and protumorigenic gene expression. Female C57BL/6 mice were randomized (n = 30/group) to receive control diet or 30% CR diet. At 20 wk, 15 mice/group were killed for body composition analysis. At 21 wk, serum was obtained for hormone analysis. At 22 wk, mice were injected with MC38 cells; tumor growth was monitored for 24 d. Gene expression in excised tumors and MC38 cells was analyzed using real-time RT-PCR. In vitro MC38 NF-κB activation (by p65 ELISA and immunofluorescence) were measured in response to varying IGF-1 concentrations (1-400 ng/mL). Relative to controls, CR mice had decreased tumor volume, body weight, body fat, serum IGF-1, serum leptin, and serum insulin, and increased serum adiponectin (P < 0.05, each). Tumors from CR mice, versus controls, had downregulated inflammation- and/or cancer-related gene expression, including interleukin (IL)-6, IL-1β, tumor necrosis factor-α, cyclooxygenase-2, chemokine (C-C motif) ligand-2, S100A9, and F4/80, and upregulated 15-hydroxyprostaglandin dehydrogenase expression. In MC38 cells in vitro, IGF-1 increased NF-κB activation and NF-κB downstream gene expression (P < 0.05, each). We conclude that CR, in association with reduced systemic IGF-1, modulates MC38 tumor growth, NF-κB activation, and inflammation-related gene expression. Thus, IGF-1 and/or NF-κB inhibition may pharmacologically mimic the anticancer effects of CR to break the obesity-colon cancer link. PMID:22778026

  5. Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes

    NASA Technical Reports Server (NTRS)

    Shalhoub, V.; Conlon, D.; Tassinari, M.; Quinn, C.; Partridge, N.; Stein, G. S.; Lian, J. B.

    1992-01-01

    To understand the mechanisms by which glucocorticoids promote differentiation of fetal rat calvaria derived osteoblasts to produce bone-like mineralized nodules in vitro, a panel of osteoblast growth and differentiation related genes that characterize development of the osteoblast phenotype has been quantitated in glucocorticoid-treated cultures. We compared the mRNA levels of osteoblast expressed genes in control cultures of subcultivated cells where nodule formation is diminished, to cells continuously (35 days) exposed to 10(-7) M dexamethasone, a synthetic glucocorticoid, which promotes nodule formation to levels usually the extent observed in primary cultures. Tritiated thymidine labelling revealed a selective inhibition of internodule cell proliferation and promotion of proliferation and differentiation of cells forming bone nodules. Fibronectin, osteopontin, and c-fos expression were increased in the nodule forming period. Alkaline phosphatase and type I collagen expression were initially inhibited in proliferating cells, then increased after nodule formation to support further growth and mineralization of the nodule. Expression of osteocalcin was 1,000-fold elevated in glucocorticoid-differentiated cultures in relation to nodule formation. Collagenase gene expression was also greater than controls (fivefold) with the highest levels observed in mature cultures (day 35). At this time, a rise in collagen and TGF beta was also observed suggesting turnover of the matrix. Short term (48 h) effects of glucocorticoid on histone H4 (reflecting cell proliferation), alkaline phosphatase, osteopontin, and osteocalcin mRNA levels reveal both up or down regulation as a function of the developmental stage of the osteoblast phenotype. A comparison of transcriptional levels of these genes by nuclear run-on assays to mRNA levels indicates that glucocorticoids exert both transcriptional and post-transcriptional effects. Further, the presence of glucocorticoids enhances the

  6. Fruit load modulates flowering-related gene expression in buds of alternate-bearing ‘Moncada’ mandarin

    PubMed Central

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; González-Mas, M. Carmen; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.

    2012-01-01

    Background and Aims Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering. Methods First defruiting experiments were performed to manipulate blossoming intensity in ‘Moncada’ mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages. Key Results Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage. Conclusions These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to

  7. HMGN proteins modulate chromatin regulatory sites and gene expression during activation of naïve B cells

    PubMed Central

    Zhang, Shaofei; Zhu, Iris; Deng, Tao; Furusawa, Takashi; Rochman, Mark; Vacchio, Melanie S.; Bosselut, Remy; Yamane, Arito; Casellas, Rafael; Landsman, David; Bustin, Michael

    2016-01-01

    The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn−/− mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes. PMID:27112571

  8. Pinin modulates expression of an intestinal homeobox gene, Cdx2, and plays an essential role for small intestinal morphogenesis

    PubMed Central

    Joo, Jeong-Hoon; Taxter, Timothy J.; Munguba, Gustavo C.; Kim, Yong H.; Dhaduvai, Kanthi; Dunn, Nicholas W.; Degan, William J.; Oh, S. Paul; Sugrue, Stephen P.

    2010-01-01

    Pinin (Pnn), a nuclear speckle-associated protein, has been shown to function in maintenance of epithelial integrity through altering expression of several key adhesion molecules. Here we demonstrate that Pnn plays a crucial role in small intestinal development by influencing expression of an intestinal homeobox gene, Cdx2. Conditional inactivation of Pnn within intestinal epithelia resulted in significant downregulation of a caudal type homeobox gene, Cdx2, leading to obvious villus dysmorphogenesis and severely disrupted epithelial differentiation. Additionally, in Pnn-deficient small intestine, we observed upregulated Tcf/Lef reporter activity, as well as misregulated expression/distribution of β-catenin and Tcf4. Since regulation of Cdx gene expression has been closely linked to Wnt/β-catenin signaling activity, we explored the possibility of Pnn’s interaction with β-catenin, a major effector of the canonical Wnt signaling pathway. Co-immunoprecipitation assays revealed that Pnn, together with its interaction partner CtBP2, a transcriptional co-repressor, was in a complex with β-catenin. Moreover, both of these proteins were found to be recruited to the proximal promoter area of Cdx2. Taken together, our results suggest that Pnn is essential for tight regulation of Wnt signaling and Cdx2 expression during small intestinal development. PMID:20637749

  9. Colchicine modulates expression of pro-inflammatory genes in neutrophils from patients with familial Mediterranean fever and healthy subjects.

    PubMed

    Manukyan, G; Petrek, M; Tomankova, T; Martirosyan, A; Tatyan, M; Navratilova, Z; Paulu, D; Kriegova, E

    2013-01-01

    Colchicine (Col) is a microtubule depolymerizing drug, widely used for treatment of familial Mediterranean fever (FMF). Mechanisms by which Col exerts its beneficial effects are not yet completely understood, especially with respect to gene expression in polymorphonuclear neutrophils (PMNs), the main effector cells in acute inflammatory attacks of FMF. This study was, therefore, designed to elucidate possible modulatory effect of Col on expression of inflammation-related genes in circulating PMNs from 16 FMF patients in the remission period and 11 healthy subjects. In vitro effect of Col exposure (1 microg/ml) on expression of 8 selected genes was examined using quantitative real-time RT-PCR. Col up-regulated expression of IL-8 and IL-1beta genes in FMF (13-fold and 2.7-fold, p less than 0.05, respectively) and healthy (3-fold and 6.5-fold, p less than 0.05, respectively) PMNs, and down-regulated caspase-1 in FMF neutrophils (3-fold, p less than 0.05). In FMF PMNs treated with Col mRNAs of IL-8 (51-fold, p less than 0.01) and c-FOS (7-fold, p less than 0.05) transcripts were elevated compared to those from healthy subjects. By contrast, caspase-1 mRNA was decreased in FMF neutrophils compared to healthy cells (1.6-fold, p less than 0.05). Hereby, we provide evidence that, at least in vitro, Col displays pro-inflammatory potential in respect to IL-1beta and IL-8 genes. At the same time, our findings implicate suppression of caspase-1 expression by Col as a potential mechanism for its effects in FMF treatment. PMID:23830384

  10. Mechanical Loading of Cartilage Explants with Compression and Sliding Motion Modulates Gene Expression of Lubricin and Catabolic Enzymes

    PubMed Central

    Marková, Michala; Torzilli, Peter A.; Gallo, Luigi M.

    2015-01-01

    Objective Translation of the contact zone in articulating joints is an important component of joint kinematics, yet rarely investigated in a biological context. This study was designed to investigate how sliding contact areas affect cartilage mechanobiology. We hypothesized that higher sliding speeds would lead to increased extracellular matrix mechanical stress and the expression of catabolic genes. Design A cylindrical Teflon indenter was used to apply 50 or 100 N normal forces at 10, 40, or 70 mm/s sliding speed. Mechanical parameters were correlated with gene expressions using a multiple linear regression model. Results In both loading groups there was no significant effect of sliding speed on any of the mechanical parameters (strain, stress, modulus, tangential force). However, an increase in vertical force (from 50 to 100 N) led to a significant increase in extracellular matrix strain and stress. For 100 N, significant correlations between gene expression and mechanical parameters were found for TIMP-3 (r2 = 0.89), ADAMTS-5 (r2 = 0.73), and lubricin (r2 = 0.73). Conclusions The sliding speeds applied do not have an effect on the mechanical response of the cartilage, this could be explained by a partial attainment of the “elastic limit” at and above a sliding speed of 10 mm/s. Nevertheless, we still found a relationship between sliding speed and gene expression when the tissue was loaded with 100 N normal force. Thus despite the absence of speed-dependent mechanical changes (strain, stress, modulus, tangential force), the sliding speed had an influence on gene expression. PMID:26175864

  11. MicroRNA (miRNA) expression is regulated by butyrate-induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are a class of highly conserved, small non-coding RNAs (~22 nucleotides) that regulate gene expression post-transcriptionally. MicroRNAs are encoded by specific genes in the genome, which are transcribed as primary transcripts called primary miRNA. MicroRNAs (miRNAs) bind to compl...

  12. Modulation of cytokine gene expression by selected Lactobacillus isolates in the ileum, caecal tonsils and spleen of Salmonella-challenged broilers.

    PubMed

    Hu, Jie-Lun; Yu, Hai; Kulkarni, Raveendra R; Sharif, Shayan; Cui, Steve W; Xie, Ming-Yong; Nie, Shao-Ping; Gong, Joshua

    2015-01-01

    Probiotics have been used to control Salmonella colonization in the chicken intestine. Recently, we demonstrated that certain selected Lactobacillus isolates were able to reduce Salmonella infection in the chicken spleen and liver as well as down-regulated Salmonella pathogenicity island 1 virulence gene expression in the chicken caecum. To further understand the mechanisms through which Lactobacillus protected chickens from Salmonella infection, the present study has investigated the Lactobacillus isolate(s)-induced host immune response of chickens to Salmonella enterica serovar Typhimurium infection. A thorough examination of cytokine gene expression in the ileum, caecal tonsils, and spleen on days 1 and 3 post-Salmonella infection showed a dynamic spatial and temporal response to Salmonella infection and Lactobacillus treatments. In most instances, it was evident that treatment of chickens with Lactobacillus isolates could significantly attenuate Salmonella-induced changes in the gene expression profile. These included the genes encoding pro-inflammatory cytokines [lipopolysaccharide-induced TNF factor, interleukin (IL)-6, and IL-8], T helper 1 cytokines [IL-12 and interferon (IFN)-γ], and T helper 2 cytokines (IL-4 and IL-10). Another important observation from the present investigation was that the response induced by a combination of Lactobacillus isolates was generally more effective than that induced by a single Lactobacillus isolate. Our results show that administration of certain selected Lactobacillus isolates can effectively modulate Salmonella-induced cytokine gene expression, and thus help reduce Salmonella infection in chickens. PMID:26395945

  13. Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants.

    PubMed

    Leister, Dario; Kleine, Tatjana

    2016-07-01

    Retrograde signaling can be triggered by changes in organellar gene expression (OGE) induced by inhibitors such as lincomycin (LIN) or mutations that perturb OGE. Thus, an insufficiency of the organelle-targeted prolyl-tRNA synthetase PRORS1 in Arabidopsis thaliana activates retrograde signaling and reduces the expression of nuclear genes for photosynthetic proteins. Recently, we showed that mTERF6, a member of the so-called mitochondrial transcription termination factor (mTERF) family, is involved in the formation of chloroplast (cp) isoleucine-tRNA. To obtain further insights into its functions, co-expression analysis of MTERF6, PRORS1 and two other genes for organellar aminoacyl-tRNA synthetases was conducted. The results suggest a prominent role of mTERF6 in aminoacylation activity, light signaling and seed storage. Analysis of changes in whole-genome transcriptomes in the mterf6-1 mutant showed that levels of nuclear transcripts for cp OGE proteins were particularly affected. Comparison of the mterf6-1 transcriptome with that of prors1-2 showed that reduced aminoacylation of proline (prors1-2) and isoleucine (mterf6-1) tRNAs alters retrograde signaling in similar ways. Database analyses indicate that comparable gene expression changes are provoked by treatment with LIN, norflurazon or high light. A core OGE response module was defined by identifying genes that were differentially expressed under at least four of six conditions relevant to OGE signaling. Based on this module, overexpressors of the Golden2-like transcription factors GLK1 and GLK2 were identified as genomes uncoupled mutants. PMID:26876646

  14. Expression of essential genes for biosynthesis of antimicrobial peptides of Bacillus is modulated by inactivated cells of target microorganisms.

    PubMed

    Leães, Fernanda Leal; Velho, Renata Voltolini; Caldas, Danielle Gregório Gomes; Ritter, Ana Carolina; Tsai, Siu Mui; Brandelli, Adriano

    2016-01-01

    Certain Bacillus strains are important producers of antimicrobial peptides with great potential for biological control. Antimicrobial peptide production by Bacillus amyloliquefaciens P11 was investigated in the presence of heat-inactivated cells of bacteria and fungi. B. amyloliquefaciens P11 exhibited higher antimicrobial activity in the presence of inactivated cells of Staphylococcus aureus and Aspergillus parasiticus compared to other conditions tested. Expression of essential genes related to biosynthesis of the antimicrobial peptides surfactin (sfp), iturin A (lpa-14 and ituD), subtilosin A (sboA) and fengycin (fenA) was investigated by quantitative real-time PCR (qRT-PCR). The genes lpa-14 and ituD were highly expressed in the presence of S. aureus (inactivated cells), indicating induction of iturin A production by B. amyloliquefaciens P11. The other inducing condition (inactivated cells of A. parasiticus) suppressed expression of lpa-14, but increased expression of ituD. A twofold increase in fenA expression was observed for both conditions, while strong suppression of sboA expression was observed in the presence of inactivated cells of S. aureus. An increase in antimicrobial activity was observed, indicating that synthesis of antimicrobial peptides may be induced by target microorganisms. PMID:26577655

  15. Modulation of inv gene expression by the OmpR two-component response regulator protein of Yersinia enterocolitica.

    PubMed

    Raczkowska, A; Brzóstkowska, M; Kwiatek, A; Bielecki, J; Brzostek, K

    2011-07-01

    To elucidate the physiological meaning of OmpR-dependent expression of invasin gene (inv) inhibition in Yersinia enterocolitica, the function of the EnvZ/OmpR regulatory pathway in osmoregulation of inv expression was analyzed in detail. The osmoregulation of inv expression was found to be a multifaceted process involving both OmpR-dependent and -independent mechanisms. Analysis of inv transcription in strains lacking OmpR or EnvZ proteins indicated that kinase EnvZ is not the only regulator of OmpR phosphorylation. Using the transcriptional inv::lacZ fusion in a heterologous system (Escherichia coli) we tried to clarify the role of OmpR in the inv regulatory circuit composed of negative (H-NS) and positive (RovA) regulators of inv gene transcription. We were able to show a significant increase in inv expression in E. coli ompR background under H-NS( Ecoli )-repressed condition. Moreover, H-NS-mediated inv repression was relieved when RovA of Y. enterocolitica was expressed from a plasmid. Furthermore, we showed that RovA may activate inv expression irrespective on the presence of H-NS protein. Using this strategy we showed that OmpR of Y. enterocolitica decrease RovA-mediated inv activation. PMID:21818612

  16. Modulation of retinoblastoma gene in normal adult hematopoiesis: peak expression and functional role in advanced erythroid differentiation.

    PubMed Central

    Condorelli, G L; Testa, U; Valtieri, M; Vitelli, L; De Luca, A; Barberi, T; Montesoro, E; Campisi, S; Giordano, A; Peschle, C

    1995-01-01

    The retinoblastoma (RB) gene specifies a nuclear phosphoprotein (pRb 105), which is a prototype tumor suppressor inactivated in a variety of human tumors. Recent studies suggest that RB is also involved in embryonic development of murine central nervous and hematopoietic systems. We have investigated RB expression and function in human adult hematopoiesis--i.e., in liquid suspension culture of purified quiescent hematopoietic progenitor cells (HPCs) induced by growth factor stimulus to proliferation and unilinage differentiation/maturation through the erythroid or granulocytic lineage. In the initial HPC differentiation stages, the RB gene is gradually induced at the mRNA and protein level in both erythroid and granulopoietic cultures. In late HPC differentiation and then precursor maturation, RB gene expression is sustained in the erythroid lineage, whereas it is sharply downmodulated in the granulocytic series. Functional studies were performed by treatment of HPC differentiation culture with phosphorothioate antisense oligomer targeting Rb mRNA; coherent with the expression pattern, oligomer treatment of late HPCs causes a dose-dependent and selective inhibition of erythroid colony formation. These observations suggest that the RB gene plays an erythroid- and stage-specific functional role in normal adult hematopoiesis, particularly at the level of late erythroid HPCs. Images Fig. 2 Fig. 3 Fig. 4 PMID:7761404

  17. TCF7L1 Modulates Colorectal Cancer Growth by Inhibiting Expression of the Tumor-Suppressor Gene EPHB3.

    PubMed

    Murphy, Matthew; Chatterjee, Sujash S; Jain, Sidharth; Katari, Manpreet; DasGupta, Ramanuj

    2016-01-01

    Dysregulation of the Wnt pathway leading to accumulation of β-catenin (CTNNB1) is a hallmark of colorectal cancer (CRC). Nuclear CTNNB1 acts as a transcriptional coactivator with TCF/LEF transcription factors, promoting expression of a broad set of target genes, some of which promote tumor growth. However, it remains poorly understood how CTNNB1 interacts with different transcription factors in different contexts to promote different outcomes. While some CTNNB1 target genes are oncogenic, others regulate differentiation. Here, we found that TCF7L1, a Wnt pathway repressor, buffers CTNNB1/TCF target gene expression to promote CRC growth. Loss of TCF7L1 impaired growth and colony formation of HCT116 CRC cells and reduced tumor growth in a mouse xenograft model. We identified a group of CTNNB1/TCF target genes that are activated in the absence of TCF7L1, including EPHB3, a marker of Paneth cell differentiation that has also been implicated as a tumor suppressor in CRC. Knockdown of EPHB3 partially restores growth and normal cell cycle progression of TCF7L1-Null cells. These findings suggest that while CTNNB1 accumulation is critical for CRC progression, activation of specific Wnt target genes in certain contexts may in fact inhibit tumor growth. PMID:27333864

  18. TCF7L1 Modulates Colorectal Cancer Growth by Inhibiting Expression of the Tumor-Suppressor Gene EPHB3

    PubMed Central

    Murphy, Matthew; Chatterjee, Sujash S.; Jain, Sidharth; Katari, Manpreet; DasGupta, Ramanuj

    2016-01-01

    Dysregulation of the Wnt pathway leading to accumulation of β-catenin (CTNNB1) is a hallmark of colorectal cancer (CRC). Nuclear CTNNB1 acts as a transcriptional coactivator with TCF/LEF transcription factors, promoting expression of a broad set of target genes, some of which promote tumor growth. However, it remains poorly understood how CTNNB1 interacts with different transcription factors in different contexts to promote different outcomes. While some CTNNB1 target genes are oncogenic, others regulate differentiation. Here, we found that TCF7L1, a Wnt pathway repressor, buffers CTNNB1/TCF target gene expression to promote CRC growth. Loss of TCF7L1 impaired growth and colony formation of HCT116 CRC cells and reduced tumor growth in a mouse xenograft model. We identified a group of CTNNB1/TCF target genes that are activated in the absence of TCF7L1, including EPHB3, a marker of Paneth cell differentiation that has also been implicated as a tumor suppressor in CRC. Knockdown of EPHB3 partially restores growth and normal cell cycle progression of TCF7L1-Null cells. These findings suggest that while CTNNB1 accumulation is critical for CRC progression, activation of specific Wnt target genes in certain contexts may in fact inhibit tumor growth. PMID:27333864

  19. Gene expression modulation in TGF-β3-mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness

    PubMed Central

    Guo, Qianping; Liu, Chen; Li, Jun; Zhu, Caihong; Yang, Huilin; Li, Bin

    2015-01-01

    Tissue engineering has recently evolved into a promising approach for annulus fibrosus (AF) regeneration. However, selection of an ideal cell source, which can be readily differentiated into AF cells of various regions, remains challenging because of the heterogeneity of AF tissue. In this study, we set out to explore the feasibility of using transforming growth factor-β3-mediated bone marrow stem cells (tBMSCs) for AF tissue engineering. Since the differentiation of stem cells significantly relies on the stiffness of substrate, we fabricated nanofibrous scaffolds from a series of biodegradable poly(ether carbonate urethane)-urea (PECUU) materials whose elastic modulus approximated that of native AF tissue. We cultured tBMSCs on PECUU scaffolds and compared their gene expression profile to AF-derived stem cells (AFSCs), the newly identified AF tissue-specific stem cells. As predicted, the expression of collagen-I in both tBMSCs and AFSCs increased with scaffold stiffness, whereas the expression of collagen-II and aggrecan genes showed an opposite trend. Interestingly, the expression of collagen-I, collagen-II and aggrecan genes in tBMSCs on PECUU scaffolds were consistently higher than those in AFSCs regardless of scaffold stiffness. In addition, the cell traction forces (CTFs) of both tBMSCs and AFSCs gradually decreased with scaffold stiffness, which is similar to the CTF change of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that tBMSCs had strong tendency to differentiate into various types of AF cells and presented gene expression profiles similar to AFSCs, thereby establishing a rationale for the use of tBMSCs in AF tissue engineering. PMID:25752910

  20. Sildenafil promotes smooth muscle preservation and ameliorates fibrosis through modulation of extracellular matrix and tissue growth factor gene expression after bilateral cavernosal nerve resection in the rat

    PubMed Central

    Sirad, Fara; Hlaing, Su; Kovanecz, Istvan; Artaza, Jorge N.; Garcia, Leah A.; Rajfer, Jacob; Ferrini, Monica G.

    2010-01-01

    Introduction It has been shown that PDE 5 inhibitors preserve smooth muscle (SM) content and ameliorate the fibrotic degeneration normally seen in the corpora cavernosa after bilateral cavernosal nerve resection (BCNR). However, the downstream mechanisms by which these drugs protect the corpora cavernosa remain poorly understood. Aim To provide insight into the mechanism, we aimed to determine the gene expression profile of angiogenesis related pathways within the penile tissue after BCNR with or without continuous sildenafil treatment. Methods 5-month old Fisher rats were subjected to BCNR or sham operation and treated with or without sildenafil (20 mg/Kg. B.W drinking water) for 3 days or 45 days (n=8 rats per group). Total RNAs isolated from the denuded penile shaft and prostate were subjected to reverse transcription and to angiogenesis real time-PCR arrays (84 genes). Changes in protein expression of selected genes such as epiregulin and CTGF were corroborated by western blot and immunohistochemistry. Main outcomes measures Genes modulated by BCNR and sildenafil treatment. Results A decreased expression of genes related to SM growth factors such as epiregulin (EREG), platelet derived growth factor (PDGF), extracellular matrix regulators such as metalloproteinases 3 and 9, endothelial growth factors, together with an up-regulation of pro-fibrotic genes such as connective tissue growth factor (CTGF) and TGFβ2 were found at both time points after BCNR. Sildenafil treatment reversed this process by up-regulating endothelial and SM growth factors and down-regulating pro-fibrotic factors. Sildenafil did not affect the expression of EREG, VEGF, PDGF in the ventral prostate of BCNR animals Conclusions Sildenafil treatment after BCNR activates genes related to SM preservation and down regulates genes related to fibrosis in the corpora cavernosa. These results provide a mechanistic justification for the use of sildenafil and other PDE5 inhibitors as protective therapy

  1. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-11-14

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins

  2. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics

    PubMed Central

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-01-01

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and

  3. Feeding state, insulin and NPR-1 modulate chemoreceptor gene expression via integration of sensory and circuit inputs.

    PubMed

    Gruner, Matthew; Nelson, Dru; Winbush, Ari; Hintz, Rebecca; Ryu, Leesun; Chung, Samuel H; Kim, Kyuhyung; Gabel, Chrisopher V; van der Linden, Alexander M

    2014-10-01

    Feeding state and food availability can dramatically alter an animals' sensory response to chemicals in its environment. Dynamic changes in the expression of chemoreceptor genes may underlie some of these food and state-dependent changes in chemosensory behavior, but the mechanisms underlying these expression changes are unknown. Here, we identified a KIN-29 (SIK)-dependent chemoreceptor, srh-234, in C. elegans whose expression in the ADL sensory neuron type is regulated by integration of sensory and internal feeding state signals. We show that in addition to KIN-29, signaling is mediated by the DAF-2 insulin-like receptor, OCR-2 TRPV channel, and NPR-1 neuropeptide receptor. Cell-specific rescue experiments suggest that DAF-2 and OCR-2 act in ADL, while NPR-1 acts in the RMG interneurons. NPR-1-mediated regulation of srh-234 is dependent on gap-junctions, implying that circuit inputs regulate the expression of chemoreceptor genes in sensory neurons. Using physical and genetic manipulation of ADL neurons, we show that sensory inputs from food presence and ADL neural output regulate srh-234 expression. While KIN-29 and DAF-2 act primarily via the MEF-2 (MEF2) and DAF-16 (FOXO) transcription factors to regulate srh-234 expression in ADL neurons, OCR-2 and NPR-1 likely act via a calcium-dependent but MEF-2- and DAF-16-independent pathway. Together, our results suggest that sensory- and circuit-mediated regulation of chemoreceptor genes via multiple pathways may allow animals to precisely regulate and fine-tune their chemosensory responses as a function of internal and external conditions. PMID:25357003

  4. Feeding State, Insulin and NPR-1 Modulate Chemoreceptor Gene Expression via Integration of Sensory and Circuit Inputs

    PubMed Central

    Gruner, Matthew; Nelson, Dru; Winbush, Ari; Hintz, Rebecca; Ryu, Leesun; Chung, Samuel H.; Kim, Kyuhyung; Gabel, Chrisopher V.; van der Linden, Alexander M.

    2014-01-01

    Feeding state and food availability can dramatically alter an animals' sensory response to chemicals in its environment. Dynamic changes in the expression of chemoreceptor genes may underlie some of these food and state-dependent changes in chemosensory behavior, but the mechanisms underlying these expression changes are unknown. Here, we identified a KIN-29 (SIK)-dependent chemoreceptor, srh-234, in C. elegans whose expression in the ADL sensory neuron type is regulated by integration of sensory and internal feeding state signals. We show that in addition to KIN-29, signaling is mediated by the DAF-2 insulin-like receptor, OCR-2 TRPV channel, and NPR-1 neuropeptide receptor. Cell-specific rescue experiments suggest that DAF-2 and OCR-2 act in ADL, while NPR-1 acts in the RMG interneurons. NPR-1-mediated regulation of srh-234 is dependent on gap-junctions, implying that circuit inputs regulate the expression of chemoreceptor genes in sensory neurons. Using physical and genetic manipulation of ADL neurons, we show that sensory inputs from food presence and ADL neural output regulate srh-234 expression. While KIN-29 and DAF-2 act primarily via the MEF-2 (MEF2) and DAF-16 (FOXO) transcription factors to regulate srh-234 expression in ADL neurons, OCR-2 and NPR-1 likely act via a calcium-dependent but MEF-2- and DAF-16-independent pathway. Together, our results suggest that sensory- and circuit-mediated regulation of chemoreceptor genes via multiple pathways may allow animals to precisely regulate and fine-tune their chemosensory responses as a function of internal and external conditions. PMID:25357003

  5. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain

    PubMed Central

    Martins, Rute S. T.; Gomez, Ana; Zanuy, Silvia; Carrillo, Manuel; Canário, Adelino V. M.

    2015-01-01

    The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis. PMID:26641263

  6. Modulation Effect of HIV-1 Viral Proteins and Nicotine on Expression of the Immune-Related Genes in Brain of the HIV-1 Transgenic Rats.

    PubMed

    Yang, Zhongli; Nesil, Tanseli; Connaghan, Kaitlyn P; Li, Ming D; Chang, Sulie L

    2016-09-01

    The human immunodeficiency virus-1 transgenic (HIV-1Tg) rat is a non-infectious rodent model for HIV-1 infection which develops altered immune-responses similar to those in persons infected with HIV-1. HIV-1Tg and F344 rats respond significantly different to morphine, ethanol, nicotine and other psychostimulants, although the molecular mechanisms underlying these differences remain largely undetermined. Here, we compared expression of 52 immune-related genes in the prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) of HIV-1Tg and F344 rats treated with either nicotine (0.4 mg/kg nicotine, base, s.c.) or saline for 27 days, to identify differentially expressed genes in the presence of HIV-1 with and without nicotine treatment. Using quantitative RT-PCR array, we measured RNA expression levels. Results showed that RNA expression of CASP3, CCL5, CX3CL1, CX3CR1, IL1α, LRF4, LFR7, TGFβ1 and TLR4 in NAc, CCL2, CCL5, TGFβ1 and TLR4 in PFC, and CASP3, CX3CR1, IFNα1, IL1β and IL6 in VTA was significantly modulated in HIV-1Tg rats compared with F344 rats. IL1α showed a 58 % (P = 0.000072) decrease and IRF6 showed a 93.7 % increase (P = 0.000227) in the NAc of HIV-1Tg compared with F344 rats; results remained significant after correction for multiple testing. We also found that several genes were significantly modulated by nicotine in HIV-1Tg rats while only a small number of immune-related genes were altered by nicotine in F344 rats. These findings imply that HIV-1 viral proteins greatly impact immune function and alter responsiveness to nicotine in certain immune-related genes. PMID:27147085

  7. Expression of Rice CYP450-Like Gene (Os08g01480) in Arabidopsis Modulates Regulatory Network Leading to Heavy Metal and Other Abiotic Stress Tolerance

    PubMed Central

    Rai, Arti; Singh, Ruchi; Shirke, Pramod Arvind; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2015-01-01

    Heavy metal (HM) toxicity has become a grave problem in the world since it leads to hazardous effects on living organisms. Transcriptomic/proteomic studies in plants have identified a large number of metal-responsive gene families. Of these, cytochrome-P450 (CYPs) family members are composed of enzymes carrying out detoxification of exogenous molecules. Here, we report a CYP-like protein encoded by Os08g01480 locus in rice that helps the plant to combat HM and other abiotic stresses. To functionally characterize CYP-like gene, cDNA and promoter were isolated from rice to develop Arabidopsis transgenic lines. Heterologous expression of Os08g01480 in Arabidopsis provided significant tolerance towards abiotic stresses. In silico analysis reveals that Os08g01480 might help plants to combat environmental stress via modulating auxin metabolism. Transgenic lines expressing reporter gene under control of Os08g01480 promoter demonstrated differential promoter activity in different tissues during environmental stresses. These studies indicated that differential expression of Os08g01480 might be modulating response of plants towards environmental stresses as well as in different developmental stages. PMID:26401987

  8. Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation

    PubMed Central

    JOËT, THIERRY; SALMONA, JORDI; LAFFARGUE, ANDRÉINA; DESCROIX, FRÉDÉRIC; DUSSERT, STÉPHANE

    2010-01-01

    Developing Coffea arabica seeds accumulate large amounts of chlorogenic acids (CGAs) as a storage form of phenylpropanoid derivatives, making coffee a valuable model to investigate the metabolism of these widespread plant phenolics. However, developmental and environmental regulations of CGA metabolism are poorly understood. In the present work, the expression of selected phenylpropanoid genes, together with CGA isomer profiles, was monitored throughout seed development across a wide set of contrasted natural environments. Although CGA metabolism was controlled by major developmental factors, the mean temperature during seed development had a direct impact on the time-window of CGA biosynthesis, as well as on final CGA isomer composition through subtle transcriptional regulations. We provide evidence that the variability induced by the environment is a useful tool to test whether CGA accumulation is quantitatively modulated at the transcriptional level, hence enabling detection of rate-limiting transcriptional steps [quantitative trait transcripts (QTTs)] for CGA biosynthesis. Variations induced by the environment also enabled a better description of the phenylpropanoid gene transcriptional network throughout seed development, as well as the detection of three temporally distinct modules of quantitatively co-expressed genes. Finally, analysis of metabolite-to-metabolite relationships revealed new biochemical characteristics of the isomerization steps that remain uncharacterized at the gene level. PMID:20199615

  9. A TOMM40 poly-T variant modulates gene expression and is associated with vocabulary ability and decline in nonpathologic aging.

    PubMed

    Payton, A; Sindrewicz, P; Pessoa, V; Platt, H; Horan, M; Ollier, W; Bubb, V J; Pendleton, N; Quinn, J P

    2016-03-01

    The Translocase of Outer Mitochondrial Membrane 40 Homolog and Apolipoprotein E (TOMM40-APOE) locus has been associated with a number of age-related phenotypes in humans including nonpathologic cognitive aging, late-onset Alzheimer's disease, and longevity. Here, we investigate the influence of the TOMM40 intron 6 poly-T variant (rs10524523) on TOMM40 gene expression and cognitive abilities and decline in a cohort of 1613 community-dwelling elderly volunteers who had been followed for changes in cognitive functioning over a period of 14 years (range = 12-18 years). We showed that the shorter length poly-T variants were found to act as a repressor of luciferase gene expression in reporter gene constructs. Expression was reduced to approximately half of that observed for the very long variant. We further observed that the shorter poly-T variant was significantly associated with reduced vocabulary ability and a slower rate of vocabulary decline with age compared to the very long poly-T variants. No significant associations were observed for memory, fluid intelligence or processing speed, although the direction of effect, where the short variant was correlated with reduced ability and slower rate of decline was observed for all tests. Our results indicate that the poly-T variant has the ability to interact with transcription machinery and differentially modulate reporter gene expression and influence vocabulary ability and decline with age. PMID:26742953

  10. Functional characterization of the human TPH2 5′ regulatory region: untranslated region and polymorphisms modulate gene expression in vitro

    PubMed Central

    Chen, Guo-Lin; Vallender, Eric J.; Miller, Gregory M.

    2009-01-01

    Tryptophan hydroxylase-2 (TPH2) is a recently identified TPH isoform responsible for neuronal serotonin (5-HT) synthesis, and TPH2 polymorphisms are associated with a range of behavioral traits and psychiatric disorders. This study characterized cis-acting elements and three common polymorphisms (−703G/T, −473T/A, and 90A/G) in the 5′ regulatory region of human TPH2 by using luciferase reporter assay, quantitative real-time PCR, and electrophoretic mobility shift assay (EMSA). The core promoter of human TPH2 was localized to the region between −107 and +7, and the segment of +8 to +53 within the 5′-UTR was found to exert a potent inhibitory effect on gene expression at both transcriptional and post-transcriptional levels. In both RN46A and HEK-293 cell lines, the TTA (−703T/−473T/90A) haplotype of the three polymorphisms showed the lowest gene expression compared with other haplotypes, and the −703G/T and −473T/A polymorphisms tended to exert a synergic effect on gene expression dependent upon the sequence of the 5′-UTR. In RN46A, the 90A/G polymorphism significantly increased luciferase activity and mRNA level irrespective of the other two polymorphisms, while in HEK-293 cells the effect of 90A/G was dependent on the alleles at loci −703 and −473. EMSA showed that all the three polymorphisms potentially alter DNA–protein interactions, while the 90A/G polymorphism predictably alters the 5′-UTR secondary structure of mRNA and influences RNA–protein interactions. In conclusion, our present study demonstrates that both the 5′-UTR and common polymorphisms (especially the 90A/G) in the 5′ regulatory region of human TPH2 have a significant impact on gene expression. PMID:17972101

  11. Modulation of Anopheles stephensi Gene Expression by Nitroquine, an Antimalarial Drug against Plasmodium yoelii Infection in the Mosquito

    PubMed Central

    Zhang, Jian; Zhang, Shuguang; Wang, Yanyan; Xu, Wenyue; Zhang, Jingru; Jiang, Haobo; Huang, Fusheng

    2014-01-01

    Background Antimalarial drugs may impact mosquito’s defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite. Methodology/Principal Findings We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity. Conclusions/Significance Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug’s impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species. PMID:24586804

  12. C2ORF40 suppresses breast cancer cell proliferation and invasion through modulating expression of M phase cell cycle genes

    PubMed Central

    Lu, Jing; Wen, Mingxin; Huang, Yurong; He, Xiuquan; Wang, Yunshan; Wu, Qi; Li, Zengchun; Castellanos-Martin, Andres; Abad, Mar; Cruz-Hernandez, Juan J.; Rodriguez, Cesar A.; Perez-Losada, Jesus; Mao, Jian-Hua; Wei, Guangwei

    2013-01-01

    Recently, it has been suggested that C2ORF40 is a candidate tumor suppressor gene in breast cancer. However, the mechanism for reduced expression of C2ORF40 and its functional role in breast cancers remain unclear. Here we show that C2ORF40 is frequently silenced in human primary breast cancers and cell lines through promoter hypermethylation. C2ORF40 mRNA level is significantly associated with patient disease-free survival and distant cancer metastasis. Overexpression of C2ORF40 inhibits breast cancer cell proliferation, migration and invasion. By contrast, silencing C2ORF40 expression promotes these biological phenotypes. Bioinformatics and FACS analysis reveal C2ORF40 functions at G2/M phase by downregulation of mitotic genes expression, including UBE2C. Our results suggest that C2ORF40 acts as a tumor suppressor gene in breast cancer pathogenesis and progression and is a candidate prognostic marker for this disease. PMID:23770814

  13. Cystatin D locates in the nucleus at sites of active transcription and modulates gene and protein expression.

    PubMed

    Ferrer-Mayorga, Gemma; Alvarez-Díaz, Silvia; Valle, Noelia; De Las Rivas, Javier; Mendes, Marta; Barderas, Rodrigo; Canals, Francesc; Tapia, Olga; Casal, J Ignacio; Lafarga, Miguel; Muñoz, Alberto

    2015-10-30

    Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer. PMID:26364852

  14. Synergistic Stimulation with Different TLR7 Ligands Modulates Gene Expression Patterns in the Human Plasmacytoid Dendritic Cell Line CAL-1

    PubMed Central

    Hilbert, Tobias; Steinhagen, Folkert; Weisheit, Christina; Baumgarten, Georg; Hoeft, Andreas; Klaschik, Sven

    2015-01-01

    Objective. TLR7 ligation in plasmacytoid dendritic cells is promising for the treatment of cancer, allergy, and infectious diseases; however, high doses of ligands are required. We hypothesized that the combination of structurally different TLR7 ligands exponentiates the resulting immune response. Methods. CAL-1 (human pDC line) cells were incubated with the TLR7-specific adenine analog CL264 and single-stranded 9.2s RNA. Protein secretion was measured by ELISA. Microarray technique was used to detect modified gene expression patterns upon synergistic stimulation, revealing underlying functional groups and networks. Cell surface binding properties were studied using FACS analysis. Results. CL264 in combination with 9.2s RNA significantly enhanced cytokine and interferon secretion to supra-additive levels. This effect was due to a stronger stimulation of already regulated genes (by monostimulation) as well as to recruitment of thus far unregulated genes. Top scoring canonical pathways referred to immune-related processes. Network analysis revealed IL-1β, IL-6, TNF, and IFN-β as major regulatory nodes, while several minor regulatory nodes were also identified. Binding of CL264 to the cell surface was enhanced by 9.2s RNA. Conclusion. Structurally different TLR7 ligands act synergistically on gene expression patterns and on the resulting inflammatory response. These data could impact future strategies optimizing TLR7-targeted drug design. PMID:26770023

  15. Modulation of the Expression of the Proinflammatory IL-8 Gene in Cystic Fibrosis Cells by Extracts Deriving from Olive Mill Waste Water

    PubMed Central

    Lampronti, Ilaria; Borgatti, Monica; Vertuani, Silvia; Manfredini, Stefano; Gambari, Roberto

    2013-01-01

    A persistent recruitment of neutrophils in the bronchi of cystic fibrosis (CF) patients contributes to aggravate the airway tissue damage, suggesting the importance of modulating the expression of chemokines, including IL-8 during the management of the CF patients. Polyphenols rich extracts derived from waste water from olive mill, obtained by a molecular imprinting approach, have been investigated in order to discover compounds able to reduce IL-8 expression in human bronchial epithelial cells (IB3-1 cells), derived from a CF patient with a ΔF508/W1282X mutant genotype and stimulated with TNF-alpha. Initially, electrophoretic mobility shift assays (EMSAs) were performed to determine whether the different active principles were able to inhibit the binding between transcription factor (TF) NF-kappaB and DNA consensus sequences. Among different representative active principles present in the extract, three compounds were selected, apigenin, oleuropein, and cyanidin chloride, which displayed remarkable activity in inhibiting NF-kappaB/DNA complexes. Utilizing TNF-alpha-treated IB3-1 cells as experimental model system, we demonstrated that apigenin and cyanidin chloride are able to modulate the expression of the NF-kappaB-regulated IL-8 gene, while oleuropein showed no effect in regulating the expression of the gene IL-8. PMID:23935691

  16. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    SciTech Connect

    Wu, Yongyan; Ai, Zhiying; Yao, Kezhen; Cao, Lixia; Du, Juan; Shi, Xiaoyan; Guo, Zekun; Zhang, Yong

    2013-10-15

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.

  17. The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes.

    PubMed

    Larsen, Marianne H; Kallipolitis, Birgitte H; Christiansen, Janne K; Olsen, John E; Ingmer, Hanne

    2006-09-01

    Listeria monocytogenes is a versatile bacterial pathogen that is able to accommodate to diverse environmental and host conditions. Presently, we have identified a L. monocytogenes two-component response regulator, ResD that is required for the repression of virulence gene expression known to occur in the presence of easily fermentable carbohydrates not found inside host organisms. Structurally and functionally, ResD resembles the respiration regulator ResD in Bacillus subtilis as deletion of the L. monocytogenes resD reduces respiration and expression of cydA, encoding a subunit of cytochrome bd. The resD mutation also reduces expression of mptA encoding the EIIABman component of a mannose/glucose-specific PTS system, indicating that ResD controls sugar uptake. This notion was supported by the poor growth of resD mutant cells that was alleviated by excess of selected carbohydrates. Despite the growth deficient phenotype of the mutant in vitro the mutation did not affect intracellular multiplication in epithelial or macrophage cell lines. When examining virulence gene expression we observed traditional induction by charcoal in both mutant and wild-type cells whereas the repression observed in wild-type cells by fermentable carbohydrates did not occur in resD mutant cells. Thus, ResD is a central regulator of L. monocytogenes when present in the external environment. PMID:16968229

  18. Transcription factors YY1, Sp1 and Sp3 modulate dystrophin Dp71 gene expression in hepatic cells.

    PubMed

    Peñuelas-Urquides, Katia; Becerril-Esquivel, Carolina; Mendoza-de-León, Laura C; Silva-Ramírez, Beatriz; Dávila-Velderrain, José; Cisneros, Bulmaro; de León, Mario Bermúdez

    2016-07-01

    Dystrophin Dp71, the smallest product encoded by the Duchenne muscular dystrophy gene, is ubiquitously expressed in all non-muscle cells. Although Dp71 is involved in various cellular processes, the mechanisms underlying its expression have been little studied. In hepatic cells, Dp71 expression is down-regulated by the xenobiotic β-naphthoflavone. However, the effectors of this regulation remain unknown. In the present study we aimed at identifying DNA elements and transcription factors involved in Dp71 expression in hepatic cells. Relevant DNA elements on the Dp71 promoter were identified by comparing Dp71 5'-end flanking regions between species. The functionality of these elements was demonstrated by site-directed mutagenesis. Using EMSAs and ChIP, we showed that the Sp1 (specificity protein 1), Sp3 (specificity protein 3) and YY1 (Yin and Yang 1) transcription factors bind to the Dp71 promoter region. Knockdown of Sp1, Sp3 and YY1 in hepatic cells increased endogenous Dp71 expression, but reduced Dp71 promoter activity. In summary, Dp71 expression in hepatic cells is carried out, in part, by YY1-, Sp1- and Sp3-mediated transcription from the Dp71 promoter. PMID:27143785

  19. Enhanced expression of trim14 gene suppressed Sindbis virus reproduction and modulated the transcription of a large number of genes of innate immunity.

    PubMed

    Nenasheva, V V; Kovaleva, G V; Uryvaev, L V; Ionova, K S; Dedova, A V; Vorkunova, G K; Chernyshenko, S V; Khaidarova, N V; Tarantul, V Z

    2015-07-01

    In the present research, we have studied an influence of enhanced expression TRIM14 on alphavirus Sindbis (SINV, Togaviridae family) infection. In the HEK293 cells transfected with human trim14 gene (HEK-trim14), SINV yield after infection was decreased 1000-10,000 times (3-4 lg of TCD50/ml) at 24 h p.i. and considerably less (1-2 lg of TCD50/ml) at 48 h p.i. Analysis of the expression of 43 genes directly or indirectly involved in innate immune machine in HEK-trim14 non-infected cells comparing with the control (non-transfected) HEK293 cells revealed that stable trim14 transfection in HEK293 cells caused increased transcription of 18 genes (ifna, il6 (ifnβ2), isg15, raf-1, NF-kB (nf-kb1, rela, nf-kb2, relb), grb2, grb3-3, traf3ip2, junB, c-myb, pu.1, akt1, tyk2, erk2, mek2) and lowered transcription of 3 genes (ifnγ, gata1, il-17a). The similar patterns of genes expression observe in SINV-infected non-transfected HEK293 cells. However, SINV infection of HEK-trim14 cells caused inhibition of the most interferon cascade genes as well as subunits of transcription factor NF-κB. Thus, stable enhanced expression of trim14 gene in cells activates the transcription of many immunity genes and suppresses the SINV reproduction, but SINV infection of HEK-trim14 cells promotes inhibition of some genes involved in innate immune system. PMID:25948474

  20. SO2 inhalation modulates the expression of apoptosis-related genes in rat hippocampus via its derivatives in vivo.

    PubMed

    Yun, Yang; Li, Hongyan; Li, Guangke; Sang, Nan

    2010-09-01

    The possible neurotoxicity of SO(2) has been implicated by determining morphological change, oxidative stress, DNA damage and membrane channel alteration in previous studies, however, its detailed mechanisms remain unclear. In the present study, we investigated SO(2) inhalation-induced effects on the transcription and translation of several apoptosis-related genes (p53, bax, bcl-2, c-fos, and c-jun) in rat hippocampus, using real-time RT-PCR analysis and western blotting technique, respectively. The results demonstrate that SO(2) statistically increased p53 expression and the ratio of bax to bcl-2 in a concentration-dependent manner. Also, mRNA and protein levels of c-fos and c-jun significantly elevated in proportion to exposure concentration. Then, we treated primary cultured hippocampal neurons with SO(2) derivatives (bisulfite and sulfite, 3:1 M/M), and examined mRNA levels of above genes. The results show that P53, c-fos, c-jun mRNA expression and the ratio of bax to bcl-2 augmented as functions of SO(2) derivative concentration and exposure time, and confirm that SO(2) affected the transcription and translation process of apoptosis-related genes in central nervous system via its derivatives in vivo. The present data provide further evidence for SO(2)-caused neurological insults, and imply that two major pathways associated with p53 and AP-1 might play important roles in the pathogenesis. PMID:20545484

  1. Initial receptor-ligand interactions modulate gene expression and phagosomal properties during both early and late stages of phagocytosis.

    PubMed

    Hoffmann, Eik; Marion, Sabrina; Mishra, Bibhuti Bhusan; John, Mathias; Kratzke, Ramona; Ahmad, Syed Furquan; Holzer, Daniela; Anand, Paras Kumar; Weiss, Dieter G; Griffiths, Gareth; Kuznetsov, Sergei A

    2010-09-01

    The receptors engaged during recognition and phagocytic uptake of microorganisms and particles influence signaling events and diverse subcellular responses that occur during phagosome formation and maturation. However, pathogens generally have multiple ligands on their surface, making it difficult to dissect the roles of individual receptors during phagocytosis. Moreover, it remains elusive to which extent receptor-ligand interactions and early binding events define the subsequent intracellular fate of phagosomes. Here, we used latex beads coupled to single ligands, focusing on immunoglobulin G, mannan, bacterial lipopolysaccharides and avidin, and monitored: (1) phagocytic uptake rates, (2) fusion of phagosomes with lysosomal compartments, (3) the gene expression profile during phagocytosis, (4) the protein composition of mature phagosomes and (5) time-dependent dynamics of protein association with phagosomes in J774.A1 mouse macrophages. The differently coated latex beads were internalized at different rates and exhibited different kinetics of phagolysosomal fusion events dependent on their specific ligand. Furthermore, less than 60% of identified phagosomal proteins and only 10-15% of changes in gene expression were common to all investigated ligands. These findings demonstrate that each single ligand induced a distinct pattern of genes and a different protein composition of phagosomes. Taken together, our data argue that phagocytic receptor-specific programs of signaling events direct phagosomes to different physiological states and support the existence of a specific receptor-ligand 'signature' during the whole process of phagocytosis. PMID:20579766

  2. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components.

    PubMed

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species. PMID:26623076

  3. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components

    PubMed Central

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species. PMID:26623076

  4. Prediction and Validation of Transcription Factors Modulating the Expression of Sestrin3 Gene Using an Integrated Computational and Experimental Approach

    PubMed Central

    Srivastava, Rajneesh; Zhang, Yang; Xiong, Xiwen; Zhang, Xiaoning; Pan, Xiaoyan; Dong, X. Charlie; Liangpunsakul, Suthat; Janga, Sarath Chandra

    2016-01-01

    SESN3 has been implicated in multiple biological processes including protection against oxidative stress, regulation of glucose and lipid metabolism. However, little is known about the factors and mechanisms controlling its gene expression at the transcriptional level. We performed in silico phylogenetic footprinting analysis of 5 kb upstream regions of a diverse set of human SESN3 orthologs for the identification of high confidence conserved binding motifs (BMo). We further analyzed the predicted BMo by a motif comparison tool to identify the TFs likely to bind these discovered motifs. Predicted TFs were then integrated with experimentally known protein-protein interactions and experimentally validated to delineate the important transcriptional regulators of SESN3. Our study revealed high confidence set of BMos (integrated with DNase I hypersensitivity sites) in the upstream regulatory regions of SESN3 that could be bound by transcription factors from multiple families including FOXOs, SMADs, SOXs, TCFs and HNF4A. TF-TF network analysis established hubs of interaction that include SMAD3, TCF3, SMAD2, HDAC2, SOX2, TAL1 and TCF12 as well as the likely protein complexes formed between them. We show using ChIP-PCR as well as over-expression and knock out studies that FOXO3 and SOX2 transcriptionally regulate the expression of SESN3 gene. Our findings provide an important roadmap to further our understanding on the regulation of SESN3. PMID:27466818

  5. The Type Three Secretion System 2-Encoded Regulator EtrB Modulates Enterohemorrhagic Escherichia coli Virulence Gene Expression.

    PubMed

    Luzader, Deborah H; Willsey, Graham G; Wargo, Matthew J; Kendall, Melissa M

    2016-09-01

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a foodborne pathogen that causes bloody diarrhea and hemolytic uremic syndrome throughout the world. A defining feature of EHEC pathogenesis is the formation of attaching and effacing (AE) lesions on colonic epithelial cells. Most of the genes that code for AE lesion formation, including a type three secretion system (T3SS) and effectors, are carried within a chromosomal pathogenicity island called the locus of enterocyte effacement (LEE). In this study, we report that a putative regulator, which is encoded in the cryptic E. coli type three secretion system 2 (ETT2) locus and herein renamed EtrB, plays an important role in EHEC pathogenesis. The etrB gene is expressed as a monocistronic transcript, and EtrB autoregulates expression. We provide evidence that EtrB directly interacts with the ler regulatory region to activate LEE expression and promote AE lesion formation. Additionally, we mapped the EtrB regulatory circuit in EHEC to determine a global role for EtrB. EtrB is regulated by the transcription factor QseA, suggesting that these proteins comprise a regulatory circuit important for EHEC colonization of the gastrointestinal tract. PMID:27324484

  6. Prediction and Validation of Transcription Factors Modulating the Expression of Sestrin3 Gene Using an Integrated Computational and Experimental Approach.

    PubMed

    Srivastava, Rajneesh; Zhang, Yang; Xiong, Xiwen; Zhang, Xiaoning; Pan, Xiaoyan; Dong, X Charlie; Liangpunsakul, Suthat; Janga, Sarath Chandra

    2016-01-01

    SESN3 has been implicated in multiple biological processes including protection against oxidative stress, regulation of glucose and lipid metabolism. However, little is known about the factors and mechanisms controlling its gene expression at the transcriptional level. We performed in silico phylogenetic footprinting analysis of 5 kb upstream regions of a diverse set of human SESN3 orthologs for the identification of high confidence conserved binding motifs (BMo). We further analyzed the predicted BMo by a motif comparison tool to identify the TFs likely to bind these discovered motifs. Predicted TFs were then integrated with experimentally known protein-protein interactions and experimentally validated to delineate the important transcriptional regulators of SESN3. Our study revealed high confidence set of BMos (integrated with DNase I hypersensitivity sites) in the upstream regulatory regions of SESN3 that could be bound by transcription factors from multiple families including FOXOs, SMADs, SOXs, TCFs and HNF4A. TF-TF network analysis established hubs of interaction that include SMAD3, TCF3, SMAD2, HDAC2, SOX2, TAL1 and TCF12 as well as the likely protein complexes formed between them. We show using ChIP-PCR as well as over-expression and knock out studies that FOXO3 and SOX2 transcriptionally regulate the expression of SESN3 gene. Our findings provide an important roadmap to further our understanding on the regulation of SESN3. PMID:27466818

  7. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  8. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ☆

    PubMed Central

    Jones, Eleanor R.; Jones, Gavin C.; Legerlotz, Kirsten; Riley, Graham P.

    2013-01-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1 Hz for 48 h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy. PMID:23830915

  9. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers.

    PubMed

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin; Oskarsson, Agneta

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7-0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on transport

  10. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    PubMed Central

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-01-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes. PMID:26860065

  11. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    NASA Astrophysics Data System (ADS)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  12. Kaposi's sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation.

    PubMed

    Rossetto, Cyprian C; Pari, Gregory S

    2011-12-01

    During lytic infection, Kaposi's sarcoma-associated herpesvirus (KSHV) expresses a polyadenylated nuclear RNA (PAN RNA). This noncoding RNA (ncRNA) is localized to the nucleus and is the most abundant viral RNA during lytic infection; however, to date, the role of PAN RNA in the virus life cycle is unknown. Many examples exist where ncRNAs have a defined key regulatory function controlling gene expression by various mechanisms. Our goal for this study was to identify putative binding partners for PAN RNA in an effort to elucidate a possible function for the transcript in KSHV infection. We employed an in vitro affinity protocol where PAN RNA was used as bait for factors present in BCBL-1 cell nuclear extract to show that PAN RNA interacts with several virus- and host cell-encoded factors, including histones H1 and H2A, mitochondrial and cellular single-stranded binding proteins (SSBPs), and interferon regulatory factor 4 (IRF4). RNA chromatin immunoprecipitation (ChIP) assays confirmed that PAN RNA interacted with these factors in the infected cell environment. A luciferase reporter assay showed that PAN RNA expression interfered with the ability of IRF4/PU.1 to activate the interleukin-4 (IL-4) promoter, strongly suggesting a role for PAN RNA in immune modulation. Since the proteomic screen and functional data suggested a role in immune responses, we investigated if constitutive PAN RNA expression could affect other genes involved in immune responses. PAN RNA expression decreased expression of gamma interferon, interleukin-18, alpha interferon 16, and RNase L. These data strongly suggest that PAN RNA interacts with viral and cellular proteins and can function as an immune modulator. PMID:21957289

  13. Screening a mouse liver gene expression compendium identifies modulators of the aryl hydrocarbon receptor (AhR).

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S; Applegate, Dawn; Gonzalez, Frank J; Aleksunes, Lauren M; Klaassen, Curtis D; Corton, J Christopher

    2015-10-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dioxin-like compounds (DLC) as well as some drugs and endogenous tryptophan metabolites. Short-term activation of AhR can lead to hepatocellular steatosis, and chronic activation can lead to liver cancer in mice and rats. Analytical approaches were developed to identify biosets in a genomic database in which AhR activity was altered. A set of 63 genes was identified (the AhR gene expression biomarker) that was dependent on AhR for regulation after exposure to TCDD or benzo[a]pyrene and includes the known AhR targets Cyp1a1 and Cyp1b1. A fold-change rank-based test (Running Fisher's test; p-value ≤ 10(-4)) was used to evaluate the similarity between the AhR biomarker and a test set of 37 and 41 biosets positive or negative, respectively for AhR activation. The test resulted in a balanced accuracy of 95%. The rank-based test was used to identify factors that activate or suppress AhR in an annotated mouse liver/mouse primary hepatocyte gene expression database of ∼ 1850 comparisons. In addition to the expected activation of AhR by TCDD and DLC, AhR was activated by AP20189 and phenformin. AhR was suppressed by phenobarbital and 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) in a constitutive activated receptor (CAR)-dependent manner and pregnenolone-16α-carbonitrile in a pregnane X receptor (PXR)-dependent manner. Inactivation of individual genes in nullizygous models led to AhR activation (Pxr, Ghrhr, Taf10) or suppression (Ahr, Ilst6st, Hnf1a). This study describes a novel screening strategy for identifying factors in mouse liver that perturb AhR in a gene expression compendium. PMID:26215100

  14. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  15. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  16. The acute modulation of norepinephrine on immune responses and genes expressions via adrenergic receptors in the giant freshwater prawn, Macrobrachium rosenbergii.

    PubMed

    Chang, Chin-Chyuan; Tsai, Wan-Lin; Jiang, Jia-Rong; Cheng, Winton

    2015-10-01

    Norepinephrine (NE), immunocompetent parameters (total haemocyte count (THC), phenoloxidase (PO) activity, respiratory burst (RB), superoxide dismutase (SOD) activity, phagocytic activity and clearance efficiency to Lactococcus garvieae), and prophenoloxidase (proPO) system-related genes (lipopolysaccharide- and β-1,3-glucan-binding protein, LGBP; prophenoloxidase, proPO; peroxinectin, PE; α2-macroglobulin, α2-M) expressions were investigated in Macrobrachium rosenbergii received NE through injection at 50 pmol/prawn after 0, 30, 60, and 120 min. Furthermore, the PO activity, RB, SOD activity, phagocytic activity and proPO system-related genes expressions were determined in haemocytes incubated with cacodylate buffer (CAC), NE, and NE co-treated with various adrenergic receptor (AR) antagonists in vitro. Results showed that NE, THC, granular cells, PO activity, SOD activity, proPO system-related genes expressions, and phagocytic activity and clearance efficiency to L. garvieae increased; PO activity per granulocyte and RB per haemocyte decreased from 30 to 120 min; semigranular cells and RB increased in the initial 30 min, and then decreased at 120 min when the prawns received NE by injection. In vitro studies, all the determined immune parameters and genes expressions were significantly decreased in haemocytes incubated with NE after 30 min. The negative effects of NE were prevented on the PO activity and phagocytic activity by the β-AR antagonist of metoprolol (Met), on the SOD activity by the β-AR antagonist of propranolol (Pro), on the RB by the β-AR antagonist of Met and prazosin (Pra), and on the proPO system-related genes expressions by α-AR antagonist of Pra. These results show that NE modulates prawn haemocytes proPO system-related genes expressions via α1-AR, PO activity and phagocytosis via β1-AR, respiratory burst via α1-and β1-ARs, and SOD activity via β2-AR. It is concluded that NE stimulates the regulation of immunocompetence parameters

  17. Modulation by dihydropyridine-type calcium channel antagonists of cytokine-inducible gene expression in vascular smooth muscle cells

    PubMed Central

    Cattaruzza, Marco; Wachter, Rolf; Wagner, Andreas H; Hecker, Markus

    2000-01-01

    The 1,4-dihydropyridine nifedipine is frequently used in the therapy of hypertension and heart failure. In addition, nifedipine has been shown to exert distinct anti-arteriosclerotic effects both in experimental animal models and in patients. In the present study we have investigated the hypothesis that the latter effect of this class of drugs is mediated by an interference with the expression of pro-arteriosclerotic gene products in the vessel wall. Moreover, to elucidate as to whether nifedipine acts via L-type calcium channel blockade, its effects were compared to those of another dihydropyridine, Bay w 9798, which has no calcium-antagonistic properties in concentrations up to 10 μM, as verified by superfusion bioassay. Both, nifedipine and Bay w 9798, in concentrations ranging from 0.01 to 1 μM, augmented the interleukin-1β/tumour necrosis factor-α (IL-1β/TNF-α)-induced expression of the inducible isoform of nitric oxide synthase (iNOS) in rat aortic cultured smooth muscle cells (raSMC) 2–3 fold, as judged by RT–PCR and Western blot analyses. In contrast, cytokine-induced mRNA expression of monocyte chemoattractant protein 1 (MCP-1) in these cells was down-regulated by more than 60% in the presence of both dihydropyridines, as judged by RT–PCR and Northern blot analyses. Nuclear run-on assays and incubation with the transcription-terminating drug actinomycin D revealed that both drugs acted at the level of mRNA synthesis rather than stability. These findings suggest that 1,4-dihydropyridines such as nifedipine affect the expression of both potentially pro-arteriosclerotic (MCP-1) and anti-arteriosclerotic (iNOS) gene products in the vessel wall at the level of transcription, and that these effects are unrelated to their calcium channel-blocking properties. PMID:10725264

  18. In vivo oestrogenic modulation of Egr1 and Pitx1 gene expression in female rat pituitary gland.

    PubMed

    Gajewska, Alina; Herman, Andrzej P; Wolińska-Witort, Ewa; Kochman, Kazimierz; Zwierzchowski, Lech

    2014-12-01

    EGR1 and PITX1 are transcription factors required for gonadotroph cell Lhb promoter activation. To determine changes in Egr1 and Pitx1 mRNA levels in central and peripheral pituitary stimulations, an in vivo model based on i.c.v. pulsatile (1 pulse/0.5 h over 2 h) GnRH agonist (1.5 nM buserelin) or antagonist (2 nM antide) microinjections was used. The microinjections were given to ovariectomised and 17β-oestradiol (E2) (3×20 μg), ERA (ESR1) agonist propyl pyrazole triol (PPT) (3×0.5 mg), ERB (ESR2) agonist diarylpropionitrile (DPN) (3×0.5 mg) s.c. pre-treated rats 30 min after last pulse anterior pituitaries were excised. Relative mRNA expression was determined by quantitative RT-PCR (qRT-PCR). Results revealed a gene-specific response for GnRH and/or oestrogenic stimulations in vivo. Buserelin pulses enhanced Egr1 expression by 66% in ovariectomised rats, whereas the oestradiol-supplemented+i.c.v. NaCl-microinjected group showed a 50% increase in Egr1 mRNA expression. The oestrogenic signal was transmitted via ERA (ESR1) and ERB (ESR2) activation as administration of PPT and DPN resulted in 97 and 62%, respectively, elevation in Egr1 mRNA expression. A synergistic action of GnRH agonist and 17β-oestradiol (E2) stimulation of the Egr1 gene transcription in vivo were found. GnRHR activity did not affect Pitx1 mRNA expression; regardless of NaCl, buserelin or antide i.c.v. pulses, s.c. oestrogenic supplementation (with E2, PPT or DPN) consistently decreased (by -46, -48 and -41% respectively) the Pitx1 mRNA in the anterior pituitary gland. Orchestrated Egr1 and Pitx1 activities depending on specific central and peripheral regulatory inputs could be responsible for physiologically variable Lhb gene promoter activation in vivo. PMID:25258388

  19. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio).

    PubMed

    Ma, Zhiyuan; Yu, Yijun; Tang, Song; Liu, Hongling; Su, Guanyong; Xie, Yuwei; Giesy, John P; Hecker, Markus; Yu, Hongxia

    2015-12-01

    As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane×receptor (P×R)) pathways at 120hpf. Exposure to 0.5μM TBOEP significantly (p<0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were affected by TBOEP at the concentrations studied. Receptor-mediated responses (in vivo) and mammalian cell lines receptor binding assay (in vitro) combined with published information suggest that TBOEP can modulate receptor-mediated, endocrine process (in vivo/in vitro), particularly ER and MR. PMID:26562049

  20. Rosiglitazone and bezafibrate modulate gene expression in a rat model of non-alcoholic fatty liver disease - A historical prospective

    PubMed Central

    2013-01-01

    Background Genetic factors implicated in the pathogenesis of non-alcoholic fatty liver disease are poorly understood. Our aim was to characterize three genes involved in a rat model of non-alcoholic fatty liver disease and investigate the effect of rosiglitazone and bezafibrate. Method Five rats were fed a chow diet (controls) and 18 a fructose-enriched diet (FED) for 5 weeks: 6 were administered rosiglitazone and 6 bezafibrate during the last 2 weeks and 6 were not treated at all. Livers were examined by reverse transcription-PCR for the genes encoding peroxisome proliferator-activated receptors (PPAR), PPAR-α, PPAR-γ, and Mn superoxide dismutase2 (Mn SOD2). Western blot was used for proteins levels. Result The FED rats showed a decrease in mRNA of MnSOD2, PPAR-α, and PPAR-γ (3, 3.5 fold, and 27%, respectively) (p<0.05). The 3 genes normalized in response to rosiglitazone and bezafibrate. The proteins of MnSOD2, PPAR-α and PPAR-γ in the FED rats decreased (2.5, 2, and 2.2, respectively) (p<0.05). Following administration of rosiglitazone, proteins of MnSOD2, PPAR-α and PPAR-γ in the FED rats increased (reaching 1.5-fold, a 20% increase and normalization, respectively), (p<0.05). Administration of bezafibrate to the FED rats restored the proteins of 3 genes to baseline. Conclusion A consistent reduction in hepatic expression of MnSOD2, PPAR-α and PPAR-γ in the FED rats compared with controls was observed. Administration of either rosiglitazone or bezafibrate to the FED rats restored these genes to a pre-morbid state. PMID:23531105

  1. The Hexosamine Template – A Platform for Modulating Gene Expression and for Sugar-based Drug Discovery

    PubMed Central

    Elmouelhi, Noha; Aich, Udayanath; Paruchuri, Venkata D.P.; Meledeo, M. Adam; Campbell, Christopher T.; Wang, Jean J.; Srinivas, Raja; Khanna, Hargun S.; Yarema, Kevin J.

    2009-01-01

    This study investigates the breadth of cellular responses engendered by short chain fatty acid (SCFA)-hexosamine hybrid molecules, a class of compounds long used in ‘metabolic glycoengineering’ that are now emerging as drug candidates. First, a ‘mix-and-match’ strategy showed that different SCFA (n-butyrate and acetate) appended to the same core sugar altered biological activity, complementing previous results [Campbell et al., (2008) J. Med. Chem. 51, 8135–8147] where a single type of SCFA elicited distinct responses. Microarray profiling then compared transcriptional responses engendered by regioisomerically-modified ManNAc, GlcNAc, and GalNAc analogs in MDA-MB-231 cells. These data – which were validated by qRT-PCR or Western analysis for ID1, TP53, HPSE, NQO1, EGR1 and VEGFA – showed a two-pronged response where a core set of genes was coordinately regulated by all analogs while each analog simultaneously uniquely regulated a larger number of genes. Finally, AutoDock modeling supported a mechanism where the analogs directly interact with elements of the NF-κB pathway. Together, these results establish the SCFA-hexosamine template as a versatile platform for modulating biological activity and developing new therapeutics. PMID:19326913

  2. BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves

    PubMed Central

    Planchais, Séverine; Cabassa, Cécile; Toka, Iman; Justin, Anne-Marie; Renou, Jean-Pierre; Savouré, Arnould; Carol, Pierre

    2014-01-01

    In plants, basic amino acids are important for the synthesis of proteins and signaling molecules and for nitrogen recycling. The Arabidopsis nuclear gene BASIC AMINO ACID CARRIER 2 (BAC2) encodes a mitochondria-located carrier that transports basic amino acids in vitro. We present here an analysis of the physiological and genetic function of BAC2 in planta. When BAC2 is overexpressed in vivo, it triggers catabolism of arginine, a basic amino acid, leading to arginine depletion and urea accumulation in leaves. BAC2 expression was known to be strongly induced by stress. We found that compared to wild type plants, bac2 null mutants (bac2-1) recover poorly from hyperosmotic stress when restarting leaf expansion. The bac2-1 transcriptome differs from the wild-type transcriptome in control conditions and under hyperosmotic stress. The expression of genes encoding stress-related transcription factors (TF), arginine metabolism enzymes, and transporters is particularly disturbed in bac2-1, and in control conditions, the bac2-1 transcriptome has some hallmarks of a wild-type stress transcriptome. The BAC2 carrier is therefore involved in controlling the balance of arginine and arginine-derived metabolites and its associated amino acid metabolism is physiologically important in equipping plants to respond to and recover from stress. PMID:25076951

  3. EGO-1, a C. elegans RdRP, Modulates Gene Expression via Production of mRNA-Templated Short Antisense RNAs

    PubMed Central

    Maniar, Jay M.; Fire, Andrew Z.

    2011-01-01

    SUMMARY Background The development of the germline in Caenorhabditis elegans is a complex process involving the regulation of thousands of genes in a coordinated manner. Several genes required for small RNA biogenesis and function are among those required for the proper organization of the germline. EGO-1 is a putative RNA-directed RNA polymerase (RdRP) that is required for multiple aspects of C. elegans germline development and efficient RNAi of germline-expressed genes. RdRPs have been proposed to act through a variety of mechanisms including the post-transcriptional targeting of specific mRNAs as well as through a direct interaction with chromatin. Despite extensive investigation, the molecular role of EGO-1 has remained enigmatic. Results Here we use high-throughput small RNA and messenger RNA sequencing to investigate EGO-1 function. We found that EGO-1 is required to produce a distinct pool of small RNAs antisense to a number of germline-expressed mRNAs through several developmental stages. These potential mRNA targets fall into distinct classes, including genes required for kinetochore and nuclear pore assembly, histone-modifying activities and centromeric proteins. We also found several RNAi-related genes to be targets of EGO-1. Finally, we show a strong association between the loss of small RNAs and the rise of mRNA levels in ego-1(−) animals. Conclusions Our data support the conclusion that EGO-1 produces triphosphorylated small RNAs derived from mRNA templates and that these small RNAs modulate gene expression through the targeting of their cognate mRNAs. PMID:21396820

  4. Topical Application of a Bioadhesive Black Raspberry Gel Modulates Gene Expression and Reduces Cyclooxygenase 2 Protein in Human Premalignant Oral Lesions

    PubMed Central

    Mallery, Susan R.; Zwick, Jared C.; Pei, Ping; Tong, Meng; Larsen, Peter E.; Shumway, Brian S.; Lu, Bo; Fields, Henry W.; Mumper, Russell J.; Stoner, Gary D.

    2010-01-01

    Reduced expression of proapoptotic and terminal differentiation genes in conjunction with increased levels of the proinflammatory and angiogenesis-inducing enzymes, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS), correlate with malignant transformation of oral intraepithelial neoplasia (IEN). Accordingly, this study investigated the effects of a 10% (w/w) freeze-dried black raspberry gel on oral IEN histopathology, gene expression profiles, intraepithelial COX-2 and iNOS proteins, and microvascular densities. Our laboratories have shown that freeze-dried black raspberries possess antioxidant properties and also induce keratinocyte apoptosis and terminal differentiation. Oral IEN tissues were hemisected to provide samples for pretreatment diagnoses and establish baseline biochemical and molecular variables. Treatment of the remaining lesional tissue (0.5 g gel applied four times daily for 6 weeks) began 1 week after the initial biopsy. RNA was isolated from snap-frozen IEN lesions for microarray analyses, followed by quantitative reverse transcription-PCR validation. Additional epithelial gene-specific quantitative reverse transcription-PCR analyses facilitated the assessment of target tissue treatment effects. Surface epithelial COX-2 and iNOS protein levels and microvascular densities were determined by image analysis quantified immunohistochemistry. Topical berry gel application uniformly suppressed genes associated with RNA processing, growth factor recycling, and inhibition of apoptosis. Although the majority of participants showed posttreatment decreases in epithelial iNOS and COX-2 proteins, only COX-2 reductions were statistically significant. These data show that berry gel application modulated oral IEN gene expression profiles, ultimately reducing epithelial COX-2 protein. In a patient subset, berry gel application also reduced vascular densities in the superficial connective tissues and induced genes associated with keratinocyte

  5. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    PubMed Central

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  6. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  7. Vigna unguiculata modulates cholesterol induced cardiac markers, genotoxicity and gene expressions profile in an experimental rabbit model.

    PubMed

    Janeesh, P A; Abraham, Annie

    2013-04-25

    Vigna unguiculata (VU) leaves are edible and used as a leafy vegetable in cuisine from traditional times in India. This study was designed to investigate the cardioprotective effect of VU in cholesterol fed rabbits. The animals were randomly divided into 4 groups of 6 animals each and the experimental period was 3 months. Group I-ND [normal diet 40 g feed], Group II-ND + FVU [flavanoid fraction of Vigna unguiculata (150 mg kg (-1) per body weight)], Group III-ND + CH [cholesterol (400 mg)] and Group IV-ND + CH (400 mg) +FVU (150 mg kg(-1) per body weight). After the experimental period, animals were sacrificed and the various parameters, such as cardiac markers, toxicity parameters, genotoxicity and gene expression, were investigated. Cholesterol feeding causes a significant increase in the levels of cardiac marker enzymes, namely lactate dehydrogenase (LDH) and creatine phospokinase (CPK), atherogenic index, toxicity parameters like serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) were elevated. Antioxidant enzyme levels were decreased, lipid peroxidation products in heart tissue and inflammatory markers, namely cyclooxygenase (COX2) and lipooxygenase (LOX15) in peripheral blood monocytes (PBMCs), were significantly increased. A genotoxicity study using a Comet assay and gene expression by reverse transcriptase-polymerase chain reaction (RT-PCR) of transforming growth factor-b1 (TGF-b1) and heme oxygenase-1 (HO-1) from heart tissue showed an altered expression in the disease group. The supplementation of the flavonoid fraction of Vigna unguiculata leaves (FVU) in the CH + FVU group caused the reversal of the above parameters and cardiotoxicity to near normal when compared with the CH group and FVU. This study revealed the cardioprotective nature of Vigna unguiculata in preventing cardiovascular diseases and this effect is attributed to the presence of antioxidants and the antihyperlipidemic properties of the

  8. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    SciTech Connect

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata; Aumercier, Marc; Mukhopadhyay, Gauranga; Tyagi, Rakesh K.

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  9. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  10. Inhibition of histone deacetylase activity by trichostatin A modulates gene expression during mouse embryogenesis without apparent toxicity.

    PubMed

    Nervi, C; Borello, U; Fazi, F; Buffa, V; Pelicci, P G; Cossu, G

    2001-02-15

    Remodeling of the chromatin template by inhibition of histone deacetylase (HDAC) activities represents a major goal for transcriptional therapy in neoplastic diseases. Recently, a number of specific and potent HDAC-inhibitors that modulate in vitro cell growth and differentiation have been developed. In this study we analyzed the effect of trichostatin A (TSA), a specific and potent HDAC-inhibitor, on mouse embryos developing in vivo. When administered i.p. to pregnant mice (at a concentration of 0.5-1 mg/kg) at postimplantation stages (embryonic day 8 to embryonic day 10), TSA was not toxic for the mother and did not cause any obvious malformation during somitogenesis or at later stages of development. Treated embryos were born at similar frequency and were indistinguishable from control animals, developed normally, and were fertile. Interestingly, embryos from TSA-treated mice killed during somitogenesis were modestly but consistently larger than control embryos and presented an increased (+2 to +6) number of somites. This correlated with an increased acetylation of histone H4, the number of somites expressing the myogenic factor Myf-5, and the expression of Notch, RARalpha2, and RARbeta2 mRNAs. These data indicate that the effects of TSA on transcription: (a) are not toxic for the mother; (b) transiently accelerated growth in mouse embryos without perturbing embryogenesis; and (c) do not result in teratogenesis, at least in rodents. Thus, TSA might represent a nontoxic and effective agent for the transcriptional therapy of neoplasia. PMID:11245412

  11. Attention modulates emotional expression processing.

    PubMed

    Wronka, Eligiusz; Walentowska, Wioleta

    2011-08-01

    To investigate the time course of emotional expression processing, we recorded ERPs to facial stimuli. The first task was to discriminate emotional expressions. Enhanced negativity of the face-specific N170 was elicited by emotional as opposed to neutral faces, followed by the occipital negativity (240-340 ms poststimulus). The second task was to classify face gender. Here, N170 was unaffected by the emotional expression. However, emotional expression effect was expressed in the anterior positivity (160-250 ms poststimulus) and subsequent occipital negativity (240-340 ms poststimulus). Results support the thesis that structural encoding relevant to gender recognition and simultaneous expression analysis are independent processes. Attention modulates facial emotion processing 140-185 ms poststimulus. Involuntary differentiation of facial expression was observed later (160-340 ms poststimulus), suggesting unintentional attention capture. PMID:21332489

  12. Modulation of basal and corticotropin-releasing factor-stimulated proopiomelanocortin gene expression by vasopressin in rat anterior pituitary.

    PubMed

    Levin, N; Blum, M; Roberts, J L

    1989-12-01

    In several anterior pituitary hormone systems, factors that stimulate hormone release also stimulate hormone biosynthesis. In the corticotropes of the anterior pituitary, CRF stimulates ACTH release as well as cAMP accumulation and transcription of the POMC gene. Arginine vasopressin (AVP) is a well documented coregulator of ACTH release and potentiates CRF-stimulated cAMP accumulation. The present studies were undertaken to determine if AVP also potentiates the early effects of CRF on POMC gene expression in rat anterior pituitary primary cultures. We have measured the levels of the POMC primary transcript, processing intermediate, and mature mRNA in nuclear RNA samples and POMC mRNA in cytoplasmic RNA samples as well as ACTH release after treatment with CRF and/or AVP. After a 30-min treatment with 0.5 nM CRF, POMC primary transcript levels were increased by 200-400%. Thirty-minute or 1-h treatments with AVP alone (10 or 100 nM) did not affect primary transcript levels, but increased the amount of the processing intermediate, while a 2-h incubation with 100 nM AVP significantly decreased POMC primary transcript levels. The effects of CRF on the POMC primary transcript and nuclear processing intermediate were not potentiated by cotreatment with AVP, although a potentiation of CRF-stimulated ACTH release was observed. POMC nuclear and cytoplasmic mRNA levels were not affected by these 2-h or less treatments, while an 18-h incubation with 0.5 nM CRF alone or in combination with 100 nM AVP increased POMC cytoplasmic mRNA levels to about 140% of vehicle-treated control values. When a 1-h AVP treatment (100 nM) preceded presentation of CRF, we observed an attenuation of the stimulation of POMC primary transcript and processing intermediate levels by the 1-h CRF treatment. The effects of CRF on POMC primary transcript and processing intermediate levels in these experiments are consistent with a CRF-induced increase in POMC gene transcription. Our findings that AVP

  13. Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.

    PubMed

    Torres-Martín, Miguel; Lassaletta, Luis; de Campos, Jose M; Isla, Alberto; Pinto, Giovanny R; Burbano, Rommel R; Melendez, Bárbara; Castresana, Javier S; Rey, Juan A

    2015-04-01

    Schwannomas are tumors that develop from Schwann cells in the peripheral nerves and commonly arise from the vestibular nerve. Vestibular schwannomas can present unilaterally and sporadically or bilaterally when the tumor is associated with neurofibromatosis Type 2 (NF2) syndrome. The molecular hallmark of the disease is biallelic inactivation of the NF2 gene. The epigenetic signature of schwannomas remains poorly understood and is mostly limited to DNA methylation of the NF2 gene, whose altered expression due to epigenetic factors in this tumor is controversial. In this study, we tested the genomewide DNA methylation pattern of schwannomas to shed light on this epigenetic alteration in these particular tumors. The methodology used includes Infinium Human Methylation 450K BeadChip microarrays in a series of 36 vestibular schwannomas, 4 nonvestibular schwannomas, and 5 healthy nerves. Our results show a trend toward hypomethylation in schwannomas. Furthermore, homeobox (HOX) genes, located at four clusters in the genome, displayed hypomethylation in several CpG sites in the vestibular schwannomas but not in the nonvestibular schwannomas. Several microRNA (miRNA) and protein-coding genes were also found to be hypomethylated at promoter regions and were confirmed as upregulated by expression analysis; including miRNA-21, Met Proto-Oncogene (MET), and PMEPA1. We also detected methylation patterns that might be involved in alternative transcripts of several genes such as NRXN1 or MBP, which would increase the complexity of the methylation and expression patterns. Overall, our results show specific epigenetic signatures in several coding genes and miRNAs that could potentially be used as therapeutic targets. PMID:25533176

  14. Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP

    PubMed Central

    Distrutti, Eleonora; O’Reilly, Julie-Ann; McDonald, Claire; Cipriani, Sabrina; Renga, Barbara; Lynch, Marina A.; Fiorucci, Stefano

    2014-01-01

    The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut–brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function. PMID:25202975

  15. Knockdown of cyclin-dependent kinase 10 (cdk10) gene impairs neural progenitor survival via modulation of raf1a gene expression.

    PubMed

    Yeh, Chi-Wei; Kao, Shoa-Hsuan; Cheng, Yi-Chuan; Hsu, Li-Sung

    2013-09-27

    In this study, we used zebrafish as an animal model to elucidate the developmental function of cdk10 in vertebrates. In situ hybridization analyses demonstrated that cdk10 is expressed throughout development with a relative enrichment in the brain in the late stages. Similar to its mammalian ortholog, cdk10 can interact with the transcription factor ETS2 and exhibit kinase activity by phosphorylating histone H1. Morpholino-based loss of cdk10 expression caused apoptosis in sox2-positive cells and decreased the expression of subsequent neuronal markers. Acetylated tubulin staining revealed a significant reduction in the number of Rohon-Beard sensory neurons in cdk10 morphants. This result is similar to that demonstrated by decreased islet2 expression in the dorsal regions. Moreover, cdk10 morphants exhibited a marked loss of huC-positive neurons in the telencephalon and throughout the spinal cord axis. The population of retinal ganglion cells was also diminished in cdk10 morphants. These phenotypes were rescued by co-injection of cdk10 mRNA. Interestingly, the knockdown of cdk10 significantly elevated raf1a mRNA expression. Meanwhile, an MEK inhibitor (U0126) recovered sox2 and ngn1 transcript levels in cdk10 morphants. Our findings provide the first functional characterization of cdk10 in vertebrate development and reveal its critical function in neurogenesis by modulation of raf1a expression. PMID:23902762

  16. Gene expression networks.

    PubMed

    Thomas, Reuben; Portier, Christopher J

    2013-01-01

    With the advent of microarrays and next-generation biotechnologies, the use of gene expression data has become ubiquitous in biological research. One potential drawback of these data is that they are very rich in features or genes though cost considerations allow for the use of only relatively small sample sizes. A useful way of getting at biologically meaningful interpretations of the environmental or toxicological condition of interest would be to make inferences at the level of a priori defined biochemical pathways or networks of interacting genes or proteins that are known to perform certain biological functions. This chapter describes approaches taken in the literature to make such inferences at the biochemical pathway level. In addition this chapter describes approaches to create hypotheses on genes playing important roles in response to a treatment, using organism level gene coexpression or protein-protein interaction networks. Also, approaches to reverse engineer gene networks or methods that seek to identify novel interactions between genes are described. Given the relatively small sample numbers typically available, these reverse engineering approaches are generally useful in inferring interactions only among a relatively small or an order 10 number of genes. Finally, given the vast amounts of publicly available gene expression data from different sources, this chapter summarizes the important sources of these data and characteristics of these sources or databases. In line with the overall aims of this book of providing practical knowledge to a researcher interested in analyzing gene expression data from a network perspective, the chapter provides convenient publicly accessible tools for performing analyses described, and in addition describe three motivating examples taken from the published literature that illustrate some of the relevant analyses. PMID:23086841

  17. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S.; Applegate, Dawn; Rosen, Mitch; Abbott, Barbara; Lau, Christopher; Guo, Grace; Aleksunes, Lauren M.; Klaassen, Curtis; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents increases liver cancer incidence, whereas suppression of PPARα activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions) in a genomic database in which PPARα activity was altered. A gene expression signature of 131 PPARα-dependent genes was built using microarray profiles from the livers of wild-type and PPARα-null mice after exposure to three structurally diverse PPARα activators (WY-14,643, fenofibrate and perfluorohexane sulfonate). A fold-change rank-based test (Running Fisher’s test (p-value ≤ 10-4)) was used to evaluate the similarity between the PPARα signature and a test set of 48 and 31 biosets positive or negative, respectively for PPARα activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPARα in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPARα by fibrate drugs, di(2-ethylhexyl) phthalate, and perfluorinated compounds, PPARα was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction) or suppress (infections) PPARα were also identified. This study 1) developed methods useful for future screening of environmental chemicals, 2) identified chemicals that activate or suppress PPARα, and 3) identified factors including diets and infections that modulate PPARα activity and would be hypothesized to affect chemical-induced PPAR

  18. Identification of modulators of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) in a mouse liver gene expression compendium.

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S; Applegate, Dawn; Rosen, Mitch; Abbott, Barbara; Lau, Christopher; Guo, Grace; Aleksunes, Lauren M; Klaassen, Curtis; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents increases liver cancer incidence, whereas suppression of PPARα activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions) in a genomic database in which PPARα activity was altered. A gene expression signature of 131 PPARα-dependent genes was built using microarray profiles from the livers of wild-type and PPARα-null mice after exposure to three structurally diverse PPARα activators (WY-14,643, fenofibrate and perfluorohexane sulfonate). A fold-change rank-based test (Running Fisher's test (p-value ≤ 10(-4))) was used to evaluate the similarity between the PPARα signature and a test set of 48 and 31 biosets positive or negative, respectively for PPARα activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPARα in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPARα by fibrate drugs, di(2-ethylhexyl) phthalate, and perfluorinated compounds, PPARα was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction) or suppress (infections) PPARα were also identified. This study 1) developed methods useful for future screening of environmental chemicals, 2) identified chemicals that activate or suppress PPARα, and 3) identified factors including diets and infections that modulate PPARα activity and would be hypothesized to affect chemical-induced PPAR

  19. Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309.

    PubMed

    Siahpoosh, Mohammad R; Sanchez, Diego H; Schlereth, Armin; Scofield, Graham N; Furbank, Robert T; van Dongen, Joost T; Kopka, Joachim

    2012-01-01

    A metabolic depletion syndrome was discovered at early vegetative stages in roots of salt sensitive rice cultivars after prolonged exposure to 100mM NaCl. Metabolite profiling analyses demonstrate that this syndrome is part of the terminal stages of the rice salt response. The phenotype encompasses depletion of at least 30 primary metabolites including sucrose, glucose, fructose, glucose-6-P, fructose-6P, organic- and amino-acids. Based on these observations we reason that sucrose allocation to the root may modify the rice response to high salt. This hypothesis was tested using antisense lines of the salt responsive OsSUT1 gene in the salt sensitive Taipei 309 cultivar. Contrary to our expectations of a plant system impaired in one component of sucrose transport, we find improved gas exchange and photosynthetic performance as well as maintenance of sucrose levels in the root under high salinity. Two independent OsSUT1 lines with an antisense inhibition similar to the naturally occurring salt induced reduction of OsSUT1 gene expression showed these phenomena but not a more extreme antisense inhibition line. We investigated the metabolic depletion syndrome by metabolomic and physiological approaches and discuss our results with regard to the potential role of sucrose transporters and sucrose transport for rice salt acclimation. PMID:22118621

  20. Recent experience modulates forebrain gene-expression in response to mate-choice cues in European starlings.

    PubMed

    Sockman, Keith W; Gentner, Timothy Q; Ball, Gregory F

    2002-12-01

    Mate-choice decisions can be experience dependent, but we know little about how the brain processes stimuli that release such decisions. Female European starlings (Sturnus vulgaris) prefer males with long-bout songs over males with short-bout songs, and show higher expression of the immediate early gene (IEG) ZENK in the auditory forebrain when exposed to long-bout songs than when exposed to short-bout songs. We exposed female starlings to a short-day photoperiod for one of three durations and then, on an increased photophase, exposed them to one week of long-bout or short-bout song experience. We then examined their IEG response to novel long-bout versus novel short-bout songs by quantifying ZENK protein in two song-processing areas: the caudo-medial hyperstriatum ventrale and the caudo-medial neostriatum. ZENK expression in both areas increased with tenure on short-day photoperiods, suggesting that short days sensitize females to song. The ZENK response bias toward long-bout songs was greater in females with long-bout experience than in females with short-bout experience, indicating that the forebrain response bias toward a preferred trait depends on recent experience with that category of trait. This surprising level of neuroplasticity is immediately relevant to the natural history and fitness of the organism, and may underlie a mechanism for optimizing mate-choice criteria amidst locally variable distributions of secondary sexual characteristics. PMID:12495492

  1. Hsp90 Directly Modulates the Spatial Distribution of AF9/MLLT3 and Affects Target Gene Expression*

    PubMed Central

    Lin, Jeffrey J.; Hemenway, Charles S.

    2010-01-01

    AF9/MLLT3 contributes to the regulation of the gene encoding the epithelial sodium channel α, ENaCα, in renal tubular cells. Specifically, increases in AF9 protein lead to a reduction in ENaCα expression and changes in AF9 activity appear to be an important component of aldosterone signaling in the kidney. Whereas AF9 is found in the nucleus where it interacts with the histone H3 lysine 79 methyltransferase, Dot1, AF9 is also present in the cytoplasm. Data presented in this report indicate that the heat shock protein Hsp90 directly and specifically interacts with AF9 as part of an Hsp90-Hsp70-p60/Hop chaperone complex. Experimental manipulation of Hsp90 function by the inhibitor novobiocin, but not 17-AAG, results in redistribution of AF9 from a primarily nuclear to cytoplasmic location. Knockdown of Hsp90 with siRNA mimics the effect elicited by novobiocin. As expected, a shift in AF9 from the nucleus to the cytoplasm in response to Hsp90 interference leads to increased ENaCα expression. This is accompanied by a decrease in AF9 occupancy at the ENaCα promoter. Our data suggest that the interaction of Hsp90, Hsp70, and p60/Hop with AF9 is necessary for the proper subnuclear localization and activity of AF9. AF9 is among a growing number of nuclear proteins recognized to rely on the Hsp90 complex for nuclear targeting. PMID:20159978

  2. Recent experience modulates forebrain gene-expression in response to mate-choice cues in European starlings.

    PubMed Central

    Sockman, Keith W; Gentner, Timothy Q; Ball, Gregory F

    2002-01-01

    Mate-choice decisions can be experience dependent, but we know little about how the brain processes stimuli that release such decisions. Female European starlings (Sturnus vulgaris) prefer males with long-bout songs over males with short-bout songs, and show higher expression of the immediate early gene (IEG) ZENK in the auditory forebrain when exposed to long-bout songs than when exposed to short-bout songs. We exposed female starlings to a short-day photoperiod for one of three durations and then, on an increased photophase, exposed them to one week of long-bout or short-bout song experience. We then examined their IEG response to novel long-bout versus novel short-bout songs by quantifying ZENK protein in two song-processing areas: the caudo-medial hyperstriatum ventrale and the caudo-medial neostriatum. ZENK expression in both areas increased with tenure on short-day photoperiods, suggesting that short days sensitize females to song. The ZENK response bias toward long-bout songs was greater in females with long-bout experience than in females with short-bout experience, indicating that the forebrain response bias toward a preferred trait depends on recent experience with that category of trait. This surprising level of neuroplasticity is immediately relevant to the natural history and fitness of the organism, and may underlie a mechanism for optimizing mate-choice criteria amidst locally variable distributions of secondary sexual characteristics. PMID:12495492

  3. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-x(L)

    NASA Technical Reports Server (NTRS)

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy; Chatterjee, A. (Principal Investigator)

    2002-01-01

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in DSB repair in human cells. However, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We demonstrated previously that overexpression of BCL-2 or BCL-x(L) enhanced the frequency of X-ray-induced TK1 mutations, including loss of heterozygosity events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells and to determine whether ectopic expression of BCL-x(L) affects HDR. Using TK6-neo cells, we find that a single DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold, demonstrating efficient DSB repair by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3-4-fold more frequent in TK6 cells that stably overexpress the antiapoptotic protein BCL-X(L). Thus, HDR plays an important role in maintaining genomic integrity in human cells, and ectopic expression of BCL-x(L) enhances HDR of DSBs. This is the first study to highlight a function for BCL-x(L) in modulating DSB repair in human cells.

  4. Mutation at the folate receptor 4 locus modulates gene expression profiles in the mouse uterus in response to preconceptual folate supplementation

    PubMed Central

    Salbaum, J. michael; Kruger, Claudia; Kappen, Claudia

    2013-01-01

    Periconceptional supplementation of folic acid to the diet of women is considered a great success for a public health intervention. Higher folate status, either by supplementation, or via the mandatory fortification of grain products in the United States, has lead to significant reduction in the incidence of neural tube defects. Besides birth defects, folate deficiency has been linked to a variety of morbidities, most notably to increased risk for cancer. However, recent evidence suggests that excess folate may be detrimental - for birth defect incidence or in the progression of cancer. How folate mediates beneficial or detrimental effects is not well understood. It is also unknown what molecular responses are elicited in women taking folate supplements, and thus experience a bolus of folate on top of the status achieved by fortification. To characterize the response to a preconceptional regimen of supplementation with folinic acid, we performed gene expression profiling experiments on uterus tissue of pregnant mice with either wildtype alleles or targeted disruption at the folate receptor 4 locus. We observed that, depending on the genetic background, folinic acid supplementation affects expression of genes that contribute to lipid metabolism, protein synthesis, mitochondrial function, cell cycle, and cell activation. The extent of the response is strongly modulated by the genetic background. Finally, we provide evidence that folinic acid supplementation in the mutant paradigm affects histone methylation status, a potential mechanisms of gene regulation in this model. PMID:23651732

  5. WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression.

    PubMed

    Cai, Ting; Sun, Danqin; Duan, Ying; Wen, Ping; Dai, Chunsun; Yang, Junwei; He, Weichun

    2016-07-15

    Arterial medial calcification (AMC) is prevalent in patients with chronic kidney disease (CKD) and contributes to elevated risk of cardiovascular events and mortality. Vascular smooth muscle cells (VSMCs) to osteogenic transdifferentiation (VOT) in a high-phosphate environment is involved in the pathogenesis of AMC in CKD. WNT/β-catenin signaling is indicated to play a crucial role in osteogenesis via promoting Runx2 expression in osteoprogenitor cells, however, its role in Runx2 regulation and VOT remains incompletely clarified. In this study, Runx2 was induced and β-catenin was activated by high-phosphate in VSMCs. Two forms of active β-catenin, dephosphorylated on Ser37/Thr41 and phosphorylated on Ser675 sites, were upregulated by high-phosphate. Activation of β-catenin, through ectopic expression of stabilized β-catenin, inhibition of GSK-3β, or WNT-3A protein, induced Runx2 expression, whereas blockade of WNT/β-catenin signaling with Porcupine (PORCN) inhibitor or Dickkopf-1 (DKK1) protein inhibited Runx2 induction by high-phosphate. WNT-3A promoted osteocalcin expression and calcium deposition in VSMCs, whereas DKK1 ameliorated calcification of VSMCs induced by high-phosphate. Two functional T cell factor (TCF)/lymphoid enhancer-binding factor binding sites were identified in the promoter region of Runx2 gene in VSMCs, which interacted with TCF upon β-catenin activation. Site-directed mutation of each of them attenuated Runx2 response to β-catenin, and deletion or destruction of both of them completely abolished this responsiveness. In the aortic tunica media of rats with chronic renal failure, followed by AMC, Runx2 and β-catenin was induced, and the Runx2 mRNA level was positively associated with the abundance of phosphorylated β-catenin (Ser675). Collectively, our study suggested that high-phosphate may activate WNT/β-catenin signaling through different pathways, and the activated WNT/β-catenin signaling, through direct downstream target Runx2

  6. Increased resting intracellular calcium modulates NF-κB-dependent inducible nitric-oxide synthase gene expression in dystrophic mdx skeletal myotubes.

    PubMed

    Altamirano, Francisco; López, Jose R; Henríquez, Carlos; Molinski, Tadeusz; Allen, Paul D; Jaimovich, Enrique

    2012-06-15

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca(2+)](rest)) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca(2+)](rest) was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca(2+) entry (low Ca(2+) solution, Ca(2+)-free solution, and Gd(3+)) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca(2+)](rest). Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca(2+)](rest) was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca(2+)](rest) using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca(2+)](rest), is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells. PMID:22549782

  7. Increased Resting Intracellular Calcium Modulates NF-κB-dependent Inducible Nitric-oxide Synthase Gene Expression in Dystrophic mdx Skeletal Myotubes*

    PubMed Central

    Altamirano, Francisco; López, Jose R.; Henríquez, Carlos; Molinski, Tadeusz; Allen, Paul D.; Jaimovich, Enrique

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca2+]rest) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca2+]rest was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca2+ entry (low Ca2+ solution, Ca2+-free solution, and Gd3+) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca2+]rest. Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca2+]rest was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca2+]rest using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca2+]rest, is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells. PMID:22549782

  8. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  9. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders

    PubMed Central

    Nankova, Bistra B.; Agarwal, Raj; MacFabe, Derrick F.; La Gamma, Edmund F.

    2014-01-01

    Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal) or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s) was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals such as

  10. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  11. Exogenous retinoic acid and cytochrome P450 26B1 inhibitor modulate meiosis-associated genes expression in canine testis, an in vitro model.

    PubMed

    Kasimanickam, V; Kasimanickam, R

    2014-04-01

    Pharmacological approaches to control spermatogenesis are required to resolve overpopulation in dogs. The objective of the study was to investigate the regulation of meiosis-associated and male germ cell-related genes, stimulated by retinoic acid gene 8 (STRA8), synaptonemal complex protein 3 (SYCP3), dosage suppressor of mck1 (DMC1), doublesex and mab-3 related transcription factor 1 (DMRT1) and deleted in azoospermia-like (DAZL) following exogenous administration of retinoic acid (RA) and after the modulation of endogenous RA by a cytochrome P450, family 26, subfamily B, polypeptide 1 inhibitor (CYP26B1-I; R115866) in an in vitro testis model. Testicles of five healthy, medium-sized and mixed-breed dogs were used for the organotypic cultures. All-trans-RA at 2 μM, CYP26B1-I at 1 μM and the control dimethyl sulphoxide (DMSO) were administered to the testes cultures, and the cultures were maintained for 24 h. Genes STRA8, DAZL and DMRT1 were significantly up-regulated as a result of the direct and indirect increase in the RA levels in the testis, subsequent to the exogenous administration of all-trans-RA and CYP26B1 inhibitor. Up-regulation of STRA8 was very prominent compared to DAZL and DMRT, and the drastic up-regulation of STRA8 was also observed with CY26B1-I than with all-trans-RA. No significant differences were found with the early meiotic markers, SYCP3 and DMC1 with RA, CY26B1-I and vehicle treatments. Because DAZL encodes a germ cell-specific RNA-binding protein, required for the induction of STRA8 and initiation of meiosis, we might see the expression differences temporally with the stage of spermatogenesis. DMRT1 is a unique gonad- and stage-specific transcription factor, directly activates STRA8 and has the temporal influence on its expression. Protein expression of DAZL and STRA8 was greater in RA- and CYP26B1-I-treated testis culture, whereas DMRT1 showed greater protein expression for RA treatment, but not for CYP26B1-I treatment compared to

  12. Gene expression during memory formation.

    PubMed

    Igaz, Lionel Muller; Bekinschtein, Pedro; Vianna, Monica M R; Izquierdo, Ivan; Medina, Jorge H

    2004-01-01

    For several decades, neuroscientists have provided many clues that point out the involvement of de novo gene expression during the formation of long-lasting forms of memory. However, information regarding the transcriptional response networks involved in memory formation has been scarce and fragmented. With the advent of genome-based technologies, combined with more classical approaches (i.e., pharmacology and biochemistry), it is now feasible to address those relevant questions--which gene products are modulated, and when that processes are necessary for the proper storage of memories--with unprecedented resolution and scale. Using one-trial inhibitory (passive) avoidance training of rats, one of the most studied tasks so far, we found two time windows of sensitivity to transcriptional and translational inhibitors infused into the hippocampus: around the time of training and 3-6 h after training. Remarkably, these periods perfectly overlap with the involvement of hippocampal cAMP/PKA (protein kinase A) signaling pathways in memory consolidation. Given the complexity of transcriptional responses in the brain, particularly those related to processing of behavioral information, it was clearly necessary to address this issue with a multi-variable, parallel-oriented approach. We used cDNA arrays to screen for candidate inhibitory avoidance learning-related genes and analyze the dynamic pattern of gene expression that emerges during memory consolidation. These include genes involved in intracellular kinase networks, synaptic function, DNA-binding and chromatin modification, transcriptional activation and repression, translation, membrane receptors, and oncogenes, among others. Our findings suggest that differential and orchestrated hippocampal gene expression is necessary in both early and late periods of long-term memory consolidation. Additionally, this kind of studies may lead to the identification and characterization of genes that are relevant for the pathogenesis

  13. Emodin induces apoptosis of human breast cancer cells by modulating the expression of apoptosis-related genes

    PubMed Central

    ZU, CONG; ZHANG, MINGDI; XUE, HUI; CAI, XIAOPENG; ZHAO, LEI; HE, ANNING; QIN, GUANGYUAN; YANG, CHUNSHU; ZHENG, XINYU

    2015-01-01

    The aim of this study was to investigate the effects of emodin on the proliferation of human breast cancer cells Bcap-37 and ZR-75-30. Cell viability following emodin treatment was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of emodin on apoptosis were determined by flow cytometry using Annexin V-fluorescein isothiocyanate and propidium iodide staining. Quantitative polymerase chain reaction and western blot analysis were used to determine changes in the expression of apoptotic genes and protein, respectively. The effect of emodin on the invasiveness of breast cancer cells was evaluated by Matrigel invasion assay. Treatment of breast cancer cells Bcap-37 and ZR-75-30 with emodin was observed to inhibit the growth and induced apoptosis in a time- and dose-dependent manner. Emodin reduced the level of Bcl-2 and increased levels of cleaved caspase-3, PARP, p53 and Bax. These findings indicate that emodin induces growth inhibition and apoptosis in human breast cancer cells. Emodin may be a potential therapeutic agent for the treatment of breast cancer. PMID:26722264

  14. Lentiviral Delivery of RNAi for In Vivo Lineage-Specific Modulation of Gene Expression in Mouse Lung Macrophages

    PubMed Central

    Wilson, Andrew A; Kwok, Letty W; Porter, Emily L; Payne, Julie G; McElroy, Gregory S; Ohle, Sarah J; Greenhill, Sara R; Blahna, Matthew T; Yamamoto, Kazuko; Jean, Jyh C; Mizgerd, Joseph P; Kotton, Darrell N

    2013-01-01

    Although RNA interference (RNAi) has become a ubiquitous laboratory tool since its discovery 12 years ago, in vivo delivery to selected cell types remains a major technical challenge. Here, we report the use of lentiviral vectors for long-term in vivo delivery of RNAi selectively to resident alveolar macrophages (AMs), key immune effector cells in the lung. We demonstrate the therapeutic potential of this approach by RNAi-based downregulation of p65 (RelA), a component of the pro-inflammatory transcriptional regulator, nuclear factor κB (NF-κB) and a key participant in lung disease pathogenesis. In vivo RNAi delivery results in decreased induction of NF-κB and downstream neutrophilic chemokines in transduced AMs as well as attenuated lung neutrophilia following stimulation with lipopolysaccharide (LPS). Through concurrent delivery of a novel lentiviral reporter vector (lenti-NF-κB-luc-GFP) we track in vivo expression of NF-κB target genes in real time, a critical step towards extending RNAi-based therapy to longstanding lung diseases. Application of this system reveals that resident AMs persist in the airspaces of mice following the resolution of LPS-induced inflammation, thus allowing these localized cells to be used as effective vehicles for prolonged RNAi delivery in disease settings. PMID:23403494

  15. Lutein and zeaxanthin supplementation reduces photo-oxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells

    PubMed Central

    Bian, Qingning; Gao, Shasha; Zhou, Jilin; Qin, Jian; Taylor, Allen; Johnson, Elizabeth J.; Tang, Guangwen; Sparrow, Janet R.; Gierhart, Dennis; Shang, Fu

    2012-01-01

    Oxidative damage and inflammation are related to the pathogenesis of age-related macular degeneration (AMD). Epidemiologic studies suggest that insufficient dietary lutein and zeaxanthin intake or lower serum zeaxanthin levels are associated with increased risk for AMD. The objective of this work is to test the protective effects of lutein and zeaxanthin against photo-oxidative damage to retinal pigment epithelial cells (RPE) and oxidation-induced changes in expression of inflammation-related genes. To mimic lipofuscin-mediated photo-oxidation in vivo, we used ARPE-19 cells that accumulated A2E, a lipofuscin fluorophore and photosensitizer, as a model system to investigate the effects of lutein and zeaxanthin supplementation. The data show that supplementation with lutein or zeaxanthin in the medium resulted in accumulation of lutein or zeaxanthin in the RPE cells. The concentrations of lutein and zeaxanthin in the cells were 2–14-fold of that detected in the medium, indicating that ARPE-19 cells actively take up lutein or zeaxanthin. As compared with untreated cells, exposure of A2E-containing RPE to blue light resulted in a 40–60% decrease in proteasome activity, a 50–80% decrease in expression of CFH and MCP-1, and an ~ 20-fold increase in expression of IL-8. The photo-oxidation-induced changes in expression of MCP-1, IL-8 and CFH were similar to those caused by chemical inhibition of the proteasome, suggesting that inactivation of the proteasome is involved in the photo-oxidation-induced alteration in expression of these inflammation-related genes. Incubation of the A2E-containing RPE with lutein or zeaxanthin prior to blue light exposure significantly attenuated the photo-oxidation-induced inactivation of the proteasome and photo-oxidation induced changes in expression of MCP-1, IL-8, and CFH. Together, these data indicate that lutein or zeaxanthin modulates inflammatory responses in cultured RPE in response to photo-oxidation. Protecting the proteasome

  16. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling, and folate uptake in human colonic epithelial cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell...

  17. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-XL

    SciTech Connect

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy

    2001-09-25

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) is a well-established mechanism that contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in the repair of DSBs in human cells. However, in addition to promoting genomic stability, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We previously demonstrated that overexpression of BCL-2 or BCL-xL enhanced the frequency of x-ray-induced mutations involving the TK1 locus, including loss of heterozygosity (LOH) events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells, and to directly determine whether ectopic expression of BCL-xL affects HDR. We used the B-lymphoblastoid cell line TK6, which expresses wild-type TP53 and resembles normal lymphocytes in undergoing apoptosis following! genotoxic stress. U sing isogenic derivatives of TK6 cells (TK6-neo, TK6-bcl-xL), we find that a DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold in TK6-neo cells, demonstrating that a DSB can be efficiently repaired by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3- to 4-fold more frequent in BCL-xL overexpressing cells. The results demonstrate that HDR plays an important role in maintaining genomic integrity in human cells and that ectopic expression of BCL-xL enhances HDR of DSBs. To our knowledge, this is the first study to highlight a function for BCL-xL in modulating DSB repair in human cells.

  18. Cytokinins modulate the expression of genes encoding the protein of the light-harvesting chlorophyll a/b complex.

    PubMed

    de la Serve, B T; Axelos, M; Péaud-Lenoël, C

    1985-05-01

    Tobacco cell suspension cultures responded to cytokinins (for instance kinetin) by full chloroplast differentiation. The hormone had the effect of stimulating the appearance of a few prominent plastid proteins. Synthesis of the light-harvesting chlorophyl a/b-binding protein (LHCP) in response to kinetin was noteworthy (Axelos M. et al.: Plant Sci Lett 33:201-212, 1984).Poly(A)(+)RNAs were prepared from cells grown in the presence of or without added kinetin. Poly(A)(+)RNA recovery and translation activity were not quantitatively altered by the hormone treatment. In vitro translation of polyadenylated mRNA into precursor polypeptides of LHCP (pLHCP) was quantified by immunoprecipitation and SDS-PAGE fractionation of pLHCP immunoprecipitates: pLHCP-mRNA translating activity was found to be stimulated in parallel to mature LHCP accumulation by kinetin-induced cells.Dot-blot and northern-blot hybridizations of poly(A)(+)RNA were carried out, using as a probe a pea LHCP-cDNA clone (Broglie R. et al.: Proc Natl Acad Sci USA 78: 7304-7308, 1981). A ten-fold increase of the level of pLHCP-encoding sequences was observed in poly(A)(+)RNA prepared from 9-d kinetin-stimulated cells, compared to control cells. Oligo(dT)-cellulose-excluded RNA fractions exhibited very low hybridization levels, in the same ratios as those obtained with poly(A)(+)RNA.Thus, the expression of LHCP-gene activity, in response to kinetin addition to tobacco cell suspension cultures, is regulated by the level of pLHCP-encoding mRNA rather than by translational or post-translational controls. re]19850218 rv]19850605 ac]19850613. PMID:24306651

  19. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats

    PubMed Central

    2010-01-01

    Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes. PMID:20513244

  20. Gearbox gene expression and growth rate.

    PubMed

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors. PMID:24420108

  1. Fructus ligustri lucidi ethanol extract improves bone mineral density and properties through modulating calcium absorption-related gene expression in kidney and duodenum of growing rats.

    PubMed

    Feng, Xin; Lyu, Ying; Wu, Zhenghao; Fang, Yuehui; Xu, Hao; Zhao, Pengling; Xu, Yajun; Feng, Haotian

    2014-04-01

    Optimizing peak bone mass in early life is one of key preventive strategies against osteoporosis. Fructus ligustri lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a commonly prescribed herb in many kidney-tonifying traditional Chinese medicinal formulas to alleviate osteoporosis. Previously, FLL extracts have been shown to have osteoprotective effect in aged or ovariectomized rats. In the present study, we investigated the effects of FLL ethanol extract on bone mineral density (BMD) and mechanical properties in growing male rats and explored the underlying mechanisms. Male weaning Sprague-Dawley rats were randomized into four groups and orally administrated for 4 months an AIN-93G formula-based diet supplementing with different doses of FLL ethanol extract (0.40, 0.65, and 0.90 %) or vehicle control, respectively. Then calcium balance, serum level of Ca, P, 25(OH)2D3, 1,25(OH)2D3, osteocalcin (OCN), C-terminal telopeptide of type I collagen (CTX-I), and parathyroid hormone, bone microarchitecture, and calcium absorption-related genes expression in duodenum and kidney were analyzed. The results demonstrated that FLL ethanol extract increased BMD of growing rats and improved their bone microarchitecture and mechanical properties. FLL ethanol extract altered bone turnover, as evidenced by increasing a bone formation maker, OCN, and decreasing a bone resorption maker, CTX-I. Intriguingly, both Ca absorption and Ca retention rate were elevated by FLL ethanol extract treatment, possibly through the mechanisms of up-regulating the transcriptions of calcitropic genes in kidney (1α-hydroxylase) and duodenum (vitamin D receptor, calcium transporter calbindin-D9k, and transient receptor potential vanilloid 6). In conclusion, FLL ethanol extract increased bone mass gain and improved bone properties via modulating bone turnover and up-regulating calcium absorption-related gene expression in kidney and duodenum, which could then activate 1,25(OH)2D3-dependent calcium

  2. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells.

    PubMed

    Myers, Samuel A; Peddada, Sailaja; Chatterjee, Nilanjana; Friedrich, Tara; Tomoda, Kiichrio; Krings, Gregor; Thomas, Sean; Maynard, Jason; Broeker, Michael; Thomson, Matthew; Pollard, Katherine; Yamanaka, Shinya; Burlingame, Alma L; Panning, Barbara

    2016-01-01

    The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor. PMID:26949256

  3. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells

    PubMed Central

    Myers, Samuel A; Peddada, Sailaja; Chatterjee, Nilanjana; Friedrich, Tara; Tomoda, Kiichrio; Krings, Gregor; Thomas, Sean; Maynard, Jason; Broeker, Michael; Thomson, Matthew; Pollard, Katherine; Yamanaka, Shinya; Burlingame, Alma L; Panning, Barbara

    2016-01-01

    The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor. DOI: http://dx.doi.org/10.7554/eLife.10647.001 PMID:26949256

  4. Modulation of chicken intestinal immune gene expression by small cationic peptides as feed additives during the first week posthatch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been investigating modulation strategies tailored around the selective stimulation of the host’s immune system as an alternative to direct targeting of microbial pathogens by antibiotics. One such approach is the use of a group of small cationic peptides (BT) produced by a Gram-positive soi...

  5. RNA interference-mediated knockdown of CD49e (α5 integrin chain) in human thymic epithelial cells modulates the expression of multiple genes and decreases thymocyte adhesion

    PubMed Central

    2010-01-01

    Background The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin α5β1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation. PMID:21210968

  6. Identification of a novel basic helix-loop-helix-PAS factor, NXF, reveals a Sim2 competitive, positive regulatory role in dendritic-cytoskeleton modulator drebrin gene expression.

    PubMed

    Ooe, Norihisa; Saito, Koichi; Mikami, Nobuyoshi; Nakatuka, Iwao; Kaneko, Hideo

    2004-01-01

    Sim2, a basic helix-loop-helix (bHLH)-PAS transcriptional repressor, is thought to be involved in some symptoms of Down's syndrome. In the course of searching for hypothetical Sim2 relatives, we isolated another bHLH-PAS factor, NXF. NXF was a novel gene and was selectively expressed in neuronal tissues. While no striking homolog of NXF was found in vertebrates, a Caenorhabditis elegans putative transcription factor, C15C8.2, showed similarity in the bHLH-PAS domain. NXF had an activation domain as a transcription activator, and Arnt-type bHLH-PAS subfamily members were identified as the heterodimer partners of NXF. The NXF/Arnt heterodimer was capable of binding and activating a subset of Sim2/Arnt target DNA variants, and Sim2 could compete with the NXF activity on the elements. We showed that Drebrin had several such NXF/Arnt binding elements on the promoter, which could be direct or indirect cross talking points between NXF (activation) and Sim2 (repression) action. Drebrin has been reported to be engaged in dendritic-cytoskeleton modulation at synapses, and such a novel NXF signaling system on neural gene promoter may be a molecular target of the adverse effects of Sim2 in the mental retardation of Down's syndrome. PMID:14701734

  7. Modulation of multidrug resistance gene expression in human breast cancer cells by (-)-gossypol-enriched cottonseed oil.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    P-glycoprotein, the product of the multidrug resistance 1 gene, acts as an efflux pump and prevents sufficient intracellular accumulation of several anticancer agents. Thus, it plays a major role in multidrug cancer resistance. Using the non-radioactive cell proliferation MTS assay, none of three ...

  8. Comparing the functions of equine and canine influenza H3N8 virus PA-X proteins: Suppression of reporter gene expression and modulation of global host gene expression.

    PubMed

    Feng, Kurtis H; Sun, Miao; Iketani, Sho; Holmes, Edward C; Parrish, Colin R

    2016-09-01

    The influenza PA-X protein is translated from the PA open reading frame from frameshifting and suppresses cellular gene expression due to its ribonuclease activity. We further defined the functional roles of PA-X by comparing PA-X proteins from two related viruses - equine influenza (EIV) and canine influenza (CIV) H3N8 - that differ in a C-terminal truncation and internal mutations. In vitro reporter gene assays revealed that both proteins were able to suppress gene expression. Interestingly, EIV PA-X demonstrated ~50% greater activity compared to CIV PA-X, and we identified the mutations that caused this difference. We used RNA-seq to evaluate the effects of PA-X on host gene expression after transfection into cultured cells. There were no significant differences in this property between EIV and CIV PA-X proteins, but expression of either resulted in the up-regulation of genes when compared to controls, most notably immunity-related proteins, trafficking proteins, and transcription factors. PMID:27314620

  9. Cytosolic Calcium, hydrogen peroxide, and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: Parabolic flight data

    NASA Astrophysics Data System (ADS)

    Hampp, Ruediger; Hausmann, Niklas; Neef, Maren; Fengler, Svenja

    Callus cell cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights in order to assess molecular short-term responses to altered gravity fields. Using transgenic cell lines, hydrogen peroxide and cytosolic Ca2+ were continuously monitored. In parallel, the metabolism of samples was chemically quenched (RNAlater, Ambion, for RNA; acid/base for NADPH, NADP) at typical stages of a parabola (1g before pull up; end of pull up (1.8 g), end of microgravity (µg, 20 sec), and end of pull out (1.8 g)). Cells exhibited an increase of both Ca2+ and hydrogen peroxide with the onset of µg, and a decline thereafter. This behaviour was accompanied by a decrease of the NADPH/NADP redox ratio, indicating a Ca2+-dependent activation of a NADPH oxidase. Microarray analyses revealed concomitant expression profiles. At the end of the microgravity phase, 396 transcripts were specifically up-, while 485 were down-regulated. Up-regulation was dominated by Ca2+- and ROS(reactive oxygen species)-related gene products. The same material was also used for the analysis of phosphopeptides by 2D SDS PAGE. Relevant spots were identified by liquid chromatography-MS. With the exception of a chaperone (HSP 70-3), hypergravity (1.8 g) and microgravity modified different sets of proteins. These are partly involved in primary metabolism (glycolysis, gluconeogenesis, citrate cycle) and detoxification of reactive oxygen species. Taken together, these data show that both gene expression and protein modulation jointly respond within seconds to alterations in the gravity field, with a focus on metabolic adaptation, signalling and control of ROS.

  10. Inferring differentiation pathways from gene expression

    PubMed Central

    Costa, Ivan G.; Roepcke, Stefan; Hafemeister, Christoph; Schliep, Alexander

    2008-01-01

    Motivation: The regulation of proliferation and differentiation of embryonic and adult stem cells into mature cells is central to developmental biology. Gene expression measured in distinguishable developmental stages helps to elucidate underlying molecular processes. In previous work we showed that functional gene modules, which act distinctly in the course of development, can be represented by a mixture of trees. In general, the similarities in the gene expression programs of cell populations reflect the similarities in the differentiation path. Results: We propose a novel model for gene expression profiles and an unsupervised learning method to estimate developmental similarity and infer differentiation pathways. We assess the performance of our model on simulated data and compare it with favorable results to related methods. We also infer differentiation pathways and predict functional modules in gene expression data of lymphoid development. Conclusions: We demonstrate for the first time how, in principal, the incorporation of structural knowledge about the dependence structure helps to reveal differentiation pathways and potentially relevant functional gene modules from microarray datasets. Our method applies in any area of developmental biology where it is possible to obtain cells of distinguishable differentiation stages. Availability: The implementation of our method (GPL license), data and additional results are available at http://algorithmics.molgen.mpg.de/Supplements/InfDif/ Contact: filho@molgen.mpg.de, schliep@molgen.mpg.de Supplementary information: Supplementary data is available at Bioinformatics online. PMID:18586709

  11. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response.

    PubMed

    Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C

    2014-09-01

    In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9β/9γ. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and α variant, supporting our experimental data. Using siRNA specifically targeting exons 9β/9γ, we demonstrate that cell growth can be driven by modulating p53β and p53γ expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53β and p53γ promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53β enhanced p53α transcriptional activity on the p21 and Bax promoters, while p53γ increased p53α transcriptional activity on the Bax promoter only. Moreover, p53β and p53γ co-immunoprecipitate with p53α only in the presence of p53-responsive promoter. Interestingly, although p53β and p53γ promote apoptosis in MCF7 cells, p53β and p53γ maintain cell growth in response to TG003 in a p53α-dependent manner. The dual activities of p53β and p53γ isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53β and p53γ regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616

  12. MODULATION OF RUBISCO ACTIVASE GENE EXPRESSION DURING HEAT STRESS IN COTTON (GOSSYPIUM HIRSUTUM L.) INVOLVES POST-TRANSCRIPTIONAL MECHANISMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibition of photosynthesis by heat stress involves deactivation of Rubisco and is exacerbated by the low thermal stability of Rubisco’s chaperone, activase. Activase structure, activity and protein expression have been the focus of previous work examining the effect of heat stress on this enzyme....

  13. Researchers use Modified CRISPR Systems to Modulate Gene Expression on a Genomic Scale | Office of Cancer Genomics

    Cancer.gov

    The genetic engineering system, clustered regularly interspaced short palindromic repeats (CRISPR), has conventionally been used to inactivate genes by making targeted double stranded cuts in DNA. While CRISPR is a useful tool, it can only be used to create loss-of-function modifications and often causes off-target effects due to the disruptive mechanism by which it works. CTD2 researchers at the University of California, San Francisco recently addressed these shortcomings in a publication in Cell.

  14. Modulation of orexigenic and anorexigenic peptides gene expression in the rat DVC and hypothalamus by acute immobilization stress

    PubMed Central

    Chigr, Fatiha; Rachidi, Fatima; Tardivel, Catherine; Najimi, Mohamed; Moyse, Emmanuel

    2014-01-01

    We studied the long term effects of a single exposure to immobilization stress (IS) (1 h) on the expression of anorexigenic (Pro-opiomelanocortin: POMC and cocaine amphetamine related transcript: CART) and orexigenic (neuropeptide Y:NPY, Agouti related peptide: AgRP) factors in hypothalamus and dorso vagal complex (DVC). We showed, by using RT-PCR that in the hypothalamus, that the mRNAs of POMC and CART were up-regulated at the end of IS and up to 24 h. This up regulation persists until 48–72 h after IS for CART only. In the DVC, their expressions peak significantly at 24 h post stress and decline afterwards; CART mRNA is down regulated after 48 h post stress. NPY and AgRP mRNAs show a gradual increase just after the end of IS. The up regulation is significant only at 24 h after stress for AgRP but remains significantly higher for NPY compared to controls. In DVC, the mRNAs of the two factors show generally a similar post stress pattern. A significant increase jut after the end of IS of rats which persists up to 24 h after is firstly noticed. The levels tend then to reach the basal levels although, they were slightly but significantly higher up to 72 h after stress for mRNA NPY. The comparison between the expression profiles of anorexigenic and the two orexigenic peptides investigated shows the presence of a parallelism between that of POMC and AgRP and that of CART and NPY when each brain region (hypothalamus and DVC) is considered separately. It seems that any surge in the expression of each anorexigenic factor stimulates the expression of those of corresponding and appropriated orexigenic one. These last reactions from orexigenic peptides tend to attenuate the anorexigenic effects of CART and POMC and by consequent to abolish the anorexia state generated by stress. PMID:25100947

  15. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine. PMID:16886903

  16. Androgens modulate gene expression and specific DNA methylation pattern of steroid 5α-reductases in the frog Silurana tropicalis.

    PubMed

    Bissegger, Sonja; Langlois, Valerie S

    2016-08-01

    In vertebrates, androgens are essential in many biological functions, including reproduction, immune system, metabolism, cardiovascular function, and the central nervous system. The most potent androgen 5α-dihydrotestosterone (5α-DHT), which is actively involved in sexual differentiation and development, is converted from testosterone (T) by the steroid 5α-reductases type 1, 2, and 3 (Srd5α1, Srd5α2, and Srd5α3). Alternatively, steroid 5β-reductase (Srd5β) converts T to 5β-dihydrotestosterone (5β-DHT), a metabolite believed to be involved in steroid clearance. Recent studies suggested that Srd5 isoforms are targets for endocrine disruption. Thus, understanding the regulation of Srd5 is important to expand our knowledge on how exogenous compounds can interfere with these enzymes. In this study, we exposed frog brain, liver, and gonads ex vivo to T, 5α-DHT, and 5β-DHT in order to investigate the regulation of srd5 in response to androgens as a simulation of endocrine disrupting chemicals with androgenic properties. Androgens did not modulate srd5α2, suggesting that this isoform is not regulated by T and 5α-DHT in frogs. However, the DNA methylation of srd5α2 increased following 5α-DHT treatment suggesting that androgens can modulate epigenetic mechanisms in amphibians. In contrast, the DNA methylation of srd5α1 and srd5α3 remained stable after androgen exposure, but the mRNA levels of srd5α1 and srd5α3 were modulated by T, 5α-DHT, and 5β-DHT in a sex- and tissue-specific manner. While T positively regulates srd5α1 and srd5α3 in testes, T negatively regulates srd5α3 in ovaries. Moreover, exposure to T also increased the mRNA level of srd5β in the male brain suggesting a mechanism to protect the brain from androgen action by elimination of T into 5β-DHT. Thus, exogenous compounds with androgenic properties potentially interact with srd5 transcription and DNA methylation pattern, which could adversely affect biological functions of vertebrates

  17. Analyses of a satiety factor NUCB2/nesfatin-1; gene expressions and modulation by different dietary components in dogs

    PubMed Central

    NOZAWA, Satoshi; KIMURA, Tomoko; KURISHIMA, Miyuki; MIMURA, Kana; SAEKI, Kaori; MIKI, Yohei; ODA, Hitomi; MORI, Akihiro; MOMOTA, Yutaka; AZAKAMI, Daigo; ISHIOKA, Katsumi

    2015-01-01

    Nesfatin-1 is an anorexic peptide derived from a precursor, nucleobindin-2 (NUCB2), which is distributed in various organs, coexists with ghrelin in the gastric X/A-like cells and closely relates to an appetite control in rodents and humans. Nesfatin-1 may be a significant factor addressing the satiety also in veterinary medicine, however, there are few reports about nesfatin-1 in dogs. In the present study, we detected canine NUCB2/nesfatin-1 mRNA in various tissues, especially abundant in pancreas, gastrointestinal tracts, testis and cerebellum. We examined circulating nesfatin-1 concentrations and NUCB2/nesfatin-1 mRNA expressions in upper gastrointestinal tracts (gastric corpus, pyloric antrum and duodenum) in dogs fed on different types of diets. Plasma nesfatin-1 concentrations in the dogs were approximately 4 ng/ml and they did not change after feeding through the study, however, NUCB2/nesfatin-1 mRNA expressions in pyloric antrum were 1.84-fold higher in the dogs fed on a High fiber/High protein diet (P<0.001), 1.48-fold higher in the dogs fed on a High fat/Low protein diet (P<0.05) and 1.02-fold higher in the dogs fed on a Low fat/High carbohydrate diet (not significant) comparing to those on a control diet. It was concluded that High fiber/High protein and High fat/Low protein diets increased NUCB2/nesfatin-1 production in canine gastrointestinal tracts. These results may set the stage for further investigations of canine NUCB2/nesfatin-1, which may relate to satiety effects in dogs. PMID:26596634

  18. IFI16 Restricts HSV-1 Replication by Accumulating on the HSV-1 Genome, Repressing HSV-1 Gene Expression, and Directly or Indirectly Modulating Histone Modifications

    PubMed Central

    Johnson, Karen E.; Bottero, Virginie; Flaherty, Stephanie; Dutta, Sujoy; Singh, Vivek Vikram; Chandran, Bala

    2014-01-01

    Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16

  19. Evolution of gene expression after gene amplification.

    PubMed

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-05-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  20. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  1. NAP (davunetide) protects primary hippocampus culture by modulating expression profile of antioxidant genes during limiting oxygen conditions.

    PubMed

    Arya, A; Meena, R; Sethy, N K; Das, M; Sharma, M; Bhargava, K

    2015-04-01

    Hypoxia is a well-known threat to neuronal cells and triggers the pathophysiological syndromes in extreme environments such as high altitudes and traumatic conditions such as stroke. Among several prophylactic molecules proven suitable for ameliorating free radical damage, NAP (an octapeptide with initial amino acids: asparagine/N, alanine/A, and proline/P) can be considered superlative, primarily due to its high permeability into brain through blood-brain barrier and observed activity at femtomolar concentrations. Several mechanisms of action of NAP have been hypothesized for its protective role during hypoxia, yet any distinct mechanism is unknown. Oxidative stress is advocated as the leading event in hypoxia; we, therefore, investigated the regulation of key antioxidant genes to understand the regulatory role of NAP in providing neuroprotection. Primary neuronal culture of rat was subjected to cellular hypoxia by limiting the oxygen concentration to 0.5% for 72 h and observing the prophylactic efficacies of 15fM NAP by conventional cell death assays using flow cytometry. We performed real-time quantitative polymerase chain reaction to comprehend the regulatory mechanism. Further, we validated the significantly regulated candidates by enzyme assays and immunoblotting. In the present study, we report that NAP regulates a major clad of cellular antioxidants and there is an involvement of more than one route of action in neuroprotection during hypoxia. PMID:25727410

  2. Differential modulation of PPARalpha and gamma target gene expression in the liver and kidney of rats treated with aspirin.

    PubMed

    Fidaleo, Marco; Berardi, Emanuele; Sartori, Claudia

    2008-04-01

    Aspirin modified peroxisomal enzymatic activities both in the liver and renal cortex of rats, producing typical effects of peroxisomal proliferators (PPs). Although similar increments in beta-oxidation system and catalase activities were observed in both organs, induction of mRNA-Cyp4a10 and mRNA-FAT/CD36, target genes for peroxisome proliferator-activated receptors alpha (PPARalpha) and gamma (PPARgamma), respectively, was only present in the liver. There was no effect on liver mRNA-PPARalpha, while mRNA-PPARgamma was down-regulated, probably as a result of enzymatic inhibition of cyclooxygenases (COXs) by aspirin which has been shown to decrease the levels of PGJ2 and its metabolites, known as strong endogenous ligands for PPARgamma. Typical PP alterations in cell replication and apoptosis were not found during aspirin treatment or after withdrawal, suggesting that peroxisome proliferation occurs without inducing cell cycle alterations. Probably, the synergic action of both PPARalpha and PPARgamma receptors might reduce the impact on cell proliferation and apoptosis. PMID:18222077

  3. Rice root curling, a response to mechanosensing, is modulated by the rice E3-ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1).

    PubMed

    Lourenço, T F; Serra, T S; Cordeiro, A M; Swanson, S J; Gilroy, S; Saibo, N J M; Oliveira, M M

    2016-08-01

    Plant development depends on the perception of external cues, such as light, gravity, touch, wind or nutrients, among others. Nevertheless, little is known regarding signal transduction pathways integrating these stimuli. Recently, we have reported the involvement of a rice E3-ubiquitin ligase (OsHOS1, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1), previously associated with abiotic stress response, in root responses to mechanical stimuli. We showed that OsHOS1 is involved in the regulation of root curling after mechanosensing and that RNAi::OsHOS1 plants failed to exhibit the root curling phenotype observed in WT. Interestingly, the straight root phenotype of these transgenics correlated with the up-regulation of rice ROOT MEANDER CURLING (OsRMC, a negative regulator of rice root curling) and was reverted by the exogenous application of jasmonic acid. Altogether, our results highlight the role of the proteasome modulating plant responses to mechanical stimuli and suggest that OsHOS1 is a hub integrating environmental and hormonal signaling into plant growth and development. PMID:27467198

  4. Gene Co-Expression Analysis Inferring the Crosstalk of Ethylene and Gibberellin in Modulating the Transcriptional Acclimation of Cassava Root Growth in Different Seasons

    PubMed Central

    Saithong, Treenut; Saerue, Samorn; Kalapanulak, Saowalak; Sojikul, Punchapat; Narangajavana, Jarunya; Bhumiratana, Sakarindr

    2015-01-01

    Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change. PMID:26366737

  5. Pattern Dynamics in Adaxial-Abaxial Specific Gene Expression Are Modulated by a Plastid Retrograde Signal during Arabidopsis thaliana Leaf Development

    PubMed Central

    Tameshige, Toshiaki; Fujita, Hironori; Watanabe, Keiro; Toyokura, Koichi; Kondo, Maki; Tatematsu, Kiyoshi; Matsumoto, Noritaka; Tsugeki, Ryuji; Kawaguchi, Masayoshi; Nishimura, Mikio; Okada, Kiyotaka

    2013-01-01

    The maintenance and reformation of gene expression domains are the basis for the morphogenic processes of multicellular systems. In a leaf primordium of Arabidopsis thaliana, the expression of FILAMENTOUS FLOWER (FIL) and the activity of the microRNA miR165/166 are specific to the abaxial side. This miR165/166 activity restricts the target gene expression to the adaxial side. The adaxial and abaxial specific gene expressions are crucial for the wide expansion of leaf lamina. The FIL-expression and the miR165/166-free domains are almost mutually exclusive, and they have been considered to be maintained during leaf development. However, we found here that the position of the boundary between the two domains gradually shifts from the adaxial side to the abaxial side. The cell lineage analysis revealed that this boundary shifting was associated with a sequential gene expression switch from the FIL-expressing (miR165/166 active) to the miR165/166-free (non-FIL-expressing) states. Our genetic analyses using the enlarged fil expression domain2 (enf2) mutant and chemical treatment experiments revealed that impairment in the plastid (chloroplast) gene expression machinery retards this boundary shifting and inhibits the lamina expansion. Furthermore, these developmental effects caused by the abnormal plastids were not observed in the genomes uncoupled1 (gun1) mutant background. This study characterizes the dynamic nature of the adaxial-abaxial specification process in leaf primordia and reveals that the dynamic process is affected by the GUN1-dependent retrograde signal in response to the failure of plastid gene expression. These findings advance our understanding on the molecular mechanism linking the plastid function to the leaf morphogenic processes. PMID:23935517

  6. Neutrophil Elastase Modulates Cytokine Expression

    PubMed Central

    Benabid, Rym; Wartelle, Julien; Malleret, Laurette; Guyot, Nicolas; Gangloff, Sophie; Lebargy, François; Belaaouaj, Azzaq

    2012-01-01

    There is accumulating evidence that following bacterial infection, the massive recruitment and activation of the phagocytes, neutrophils, is accompanied with the extracellular release of active neutrophil elastase (NE), a potent serine protease. Using NE-deficient mice in a clinically relevant model of Pseudomonas aeruginosa-induced pneumonia, we provide compelling in vivo evidence that the absence of NE was associated with decreased protein and transcript levels of the proinflammatory cytokines TNF-α, MIP-2, and IL-6 in the lungs, coinciding with increased mortality of mutant mice to infection. The implication of NE in the induction of cytokine expression involved at least in part Toll-like receptor 4 (TLR-4). These findings were further confirmed following exposure of cultured macrophages to purified NE. Together, our data suggest strongly for the first time that NE not only plays a direct antibacterial role as it has been previously reported, but released active enzyme can also modulate cytokine expression, which contributes to host protection against P. aeruginosa. In light of our findings, the long held view that considers NE as a prime suspect in P. aeruginosa-associated diseases will need to be carefully reassessed. Also, therapeutic strategies aiming at NE inhibition should take into account the physiologic roles of the enzyme. PMID:22927440

  7. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  8. Arabidopsis RNASE THREE LIKE2 Modulates the Expression of Protein-Coding Genes via 24-Nucleotide Small Interfering RNA-Directed DNA Methylation[OPEN

    PubMed Central

    Hachet, Mélanie; Comella, Pascale; Zytnicki, Matthias; Vaucheret, Hervé

    2016-01-01

    RNaseIII enzymes catalyze the cleavage of double-stranded RNA (dsRNA) and have diverse functions in RNA maturation. Arabidopsis thaliana RNASE THREE LIKE2 (RTL2), which carries one RNaseIII and two dsRNA binding (DRB) domains, is a unique Arabidopsis RNaseIII enzyme resembling the budding yeast small interfering RNA (siRNA)-producing Dcr1 enzyme. Here, we show that RTL2 modulates the production of a subset of small RNAs and that this activity depends on both its RNaseIII and DRB domains. However, the mode of action of RTL2 differs from that of Dcr1. Whereas Dcr1 directly cleaves dsRNAs into 23-nucleotide siRNAs, RTL2 likely cleaves dsRNAs into longer molecules, which are subsequently processed into small RNAs by the DICER-LIKE enzymes. Depending on the dsRNA considered, RTL2-mediated maturation either improves (RTL2-dependent loci) or reduces (RTL2-sensitive loci) the production of small RNAs. Because the vast majority of RTL2-regulated loci correspond to transposons and intergenic regions producing 24-nucleotide siRNAs that guide DNA methylation, RTL2 depletion modifies DNA methylation in these regions. Nevertheless, 13% of RTL2-regulated loci correspond to protein-coding genes. We show that changes in 24-nucleotide siRNA levels also affect DNA methylation levels at such loci and inversely correlate with mRNA steady state levels, thus implicating RTL2 in the regulation of protein-coding gene expression. PMID:26764378

  9. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study.

    PubMed

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-10-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3-/-/Nrl-/- and Cngb3-/-/Nrl-/- mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3-/-/Nrl-/- and 92 in Cngb3-/-/Nrl-/- retinas, relative to Nrl-/- retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3-/-/Nrl-/- and Cngb3-/-/Nrl-/- retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  10. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-01-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3−/−/Nrl−/− and 92 in Cngb3−/−/Nrl−/− retinas, relative to Nrl−/− retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  11. AtWRKY40 and AtWRKY63 Modulate the Expression of Stress-Responsive Nuclear Genes Encoding Mitochondrial and Chloroplast Proteins1[W][OA

    PubMed Central

    Van Aken, Olivier; Zhang, Botao; Law, Simon; Narsai, Reena; Whelan, James

    2013-01-01

    The expression of a variety of nuclear genes encoding mitochondrial proteins is known to adapt to changes in environmental conditions and retrograde signaling. The presence of putative WRKY transcription factor binding sites (W-boxes) in the promoters of many of these genes prompted a screen of 72 annotated WRKY factors in the Arabidopsis (Arabidopsis thaliana) genome for regulators of transcripts encoding mitochondrial proteins. A large-scale yeast one-hybrid screen was used to identify WRKY factors that bind the promoters of marker genes (Alternative oxidase1a, NADH dehydrogenaseB2, and the AAA ATPase Ubiquinol-cytochrome c reductase synthesis1), and interactions were confirmed using electromobility shift assays. Transgenic overexpression and knockout lines for 12 binding WRKY factors were generated and tested for altered expression of the marker genes during normal and stress conditions. AtWRKY40 was found to be a repressor of antimycin A-induced mitochondrial retrograde expression and high-light-induced signaling, while AtWRKY63 was identified as an activator. Genome-wide expression analysis following high-light stress in transgenic lines with perturbed AtWRKY40 and AtWRKY63 function revealed that these factors are involved in regulating stress-responsive genes encoding mitochondrial and chloroplast proteins but have little effect on more constitutively expressed genes encoding organellar proteins. Furthermore, it appears that AtWRKY40 and AtWRKY63 are particularly involved in regulating the expression of genes responding commonly to both mitochondrial and chloroplast dysfunction but not of genes responding to either mitochondrial or chloroplast perturbation. In conclusion, this study establishes the role of WRKY transcription factors in the coordination of stress-responsive genes encoding mitochondrial and chloroplast proteins. PMID:23509177

  12. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  13. Co-modulation analysis of gene regulation in breast cancer reveals complex interplay between ESR1 and ERBB2 genes

    PubMed Central

    2015-01-01

    Background Gene regulation is dynamic across cellular conditions and disease subtypes. From the aspect of regulation under modulation, regulation strength between a pair of genes can be modulated by (dependent on) expression abundance of another gene (modulator gene). Previous studies have demonstrated the involvement of genes modulated by single modulator genes in cancers, including breast cancer. However, analysis of multi-modulator co-modulation that can further delineate the landscape of complex gene regulation is, to our knowledge, unexplored previously. In the present study we aim to explore the joint effects of multiple modulator genes in modulating global gene regulation and dissect the biological functions in breast cancer. Results To carry out the analysis, we proposed the Covariability-based Multiple Regression (CoMRe) method. The method is mainly built on a multiple regression model that takes expression levels of multiple modulators as inputs and regulation strength between genes as output. Pairs of genes were divided into groups based on their co-modulation patterns. Analyzing gene expression profiles from 286 breast cancer patients, CoMRe investigated ten candidate modulator genes that interacted and jointly determined global gene regulation. Among the candidate modulators, ESR1, ERBB2, and ADAM12 were found modulating the most numbers of gene pairs. The largest group of gene pairs was composed of ones that were modulated by merely ESR1. Functional annotation revealed that the group was significantly related to tumorigenesis and estrogen signaling in breast cancer. ESR1−ERBB2 co-modulation was the largest group modulated by more than one modulators. Similarly, the group was functionally associated with hormone stimulus, suggesting that functions of the two modulators are performed, at least partially, through modulation. The findings were validated in majorities of patients (> 99%) of two independent breast cancer datasets. Conclusions We have

  14. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  15. A nanoparticle-based epigenetic modulator for efficient gene modulation

    NASA Astrophysics Data System (ADS)

    Pongkulapa, Thanapat

    Modulation of gene expression through chromatin remodeling involves epigenetic mechanisms, such as histone acetylation. Acetylation is tightly regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Molecules that can regulate these enzymes by altering (activating or inhibiting) their functions have become a valuable tool for understanding cell development and diseases. HAT activators, i.e. N-(4-Chloro-(3-trifluoromethyl)phenyl)-2-ethoxybenzamide (CTB), have shown a therapeutic potential for many diseases, including cancer and neurodegeneration. However, these compounds encounter a solubility and a membrane permeability issue, which restricts their full potential for practical usage, especially for in vivo applications. To address this issue, in this work, we developed a nanoparticle-based HAT activator CTB, named Au-CTB, by incorporating a new CTB analogue onto gold nanoparticles (AuNPs) along with a poly(ethylene glycol) moiety and a nuclear localization signal (NLS) peptide to assist with solubility and membrane permeability. We found that our new CTB analogue and Au-CTB could activate HAT activity. Significantly, an increase in potency to activate HAT activity by Au-CTB proved the effectiveness of using the nanoparticle delivery platform. In addition, the versatility of Au-CTB platform permits the attachment of multiple ligands with tunable ratios on the nanoparticle surface via facile surface functionalization of gold nanoparticles. Due to its high delivery efficiency and versatility, Au-CTB can be a powerful platform for applications in epigenetic regulation of gene expression.

  16. Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines

    PubMed Central

    Ullmannova, Veronika; Popescu, Nicholas C.

    2007-01-01

    Background Dietary flavone was previously shown to increase the expression of deleted in liver cancer–1 gene (DLC-1) in HT-29 colon carcinoma cell line (Proteomics 2004;4:2455-64). DLC-1 that encodes a Rho GTPase-activating protein, functions as a tumor suppressor gene and is frequently inactivated or down-regulated in several common cancers. Restoration of DLC-1 expression suppresses in vitro tumor cells proliferation and tumorigenicity in vivo. Methods Here, the effect of flavone was examined in several DLC-1-deficient cell lines derived from different types human cancer using assays for cell proliferation, gene expression and transfer. Results We show that exposure to 150μM flavone increased DLC1 expression in breast but not in liver or prostate carcinoma cells or a nonmalignant breast epithelial cell line. Flavone restored the expression of DLC1 in the breast carcinoma cell lines MDA-MB-468, MDA-MB-361, and BT20 as well as in the colon carcinoma cell line HT-29 all of which are DLC-1-negative due to promoter hypermethylation. We further show that flavone inhibited cell proliferation, induced cell cycle arrest at G2-M, increased p21 Waf1 gene expression, and caused apoptosis. Microarray analysis of these aggressive and metastatic breast carcinoma cells revealed 29 flavone-responsive genes, among which the DNA damage–inducible GADD genes were up-regulated and the proto-oncogene STMN1 and IGFBP3 were down-regulated. Conclusions Flavone-mediated alterations of genes that regulate tumor cell proliferation, cell cycle, and apoptosis contribute to chemopreventive and antitumoral effects of flavone. Alone or in combination with demethylating agents, flavone may be an effective adjunct to chemotherapy in preventing breast cancer metastasis. PMID:17418982

  17. Gene Expression in Oligodendroglial Tumors

    PubMed Central

    Shaw, Elisabeth J.; Haylock, Brian; Husband, David; du Plessis, Daniel; Sibson, D. Ross; Warnke, Peter C.; Walker, Carol

    2010-01-01

    Background: Oligodendroglial tumors with 1p/19q loss are more likely to be chemosensitive and have longer survival than those with intact 1p/19q, but not all respond to chemotherapy, warranting investigation of the biological basis of chemosensitivity. Methods: Gene expression profiling was performed using amplified antisense RNA from 28 oligodendroglial tumors treated with chemotherapy (26 serial stereotactic biopsy, 2 resection). Expression of differentially expressed genes was validated by real-time PCR. Results: Unsupervised hierarchical clustering showed clustering of multiple samples from the same case in 14/17 cases and identified subgroups associated with tumor grade and 1p/19q status. 176 genes were differentially expressed, 164 being associated with 1p/19q loss (86% not on 1p or 19q). 94 genes differed between responders and non-responders to chemotherapy; 12 were not associated with 1p/19q loss. Significant differential expression was confirmed in 11/13 selected genes. Novel genes associated with response to therapy included SSBP2, GFRA1, FAP and RASD1. IQGAP1, INA, TGIF1, NR2F2 and MYCBP were differentially expressed in oligodendroglial tumors with 1p/19q loss. Conclusion: Gene expression profiling using serial stereotactic biopsies indicated greater homogeneity within tumors than between tumors. Genes associated with 1p/19q status or response were identified warranting further elucidation of their role in oligodendroglial tumors. PMID:20966545

  18. Silencing of grapevine pectate lyase-like genes VvPLL2 and VvPLL3 confers resistance against Erysiphe necator and differentially modulates gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broad-spectrum resistance against powdery mildew (PM) has been reported by silencing susceptibility genes in the model plant Arabidopsis. Here we used artificial microRNA constructs in PM-susceptible Vitis vinifera cv. Chardonnay to stably silence two pectate lyase-like orthologs (VvPLL2 and VvPLL3)...

  19. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    PubMed Central

    Di Renzo, Laura; Valente, Roberto; Colica, Carmen

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070. PMID:24876915

  20. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial.

    PubMed

    Di Renzo, Laura; Carraro, Alberto; Valente, Roberto; Iacopino, Leonardo; Colica, Carmen; De Lorenzo, Antonino

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070. PMID:24876915

  1. Activation of the retinoid X receptor modulates angiotensin II-induced smooth muscle gene expression and inflammation in vascular smooth muscle cells.

    PubMed

    Lehman, Allison M B; Montford, John R; Horita, Henrick; Ostriker, Allison C; Weiser-Evans, Mary C M; Nemenoff, Raphael A; Furgeson, Seth B

    2014-11-01

    The retinoid X receptor (RXR) partners with numerous nuclear receptors, such as the peroxisome proliferator activated receptor (PPAR) family, liver X receptors (LXRs), and farnesoid X receptor (FXR). Although each heterodimer can be activated by specific ligands, a subset of these receptors, defined as permissive nuclear receptors, can also be activated by RXR agonists known as rexinoids. Many individual RXR heterodimers have beneficial effects in vascular smooth muscle cells (SMCs). Because rexinoids can potently activate multiple RXR pathways, we hypothesized that treating SMCs with rexinoids would more effectively reverse the pathophysiologic effects of angiotensin II than an individual heterodimer agonist. Cultured rat aortic SMCs were pretreated with either an RXR agonist (bexarotene or 9-cis retinoic acid) or vehicle (dimethylsulfoxide) for 24 hours before stimulation with angiotensin II. Compared with dimethylsulfoxide, bexarotene blocked angiotensin II-induced SM contractile gene induction (calponin and smooth muscle-α-actin) and protein synthesis ([(3)H]leucine incorporation). Bexarotene also decreased angiotensin II-mediated inflammation, as measured by decreased expression of monocyte chemoattractant protein-1 (MCP-1). Activation of p38 mitogen-activated protein (MAP) kinase but not extracellular signal-related kinase (ERK) or protein kinase B (Akt) was also blunted by bexarotene. We compared bexarotene to five agonists of nuclear receptors (PPARα, PPARγ, PPARδ, LXR, and FXR). Bexarotene had a greater effect on calponin reduction, MCP-1 inhibition, and p38 MAP kinase inhibition than any individual agonist. PPARγ knockout cells demonstrated blunted responses to bexarotene, indicating that PPARγ is necessary for the effects of bexarotene. These data demonstrate that RXR is a potent modulator of angiotensin II-mediated responses in the vasculature, partially through inhibition of p38. PMID:25169989

  2. Identification of novel mRNA transcripts of the nm23-M1 gene that are modulated during mouse embryo development and are differently expressed in adult murine tissues.

    PubMed

    Gervasi, F; Capozza, F; Bruno, T; Fanciulli, M; Lombardi, D

    1998-12-01

    The nm23-M1, a putative metastasis-suppressor gene, and its homologs are involved in development and differentiation. We have shown previously that in vitro neuronal cell proliferation and differentiation can be modulated by nm23-M1 expression levels. In the present study, by the yeast two-hybrid system, we have shown that, at the onset of mouse tissue differentiation, the Nm23-M1 protein forms either homodimers, or heterodimers with Nm23-M2. Furthermore, we have isolated two cDNA variants of the nm23-M1 gene in the 3'-untranslated region (UTR). The two variants related to novel mRNA transcripts that are modulated in mouse embryo and are differently expressed in adult murine tissues. PMID:9881672

  3. Transcriptome analysis of human primary endothelial cells (HUVEC) from umbilical cords of gestational diabetic mothers reveals candidate sites for an epigenetic modulation of specific gene expression.

    PubMed

    Ambra, R; Manca, S; Palumbo, M C; Leoni, G; Natarelli, L; De Marco, A; Consoli, A; Pandolfi, A; Virgili, F

    2014-01-01

    Within the complex pathological picture associated to diabetes, high glucose (HG) has "per se" effects on cells and tissues that involve epigenetic reprogramming of gene expression. In fetal tissues, epigenetic changes occur genome-wide and are believed to induce specific long term effects. Human umbilical vein endothelial cells (HUVEC) obtained at delivery from gestational diabetic women were used to study the transcriptomic effects of chronic hyperglycemia in fetal vascular cells using Affymetrix microarrays. In spite of the small number of samples analyzed (n=6), genes related to insulin sensing and extracellular matrix reorganization were found significantly affected by HG. Quantitative PCR analysis of gene promoters identified a significant differential DNA methylation in TGFB2. Use of Ea.hy926 endothelial cells confirms data on HUVEC. Our study corroborates recent evidences suggesting that epigenetic reprogramming of gene expression occurs with persistent HG and provides a background for future investigations addressing genomic consequences of chronic HG. PMID:24667242

  4. Quorum sensing-modulated AND-gate promoters control gene expression in response to a combination of endogenous and exogenous signals.

    PubMed

    Shong, Jasmine; Collins, Cynthia H

    2014-04-18

    We have constructed and characterized two synthetic AND-gate promoters that require both a quorum-sensing (QS) signal and an exogenously added inducer to turn on gene expression. The engineered promoters, LEE and TTE, contain binding sites for the QS-dependent repressor, EsaR, and either LacI or TetR, and they are induced by an acyl-homoserine lactone (AHL) signal and IPTG or aTc. Although repression of both LEE and TTE by wild-type EsaR was observed, induction of gene expression at physiologically relevant concentrations of AHL required the use of an EsaR variant with higher signal sensitivity. Gene expression from both LEE and TTE was shown to require both signal molecules, and gene expression above background levels was not observed with either signal alone. We added endogenous production of AHL to evaluate the ability of the promoters to function in a QS-dependent manner and observed that gene expression increased as a function of cell density only in the presence of exogenously added IPTG or aTc. Cell-cell communication-dependent AND-gate behaviors were demonstrated using an agar plate assay, where cells containing the engineered promoters were shown to respond to AHL produced by a second E. coli strain only in the presence of exogenously added IPTG or aTc. The promoters described in this work demonstrate that EsaR and its target DNA sequence can be used to engineer new promoters to respond to cell density or cell-cell communication. Further, the AND-gate promoters described here may serve as a template for new regulatory systems that integrate QS and the presence of key metabolites or other environmental cues to enable dynamic changes in gene expression for metabolic engineering applications. PMID:24175658

  5. Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers

    PubMed Central

    2010-01-01

    Background Plant-based diets rich in fruit and vegetables can prevent development of several chronic age-related diseases. However, the mechanisms behind this protective effect are not elucidated. We have tested the hypothesis that intake of antioxidant-rich foods can affect groups of genes associated with cellular stress defence in human blood cells. Trial registration number: NCT00520819 http://clinicaltrials.gov. Methods In an 8-week dietary intervention study, 102 healthy male smokers were randomised to either a diet rich in various antioxidant-rich foods, a kiwifruit diet (three kiwifruits/d added to the regular diet) or a control group. Blood cell gene expression profiles were obtained from 10 randomly selected individuals of each group. Diet-induced changes on gene expression were compared to controls using a novel application of the gene set enrichment analysis (GSEA) on transcription profiles obtained using Affymetrix HG-U133-Plus 2.0 whole genome arrays. Results Changes were observed in the blood cell gene expression profiles in both intervention groups when compared to the control group. Groups of genes involved in regulation of cellular stress defence, such as DNA repair, apoptosis and hypoxia, were significantly upregulated (GSEA, FDR q-values < 5%) by both diets compared to the control group. Genes with common regulatory motifs for aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (AhR/ARNT) were upregulated by both interventions (FDR q-values < 5%). Plasma antioxidant biomarkers (polyphenols/carotenoids) increased in both groups. Conclusions The observed changes in the blood cell gene expression profiles suggest that the beneficial effects of a plant-based diet on human health may be mediated through optimization of defence processes. PMID:20846424

  6. The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling.

    PubMed

    Grassi, Daniela; Ghorbanpoor, Samar; Acaz-Fonseca, Estefania; Ruiz-Palmero, Isabel; Garcia-Segura, Luis M

    2015-10-01

    The selective estrogen receptor modulator raloxifene reduces blood pressure in hypertensive postmenopausal women. In the present study we have explored whether raloxifene regulates gene expression of arginine vasopressin (AVP), which is involved in the pathogenesis of hypertension. The effect of raloxifene was assessed in human female SH-SY5Y neuroblastoma cells, which have been recently identified as a suitable cellular model to study the estrogenic regulation of AVP. Raloxifene, within a concentration ranging from 10(-10) M to 10(-6) M, decreased the mRNA levels of AVP in SH-SY5Y cells with maximal effect at 10(-7) M. This effect of raloxifene was imitated by an agonist (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone of G protein-coupled estrogen receptor-1 (GPER) and blocked by an antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline of GPER and by GPER silencing. Raloxifene induced a time-dependent increase in the level of phosphorylated ERK1 and ERK2, by a mechanism blocked by the GPER antagonist. The treatment of SH-SY5Y cells with either a MAPK/ERK kinase 1/2-specific inhibitor (1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadine) or a protein kinase C inhibitor (sotrastaurin) blocked the effects of raloxifene on the phosphorylation of ERK1/2 and the regulation of AVP mRNA levels. These results reveal a mechanism mediating the regulation of AVP expression by raloxifene, involving the activation of GPER, which in turn activates protein kinase C, MAPK/ERK kinase, and ERK. The regulation of AVP by raloxifene and GPER may have implications for the treatment of blood hypertension(.). PMID:26200092

  7. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  8. Maternal folic acid supplementation modulates DNA methylation and gene expression in the rat offspring in a gestation period-dependent and organ-specific manner.

    PubMed

    Ly, Anna; Ishiguro, Lisa; Kim, Denise; Im, David; Kim, Sung-Eun; Sohn, Kyoung-Jin; Croxford, Ruth; Kim, Young-In

    2016-07-01

    Maternal folic acid supplementation can alter DNA methylation and gene expression in the developing fetus, which may confer disease susceptibility later in life. We determined which gestation period and organ were most sensitive to the modifying effect of folic acid supplementation during pregnancy on DNA methylation and gene expression in the offspring. Pregnant rats were randomized to a control diet throughout pregnancy; folic acid supplementation at 2.5× the control during the 1st, 2nd or 3rd week of gestation only; or folic acid supplementation throughout pregnancy. The brain, liver, kidney and colon from newborn pups were analyzed for folate concentrations, global DNA methylation and gene expression of the Igf2, Er-α, Gr, Ppar-α and Ppar-γ genes. Folic acid supplementation during the 2nd or 3rd week gestation or throughout pregnancy significantly increased brain folate concentrations (P<.001), while only folic acid supplementation throughout pregnancy significantly increased liver folate concentrations (P=.005), in newborn pups. Brain global DNA methylation incrementally decreased from early to late gestational folic acid supplementation and was the lowest with folic acid supplementation throughout pregnancy (P=.026). Folic acid supplementation in late gestation or throughout pregnancy significantly decreased Er-α, Gr and Ppar-α gene expression in the liver (P<.05). The kidney and colon were resistant to the effect of folic acid supplementation. Maternal folic acid supplementation affects tissue folate concentrations, DNA methylation and gene expression in the offspring in a gestation-period-dependent and organ-specific manner. PMID:27152636

  9. The Transcription Factor GTF2IRD1 Regulates the Topology and Function of Photoreceptors by Modulating Photoreceptor Gene Expression across the Retina

    PubMed Central

    Masuda, Tomohiro; Zhang, Xiaodong; Berlinicke, Cindy; Wan, Jun; Yerrabelli, Anitha; Conner, Elizabeth A.; Kjellstrom, Sten; Bush, Ronald; Thorgeirsson, Snorri S.; Swaroop, Anand; Chen, Shiming

    2014-01-01

    The mechanisms that specify photoreceptor cell-fate determination, especially as regards to short-wave-sensitive (S) versus medium-wave-sensitive (M) cone identity, and maintain their nature and function, are not fully understood. Here we report the importance of general transcription factor II-I repeat domain-containing protein 1 (GTF2IRD1) in maintaining M cone cell identity and function as well as rod function. In the mouse, GTF2IRD1 is expressed in cell-fate determined photoreceptors at postnatal day 10. GTF2IRD1 binds to enhancer and promoter regions in the mouse rhodopsin, M- and S-opsin genes, but regulates their expression differentially. Through interaction with the transcription factors CRX and thyroid hormone receptor β 2, it enhances M-opsin expression, whereas it suppresses S-opsin expression; and with CRX and NRL, it enhances rhodopsin expression. In an apparent paradox, although GTF2IRD1 is widely expressed in multiple cell types across the retina, knock-out of GTF2IRD1 alters the retinal expression of only a limited number of annotated genes. Interestingly, however, the null mutation leads to altered topology of cone opsin expression in the retina, with aberrant S-opsin overexpression and M-opsin underexpression in M cones. Gtf2ird1-null mice also demonstrate abnormal M cone and rod electrophysiological responses. These findings suggest an important role for GTF2IRD1 in regulating the level and topology of rod and cone gene expression, and in maintaining normal retinal function. PMID:25392503

  10. The transcription factor GTF2IRD1 regulates the topology and function of photoreceptors by modulating photoreceptor gene expression across the retina.

    PubMed

    Masuda, Tomohiro; Zhang, Xiaodong; Berlinicke, Cindy; Wan, Jun; Yerrabelli, Anitha; Conner, Elizabeth A; Kjellstrom, Sten; Bush, Ronald; Thorgeirsson, Snorri S; Swaroop, Anand; Chen, Shiming; Zack, Donald J

    2014-11-12

    The mechanisms that specify photoreceptor cell-fate determination, especially as regards to short-wave-sensitive (S) versus medium-wave-sensitive (M) cone identity, and maintain their nature and function, are not fully understood. Here we report the importance of general transcription factor II-I repeat domain-containing protein 1 (GTF2IRD1) in maintaining M cone cell identity and function as well as rod function. In the mouse, GTF2IRD1 is expressed in cell-fate determined photoreceptors at postnatal day 10. GTF2IRD1 binds to enhancer and promoter regions in the mouse rhodopsin, M- and S-opsin genes, but regulates their expression differentially. Through interaction with the transcription factors CRX and thyroid hormone receptor β 2, it enhances M-opsin expression, whereas it suppresses S-opsin expression; and with CRX and NRL, it enhances rhodopsin expression. In an apparent paradox, although GTF2IRD1 is widely expressed in multiple cell types across the retina, knock-out of GTF2IRD1 alters the retinal expression of only a limited number of annotated genes. Interestingly, however, the null mutation leads to altered topology of cone opsin expression in the retina, with aberrant S-opsin overexpression and M-opsin underexpression in M cones. Gtf2ird1-null mice also demonstrate abnormal M cone and rod electrophysiological responses. These findings suggest an important role for GTF2IRD1 in regulating the level and topology of rod and cone gene expression, and in maintaining normal retinal function. PMID:25392503

  11. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  12. Modulation Peroxisome Proliferators Activated Receptor alpha (PPAR α) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) Gene expression by Fatty Acids in Foam cell

    PubMed Central

    Zavvar Reza, Javad; Doosti, Mahmoud; salehipour, Masoud; PackneJad, Malehieh; Mojarrad, Majed; Heidari, Mansour; Emamian, Effat S

    2009-01-01

    Background One of the most important factors in the initiation and progression of atherosclerosis is the default in macrophage cholesterol homeostasis. Many genes and transcription factors such as Peroxisome Proliferators Activated Receptors (PPARs) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) are involved in cholesterol homeostasis. Fatty Acids are important ligands of PPARα and the concentration of them can effect expression of ACAT1. So this study designed to clarified on the role of these genes and fatty acids on the lipid metabolism in foam cells. Methods This study examined effects of c9, t11-Conjugated Linoleic Acid(c9, t11-CLA), Alpha Linolenic Acid (LA), Eicosapentaenoic Acid (EPA) on the PPARα and ACAT1 genes expression by using Real time PCR and cholesterol homeostasis in THP-1 macrophages derived foam cells. Results Incubation of c9, t11-CLA, LA cause a significant reduction in intracellular Total Cholesterol, Free Cholesterol, cellular and Estrified Cholesterol concentrations (P ≤ 0.05). CLA and LA had no significant effect on the mRNA levels of ACAT1, but EPA increased ACAT1 mRNA expression (P = 0.003). Treatment with EPA increased PPARα mRNA levels (P ≤ 0.001), although CLA, LA had no significant effect on PPARα mRNA expression. Conclusion In conclusion, it seems that different fatty acids have different effects on gene expression and lipid metabolism and for complete conception study of the genes involved in lipid metabolism in foam cell all at once maybe is benefit. PMID:19725980

  13. Gene expression profiling analysis of ovarian cancer

    PubMed Central

    YIN, JI-GANG; LIU, XIAN-YING; WANG, BIN; WANG, DAN-YANG; WEI, MAN; FANG, HUA; XIANG, MEI

    2016-01-01

    As a gynecological oncology, ovarian cancer has high incidence and mortality. To study the mechanisms of ovarian cancer, the present study analyzed the GSE37582 microarray. GSE37582 was downloaded from Gene Expression Omnibus and included data from 74 ovarian cancer cases and 47 healthy controls. The differentially-expressed genes (DEGs) were screened using linear models for microarray data package in R and were further screened for functional annotation. Next, Gene Ontology and pathway enrichment analysis of the DEGs was conducted. The interaction associations of the proteins encoded by the DEGs were searched using the Search Tool for the Retrieval of Interacting Genes, and the protein-protein interaction (PPI) network was visualized by Cytoscape. Moreover, module analysis of the PPI network was performed using the BioNet analysis tool in R. A total of 284 DEGs were screened, consisting of 145 upregulated genes and 139 downregulated genes. In particular, downregulated FBJ murine osteosarcoma viral oncogene homolog (FOS) was an oncogene, while downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A) was a tumor suppressor gene and upregulated cluster of differentiation 44 (CD44) was classed as an ‘other’ gene. The enriched functions included collagen catabolic process, stress-activated mitogen-activated protein kinases cascade and insulin receptor signaling pathway. Meanwhile, FOS (degree, 15), CD44 (degree, 9), B-cell CLL/lymphoma 2 (BCL2; degree, 7), CDKN1A (degree, 7) and matrix metallopeptidase 3 (MMP3; degree, 6) had higher connectivity degrees in the PPI network for the DEGs. These genes may be involved in ovarian cancer by interacting with other genes in the module of the PPI network (e.g., BCL2-FOS, BCL2-CDKN1A, FOS-CDKN1A, FOS-CD44, MMP3-MMP7 and MMP7-CD44). Overall, BCL2, FOS, CDKN1A, CD44, MMP3 and MMP7 may be correlated with ovarian cancer. PMID:27347159

  14. Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47.

    PubMed

    Ye, Roy R; Lei, Elva N Y; Lam, Michael H W; Chan, Alice K Y; Bo, Jun; van de Merwe, Jason P; Fong, Amy C C; Yang, Michael M S; Lee, J S; Segner, Helmut E; Wong, Chris K C; Wu, Rudolf S S; Au, Doris W T

    2011-08-01

    BDE-47 is one of the most widely found congeners of PBDEs in marine environments. The potential immunomodulatory effects of BDE-47 on fish complement system were studied using the marine medaka Oryzias melastigma as a model fish. Three-month-old O. melastigma were subjected to short-term (5 days) and long-term (21 days) exposure to two concentrations of BDE-47 (low dose at 290 ± 172 ng/day; high dose at 580 ± 344 ng/day) via dietary uptake of BDE-47 encapsulated in Artemia nauplii. Body burdens of BDE-47 and other metabolic products were analyzed in the exposed and control fish. Only a small amount of debrominated product, BDE-28, was detected, while other metabolic products were all under detection limit. Transcriptional expression of six major complement system genes involved in complement activation: C1r/s (classical pathway), MBL-2 (lectin pathway), CFP (alternative pathway), F2 (coagulation pathway), C3 (the central component of complement system), and C9 (cell lysis) were quantified in the liver of marine medaka. Endogenous expression of all six complement system genes was found to be higher in males than in females (p < 0.05). Upon dietary exposure of marine medaka to BDE-47, expression of all six complement genes were downregulated in males at day 5 (or longer), whereas in females, MBl-2, CFP, and F2 mRNAs expression were upregulated, but C3 and C9 remained stable with exposure time and dose. A significant negative relationship was found between BDE-47 body burden and mRNA expression of C1r/s, CFP, and C3 in male fish (r = -0.8576 to -0.9447). The above findings on changes in complement gene expression patterns indicate the complement system may be compromised in male O. melastigma upon dietary exposure to BDE-47. Distinct gender difference in expression of six major complement system genes was evident in marine medaka under resting condition and dietary BDE-47 challenge. The immunomodulatory effects of BDE-47 on transcriptional

  15. Toxoplasma Gondii Infection of Chicken Embryos Causes Retinal Changes and Modulates HSP90B1 Gene Expression: A Promising Ocular Toxoplasmosis Model.

    PubMed

    Nasaré, Alex M; Tedesco, Roberto C; Cristovam, Priscila C; Cenedese, Marcos A; Galisteo, Andrés J; Andrade, Heitor F; Gomes, José Álvaro P; Guimarães, Érik V; Barbosa, Helene S; Alonso, Luis G

    2015-12-01

    HSP90B1 is a gene that codifies heat shock protein 108 (HSP108) that belongs to a group of proteins induced under stress situation, and it has close relation with the nervous system, especially in the retina. Toxoplasma gondii causes ocular toxoplasmosis that has been associated with a late manifestation of the congenital toxoplasmosis although experimental models show that morphological alterations are already present during embryological development. Here, we used 18 eyes of Gallus domesticus embryos in 7th and 20th embryonic days to establish a model of congenital ocular toxoplasmosis, experimentally infected in its fifth day correlating with HSP90B1 gene expression. Embryos' eyes were histologically evaluated, and gene expression was performed by real-time polymerase chain reaction (PCR). Our data showed parasite present in the choroid, unusual migration of retinal pigment epithelium, and chorioretinal scars, and a tendency to a lower expression of the HSP90B1 gene upon experimental infection. This is a promising model to better understand T. gondii etiopathogeny. PMID:26716020

  16. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide.

    PubMed Central

    Tuder, R M; Flook, B E; Voelkel, N F

    1995-01-01

    Endothelial cells constitute an essential integrator of factors that effect blood vessel remodeling induced by chronic hypoxia. We hypothesized that vascular endothelial growth factor (VEGF) may participate in the lung response to acute and to chronic hypoxia. We found that ex vivo perfusion of isolated lungs under hypoxic conditions (when compared with normoxia) caused an increase in lung tissue mRNA of VEGF and of the VEGF receptors KDR/Flk and Flt. Chronic hypobaric hypoxia also increased lung tissue mRNA levels of VEGF, KDR/Flk, and Flt and the amount of VEGF protein. In situ hybridization studies demonstrated increased VEGF and KDR/flk hybridization signals in lungs from chronically hypoxic rats. Since endotoxin treatment of rats decreased lung VEGF mRNA, we postulated that nitric oxide (NO) or an NO-related metabolite might be involved in lung VEGF gene expression. Indeed, sodium nitroprusside, a NO donor, decreased and L-NAME (N-nitro-L-arginine methyl ester), an inhibitor of NO-synthesis, increased both VEGF and VEGF receptor transcripts. We conclude that VEGF in the isolated perfused lung acts as an early gene in response to hypoxia and that lung VEGF and VEGF receptor mRNA levels are influenced by hypoxia and NO-dependent mechanisms. Images PMID:7706486

  17. Discriminative gene co-expression network analysis uncovers novel modules involved in the formation of phosphate deficiency-induced root hairs in Arabidopsis.

    PubMed

    Salazar-Henao, Jorge E; Lin, Wen-Dar; Schmidt, Wolfgang

    2016-01-01

    Cell fate and differentiation in the Arabidopsis root epidermis are genetically defined but remain plastic to environmental signals such as limited availability of inorganic phosphate (Pi). Root hairs of Pi-deficient plants are more frequent and longer than those of plants grown under Pi-replete conditions. To dissect genes involved in Pi deficiency-induced root hair morphogenesis, we constructed a co-expression network of Pi-responsive genes against a customized database that was assembled from experiments in which differentially expressed genes that encode proteins with validated functions in root hair development were over-represented. To further filter out less relevant genes, we combined this procedure with a search for common cis-regulatory elements in the promoters of the selected genes. In addition to well-described players and processes such as auxin signalling and modifications of primary cell walls, we discovered several novel aspects in the biology of root hairs induced by Pi deficiency, including cell cycle control, putative plastid-to-nucleus signalling, pathogen defence, reprogramming of cell wall-related carbohydrate metabolism, and chromatin remodelling. This approach allows the discovery of novel of aspects of a biological process from transcriptional profiles with high sensitivity and accuracy. PMID:27220366

  18. Discriminative gene co-expression network analysis uncovers novel modules involved in the formation of phosphate deficiency-induced root hairs in Arabidopsis

    PubMed Central

    Salazar-Henao, Jorge E.; Lin, Wen-Dar; Schmidt, Wolfgang

    2016-01-01

    Cell fate and differentiation in the Arabidopsis root epidermis are genetically defined but remain plastic to environmental signals such as limited availability of inorganic phosphate (Pi). Root hairs of Pi-deficient plants are more frequent and longer than those of plants grown under Pi-replete conditions. To dissect genes involved in Pi deficiency-induced root hair morphogenesis, we constructed a co-expression network of Pi-responsive genes against a customized database that was assembled from experiments in which differentially expressed genes that encode proteins with validated functions in root hair development were over-represented. To further filter out less relevant genes, we combined this procedure with a search for common cis-regulatory elements in the promoters of the selected genes. In addition to well-described players and processes such as auxin signalling and modifications of primary cell walls, we discovered several novel aspects in the biology of root hairs induced by Pi deficiency, including cell cycle control, putative plastid-to-nucleus signalling, pathogen defence, reprogramming of cell wall-related carbohydrate metabolism, and chromatin remodelling. This approach allows the discovery of novel of aspects of a biological process from transcriptional profiles with high sensitivity and accuracy. PMID:27220366

  19. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  20. The NR3C1 Glucocorticoid Receptor Gene Polymorphisms May Modulate the TGF-beta mRNA Expression in Asthma Patients.

    PubMed

    Panek, Michał; Pietras, Tadeusz; Fabijan, Artur; Zioło, Jan; Wieteska, Łukasz; Małachowska, Beata; Fendler, Wojciech; Szemraj, Janusz; Kuna, Piotr

    2015-08-01

    Glucocorticosteroids (GCs) are basic drugs in therapy of a number of diseases, including chronic diseases of the respiratory system. They are the most important anti-inflammatory drugs in the treatment of asthma. GCs after binding to the glucocorticoid receptor (GR) form the complex (transcription factor), which acts on promoter and regulatory parts of genes enhancing the expression of anti-inflammatory proteins and decreasing the proinflammatory protein synthesis, including numerous cytokines mediating inflammation in the course of asthma. Non-sensitivity or resistance to GCs favours an increase in the TGF-β expression. This cytokine plays a central role in asthma inducing fibroblast differentiation and extracellular matrix synthesis. TGF-β isoforms, 1, 2 and 3, are located on chromosome 19q13, 1q41 and 14q24, respectively. GCs reduce TGF-β 1 and TGF-β 2 production and significantly decrease the expression of upregulated TGF-β 1 and TGF-β 2 mRNA induced by exogenous TGF-β. In asthma, TGF-β may play a role in the development of the peribronchiolar and subepithelial fibrosis, which contributes to a significant clinical exacerbation of asthma. Therefore, it is possible that NR3C1 glucocorticoid receptor gene polymorphisms could exert varied effects on the TGF-β mRNA expression and fibrotic process in lungs of asthmatic patients. The aim of the study was to evaluate the impact of polymorphic forms (Tth111I, BclI, ER22/23EK, N363S) of the NR3C1 gene on the level of the TGF-β 1 mRNA expression. A total of 173 patients with asthma and 163 healthy volunteers participated in the study. Genotyping of Tth111I, BclI, ER22/23EK, and N363S polymorphisms of the NR3C1 gene was performed by using PCR-HRM and PCR-RFLP techniques. TGF-β mRNA was assessed by real time RT-PCR. Tth111I SNP significantly (p = 0.0115) correlated with the TGF-β 1 mRNA expression level. The significance of AA and GG genotypes of Tth111I SNP in increasing and decreasing the level of the TGF-β 1

  1. The Dynamic Character of the BCL2 Promoter i-Motif Provides a Mechanism for Modulation of Gene Expression by Compounds That Bind Selectively to the Alternative DNA Hairpin Structure

    PubMed Central

    2015-01-01

    It is generally accepted that DNA predominantly exists in duplex form in cells. However, under torsional stress imposed by active transcription, DNA can assume nonduplex structures. The BCL2 promoter region forms two different secondary DNA structures on opposite strands called the G-quadruplex and the i-motif. The i-motif is a highly dynamic structure that exists in equilibrium with a flexible hairpin species. Here we identify a pregnanol derivative and a class of piperidine derivatives that differentially modulate gene expression by stabilizing either the i-motif or the flexible hairpin species. Stabilization of the i-motif structure results in significant upregulation of the BCL2 gene and associated protein expression; in contrast, stabilization of the flexible hairpin species lowers BCL2 levels. The BCL2 levels reduced by the hairpin-binding compound led to chemosensitization to etoposide in both in vitro and in vivo models. Furthermore, we show antagonism between the two classes of compounds in solution and in cells. For the first time, our results demonstrate the principle of small molecule targeting of i-motif structures in vitro and in vivo to modulate gene expression. PMID:24559410

  2. Genetic manipulation of RPS5 gene expression modulates the initiation of commitment of MEL cells to erythroid maturation: Implications in understanding ribosomopathies.

    PubMed

    Vizirianakis, Ioannis S; Papachristou, Eleni T; Andreadis, Panagiotis; Zopounidou, Elena; Matragkou, Christina N; Tsiftsoglou, Asterios S

    2015-07-01

    Impairment of ribosome biogenesis contributes to the molecular pathophysiology of ribosomopathies by deregulating cell-lineage specific proliferation, differentiation and apoptosis decisions of haematopoietic progenitor cells. Here, using pro-erythroblast-like murine erythroleukemia (MEL) cells, a model system of erythroid maturation, we aimed to investigate whether genetic manipulation of RPS5 expression affects the capacity of cells to grow and differentiate in culture. Parental MEL cells stably transfected with full length RPS5 cDNA in sense (MEL-C14 culture) or antisense (MEL-antisenseRPS5 culture) orientation, as well as MEL cells transiently transfected with siRNAs specific for RPS5 gene silencing (MEL-RPS5siRNA culture) were assessed for their ability to fully execute their erythroid maturation program in culture. The data obtained thus far indicate that: a) MEL-antisenseRPS5 exhibit a pronounced delay in the initiation of differentiation, as well as an impairment of commitment, since the continuous presence of the inducer in culture is required for the cells to fully execute their erythroid maturation program. b) RNAi-mediating silencing of RPS5 gene expression resulted in the inability of MEL cells to differentiate; however, when these cells were allowed to recapitulate normal RPS5 gene expression levels they regained their differentiation capacity by accumulating high proportion of erythroid mature cells. c) Interestingly the latter, is accompanied by morphological changes of cells and an impairment of their proliferation and apoptosis potential. Such data for the first time correlate the RPS5 gene expression levels with the differentiation capacity of MEL cells in vitro, a fact that might also have implications in understanding ribosomopathies. PMID:25998414

  3. Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504

    PubMed Central

    Huang, Weihua; Li, Ming D.

    2009-01-01

    Background Previously, we not only reported that dopamine D1 receptor gene (DRD1) is associated with nicotine dependence (ND), but demonstrated that two alleles (A and G) of polymorphism rs686 in the 3′-untranslated region (3′UTR) of DRD1 are expressed differentially. However, the mechanism underlying the differential expression remains to be determined. We hypothesize that it is caused by miRNA targeting. Methods We first used the MicroInspector algorithm to identify microRNAs (miRNAs) potentially targeting the rs686 polymorphism in the DRD1 3′UTR, and then employed a luciferase reporter assay combined with site-directed mutagenesis to test the predicted miRNA targeting. We also examined the miRNA targeting of DRD1 with a gene expression assay. Results Of two miRNAs predicted by computational analyses, we found that miR-504, not miR-296, up-regulated reporter luciferase activity and increased DRD1 expression by targeting the DRD1 3′UTR, whereas inhibition of miR-504, not miR-296, had the opposite effect. Furthermore, we revealed that the direct binding of miR-504 to the DRD1 3′UTR, verified by site-directed mutagenesis, caused a significant expression difference between the two alleles. Conclusion miR-504 up-regulates DRD1 expression by direct binding to the 3′UTR, which leads to differential allele-specific expression of DRD1. PMID:19135651

  4. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression.

    PubMed

    Hentrich, Mathias; Böttcher, Christine; Düchting, Petra; Cheng, Youfa; Zhao, Yunde; Berkowitz, Oliver; Masle, Josette; Medina, Joaquín; Pollmann, Stephan

    2013-05-01

    Interactions between phytohormones play important roles in the regulation of plant growth and development, but knowledge of the networks controlling hormonal relationships, such as between oxylipins and auxins, is just emerging. Here, we report the transcriptional regulation of two Arabidopsis YUCCA genes, YUC8 and YUC9, by oxylipins. Similar to previously characterized YUCCA family members, we show that both YUC8 and YUC9 are involved in auxin biosynthesis, as demonstrated by the increased auxin contents and auxin-dependent phenotypes displayed by gain-of-function mutants as well as the significantly decreased indole-3-acetic acid (IAA) levels in yuc8 and yuc8/9 knockout lines. Gene expression data obtained by qPCR analysis and microscopic examination of promoter-reporter lines reveal an oxylipin-mediated regulation of YUC9 expression that is dependent on the COI1 signal transduction pathway. In support of these findings, the roots of the analyzed yuc knockout mutants displayed a reduced response to methyl jasmonate (MeJA). The similar response of the yuc8 and yuc9 mutants to MeJA in cotyledons and hypocotyls suggests functional overlap of YUC8 and YUC9 in aerial tissues, while their function in roots shows some specificity, probably in part related to different spatio-temporal expression patterns of the two genes. These results provide evidence for an intimate functional relationship between oxylipin signaling and auxin homeostasis. PMID:23425284

  5. 2-GHz band CW and W-CDMA modulated radiofrequency fields have no significant effect on cell proliferation and gene expression profile in human cells.

    PubMed

    Sekijima, Masaru; Takeda, Hiroshi; Yasunaga, Katsuaki; Sakuma, Noriko; Hirose, Hideki; Nojima, Toshio; Miyakoshi, Junji

    2010-01-01

    We investigated the mechanisms by which radiofrequency (RF) fields exert their activity, and the changes in both cell proliferation and the gene expression profile in the human cell lines, A172 (glioblastoma), H4 (neuroglioma), and IMR-90 (fibroblasts from normal fetal lung) following exposure to 2.1425 GHz continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) RF fields at three field levels. During the incubation phase, cells were exposed at the specific absorption rates (SARs) of 80, 250, or 800 mW/kg with both CW and W-CDMA RF fields for up to 96 h. Heat shock treatment was used as the positive control. No significant differences in cell growth or viability were observed between any test group exposed to W-CDMA or CW radiation and the sham-exposed negative controls. Using the Affymetrix Human Genome Array, only a very small (< 1%) number of available genes (ca. 16,000 to 19,000) exhibited altered expression in each experiment. The results confirm that low-level exposure to 2.1425 GHz CW and W-CDMA RF fields for up to 96 h did not act as an acute cytotoxicant in either cell proliferation or the gene expression profile. These results suggest that RF exposure up to the limit of whole-body average SAR levels as specified in the ICNIRP guidelines is unlikely to elicit a general stress response in the tested cell lines under these conditions. PMID:20215713

  6. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  7. Two CYP3A-like genes in the marine mussel Mytilus edulis: mRNA expression modulation following short-term exposure to endocrine disruptors.

    PubMed

    Cubero-Leon, Elena; Puinean, A Mirel; Labadie, Pierre; Ciocan, Corina; Itoh, Naoki; Kishida, Mitsuyo; Osada, Makoto; Minier, Christophe; Hill, Elizabeth M; Rotchell, Jeanette M

    2012-03-01

    Members of the vertebrate CYP3A subfamily are involved in the metabolism of steroids and a wide range of xenobiotics. In this study two CYP3A-like mRNAs have been isolated from the mussel (Mytilus edulis), and their seasonal expression profile and modulation by estrogens examined. Sexual dimorphism of CYP3A-like mRNA expression was not observed in mussel gonads of individuals collected throughout a year. Nevertheless, natural variation in gonadal CYP3A-like mRNA expression was observed, with highest levels of CYP3A isoform1 and lowest levels of CYP3A isoform2 mRNA during the maturation and spawning season. Exposure to a 10% sewage treatment works extract did not result in any significant changes in mRNA expression of CYP3A-like. In contrast, exposure to E2 (200 ng/L) and TBT (100 ng/L) significantly down-regulated the expression of CYP3A-like isoform1 but not CYP3A-like isoform2 suggesting differential regulation. PMID:22189070

  8. Laminarin modulates the chloroplast antioxidant system to enhance abiotic stress tolerance partially through the regulation of the defensin-like gene expression.

    PubMed

    Wu, Yi-Ru; Lin, Yi-Chen; Chuang, Huey-Wen

    2016-06-01

    Algae wall polysaccharide, laminarin (Lam), has an established role on induction of plant disease resistance. In this study, application of Lam increased Arabidopsis fresh weight and enhanced tolerance to salt and heat stress by stabilizing chloroplast under adverse environment. Transcriptome analysis indicated that, in addition to induced a large number of genes associated with the host defense, genes involved in the regulation of abiotic stress tolerance mostly the heat stress response constituted the largest group of the up-regulated genes. Lam induced expression of IRT1, ZIP8, and copper transporters involved in transport of Fe, Zn, Cu ions associated with the activity of chloroplast antioxidant system. Lam also up-regulated genes involved in the synthesis of terpenoid, a plastidial-derived secondary metabolite with antioxidant activity. Overexpression of a Lam-induced defensin like 202 (DEFL202) resulted in increased chloroplast stability under salt stress and increased plant growth activity after heat stress. Expression of antioxidant enzymes including SOD and ascorbate peroxidase (APX), photosystem PsbA-D1 and ABA-dependent responsive to desiccation 22 (RD22) was induced to higher levels in the transgenic seedlings. In sum, our results suggest that Lam is an potent inducer for induction of chloroplastic antioxidant activity. Lam affect plant abiotic stress tolerance partially through regulation of the DEFL-mediated pathway. PMID:27095402

  9. Elucidating Polypharmacological Mechanisms of Polyphenols by Gene Module Profile Analysis

    PubMed Central

    Li, Bin; Xiong, Min; Zhang, Hong-Yu

    2014-01-01

    Due to the diverse medicinal effects, polyphenols are among the most intensively studied natural products. However, it is a great challenge to elucidate the polypharmacological mechanisms of polyphenols. To address this challenge, we establish a method for identifying multiple targets of chemical agents through analyzing the module profiles of gene expression upon chemical treatments. By using FABIA algorithm, we have performed a biclustering analysis of gene expression profiles derived from Connectivity Map (cMap), and clustered the profiles into 49 gene modules. This allowed us to define a 49 dimensional binary vector to characterize the gene module profiles, by which we can compare the expression profiles for each pair of chemical agents with Tanimoto coefficient. For the agent pairs with similar gene expression profiles, we can predict the target of one agent from the other. Drug target enrichment analysis indicated that this method is efficient to predict the multiple targets of chemical agents. By using this method, we identify 148 targets for 20 polyphenols derived from cMap. A large part of the targets are validated by experimental observations. The results show that the medicinal effects of polyphenols are far beyond their well-known antioxidant activities. This method is also applicable to dissect the polypharmacology of other natural products. PMID:24968267

  10. Elucidating polypharmacological mechanisms of polyphenols by gene module profile analysis.

    PubMed

    Li, Bin; Xiong, Min; Zhang, Hong-Yu

    2014-01-01

    Due to the diverse medicinal effects, polyphenols are among the most intensively studied natural products. However, it is a great challenge to elucidate the polypharmacological mechanisms of polyphenols. To address this challenge, we establish a method for identifying multiple targets of chemical agents through analyzing the module profiles of gene expression upon chemical treatments. By using FABIA algorithm, we have performed a biclustering analysis of gene expression profiles derived from Connectivity Map (cMap), and clustered the profiles into 49 gene modules. This allowed us to define a 49 dimensional binary vector to characterize the gene module profiles, by which we can compare the expression profiles for each pair of chemical agents with Tanimoto coefficient. For the agent pairs with similar gene expression profiles, we can predict the target of one agent from the other. Drug target enrichment analysis indicated that this method is efficient to predict the multiple targets of chemical agents. By using this method, we identify 148 targets for 20 polyphenols derived from cMap. A large part of the targets are validated by experimental observations. The results show that the medicinal effects of polyphenols are far beyond their well-known antioxidant activities. This method is also applicable to dissect the polypharmacology of other natural products. PMID:24968267

  11. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species. PMID:27178572

  12. Epigenetic modulation of intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) gene expression by DNA methylation.

    PubMed

    Malhotra, Pooja; Soni, Vinay; Kumar, Anoop; Anbazhagan, Arivarasu N; Dudeja, Amish; Saksena, Seema; Gill, Ravinder K; Dudeja, Pradeep K; Alrefai, Waddah A

    2014-08-15

    Intestinal NPC1L1 transporter is essential for cholesterol absorption and the maintenance of cholesterol homeostasis in the body. NPC1L1 is differentially expressed along the gastrointestinal tract with very low levels in the colon as compared with the small intestine. This study was undertaken to examine whether DNA methylation was responsible for segment-specific expression of NPC1L1. Treatment of mice with 5-azacytidine (i.p.) resulted in a significant dose-dependent increase in NPC1L1 mRNA expression in the colon. The lack of expression of NPC1L1 in the normal colon was associated with high levels of methylation in the area flanking the 3-kb fragment upstream of the initiation site of the mouse NPC1L1 gene in mouse colon as analyzed by EpiTYPER® MassARRAY®. The high level of methylation in the colon was observed in specific CpG dinucleotides and was significantly decreased in response to 5-azacytidine. Similar to mouse NPC1L1, 5-azacytidine treatment also increased the level of human NPC1L1 mRNA expression in the intestinal HuTu-80 cell line in a dose- and time-dependent manner. Silencing the expression of DNA methyltransferase DNMT1, -2, -3A, and -3B alone by siRNA did not affect NPC1L1 expression in HuTu-80 cells. However, the simultaneous attenuation of DNMT1 and -3B expression caused a significant increase in NPC1L1 mRNA expression as compared with control. Also, in vitro methylation of the human NPC1L1 promoter significantly decreased NPC1L1 promoter activity in human intestinal Caco2 cells. In conclusion, our data demonstrated for the first time that DNA methylation in the promoter region of the NPC1L1 gene appears to be a major mechanism underlying differential expression of NPC1L1 along the length of the gastrointestinal tract. PMID:24904062

  13. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.

    PubMed Central

    Van Gelder, R N; Krasnow, M A

    1996-01-01

    The Drosophila melanogaster period (per) gene is required for expression of endogenous circadian rhythms of locomotion and eclosion. per mRNA is expressed with a circadian rhythm that is dependent on Per protein; this feedback loop has been proposed to be essential to the central circadian pacemaker. This model would suggest the Per protein also controls the circadian expression of other genetic loci to generate circadian behavior and physiology. In this paper we describe Dreg-5, a gene whose mRNA is expressed in fly heads with a circadian rhythm nearly identical to that of the per gene. Dreg-5 mRNA continues to cycle in phase with that of per mRNA in conditions of total darkness and also when the daily feeding time is altered. Like per mRNA, Dreg-5 mRNA is not expressed rhythmically in per null mutant flies. Dreg-5 encodes a novel 298 residue protein and Dreg-5 protein isoforms also oscillate in abundance with a circadian rhythm. The phase of Dreg-5 protein oscillation, however, is different from that of Per protein expression, suggesting that Dreg-5 and per have common translational but different post-translational control mechanisms. These results demonstrate that the per gene is capable of modulating the rhythmic expression of other genes; this activity may form the basis of the output of circadian rhythmicity in Drosophila. Images PMID:8612586

  14. Nuclear Neighborhoods and Gene Expression

    PubMed Central

    Zhao, Rui; Bodnar, Megan S.; Spector, David L.

    2009-01-01

    Summary The eukaryotic nucleus is a highly compartmentalized and dynamic environment. Chromosome territories are arranged non-randomly within the nucleus and numerous studies have indicated that a gene’s position in the nucleus can impact its transcriptional activity. Here, we focus on recent advances in our understanding of the influence of specific nuclear neighborhoods on gene expression or repression. Nuclear neighborhoods associated with transcriptional repression include the inner nuclear membrane/nuclear lamina and peri-nucleolar chromatin, whereas neighborhoods surrounding the nuclear pore complex, PML nuclear bodies, and nuclear speckles seem to be transcriptionally permissive. While nuclear position appears to play an important role in gene expression, it is likely to be only one piece of a flexible puzzle that incorporates numerous parameters. We are still at a very early, yet exciting stage in our journey toward deciphering the mechanism(s) that govern the permissiveness of gene expression/repression within different nuclear neighborhoods. PMID:19339170

  15. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  16. Gene expression analysis of the embryonic subplate

    PubMed Central

    Oeschger, Franziska M.; Wang, Wei-Zhi; Lee, Sheena; García-Moreno, Fernando; Goffinet, André M.; Arbones, Mariona; Rakic, Sonia; Molnár, Zoltán

    2015-01-01

    The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later stages, they are involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared to the cortical plate at this stage. Usin