Science.gov

Sample records for gene fancc identified

  1. The Fanconi Anemia Protein FANCC Binds to and Facilitates the Activation of STAT1 by Gamma Interferon and Hematopoietic Growth Factors

    PubMed Central

    Pang, Qishen; Fagerlie, Sara; Christianson, Tracy A.; Keeble, Winifred; Faulkner, Greg; Diaz, Jane; Rathbun, R. Keaney; Bagby, Grover C.

    2000-01-01

    Hematopoietic progenitor cells from Fanconi anemia (FA) group C (FA-C) patients display hypersensitivity to the apoptotic effects of gamma interferon (IFN-γ) and constitutively express a variety of IFN-dependent genes. Paradoxically, however, STAT1 activation is suppressed in IFN-stimulated FA cells, an abnormality corrected by transduction of normal FANCC cDNA. We therefore sought to define the specific role of FANCC protein in signal transduction through receptors that activate STAT1. Expression and phosphorylation of IFN-γ receptor α chain (IFN-γRα) and JAK1 and JAK2 tyrosine kinases were equivalent in both normal and FA-C cells. However, in coimmunoprecipitation experiments STAT1 did not dock at the IFN-γR of FA-C cells, an abnormality corrected by transduction of the FANCC gene. In addition, glutathione S-transferase fusion genes encoding normal FANCC but not a mutant FANCC bearing an inactivating point mutation (L554P) bound to STAT1 in lysates of IFN-γ-stimulated B cells and IFN-, granulocyte-macrophage colony-stimulating factor- and stem cell factor-stimulated MO7e cells. Kinetic studies revealed that the initial binding of FANCC was to nonphosphorylated STAT1 but that subsequently the complex moved to the receptor docking site, at which point STAT1 became phosphorylated. The STAT1 phosphorylation defect in FA-C cells was functionally significant in that IFN induction of IFN response factor 1 was suppressed and STAT1-DNA complexes were not detected in nuclear extracts of FA-C cells. We also determined that the IFN-γ hypersensitivity of FA-C hematopoietic progenitor cells does not derive from STAT1 activation defects because granulocyte-macrophage CFU and erythroid burst-forming units from STAT1−/− mice were resistant to IFN-γ. However, BFU-E responses to SCF and erythropoietin were suppressed in STAT−/− mice. Consequently, because the FANCC protein is involved in the activation of STAT1 through receptors for at least three hematopoietic

  2. Concomitant Inactivation of Foxo3a and Fancc or Fancd2 Reveals a Two-Tier Protection from Oxidative Stress-Induced Hydrocephalus

    PubMed Central

    Li, Xiaoli; Li, Liang; Li, Jie; Sipple, Jared; Schick, Jonathan; Mehta, Parinda A.; Davies, Stella M.; Dasgupta, Biplab; Waclaw, Ronald R.

    2014-01-01

    Abstract Aims: This study seeks at investigating the cause of hydrocephalus, and at identifying therapeutic targets for the prevention of hydrocephalus. Results: In this study, we show that inactivation of the Foxo3a gene in two mouse models of Fanconi anemia (FA) leads to the development of hydrocephalus in late embryonic stage and after birth. More than 50% of Foxo3a−/− Fancc−/− or Foxo3a−/− Fancd2−/− mice die during embryonic development or within 6 months of life as a result of hydrocephalus characterized by cranial distortion, dilation of the ventricular system, reduced thickness of the cerebral cortex, and disorganization of the ependymal cilia and subcommissural organ. Combined deficiency of Foxo3a and Fancc or Fancd2 not only impairs the self-renewal capacity but also markedly increases the apoptosis of neural stem and progenitor cells (NSPCs), leading to defective neurogenesis. Increased accumulation of reactive oxygen species (ROS) and subsequently de-regulated mitosis and ultimately apoptosis in the neural stem or progenitor cells is identified as one of the potential mechanisms of congenital obstructive hydrocephalus. Innovation: The work unravels a two-tier protective mechanism for preventing oxidative stress-induced hydrocephalus. Conclusion: The deletion of Foxo3a in FA mice increased the accumulation of ROS and subsequently de-regulated mitosis and ultimately apoptosis in the NSPCs, leading to hydrocephalus development. Antioxid. Redox Signal. 21, 1675–1692. PMID:24483844

  3. Identifying Gene Interaction Networks

    PubMed Central

    Bebek, Gurkan

    2016-01-01

    In this chapter, we introduce interaction networks by describing how they are generated, where they are stored, and how they are shared. We focus on publicly available interaction networks and describe a simple way of utilizing these resources. As a case study, we used Cytoscape, an open source and easy-to-use network visualization and analysis tool to first gather and visualize a small network. We have analyzed this network’s topological features and have looked at functional enrichment of the network nodes by integrating the gene ontology database. The methods described are applicable to larger networks that can be collected from various resources. PMID:22307715

  4. Loss of FANCC function is associated with failure to inhibit late firing replication origins after DNA cross-linking

    SciTech Connect

    Phelps, Randall A.; Gingras, Helene; Hockenbery, David M. . E-mail: dhockenb@fhcrc.org

    2007-07-01

    Fanconi anemia (FA) cells are abnormally sensitive to DNA cross-linking agents with increased levels of apoptosis and chromosomal instability. Defects in eight FA complementation groups inhibit monoubiquitination of FANCD2, and subsequent recruitment of FANCD2 to DNA damage and S-phase-associated nuclear foci. The specific functional defect in repair or response to DNA damage in FA cells remains unknown. Damage-resistant DNA synthesis is present 2.5-5 h after cross-linker treatment of FANCC, FANCA and FANCD2-deficient cells. Analysis of the size distribution of labeled DNA replication strands revealed that diepoxybutane treatment suppressed labeling of early but not late-firing replicons in FANCC-deficient cells. In contrast, normal responses to ionizing radiation were observed in FANCC-deficient cells. Absence of this late S-phase response in FANCC-deficient cells leads to activation of secondary checkpoint responses.

  5. Helq acts in parallel to Fancc to suppress replication-associated genome instability

    PubMed Central

    Luebben, Spencer W.; Kawabata, Tsuyoshi; Akre, Monica K.; Lee, Wai Long; Johnson, Charles S.; O’Sullivan, M. Gerard; Shima, Naoko

    2013-01-01

    HELQ is a superfamily 2 DNA helicase found in archaea and metazoans. It has been implicated in processing stalled replication forks and in repairing DNA double-strand breaks and inter-strand crosslinks. Though previous studies have suggested the possibility that HELQ is involved in the Fanconi anemia (FA) pathway, a dominant mechanism for inter-strand crosslink repair in vertebrates, this connection remains elusive. Here, we investigated this question in mice using the Helqgt and Fancc− strains. Compared with Fancc−/− mice lacking FANCC, a component of the FA core complex, Helqgt/gt mice exhibited a mild of form of FA-like phenotypes including hypogonadism and cellular sensitivity to the crosslinker mitomycin C. However, unlike Fancc−/− primary fibroblasts, Helqgt/gt cells had intact FANCD2 mono-ubiquitination and focus formation. Notably, for all traits examined, Helq was non-epistatic with Fancc, as Helqgt/gt;Fancc−/− double mutants displayed significantly worsened phenotypes than either single mutant. Importantly, this was most noticeable for the suppression of spontaneous chromosome instability such as micronuclei and 53BP1 nuclear bodies, known consequences of persistently stalled replication forks. These findings suggest that mammalian HELQ contributes to genome stability in unchallenged conditions through a mechanism distinct from the function of FANCC. PMID:24005041

  6. NIH Researchers Identify OCD Risk Gene

    MedlinePlus

    ... News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of Contents For ... and Alcoholism (NIAAA) have identified a previously unknown gene variant that doubles an individual's risk for obsessive- ...

  7. Critical role of FANCC in JAK2 V617F mutant-induced resistance to DNA cross-linking drugs.

    PubMed

    Ueda, Fumihito; Sumi, Kazuya; Tago, Kenji; Kasahara, Tadashi; Funakoshi-Tago, Megumi

    2013-11-01

    A point mutation (V617F) of tyrosine kinase Janus kinase 2 (JAK2) is found in the majority of patients with myeloproliferative neoplasms (MPNs) and an aberrant signaling pathway induced by constitutively active JAK2 V617F mutant is a hallmark of MPNs. Cells transformed by JAK2 V617F mutant exhibited resistance to anti-cancer drugs such as cisplatin (CDDP), mitomycin C (MMC) and bleomycin (BLM). We first found that the expression of FANCC, a member of the Fanconi anemia (FA) proteins, was significantly induced by JAK2 V617F mutant through activation of signal transducers and activators of transcription 5 (STAT5). In addition, monoubiqitination and foci formation of FANCD2, which are critical for activation of the FA pathway, were increased in cells transformed by JAK2 V617F mutant, compared to cells expressing wild-type JAK2. Interestingly, knockdown of FANCC in cells expressing JAK2 V617F mutant induced not only the reduction of monoubiqitination and foci formation of FANCD2 but also the enhancement of sensitivity to DNA damage induced by CDDP and MMC but not BLM. Taken together, FANCC is most likely to be critical for resistance to DNA cross-linking drug-induced DNA damage in cells transformed by JAK2 V617F mutant. PMID:23838005

  8. NIH Researchers Identify OCD Risk Gene

    MedlinePlus

    ... Home Current Issue Past Issues Research News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer ... page please turn Javascript on. Scientists at the NIH's National Institute on Alcohol Abuse and Alcoholism (NIAAA) ...

  9. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes.

    PubMed

    Edmunds, Richard C; Su, Baofeng; Balhoff, James P; Eames, B Frank; Dahdul, Wasila M; Lapp, Hilmar; Lundberg, John G; Vision, Todd J; Dunham, Rex A; Mabee, Paula M; Westerfield, Monte

    2016-01-01

    Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology. PMID:26500251

  10. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes

    PubMed Central

    Edmunds, Richard C.; Su, Baofeng; Balhoff, James P.; Eames, B. Frank; Dahdul, Wasila M.; Lapp, Hilmar; Lundberg, John G.; Vision, Todd J.; Dunham, Rex A.; Mabee, Paula M.; Westerfield, Monte

    2016-01-01

    Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology. PMID:26500251

  11. Virus induced gene silencing of Arabidopsis gene homologues in wheat identify genes conferring improved drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a non-model staple crop like wheat, functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for wheat breeding. Virus induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited tra...

  12. Identifying and characterizing barley genes that protect against trichothecenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our overall goal is to identify genes that play a role in resistance to Fusarium Head Blight (FHB) and to develop and test transgenic wheat carrying these genes. In particular, we are interested in identifying genes that protect barley and wheat from the effects of trichothecenes. Previously, we con...

  13. Comparative Genomics in Identifying Aflatoxin Biosynthetic Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus produces the most toxic and the most carcinogenic mycotoxins, aflatoxin B1 and B2. In order to solve aflatoxin contamination of food commodities, A. flavus genomics tools for identification of genes involved in aflatoxin biosynthesis have been employed. A. flavus Expressed Seque...

  14. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    PubMed Central

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  15. Activation tag screening to identify novel genes for trichothecene resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of our research is to identify plant genes which enhance trichothecene resistance and, ultimately, Fusarium Head Blight resistance in wheat and barley. We are taking a two pronged approach using Arabidopsis to identify plant genes which confer resistance to trichothecenes. The first approac...

  16. A literature based method for identifying gene-disease connections.

    PubMed

    Adamic, Lada A; Wilkinson, Dennis; Huberman, Bernardo A; Adar, Eytan

    2002-01-01

    We present a statistical method that can swiftly identify, from the literature, sets of genes known to be associated with given diseases. It offers a comprehensive way to treat alias symbols, a statistical method for computing the relevance of the gene to the query, and a novel way to disambiguate gene symbols from other abbreviations. The method is illustrated by finding genes related to breast cancer. PMID:15838128

  17. Identifying potential cancer driver genes by genomic data integration

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hao, Jingjing; Jiang, Wei; He, Tong; Zhang, Xuegong; Jiang, Tao; Jiang, Rui

    2013-12-01

    Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration (CNA) regions of cancer genomes, by integrating publicly available human genomic data. MAXDRIVER employs several optimization strategies to construct a heterogeneous network, by means of combining a fused gene functional similarity network, gene-disease associations and a disease phenotypic similarity network. MAXDRIVER was validated to effectively recall known associations among genes and cancers. Previously identified as well as novel driver genes were detected by scanning CNAs of breast cancer, melanoma and liver carcinoma. Three predicted driver genes (CDKN2A, AKT1, RNF139) were found common in these three cancers by comparative analysis.

  18. Using Text Analysis to Identify Functionally Coherent Gene Groups

    PubMed Central

    Raychaudhuri, Soumya; Schütze, Hinrich; Altman, Russ B.

    2002-01-01

    The analysis of large-scale genomic information (such as sequence data or expression patterns) frequently involves grouping genes on the basis of common experimental features. Often, as with gene expression clustering, there are too many groups to easily identify the functionally relevant ones. One valuable source of information about gene function is the published literature. We present a method, neighbor divergence, for assessing whether the genes within a group share a common biological function based on their associated scientific literature. The method uses statistical natural language processing techniques to interpret biological text. It requires only a corpus of documents relevant to the genes being studied (e.g., all genes in an organism) and an index connecting the documents to appropriate genes. Given a group of genes, neighbor divergence assigns a numerical score indicating how “functionally coherent” the gene group is from the perspective of the published literature. We evaluate our method by testing its ability to distinguish 19 known functional gene groups from 1900 randomly assembled groups. Neighbor divergence achieves 79% sensitivity at 100% specificity, comparing favorably to other tested methods. We also apply neighbor divergence to previously published gene expression clusters to assess its ability to recognize gene groups that had been manually identified as representative of a common function. PMID:12368251

  19. Rice transcriptome analysis to identify possible herbicide quinclorac detoxification genes

    PubMed Central

    Xu, Wenying; Di, Chao; Zhou, Shaoxia; Liu, Jia; Li, Li; Liu, Fengxia; Yang, Xinling; Ling, Yun; Su, Zhen

    2015-01-01

    Quinclorac is a highly selective auxin-type herbicide and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world's rice yield. The herbicide mode of action of quinclorac has been proposed, and hormone interactions affecting quinclorac signaling has been identified. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and other environmental health problems. In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate genes of P450 families such as CYP81, CYP709C, and CYP72A were universally induced by different herbicides. Some Arabidopsis genes of the same P450 family were up-regulated under quinclorac treatment. We conducted rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution. PMID:26483837

  20. GENE EXPRESSION PROFILING TO IDENTIFY BIOMARKERS OF REPRODUCTIVE TOXICITY

    EPA Science Inventory

    SOT 2005 SESSION ABSTRACT

    GENE EXPRESSION PROFILING TO IDENTIFY BIOMARKERS OF REPRODUCTIVE TOXICITY

    David J. Dix. National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle...

  1. How to identify essential genes from molecular networks?

    PubMed Central

    del Rio, Gabriel; Koschützki, Dirk; Coello, Gerardo

    2009-01-01

    Background The prediction of essential genes from molecular networks is a way to test the understanding of essentiality in the context of what is known about the network. However, the current knowledge on molecular network structures is incomplete yet, and consequently the strategies aimed to predict essential genes are prone to uncertain predictions. We propose that simultaneously evaluating different network structures and different algorithms representing gene essentiality (centrality measures) may identify essential genes in networks in a reliable fashion. Results By simultaneously analyzing 16 different centrality measures on 18 different reconstructed metabolic networks for Saccharomyces cerevisiae, we show that no single centrality measure identifies essential genes from these networks in a statistically significant way; however, the combination of at least 2 centrality measures achieves a reliable prediction of most but not all of the essential genes. No improvement is achieved in the prediction of essential genes when 3 or 4 centrality measures were combined. Conclusion The method reported here describes a reliable procedure to predict essential genes from molecular networks. Our results show that essential genes may be predicted only by combining centrality measures, revealing the complex nature of the function of essential genes. PMID:19822021

  2. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics.

    PubMed

    Bravo, Armando; York, Thomas; Pumplin, Nathan; Mueller, Lukas A; Harrison, Maria J

    2016-01-01

    Arbuscular mycorrhizal symbiosis (AMS), a widespread mutualistic association of land plants and fungi(1), is predicted to have arisen once, early in the evolution of land plants(2-4). Consistent with this notion, several genes required for AMS have been conserved throughout evolution(5) and their symbiotic functions preserved, at least between monocot and dicot plants(6,7). Despite its significance, knowledge of the plants' genetic programme for AMS is limited. To date, most genes required for AMS have been found through commonalities with the evolutionarily younger nitrogen-fixing Rhizobium legume symbiosis (RLS)(8) or by reverse genetic analyses of differentially expressed candidate genes(9). Large sequence-indexed insertion mutant collections and recent genome editing technologies have vastly increased the power of reverse genetics but selection of candidate genes, from the thousands of genes that change expression during AMS, remains an arbitrary process. Here, we describe a phylogenomics approach to identify genes whose evolutionary history predicts conservation for AMS and we demonstrate the accuracy of the predictions through reverse genetics analysis. Phylogenomics analysis of 50 plant genomes resulted in 138 genes from Medicago truncatula predicted to function in AMS. This includes 15 genes with known roles in AMS. Additionally, we demonstrate that mutants in six previously uncharacterized AMS-conserved genes are all impaired in AMS. Our results demonstrate that phylogenomics is an effective strategy to identify a set of evolutionarily conserved genes required for AMS. PMID:27249190

  3. A genomic approach to identify hybrid incompatibility genes

    PubMed Central

    Cooper, Jacob C.; Phadnis, Nitin

    2016-01-01

    ABSTRACT Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids. PMID:27230814

  4. Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions

    PubMed Central

    Ames, Ryan M.; Money, Daniel; Lovell, Simon C.

    2014-01-01

    The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes. PMID:24921666

  5. Functional epigenetic approach identifies frequently methylated genes in Ewing sarcoma.

    PubMed

    Alholle, Abdullah; Brini, Anna T; Gharanei, Seley; Vaiyapuri, Sumathi; Arrigoni, Elena; Dallol, Ashraf; Gentle, Dean; Kishida, Takeshi; Hiruma, Toru; Avigad, Smadar; Grimer, Robert; Maher, Eamonn R; Latif, Farida

    2013-11-01

    Using a candidate gene approach we recently identified frequent methylation of the RASSF2 gene associated with poor overall survival in Ewing sarcoma (ES). To identify effective biomarkers in ES on a genome-wide scale, we used a functionally proven epigenetic approach, in which gene expression was induced in ES cell lines by treatment with a demethylating agent followed by hybridization onto high density gene expression microarrays. After following a strict selection criterion, 34 genes were selected for expression and methylation analysis in ES cell lines and primary ES. Eight genes (CTHRC1, DNAJA4, ECHDC2, NEFH, NPTX2, PHF11, RARRES2, TSGA14) showed methylation frequencies of>20% in ES tumors (range 24-71%), these genes were expressed in human bone marrow derived mesenchymal stem cells (hBMSC) and hypermethylation was associated with transcriptional silencing. Methylation of NPTX2 or PHF11 was associated with poorer prognosis in ES. In addition, six of the above genes also showed methylation frequency of>20% (range 36-50%) in osteosarcomas. Identification of these genes may provide insights into bone cancer tumorigenesis and development of epigenetic biomarkers for prognosis and detection of these rare tumor types. PMID:24005033

  6. Integrative Genomics Identifies Gene Signature Associated with Melanoma Ulceration

    PubMed Central

    Toth, Reka; Vizkeleti, Laura; Herandez-Vargas, Hector; Lazar, Viktoria; Emri, Gabriella; Szatmari, Istvan; Herceg, Zdenko; Adany, Roza; Balazs, Margit

    2013-01-01

    Background Despite the extensive research approaches applied to characterise malignant melanoma, no specific molecular markers are available that are clearly related to the progression of this disease. In this study, our aims were to define a gene expression signature associated with the clinical outcome of melanoma patients and to provide an integrative interpretation of the gene expression -, copy number alterations -, and promoter methylation patterns that contribute to clinically relevant molecular functional alterations. Methods Gene expression profiles were determined using the Affymetrix U133 Plus2.0 array. The NimbleGen Human CGH Whole-Genome Tiling array was used to define CNAs, and the Illumina GoldenGate Methylation platform was applied to characterise the methylation patterns of overlapping genes. Results We identified two subclasses of primary melanoma: one representing patients with better prognoses and the other being characteristic of patients with unfavourable outcomes. We assigned 1,080 genes as being significantly correlated with ulceration, 987 genes were downregulated and significantly enriched in the p53, Nf-kappaB, and WNT/beta-catenin pathways. Through integrated genome analysis, we defined 150 downregulated genes whose expression correlated with copy number losses in ulcerated samples. These genes were significantly enriched on chromosome 6q and 10q, which contained a total of 36 genes. Ten of these genes were downregulated and involved in cell-cell and cell-matrix adhesion or apoptosis. The expression and methylation patterns of additional genes exhibited an inverse correlation, suggesting that transcriptional silencing of these genes is driven by epigenetic events. Conclusion Using an integrative genomic approach, we were able to identify functionally relevant molecular hotspots characterised by copy number losses and promoter hypermethylation in distinct molecular subtypes of melanoma that contribute to specific transcriptomic silencing

  7. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype.

    PubMed

    Kanth, Priyanka; Bronner, Mary P; Boucher, Kenneth M; Burt, Randall W; Neklason, Deborah W; Hagedorn, Curt H; Delker, Don A

    2016-06-01

    Sessile serrated colon adenoma/polyps (SSA/P) are found during routine screening colonoscopy and may account for 20% to 30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. In addition, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing (RNA-Seq) was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon, and 20 control colon specimens. Differential expression and leave-one-out cross-validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1,422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n = 12) and sporadic SSA/Ps (n = 9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability. A smaller 7-gene panel showed high sensitivity and specificity in identifying BRAF-mutant, CpG island methylator phenotype high, and MLH1-silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. Cancer Prev Res; 9(6); 456-65. ©2016 AACR. PMID:27026680

  8. Identifying Mendelian disease genes with the Variant Effect Scoring Tool

    PubMed Central

    2013-01-01

    Background Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. Results We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. Conclusions Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is

  9. GENE EXPRESSION PROFILING TO IDENTIFY MECHANISMS OF MALE REPRODUCTIVE TOXICITY

    EPA Science Inventory

    Gene Expression Profiling to Identify Mechanisms of Male Reproductive Toxicity
    David J. Dix
    National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
    Ab...

  10. Brain-specific genes have identifier sequences in their introns.

    PubMed Central

    Milner, R J; Bloom, F E; Lai, C; Lerner, R A; Sutcliffe, J G

    1984-01-01

    The 82-nucleotide identifier (ID) sequence is present in the rat genome in 1-1.5 X 10(5) copies and in cDNA clones of precursors of brain-specific mRNAs. One brain-specific gene contains more than one ID sequence in its introns. There is an excess of ID sequences to brain genes, and some ID sequences appear to have been inserted as mobile elements into other genetic locations. Therefore, brain genes contain ID sequences in their introns, but not all ID sequences are located in brain gene introns. A brain ID consensus sequence has been obtained by comparing 8 ID nucleotide sequences. Images PMID:6583673

  11. Identifying lipid metabolism genes in pig liver after clenbuterol administration.

    PubMed

    Liu, Qiuyue; Zhang, Jin; Guo, Wei; Zhao, Yiqiang; Hu, Xiaoxiang; Li, Ning

    2012-01-01

    Clenbuterol is a repartition agent (beta 2-adrenoceptor agonist) that can decrease fat deposition and increase skeletal muscle growth at manageable dose. To better understand the molecular mechanism of Clenbuterol's action, GeneChips and real-time PCR were used to compare the gene expression profiles of liver tissue in pigs with/without administration of Clenbuterol. Metabolism effects and the global gene expression profiles of liver tissue from Clenbuterol-treated and untreated pigs were conducted. Function enrichment tests showed that the differentially expressed genes are enriched in glycoprotein protein, plasma membrane, fatty acid and amino acid metabolic process, and cell differentiation and signal transduction groups. Pathway mining analysis revealed that physiological pathways such as MAPK, cell adhesion molecules, and the insulin signaling pathway, were remarkably regulated when Clenbuterol was administered. Gene prioritization algorithm was used to associate a number of important differentially expressed genes with lipid metabolism in response to Clenbuterol. Genes identified as differentially expressed in this study will be candidates for further investigation of the molecular mechanisms involved in Clenbuterol's effects on adipose and skeletal muscle tissue. PMID:22652664

  12. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns

    PubMed Central

    Hastie, Trevor; Tibshirani, Robert; Eisen, Michael B; Alizadeh, Ash; Levy, Ronald; Staudt, Louis; Chan, Wing C; Botstein, David; Brown, Patrick

    2000-01-01

    Background: Large gene expression studies, such as those conducted using DNA arrays, often provide millions of different pieces of data. To address the problem of analyzing such data, we describe a statistical method, which we have called 'gene shaving'. The method identifies subsets of genes with coherent expression patterns and large variation across conditions. Gene shaving differs from hierarchical clustering and other widely used methods for analyzing gene expression studies in that genes may belong to more than one cluster, and the clustering may be supervised by an outcome measure. The technique can be 'unsupervised', that is, the genes and samples are treated as unlabeled, or partially or fully supervised by using known properties of the genes or samples to assist in finding meaningful groupings. Results: We illustrate the use of the gene shaving method to analyze gene expression measurements made on samples from patients with diffuse large B-cell lymphoma. The method identifies a small cluster of genes whose expression is highly predictive of survival. Conclusions: The gene shaving method is a potentially useful tool for exploration of gene expression data and identification of interesting clusters of genes worth further investigation. PMID:11178228

  13. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics

    PubMed Central

    2014-01-01

    Background De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. Methods To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. Results Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. Conclusions Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders. PMID:24602502

  14. Susceptibility Genes for Multiple Sclerosis Identified in a Gene-Based Genome-Wide Association Study

    PubMed Central

    Lin, Xiang; Deng, Fei-Yan; Lu, Xin

    2015-01-01

    Background and Purpose Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system. The aim of this study was to identify more genes associated with MS. Methods Based on the publicly available data of the single-nucleotide polymorphism-based genome-wide association study (GWAS) from the database of Genotypes and Phenotypes, we conducted a powerful gene-based GWAS in an initial sample with 931 family trios, and a replication study sample with 978 cases and 883 controls. For interesting genes, gene expression in MS-related cells between MS cases and controls was examined by using publicly available datasets. Results A total of 58 genes was identified, including 20 "novel" genes significantly associated with MS (p<1.40×10-4). In the replication study, 44 of the 58 identified genes had been genotyped and 35 replicated the association. In the gene-expression study, 21 of the 58 identified genes exhibited differential expressions in MS-related cells. Thus, 15 novel genes were supported by replicated association and/or differential expression. In particular, four of the novel genes, those encoding myelin oligodendrocyte glycoprotein (MOG), coiled-coil alpha-helical rod protein 1 (CCHCR1), human leukocyte antigen complex group 22 (HCG22), and major histocompatibility complex, class II, DM alpha (HLA-DMA), were supported by the evidence of both. Conclusions The results of this study emphasize the high power of gene-based GWAS in detecting the susceptibility genes of MS. The novel genes identified herein may provide new insights into the molecular genetic mechanisms underlying MS. PMID:26320842

  15. Phage cluster relationships identified through single gene analysis

    PubMed Central

    2013-01-01

    Background Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved. Results A single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages. Conclusions TMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification. PMID:23777341

  16. Animal Models of GWAS-Identified Type 2 Diabetes Genes

    PubMed Central

    da Silva Xavier, Gabriela; Bellomo, Elisa A.; McGinty, James A.; French, Paul M.; Rutter, Guy A.

    2013-01-01

    More than 65 loci, encoding up to 500 different genes, have been implicated by genome-wide association studies (GWAS) as conferring an increased risk of developing type 2 diabetes (T2D). Whilst mouse models have in the past been central to understanding the mechanisms through which more penetrant risk genes for T2D, for example, those responsible for neonatal or maturity-onset diabetes of the young, only a few of those identified by GWAS, notably TCF7L2 and ZnT8/SLC30A8, have to date been examined in mouse models. We discuss here the animal models available for the latter genes and provide perspectives for future, higher throughput approaches towards efficiently mining the information provided by human genetics. PMID:23710470

  17. Identifying disease candidate genes via large-scale gene network analysis.

    PubMed

    Kim, Haseong; Park, Taesung; Gelenbe, Erol

    2014-01-01

    Gene Regulatory Networks (GRN) provide systematic views of complex living systems, offering reliable and large-scale GRNs to identify disease candidate genes. A reverse engineering technique, Bayesian Model Averaging-based Networks (BMAnet), which ensembles all appropriate linear models to tackle uncertainty in model selection that integrates heterogeneous biological data sets is introduced. Using network evaluation metrics, we compare the networks that are thus identified. The metric 'Random walk with restart (Rwr)' is utilised to search for disease genes. In a simulation our method shows better performance than elastic-net and Gaussian graphical models, but topological quantities vary among the three methods. Using real-data, brain tumour gene expression samples consisting of non-tumour, grade III and grade IV are analysed to estimate networks with a total of 4422 genes. Based on these networks, 169 brain tumour-related candidate genes were identified and some were found to relate to 'wound', 'apoptosis', and 'cell death' processes. PMID:25796737

  18. Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis

    PubMed Central

    Vyazunova, Irina; Maklakova, Vilena I.; Berman, Samuel; De, Ishani; Steffen, Megan D.; Hong, Won; Lincoln, Hayley; Morrissy, A. Sorana; Taylor, Michael D.; Akagi, Keiko; Brennan, Cameron W.; Rodriguez, Fausto J.; Collier, Lara S.

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma. PMID:25423036

  19. Methods for identifying an essential gene in a prokaryotic microorganism

    DOEpatents

    Shizuya, Hiroaki

    2006-01-31

    Methods are provided for the rapid identification of essential or conditionally essential DNA segments in any species of haploid cell (one copy chromosome per cell) that is capable of being transformed by artificial means and is capable of undergoing DNA recombination. This system offers an enhanced means of identifying essential function genes in diploid pathogens, such as gram-negative and gram-positive bacteria.

  20. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes

    PubMed Central

    Lieberman, Tami D.; Michel, Jean-Baptiste; Aingaran, Mythili; Potter-Bynoe, Gail; Roux, Damien; Davis, Michael R.; Skurnik, David; Leiby, Nicholas; LiPuma, John J.; Goldberg, Joanna B.; McAdam, Alexander J.; Priebe, Gregory P.; Kishony, Roy

    2011-01-01

    Bacterial pathogens evolve during the infection of their human hosts1-8, but separating adaptive and neutral mutations remains challenging9-11. Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired non-synonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes illuminate the genetic basis of important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition, and implicate oxygen-dependent gene regulation as paramount in lung infections. Several genes have not been previously implicated in pathogenesis, suggesting new therapeutic targets. The identification of parallel molecular evolution suggests key selection forces acting on pathogens within humans and can help predict and prepare for their future evolutionary course. PMID:22081229

  1. A recellularized human colon model identifies cancer driver genes.

    PubMed

    Chen, Huanhuan Joyce; Wei, Zhubo; Sun, Jian; Bhattacharya, Asmita; Savage, David J; Serda, Rita; Mackeyev, Yuri; Curley, Steven A; Bu, Pengcheng; Wang, Lihua; Chen, Shuibing; Cohen-Gould, Leona; Huang, Emina; Shen, Xiling; Lipkin, Steven M; Copeland, Neal G; Jenkins, Nancy A; Shuler, Michael L

    2016-08-01

    Refined cancer models are needed to bridge the gaps between cell line, animal and clinical research. Here we describe the engineering of an organotypic colon cancer model by recellularization of a native human matrix that contains cell-populated mucosa and an intact muscularis mucosa layer. This ex vivo system recapitulates the pathophysiological progression from APC-mutant neoplasia to submucosal invasive tumor. We used it to perform a Sleeping Beauty transposon mutagenesis screen to identify genes that cooperate with mutant APC in driving invasive neoplasia. We identified 38 candidate invasion-driver genes, 17 of which, including TCF7L2, TWIST2, MSH2, DCC, EPHB1 and EPHB2 have been previously implicated in colorectal cancer progression. Six invasion-driver genes that have not, to our knowledge, been previously described were validated in vitro using cell proliferation, migration and invasion assays and ex vivo using recellularized human colon. These results demonstrate the utility of our organoid model for studying cancer biology. PMID:27398792

  2. Identifying Francisella tularensis Genes Required for Growth in Host Cells

    PubMed Central

    Brunton, J.; Steele, S.; Miller, C.; Lovullo, E.; Taft-Benz, S.

    2015-01-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence. PMID:25987704

  3. Comparison of melanoblast expression patterns identifies distinct classes of genes

    PubMed Central

    Loftus, Stacie K.; Baxter, Laura L.; Buac, Kristina; Watkins-Chow, Dawn E.; Larson, Denise M.; Pavan, William J.

    2010-01-01

    Summary A full understanding of transcriptional regulation requires integration of information obtained from multiple experimental datasets. These include datasets annotating gene expression within the context of an entire organism under normal and genetically perturbed conditions. Here we describe an expression dataset annotating pigment cell-expressed genes of the developing melanocyte and RPE lineages. Expression images are annotated and available at http://research.nhgri.nih.gov/manuscripts/Loftus/March2009/. Data is also summarized in a standardized manner using a universal melanoblast scoring scale that accounts for the embryonic location of cells and regional cell density. This approach allowed us to classify 14 pigment genes into 4 groupings classified by cell lineage expression, temporal-spatial context, and differential alteration in response to altered MITF and SOX10 status. Significant differences in regional populations were also observed across inbred strain backgrounds highlighting the value of this approach to identify modifier allele influences on melanoblast number and distributions. This analysis revealed novel features of in vivo expression patterns that are not measurable by in vitro-based assays, providing data that in combination with genomic analyses will allow modeling of pigment cell gene expression in development and disease. PMID:19493314

  4. Identifying the genes regulated by IDH1 via gene-chip in glioma cell U87

    PubMed Central

    Ren, Jie; Lou, Meiqing; Shi, Jinlong; Xue, Yajun; Cui, Daming

    2015-01-01

    Glioma is the most common form of primary brain tumor. Increasing evidence show that IDH1 gene mutation is implicated in glioma. However, the mechanism involved in the progression of glioma remains unclear until now. In the study reported here, we used gene chip to identifying the genes regulated with IDH mutanted at R132. The results showed that IDH1-mutant leads to 1255 up-regulated genes and 1862 down-regulated genes in U87 cell lines. Meanwhile, GO and gene-network was performed and shown IDH1-mutant mainly affect small molecule metabolic process, mitotic cell cycle and apoptosis. This result will lay a foundation for further study of IDH1 gene function in the future. PMID:26770405

  5. Screening for noise in gene expression identifies drug synergies.

    PubMed

    Dar, Roy D; Hosmane, Nina N; Arkin, Michelle R; Siliciano, Robert F; Weinberger, Leor S

    2014-06-20

    Stochastic fluctuations are inherent to gene expression and can drive cell-fate specification. We used such fluctuations to modulate reactivation of HIV from latency-a quiescent state that is a major barrier to an HIV cure. By screening a diverse library of bioactive small molecules, we identified more than 80 compounds that modulated HIV gene-expression fluctuations (i.e., "noise"), without changing mean expression. These noise-modulating compounds would be neglected in conventional screens, and yet, they synergized with conventional transcriptional activators. Noise enhancers reactivated latent cells significantly better than existing best-in-class reactivation drug combinations (and with reduced off-target cytotoxicity), whereas noise suppressors stabilized latency. Noise-modulating chemicals may provide novel probes for the physiological consequences of noise and an unexplored axis for drug discovery, allowing enhanced control over diverse cell-fate decisions. PMID:24903562

  6. Identifying genes that mediate anthracyline toxicity in immune cells

    PubMed Central

    Frick, Amber; Suzuki, Oscar T.; Benton, Cristina; Parks, Bethany; Fedoriw, Yuri; Richards, Kristy L.; Thomas, Russell S.; Wiltshire, Tim

    2015-01-01

    The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS), we identified four genome-wide significant quantitative trait loci (QTL) that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01 × 10−8). Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05). In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies. PMID:25926793

  7. Utilizing Gene Tree Variation to Identify Candidate Effector Genes in Zymoseptoria tritici

    PubMed Central

    McDonald, Megan C.; McGinness, Lachlan; Hane, James K.; Williams, Angela H.; Milgate, Andrew; Solomon, Peter S.

    2016-01-01

    Zymoseptoria tritici is a host-specific, necrotrophic pathogen of wheat. Infection by Z. tritici is characterized by its extended latent period, which typically lasts 2 wks, and is followed by extensive host cell death, and rapid proliferation of fungal biomass. This work characterizes the level of genomic variation in 13 isolates, for which we have measured virulence on 11 wheat cultivars with differential resistance genes. Between the reference isolate, IPO323, and the 13 Australian isolates we identified over 800,000 single nucleotide polymorphisms, of which ∼10% had an effect on the coding regions of the genome. Furthermore, we identified over 1700 probable presence/absence polymorphisms in genes across the Australian isolates using de novo assembly. Finally, we developed a gene tree sorting method that quickly identifies groups of isolates within a single gene alignment whose sequence haplotypes correspond with virulence scores on a single wheat cultivar. Using this method, we have identified < 100 candidate effector genes whose gene sequence correlates with virulence toward a wheat cultivar carrying a major resistance gene. PMID:26837952

  8. GeneValidator: identify problems with protein-coding gene predictions

    PubMed Central

    Drăgan, Monica-Andreea; Moghul, Ismail; Priyam, Anurag; Bustos, Claudio; Wurm, Yannick

    2016-01-01

    Summary: Genomes of emerging model organisms are now being sequenced at very low cost. However, obtaining accurate gene predictions remains challenging: even the best gene prediction algorithms make substantial errors and can jeopardize subsequent analyses. Therefore, many predicted genes must be time-consumingly visually inspected and manually curated. We developed GeneValidator (GV) to automatically identify problematic gene predictions and to aid manual curation. For each gene, GV performs multiple analyses based on comparisons to gene sequences from large databases. The resulting report identifies problematic gene predictions and includes extensive statistics and graphs for each prediction to guide manual curation efforts. GV thus accelerates and enhances the work of biocurators and researchers who need accurate gene predictions from newly sequenced genomes. Availability and implementation: GV can be used through a web interface or in the command-line. GV is open-source (AGPL), available at https://wurmlab.github.io/tools/genevalidator. Contact: y.wurm@qmul.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26787666

  9. Identifying sexual differentiation genes that affect Drosophila life span

    PubMed Central

    2009-01-01

    Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF) during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF) during development was lethal to males, and produced a limited number of female escapers

  10. Blood Pressure Loci Identified with a Gene-Centric Array

    PubMed Central

    Johnson, Toby; Gaunt, Tom R.; Newhouse, Stephen J.; Padmanabhan, Sandosh; Tomaszewski, Maciej; Kumari, Meena; Morris, Richard W.; Tzoulaki, Ioanna; O'Brien, Eoin T.; Poulter, Neil R.; Sever, Peter; Shields, Denis C.; Thom, Simon; Wannamethee, Sasiwarang G.; Whincup, Peter H.; Brown, Morris J.; Connell, John M.; Dobson, Richard J.; Howard, Philip J.; Mein, Charles A.; Onipinla, Abiodun; Shaw-Hawkins, Sue; Zhang, Yun; Smith, George Davey; Day, Ian N.M.; Lawlor, Debbie A.; Goodall, Alison H.; Fowkes, F. Gerald; Abecasis, Gonçalo R.; Elliott, Paul; Gateva, Vesela; Braund, Peter S.; Burton, Paul R.; Nelson, Christopher P.; Tobin, Martin D.; van der Harst, Pim; Glorioso, Nicola; Neuvrith, Hani; Salvi, Erika; Staessen, Jan A.; Stucchi, Andrea; Devos, Nabila; Jeunemaitre, Xavier; Plouin, Pierre-François; Tichet, Jean; Juhanson, Peeter; Org, Elin; Putku, Margus; Sõber, Siim; Veldre, Gudrun; Viigimaa, Margus; Levinsson, Anna; Rosengren, Annika; Thelle, Dag S.; Hastie, Claire E.; Hedner, Thomas; Lee, Wai K.; Melander, Olle; Wahlstrand, Björn; Hardy, Rebecca; Wong, Andrew; Cooper, Jackie A.; Palmen, Jutta; Chen, Li; Stewart, Alexandre F.R.; Wells, George A.; Westra, Harm-Jan; Wolfs, Marcel G.M.; Clarke, Robert; Franzosi, Maria Grazia; Goel, Anuj; Hamsten, Anders; Lathrop, Mark; Peden, John F.; Seedorf, Udo; Watkins, Hugh; Ouwehand, Willem H.; Sambrook, Jennifer; Stephens, Jonathan; Casas, Juan-Pablo; Drenos, Fotios; Holmes, Michael V.; Kivimaki, Mika; Shah, Sonia; Shah, Tina; Talmud, Philippa J.; Whittaker, John; Wallace, Chris; Delles, Christian; Laan, Maris; Kuh, Diana; Humphries, Steve E.; Nyberg, Fredrik; Cusi, Daniele; Roberts, Robert; Newton-Cheh, Christopher; Franke, Lude; Stanton, Alice V.; Dominiczak, Anna F.; Farrall, Martin; Hingorani, Aroon D.; Samani, Nilesh J.; Caulfield, Mark J.; Munroe, Patricia B.

    2011-01-01

    Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10−7 study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r2 = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10−7 at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies. PMID:22100073

  11. Blood pressure loci identified with a gene-centric array.

    PubMed

    Johnson, Toby; Gaunt, Tom R; Newhouse, Stephen J; Padmanabhan, Sandosh; Tomaszewski, Maciej; Kumari, Meena; Morris, Richard W; Tzoulaki, Ioanna; O'Brien, Eoin T; Poulter, Neil R; Sever, Peter; Shields, Denis C; Thom, Simon; Wannamethee, Sasiwarang G; Whincup, Peter H; Brown, Morris J; Connell, John M; Dobson, Richard J; Howard, Philip J; Mein, Charles A; Onipinla, Abiodun; Shaw-Hawkins, Sue; Zhang, Yun; Davey Smith, George; Day, Ian N M; Lawlor, Debbie A; Goodall, Alison H; Fowkes, F Gerald; Abecasis, Gonçalo R; Elliott, Paul; Gateva, Vesela; Braund, Peter S; Burton, Paul R; Nelson, Christopher P; Tobin, Martin D; van der Harst, Pim; Glorioso, Nicola; Neuvrith, Hani; Salvi, Erika; Staessen, Jan A; Stucchi, Andrea; Devos, Nabila; Jeunemaitre, Xavier; Plouin, Pierre-François; Tichet, Jean; Juhanson, Peeter; Org, Elin; Putku, Margus; Sõber, Siim; Veldre, Gudrun; Viigimaa, Margus; Levinsson, Anna; Rosengren, Annika; Thelle, Dag S; Hastie, Claire E; Hedner, Thomas; Lee, Wai K; Melander, Olle; Wahlstrand, Björn; Hardy, Rebecca; Wong, Andrew; Cooper, Jackie A; Palmen, Jutta; Chen, Li; Stewart, Alexandre F R; Wells, George A; Westra, Harm-Jan; Wolfs, Marcel G M; Clarke, Robert; Franzosi, Maria Grazia; Goel, Anuj; Hamsten, Anders; Lathrop, Mark; Peden, John F; Seedorf, Udo; Watkins, Hugh; Ouwehand, Willem H; Sambrook, Jennifer; Stephens, Jonathan; Casas, Juan-Pablo; Drenos, Fotios; Holmes, Michael V; Kivimaki, Mika; Shah, Sonia; Shah, Tina; Talmud, Philippa J; Whittaker, John; Wallace, Chris; Delles, Christian; Laan, Maris; Kuh, Diana; Humphries, Steve E; Nyberg, Fredrik; Cusi, Daniele; Roberts, Robert; Newton-Cheh, Christopher; Franke, Lude; Stanton, Alice V; Dominiczak, Anna F; Farrall, Martin; Hingorani, Aroon D; Samani, Nilesh J; Caulfield, Mark J; Munroe, Patricia B

    2011-12-01

    Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies. PMID:22100073

  12. Network-Based Inference Framework for Identifying Cancer Genes from Gene Expression Data

    PubMed Central

    Yang, Bo; Zhang, Junying; Yin, Yaling; Zhang, Yuanyuan

    2013-01-01

    Great efforts have been devoted to alleviate uncertainty of detected cancer genes as accurate identification of oncogenes is of tremendous significance and helps unravel the biological behavior of tumors. In this paper, we present a differential network-based framework to detect biologically meaningful cancer-related genes. Firstly, a gene regulatory network construction algorithm is proposed, in which a boosting regression based on likelihood score and informative prior is employed for improving accuracy of identification. Secondly, with the algorithm, two gene regulatory networks are constructed from case and control samples independently. Thirdly, by subtracting the two networks, a differential-network model is obtained and then used to rank differentially expressed hub genes for identification of cancer biomarkers. Compared with two existing gene-based methods (t-test and lasso), the method has a significant improvement in accuracy both on synthetic datasets and two real breast cancer datasets. Furthermore, identified six genes (TSPYL5, CD55, CCNE2, DCK, BBC3, and MUC1) susceptible to breast cancer were verified through the literature mining, GO analysis, and pathway functional enrichment analysis. Among these oncogenes, TSPYL5 and CCNE2 have been already known as prognostic biomarkers in breast cancer, CD55 has been suspected of playing an important role in breast cancer prognosis from literature evidence, and other three genes are newly discovered breast cancer biomarkers. More generally, the differential-network schema can be extended to other complex diseases for detection of disease associated-genes. PMID:24073403

  13. Gene-Trap Mutagenesis Identifies Mammalian Genes Contributing to Intoxication by Clostridium perfringens ε-Toxin

    PubMed Central

    Ivie, Susan E.; Fennessey, Christine M.; Sheng, Jinsong; Rubin, Donald H.; McClain, Mark S.

    2011-01-01

    The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention. PMID:21412435

  14. Gene Profiling of Mta1 Identifies Novel Gene Targets and Functions

    PubMed Central

    Eswaran, Jeyanthy; Kumar, Rakesh

    2011-01-01

    Background Metastasis-associated protein 1 (MTA1), a master dual co-regulatory protein is found to be an integral part of NuRD (Nucleosome Remodeling and Histone Deacetylation) complex, which has indispensable transcriptional regulatory functions via histone deacetylation and chromatin remodeling. Emerging literature establishes MTA1 to be a valid DNA-damage responsive protein with a significant role in maintaining the optimum DNA-repair activity in mammalian cells exposed to genotoxic stress. This DNA-damage responsive function of MTA1 was reported to be a P53-dependent and independent function. Here, we investigate the influence of P53 on gene regulation function of Mta1 to identify novel gene targets and functions of Mta1. Methods Gene expression analysis was performed on five different mouse embryonic fibroblasts (MEFs) samples (i) the Mta1 wild type, (ii) Mta1 knock out (iii) Mta1 knock out in which Mta1 was reintroduced (iv) P53 knock out (v) P53 knock out in which Mta1 was over expressed using Affymetrix Mouse Exon 1.0 ST arrays. Further Hierarchical Clustering, Gene Ontology analysis with GO terms satisfying corrected p-value<0.1, and the Ingenuity Pathway Analysis were performed. Finally, RT-qPCR was carried out on selective candidate genes. Significance/Conclusion This study represents a complete genome wide screen for possible target genes of a coregulator, Mta1. The comparative gene profiling of Mta1 wild type, Mta1 knockout and Mta1 re-expression in the Mta1 knockout conditions define “bona fide” Mta1 target genes. Further extensive analyses of the data highlights the influence of P53 on Mta1 gene regulation. In the presence of P53 majority of the genes regulated by Mta1 are related to inflammatory and anti-microbial responses whereas in the absence of P53 the predominant target genes are involved in cancer signaling. Thus, the presented data emphasizes the known functions of Mta1 and serves as a rich resource which could help us identify novel Mta

  15. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  16. Gene Expression in Human Hippocampus from Cocaine Abusers Identifies Genes which Regulate Extracellular Matrix Remodeling

    PubMed Central

    Mash, Deborah C.; ffrench-Mullen, Jarlath; Adi, Nikhil; Qin, Yujing; Buck, Andrew; Pablo, John

    2007-01-01

    The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine “rush”. Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction. PMID:18000554

  17. Comparative and Functional Genomics in Identifying Aflatoxin Biosynthetic Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of genes involved in aflatoxin biosynthesis through Aspergillus flavus genomics has been actively pursued. A. flavus Expressed Sequence Tags (EST’s) and whole genome sequencing have been completed. Groups of genes that are potentially involved in aflatoxin production have been profi...

  18. Epidermal growth factor gene is a newly identified candidate gene for gout.

    PubMed

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  19. Epidermal growth factor gene is a newly identified candidate gene for gout

    PubMed Central

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  20. Genomic convergence: identifying candidate genes for Parkinson's disease by combining serial analysis of gene expression and genetic linkage.

    PubMed

    Hauser, Michael A; Li, Yi-Ju; Takeuchi, Satoshi; Walters, Robert; Noureddine, Maher; Maready, Melinda; Darden, Tiffany; Hulette, Christine; Martin, Eden; Hauser, Elizabeth; Xu, Hong; Schmechel, Don; Stenger, Judith E; Dietrich, Fred; Vance, Jeffery

    2003-03-15

    We present a multifactorial, multistep approach called genomic convergence that combines gene expression with genomic linkage analysis to identify and prioritize candidate susceptibility genes for Parkinson's disease (PD). To initiate this process, we used serial analysis of gene expression (SAGE) to identify genes expressed in two normal substantia nigras (SN) and adjacent midbrain tissue. This identified over 3700 transcripts, including the three most abundant SAGE tags, which did not correspond to any known genes or ESTs. We developed high-throughput bioinformatics methods to map the genes corresponding to these tags and identified 402 SN genes that lay within five large genomic linkage regions, previously identified in 174 multiplex PD families. These genes represent excellent candidates for PD susceptibility alleles and further genomic convergence and analyses. PMID:12620972

  1. [Expression of bioinformatically identified genes in skin of psoriasis patients].

    PubMed

    Sobolev, V V; Nikol'skaia, T A; Zolotarenko, A D; Piruzian, E S; Bruskin, S A

    2013-10-01

    Gene expression analysis for EPHA2 (EPH receptor A2), EPHB2 (EPH receptor B2), S100A9 (S100 calcium binding protein A9), PBEF(nicotinamide phosphoribosyltransferase), LILRB2 (leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2), PLAUR (plasminogen activator, urokinase receptor), LTB (lymphotoxin beta (TNF superfamily, member 3)), WNT5A (wingless-type MMTV integration site family, member 5A) has been conducted using real-time polymerase chain reaction in specimens affected by psoriasis versus visually intact skin in 18 patients. It was revealed that the expression of the nine examined genes was upregulated in the affected by psoriasis compared to visually intact skin specimens. The highest expression was observed for S100A9, S100AS, PBEF, WNT5A2, and EPHB2 genes. S100A9 and S100A8 gene expression in the affected by psoriasis skin was 100-fold higher versus visually intact skin while PBEF, WNT5A, and EPHB2 gene expression was upregulated more than five-fold. We suggested that the high expression of these genes might be associated with the state of the pathological process in psoriasis. Moreover, the transcriptional activity of these genes might serve a molecular indicator of the efficacy of treatment in psoriasis. PMID:25474898

  2. [Expression of bioinformatically identified genes in skin of psoriasis patients].

    PubMed

    2013-10-01

    Gene expression analysis for EPHA2 (EPH receptor A2), EPHB2 (EPH receptor B2), S100A9 (S100 calcium binding protein A9), PBEF(nicotinamide phosphoribosyltransferase), LILRB2 (leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2), PLAUR (plasminogen activator, urokinase receptor), LTB (lymphotoxin beta (TNF superfamily, member 3)), WNT5A (wingless-type MMTV integration site family, member 5A) has been conducted using real-time polymerase chain reaction in specimens affected by psoriasis versus visually intact skin in 18 patients. It was revealed that the expression of the nine examined genes was upregulated in the affected by psoriasis compared to visually intact skin specimens. The highest expression was observed for S100A9, S100AS, PBEF, WNT5A2, and EPHB2 genes. S100A9 and S100A8 gene expression in the affected by psoriasis skin was 100-fold higher versus visually intact skin while PBEF, WNT5A, and EPHB2 gene expression was upregulated more than five-fold. We suggested that the high expression of these genes might be associated with the state of the pathological process in psoriasis. Moreover, the transcriptional activity of these genes might serve a molecular indicator of the efficacy of treatment in psoriasis. PMID:25508677

  3. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance

    PubMed Central

    Lapitan, Nora

    2013-01-01

    In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways in Arabidopsis thaliana were selected for VIGS experiments in wheat. These include Era1 (enhanced response to abscisic acid), Cyp707a (ABA 8’-hydroxylase), and Sal1 (inositol polyphosphate 1-phosphatase). Gene homologues for these three genes were identified in wheat and cloned in the viral vector barley stripe mosaic virus (BSMV) in the antisense direction, followed by rub inoculation of BSMV viral RNA transcripts onto wheat plants. Quantitative real-time PCR showed that VIGS-treated wheat plants had significant reductions in target gene transcripts. When VIGS-treated plants generated for Era1 and Sal1 were subjected to limiting water conditions, they showed increased relative water content, improved water use efficiency, reduced gas exchange, and better vigour compared to water-stressed control plants inoculated with RNA from the empty viral vector (BSMV0). In comparison, the Cyp707a-silenced plants showed no improvement over BSMV0-inoculated plants under limited water condition. These results indicate that Era1 and Sal1 play important roles in conferring drought tolerance in wheat. Other traits affected by Era1 silencing were also studied. Delayed seed germination in Era1-silenced plants suggests this gene may be a useful target for developing resistance to pre-harvest sprouting. PMID:23364940

  4. Identifying Human Disease Genes through Cross-Species Gene Mapping of Evolutionary Conserved Processes

    PubMed Central

    Poot, Martin; Badea, Alexandra; Williams, Robert W.; Kas, Martien J.

    2011-01-01

    Background Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes. Methodology We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains) using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC) development. Principal Findings From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC) and those covered by copy number variations (CNV) yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10−5). Conclusion This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia

  5. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.

    PubMed

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-03-29

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance. PMID:26976593

  6. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis

    PubMed Central

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-01-01

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the “recycling” of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance. PMID:26976593

  7. Differential hybridization and other strategies to identify novel ovarian genes.

    PubMed

    Tavares, A B; Esplin, M S; Adashi, E Y

    2001-06-01

    Approaches to define patterns of gene expression have applications in a wide range of biological systems. The completion of the human genome project establishes a unique opportunity to understand the molecular control of different biological events through functional analysis. However, the huge database that currently exists will demand the utilization of high-throughput techniques for the assessment of multiple DNA sequences in a rapid and efficient manner. By determining genes with differential expression, it may be possible to decipher the mechanisms that underlie the control of different physiological pathways, which, in turn, may define future strategies to manage them. Although there exist a vast number of tools to screen genes for differential expression, we briefly examine here only some of those with regard to their advantages and disadvantages. PMID:11480914

  8. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    PubMed Central

    Waaijenborg, Sandra; Zwinderman, Aeilko H

    2009-01-01

    Background We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the canonical variates, and we applied ridge penalization to the regression of pathway genes on canonical variates of the non-pathway genes, and the elastic net to the regression of non-pathway genes on the canonical variates of the pathway genes. Results We performed a small simulation to illustrate the model's capability to identify new candidate genes to incorporate in the pathway: in our simulations it appeared that a gene was correctly identified if the correlation with the pathway genes was 0.3 or more. We applied the methods to a gene-expression microarray data set of 12, 209 genes measured in 45 patients with glioblastoma, and we considered genes to incorporate in the glioma-pathway: we identified more than 25 genes that correlated > 0.9 with canonical variates of the pathway genes. Conclusion We concluded that penalized canonical correlation analysis is a powerful tool to identify candidate genes in pathway analysis. PMID:19785734

  9. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas.

    PubMed

    Zhou, Ruigang; Man, Yigang

    2016-04-01

    The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed genes (DEGs) and differentially methylated regions (DMRs), respectively, integrated analysis of the DEGs and DMRs was performed to detect their correlation. Subsequently, the WGCNA algorithm was applied to identify the significant modules and construct the co‑expression network associated with PAs. Furthermore, Gene Ontology enrichment analysis of the associated genes was performed using the Database for Annotation, Visualization and Integrated Discovery. A total number of 2,259 DEGs and 235 DMRs were screened out. Integrated analysis revealed that 30 DEGs were DMRs with prominent negative correlation (cor=‑0.82; P=0.02). Based on the DEGs, the gene co‑expression network was constructed, and nine network modules associated with PAs were identified. The functional analysis results showed that genes relevant to PAs were closely associated with cell differentiation modulation. The screened PA-associated genes were significantly different at the expression and methylation levels. These genes may be used as reliable candidate target genes for the treatment of PAs. PMID:26934913

  10. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas

    PubMed Central

    ZHOU, RUIGANG; MAN, YIGANG

    2016-01-01

    The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed genes (DEGs) and differentially methylated regions (DMRs), respectively, integrated analysis of the DEGs and DMRs was performed to detect their correlation. Subsequently, the WGCNA algorithm was applied to identify the significant modules and construct the co-expression network associated with PAs. Furthermore, Gene Ontology enrichment analysis of the associated genes was performed using the Database for Annotation, Visualization and Integrated Discovery. A total number of 2,259 DEGs and 235 DMRs were screened out. Integrated analysis revealed that 30 DEGs were DMRs with prominent negative correlation (cor=−0.82; P=0.02). Based on the DEGs, the gene co-expression network was constructed, and nine network modules associated with PAs were identified. The functional analysis results showed that genes relevant to PAs were closely associated with cell differentiation modulation. The screened PA-associated genes were significantly different at the expression and methylation levels. These genes may be used as reliable candidate target genes for the treatment of PAs. PMID:26934913

  11. A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.

    PubMed

    Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong

    2015-01-01

    In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data. PMID:26201006

  12. Identifying mechanistic indicators of childhood asthma from blood gene expression

    EPA Science Inventory

    Asthmatic individuals have been identified as a susceptible subpopulation for air pollutants. However, asthma represents a syndrome with multiple probable etiologies, and the identification of these asthma endotypes is critical to accurately define the most susceptible subpopula...

  13. Candidate genes for limiting cholestatic intestinal injury identified by gene expression profiling

    PubMed Central

    Alaish, Samuel M; Timmons, Jennifer; Smith, Alexis; Buzza, Marguerite S; Murphy, Ebony; Zhao, Aiping; Sun, Yezhou; Turner, Douglas J; Shea-Donahue, Terez; Antalis, Toni M; Cross, Alan; Dorsey, Susan G

    2013-01-01

    The lack of bile flow from the liver into the intestine can have devastating complications including hepatic failure, sepsis, and even death. This pathologic condition known as cholestasis can result from etiologies as diverse as total parenteral nutrition (TPN), hepatitis, and pancreatic cancer. The intestinal injury associated with cholestasis has been shown to result in decreased intestinal resistance, increased bacterial translocation, and increased endotoxemia. Anecdotal clinical evidence suggests a genetic predisposition to exaggerated injury. Recent animal research on two different strains of inbred mice demonstrating different rates of bacterial translocation with different mortality rates supports this premise. In this study, a microarray analysis of intestinal tissue following common bile duct ligation (CBDL) performed under general anesthesia on these same two strains of inbred mice was done with the goal of identifying the potential molecular mechanistic pathways responsible. Over 500 genes were increased more than 2.0-fold following CBDL. The most promising candidate genes included major urinary proteins (MUPs), serine protease-1-inhibitor (Serpina1a), and lipocalin-2 (LCN-2). Quantitative polymerase chain reaction (qPCR) validated the microarray results for these candidate genes. In an in vitro experiment using differentiated intestinal epithelial cells, inhibition of MUP-1 by siRNA resulted in increased intestinal epithelial cell permeability. Diverse novel mechanisms involving the growth hormone pathway, the acute phase response, and the innate immune response are thus potential avenues for limiting cholestatic intestinal injury. Changes in gene expression were at times found to be not only due to the CBDL but also due to the murine strain. Should further studies in cholestatic patients demonstrate interindividual variability similar to what we have shown in mice, then a “personalized medicine” approach to cholestatic patients may become

  14. MIClique: An algorithm to identify differentially coexpressed disease gene subset from microarray data.

    PubMed

    Zhang, Huanping; Song, Xiaofeng; Wang, Huinan; Zhang, Xiaobai

    2009-01-01

    Computational analysis of microarray data has provided an effective way to identify disease-related genes. Traditional disease gene selection methods from microarray data such as statistical test always focus on differentially expressed genes in different samples by individual gene prioritization. These traditional methods might miss differentially coexpressed (DCE) gene subsets because they ignore the interaction between genes. In this paper, MIClique algorithm is proposed to identify DEC gene subsets based on mutual information and clique analysis. Mutual information is used to measure the coexpression relationship between each pair of genes in two different kinds of samples. Clique analysis is a commonly used method in biological network, which generally represents biological module of similar function. By applying the MIClique algorithm to real gene expression data, some DEC gene subsets which correlated under one experimental condition but uncorrelated under another condition are detected from the graph of colon dataset and leukemia dataset. PMID:20169000

  15. Identifying genes affectng stress response in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic analyses have the potential to impact aquaculture production traits by identifying markers as proxies for traits which are expensive or difficult to measure and characterizing genetic variation and biochemical mechanisms underlying phenotypic variation. One such set of traits are the respon...

  16. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    PubMed

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-01

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC. PMID:27006499

  17. A search engine to identify pathway genes from expression data on multiple organisms

    PubMed Central

    Chen, Chunnuan; Weirauch, Matthew T; Powell, Corey C; Zambon, Alexander C; Stuart, Joshua M

    2007-01-01

    Background The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function. Results We developed a search engine, the Multiple-Species Gene Recommender (MSGR), which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway. Conclusion The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved. PMID:17477880

  18. Identifying Sarcomere Gene Mutations in HCM: A Personal History

    PubMed Central

    Seidman, Christine E.; Seidman, J.G.

    2011-01-01

    This article provides an historical and personal perspective on the discovery of genetic causes for hypertrophic cardiomyopathy (HCM). Extraordinary insights of physicians who initially detailed remarkable and varied manifestations of the disorder, collaboration among multidisciplinary teams with skills in clinical diagnostics and molecular genetics, and hard work by scores of trainees, solved the etiologic riddle of HCM, and unexpectedly demonstrated mutations in sarcomere protein genes as the cause of disease. In addition to celebrating 20 years of genetic research in HCM, this article serves as an introductory overview to a thematic review series that will present contemporary advances in the field of hypertrophic heart disease. Through the continued application of advances in genetic methodologies, combined with biochemical and biophysical analyses of the consequences of human mutations, fundamental knowledge about HCM and sarcomere biology has emerged. Expanding research to elucidate the mechanisms by which subtle genetic variation in contractile proteins remodel the human heart remains an exciting opportunity, one with considerable promise to provide new strategies to limit or even prevent HCM pathogenesis. PMID:21415408

  19. Identifying rhesus macaque gene orthologs using heterospecific human CNV probes

    PubMed Central

    Ng, Jillian; Fass, Joseph N.; Durbin-Johnson, Blythe; Smith, David Glenn; Kanthaswamy, Sree

    2015-01-01

    We used the Affymetrix® Genome-Wide Human SNP Array 6.0 to identify heterospecific markers and compare copy number and structural genomic variation between humans and rhesus macaques. Over 200,000 human copy number variation (CNV) probes were mapped to a Chinese and an Indian rhesus macaque sample. Observed genomic rearrangements and synteny were in agreement with the results of a previously published genomic comparison between humans and rhesus macaques. Comparisons between each of the two rhesus macaques and humans yielded 206 regions with copy numbers that differed by at least two fold in the Indian rhesus macaque and human, 32 in the Chinese rhesus macaque and human, and 147 in both rhesus macaques. The detailed genomic map and preliminary CNV data are useful for better understanding genetic variation in rhesus macaques, identifying derived changes in human CNVs that may have evolved by selection, and determining the suitability of rhesus macaques as human models for particular biomedical studies. PMID:26697375

  20. Identifying rhesus macaque gene orthologs using heterospecific human CNV probes.

    PubMed

    Ng, Jillian; Fass, Joseph N; Durbin-Johnson, Blythe; Smith, David Glenn; Kanthaswamy, Sree

    2015-12-01

    We used the Affymetrix(®) Genome-Wide Human SNP Array 6.0 to identify heterospecific markers and compare copy number and structural genomic variation between humans and rhesus macaques. Over 200,000 human copy number variation (CNV) probes were mapped to a Chinese and an Indian rhesus macaque sample. Observed genomic rearrangements and synteny were in agreement with the results of a previously published genomic comparison between humans and rhesus macaques. Comparisons between each of the two rhesus macaques and humans yielded 206 regions with copy numbers that differed by at least two fold in the Indian rhesus macaque and human, 32 in the Chinese rhesus macaque and human, and 147 in both rhesus macaques. The detailed genomic map and preliminary CNV data are useful for better understanding genetic variation in rhesus macaques, identifying derived changes in human CNVs that may have evolved by selection, and determining the suitability of rhesus macaques as human models for particular biomedical studies. PMID:26697375

  1. The KM-Algorithm Identifies Regulated Genes in Time Series Expression Data

    PubMed Central

    Bremer, Martina; Doerge, R. W.

    2009-01-01

    We present a statistical method to rank observed genes in gene expression time series experiments according to their degree of regulation in a biological process. The ranking may be used to focus on specific genes or to select meaningful subsets of genes from which gene regulatory networks can be built. Our approach is based on a state space model that incorporates hidden regulators of gene expression. Kalman (K) smoothing and maximum (M) likelihood estimation techniques are used to derive optimal estimates of the model parameters upon which a proposed regulation criterion is based. The statistical power of the proposed algorithm is investigated, and a real data set is analyzed for the purpose of identifying regulated genes in time dependent gene expression data. This statistical approach supports the concept that meaningful biological conclusions can be drawn from gene expression time series experiments by focusing on strong regulation rather than large expression values. PMID:19956417

  2. Applying the Fisher score to identify Alzheimer's disease-related genes.

    PubMed

    Yang, J; Liu, Y L; Feng, C S; Zhu, G Q

    2016-01-01

    Biologists and scientists can use the data from Alzheimer's disease (AD) gene expression microarrays to mine AD disease-related genes. Because of disadvantages such as small sample sizes, high dimensionality, and a high level of noise, it is difficult to obtain accurate and meaningful biological information from gene expression profiles. In this paper, we present a novel approach for utilizing AD microarray data to identify the morbigenous genes. The Fisher score, a classical feature selection method, is utilized to evaluate the importance of each gene. Genes with a large between-classes variance and small within-class variance are selected as candidate morbigenous genes. The results using an AD dataset show that the proposed approach is effective for gene selection. Satisfactory accuracy can be achieved by using only a small number of selected genes. PMID:27420981

  3. A Microarray-Based Gene Expression Analysis to Identify Diagnostic Biomarkers for Unknown Primary Cancer

    PubMed Central

    Kurahashi, Issei; Fujita, Yoshihiko; Arao, Tokuzo; Kurata, Takayasu; Koh, Yasuhiro; Sakai, Kazuko; Matsumoto, Koji; Tanioka, Maki; Takeda, Koji; Takiguchi, Yuichi; Yamamoto, Nobuyuki; Tsuya, Asuka; Matsubara, Nobuaki; Mukai, Hirofumi; Minami, Hironobu; Chayahara, Naoko; Yamanaka, Yasuhiro; Miwa, Keisuke; Takahashi, Shin; Takahashi, Shunji; Nakagawa, Kazuhiko; Nishio, Kazuto

    2013-01-01

    Background The biological basis for cancer of unknown primary (CUP) at the molecular level remains largely unknown, with no evidence of whether a common biological entity exists. Here, we assessed the possibility of identifying a common diagnostic biomarker for CUP using a microarray gene expression analysis. Methods Tumor mRNA samples from 60 patients with CUP were analyzed using the Affymetrix U133A Plus 2.0 GeneChip and were normalized by asinh (hyperbolic arc sine) transformation to construct a mean gene-expression profile specific to CUP. A gene-expression profile specific to non-CUP group was constructed using publicly available raw microarray datasets. The t-tests were performed to compare the CUP with non-CUP groups and the top 59 CUP specific genes with the highest fold change were selected (p-value<0.001). Results Among the 44 genes that were up-regulated in the CUP group, 6 genes for ribosomal proteins were identified. Two of these genes (RPS7 and RPL11) are known to be involved in the Mdm2–p53 pathway. We also identified several genes related to metastasis and apoptosis, suggesting a biological attribute of CUP. Conclusions The protein products of the up-regulated and down-regulated genes identified in this study may be clinically useful as unique biomarkers for CUP. PMID:23671674

  4. An Orthologous Epigenetic Gene Expression Signature Derived from Differentiating Embryonic Stem Cells Identifies Regulators of Cardiogenesis

    PubMed Central

    Busser, Brian W.; Lin, Yongshun; Yang, Yanqin; Zhu, Jun; Chen, Guokai; Michelson, Alan M.

    2015-01-01

    Here we used predictive gene expression signatures within a multi-species framework to identify the genes that underlie cardiac cell fate decisions in differentiating embryonic stem cells. We show that the overlapping orthologous mouse and human genes are the most accurate candidate cardiogenic genes as these genes identified the most conserved developmental pathways that characterize the cardiac lineage. An RNAi-based screen of the candidate genes in Drosophila uncovered numerous novel cardiogenic genes. shRNA knockdown combined with transcriptome profiling of the newly-identified transcription factors zinc finger protein 503 and zinc finger E-box binding homeobox 2 and the well-known cardiac regulatory factor NK2 homeobox 5 revealed that zinc finger E-box binding homeobox 2 activates terminal differentiation genes required for cardiomyocyte structure and function whereas zinc finger protein 503 and NK2 homeobox 5 are required for specification of the cardiac lineage. We further demonstrated that an essential role of NK2 homeobox 5 and zinc finger protein 503 in specification of the cardiac lineage is the repression of gene expression programs characteristic of alternative cell fates. Collectively, these results show that orthologous gene expression signatures can be used to identify conserved cardiogenic pathways. PMID:26485529

  5. Metabolites production improvement by identifying minimal genomes and essential genes using flux balance analysis.

    PubMed

    Salleh, Abdul Hakim Mohamed; Mohamad, Mohd Saberi; Deris, Safaai; Illias, Rosli Md

    2015-01-01

    With the advancement in metabolic engineering technologies, reconstruction of the genome of host organisms to achieve desired phenotypes can be made. However, due to the complexity and size of the genome scale metabolic network, significant components tend to be invisible. We proposed an approach to improve metabolite production that consists of two steps. First, we find the essential genes and identify the minimal genome by a single gene deletion process using Flux Balance Analysis (FBA) and second by identifying the significant pathway for the metabolite production using gene expression data. A genome scale model of Saccharomyces cerevisiae for production of vanillin and acetate is used to test this approach. The result has shown the reliability of this approach to find essential genes, reduce genome size and identify production pathway that can further optimise the production yield. The identified genes and pathways can be extendable to other applications especially in strain optimisation. PMID:26489144

  6. The impact of self-identified race on epidemiologic studies of gene expression.

    PubMed

    Sharma, Sunita; Murphy, Amy; Howrylak, Judie; Himes, Blanca; Cho, Michael H; Chu, Jen-Hwa; Hunninghake, Gary M; Fuhlbrigge, Anne; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Liu, Andy; Szefler, Stanley J; Strunk, Robert; Castro, Mario; Hansel, Nadia N; Diette, Gregory B; Vonakis, Becky M; Adkinson, N Franklin; Carey, Vincent J; Raby, Benjamin A

    2011-02-01

    Although population differences in gene expression have been established, the impact on differential gene expression studies in large populations is not well understood. We describe the effect of self-reported race on a gene expression study of lung function in asthma. We generated gene expression profiles for 254 young adults (205 non-Hispanic whites and 49 African Americans) with asthma on whom concurrent total RNA derived from peripheral blood CD4(+) lymphocytes and lung function measurements were obtained. We identified four principal components that explained 62% of the variance in gene expression. The dominant principal component, which explained 29% of the total variance in gene expression, was strongly associated with self-identified race (P<10(-16)). The impact of these racial differences was observed when we performed differential gene expression analysis of lung function. Using multivariate linear models, we tested whether gene expression was associated with a quantitative measure of lung function: pre-bronchodilator forced expiratory volume in one second (FEV(1)). Though unadjusted linear models of FEV(1) identified several genes strongly correlated with lung function, these correlations were due to racial differences in the distribution of both FEV(1) and gene expression, and were no longer statistically significant following adjustment for self-identified race. These results suggest that self-identified race is a critical confounding covariate in epidemiologic studies of gene expression and that, similar to genetic studies, careful consideration of self-identified race in gene expression profiling studies is needed to avoid spurious association. PMID:21254216

  7. Common Marker Genes Identified from Various Sample Types for Systemic Lupus Erythematosus

    PubMed Central

    Wang, Lan; Zhang, Yong-Hong; Lei, Shu-Feng; Deng, Fei-Yan

    2016-01-01

    Objective Systemic lupus erythematosus (SLE) is a complex auto-immune disease. Gene expression studies have been conducted to identify SLE-related genes in various types of samples. It is unknown whether there are common marker genes significant for SLE but independent of sample types, which may have potentials for follow-up translational research. The aim of this study is to identify common marker genes across various sample types for SLE. Methods Based on four public microarray gene expression datasets for SLE covering three representative types of blood-born samples (monocyte; peripheral blood mononuclear cell, PBMC; whole blood), we utilized three statistics (fold-change, FC; t-test p value; false discovery rate adjusted p value) to scrutinize genes simultaneously regulated with SLE across various sample types. For common marker genes, we conducted the Gene Ontology enrichment analysis and Protein-Protein Interaction analysis to gain insights into their functions. Results We identified 10 common marker genes associated with SLE (IFI6, IFI27, IFI44L, OAS1, OAS2, EIF2AK2, PLSCR1, STAT1, RNASE2, and GSTO1). Significant up-regulation of IFI6, IFI27, and IFI44L with SLE was observed in all the studied sample types, though the FC was most striking in monocyte, compared with PBMC and whole blood (8.82–251.66 vs. 3.73–74.05 vs. 1.19–1.87). Eight of the above 10 genes, except RNASE2 and GSTO1, interact with each other and with known SLE susceptibility genes, participate in immune response, RNA and protein catabolism, and cell death. Conclusion Our data suggest that there exist common marker genes across various sample types for SLE. The 10 common marker genes, identified herein, deserve follow-up studies to dissert their potentials as diagnostic or therapeutic markers to predict SLE or treatment response. PMID:27257790

  8. Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize.

    PubMed

    Schnable, James C; Freeling, Michael

    2011-01-01

    Not all genes are created equal. Despite being supported by sequence conservation and expression data, knockout homozygotes of many genes show no visible effects, at least under laboratory conditions. We have identified a set of maize (Zea mays L.) genes which have been the subject of a disproportionate share of publications recorded at MaizeGDB. We manually anchored these "classical" maize genes to gene models in the B73 reference genome, and identified syntenic orthologs in other grass genomes. In addition to proofing the most recent version 2 maize gene models, we show that a subset of these genes, those that were identified by morphological phenotype prior to cloning, are retained at syntenic locations throughout the grasses at much higher levels than the average expressed maize gene, and are preferentially found on the maize1 subgenome even with a duplicate copy is still retained on the opposite subgenome. Maize1 is the subgenome that experienced less gene loss following the whole genome duplication in maize lineage 5-12 million years ago and genes located on this subgenome tend to be expressed at higher levels in modern maize. Links to the web based software that supported our syntenic analyses in the grasses should empower further research and support teaching involving the history of maize genetic research. Our findings exemplify the concept of "grasses as a single genetic system," where what is learned in one grass may be applied to another. PMID:21423772

  9. GeneBrowser 2: an application to explore and identify common biological traits in a set of genes

    PubMed Central

    2010-01-01

    Background The development of high-throughput laboratory techniques created a demand for computer-assisted result analysis tools. Many of these techniques return lists of genes whose interpretation requires finding relevant biological roles for the problem at hand. The required information is typically available in public databases, and usually, this information must be manually retrieved to complement the analysis. This process is a very time-consuming task that should be automated as much as possible. Results GeneBrowser is a web-based tool that, for a given list of genes, combines data from several public databases with visualisation and analysis methods to help identify the most relevant and common biological characteristics. The functionalities provided include the following: a central point with the most relevant biological information for each inserted gene; a list of the most related papers in PubMed and gene expression studies in ArrayExpress; and an extended approach to functional analysis applied to Gene Ontology, homologies, gene chromosomal localisation and pathways. Conclusions GeneBrowser provides a unique entry point to several visualisation and analysis methods, providing fast and easy analysis of a set of genes. GeneBrowser fills the gap between Web portals that analyse one gene at a time and functional analysis tools that are limited in scope and usually desktop-based. PMID:20663121

  10. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    PubMed

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp. PMID:26724943

  11. Epigenetic characterization of the growth hormone gene identifies SmcHD1 as a regulator of autosomal gene clusters.

    PubMed

    Massah, Shabnam; Hollebakken, Robert; Labrecque, Mark P; Kolybaba, Addie M; Beischlag, Timothy V; Prefontaine, Gratien G

    2014-01-01

    Regulatory elements for the mouse growth hormone (GH) gene are located distally in a putative locus control region (LCR) in addition to key elements in the promoter proximal region. The role of promoter DNA methylation for GH gene regulation is not well understood. Pit-1 is a POU transcription factor required for normal pituitary development and obligatory for GH gene expression. In mammals, Pit-1 mutations eliminate GH production resulting in a dwarf phenotype. In this study, dwarf mice illustrated that Pit-1 function was obligatory for GH promoter hypomethylation. By monitoring promoter methylation levels during developmental GH expression we found that the GH promoter became hypomethylated coincident with gene expression. We identified a promoter differentially methylated region (DMR) that was used to characterize a methylation-dependent DNA binding activity. Upon DNA affinity purification using the DMR and nuclear extracts, we identified structural maintenance of chromosomes hinge domain containing -1 (SmcHD1). To better understand the role of SmcHD1 in genome-wide gene expression, we performed microarray analysis and compared changes in gene expression upon reduced levels of SmcHD1 in human cells. Knock-down of SmcHD1 in human embryonic kidney (HEK293) cells revealed a disproportionate number of up-regulated genes were located on the X-chromosome, but also suggested regulation of genes on non-sex chromosomes. Among those, we identified several genes located in the protocadherin β cluster. In addition, we found that imprinted genes in the H19/Igf2 cluster associated with Beckwith-Wiedemann and Silver-Russell syndromes (BWS & SRS) were dysregulated. For the first time using human cells, we showed that SmcHD1 is an important regulator of imprinted and clustered genes. PMID:24818964

  12. Epigenetic Characterization of the Growth Hormone Gene Identifies SmcHD1 as a Regulator of Autosomal Gene Clusters

    PubMed Central

    Massah, Shabnam; Hollebakken, Robert; Labrecque, Mark P.; Kolybaba, Addie M.; Beischlag, Timothy V.; Prefontaine, Gratien G.

    2014-01-01

    Regulatory elements for the mouse growth hormone (GH) gene are located distally in a putative locus control region (LCR) in addition to key elements in the promoter proximal region. The role of promoter DNA methylation for GH gene regulation is not well understood. Pit-1 is a POU transcription factor required for normal pituitary development and obligatory for GH gene expression. In mammals, Pit-1 mutations eliminate GH production resulting in a dwarf phenotype. In this study, dwarf mice illustrated that Pit-1 function was obligatory for GH promoter hypomethylation. By monitoring promoter methylation levels during developmental GH expression we found that the GH promoter became hypomethylated coincident with gene expression. We identified a promoter differentially methylated region (DMR) that was used to characterize a methylation-dependent DNA binding activity. Upon DNA affinity purification using the DMR and nuclear extracts, we identified structural maintenance of chromosomes hinge domain containing -1 (SmcHD1). To better understand the role of SmcHD1 in genome-wide gene expression, we performed microarray analysis and compared changes in gene expression upon reduced levels of SmcHD1 in human cells. Knock-down of SmcHD1 in human embryonic kidney (HEK293) cells revealed a disproportionate number of up-regulated genes were located on the X-chromosome, but also suggested regulation of genes on non-sex chromosomes. Among those, we identified several genes located in the protocadherin β cluster. In addition, we found that imprinted genes in the H19/Igf2 cluster associated with Beckwith-Wiedemann and Silver-Russell syndromes (BWS & SRS) were dysregulated. For the first time using human cells, we showed that SmcHD1 is an important regulator of imprinted and clustered genes. PMID:24818964

  13. Comparison of gene expression methods to identify genes responsive to perfluorooctane sulfonic acid.

    PubMed

    Hu, Wenyue; Jones, Paul D; Decoen, Wim; Newsted, John L; Giesy, John P

    2005-01-01

    Genome-wide expression techniques are being increasingly used to assess the effects of environmental contaminants. Oligonucleotide or cDNA microarray methods make possible the screening of large numbers of known sequences for a given model species, while differential display analysis makes possible analysis of the expression of all the genes from any species. We report a comparison of two currently popular methods for genome-wide expression analysis in rat hepatoma cells treated with perfluorooctane sulfonic acid. The two analyses provided 'complimentary' information. Approximately 5% of the 8000 genes analyzed by the GeneChip array, were altered by a factor of three or greater. Differential display results were more difficult to interpret, since multiple gene products were present in most gel bands so a probabilistic approach was used to determine which pathways were affected. The mechanistic interpretation derived from these two methods was in agreement, both showing similar alterations in a specific set of genes. PMID:21783471

  14. Exome sequencing identifies NBEAL2 as the causative gene for Gray Platelet Syndrome

    PubMed Central

    Albers, Cornelis A; Cvejic, Ana; Favier, Rémi; Bouwmans, Evelien E; Alessi, Marie-Christine; Bertone, Paul; Jordan, Gregory; Kettleborough, Ross NW; Kiddle, Graham; Kostadima, Myrto; Read, Randy J; Sipos, Botond; Sivapalaratnam, Suthesh; Smethurst, Peter A; Stephens, Jonathan; Voss, Katrin; Nurden, Alan; Rendon, Augusto; Nurden, Paquita; Ouwehand, Willem H

    2012-01-01

    Gray platelet syndrome (GPS) is a predominantly recessive platelet disorder characterized by a mild thrombocytopenia with large platelets and a paucity of α-granules; these abnormalities cause mostly moderate but in rare cases severe bleeding. We sequenced the exomes of four unrelated cases and identified as the causative gene NBEAL2, a gene with previously unknown function but a member of a gene family involved in granule development. Silencing of nbeal2 in zebrafish abrogated thrombocyte formation. PMID:21765411

  15. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity.

    PubMed

    Sinha, Amit; Rae, Robbie

    2016-01-01

    RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity. PMID:27581293

  16. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    SciTech Connect

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  17. NIH Researchers Identify New Gene Mutation Associated with ALS and Dementia

    MedlinePlus

    ... NIH researchers identify new gene mutation associated with ALS and dementia April 7, 2014 A rare mutation ... cell, has been linked with development of familial amyotrophic lateral sclerosis (ALS). This finding, from a research team led ...

  18. An activation tagging screen to identify novel genes for Fusarium head blight (FHB) resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this project is to identify plant genes that confer resistance against FHB and reduced DON accumulation. The identification of such genes offers the possibility to more fully understand the mechanisms of Fusarium susceptibility and to design transgenic strategies to increase FHB resistan...

  19. Microarray analysis identified Puccinia striiformis f. sp. tritici genes involved in infection and sporulation.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...

  20. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments.

    PubMed

    Leng, Ning; Chu, Li-Fang; Barry, Chris; Li, Yuan; Choi, Jeea; Li, Xiaomao; Jiang, Peng; Stewart, Ron M; Thomson, James A; Kendziorski, Christina

    2015-10-01

    Oscillatory gene expression is fundamental to development, but technologies for monitoring expression oscillations are limited. We have developed a statistical approach called Oscope to identify and characterize the transcriptional dynamics of oscillating genes in single-cell RNA-seq data from an unsynchronized cell population. Applying Oscope to a number of data sets, we demonstrated its utility and also identified a potential artifact in the Fluidigm C1 platform. PMID:26301841

  1. A Novel Prioritization Method in Identifying Recurrent Venous Thromboembolism-Related Genes

    PubMed Central

    Xie, Ruiqiang; Chen, Binbin; Huang, Hao; Li, Yiran; He, Yuehan; Lv, Junjie; He, Weiming; Chen, Lina

    2016-01-01

    Identifying the genes involved in venous thromboembolism (VTE) recurrence is important not only for understanding the pathogenesis but also for discovering the therapeutic targets. We proposed a novel prioritization method called Function-Interaction-Pearson (FIP) by creating gene-disease similarity scores to prioritize candidate genes underling VTE. The scores were calculated by integrating and optimizing three types of resources including gene expression, gene ontology and protein-protein interaction. As a result, 124 out of top 200 prioritized candidate genes had been confirmed in literature, among which there were 34 antithrombotic drug targets. Compared with two well-known gene prioritization tools Endeavour and ToppNet, FIP was shown to have better performance. The approach provides a valuable alternative for drug targets discovery and disease therapy. PMID:27050193

  2. A Novel Prioritization Method in Identifying Recurrent Venous Thromboembolism-Related Genes.

    PubMed

    Jiang, Jing; Li, Wan; Liang, Binhua; Xie, Ruiqiang; Chen, Binbin; Huang, Hao; Li, Yiran; He, Yuehan; Lv, Junjie; He, Weiming; Chen, Lina

    2016-01-01

    Identifying the genes involved in venous thromboembolism (VTE) recurrence is important not only for understanding the pathogenesis but also for discovering the therapeutic targets. We proposed a novel prioritization method called Function-Interaction-Pearson (FIP) by creating gene-disease similarity scores to prioritize candidate genes underling VTE. The scores were calculated by integrating and optimizing three types of resources including gene expression, gene ontology and protein-protein interaction. As a result, 124 out of top 200 prioritized candidate genes had been confirmed in literature, among which there were 34 antithrombotic drug targets. Compared with two well-known gene prioritization tools Endeavour and ToppNet, FIP was shown to have better performance. The approach provides a valuable alternative for drug targets discovery and disease therapy. PMID:27050193

  3. Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials

    PubMed Central

    Halappanavar, Sabina

    2015-01-01

    Summary Background: The presence of diverse types of nanomaterials (NMs) in commerce is growing at an exponential pace. As a result, human exposure to these materials in the environment is inevitable, necessitating the need for rapid and reliable toxicity testing methods to accurately assess the potential hazards associated with NMs. In this study, we applied biclustering and gene set enrichment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models following exposure to a variety of substances were examined and functionally related biclusters of genes showing similar expression profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO2), carbon black (CB) or carbon nanotubes (CNTs) to determine the disease significance of these data-driven gene sets. Results: Biclusters representing inflammation (chemokine activity), DNA binding, cell cycle, apoptosis, reactive oxygen species (ROS) and fibrosis processes were identified. All of the NM studies were significant with respect to the bicluster related to chemokine activity (DAVID; FDR p-value = 0.032). The bicluster related to pulmonary fibrosis was enriched in studies where toxicity induced by CNT and CB studies was investigated, suggesting the potential for these materials to induce lung fibrosis. The pro-fibrogenic potential of CNTs is well established. Although CB has not been shown to induce fibrosis, it induces stronger inflammatory, oxidative stress and DNA damage responses than nano-TiO2 particles. Conclusion: The results of the analysis correctly identified all NMs to be inflammogenic and only CB and CNTs as potentially fibrogenic. In addition to identifying several

  4. Multiplexed Component Analysis to Identify Genes Contributing to the Immune Response during Acute SIV Infection

    PubMed Central

    Hosseini, Iraj; Gama, Lucio; Mac Gabhann, Feilim

    2015-01-01

    Immune response genes play an important role during acute HIV and SIV infection. Using an SIV macaque model of AIDS and CNS disease, our overall goal was to assess how the expression of genes associated with immune and inflammatory responses are longitudinally changed in different organs or cells during SIV infection. To compare RNA expression of a panel of 88 immune-related genes across time points and among three tissues – spleen, mesenteric lymph nodes (MLN) and peripheral blood mononuclear cells (PBMC) – we designed a set of Nanostring probes. To identify significant genes during acute SIV infection and to investigate whether these genes are tissue-specific or have global roles, we introduce a novel multiplexed component analysis (MCA) method. This combines multivariate analysis methods with multiple preprocessing methods to create a set of 12 “judges”; each judge emphasizes particular types of change in gene expression to which cells could respond, for example, the absolute or relative size of expression change from baseline. Compared to bivariate analysis methods, our MCA method improved classification rates. This analysis allows us to identify three categories of genes: (a) consensus genes likely to contribute highly to the immune response; (b) genes that would contribute highly to the immune response only if certain assumptions are met – e.g. that the cell responds to relative expression change rather than absolute expression change; and (c) genes whose contribution to immune response appears to be modest. We then compared the results across the three tissues of interest; some genes are consistently highly-contributing in all tissues, while others are specific for certain tissues. Our analysis identified CCL8, CXCL10, CXCL11, MxA, OAS2, and OAS1 as top contributing genes, all of which are stimulated by type I interferon. This suggests that the cytokine storm during acute SIV infection is a systemic innate immune response against viral replication

  5. Use of a Drosophila Model to Identify Genes Regulating Plasmodium Growth in the Mosquito

    PubMed Central

    Brandt, Stephanie M.; Jaramillo-Gutierrez, Giovanna; Kumar, Sanjeev; Barillas-Mury, Carolina; Schneider, David S.

    2008-01-01

    We performed a forward genetic screen, using Drosophila as a surrogate mosquito, to identify host factors required for the growth of the avian malaria parasite, Plasmodium gallinaceum. We identified 18 presumed loss-of-function mutants that reduced the growth of the parasite in flies. Presumptive mutation sites were identified in 14 of the mutants on the basis of the insertion site of a transposable element. None of the identified genes have been previously implicated in innate immune responses or interactions with Plasmodium. The functions of five Anopheles gambiae homologs were tested by using RNAi to knock down gene function followed by measuring the growth of the rodent parasite, Plasmodium berghei. Loss of function of four of these genes in the mosquito affected Plasmodium growth, suggesting that Drosophila can be used effectively as a surrogate mosquito to identify relevant host factors in the mosquito. PMID:18791251

  6. Use of a Drosophila model to identify genes regulating Plasmodium growth in the mosquito.

    PubMed

    Brandt, Stephanie M; Jaramillo-Gutierrez, Giovanna; Kumar, Sanjeev; Barillas-Mury, Carolina; Schneider, David S

    2008-11-01

    We performed a forward genetic screen, using Drosophila as a surrogate mosquito, to identify host factors required for the growth of the avian malaria parasite, Plasmodium gallinaceum. We identified 18 presumed loss-of-function mutants that reduced the growth of the parasite in flies. Presumptive mutation sites were identified in 14 of the mutants on the basis of the insertion site of a transposable element. None of the identified genes have been previously implicated in innate immune responses or interactions with Plasmodium. The functions of five Anopheles gambiae homologs were tested by using RNAi to knock down gene function followed by measuring the growth of the rodent parasite, Plasmodium berghei. Loss of function of four of these genes in the mosquito affected Plasmodium growth, suggesting that Drosophila can be used effectively as a surrogate mosquito to identify relevant host factors in the mosquito. PMID:18791251

  7. A cross-species bi-clustering approach to identifying conserved co-regulated genes

    PubMed Central

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-01-01

    Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. Results: We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on

  8. Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability.

    PubMed

    Strome, Erin D; Wu, Xiaowei; Kimmel, Marek; Plon, Sharon E

    2008-03-01

    Current techniques for identifying mutations that convey a small increased cancer risk or those that modify cancer risk in carriers of highly penetrant mutations are limited by the statistical power of epidemiologic studies, which require screening of large populations and candidate genes. To identify dosage-sensitive genes that mediate genomic stability, we performed a genomewide screen in Saccharomyces cerevisiae for heterozygous mutations that increase chromosome instability in a checkpoint-deficient diploid strain. We used two genome stability assays sensitive enough to detect the impact of heterozygous mutations and identified 172 heterozygous gene disruptions that affected chromosome fragment (CF) loss, 45% of which also conferred modest but statistically significant instability of endogenous chromosomes. Analysis of heterozygous deletion of 65 of these genes demonstrated that the majority increased genomic instability in both checkpoint-deficient and wild-type backgrounds. Strains heterozygous for COMA kinetochore complex genes were particularly unstable. Over 50% of the genes identified in this screen have putative human homologs, including CHEK2, ERCC4, and TOPBP1, which are already associated with inherited cancer susceptibility. These findings encourage the incorporation of this orthologous gene list into cancer epidemiology studies and suggest further analysis of heterozygous phenotypes in yeast as models of human disease resulting from haplo-insufficiency. PMID:18245329

  9. Genes associated with agronomic traits in non-heading Chinese cabbage identified by expression profiling

    PubMed Central

    2014-01-01

    Background The genomes of non-heading Chinese cabbage (Brassica rapa ssp. chinensis), heading Chinese cabbage (Brassica rapa ssp. pekinensis) and their close relative Arabidopsis thaliana have provided important resources for studying the evolution and genetic improvement of cruciferous plants. Natural growing conditions present these plants with a variety of physiological challenges for which they have a repertoire of genes that ensure adaptability and normal growth. We investigated the differential expressions of genes that control adaptability and development in plants growing in the natural environment to study underlying mechanisms of their expression. Results Using digital gene expression tag profiling, we constructed an expression profile to identify genes related to important agronomic traits under natural growing conditions. Among three non-heading Chinese cabbage cultivars, we found thousands of genes that exhibited significant differences in expression levels at five developmental stages. Through comparative analysis and previous reports, we identified several candidate genes associated with late flowering, cold tolerance, self-incompatibility, and leaf color. Two genes related to cold tolerance were verified using quantitative real-time PCR. Conclusions We identified a large number of genes associated with important agronomic traits of non-heading Chinese cabbage. This analysis will provide a wealth of resources for molecular-assisted breeding of cabbage. The raw data and detailed results of this analysis are available at the website http://nhccdata.njau.edu.cn. PMID:24655567

  10. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder.

    PubMed

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  11. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    PubMed Central

    Ashbrook, David G.; Williams, Robert W.; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  12. Comparative Analysis of Cluster Validity Indices in Identifying Some Possible Genes Mediating Certain Cancers.

    PubMed

    Ghosh, Anupam; Dhara, Bibhas Chandra; De, Rajat K

    2013-04-01

    In this article, we compare the performance of 19 cluster validity indices, in identifying some possible genes mediating certain cancers, based on gene expression data. For the purpose of this comparison, we have developed a method. The proposed method involves cluster generation, selection of the best k-value or c-values, cluster identification, identifying the altered gene cluster, scoring an altered gene cluster and determining the best k-value or c-value exploring through biological repositories. The effectiveness of the method has been demonstrated on three gene expression data sets dealing with human lung cancer, colon cancer, and leukemia. Here, we have used three clustering algorithms, i.e., k-means, PAM and fuzzy c-means. We have used biochemical pathways related to these cancers and p-value statistics for validating the study. PMID:27481591

  13. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei

    PubMed Central

    Zirlinger, Mariela; Kreiman, Gabriel; Anderson, David J.

    2001-01-01

    Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions, relative to the others. In situ hybridization performed on a subset of amygdala-enriched genes confirmed in most cases the overall region-specificity predicted by the microarray data and identified additional sites of brain expression not examined on the microarrays. Strikingly, the majority of these genes exhibited boundaries of expression within the amygdala corresponding to cytoarchitectonically defined subnuclei. These results define a unique set of molecular markers for amygdaloid subnuclei and provide tools to genetically dissect their functional roles in different emotional behaviors. PMID:11320257

  14. Utilization of digital differential display to identify differentially expressed genes related to rumen development.

    PubMed

    Kato, Daichi; Suzuki, Yutaka; Haga, Satoshi; So, KyoungHa; Yamauchi, Eri; Nakano, Miwa; Ishizaki, Hiroshi; Choi, Kichoon; Katoh, Kazuo; Roh, Sang-Gun

    2016-04-01

    This study aimed to identify the genes associated with the development of the rumen epithelium by screening for candidate genes by digital differential display (DDD) in silico. Using DDD in NCBI's UniGene database, expressed sequence tag (EST)-based gene expression profiles were analyzed in rumen, reticulum, omasum, abomasum and other tissues in cattle. One hundred and ten candidate genes with high expression in the rumen were derived from a library of all tissues. The expression levels of 11 genes in all candidate genes were analyzed in the rumen, reticulum, omasum and abomasum of nine Japanese Black male calves (5-week-old pre-weaning: n = 3; 15-week-old weaned calves: n = 6). Among the 11 genes, only 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), aldo-keto reductase family 1, member C1-like (AKR1C1), and fatty acid binding protein 3 (FABP3) showed significant changes in the levels of gene expression in the rumen between the pre- and post-weaning of calves. These results indicate that DDD analysis in silico can be useful for screening candidate genes related to rumen development, and that the changes in expression levels of three genes in the rumen may have been caused by weaning, aging or both. © 2015 Japanese Society of Animal Science. PMID:26388291

  15. Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liver

    PubMed Central

    Guillén, Natalia; Navarro, María A.; Arnal, Carmen; Noone, Enda; Arbonés-Mainar, José M.; Acín, Sergio; Surra, Joaquín C.; Muniesa, Pedro; Roche, Helen M.; Osada, Jesús

    2009-01-01

    Trans-10, cis-12-conjugated linoleic acid (CLA)-enriched diets promote fatty liver in mice, while cis-9, trans-11-CLA ameliorates this effect, suggesting regulation of multiple genes. To test this hypothesis, apoE-deficient mice were fed a Western-type diet enriched with linoleic acid isomers, and their hepatic gene expression was analyzed with DNA microarrays. To provide an initial screening of candidate genes, only 12 with remarkably modified expression between both CLA isomers were considered and confirmed by quantitative RT-PCR. Additionally mRNA expression of 15 genes involved in lipid metabolism was also studied. Ten genes (Fsp27, Aqp4, Cd36, Ly6d, Scd1, Hsd3b5, Syt1, Cyp7b1, and Tff3) showed significant associations among their expressions and the degree of hepatic steatosis. Their involvement was also analyzed in other models of steatosis. In hyperhomocysteinemic mice lacking Cbs gene, only Fsp27, Cd36, Scd1, Syt1, and Hsd3b5 hepatic expressions were associated with steatosis. In apoE-deficient mice consuming olive-enriched diet displaying reduction of the fatty liver, only Fsp27 and Syt1 expressions were found associated. Using this strategy, we have shown that expression of these genes is highly associated with hepatic steatosis in a genetic disease such as Cbs deficiency and in two common situations such as Western diets containing CLA isomers or a Mediterranean-type diet. Conclusion: The results highlight new processes involved in lipid handling in liver and will help to understand the complex human pathology providing new proteins and new strategies to cope with hepatic steatosis. PMID:19258494

  16. Probabilistic methods of identifying genes in prokaryotic genomes: connections to the HMM theory.

    PubMed

    Azad, Rajeev K; Borodovsky, Mark

    2004-06-01

    In this paper, we review developments in probabilistic methods of gene recognition in prokaryotic genomes with the emphasis on connections to the general theory of hidden Markov models (HMM). We show that the Bayesian method implemented in GeneMark, a frequently used gene-finding tool, can be augmented and reintroduced as a rigorous forward-backward (FB) algorithm for local posterior decoding described in the HMM theory. Another earlier developed method, prokaryotic GeneMark.hmm, uses a modification of the Viterbi algorithm for HMM with duration to identify the most likely global path through hidden functional states given the DNA sequence. GeneMark and GeneMark.hmm programs are worth using in concert for analysing prokaryotic DNA sequences that arguably do not follow any exact mathematical model. The new extension of GeneMark using the FB algorithm was implemented in the software program GeneMark.fba. Given the DNA sequence, this program determines an a posteriori probability for each nucleotide to belong to coding or non-coding region. Also, for any open reading frame (ORF), it assigns a score defined as a probabilistic measure of all paths through hidden states that traverse the ORF as a coding region. The prediction accuracy of GeneMark.fba determined in our tests was compared favourably to the accuracy of the initial (standard) GeneMark program. Comparison to the prokaryotic GeneMark.hmm has also demonstrated a certain, yet species-specific, degree of improvement in raw gene detection, ie detection of correct reading frame (and stop codon). The accuracy of exact gene prediction, which is concerned about precise prediction of gene start (which in a prokaryotic genome unambiguously defines the reading frame and stop codon, thus, the whole protein product), still remains more accurate in GeneMarkS, which uses more elaborate HMM to specifically address this task. PMID:15260893

  17. A Computational Approach to Identifying Gene-microRNA Modules in Cancer

    PubMed Central

    Jin, Daeyong; Lee, Hyunju

    2015-01-01

    MicroRNAs (miRNAs) play key roles in the initiation and progression of various cancers by regulating genes. Regulatory interactions between genes and miRNAs are complex, as multiple miRNAs can regulate multiple genes. In addtion, these interactions vary from patient to patient and even among patients with the same cancer type, as cancer development is a heterogeneous process. These relationships are more complicated because transcription factors and other regulatory molecules can also regulate miRNAs and genes. Hence, it is important to identify the complex relationships between genes and miRNAs in cancer. In this study, we propose a computational approach to constructing modules that represent these relationships by integrating the expression data of genes and miRNAs with gene-gene interaction data. First, we used a biclustering algorithm to construct modules consisting of a subset of genes and a subset of samples to incorporate the heterogeneity of cancer cells. Second, we combined gene-gene interactions to include genes that play important roles in cancer-related pathways. Then, we selected miRNAs that are closely associated with genes in the modules based on a Gaussian Bayesian network and Bayesian Information Criteria. When we applied our approach to ovarian cancer and glioblastoma (GBM) data sets, 33 and 54 modules were constructed, respectively. In these modules, 91% and 94% of ovarian cancer and GBM modules, respectively, were explained either by direct regulation between genes and miRNAs or by indirect relationships via transcription factors. In addition, 48.4% and 74.0% of modules from ovarian cancer and GBM, respectively, were enriched with cancer-related pathways, and 51.7% and 71.7% of miRNAs in modules were ovarian cancer-related miRNAs and GBM-related miRNAs, respectively. Finally, we extensively analyzed significant modules and showed that most genes in these modules were related to ovarian cancer and GBM. PMID:25611546

  18. A computational approach to identifying gene-microRNA modules in cancer.

    PubMed

    Jin, Daeyong; Lee, Hyunju

    2015-01-01

    MicroRNAs (miRNAs) play key roles in the initiation and progression of various cancers by regulating genes. Regulatory interactions between genes and miRNAs are complex, as multiple miRNAs can regulate multiple genes. In addtion, these interactions vary from patient to patient and even among patients with the same cancer type, as cancer development is a heterogeneous process. These relationships are more complicated because transcription factors and other regulatory molecules can also regulate miRNAs and genes. Hence, it is important to identify the complex relationships between genes and miRNAs in cancer. In this study, we propose a computational approach to constructing modules that represent these relationships by integrating the expression data of genes and miRNAs with gene-gene interaction data. First, we used a biclustering algorithm to construct modules consisting of a subset of genes and a subset of samples to incorporate the heterogeneity of cancer cells. Second, we combined gene-gene interactions to include genes that play important roles in cancer-related pathways. Then, we selected miRNAs that are closely associated with genes in the modules based on a Gaussian Bayesian network and Bayesian Information Criteria. When we applied our approach to ovarian cancer and glioblastoma (GBM) data sets, 33 and 54 modules were constructed, respectively. In these modules, 91% and 94% of ovarian cancer and GBM modules, respectively, were explained either by direct regulation between genes and miRNAs or by indirect relationships via transcription factors. In addition, 48.4% and 74.0% of modules from ovarian cancer and GBM, respectively, were enriched with cancer-related pathways, and 51.7% and 71.7% of miRNAs in modules were ovarian cancer-related miRNAs and GBM-related miRNAs, respectively. Finally, we extensively analyzed significant modules and showed that most genes in these modules were related to ovarian cancer and GBM. PMID:25611546

  19. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes

    PubMed Central

    Hirbo, Jibril; Eidem, Haley; Rokas, Antonis; Abbot, Patrick

    2015-01-01

    Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB), a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23–34%) are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB. PMID:26641094

  20. A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    PubMed Central

    Tunstall, Narelle E.; Herr, Anabel; de Bruyne, Marien; Warr, Coral G.

    2012-01-01

    Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms. PMID:22530061

  1. A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription.

    PubMed Central

    Grépin, C; Dagnino, L; Robitaille, L; Haberstroh, L; Antakly, T; Nemer, M

    1994-01-01

    In contrast to skeletal muscle, the mechanisms responsible for activation and maintenance of tissue-specific transcription in cardiac muscle remain poorly understood. A family of hormone-encoding genes is expressed in a highly specific manner in cardiac but not skeletal myocytes. This includes the A- and B-type natriuretic peptide (ANP and BNP) genes, which encode peptide hormones with crucial roles in the regulation of blood volume and pressure. Since these genes are markers of cardiac cells, we have used them to probe the mechanisms for cardiac muscle-specific transcription. Cloning and functional analysis of the rat BNP upstream sequences revealed unexpected structural resemblance to erythroid but not to muscle-specific promoters and enhancers, including a requirement for regulatory elements containing GATA motifs. A cDNA clone corresponding to a member of the GATA family of transcription factors was isolated from a cardiomyocyte cDNA library. Transcription of this GATA gene is restricted mostly to the heart and is undetectable in skeletal muscle. Within the heart, GATA transcripts are localized in ANP- and BNP-expressing myocytes, and forced expression of the GATA protein in heterologous cells markedly activates transcription from the natural cardiac muscle-specific ANP and BNP promoters. This GATA-dependent pathway defines the first mechanism for cardiac muscle-specific transcription. Moreover, the present findings reveal striking similarities between the mechanisms controlling gene expression in hematopoietic and cardiac cells and may have important implications for studies of cardiogenesis. Images PMID:8164667

  2. GTI: A Novel Algorithm for Identifying Outlier Gene Expression Profiles from Integrated Microarray Datasets

    PubMed Central

    Mpindi, John Patrick; Sara, Henri; Haapa-Paananen, Saija; Kilpinen, Sami; Pisto, Tommi; Bucher, Elmar; Ojala, Kalle; Iljin, Kristiina; Vainio, Paula; Björkman, Mari; Gupta, Santosh; Kohonen, Pekka; Nees, Matthias; Kallioniemi, Olli

    2011-01-01

    Background Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type (‘outlier genes’), a hallmark of potential oncogenes. Methodology A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. Conclusions/Significance Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in

  3. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer.

    PubMed

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B; Kim, Jung-Hyun; Ang, J Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P; Andrews, Brenda; Boerkoel, Cornelius F; Hieter, Philip

    2016-09-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1 Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  4. Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development

    PubMed Central

    Hasegawa, Yu; Taylor, Deanne; Ovchinnikov, Dmitry A.; Wolvetang, Ernst J.; de Torrenté, Laurence; Mar, Jessica C.

    2015-01-01

    An analysis of gene expression variability can provide an insightful window into how regulatory control is distributed across the transcriptome. In a single cell analysis, the inter-cellular variability of gene expression measures the consistency of transcript copy numbers observed between cells in the same population. Application of these ideas to the study of early human embryonic development may reveal important insights into the transcriptional programs controlling this process, based on which components are most tightly regulated. Using a published single cell RNA-seq data set of human embryos collected at four-cell, eight-cell, morula and blastocyst stages, we identified genes with the most stable, invariant expression across all four developmental stages. Stably-expressed genes were found to be enriched for those sharing indispensable features, including essentiality, haploinsufficiency, and ubiquitous expression. The stable genes were less likely to be associated with loss-of-function variant genes or human recessive disease genes affected by a DNA copy number variant deletion, suggesting that stable genes have a functional impact on the regulation of some of the basic cellular processes. Genes with low expression variability at early stages of development are involved in regulation of DNA methylation, responses to hypoxia and telomerase activity, whereas by the blastocyst stage, low-variability genes are enriched for metabolic processes as well as telomerase signaling. Based on changes in expression variability, we identified a putative set of gene expression markers of morulae and blastocyst stages. Experimental validation of a blastocyst-expressed variability marker demonstrated that HDDC2 plays a role in the maintenance of pluripotency in human ES and iPS cells. Collectively our analyses identified new regulators involved in human embryonic development that would have otherwise been missed using methods that focus on assessment of the average expression

  5. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders.

    PubMed

    O'Roak, Brian J; Vives, Laura; Fu, Wenqing; Egertson, Jarrett D; Stanaway, Ian B; Phelps, Ian G; Carvill, Gemma; Kumar, Akash; Lee, Choli; Ankenman, Katy; Munson, Jeff; Hiatt, Joseph B; Turner, Emily H; Levy, Roie; O'Day, Diana R; Krumm, Niklas; Coe, Bradley P; Martin, Beth K; Borenstein, Elhanan; Nickerson, Deborah A; Mefford, Heather C; Doherty, Dan; Akey, Joshua M; Bernier, Raphael; Eichler, Evan E; Shendure, Jay

    2012-12-21

    Exome sequencing studies of autism spectrum disorders (ASDs) have identified many de novo mutations but few recurrently disrupted genes. We therefore developed a modified molecular inversion probe method enabling ultra-low-cost candidate gene resequencing in very large cohorts. To demonstrate the power of this approach, we captured and sequenced 44 candidate genes in 2446 ASD probands. We discovered 27 de novo events in 16 genes, 59% of which are predicted to truncate proteins or disrupt splicing. We estimate that recurrent disruptive mutations in six genes-CHD8, DYRK1A, GRIN2B, TBR1, PTEN, and TBL1XR1-may contribute to 1% of sporadic ASDs. Our data support associations between specific genes and reciprocal subphenotypes (CHD8-macrocephaly and DYRK1A-microcephaly) and replicate the importance of a β-catenin-chromatin-remodeling network to ASD etiology. PMID:23160955

  6. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    PubMed Central

    Wang, Baoman; Yuan, Fei; Kong, Xiangyin; Hu, Lan-Dian; Cai, Yu-Dong

    2015-01-01

    Apoptosis is the process of programmed cell death (PCD) that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature. PMID:26543496

  7. Experimental strategies for cloning or identifying genes encoding DNA-binding proteins.

    PubMed

    Carey, Michael F; Peterson, Craig L; Smale, Stephen T

    2012-02-01

    This article describes experimental strategies for cloning or identifying genes encoding DNA-binding proteins. DNA-binding proteins are most commonly identified by electrophoretic mobility-shift assay (EMSA) or DNase I footprinting. To identify the gene encoding a protein detected by EMSA or DNase footprinting, the protein often needs to be purified and its sequence analyzed, as described here. Other methods are also available which do not resort to protein purification, including the one-hybrid screen, in vitro expression library screen, and mammalian expression cloning. These methods are outlined, and their advantages and disadvantages are discussed. PMID:22301659

  8. Functional Genomics Screening Utilizing Mutant Mouse Embryonic Stem Cells Identifies Novel Radiation-Response Genes

    PubMed Central

    Loesch, Kimberly; Galaviz, Stacy; Hamoui, Zaher; Clanton, Ryan; Akabani, Gamal; Deveau, Michael; DeJesus, Michael; Ioerger, Thomas; Sacchettini, James C.; Wallis, Deeann

    2015-01-01

    Elucidating the genetic determinants of radiation response is crucial to optimizing and individualizing radiotherapy for cancer patients. In order to identify genes that are involved in enhanced sensitivity or resistance to radiation, a library of stable mutant murine embryonic stem cells (ESCs), each with a defined mutation, was screened for cell viability and gene expression in response to radiation exposure. We focused on a cancer-relevant subset of over 500 mutant ESC lines. We identified 13 genes; 7 genes that have been previously implicated in radiation response and 6 other genes that have never been implicated in radiation response. After screening, proteomic analysis showed enrichment for genes involved in cellular component disassembly (e.g. Dstn and Pex14) and regulation of growth (e.g. Adnp2, Epc1, and Ing4). Overall, the best targets with the highest potential for sensitizing cancer cells to radiation were Dstn and Map2k6, and the best targets for enhancing resistance to radiation were Iqgap and Vcan. Hence, we provide compelling evidence that screening mutant ESCs is a powerful approach to identify genes that alter radiation response. Ultimately, this knowledge can be used to define genetic variants or therapeutic targets that will enhance clinical therapy. PMID:25853515

  9. Candidate Luminal B Breast Cancer Genes Identified by Genome, Gene Expression and DNA Methylation Profiling

    PubMed Central

    Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype. PMID:24416132

  10. Statistical completion of a partially identified graph with applications for the estimation of gene regulatory networks.

    PubMed

    Yu, Donghyeon; Son, Won; Lim, Johan; Xiao, Guanghua

    2015-10-01

    We study the estimation of a Gaussian graphical model whose dependent structures are partially identified. In a Gaussian graphical model, an off-diagonal zero entry in the concentration matrix (the inverse covariance matrix) implies the conditional independence of two corresponding variables, given all other variables. A number of methods have been proposed to estimate a sparse large-scale Gaussian graphical model or, equivalently, a sparse large-scale concentration matrix. In practice, the graph structure to be estimated is often partially identified by other sources or a pre-screening. In this paper, we propose a simple modification of existing methods to take into account this information in the estimation. We show that the partially identified dependent structure reduces the error in estimating the dependent structure. We apply the proposed method to estimating the gene regulatory network from lung cancer data, where protein-protein interactions are partially identified from the human protein reference database. The application shows that proposed method identified many important cancer genes as hub genes in the constructed lung cancer network. In addition, we validated the prognostic importance of a newly identified cancer gene, PTPN13, in four independent lung cancer datasets. The results indicate that the proposed method could facilitate studying underlying lung cancer mechanisms and identifying reliable biomarkers for lung cancer prognosis. PMID:25837438

  11. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  12. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice

    SciTech Connect

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.; Speed, Terence P.; Rubin, Edward M.

    2000-05-05

    Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared with the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.

  13. Candidate DNA repair susceptibility genes identified by exome sequencing in high-risk pancreatic cancer.

    PubMed

    Smith, Alyssa L; Alirezaie, Najmeh; Connor, Ashton; Chan-Seng-Yue, Michelle; Grant, Robert; Selander, Iris; Bascuñana, Claire; Borgida, Ayelet; Hall, Anita; Whelan, Thomas; Holter, Spring; McPherson, Treasa; Cleary, Sean; Petersen, Gloria M; Omeroglu, Atilla; Saloustros, Emmanouil; McPherson, John; Stein, Lincoln D; Foulkes, William D; Majewski, Jacek; Gallinger, Steven; Zogopoulos, George

    2016-01-28

    The genetic basis underlying the majority of hereditary pancreatic adenocarcinoma (PC) is unknown. Since DNA repair genes are widely implicated in gastrointestinal malignancies, including PC, we hypothesized that there are novel DNA repair PC susceptibility genes. As germline DNA repair gene mutations may lead to PC subtypes with selective therapeutic responses, we also hypothesized that there is an overall survival (OS) difference in mutation carriers versus non-carriers. We therefore interrogated the germline exomes of 109 high-risk PC cases for rare protein-truncating variants (PTVs) in 513 putative DNA repair genes. We identified PTVs in 41 novel genes among 36 kindred. Additional genetic evidence for causality was obtained for 17 genes, with FAN1, NEK1 and RHNO1 emerging as the strongest candidates. An OS difference was observed for carriers versus non-carriers of PTVs with early stage (≤IIB) disease. This adverse survival trend in carriers with early stage disease was also observed in an independent series of 130 PC cases. We identified candidate DNA repair PC susceptibility genes and suggest that carriers of a germline PTV in a DNA repair gene with early stage disease have worse survival. PMID:26546047

  14. Ectopic Activation of Germline and Placental Genes Identifies Aggressive Metastasis-Prone Lung Cancers

    PubMed Central

    Rousseaux, Sophie; Debernardi, Alexandra; Jacquiau, Baptiste; Vitte, Anne-Laure; Vesin, Aurélien; Nagy-Mignotte, Hélène; Moro-Sibilot, Denis; Brichon, Pierre-Yves; Lantuejoul, Sylvie; Hainaut, Pierre; Laffaire, Julien; de Reyniès, Aurélien; Beer, David G.; Timsit, Jean-François; Brambilla, Christian; Brambilla, Elisabeth; Khochbin, Saadi

    2016-01-01

    Activation of normally silent tissue-specific genes and the resulting cell “identity crisis” are the unexplored consequences of malignant epigenetic reprogramming. We designed a strategy for investigating this reprogramming, which consisted of identifying a large number of tissue-restricted genes that are epigenetically silenced in normal somatic cells and then detecting their expression in cancer. This approach led to the demonstration that large-scale “off-context” gene activations systematically occur in a variety of cancer types. In our series of 293 lung tumors, we identified an ectopic gene expression signature associated with a subset of highly aggressive tumors, which predicted poor prognosis independently of the TNM (tumor size, node positivity, and metastasis) stage or histological subtype. The ability to isolate these tumors allowed us to reveal their common molecular features characterized by the acquisition of embryonic stem cell/germ cell gene expression profiles and the down-regulation of immune response genes. The methodical recognition of ectopic gene activations in cancer cells could serve as a basis for gene signature–guided tumor stratification, as well as for the discovery of oncogenic mechanisms, and expand the understanding of the biology of very aggressive tumors. PMID:23698379

  15. Differentially expressed genes identified by cross-species microarray in the blind cavefish Astyanax.

    PubMed

    Strickler, Allen G; Jeffery, William R

    2009-03-01

    Changes in gene expression were examined by microarray analysis during development of the eyed surface dwelling (surface fish) and blind cave-dwelling (cavefish) forms of the teleost Astyanax mexicanus De Filippi, 1853. The cross-species microarray used surface and cavefish RNA hybridized to a DNA chip prepared from a closely related species, the zebrafish Danio rerio Hamilton, 1822. We identified a total of 67 differentially expressed probe sets at three days post-fertilization: six upregulated and 61 downregulated in cavefish relative to surface fish. Many of these genes function either in eye development and/or maintenance, or in programmed cell death. The upregulated probe set showing the highest mean fold change was similar to the human ubiquitin specific protease 53 gene. The downregulated probe sets showing some of the highest fold changes corresponded to genes with roles in eye development, including those encoding gamma crystallins, the guanine nucleotide binding proteins Gnat1 and Gant2, a BarH-like homeodomain transcription factor, and rhodopsin. Downregulation of gamma-crystallin and rhodopsin was confirmed by in situ hybridization and immunostaining with specific antibodies. Additional downregulated genes encode molecules that inhibit or activate programmed cell death. The results suggest that cross-species microarray can be used for identifying differentially expressed genes in cavefish, that many of these genes might be involved in eye degeneration via apoptotic processes, and that more genes are downregulated than upregulated in cavefish, consistent with the predominance of morphological losses over gains during regressive evolution. PMID:21392280

  16. Integrating Epigenomic Elements and GWASs Identifies BDNF Gene Affecting Bone Mineral Density and Osteoporotic Fracture Risk

    PubMed Central

    Guo, Yan; Dong, Shan-Shan; Chen, Xiao-Feng; Jing, Ying-Aisha; Yang, Man; Yan, Han; Shen, Hui; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2016-01-01

    To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined epigenomic elements and previous genome-wide association studies (GWASs) data, followed by validation at population and functional levels, which could identify common regulatory elements and predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes with high priority were further subjected to validation using available GWASs datasets. Three genes were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, which all closely related to bone metabolism. The most significant gene BDNF was also associated with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast differentiation. Our results demonstrated that epigenomic data could be used to indicate common epigenomic marks to discover additional loci with biological functions for osteoporosis. PMID:27465306

  17. Integrating Epigenomic Elements and GWASs Identifies BDNF Gene Affecting Bone Mineral Density and Osteoporotic Fracture Risk.

    PubMed

    Guo, Yan; Dong, Shan-Shan; Chen, Xiao-Feng; Jing, Ying-Aisha; Yang, Man; Yan, Han; Shen, Hui; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2016-01-01

    To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined epigenomic elements and previous genome-wide association studies (GWASs) data, followed by validation at population and functional levels, which could identify common regulatory elements and predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes with high priority were further subjected to validation using available GWASs datasets. Three genes were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, which all closely related to bone metabolism. The most significant gene BDNF was also associated with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast differentiation. Our results demonstrated that epigenomic data could be used to indicate common epigenomic marks to discover additional loci with biological functions for osteoporosis. PMID:27465306

  18. Genomic convergence to identify candidate genes for Parkinson disease: SAGE analysis of the substantia nigra.

    PubMed

    Noureddine, Maher A; Li, Yi-Ju; van der Walt, Joelle M; Walters, Robert; Jewett, Rita M; Xu, Hong; Wang, Tianyuan; Walter, Jeffrey W; Scott, Burton L; Hulette, Christine; Schmechel, Don; Stenger, Judith E; Dietrich, Fred; Vance, Jeffery M; Hauser, Michael A

    2005-10-01

    Genomic convergence is a multistep approach that combines gene expression with genomic linkage to identify and prioritize susceptibility genes for complex disease. As a first step, we previously performed linkage analysis on 174 multiplex Parkinson's disease (PD) families, identifying five peaks for PD risk and two for genes affecting age at onset (AAO) in PD [Hauser et al., Hum Mol Genet 2003;12:671-677]. We report here the next step: serial analysis of gene expression [SAGE; Scott et al., JAMA 2001;286:2239-2242] to analyze substantia nigra tissue from three PD patients and two age-matched controls. We find 933 differentially expressed genes (P<0.05) between PD and controls, but of these, only 50 genes represented by unique SAGE tags map within our previously described PD linkage regions. Furthermore, genes encoded by mitochondrial DNA are expressed 1.5-fold higher in PD patients versus controls, without an increase in the corresponding nuclear-encoded mitochondrial components, suggesting an increase in mtDNA genomes in PD or a disjunction with nuclear expression. The next step in the genomic convergence process will be to screen these 50 high-quality candidate genes for association with PD risk susceptibility and genetic effects on AAO. PMID:15966006

  19. Senescence Mutants of Saccharomyces Cerevisiae with a Defect in Telomere Replication Identify Three Additional Est Genes

    PubMed Central

    Lendvay, T. S.; Morris, D. K.; Sah, J.; Balasubramanian, B.; Lundblad, V.

    1996-01-01

    The primary determinant for telomere replication is the enzyme telomerase, responsible for elongating the G-rich strand of the telomere. The only component of this enzyme that has been identified in Saccharomyces cerevisiae is the TLC1 gene, encoding the telomerase RNA subunit. However, a yeast strain defective for the EST1 gene exhibits the same phenotypes (progressively shorter telomeres and a senescence phenotype) as a strain deleted for TLC1, suggesting that EST1 encodes either a component of telomerase or some other factor essential for telomerase function. We designed a multitiered screen that led to the isolation of 22 mutants that display the same phenotypes as est1 and tlc1 mutant strains. These mutations mapped to four complementation groups: the previously identified EST1 gene and three additional genes, called EST2, EST3 and EST4. Cloning of the EST2 gene demonstrated that it encodes a large, extremely basic novel protein with no motifs that provide clues as to function. Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomerase or factors that positively regulate telomerase activity. PMID:8978029

  20. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  1. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops. PMID:25214014

  2. Four additional mouse crosses improve the lipid QTL landscape and identify Lipg as a QTL gene.

    PubMed

    Su, Zhiguang; Ishimori, Naoki; Chen, Yaoyu; Leiter, Edward H; Churchill, Gary A; Paigen, Beverly; Stylianou, Ioannis M

    2009-10-01

    To identify genes controlling plasma HDL and triglyceride levels, quantitative trait locus (QTL) analysis was performed in one backcross, (NZO/H1Lt x NON/LtJ) x NON/LtJ, and three intercrosses, C57BL/6J x DBA/2J, C57BL/6J x C3H/HeJ, and NZB/B1NJ x NZW/LacJ. HDL concentrations were affected by 25 QTL distributed on most chromosomes (Chrs); those on Chrs 1, 8, 12, and 16 were newly identified, and the remainder were replications of previously identified QTL. Triglyceride concentrations were controlled by nine loci; those on Chrs 1, 2, 3, 7, 16, and 18 were newly identified QTL, and the remainder were replications. Combining mouse crosses with haplotype analysis for the HDL QTL on Chr 18 reduced the list of candidates to six genes. Further expression analysis, sequencing, and quantitative complementation testing of these six genes identified Lipg as the HDL QTL gene on distal Chr 18. The data from these crosses further increase the ability to perform haplotype analyses that can lead to the identification of causal lipid genes. PMID:19436067

  3. Transcriptional Profile Analysis of RPGRORF15 Frameshift Mutation Identifies Novel Genes Associated with Retinal Degeneration

    PubMed Central

    Genini, Sem; Zangerl, Barbara; Slavik, Julianna; Acland, Gregory M.; Beltran, William A.

    2010-01-01

    Purpose. To identify genes and molecular mechanisms associated with photoreceptor degeneration in a canine model of XLRP caused by an RPGR exon ORF15 microdeletion. Methods. Expression profiles of mutant and normal retinas were compared by using canine retinal custom cDNA microarrays. qRT-PCR, Western blot analysis, and immunohistochemistry (IHC) were applied to selected genes, to confirm and expand the microarray results. Results. At 7 and 16 weeks, respectively, 56 and 18 transcripts were downregulated in the mutant retinas, but none were differentially expressed (DE) at both ages, suggesting the involvement of temporally distinct pathways. Downregulated genes included the known retina-relevant genes PAX6, CHML, and RDH11 at 7 weeks and CRX and SAG at 16 weeks. Genes directly or indirectly active in apoptotic processes were altered at 7 weeks (CAMK2G, NTRK2, PRKCB, RALA, RBBP6, RNF41, SMYD3, SPP1, and TUBB2C) and 16 weeks (SLC25A5 and NKAP). Furthermore, the DE genes at 7 weeks (ELOVL6, GLOD4, NDUFS4, and REEP1) and 16 weeks (SLC25A5 and TARS2) are related to mitochondrial functions. qRT-PCR of 18 genes confirmed the microarray results and showed DE of additional genes not on the array. Only GFAP was DE at 3 weeks of age. Western blot and IHC analyses also confirmed the high reliability of the transcriptomic data. Conclusions. Several DE genes were identified in mutant retinas. At 7 weeks, a combination of nonclassic anti- and proapoptosis genes appear to be involved in photoreceptor degeneration, whereas at both 7 and 16 weeks, the expression of mitochondria-related genes indicates that they may play a relevant role in the disease process. PMID:20574030

  4. De Novo Transcriptome Sequencing of Oryza officinalis Wall ex Watt to Identify Disease-Resistance Genes

    PubMed Central

    He, Bin; Gu, Yinghong; Tao, Xiang; Cheng, Xiaojie; Wei, Changhe; Fu, Jian; Cheng, Zaiquan; Zhang, Yizheng

    2015-01-01

    Oryza officinalis Wall ex Watt is one of the most important wild relatives of cultivated rice and exhibits high resistance to many diseases. It has been used as a source of genes for introgression into cultivated rice. However, there are limited genomic resources and little genetic information publicly reported for this species. To better understand the pathways and factors involved in disease resistance and accelerating the process of rice breeding, we carried out a de novo transcriptome sequencing of O. officinalis. In this research, 137,229 contigs were obtained ranging from 200 to 19,214 bp with an N50 of 2331 bp through de novo assembly of leaves, stems and roots in O. officinalis using an Illumina HiSeq 2000 platform. Based on sequence similarity searches against a non-redundant protein database, a total of 88,249 contigs were annotated with gene descriptions and 75,589 transcripts were further assigned to GO terms. Candidate genes for plant–pathogen interaction and plant hormones regulation pathways involved in disease-resistance were identified. Further analyses of gene expression profiles showed that the majority of genes related to disease resistance were all expressed in the three tissues. In addition, there are two kinds of rice bacterial blight-resistant genes in O. officinalis, including two Xa1 genes and three Xa26 genes. All 2 Xa1 genes showed the highest expression level in stem, whereas one of Xa26 was expressed dominantly in leaf and other 2 Xa26 genes displayed low expression level in all three tissues. This transcriptomic database provides an opportunity for identifying the genes involved in disease-resistance and will provide a basis for studying functional genomics of O. officinalis and genetic improvement of cultivated rice in the future. PMID:26690414

  5. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes

    PubMed Central

    Brommage, Robert; Liu, Jeff; Hansen, Gwenn M; Kirkpatrick, Laura L; Potter, David G; Sands, Arthur T; Zambrowicz, Brian; Powell, David R; Vogel, Peter

    2014-01-01

    Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets. PMID:26273529

  6. Systematically identify key genes in inflammatory and non-inflammatory breast cancer.

    PubMed

    Chai, Fan; Liang, Yan; Zhang, Fan; Wang, Minghao; Zhong, Ling; Jiang, Jun

    2016-01-10

    Although the gene expression in breast tumor stroma, playing a critical role in determining inflammatory breast cancer (IBC) phenotype, has been proved to be significantly different between IBC and non-inflammatory breast cancer (non-IBC), more effort needs to systematically investigate the gene expression profiles between tumor epithelium and stroma and to efficiently uncover the potential molecular networks and critical genes for IBC and non-IBC. Here, we comprehensively analyzed and compared the transcriptional profiles from IBC and non-IBC patients using hierarchical clustering, protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, and identified PDGFRβ, SUMO1, COL1A1, FYN, CAV1, COL5A1 and MMP2 to be the key genes for breast cancer. Interestingly, PDGFRβ was found to be the hub gene in both IBC and non-IBC; SUMO1 and COL1A1 were respectively the key genes for IBC and non-IBC. These analysis results indicated that those key genes might play important role in IBC and non-IBC and provided some clues for future studies. PMID:26403314

  7. Identifying the most suitable endogenous control for determining gene expression in hearts from organ donors

    PubMed Central

    Pérez, Silvia; Royo, Luis J; Astudillo, Aurora; Escudero, Dolores; Álvarez, Francisco; Rodríguez, Aida; Gómez, Enrique; Otero, Jesús

    2007-01-01

    Background Quantitative real-time reverse transcription PCR (qRT-PCR) is a useful tool for assessing gene expression in different tissues, but the choice of adequate controls is critical to normalise the results, thereby avoiding differences and maximizing sensitivity and accuracy. So far, many genes have been used as a single reference gene, without having previously verified their value as controls. This practice can lead to incorrect conclusions and recent evidence indicates a need to use the geometric mean of data from several control genes. Here, we identified an appropriate set of genes to be used as an endogenous reference for quantifying gene expression in human heart tissue. Results Our findings indicate that out of ten commonly used reference genes (GADPH, PPIA, ACTB, YWHAZ, RRN18S, B2M, UBC, TBP, RPLP and HPRT), PPIA, RPLP and GADPH show the most stable gene transcription levels in left ventricle specimens obtained from organ donors, as assessed using geNorm and Normfinder software. The expression of TBP was found to be highly regulated. Conclusion We propose the use of PPIA, RPLP and GADPH as reference genes for the accurate normalisation of qRT-PCR performed on heart tissue. TBP should not be used as a control in this type of tissue. PMID:18096027

  8. Cluster Analysis of Tumor Suppressor Genes in Canine Leukocytes Identifies Activation State

    PubMed Central

    Daly, Julie-Anne; Mortlock, Sally-Anne; Taylor, Rosanne M.; Williamson, Peter

    2015-01-01

    Cells of the immune system undergo activation and subsequent proliferation in the normal course of an immune response. Infrequently, the molecular and cellular events that underlie the mechanisms of proliferation are dysregulated and may lead to oncogenesis, leading to tumor formation. The most common forms of immunological cancers are lymphomas, which in dogs account for 8%–20% of all cancers, affecting up to 1.2% of the dog population. Key genes involved in negatively regulating proliferation of lymphocytes include a group classified as tumor suppressor genes (TSGs). These genes are also known to be associated with progression of lymphoma in humans, mice, and dogs and are potential candidates for pathological grading and diagnosis. The aim of the present study was to analyze TSG profiles in stimulated leukocytes from dogs to identify genes that discriminate an activated phenotype. A total of 554 TSGs and three gene set collections were analyzed from microarray data. Cluster analysis of three subsets of genes discriminated between stimulated and unstimulated cells. These included 20 most upregulated and downregulated TSGs, TSG in hallmark gene sets significantly enriched in active cells, and a selection of candidate TSGs, p15 (CDKN2B), p18 (CDKN2C), p19 (CDKN1A), p21 (CDKN2A), p27 (CDKN1B), and p53 (TP53) in the third set. Analysis of two subsets suggested that these genes or a subset of these genes may be used as a specialized PCR set for additional analysis. PMID:27478369

  9. Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases

    PubMed Central

    2012-01-01

    Background The molecular behavior of biological systems can be described in terms of three fundamental components: (i) the physical entities, (ii) the interactions among these entities, and (iii) the dynamics of these entities and interactions. The mechanisms that drive complex disease can be productively viewed in the context of the perturbations of these components. One challenge in this regard is to identify the pathways altered in specific diseases. To address this challenge, Gene Set Enrichment Analysis (GSEA) and others have been developed, which focus on alterations of individual properties of the entities (such as gene expression). However, the dynamics of the interactions with respect to disease have been less well studied (i.e., properties of components ii and iii). Results Here, we present a novel method called Gene Interaction Enrichment and Network Analysis (GIENA) to identify dysregulated gene interactions, i.e., pairs of genes whose relationships differ between disease and control. Four functions are defined to model the biologically relevant gene interactions of cooperation (sum of mRNA expression), competition (difference between mRNA expression), redundancy (maximum of expression), or dependency (minimum of expression) among the expression levels. The proposed framework identifies dysregulated interactions and pathways enriched in dysregulated interactions; points out interactions that are perturbed across pathways; and moreover, based on the biological annotation of each type of dysregulated interaction gives clues about the regulatory logic governing the systems level perturbation. We demonstrated the potential of GIENA using published datasets related to cancer. Conclusions We showed that GIENA identifies dysregulated pathways that are missed by traditional enrichment methods based on the individual gene properties and that use of traditional methods combined with GIENA provides coverage of the largest number of relevant pathways. In addition

  10. A gene expression biomarker identifies in vitro and in vivo ERα modulators in a human gene expression compendium

    EPA Science Inventory

    We propose the use of gene expression profiling to complement the chemical characterization currently based on HTS assay data and present a case study relevant to the Endocrine Disruptor Screening Program. We have developed computational methods to identify estrogen receptor &alp...

  11. Identifying Functional Gene Regulatory Network Phenotypes Underlying Single Cell Transcriptional Variability

    PubMed Central

    Park, James; Ogunnaike, Babatunde; Schwaber, James; Vadigepalli, Rajanikanth

    2014-01-01

    Summary/abstract Recent analysis of single-cell transcriptomic data has revealed a surprising organization of the transcriptional variability pervasive across individual neurons. In response to distinct combinations of synaptic input-type, a new organization of neuronal subtypes emerged based on transcriptional states that were aligned along a gradient of correlated gene expression. Individual neurons traverse across these transcriptional states in response to cellular inputs. However, the regulatory network interactions driving these changes remain unclear. Here we present a novel fuzzy logic-based approach to infer quantitative gene regulatory network models from highly variable single-cell gene expression data. Our approach involves developing an a priori regulatory network that is then trained against in vivo single-cell gene expression data in order to identify causal gene interactions and corresponding quantitative model parameters. Simulations of the inferred gene regulatory network response to experimentally observed stimuli levels mirrored the pattern and quantitative range of gene expression across individual neurons remarkably well. In addition, the network identification results revealed that distinct regulatory interactions, coupled with differences in the regulatory network stimuli, drive the variable gene expression patterns observed across the neuronal subtypes. We also identified a key difference between the neuronal subtype-specific networks with respect to negative feedback regulation, with the catecholaminergic subtype network lacking such interactions. Furthermore, by varying regulatory network stimuli over a wide range, we identified several cases in which divergent neuronal subtypes could be driven towards similar transcriptional states by distinct stimuli operating on subtype-specific regulatory networks. Based on these results, we conclude that heterogeneous single-cell gene expression profiles should be interpreted through a regulatory

  12. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels.

    PubMed

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65-75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395

  13. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels

    PubMed Central

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395

  14. Integrated analysis of differential gene expression profiles in hippocampi to identify candidate genes involved in Alzheimer's disease

    PubMed Central

    HU, WANHUA; LIN, XIAODONG; CHEN, KELONG

    2015-01-01

    Alzheimer's disease (AD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. Identifying altered neuronal gene expression in AD may provide diagnostic or therapeutic targets for AD. The present study aimed to identify differentially expressed genes (DEGs) and their further association with other biological processes that regulate causative factors for AD. The present study performed an integrated analysis of publicly available gene expression omnibus datasets of AD hippocampi. Gene ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Protein-Protein interaction (PPI) network analysis were performed. The present study detected 295 DEGs (109 upregulated and 186 downregulated genes) in hippocampi between AD and control samples by integrating four datasets of gene expression profiles of hippocampi of patients with AD. Respiratory electron transport chain (GO: 0022904; P=1.64×10−11) was the most significantly enriched GO term among biological processes, while for molecular functions, the most significantly enriched GO term was that of protein binding (GO: 0005515; P=3.03×10−29), and for cellular components, the most significantly enriched GO term was that of the cytoplasm (GO: 0005737; P=8.67×10−33). The most significant pathway in the KEGG analysis was oxidative phosphorylation (P=1.61×10−13). PPI network analysis showed that the significant hub proteins contained β-actin (degree, 268), hepatoma-derived growth factor (degree, 218) and WD repeat-containing protein 82 (degree, 87). The integrated analysis performed in the present study serves as a basis for identifying novel drug targets to develop improved therapies and interventions for common and devastating neurological diseases such as AD. PMID:26324066

  15. AKAP2 identified as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis

    PubMed Central

    Li, Wei; Li, YaWei; Zhang, Lusi; Guo, Hui; Tian, Di; Li, Ying; Peng, Yu; Zheng, Yu; Dai, Yuliang; Xia, Kun; Lan, Xinqiang; Wang, Bing; Hu, Zhengmao

    2016-01-01

    Background Adolescent idiopathic scoliosis exhibits high heritability and is one of the most common spinal deformities found in adolescent populations. However, little is known about the disease-causing genes in families with adolescent idiopathic scoliosis exhibiting Mendelian inheritance. Objective The aim of this study was to identify the causative gene in a family with adolescent idiopathic scoliosis. Methods Whole-exome sequencing was performed on this family to identify the candidate gene. Sanger sequencing was conducted to validate the candidate mutations and familial segregation. Real-time QPCR was used to measure the expression level of the possible causative gene. Results We identified the mutation c.2645A>C (p.E882A) within the AKAP2 gene, which cosegregated with the adolescent idiopathic scoliosis phenotypes. AKAP2 is located in a previously reported linkage locus (IS4) on chromosome 9q31.2–q34.2 and has been implicated in skeletal development. The mutation was absent in dbSNP144, ESP6500 and 503 ethnicity-matched controls. Real-time QPCR revealed that the mRNA expression level in the patients was increased significantly compared with the family controls (p<0.0001). Conclusions AKAP2 was therefore implicated as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis. Further studies should be conducted to validate the results from the perspective of both the genetics and pathogenesis of this disease. PMID:26989089

  16. Functional genomics identifies neural stem cell sub-type expression profiles and genes regulating neuroblast homeostasis

    PubMed Central

    Carney, Travis D.; Miller, Michael R.; Robinson, Kristin J.; Bayraktar, Omer A.; Osterhout, Jessica A.; Doe, Chris Q.

    2014-01-01

    The Drosophila larval central brain contains about 10,000 differentiated neurons and 200 scattered neural progenitors (neuroblasts), which can be further subdivided into ~95 type I neuroblasts and eight type II neuroblasts per brain lobe. Only type II neuroblasts generate self-renewing intermediate neural progenitors (INPs), and consequently each contributes more neurons to the brain, including much of the central complex. We characterized six different mutant genotypes that lead to expansion of neuroblast numbers; some preferentially expand type II or type I neuroblasts. Transcriptional profiling of larval brains from these mutant genotypes versus wild-type allowed us to identify small clusters of transcripts enriched in type II or type I neuroblasts, and we validated these clusters by gene expression analysis. Unexpectedly, only a few genes were found to be differentially expressed between type I/II neuroblasts, suggesting that these genes play a large role in establishing the different cell types. We also identified a large group of genes predicted to be expressed in all neuroblasts but not neurons. We performed a neuroblast-specific, RNAi-based functional screen and identified 84 genes that are required to maintain proper neuroblast numbers; all have conserved mammalian orthologs. These genes are excellent candidates for regulating neural progenitor self-renewal in Drosophila and mammals. PMID:22061480

  17. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis.

    PubMed

    March, H Nikki; Rust, Alistair G; Wright, Nicholas A; ten Hoeve, Jelle; de Ridder, Jeroen; Eldridge, Matthew; van der Weyden, Louise; Berns, Anton; Gadiot, Jules; Uren, Anthony; Kemp, Richard; Arends, Mark J; Wessels, Lodewyk F A; Winton, Douglas J; Adams, David J

    2011-12-01

    The evolution of colorectal cancer suggests the involvement of many genes. To identify new drivers of intestinal cancer, we performed insertional mutagenesis using the Sleeping Beauty transposon system in mice carrying germline or somatic Apc mutations. By analyzing common insertion sites (CISs) isolated from 446 tumors, we identified many hundreds of candidate cancer drivers. Comparison to human data sets suggested that 234 CIS-targeted genes are also dysregulated in human colorectal cancers. In addition, we found 183 CIS-containing genes that are candidate Wnt targets and showed that 20 CISs-containing genes are newly discovered modifiers of canonical Wnt signaling. We also identified mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included those encoding members of the FGF signaling cascade. Some 70 genes had co-occurrence of CIS pairs, clustering into 38 sub-networks that may regulate tumor development. PMID:22057237

  18. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney

    PubMed Central

    Westland, Rik; Verbitsky, Miguel; Vukojevic, Katarina; Perry, Brittany J.; Fasel, David A.; Zwijnenburg, Petra J.G.; Bökenkamp, Arend; Gille, Johan J.P.; Saraga-Babic, Mirna; Ghiggeri, Gian Marco; D’Agati, Vivette D.; Schreuder, Michiel F.; Gharavi, Ali G.; van Wijk, Joanna A.E.; Sanna-Cherchi, Simone

    2016-01-01

    Copy number variations associate with different developmental phenotypes and represent a major cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic copy number variations are often large and contain multiple genes, identification of the underlying genetic drivers has proven to be difficult. Here we studied the role of rare copy number variations in 80 patients from the KIMONO-study cohort for which pathogenic mutations in three genes commonly implicated in CAKUT were excluded. In total, 13 known or novel genomic imbalances in 11 of 80 patients were absent or extremely rare in 23,362 population controls. To identify the most likely genetic drivers for the CAKUT phenotype underlying these rare copy number variations, we used a systematic in silico approach based on frequency in a large dataset of controls, annotation with publicly available databases for developmental diseases, tolerance and haploinsufficiency scores, and gene expression profile in the developing kidney and urinary tract. Five novel candidate genes for CAKUT were identified that showed specific expression in the human and mouse developing urinary tract. Among these genes, DLG1 and KIF12 are likely novel susceptibility genes for CAKUT in humans. Thus, there is a significant role of genomic imbalance in the determination of kidney developmental phenotypes. Additionally, we defined a systematic strategy to identify genetic drivers underlying rare copy number variations. PMID:26352300

  19. A Genome-Wide Regulatory Framework Identifies Maize Pericarp Color1 Controlled Genes[C][W

    PubMed Central

    Morohashi, Kengo; Casas, María Isabel; Ferreyra, Lorena Falcone; Mejía-Guerra, María Katherine; Pourcel, Lucille; Yilmaz, Alper; Feller, Antje; Carvalho, Bruna; Emiliani, Julia; Rodriguez, Eduardo; Pellegrinet, Silvina; McMullen, Michael; Casati, Paula; Grotewold, Erich

    2012-01-01

    Pericarp Color1 (P1) encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize (Zea mays) silks and red phlobaphene pigments in pericarps and other floral tissues, which makes P1 an important visual marker. Using genome-wide expression analyses (RNA sequencing) in pericarps and silks of plants with contrasting P1 alleles combined with chromatin immunoprecipitation coupled with high-throughput sequencing, we show here that the regulatory functions of P1 are much broader than the activation of genes corresponding to enzymes in a branch of flavonoid biosynthesis. P1 modulates the expression of several thousand genes, and ∼1500 of them were identified as putative direct targets of P1. Among them, we identified F2H1, corresponding to a P450 enzyme that converts naringenin into 2-hydroxynaringenin, a key branch point in the P1-controlled pathway and the first step in the formation of insecticidal C-glycosyl flavones. Unexpectedly, the binding of P1 to gene regulatory regions can result in both gene activation and repression. Our results indicate that P1 is the major regulator for a set of genes involved in flavonoid biosynthesis and a minor modulator of the expression of a much larger gene set that includes genes involved in primary metabolism and production of other specialized compounds. PMID:22822204

  20. Comparison of inherently essential genes of Porphyromonas gingivalis identified in two transposon-sequencing libraries.

    PubMed

    Hutcherson, J A; Gogeneni, H; Yoder-Himes, D; Hendrickson, E L; Hackett, M; Whiteley, M; Lamont, R J; Scott, D A

    2016-08-01

    Porphyromonas gingivalis is a Gram-negative anaerobe and keystone periodontal pathogen. A mariner transposon insertion mutant library has recently been used to define 463 genes as putatively essential for the in vitro growth of P. gingivalis ATCC 33277 in planktonic culture (Library 1). We have independently generated a transposon insertion mutant library (Library 2) for the same P. gingivalis strain and herein compare genes that are putatively essential for in vitro growth in complex media, as defined by both libraries. In all, 281 genes (61%) identified by Library 1 were common to Library 2. Many of these common genes are involved in fundamentally important metabolic pathways, notably pyrimidine cycling as well as lipopolysaccharide, peptidoglycan, pantothenate and coenzyme A biosynthesis, and nicotinate and nicotinamide metabolism. Also in common are genes encoding heat-shock protein homologues, sigma factors, enzymes with proteolytic activity, and the majority of sec-related protein export genes. In addition to facilitating a better understanding of critical physiological processes, transposon-sequencing technology has the potential to identify novel strategies for the control of P. gingivalis infections. Those genes defined as essential by two independently generated TnSeq mutant libraries are likely to represent particularly attractive therapeutic targets. PMID:26358096

  1. Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network

    PubMed Central

    Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin

    2016-01-01

    Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer. PMID:27149165

  2. Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network.

    PubMed

    Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin

    2016-01-01

    Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer. PMID:27149165

  3. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    PubMed Central

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence. PMID:27597847

  4. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS.

    PubMed

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence. PMID:27597847

  5. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    PubMed Central

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  6. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer.

    PubMed

    Halabi, Najeeb M; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A; Malek, Joel A; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  7. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis

    PubMed Central

    Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A

    2016-01-01

    Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939

  8. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis.

    PubMed

    Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A

    2015-06-01

    Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939

  9. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    PubMed

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species. PMID:26973682

  10. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture

    PubMed Central

    González-Plaza, Juan J.; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F.; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R.; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R.

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species. PMID:26973682

  11. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication

    PubMed Central

    Vigouroux, Y.; McMullen, M.; Hittinger, C. T.; Houchins, K.; Schulz, L.; Kresovich, S.; Matsuoka, Y.; Doebley, J.

    2002-01-01

    Crop species experienced strong selective pressure directed at genes controlling traits of agronomic importance during their domestication and subsequent episodes of selective breeding. Consequently, these genes are expected to exhibit the signature of selection. We screened 501 maize genes for the signature of selection using microsatellites or simple sequence repeats (SSRs). We applied the Ewens–Watterson test, which can reveal deviations from a neutral-equilibrium model, as well as two nonequilibrium tests that incorporate the domestication bottleneck. We investigated two classes of SSRs: those known to be polymorphic in maize (Class I) and those previously classified as monomorphic in maize (Class II). Fifteen SSRs exhibited some evidence for selection in maize and 10 showed evidence under stringent criteria. The genes containing nonneutral SSRs are candidates for agronomically important genes. Because demographic factors can bias our tests, further independent tests of these candidates are necessary. We applied such an additional test to one candidate, which encodes a MADS box transcriptional regulator, and confirmed that this gene experienced a selective sweep during maize domestication. Genomic scans for the signature of selection offer a means of identifying new genes of agronomic importance even when gene function and the phenotype of interest are unknown. PMID:12105270

  12. Computational Characterization of Osteoporosis Associated SNPs and Genes Identified by Genome-Wide Association Studies

    PubMed Central

    Wang, Ya; Wu, Guiju; Chen, Jie; Ye, Weiyuan; Yang, Jiancai; Huang, Qingyang

    2016-01-01

    Objectives Genome-wide association studies (GWASs) have revealed many SNPs and genes associated with osteoporosis. However, influence of these SNPs and genes on the predisposition to osteoporosis is not fully understood. We aimed to identify osteoporosis GWASs-associated SNPs potentially influencing the binding affinity of transcription factors and miRNAs, and reveal enrichment signaling pathway and “hub” genes of osteoporosis GWAS-associated genes. Methods We conducted multiple computational analyses to explore function and mechanisms of osteoporosis GWAS-associated SNPs and genes, including SNP conservation analysis and functional annotation (influence of SNPs on transcription factors and miRNA binding), gene ontology analysis, pathway analysis and protein-protein interaction analysis. Results Our results suggested that a number of SNPs potentially influence the binding affinity of transcription factors (NFATC2, MEF2C, SOX9, RUNX2, ESR2, FOXA1 and STAT3) and miRNAs. Osteoporosis GWASs-associated genes showed enrichment of Wnt signaling pathway, basal cell carcinoma and Hedgehog signaling pathway. Highly interconnected “hub” genes revealed by interaction network analysis are RUNX2, SP7, TNFRSF11B, LRP5, DKK1, ESR1 and SOST. Conclusions Our results provided the targets for further experimental assessment and further insight on osteoporosis pathophysiology. PMID:26930606

  13. Transcriptome analysis identifies genes with enriched expression in the mouse central Extended Amygdala

    PubMed Central

    Becker, Jérôme A. J.; Befort, Katia; Blad, Clara; Filliol, Dominique; Ghate, Aditee; Dembele, Doulaye; Thibault, Christelle; Koch, Muriel; Muller, Jean; Lardenois, Aurélie; Poch, Olivier; Kieffer, Brigitte L.

    2008-01-01

    The central Extended Amygdala (EAc) is an ensemble of highly interconnected limbic structures of the anterior brain, and forms a cellular continuum including the Bed Nucleus of the Stria Terminalis (BNST), the central nucleus of the Amygdala (CeA) and the Nucleus Accumbens shell (AcbSh). This neural network is a key site for interactions between brain reward and stress systems, and has been implicated in several aspects of drug abuse. In order to increase our understanding of EAc function at the molecular level, we undertook a genome-wide screen (Affymetrix) to identify genes whose expression is enriched in the EAc. We focused on the less-well known BNST-CeA areas of the EAc, and identified 121 genes that exhibit more than 2-fold higher expression level in the EAc compared to whole brain. Among these, forty-three genes have never been described to be expressed in the EAc. We mapped these genes throughout the brain, using non-radioactive in situ hybridization, and identified eight genes with a unique and distinct rostro-caudal expression pattern along AcbSh, BNST and CeA. Q-PCR analysis performed in brain and peripheral organ tissues indicated that, with the exception of one (Spata13), all these genes are predominantly expressed in brain. These genes encode signaling proteins (Adora2, GPR88, Arpp21 and Rem2), a transcription factor (Limh6) or proteins of unknown function (Rik130, Spata13 and Wfs1). The identification of genes with enriched expression expands our knowledge of EAc at a molecular level, and provides useful information to towards genetic manipulations within the EAc. PMID:18786617

  14. Extragenic Suppressors of Saccharomyces Cerevisiae Prp4 Mutations Identify a Negative Regulator of Prp Genes

    PubMed Central

    Maddock, J. R.; Weidenhammer, E. M.; Adams, C. C.; Lunz, R. L.; Woolford-Jr., J. L.

    1994-01-01

    The PRP4 gene encodes a protein that is a component of the U4/U6 small nuclear ribonucleoprotein particle and is necessary for both spliceosome assembly and pre-mRNA splicing. To identify genes whose products interact with the PRP4 gene or gene product, we isolated second-site suppressors of temperature-sensitive prp4 mutations. We limited ourselves to suppressors with a distinct phenotype, cold sensitivity, to facilitate analysis of mutants. Ten independent recessive suppressors were obtained that identified four complementation groups, spp41, spp42, spp43 and spp44 (suppressor of prp4, numbers 1-4). spp41-spp44 suppress the pre-mRNA splicing defect as well as the temperature-sensitive phenotype of prp4 strains. Each of these spp mutations also suppresses prp3; spp41 and spp42 suppress prp11 as well. Neither spp41 nor spp42 suppresses null alleles of prp3 or prp4, indicating that the suppression does not occur via a bypass mechanism. The spp41 and spp42 mutations are neither allele- nor gene-specific in their pattern of suppression and do not result in a defect in pre-mRNA splicing. Thus the SPP41 and SPP42 gene products are unlikely to participate directly in mRNA splicing or interact directly with Prp3p or Prp4p. Expression of PRP3-lacZ and PRP4-lacZ gene fusions is increased in spp41 strains, suggesting that wild-type Spp41p represses expression of PRP3 and PRP4. SPP41 was cloned and sequenced and found to be essential. spp43 is allelic to the previously identified suppressor srn1, which encodes a negative regulator of gene expression. PMID:8005438

  15. Identifying aging-related genes in mouse hippocampus using gateway nodes

    PubMed Central

    2014-01-01

    Background High-throughput studies continue to produce volumes of metadata representing valuable sources of information to better guide biological research. With a stronger focus on data generation, analysis models that can readily identify actual signals have not received the same level of attention. This is due in part to high levels of noise and data heterogeneity, along with a lack of sophisticated algorithms for mining useful information. Networks have emerged as a powerful tool for modeling high-throughput data because they are capable of representing not only individual biological elements but also different types of relationships en masse. Moreover, well-established graph theoretic methodology can be applied to network models to increase efficiency and speed of analysis. In this project, we propose a network model that examines temporal data from mouse hippocampus at the transcriptional level via correlation of gene expression. Using this model, we formally define the concept of “gateway” nodes, loosely defined as nodes representing genes co-expressed in multiple states. We show that the proposed network model allows us to identify target genes implicated in hippocampal aging-related processes. Results By mining gateway genes related to hippocampal aging from networks made from gene expression in young and middle-aged mice, we provide a proof-of-concept of existence and importance of gateway nodes. Additionally, these results highlight how network analysis can act as a supplement to traditional statistical analysis of differentially expressed genes. Finally, we use the gateway nodes identified by our method as well as functional databases and literature to propose new targets for study of aging in the mouse hippocampus. Conclusions This research highlights the need for methods of temporal comparison using network models and provides a systems biology approach to extract information from correlation networks of gene expression. Our results identify a

  16. Hippocampal Gene Expression Meta-Analysis Identifies Aging and Age-Associated Spatial Learning Impairment (ASLI) Genes and Pathways

    PubMed Central

    Uddin, Raihan K.; Singh, Shiva M.

    2013-01-01

    A number of gene expression microarray studies have been carried out in the past, which studied aging and age-associated spatial learning impairment (ASLI) in the hippocampus in animal models, with varying results. Data from such studies were never integrated to identify the most significant ASLI genes and to understand their effect. In this study we integrated these data involving rats using meta-analysis. Our results show that proper removal of batch effects from microarray data generated from different laboratories is necessary before integrating them for meta-analysis. Our meta-analysis has identified a number of significant differentially expressed genes across age or across ASLI. These genes affect many key functions in the aged compared to the young rats, which include viability of neurons, cell-to-cell signalling and interaction, migration of cells, neuronal growth, and synaptic plasticity. These functional changes due to the altered gene expression may manifest into various neurodegenerative diseases and disorders, some of which leading into syndromic memory impairments. While other aging related molecular changes can result into altered synaptic plasticity simply causing normal aging related non-syndromic learning or spatial learning impairments such as ASLI. PMID:23874995

  17. Yeast-based assay identifies novel Shh/Gli target genes in vertebrate development

    PubMed Central

    2012-01-01

    Background The increasing number of developmental events and molecular mechanisms associated with the Hedgehog (Hh) pathway from Drosophila to vertebrates, suggest that gene regulation is crucial for diverse cellular responses, including target genes not yet described. Although several high-throughput, genome-wide approaches have yielded information at the genomic, transcriptional and proteomic levels, the specificity of Gli binding sites related to direct target gene activation still remain elusive. This study aims to identify novel putative targets of Gli transcription factors through a protein-DNA binding assay using yeast, and validating a subset of targets both in-vitro and in-vivo. Testing in different Hh/Gli gain- and loss-of-function scenarios we here identified known (e.g., ptc1) and novel Hh-regulated genes in zebrafish embryos. Results The combined yeast-based screening and MEME/MAST analysis were able to predict Gli transcription factor binding sites, and position mapping of these sequences upstream or in the first intron of promoters served to identify new putative target genes of Gli regulation. These candidates were validated by qPCR in combination with either the pharmacological Hh/Gli antagonist cyc or the agonist pur in Hh-responsive C3H10T1/2 cells. We also used small-hairpin RNAs against Gli proteins to evaluate targets and confirm specific Gli regulation their expression. Taking advantage of mutants that have been identified affecting different components of the Hh/Gli signaling system in the zebrafish model, we further analyzed specific novel candidates. Studying Hh function with pharmacological inhibition or activation complemented these genetic loss-of-function approaches. We provide evidence that in zebrafish embryos, Hh signaling regulates sfrp2, neo1, and c-myc expression in-vivo. Conclusion A recently described yeast-based screening allowed us to identify new Hh/Gli target genes, functionally important in different contexts of vertebrate

  18. Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth.

    PubMed

    Connor, Erin E; Baldwin, Ransom L; Li, Cong-jun; Li, Robert W; Chung, Hoyoung

    2013-03-01

    During weaning, epithelial cell function in the rumen transitions in response to conversion from a pre-ruminant to a true ruminant environment to ensure efficient nutrient absorption and metabolism. To identify gene networks affected by weaning in bovine rumen, Holstein bull calves were fed commercial milk replacer only (MRO) until 42 days of age, then were provided diets of either milk + orchardgrass hay (MH) or milk + grain-based calf starter (MG). Rumen epithelial RNA was extracted from calves sacrificed at four time points: day 14 (n = 3) and day 42 (n = 3) of age while fed the MRO diet and day 56 (n = 3/diet) and day 70 (n = 3/diet) while fed the MH and MG diets for transcript profiling by microarray hybridization. Five two-group comparisons were made using Permutation Analysis of Differential Expression® to identify differentially expressed genes over time and developmental stage between days 14 and 42 within the MRO diet, between day 42 on the MRO diet and day 56 on the MG or MH diets, and between the MG and MH diets at days 56 and 70. Ingenuity Pathway Analysis (IPA) of differentially expressed genes during weaning indicated the top 5 gene networks involving molecules participating in lipid metabolism, cell morphology and death, cellular growth and proliferation, molecular transport, and the cell cycle. Putative genes functioning in the establishment of the rumen microbial population and associated rumen epithelial inflammation during weaning were identified. Activation of transcription factor PPAR-α was identified by IPA software as an important regulator of molecular changes in rumen epithelium that function in papillary development and fatty acid oxidation during the transition from pre-rumination to rumination. Thus, molecular markers of rumen development and gene networks regulating differentiation and growth of rumen epithelium were identified for selecting targets and methods for improving and assessing rumen development and

  19. Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes

    PubMed Central

    He, Xin; Sanders, Stephan J.; Liu, Li; De Rubeis, Silvia; Lim, Elaine T.; Sutcliffe, James S.; Schellenberg, Gerard D.; Gibbs, Richard A.; Daly, Mark J.; Buxbaum, Joseph D.; State, Matthew W.; Devlin, Bernie; Roeder, Kathryn

    2013-01-01

    De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support. PMID:23966865

  20. Integrative Analysis of Genomics and Transcriptome Data to Identify Potential Functional Genes of BMDs in Females.

    PubMed

    Chen, Yuan-Cheng; Guo, Yan-Fang; He, Hao; Lin, Xu; Wang, Xia-Fang; Zhou, Rou; Li, Wen-Ting; Pan, Dao-Yan; Shen, Jie; Deng, Hong-Wen

    2016-05-01

    Osteoporosis is known to be highly heritable. However, to date, the findings from more than 20 genome-wide association studies (GWASs) have explained less than 6% of genetic risks. Studies suggest that the missing heritability data may be because of joint effects among genes. To identify novel heritability for osteoporosis, we performed a system-level study on bone mineral density (BMD) by weighted gene coexpression network analysis (WGCNA), using the largest GWAS data set for BMD in the field, Genetic Factors for Osteoporosis Consortium (GEFOS-2), and a transcriptomic gene expression data set generated from transiliac bone biopsies in women. A weighted gene coexpression network was generated for 1574 genes with GWAS nominal evidence of association (p ≤ 0.05) based on dissimilarity measurement on the expression data. Twelve distinct gene modules were identified, and four modules showed nominally significant associations with BMD (p ≤ 0.05), but only one module, the yellow module, demonstrated a good correlation between module membership (MM) and gene significance (GS), suggesting that the yellow module serves an important biological role in bone regulation. Interestingly, through characterization of module content and topology, the yellow module was found to be significantly enriched with contractile fiber part (GO:044449), which is widely recognized as having a close relationship between muscle and bone. Furthermore, detailed submodule analyses of important candidate genes (HOMER1, SPTBN1) by all edges within the yellow module implied significant enrichment of functional connections between bone and cytoskeletal protein binding. Our study yielded novel information from system genetics analyses of GWAS data jointly with transcriptomic data. The findings highlighted a module and several genes in the model as playing important roles in the regulation of bone mass in females, which may yield novel insights into the genetic basis of osteoporosis. © 2016

  1. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex.

    PubMed

    Golubovskaya, Vita M; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53+/+ and p53-/- cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53+/+ cells but not in p53-/- cells. Among up-regulated genes in HCT p53+/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53+/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach. PMID:24452144

  2. A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma

    PubMed Central

    Chen, Ron; Khatri, Purvesh; Mazur, Pawel K.; Polin, Melanie; Zheng, Yanyan; Vaka, Dedeepya; Hoang, Chuong D.; Shrager, Joseph; Xu, Yue; Vicent, Silvestre; Butte, Atul; Sweet-Cordero, E. Alejandro

    2014-01-01

    Lung cancer remains the most common cause of cancer-related death worldwide and it continues to lack effective treatment. The increasingly large and diverse public databases of lung cancer gene expression constitute a rich source of candidate oncogenic drivers and therapeutic targets. To define novel targets for lung adenocarcinoma (ADC), we conducted a large scale meta-analysis of genes specifically overexpressed in ADC. We identified an eleven-gene signature that was overexpressed consistently in ADC specimens relative to normal lung tissue. Six genes in this signature were specifically overexpressed in ADC relative to other subtypes of non-small cell lung cancer (NSCLC). Among these genes was the little studied protein tyrosine kinase PTK7. Immunohistochemical analysis confirmed that PTK7 is highly expressed in primary ADC patient samples. RNAi-mediated attenuation of PTK7 decreased cell viability and increased apoptosis in a subset of ADC cell lines. Further, loss of PTK7 activated the MKK7-JNK stress response pathway and impaired tumor growth in xenotransplantation assays. Our work defines PTK7 as a highly and specifically expressed gene in ADC and a potential therapeutic target in this subset of NSCLC. PMID:24654231

  3. Genetic‐Genomic Replication to Identify Candidate Mouse Atherosclerosis Modifier Genes

    PubMed Central

    Hsu, Jeffrey; Smith, Jonathan D.

    2013-01-01

    Objective Genetics plays a large role in atherosclerosis susceptibility in humans and mice. We attempted to confirm previously determined mouse atherosclerosis‐associated loci and use bioinformatics and transcriptomics to create a catalog of candidate atherosclerosis modifier genes at these loci. Methods and Results A strain intercross was performed between AKR and DBA/2 mice on the apoE−/− background generating 166 F2 progeny. Using the phenotype log10 of the aortic root lesion area, we identified 3 suggestive atherosclerosis quantitative trait loci (Ath QTLs). When combined with our prior strain intercross, we confirmed 3 significant Ath QTLs on chromosomes 2, 15, and 17, with combined logarithm of odds scores of 5.9, 5.3, and 5.6, respectively, which each met the genome‐wide 5% false discovery rate threshold. We identified all of the protein coding differences between these 2 mouse strains within the Ath QTL intervals. Microarray gene expression profiling was performed on macrophages and endothelial cells from this intercross to identify expression QTLs (eQTLs), the loci that are associated with variation in the expression levels of specific transcripts. Cross tissue eQTLs and macrophage eQTLs that replicated from a prior strain intercross were identified. These bioinformatic and eQTL analyses produced a comprehensive list of candidate genes that may be responsible for the Ath QTLs. Conclusions Replication studies for clinical traits as well as gene expression traits are worthwhile in identifying true versus false genetic associations. We have replicated 3 loci on mouse chromosomes 2, 15, and 17 that are associated with atherosclerosis. We have also identified protein coding differences and multiple replicated eQTLs, which may be useful in the identification of atherosclerosis modifier genes. PMID:23525445

  4. Challenges in identifying cancer genes by analysis of exome sequencing data

    PubMed Central

    Hofree, Matan; Carter, Hannah; Kreisberg, Jason F.; Bandyopadhyay, Sourav; Mischel, Paul S.; Friend, Stephen; Ideker, Trey

    2016-01-01

    Massively parallel sequencing has permitted an unprecedented examination of the cancer exome, leading to predictions that all genes important to cancer will soon be identified by genetic analysis of tumours. To examine this potential, here we evaluate the ability of state-of-the-art sequence analysis methods to specifically recover known cancer genes. While some cancer genes are identified by analysis of recurrence, spatial clustering or predicted impact of somatic mutations, many remain undetected due to lack of power to discriminate driver mutations from the background mutational load (13–60% recall of cancer genes impacted by somatic single-nucleotide variants, depending on the method). Cancer genes not detected by mutation recurrence also tend to be missed by all types of exome analysis. Nonetheless, these genes are implicated by other experiments such as functional genetic screens and expression profiling. These challenges are only partially addressed by increasing sample size and will likely hold even as greater numbers of tumours are analysed. PMID:27417679

  5. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  6. Challenges in identifying cancer genes by analysis of exome sequencing data.

    PubMed

    Hofree, Matan; Carter, Hannah; Kreisberg, Jason F; Bandyopadhyay, Sourav; Mischel, Paul S; Friend, Stephen; Ideker, Trey

    2016-01-01

    Massively parallel sequencing has permitted an unprecedented examination of the cancer exome, leading to predictions that all genes important to cancer will soon be identified by genetic analysis of tumours. To examine this potential, here we evaluate the ability of state-of-the-art sequence analysis methods to specifically recover known cancer genes. While some cancer genes are identified by analysis of recurrence, spatial clustering or predicted impact of somatic mutations, many remain undetected due to lack of power to discriminate driver mutations from the background mutational load (13-60% recall of cancer genes impacted by somatic single-nucleotide variants, depending on the method). Cancer genes not detected by mutation recurrence also tend to be missed by all types of exome analysis. Nonetheless, these genes are implicated by other experiments such as functional genetic screens and expression profiling. These challenges are only partially addressed by increasing sample size and will likely hold even as greater numbers of tumours are analysed. PMID:27417679

  7. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation

    PubMed Central

    Wang, Ying; Ding, Jia-tong; Yang, Hai-ming; Yan, Zheng-jie; Cao, Wei; Li, Yang-bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species. PMID:26599806

  8. Alternatively expressed genes identified in the CD4+ T cells of allograft rejection mice.

    PubMed

    Xu, Jia; Wang, Dan; Zhang, Chao; Song, Jing; Liang, Ting; Jin, Weirong; Kim, Yeong C; Wang, San Ming; Hou, Guihua

    2011-01-01

    Allograft rejection is a leading cause for the failure of allotransplantation. CD4(+) T cells play critical roles in this process. The identification of genes that alternatively expressed in CD4(+) T cells during allograft rejection will provide critical information for studying the mechanism of allograft rejection, finding specific gene markers for monitoring, predicting allograft rejection, and opening new ways to regulate and prevent allograft rejection. Here, we established allograft and isograft transplantation models by adoptively transferring wild-type BALB/c mouse CD4(+) T cells into severe combined immunodeficient (SCID) mice with a C57BL/6 or BALB/c mouse skin graft. Using the whole transcriptome sequencing-based serial analysis of gene expression (SAGE) technology, we identified 97 increasingly and 88 decreasingly expressed genes that may play important roles in allograft rejection and tolerance. Functional classification of these genes shows that apoptosis, transcription regulation, cell growth and maintenance, and signal transduction are among the frequently changed functional groups. This study provides a genome-wide view for the candidate genes of CD4(+) T cells related to allotransplantation, and this report is a good resource for further microarray studies and for identifying the specific markers that are associated with clinical organ transplantations. PMID:21294963

  9. Integrated genomic analyses identify frequent gene fusion events and VHL inactivation in gastrointestinal stromal tumors

    PubMed Central

    Sun, Choong-Hyun; Park, Inho; Lee, Seungmook; Kwon, Jekeun; Do, Ingu; Hong, Min Eui; Van Vrancken, Michael; Lee, Jeeyun; Park, Joon Oh; Cho, Jeonghee; Kim, Kyoung-Mee; Sohn, Tae Sung

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. We sequenced nine exomes and transcriptomes, and two genomes of GISTs for integrated analyses. We detected 306 somatic variants in nine GISTs and recurrent protein-altering mutations in 29 genes. Transcriptome sequencing revealed 328 gene fusions, and the most frequently involved fusion events were associated with IGF2 fused to several partner genes including CCND1, FUS, and LASP1. We additionally identified three recurrent read-through fusion transcripts: POLA2-CDC42EP2, C8orf42-FBXO25, and STX16-NPEPL1. Notably, we found intragenic deletions in one of three exons of the VHL gene and increased mRNAs of VEGF, PDGF-β, and IGF-1/2 in 56% of GISTs, suggesting a mechanistic link between VHL inactivation and overexpression of hypoxia-inducible factor target genes in the absence of hypoxia. We also identified copy number gain and increased mRNA expression of AMACR, CRIM1, SKP2, and CACNA1E. Mapping of copy number and gene expression results to the KEGG pathways revealed activation of the JAK-STAT pathway in small intestinal GISTs and the MAPK pathway in wild-type GISTs. These observations will allow us to determine the genetic basis of GISTs and will facilitate further investigation to develop new therapeutic options. PMID:25987131

  10. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included 'response to heat', 'response to reactive oxygen species (ROS)', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  11. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa

    PubMed Central

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5– 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included ‘response to heat’, ‘response to reactive oxygen species (ROS)’, ‘response to temperature stimulus’, ‘response to abiotic stimulus’, and ‘MAPKKK cascade’. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data

  12. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    PubMed

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. PMID:27132285

  13. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways

    PubMed Central

    Cirulli, Elizabeth T.; Lasseigne, Brittany N.; Petrovski, Slavé; Sapp, Peter C.; Dion, Patrick A.; Leblond, Claire S.; Couthouis, Julien; Lu, Yi-Fan; Wang, Quanli; Krueger, Brian J.; Ren, Zhong; Keebler, Jonathan; Han, Yujun; Levy, Shawn E.; Boone, Braden E.; Wimbish, Jack R.; Waite, Lindsay L.; Jones, Angela L.; Carulli, John P.; Day-Williams, Aaron G.; Staropoli, John F.; Xin, Winnie W.; Chesi, Alessandra; Raphael, Alya R.; McKenna-Yasek, Diane; Cady, Janet; de Jong, J.M.B. Vianney; Kenna, Kevin P.; Smith, Bradley N.; Topp, Simon; Miller, Jack; Gkazi, Athina; Al-Chalabi, Ammar; van den Berg, Leonard H.; Veldink, Jan; Silani, Vincenzo; Ticozzi, Nicola; Shaw, Christopher E.; Baloh, Robert H.; Appel, Stanley; Simpson, Ericka; Lagier-Tourenne, Clotilde; Pulst, Stefan M.; Gibson, Summer; Trojanowski, John Q.; Elman, Lauren; McCluskey, Leo; Grossman, Murray; Shneider, Neil A.; Chung, Wendy K.; Ravits, John M.; Glass, Jonathan D.; Sims, Katherine B.; Van Deerlin, Vivianna M.; Maniatis, Tom; Hayes, Sebastian D.; Ordureau, Alban; Swarup, Sharan; Landers, John; Baas, Frank; Allen, Andrew S.; Bedlack, Richard S.; Harper, J. Wade; Gitler, Aaron D.; Rouleau, Guy A.; Brown, Robert; Harms, Matthew B.; Cooper, Gregory M.; Harris, Tim; Myers, Richard M.; Goldstein, David B.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. Here we report the results of a moderate-scale sequencing study aimed at identifying new genes contributing to predisposition for ALS. We performed whole exome sequencing of 2,874 ALS patients and compared them to 6,405 controls. Several known ALS genes were found to be associated, and the non-canonical IκB kinase family TANK-Binding Kinase 1 (TBK1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention. PMID:25700176

  14. Systems approaches to unraveling plant metabolism: identifying biosynthetic genes of secondary metabolic pathways.

    PubMed

    Spiering, Martin J; Kaur, Bhavneet; Parsons, James F; Eisenstein, Edward

    2014-01-01

    The diversity of useful compounds produced by plant secondary metabolism has stimulated broad systems biology approaches to identify the genes involved in their biosynthesis. Systems biology studies in non-model plants pose interesting but addressable challenges, and have been greatly facilitated by the ability to grow and maintain plants, develop laboratory culture systems, and profile key metabolites in order to identify critical genes involved their biosynthesis. In this chapter we describe a suite of approaches that have been useful in Actaea racemosa (L.; syn. Cimicifuga racemosa, Nutt., black coshosh), a non-model medicinal plant with no genome sequence and little horticultural information available, that have led to the development of initial gene-metabolite relationships for the production of several bioactive metabolites in this multicomponent botanical therapeutic, and that can be readily applied to a wide variety of under-characterized medicinal plants. PMID:24218220

  15. Tsukamurella pulmonis Bloodstream Infection Identified by secA1 Gene Sequencing

    PubMed Central

    Cano, María E.; García de la Fuente, Celia; Martínez-Martínez, Luis; López, Mónica; Fernández-Mazarrasa, Carlos

    2014-01-01

    Recurrent bloodstream infections caused by a Gram-positive bacterium affected an immunocompromised child. Tsukamurella pulmonis was the microorganism identified by secA1 gene sequencing. Antibiotic treatment in combination with removal of the subcutaneous port healed the patient. PMID:25520439

  16. UniqTag: Content-Derived Unique and Stable Identifiers for Gene Annotation

    PubMed Central

    Jackman, Shaun D.; Bohlmann, Joerg; Birol, İnanç

    2015-01-01

    When working on an ongoing genome sequencing and assembly project, it is rather inconvenient when gene identifiers change from one build of the assembly to the next. The gene labelling system described here, UniqTag, addresses this common challenge. UniqTag assigns a unique identifier to each gene that is a representative k-mer, a string of length k, selected from the sequence of that gene. Unlike serial numbers, these identifiers are stable between different assemblies and annotations of the same data without requiring that previous annotations be lifted over by sequence alignment. We assign UniqTag identifiers to ten builds of the Ensembl human genome spanning eight years to demonstrate this stability. The implementation of UniqTag in Ruby and an R package are available at https://github.com/sjackman/uniqtag sjackman/uniqtag. The R package is also available from CRAN: install.packages ("uniqtag"). Supplementary material and code to reproduce it is available at https://github.com/sjackman/uniqtag-paper. PMID:26020645

  17. Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Breeding and Genetics Symposium titled “Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes” was held at the Joint Annual Meeting of the American Dairy Science Association and the American Society of Animal Science in Phoenix, AZ, July 15 to 19, 201...

  18. Multiple gene mutations identified in patients infected with influenza A (H7N9) virus

    PubMed Central

    Chen, Cuicui; Wang, Mingbang; Zhu, Zhaoqin; Qu, Jieming; Xi, Xiuhong; Tang, Xinjun; Lao, Xiangda; Seeley, Eric; Li, Tao; Fan, Xiaomei; Du, Chunling; Wang, Qin; Yang, Lin; Hu, Yunwen; Bai, Chunxue; Zhang, Zhiyong; Lu, Shuihua; Song, Yuanlin; Zhou, Wenhao

    2016-01-01

    Influenza A (H7N9) virus induced high mortality since 2013. It is important to elucidate the potential genetic variations that contribute to virus infection susceptibilities. In order to identify genetic mutations that might increase host susceptibility to infection, we performed exon sequencing and validated the SNPS by Sanger sequencing on 18 H7N9 patients. Blood samples were collected from 18 confirmed H7N9 patients. The genomic DNA was captured with the Agilent SureSelect Human All Exon kit, sequenced on the Illumina Hiseq 2000, and the resulting data processed and annotated with Genome analysis Tool. SNPs were verified by independent Sanger sequencing. The DAVID database and the DAPPLE database were used to do bioinformatics analysis. Through exon sequencing and Sanger sequencing, we identified 21 genes that were highly associated with H7N9 influenza infection. Protein-protein interaction analysis showed that direct interactions among genetic products were significantly higher than expected (p = 0.004), and DAVID analysis confirmed the defense-related functions of these genes. Gene mutation profiles of survived and non-survived patients were similar, suggesting some of genes identified in this study may be associated with H7N9 influenza susceptibility. Host specific genetic determinants of disease severity identified by this approach may provide new targets for the treatment of H7N9 influenza. PMID:27156515

  19. Multiple gene mutations identified in patients infected with influenza A (H7N9) virus.

    PubMed

    Chen, Cuicui; Wang, Mingbang; Zhu, Zhaoqin; Qu, Jieming; Xi, Xiuhong; Tang, Xinjun; Lao, Xiangda; Seeley, Eric; Li, Tao; Fan, Xiaomei; Du, Chunling; Wang, Qin; Yang, Lin; Hu, Yunwen; Bai, Chunxue; Zhang, Zhiyong; Lu, Shuihua; Song, Yuanlin; Zhou, Wenhao

    2016-01-01

    Influenza A (H7N9) virus induced high mortality since 2013. It is important to elucidate the potential genetic variations that contribute to virus infection susceptibilities. In order to identify genetic mutations that might increase host susceptibility to infection, we performed exon sequencing and validated the SNPS by Sanger sequencing on 18 H7N9 patients. Blood samples were collected from 18 confirmed H7N9 patients. The genomic DNA was captured with the Agilent SureSelect Human All Exon kit, sequenced on the Illumina Hiseq 2000, and the resulting data processed and annotated with Genome analysis Tool. SNPs were verified by independent Sanger sequencing. The DAVID database and the DAPPLE database were used to do bioinformatics analysis. Through exon sequencing and Sanger sequencing, we identified 21 genes that were highly associated with H7N9 influenza infection. Protein-protein interaction analysis showed that direct interactions among genetic products were significantly higher than expected (p = 0.004), and DAVID analysis confirmed the defense-related functions of these genes. Gene mutation profiles of survived and non-survived patients were similar, suggesting some of genes identified in this study may be associated with H7N9 influenza susceptibility. Host specific genetic determinants of disease severity identified by this approach may provide new targets for the treatment of H7N9 influenza. PMID:27156515

  20. Candidate fire blight resistance genes in Malus identified with the use of genomic tools and approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this research is to utilize current advances in Rosaceae genomics to identify DNA markers for use in marker-assisted selection of durable resistance to fire blight. Candidate fire blight resistance genes were selected and ranked based upon differential expression after inoculation with ...

  1. Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea.

    PubMed

    Tzelepis, Georgios; Dubey, Mukesh; Jensen, Dan Funck; Karlsson, Magnus

    2015-07-01

    Clonostachysrosea is a mycoparasitic fungal species that is an efficient biocontrol agent against many plant diseases. During mycoparasitic interactions, one of the most crucial steps is the hydrolysis of the prey's fungal cell wall, which mainly consists of glucans, glycoproteins and chitin. Chitinases are hydrolytic enzymes responsible for chitin degradation and it is suggested that they play an important role in fungal-fungal interactions. Fungal chitinases belong exclusively to the glycoside hydrolase (GH) family 18.These GH18 proteins are categorized into three distinct phylogenetic groups (A, B and C), subdivided into several subgroups. In this study, we identified 14 GH18 genes in the C. rosea genome, which is remarkably low compared with the high numbers found in mycoparasitic Trichoderma species. Phylogenetic analysis revealed that C. rosea contains eight genes in group A, two genes in group B, two genes in group C, one gene encoding a putative ENGase (endo-β-N-acetylglucosaminidase) and the ech37 gene, which is of bacterial origin. Gene expression analysis showed that only two genes had higher transcription levels during fungal-fungal interactions, while eight out of 14 GH18 genes were triggered by chitin. Furthermore, deletion of the C group chiC2 gene decreased the growth inhibitory activity of C. rosea culture filtrates against Botrytis cinerea and Rhizoctonia solani, although the biocontrol ability of C. rosea against B. cinerea was not affected. In addition, a potential role of the CHIC2 chitinase in the sporulation process was revealed. These results provide new information about the role of GH18 proteins in mycoparasitic interactions. PMID:25881898

  2. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways.

    PubMed

    Cirulli, Elizabeth T; Lasseigne, Brittany N; Petrovski, Slavé; Sapp, Peter C; Dion, Patrick A; Leblond, Claire S; Couthouis, Julien; Lu, Yi-Fan; Wang, Quanli; Krueger, Brian J; Ren, Zhong; Keebler, Jonathan; Han, Yujun; Levy, Shawn E; Boone, Braden E; Wimbish, Jack R; Waite, Lindsay L; Jones, Angela L; Carulli, John P; Day-Williams, Aaron G; Staropoli, John F; Xin, Winnie W; Chesi, Alessandra; Raphael, Alya R; McKenna-Yasek, Diane; Cady, Janet; Vianney de Jong, J M B; Kenna, Kevin P; Smith, Bradley N; Topp, Simon; Miller, Jack; Gkazi, Athina; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan; Silani, Vincenzo; Ticozzi, Nicola; Shaw, Christopher E; Baloh, Robert H; Appel, Stanley; Simpson, Ericka; Lagier-Tourenne, Clotilde; Pulst, Stefan M; Gibson, Summer; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Grossman, Murray; Shneider, Neil A; Chung, Wendy K; Ravits, John M; Glass, Jonathan D; Sims, Katherine B; Van Deerlin, Vivianna M; Maniatis, Tom; Hayes, Sebastian D; Ordureau, Alban; Swarup, Sharan; Landers, John; Baas, Frank; Allen, Andrew S; Bedlack, Richard S; Harper, J Wade; Gitler, Aaron D; Rouleau, Guy A; Brown, Robert; Harms, Matthew B; Cooper, Gregory M; Harris, Tim; Myers, Richard M; Goldstein, David B

    2015-03-27

    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention. PMID:25700176

  3. Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration

    SciTech Connect

    Guardiola-Serrano, Francisca; Haendeler, Judith; Lukosz, Margarete; Sturm, Karsten; Melchner, Harald von; Altschmied, Joachim

    2008-11-28

    Tumor necrosis factor alpha (TNF{alpha}) is a pleiotropic cytokine involved in apoptotic cell death, cellular proliferation, differentiation, inflammation, and tumorigenesis. In tumors it is secreted by tumor associated macrophages and can have both pro- and anti-tumorigenic effects. To identify genes regulated by TNF{alpha}, we performed a gene trap screen in the mammary carcinoma cell line MCF-7 and recovered 64 unique, TNF{alpha}-induced gene trap integration sites. Among these were the genes coding for the zinc finger protein ZC3H10 and for the transcription factor grainyhead-like 3 (GRHL3). In line with the dual effects of TNF{alpha} on tumorigenesis, we found that ZC3H10 inhibits anchorage independent growth in soft agar suggesting a tumor suppressor function, whereas GRHL3 strongly stimulated the migration of endothelial cells which is consistent with an angiogenic, pro-tumorigenic function.

  4. Screening of a Leptospira biflexa Mutant Library To Identify Genes Involved in Ethidium Bromide Tolerance

    PubMed Central

    Pětrošová, Helena

    2014-01-01

    Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n = 11), transport (n = 6), membrane structure (n = 5), stress response (n = 2), DNA damage repair (n = 1), and other processes (n = 3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans. PMID:25063661

  5. Integrated Genomic and Transcriptional Profiling Identifies Chromosomal Loci with Altered Gene Expression in Cervical Cancer

    PubMed Central

    Wilting, Saskia M.; de Wilde, Jillian; Meijer, Chris J. L. M.; Berkhof, Johannes; Yi, Yajun; van Wieringen, Wessel N.; Braakhuis, Boudewijn J. M.; Meijer, Gerrit A.; Ylstra, Bauke; Snijders, Peter J. F.; Steenbergen, Renske D. M.

    2009-01-01

    For a better understanding of the consequences of recurrent chromosomal alterations in cervical carcinomas, we integrated genome-wide chromosomal and transcriptional profiles of 10 squamous cell carcinomas (SCCs), 5 adenocarcinomas (AdCAs) and 6 normal controls. Previous genomic profiling showed that gains at chromosome arms 1q, 3q, and 20q as well as losses at 8q, 10q, 11q, and 13q were common in cervical carcinomas. Altered regions spanned multiple megabases, and the extent to which expression of genes located there is affected remains unclear. Expression analysis of these previously chromosomally profiled carcinomas yielded 83 genes with significantly differential expression between carcinomas and normal epithelium. Application of differential gene locus mapping (DIGMAP) analysis and the array CGH expression integration tool (ACE-it) identified hotspots within large chromosomal alterations in which gene expression was altered as well. Chromosomal gains of the long arms of chromosome 1, 3, and 20 resulted in increased expression of genes located at 1q32.1-32.2, 3q13.32-23, 3q26.32-27.3, and 20q11.21-13.33, whereas a chromosomal loss of 11q22.3-25 was related to decreased expression of genes located in this region. Overexpression of DTX3L, PIK3R4, ATP2C1, and SLC25A36, all located at 3q21.1-23 and identified by DIGMAP, ACE-it or both, was confirmed in an independent validation sample set consisting of 12 SCCs and 13 normal ectocervical samples. In conclusion, integrated chromosomal and transcriptional profiling identified chromosomal hotspots at 1q, 3q, 11q, and 20q with altered gene expression within large commonly altered chromosomal regions in cervical cancer. PMID:18618715

  6. Exome Sequencing Identifies Three Novel Candidate Genes Implicated in Intellectual Disability

    PubMed Central

    Azam, Maleeha; Ayub, Humaira; Vissers, Lisenka E. L. M.; Gilissen, Christian; Ali, Syeda Hafiza Benish; Riaz, Moeen; Veltman, Joris A.; Pfundt, Rolph; van Bokhoven, Hans; Qamar, Raheel

    2014-01-01

    Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID. PMID:25405613

  7. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma.

    PubMed

    Kodama, Takahiro; Newberg, Justin Y; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C; Parsons, Pamela H; Wu, Hao; Finegold, Milton J; Copeland, Neal G; Jenkins, Nancy A

    2016-06-14

    Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392

  8. A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity.

    PubMed

    Falkenberg, K J; Newbold, A; Gould, C M; Luu, J; Trapani, J A; Matthews, G M; Simpson, K J; Johnstone, R W

    2016-07-01

    Vorinostat is an FDA-approved histone deacetylase inhibitor (HDACi) that has proven clinical success in some patients; however, it remains unclear why certain patients remain unresponsive to this agent and other HDACis. Constitutive STAT (signal transducer and activator of transcription) activation, overexpression of prosurvival Bcl-2 proteins and loss of HR23B have been identified as potential biomarkers of HDACi resistance; however, none have yet been used to aid the clinical utility of HDACi. Herein, we aimed to further elucidate vorinostat-resistance mechanisms through a functional genomics screen to identify novel genes that when knocked down by RNA interference (RNAi) sensitized cells to vorinostat-induced apoptosis. A synthetic lethal functional screen using a whole-genome protein-coding RNAi library was used to identify genes that when knocked down cooperated with vorinostat to induce tumor cell apoptosis in otherwise resistant cells. Through iterative screening, we identified 10 vorinostat-resistance candidate genes that sensitized specifically to vorinostat. One of these vorinostat-resistance genes was GLI1, an oncogene not previously known to regulate the activity of HDACi. Treatment of vorinostat-resistant cells with the GLI1 small-molecule inhibitor, GANT61, phenocopied the effect of GLI1 knockdown. The mechanism by which GLI1 loss of function sensitized tumor cells to vorinostat-induced apoptosis is at least in part through interactions with vorinostat to alter gene expression in a manner that favored apoptosis. Upon GLI1 knockdown and vorinostat treatment, BCL2L1 expression was repressed and overexpression of BCL2L1 inhibited GLI1-knockdown-mediated vorinostat sensitization. Taken together, we present the identification and characterization of GLI1 as a new HDACi resistance gene, providing a strong rationale for development of GLI1 inhibitors for clinical use in combination with HDACi therapy. PMID:26868908

  9. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis.

    PubMed

    Hyun, Tae Kyung; Rim, Yeonggil; Jang, Hui-Jeong; Kim, Cheol Hong; Park, Jongsun; Kumar, Ritesh; Lee, Sunghoon; Kim, Byung Chul; Bhak, Jong; Nguyen-Quoc, Binh; Kim, Seon-Won; Lee, Sang Yeol; Kim, Jae-Yean

    2012-07-01

    The ripe fruit of Momordica cochinchinensis Spreng, known as gac, is featured by very high carotenoid content. Although this plant might be a good resource for carotenoid metabolic engineering, so far, the genes involved in the carotenoid metabolic pathways in gac were unidentified due to lack of genomic information in the public database. In order to expedite the process of gene discovery, we have undertaken Illumina deep sequencing of mRNA prepared from aril of gac fruit. From 51,446,670 high-quality reads, we obtained 81,404 assembled unigenes with average length of 388 base pairs. At the protein level, gac aril transcripts showed about 81.5% similarity with cucumber proteomes. In addition 17,104 unigenes have been assigned to specific metabolic pathways in Kyoto Encyclopedia of Genes and Genomes, and all of known enzymes involved in terpenoid backbones biosynthetic and carotenoid biosynthetic pathways were also identified in our library. To analyze the relationship between putative carotenoid biosynthesis genes and alteration of carotenoid content during fruit ripening, digital gene expression analysis was performed on three different ripening stages of aril. This study has revealed putative phytoene synthase, 15-cis-phytone desaturase, zeta-carotene desaturase, carotenoid isomerase and lycopene epsilon cyclase might be key factors for controlling carotenoid contents during aril ripening. Taken together, this study has also made availability of a large gene database. This unique information for gac gene discovery would be helpful to facilitate functional studies for improving carotenoid quantities. PMID:22580955

  10. Identifying and assessing the impact of wine acid-related genes in yeast.

    PubMed

    Chidi, Boredi S; Rossouw, Debra; Bauer, Florian F

    2016-02-01

    Saccharomyces cerevisiae strains used for winemaking show a wide range of fermentation phenotypes, and the genetic background of individual strains contributes significantly to the organoleptic properties of wine. This strain-dependent impact extends to the organic acid composition of the wine, an important quality parameter. However, little is known about the genes which may impact on organic acids during grape must fermentation. To generate novel insights into the genetic regulation of this metabolic network, a subset of genes was identified based on a comparative analysis of the transcriptomes and organic acid profiles of different yeast strains showing different production levels of organic acids. These genes showed significant inter-strain differences in their transcription levels at one or more stages of fermentation and were also considered likely to influence organic acid metabolism based on existing functional annotations. Genes selected in this manner were ADH3, AAD6, SER33, ICL1, GLY1, SFC1, SER1, KGD1, AGX1, OSM1 and GPD2. Yeast strains carrying deletions for these genes were used to conduct fermentations and determine organic acid levels at various stages of alcoholic fermentation in synthetic grape must. The impact of these deletions on organic acid profiles was quantified, leading to novel insights and hypothesis generation regarding the role/s of these genes in wine yeast acid metabolism under fermentative conditions. Overall, the data contribute to our understanding of the roles of selected genes in yeast metabolism in general and of organic acid metabolism in particular. PMID:26040556

  11. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    PubMed Central

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation. PMID:26579166

  12. A Special Local Clustering Algorithm for Identifying the Genes Associated With Alzheimer’s Disease

    PubMed Central

    Pang, Chao-Yang; Hu, Wei; Hu, Ben-Qiong; Shi, Ying; Vanderburg, Charles R.; Rogers, Jack T.

    2010-01-01

    Clustering is the grouping of similar objects into a class. Local clustering feature refers to the phenomenon whereby one group of data is separated from another, and the data from these different groups are clustered locally. A compact class is defined as one cluster in which all similar elements cluster tightly within the cluster. Herein, the essence of the local clustering feature, revealed by mathematical manipulation, results in a novel clustering algorithm termed as the special local clustering (SLC) algorithm that was used to process gene microarray data related to Alzheimer’s disease (AD). SLC algorithm was able to group together genes with similar expression patterns and identify significantly varied gene expression values as isolated points. If a gene belongs to a compact class in control data and appears as an isolated point in incipient, moderate and/or severe AD gene microarray data, this gene is possibly associated with AD. Application of a clustering algorithm in disease-associated gene identification such as in AD is rarely reported. PMID:20089478

  13. Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination

    PubMed Central

    Pallares, Luisa F.; Carbonetto, Peter; Gopalakrishnan, Shyam; Parker, Clarissa C.; Ackert-Bicknell, Cheryl L.; Palmer, Abraham A.; Tautz, Diethard

    2015-01-01

    The vertebrate cranium is a prime example of the high evolvability of complex traits. While evidence of genes and developmental pathways underlying craniofacial shape determination is accumulating, we are still far from understanding how such variation at the genetic level is translated into craniofacial shape variation. Here we used 3D geometric morphometrics to map genes involved in shape determination in a population of outbred mice (Carworth Farms White, or CFW). We defined shape traits via principal component analysis of 3D skull and mandible measurements. We mapped genetic loci associated with shape traits at ~80,000 candidate single nucleotide polymorphisms in ~700 male mice. We found that craniofacial shape and size are highly heritable, polygenic traits. Despite the polygenic nature of the traits, we identified 17 loci that explain variation in skull shape, and 8 loci associated with variation in mandible shape. Together, the associated variants account for 11.4% of skull and 4.4% of mandible shape variation, however, the total additive genetic variance associated with phenotypic variation was estimated in ~45%. Candidate genes within the associated loci have known roles in craniofacial development; this includes 6 transcription factors and several regulators of bone developmental pathways. One gene, Mn1, has an unusually large effect on shape variation in our study. A knockout of this gene was previously shown to affect negatively the development of membranous bones of the cranial skeleton, and evolutionary analysis shows that the gene has arisen at the base of the bony vertebrates (Eutelostomi), where the ossified head first appeared. Therefore, Mn1 emerges as a key gene for both skull formation and within-population shape variation. Our study shows that it is possible to identify important developmental genes through genome-wide mapping of high-dimensional shape features in an outbred population. PMID:26523602

  14. A novel approach to identify genes that determine grain protein deviation in cereals.

    PubMed

    Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J

    2015-06-01

    Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). PMID:25400203

  15. Refining analyses of copy number variation identifies specific genes associated with developmental delay.

    PubMed

    Coe, Bradley P; Witherspoon, Kali; Rosenfeld, Jill A; van Bon, Bregje W M; Vulto-van Silfhout, Anneke T; Bosco, Paolo; Friend, Kathryn L; Baker, Carl; Buono, Serafino; Vissers, Lisenka E L M; Schuurs-Hoeijmakers, Janneke H; Hoischen, Alex; Pfundt, Rolph; Krumm, Nik; Carvill, Gemma L; Li, Deana; Amaral, David; Brown, Natasha; Lockhart, Paul J; Scheffer, Ingrid E; Alberti, Antonino; Shaw, Marie; Pettinato, Rosa; Tervo, Raymond; de Leeuw, Nicole; Reijnders, Margot R F; Torchia, Beth S; Peeters, Hilde; O'Roak, Brian J; Fichera, Marco; Hehir-Kwa, Jayne Y; Shendure, Jay; Mefford, Heather C; Haan, Eric; Gécz, Jozef; de Vries, Bert B A; Romano, Corrado; Eichler, Evan E

    2014-10-01

    Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed 10 genes enriched for putative loss of function. Follow-up of a subset of affected individuals identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. These genetic changes include haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in individuals with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and genes involved in neuropsychiatric disease despite extensive genetic heterogeneity. PMID:25217958

  16. Characterization of the mid-foregut transcriptome identifies genes regulated during lung bud induction

    PubMed Central

    Millien, Guetchyn; Beane, Jennifer; Lenburg, Marc; Tsao, Po-Nien; Lu, Jining; Spira, Avrum; Ramirez., Maria I.

    2008-01-01

    To identify genes expressed during initiation of lung organogenesis, we generated transcriptional profiles of the prospective lung region of the mouse foregut (mid-foregut) microdissected from embryos at three developmental stages between embryonic day 8.5 (E8.5) and E9.5. This period spans from lung specification of foregut cells to the emergence of the primary lung buds. We identified a number of known and novel genes that are temporally regulated as the lung bud forms. Genes that regulate transcription, including DNA binding factors, co-factors, and chromatin remodeling genes, are the main functional groups that change during lung bud formation. Members of key developmental transcription and growth factor families, not previously described to participate in lung organogenesis, are expressed in the mid-foregut during lung bud induction. These studies also show early expression in the mid-foregut of genes that participate in later stages of lung development. This characterization of the mid-foregut transcriptome provides new insights into molecular events leading to lung organogenesis. PMID:18023262

  17. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter.

    PubMed Central

    Taira, T; Iguchi-Ariga, S M; Ariga, H

    1994-01-01

    A general and sensitive method for the mapping of initiation sites of DNA replication in vivo, developed by Vassilev and Johnson, has revealed replication origins in the region of simian virus 40 ori, in the regions upstream from the human c-myc gene and downstream from the Chinese hamster dihydrofolate reductase gene, and in the enhancer region of the mouse immunoglobulin heavy-chain gene. Here we report that the region containing the promoter of the human heat shock protein 70 (hsp70) gene was identified as a DNA replication origin in HeLa cells by this method. Several segments of the region were cloned into pUC19 and examined for autonomously replicating sequence (ARS) activity. The plasmids carrying the segments replicated episomally and semiconservatively when transfected into HeLa cells. The segments of ARS activity contained the sequences previously identified as binding sequences for a c-myc protein complex (T. Taira, Y. Negishi, F. Kihara, S. M. M. Iguchi-Ariga, and H. Ariga, Biochem. Biophys. Acta 1130:166-174, 1992). Mutations introduced within the c-myc protein complex binding sequences abolished the ARS activity. Moreover, the ARS plasmids stably replicated at episomal state for a long time in established cell lines. The results suggest that the promoter region of the human hsp70 gene plays a role in DNA replication as well as in transcription. Images PMID:8065368

  18. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen

    PubMed Central

    Mendes-Pereira, Ana M.; Sims, David; Dexter, Tim; Fenwick, Kerry; Assiotis, Ioannis; Kozarewa, Iwanka; Mitsopoulos, Costas; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J.; Ashworth, Alan

    2012-01-01

    Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,487 genes on the cellular response to tamoxifen. This screen, along with subsequent validation experiments, identifies a compendium of genes whose silencing causes tamoxifen resistance (including BAP1, CLPP, GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3) and also a set of genes whose silencing causes sensitivity to this endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS, NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individual genes, including NF1, a regulator of RAS signaling, also correlate with clinical outcome after tamoxifen treatment. PMID:21482774

  19. Exome sequencing identified FGF12 as a novel candidate gene for Kashin-Beck disease.

    PubMed

    Zhang, Feng; Dai, Lanlan; Lin, Weimin; Wang, Wenyu; Liu, Xuanzhu; Zhang, Jianguo; Yang, Tielin; Liu, Xiaogang; Shen, Hui; Chen, Xiangding; Tan, Lijun; Tian, Qing; Deng, Hong-Wen; Xu, Xun; Guo, Xiong

    2016-01-01

    The objective of this study was to identify novel causal genes involved in the pathogenesis of Kashin-Beck disease (KBD). A representative grade III KBD sib pair with serious skeletal growth and development failure was subjected to exome sequencing using the Illumina Hiseq2000 platform. The detected gene mutations were then filtered against the data of 1000 Genome Project, dbSNP database, and BGI inhouse database, and replicated by a genome-wide association study (GWAS) of KBD. Ninety grade II or III KBD patients with extreme KBD phenotypes and 1627 healthy controls were enrolled in the GWAS. Affymetrix Genome-Wide Human SNP Array 6.0 was applied for genotyping. PLINK software was used for association analysis. We identified a novel 106T>C at the 3'UTR of the FGF12 gene, which has not been reported by now. Sequence alignment observed high conversation at the mutated 3'UTR+106T>C locus across various vertebrates. In the GWAS of KBD, we detected nine SNPs of the FGF12 gene showing association evidence (P value < 0.05) with KBD. The most significant association signal was observed at rs1847340 (P value = 1.90 × 10(-5)). This study suggests that FGF12 was a susceptibility gene of KBD. Our results provide novel clues for revealing the pathogenesis of KBD and the biological function of FGF12. PMID:26290467

  20. Exome sequencing identifies SLC24A5 as a candidate gene for nonsyndromic oculocutaneous albinism.

    PubMed

    Wei, Ai-Hua; Zang, Dong-Jie; Zhang, Zhe; Liu, Xuan-Zhu; He, Xin; Yang, Lin; Wang, Yi; Zhou, Zhi-Yong; Zhang, Ming-Rong; Dai, Lan-Lan; Yang, Xiu-Min; Li, Wei

    2013-07-01

    Oculocutaneous albinism (OCA) is a heterogeneous and autosomal recessive disorder with hypopigmentation in the eye, hair, and skin color. Four genes, TYR, OCA2, TYRP1, and SLC45A2, have been identified as causative genes for nonsyndromic OCA1-4, respectively. The genetic identity of OCA5 locus on 4q24 is unknown. Additional unknown OCA genes may exist as at least 5% of OCA patients have not been characterized during mutational screening in several populations. We used exome sequencing with a family-based recessive mutation model to determine that SLC24A5 is a previously unreported candidate gene for nonsyndromic OCA, which we designate as OCA6. Two deleterious mutations in this patient, c.591G>A and c.1361insT, were identified. We found apparent increase of immature melanosomes and less mature melanosomes in the patient's skin melanocytes. However, no defects in the platelet dense granules were observed, excluding typical Hermansky-Pudlak syndrome (HPS), a well-known syndromic OCA. Moreover, the SLC24A5 protein was reduced in steady-state levels in mouse HPS mutants with deficiencies in BLOC-1 and BLOC-2. Our results suggest that SLC24A5 is a previously unreported nonsyndromic OCA candidate gene and that the SLC24A5 transporter is transported into mature melanosomes by HPS protein complexes. PMID:23364476

  1. Gene Expression-Based Screen for Parkinson's Disease Identifies GW8510 as a Neuroprotective Agent.

    PubMed

    Wimalasena, Nivanthika K; Le, Viet Q; Wimalasena, Kandatege; Schreiber, Stuart L; Karmacharya, Rakesh

    2016-07-20

    We carried out a gene expression-based in silico screen in order to identify small molecules with gene-expression profiles that are anticorrelated with a gene-expression profile for Parkinson's disease (PD). We identified the cyclin-dependent kinase 2/5 (CDK2/5) inhibitor GW8510 as our most significant hit and characterized its effects in rodent MN9D cells and in human neuronal cells derived from induced pluripotent stem cells. GW8510 demonstrated neuroprotective ability in MN9D cells in the presence of 1-methyl-4-phenylpyridium (MPP(+)), a widely used neurotoxin model for Parkinson's disease. In order to delineate the nature and extent of GW8510's neuroprotective properties, we studied GW8510 in human neuronal cells in the context of various mechanisms of cellular stress. We found that GW8510 was protective against small-molecule mitochondrial and endoplasmic reticulum stressors. Our findings illustrate an approach to using small-molecule gene expression libraries to identify compounds with therapeutic potential in human diseases. PMID:27270122

  2. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    PubMed Central

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides. PMID:27625674

  3. Integromic Analysis of Genetic Variation and Gene Expression Identifies Networks for Cardiovascular Disease Phenotypes

    PubMed Central

    Yao, Chen; Chen, Brian H.; Joehanes, Roby; Otlu, Burcak; Zhang, Xiaoling; Liu, Chunyu; Huan, Tianxiao; Tastan, Oznur; Cupples, L. Adrienne; Meigs, James B.; Fox, Caroline S.; Freedman, Jane E.; Courchesne, Paul; O’Donnell, Christopher J.; Munson, Peter J.; Keles, Sunduz; Levy, Daniel

    2015-01-01

    Background Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. Methods and Results We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P≤5×10−8) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. Conclusions Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD. PMID:25533967

  4. Exome sequencing identifies potential novel candidate genes in patients with unexplained colorectal adenomatous polyposis.

    PubMed

    Spier, Isabel; Kerick, Martin; Drichel, Dmitriy; Horpaopan, Sukanya; Altmüller, Janine; Laner, Andreas; Holzapfel, Stefanie; Peters, Sophia; Adam, Ronja; Zhao, Bixiao; Becker, Tim; Lifton, Richard P; Holinski-Feder, Elke; Perner, Sven; Thiele, Holger; Nöthen, Markus M; Hoffmann, Per; Timmermann, Bernd; Schweiger, Michal R; Aretz, Stefan

    2016-04-01

    In up to 30% of patients with colorectal adenomatous polyposis, no germline mutation in the known genes APC, causing familial adenomatous polyposis, MUTYH, causing MUTYH-associated polyposis, and POLE or POLD1, causing Polymerase-Proofreading-associated polyposis can be identified, although a hereditary etiology is likely. To uncover new causative genes, exome sequencing was performed using DNA from leukocytes and a total of 12 colorectal adenomas from seven unrelated patients with unexplained sporadic adenomatous polyposis. For data analysis and variant filtering, an established bioinformatics pipeline including in-house tools was applied. Variants were filtered for rare truncating point mutations and copy-number variants assuming a dominant, recessive, or tumor suppressor model of inheritance. Subsequently, targeted sequence analysis of the most promising candidate genes was performed in a validation cohort of 191 unrelated patients. All relevant variants were validated by Sanger sequencing. The analysis of exome sequencing data resulted in the identification of rare loss-of-function germline mutations in three promising candidate genes (DSC2, PIEZO1, ZSWIM7). In the validation cohort, further variants predicted to be pathogenic were identified in DSC2 and PIEZO1. According to the somatic mutation spectra, the adenomas in this patient cohort follow the classical pathways of colorectal tumorigenesis. The present study identified three candidate genes which might represent rare causes for a predisposition to colorectal adenoma formation. Especially PIEZO1 (FAM38A) and ZSWIM7 (SWS1) warrant further exploration. To evaluate the clinical relevance of these genes, investigation of larger patient cohorts and functional studies are required. PMID:26780541

  5. A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system

    PubMed Central

    2014-01-01

    Background Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. Results We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu’s positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson’s disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. Conclusions A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations. PMID:24708151

  6. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes.

    PubMed

    Sliva, Anna; Kuang, Zheng; Meluh, Pamela B; Boeke, Jef D

    2016-01-01

    The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954

  7. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes

    PubMed Central

    Sliva, Anna; Kuang, Zheng; Meluh, Pamela B.; Boeke, Jef D.

    2016-01-01

    The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954

  8. Identifying novel mycobacterial stress associated genes using a random mutagenesis screen in Mycobacterium smegmatis.

    PubMed

    Viswanathan, Gopinath; Joshi, Shrilaxmi V; Sridhar, Aditi; Dutta, Sayantanee; Raghunand, Tirumalai R

    2015-12-10

    Cell envelope associated components of Mycobacterium tuberculosis (M.tb) have been implicated in stress response, immune modulation and in vivo survival of the pathogen. Although many such factors have been identified, there is a large disparity between the number of genes predicted to be involved in functions linked to the envelope and those described in the literature. To identify and characterise novel stress related factors associated with the mycobacterial cell envelope, we isolated colony morphotype mutants of Mycobacterium smegmatis (M. smegmatis), based on the hypothesis that mutants with unusual colony morphology may have defects in the biosynthesis of cell envelope components. On testing their susceptibility to stress conditions relevant to M.tb physiology, multiple mutants were found to be sensitive to Isoniazid, Diamide and H2O2, indicative of altered permeability due to changes in cell envelope composition. Two mutants showed defects in biofilm formation implying possible roles for the target genes in antibiotic tolerance and/or virulence. These assays identified novel stress associated roles for several mycobacterial genes including sahH, tatB and aceE. Complementation analysis of selected mutants with the M. smegmatis genes and their M.tb homologues showed phenotypic restoration, validating their link to the observed phenotypes. A mutant carrying an insertion in fhaA encoding a forkhead associated domain containing protein, showed reduced survival in THP-1 macrophages, providing in vivo validation to this screen. Taken together, these results suggest that the M.tb homologues of a majority of the identified genes may play significant roles in the pathogenesis of tuberculosis. PMID:26211627

  9. A cross-study gene set enrichment analysis identifies critical pathways in endometriosis

    PubMed Central

    Zhao, Hongbo; Wang, Qishan; Bai, Chunyan; He, Kan; Pan, Yuchun

    2009-01-01

    Background Endometriosis is an enigmatic disease. Gene expression profiling of endometriosis has been used in several studies, but few studies went further to classify subtypes of endometriosis based on expression patterns and to identify possible pathways involved in endometriosis. Some of the observed pathways are more inconsistent between the studies, and these candidate pathways presumably only represent a fraction of the pathways involved in endometriosis. Methods We applied a standardised microarray preprocessing and gene set enrichment analysis to six independent studies, and demonstrated increased concordance between these gene datasets. Results We find 16 up-regulated and 19 down-regulated pathways common in ovarian endometriosis data sets, 22 up-regulated and one down-regulated pathway common in peritoneal endometriosis data sets. Among them, 12 up-regulated and 1 down-regulated were found consistent between ovarian and peritoneal endometriosis. The main canonical pathways identified are related to immunological and inflammatory disease. Early secretory phase has the most over-represented pathways in the three uterine cycle phases. There are no overlapping significant pathways between the dataset from human endometrial endothelial cells and the datasets from ovarian endometriosis which used whole tissues. Conclusion The study of complex diseases through pathway analysis is able to highlight genes weakly connected to the phenotype which may be difficult to detect by using classical univariate statistics. By standardised microarray preprocessing and GSEA, we have increased the concordance in identifying many biological mechanisms involved in endometriosis. The identified gene pathways will shed light on the understanding of endometriosis and promote the development of novel therapies. PMID:19735579

  10. DNA methylome profiling identifies novel methylated genes in African American patients with colorectal neoplasia.

    PubMed

    Ashktorab, Hassan; Daremipouran, M; Goel, Ajay; Varma, Sudhir; Leavitt, R; Sun, Xueguang; Brim, Hassan

    2014-04-01

    The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject's colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands-in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)-were significantly hypermethylated in tumor vs. normal tissues (P<0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network-the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated

  11. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model

    PubMed Central

    Bard-Chapeau, Emilie A.; Nguyen, Anh-Tuan; Rust, Alistair G.; Sayadi, Ahmed; Lee, Philip; Chua, Belinda Q; New, Lee-Sun; de Jong, Johann; Ward, Jerrold M.; Chin, Christopher KY.; Chew, Valerie; Toh, Han Chong; Abastado, Jean-Pierre; Benoukraf, Touati; Soong, Richie; Bard, Frederic A.; Dupuy, Adam J.; Johnson, Randy L.; Radda, George K.; Chan, Eric CY.; Wessels, Lodewyk FA.; Adams, David J.

    2014-01-01

    The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC we performed a near saturating transposon mutagenesis screen in a mouse HBV model of HCC. This screen identified 21 candidate early stage drivers, and a bewildering number (2860) of candidate later stage drivers, that were enriched for genes mutated, deregulated, or that function in signaling pathways important for human HCC, with a striking 1199 genes linked to cellular metabolic processes. Our study provides a comprehensive overview of the genetic landscape of HCC. PMID:24316982

  12. A CRISPR-based screen identifies genes essential for West Nile virus-induced cell death

    PubMed Central

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N.; Wu, Haoquan

    2015-01-01

    Summary West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the endoplasmic reticulum-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. PMID:26190106

  13. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing.

    PubMed

    Li, Guosheng; Wang, Dongfang; Yang, Ruolin; Logan, Kyle; Chen, Hao; Zhang, Shanshan; Skaggs, Megan I; Lloyd, Alan; Burnett, William J; Laurie, John D; Hunter, Brenda G; Dannenhoffer, Joanne M; Larkins, Brian A; Drews, Gary N; Wang, Xiangfeng; Yadegari, Ramin

    2014-05-27

    Endosperm is a filial structure resulting from a second fertilization event in angiosperms. As an absorptive storage organ, endosperm plays an essential role in support of embryo development and seedling germination. The accumulation of carbohydrate and protein storage products in cereal endosperm provides humanity with a major portion of its food, feed, and renewable resources. Little is known regarding the regulatory gene networks controlling endosperm proliferation and differentiation. As a first step toward understanding these networks, we profiled all mRNAs in the maize kernel and endosperm at eight successive stages during the first 12 d after pollination. Analysis of these gene sets identified temporal programs of gene expression, including hundreds of transcription-factor genes. We found a close correlation of the sequentially expressed gene sets with distinct cellular and metabolic programs in distinct compartments of the developing endosperm. The results constitute a preliminary atlas of spatiotemporal patterns of endosperm gene expression in support of future efforts for understanding the underlying mechanisms that control seed yield and quality. PMID:24821765

  14. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  15. The Next Challenge for Psychiatric Genetics: Characterizing the Risk Associated with Identified Genes

    PubMed Central

    Dick, Danielle M.; Rose, Richard J.; Kaprio, Jaakko

    2006-01-01

    Background As advances in genetics further our ability to identify genes influencing psychiatric disorders, the next challenge facing psychiatric genetics is to characterize the risk associated with specific genetic variants in order to better understand how these susceptibility genes are involved in the pathways leading to illness. Methods To further this goal, findings from behavior genetic analyses about how genetic influences act can be used to guide hypothesis testing about the effects associated with specific genes. Results Using the phenotype of alcohol dependence as an example, this paper provides an overview of how the integration of behavioral and statistical genetics can advance our knowledge about the genetics of psychiatric disorders. Areas currently being investigated in behavior genetics include careful delineation of phenotypes, to examine the heritability of various aspects of normal and abnormal behavior; developmental changes in the nature and magnitude of genetic and environmental effects; the extent to which different behaviors are influenced by common genes; and different forms of gene-environment correlation and interaction. Conclusions Understanding how specific genes are involved in these processes has the potential to significantly enhance our understanding of the development of psychiatric disorders. PMID:17162621

  16. GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region.

    PubMed

    Armstrong, D L; Zidovetzki, R; Alarcón-Riquelme, M E; Tsao, B P; Criswell, L A; Kimberly, R P; Harley, J B; Sivils, K L; Vyse, T J; Gaffney, P M; Langefeld, C D; Jacob, C O

    2014-09-01

    In a genome-wide association study (GWAS) of individuals of European ancestry afflicted with systemic lupus erythematosus (SLE) the extensive utilization of imputation, step-wise multiple regression, lasso regularization and increasing study power by utilizing false discovery rate instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of four genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF and MED1), two components of the NF-κB pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6) and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single-nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease. PMID:24871463

  17. A knowledge driven supervised learning approach to identify gene network of differentially up-regulated genes during neuronal senescence in Rattus norvegicus.

    PubMed

    Dholaniya, Pankaj Singh; Ghosh, Soumitra; Surampudi, Bapi Raju; Kondapi, Anand K

    2015-09-01

    Various approaches have been described to infer the gene interaction network from expression data. Several models based on computational and mathematical methods are available. The fundamental thing in the identification of the gene interaction is their biological relevance. Two genes belonging to the same pathway are more likely to affect the expression of each other than the genes of two different pathways. In the present study, interaction network of genes is described based on upregulated genes during neuronal senescence in the Cerebellar granule neurons of rat. We have adopted a supervised learning method and used it in combination with biological pathway information of the genes to develop a gene interaction network. Further modular analysis of the network has been done to identify senescence-related marker genes. Currently there is no adequate information available about the genes implicated in neuronal senescence. Thus identifying multipath genes belonging to the pathway affected by senescence might be very useful in studying the senescence process. PMID:26163927

  18. Genome-Wide Linkage Analysis of Global Gene Expression in Loin Muscle Tissue Identifies Candidate Genes in Pigs

    PubMed Central

    Steibel, Juan Pedro; Bates, Ronald O.; Rosa, Guilherme J. M.; Tempelman, Robert J.; Rilington, Valencia D.; Ragavendran, Ashok; Raney, Nancy E.; Ramos, Antonio Marcos; Cardoso, Fernando F.; Edwards, David B.; Ernst, Catherine W.

    2011-01-01

    Background Nearly 6,000 QTL have been reported for 588 different traits in pigs, more than in any other livestock species. However, this effort has translated into only a few confirmed causative variants. A powerful strategy for revealing candidate genes involves expression QTL (eQTL) mapping, where the mRNA abundance of a set of transcripts is used as the response variable for a QTL scan. Methodology/Principal Findings We utilized a whole genome expression microarray and an F2 pig resource population to conduct a global eQTL analysis in loin muscle tissue, and compared results to previously inferred phenotypic QTL (pQTL) from the same experimental cross. We found 62 unique eQTL (FDR <10%) and identified 3 gene networks enriched with genes subject to genetic control involved in lipid metabolism, DNA replication, and cell cycle regulation. We observed strong evidence of local regulation (40 out of 59 eQTL with known genomic position) and compared these eQTL to pQTL to help identify potential candidate genes. Among the interesting associations, we found aldo-keto reductase 7A2 (AKR7A2) and thioredoxin domain containing 12 (TXNDC12) eQTL that are part of a network associated with lipid metabolism and in turn overlap with pQTL regions for marbling, % intramuscular fat (% fat) and loin muscle area on Sus scrofa (SSC) chromosome 6. Additionally, we report 13 genomic regions with overlapping eQTL and pQTL involving 14 local eQTL. Conclusions/Significance Results of this analysis provide novel candidate genes for important complex pig phenotypes. PMID:21346809

  19. Aggressive behavior in humans: Genes and pathways identified through association studies.

    PubMed

    Fernàndez-Castillo, Noèlia; Cormand, Bru

    2016-07-01

    Aggressive behavior has both genetic and environmental components. Many association studies have been performed to identify genetic factors underlying aggressive behaviors in humans. In this review we summarize the previous work performed in this field, considering both candidate gene (CGAS) and genome-wide association studies (GWAS), excluding those performed in samples where the primary diagnosis is a psychiatric or neurological disorder other than an aggression-related phenotype. Subsequently, we have studied the enrichment of pathways and functions in GWAS data. The results of our searches show that most CGAS have identified associations with genes involved in dopaminergic and serotonergic neurotransmission and in hormone regulation. On the other hand, GWAS have not yet identified genome-wide significant associations, but top nominal findings are related to several signaling pathways, such as axon guidance or estrogen receptor signaling, and also to neurodevelopmental processes and synaptic plasticity. Future studies should use larger samples, homogeneous phenotypes and standardized measurements to identify genes that underlie aggressive behaviors in humans. © 2016 Wiley Periodicals, Inc. PMID:26773414

  20. Use of In-Biofilm Expression Technology To Identify Genes Involved in Pseudomonas aeruginosa Biofilm Development†

    PubMed Central

    Finelli, Antonio; Gallant, Claude V.; Jarvi, Keith; Burrows, Lori L.

    2003-01-01

    Mature Pseudomonas aeruginosa biofilms form complex three-dimensional architecture and are tolerant of antibiotics and other antimicrobial compounds. In this work, an in vivo expression technology system, originally designed to study virulence-associated genes in complex mammalian environments, was used to identify genes up-regulated in P. aeruginosa grown to a mature (5-day) biofilm. Five unique cloned promoters unable to promote in vitro growth in the absence of purines after recovery from the biofilm environment were identified. The open reading frames downstream of the cloned promoter regions were identified, and knockout mutants were generated. Insertional mutation of PA5065, a homologue of Escherichia coli ubiB, was lethal, while inactivation of PA0240 (a porin homologue), PA3710 (a putative alcohol dehydrogenase), and PA3782 (a homologue of the Streptomyces griseus developmental regulator adpA) had no effect on planktonic growth but caused defects in biofilm formation in static and flowing systems. In competition experiments, mutants demonstrated reduced fitness compared with the parent strain, comprising less than 0.0001% of total biofilm cells after 5 days. Therefore, using in-biofilm expression technology, we have identified novel genes that do not affect planktonic growth but are important for biofilm formation, development, and fitness. PMID:12700249

  1. Identifying genes related to choriogenesis in insect panoistic ovaries by Suppression Subtractive Hybridization

    PubMed Central

    Irles, Paula; Bellés, Xavier; Piulachs, M Dolors

    2009-01-01

    Background Insect ovarioles are classified into two categories: panoistic and meroistic, the later having apparently evolved from an ancestral panoistic type. Molecular data on oogenesis is practically restricted to meroistic ovaries. If we aim at studying the evolutionary transition from panoistic to meroistic, data on panoistic ovaries should be gathered. To this end, we planned the construction of a Suppression Subtractive Hybridization (SSH) library to identify genes involved in panoistic choriogenesis, using the cockroach Blattella germanica as model. Results We constructed a post-vitellogenic ovary library by SSH to isolate genes involved in choriogenesis in B. germanica. The tester library was prepared with an ovary pool from 6- to 7-day-old females, whereas the driver library was prepared with an ovary pool from 3- to 4-day-old females. From the SSH library, we obtained 258 high quality sequences which clustered into 34 unique sequences grouped in 19 contigs and 15 singlets. The sequences were compared against non-redundant NCBI databases using BLAST. We found that 44% of the unique sequences had homologous sequences in known genes of other organisms, whereas 56% had no significant similarity to any of the databases entries. A Gene Ontology analysis was carried out, classifying the 34 sequences into different functional categories. Seven of these gene sequences, representative of different categories and processes, were chosen to perform expression studies during the first gonadotrophic cycle by real-time PCR. Results showed that they were mainly expressed during post-vitellogenesis, which validates the SSH technique. In two of them corresponding to novel genes, we demonstrated that they are specifically expressed in the cytoplasm of follicular cells in basal oocytes at the time of choriogenesis. Conclusion The SSH approach has proven to be useful in identifying ovarian genes expressed after vitellogenesis in B. germanica. For most of the genes, functions

  2. Evaluation of voltage-dependent calcium channel γ gene families identified several novel potential susceptible genes to schizophrenia.

    PubMed

    Guan, Fanglin; Zhang, Tianxiao; Liu, Xinshe; Han, Wei; Lin, Huali; Li, Lu; Chen, Gang; Li, Tao

    2016-01-01

    Voltage-gated L-type calcium channels (VLCC) are distributed widely throughout the brain. Among the genes involved in schizophrenia (SCZ), genes encoding VLCC subunits have attracted widespread attention. Among the four subunits comprising the VLCC (α - 1, α -2/δ, β, and γ), the γ subunit that comprises an eight-member protein family is the least well understood. In our study, to further investigate the risk susceptibility by the γ subunit gene family to SCZ, we conducted a large-scale association study in Han Chinese individuals. The SNP rs17645023 located in the intergenic region of CACNG4 and CACNG5 was identified to be significantly associated with SCZ (OR = 0.856, P = 5.43 × 10(-5)). Similar results were obtained in the meta-analysis with the current SCZ PGC data (OR = 0.8853). We also identified a two-SNP haplotype (rs10420331-rs11084307, P = 1.4 × 10(-6)) covering the intronic region of CACNG8 to be significantly associated with SCZ. Epistasis analyses were conducted, and significant statistical interaction (OR = 0.622, P = 2.93 × 10(-6), Pperm < 0.001) was observed between rs192808 (CACNG6) and rs2048137 (CACNG5). Our results indicate that CACNG4, CACNG5, CACNG6 and CACNG8 may contribute to the risk of SCZ. The statistical epistasis identified between CACNG5 and CACNG6 suggests that there may be an underlying biological interaction between the two genes. PMID:27102562

  3. Evaluation of voltage-dependent calcium channel γ gene families identified several novel potential susceptible genes to schizophrenia

    PubMed Central

    Guan, Fanglin; Zhang, Tianxiao; Liu, Xinshe; Han, Wei; Lin, Huali; Li, Lu; Chen, Gang; Li, Tao

    2016-01-01

    Voltage-gated L-type calcium channels (VLCC) are distributed widely throughout the brain. Among the genes involved in schizophrenia (SCZ), genes encoding VLCC subunits have attracted widespread attention. Among the four subunits comprising the VLCC (α − 1, α −2/δ, β, and γ), the γ subunit that comprises an eight-member protein family is the least well understood. In our study, to further investigate the risk susceptibility by the γ subunit gene family to SCZ, we conducted a large-scale association study in Han Chinese individuals. The SNP rs17645023 located in the intergenic region of CACNG4 and CACNG5 was identified to be significantly associated with SCZ (OR = 0.856, P = 5.43 × 10−5). Similar results were obtained in the meta-analysis with the current SCZ PGC data (OR = 0.8853). We also identified a two-SNP haplotype (rs10420331-rs11084307, P = 1.4 × 10−6) covering the intronic region of CACNG8 to be significantly associated with SCZ. Epistasis analyses were conducted, and significant statistical interaction (OR = 0.622, P = 2.93 × 10−6, Pperm < 0.001) was observed between rs192808 (CACNG6) and rs2048137 (CACNG5). Our results indicate that CACNG4, CACNG5, CACNG6 and CACNG8 may contribute to the risk of SCZ. The statistical epistasis identified between CACNG5 and CACNG6 suggests that there may be an underlying biological interaction between the two genes. PMID:27102562

  4. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence.

    PubMed

    Fernàndez-Castillo, N; Cabana-Domínguez, J; Soriano, J; Sànchez-Mora, C; Roncero, C; Grau-López, L; Ros-Cucurull, E; Daigre, C; van Donkelaar, M M J; Franke, B; Casas, M; Ribasés, M; Cormand, B

    2015-01-01

    Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a 5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle, adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide polymorphisms (SNPs) in a case-control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3'-untranslated region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5 gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence. PMID:26506053

  5. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence

    PubMed Central

    Fernàndez-Castillo, N; Cabana-Domínguez, J; Soriano, J; Sànchez-Mora, C; Roncero, C; Grau-López, L; Ros-Cucurull, E; Daigre, C; van Donkelaar, M M J; Franke, B; Casas, M; Ribasés, M; Cormand, B

    2015-01-01

    Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a 5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle, adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide polymorphisms (SNPs) in a case–control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3′-untranslated region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5 gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence. PMID:26506053

  6. Species-wide Genetic Incompatibility Analysis Identifies Immune Genes as Hotspots of Deleterious Epistasis

    PubMed Central

    Chae, Eunyoung; Bomblies, Kirsten; Kim, Sang-Tae; Karelina, Darya; Zaidem, Maricris; Ossowski, Stephan; Martín-Pizarro, Carmen; Laitinen, Roosa A. E.; Rowan, Beth A.; Tenenboim, Hezi; Lechner, Sarah; Demar, Monika; Habring-Müller, Anette; Lanz, Christa; Rätsch, Gunnar; Weigel, Detlef

    2014-01-01

    Summary Intraspecific genetic incompatibilities prevent the assembly of specific alleles into single genotypes and influence genome- and species-wide patterns of sequence variation. A common incompatibility in plants is hybrid necrosis, characterized by autoimmune responses due to epistatic interactions between natural genetic variants. By systematically testing thousands of F1 hybrids of Arabidopsis thaliana strains, we identified a small number of incompatibility hotspots in the genome, often in regions densely populated by NLR immune receptor genes. In several cases, these immune receptor loci interact with each other, suggestive of conflict within the immune system. A particularly dangerous locus is a highly variable cluster of NLR genes, DANGEROUS MIX2 (DM2), which causes multiple, independent incompatibilities with genes that encode a range of biochemical functions, including NLRs. Our findings suggest that deleterious interactions of immune receptors at the front lines of host-pathogen co-evolution limit the combinations of favorable disease resistance alleles accessible to plant genomes. PMID:25467443

  7. Transcriptome Analysis to Identify Cold-Responsive Genes in Amur Carp (Cyprinus carpio haematopterus)

    PubMed Central

    He, XuLing

    2015-01-01

    The adaptation of fish to low temperatures is the result of long-term evolution. Amur carp (Cyprinus carpio haematopterus) survives low temperatures (0-4°C) for six months per year. Therefore, we chose this fish as a model organism to study the mechanisms of cold-adaptive responses using high-throughput sequencing technology. This system provided an excellent model for exploring the relationship between evolutionary genomic changes and environmental adaptations. The Amur carp transcriptome was sequenced using the Illumina platform and was assembled into 163,121 cDNA contigs, with an average read length of 594 bp and an N50 length of 913 bp. A total of 162,339 coding sequences (CDSs) were identified and of 32,730 unique CDSs were annotated. Gene Ontology (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to classify all CDSs into different functional categories. A large number of cold-responsive genes were detected in different tissues at different temperatures. A total of 9,427 microsatellites were identified and classified, with 1952 identifying in cold-responsive genes. Based on GO enrichment analysis of the cold-induced genes, “protein localization” and “protein transport” were the most highly represented biological processes. “Circadian rhythm,” “protein processing in endoplasmic reticulum,” “endocytosis,” “insulin signaling pathway,” and “lysosome” were the most highly enriched pathways for the genes induced by cold stress. Our data greatly contribute to the common carp (C. carpio) transcriptome resource, and the identification of cold-responsive genes in different tissues at different temperatures will aid in deciphering the genetic basis of ecological and environmental adaptations in this species. Based on our results, the Amur carp has evolved special strategies to survive low temperatures, and these strategies include the system-wide or tissue-specific induction

  8. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    PubMed Central

    2011-01-01

    Background Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion We present the first comprehensive genome-wide transcript

  9. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    PubMed Central

    2011-01-01

    involved in extracellular matrix regulation, cell death/apoptosis, and calcium signaling/muscle function, as well as genes with miscellaneous function was confirmed by qPCR. Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of their protein products. PMID:21385442

  10. Comparative Transcriptome Analysis of White and Purple Potato to Identify Genes Involved in Anthocyanin Biosynthesis

    PubMed Central

    Liu, Yuhui; Lin-Wang, Kui; Deng, Cecilia; Warran, Ben; Wang, Li; Yu, Bin; Yang, Hongyu; Wang, Jing; Espley, Richard V.; Zhang, Junlian; Wang, Di; Allan, Andrew C.

    2015-01-01

    Introduction The potato (Solanum tuberosum) cultivar ‘Xin Daping’ is tetraploid with white skin and white flesh, while the cultivar ‘Hei Meiren’ is also tetraploid with purple skin and purple flesh. Comparative transcriptome analysis of white and purple cultivars was carried out using high-throughput RNA sequencing in order to further understand the mechanism of anthocyanin biosynthesis in potato. Methods and Results By aligning transcript reads to the recently published diploid potato genome and de novo assembly, 209 million paired-end Illumina RNA-seq reads from these tetraploid cultivars were assembled on to 60,930 transcripts, of which 27,754 (45.55%) are novel transcripts and 9393 alternative transcripts. Using a comparison of the RNA-sequence datasets, multiple versions of the genes encoding anthocyanin biosynthetic steps and regulatory transcription factors were identified. Other novel genes potentially involved in anthocyanin biosynthesis in potato tubers were also discovered. Real-time qPCR validation of candidate genes revealed good correlation with the transcriptome data. SNPs (Single Nucleotide Polymorphism) and indels were predicted and validated for the transcription factors MYB AN1 and bHLH1 and the biosynthetic gene anthocyanidin 3-O-glucosyltransferase (UFGT). Conclusions These results contribute to our understanding of the molecular mechanism of white and purple potato development, by identifying differential responses of biosynthetic gene family members together with the variation in structural genes and transcription factors in this highly heterozygous crop. This provides an excellent platform and resource for future genetic and functional genomic research. PMID:26053878