Science.gov

Sample records for gene product trans-activates

  1. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    SciTech Connect

    Kenney, S.; Kamine, J.; Markovitz, D.; Fenrick, R.; Pagano, J.

    1988-03-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.

  2. The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are trans activated by the product of gene VI.

    PubMed

    Scholthof, H B; Gowda, S; Wu, F C; Shepherd, R J

    1992-05-01

    Gene expression of figwort mosaic virus (FMV), a caulimovirus, was investigated by electroporation of Nicotiana edwardsonii cell suspension protoplasts with cloned viral constructs in which a reporter gene was inserted at various positions on the genome. The results showed that the genome of FMV contains two promoters; one is used for the production of a full-length RNA and another initiates synthesis of a separate monocistronic RNA for gene VI. Evidence is provided that the full-length transcript, the probable template for reverse transcription, can serve as a polycistronic mRNA for translation of genes I through V and perhaps also gene VI. Expression of all the genes on the polycistronic mRNA is trans activated by the gene VI protein. Reporter gene expression appears most efficient when its start codon is in close proximity to the stop codon of the preceding gene, as for the native genes of caulimoviruses. We propose that the gene VI product enables expression of the polycistronic mRNA by promoting reinitiation of ribosomes to give translational coupling of individual genes. PMID:1560539

  3. Trans-activation function of a 3 prime truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    SciTech Connect

    Takada, Shinako; Koike, Katsuro )

    1990-08-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3{prime} end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product.

  4. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors.

    PubMed Central

    Antinore, M J; Birrer, M J; Patel, D; Nader, L; McCance, D J

    1996-01-01

    The E7 gene product of human papillomavirus type 16 (HPV16) binds to the retinoblastoma gene product (pRb) and dissociates pRb-E2F complexes. However, the observation that the ability of E7 to bind pRb is not required for the HPV16-induced immortalization of primary keratinocytes prompted a search for other cellular factors bound by E7. Using a glutathione-S-transferase (GST) fusion protein system, we show that E7 complexes with AP1 transcription factors including c-Jun, JunB, JunD and c-Fos. The ability of E7 to complex with c-Jun in vivo is demonstrated by co-immunoprecipitation and the yeast two-hybrid system. An analysis of E7 point mutants in the GST system indicates that the E7 zinc-finger motif, but not the pRb binding domain, is involved in these interactions. Using c-Jun deletion mutants, E7 binding maps between amino acids 224 and 286 of c-Jun. E7 trans-activates c-Jun-induced transcription from a Jun responsive promoter, and this activity correlates with the ability of E7 mutants to bind Jun proteins. Finally, a transcriptionally inactive c-Jun deletion, which can bind E7, interferes with the E7-induced transformation of rat embryo fibroblasts in cooperation with an activated ras, indicating that the Jun-E7 interaction is physiologically relevant and that Jun factors may be targeted in the E7 transformation pathway. Images PMID:8617242

  5. Sp1 trans-activates the murine H(+)-K(+)-ATPase alpha(2)-subunit gene.

    PubMed

    Yu, Zhiyuan; Li, Mei; Zhang, Dongyu; Xu, William; Kone, Bruce C

    2009-07-01

    The H(+)-K(+)-ATPase alpha(2) (HKalpha2) gene of the renal collecting duct and distal colon plays a central role in potassium and acid-base homeostasis, yet its transcriptional control remains poorly characterized. We previously demonstrated that the proximal 177 bp of its 5'-flanking region confers basal transcriptional activity in murine inner medullary collecting duct (mIMCD3) cells and that NF-kappaB and CREB-1 bind this region to alter transcription. In the present study, we sought to determine whether the -144/-135 Sp element influences basal HKalpha2 gene transcription in these cells. Electrophoretic mobility shift and supershift assays using probes for -154/-127 revealed Sp1-containing DNA-protein complexes in nuclear extracts of mIMCD3 cells. Chromatin immunoprecipitation (ChIP) assays demonstrated that Sp1, but not Sp3, binds to this promoter region of the HKalpha2 gene in mIMCD3 cells in vivo. HKalpha2 minimal promoter-luciferase constructs with point mutations in the -144/-135 Sp element exhibited much lower activity than the wild-type promoter in transient transfection assays. Overexpression of Sp1, but not Sp3, trans-activated an HKalpha2 proximal promoter-luciferase construct in mIMCD3 cells as well as in SL2 insect cells, which lack Sp factors. Conversely, small interfering RNA knockdown of Sp1 inhibited endogenous HKalpha2 mRNA expression, and binding of Sp1 to chromatin associated with the proximal HKalpha2 promoter without altering the binding or regulatory influence of NF-kappaB p65 or CREB-1 on the proximal HKalpha2 promoter. We conclude that Sp1 plays an important and positive role in controlling basal HKalpha2 gene expression in mIMCD3 cells in vivo and in vitro. PMID:19420113

  6. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus

    SciTech Connect

    Davis, M.G.; Kenney, S.C.; Kamine, J.; Pagano, J.S.; Huang, E.S.

    1987-12-01

    Almost all homosexual patients with acquired immunodeficiency syndrome are also actively infected with human cytomegalovirus (HCMV). The authors have hypothesized that an interaction between HCMV and human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome, may exist at a molecular level and contribute to the manifestations of HIV infection. In this report, they demonstrate that the immediate-early gene region of HCMV, in particular immediate-early region 2, trans-activates the expression of the bacterial gene chloramphenicol acetyltransferase that is fused to the HIV long terminal repeat and carried by plasmid pHIV-CAT. The HCMV immediate-early trans-activator increases the level of mRNA from the plamid pHIV-CAT. The sequences of HIV that are responsive to trans-activation by the HDMV immediate-early region are distinct from HIV sequences that are required for response to the HIV tat. The stimulation of HIV gene expression by HDMV gene functions could enhance the consequences of HIV infection in persons with previous or concurrent HCMV infection.

  7. Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events

    SciTech Connect

    Hauber, J.; Perkins, A.; Heimer, E.P.; Cullen, B.R.

    1987-09-01

    Human immunodeficiency virus encodes a gene product termed tat that is able to activate viral gene expression when present in trans. The mechanism of action of the tat gene product appears to be bimodal, resulting in both an increase in the steady-state level of viral mRNA and the enhanced translation of that RNA. In this report, the authors have examined the mechanism by which tat elevates viral mRNA levels. Data are presented demonstrating that tat acts by increasing the rate of viral transcription, rather than by modulating the stability of viral mRNA. Indirect immunofluorescence was used to show that tat is predominantly localized in the nucleus of expressing cells, a location consistent with a role in the regulation of viral transcription. These results suggest that tat could play a role in human immunodeficiency virus replication essentially similar to that proposed for the trans-acting nuclear gene products described for several other virus species.

  8. Transient gene expression control: effects of transfected DNA stability and trans-activation by viral early proteins.

    PubMed

    Alwine, J C

    1985-05-01

    The effects of trans-acting factors and transfected DNA stability on promoter activity were examined with chloramphenicol acetyl transferase (CAT) transient expression analysis. With cotransfection into CV-1P and HeLa cells, simian virus 40 T antigen, adenovirus E1a, and herpes-virus IE proteins were compared for their ability to trans-activate a variety of eucaryotic promoters constructed into CAT plasmids. T antigen and the IE protein were promiscuous activators of all the promoters tested [the simian virus 40 late promoter, the adenovirus E3 promoter, the alpha 2(I) collagen promoter, and the promoter of the Rous sarcoma virus long terminal repeat]. Conversely the E1a protein was specific, activating only the adenovirus E3 promoter and suppressing the basal activity of the other promoters. This specificity of activation by E1a contrasted with the high activity generated by all of the promoter-CAT plasmids when transfected into 293 cells, which endogenously produce E1a protein. Examination of transfected 293 cells determined that they stabilized much greater amounts of plasmid DNA than any other cells tested (CV-1P, COS, NIH-3T3, KB). Thus the high activity of nonadenovirus promoter-CAT plasmids in 293 cells results from the cumulative effect of basal promoter activity from a very large number of gene copies, not from E1a activation. This conclusion was supported by similar transfection analysis of KB cell lines which endogenously produce E1a protein. These cells stabilize plasmid DNA at a level comparable to that of CV-1P cells and, in agreement with the CV-1P cotransfection results, did not activate a nonadenovirus promoter-CAT plasmid. These results indicate that the stability of plasmid DNA must be considered when transient gene expression is being compared between cell lines. The use of relative plasmid copy numbers for the standardization of transient expression results is discussed. PMID:2987671

  9. Transient gene expression control: effects of transfected DNA stability and trans-activation by viral early proteins.

    PubMed Central

    Alwine, J C

    1985-01-01

    The effects of trans-acting factors and transfected DNA stability on promoter activity were examined with chloramphenicol acetyl transferase (CAT) transient expression analysis. With cotransfection into CV-1P and HeLa cells, simian virus 40 T antigen, adenovirus E1a, and herpes-virus IE proteins were compared for their ability to trans-activate a variety of eucaryotic promoters constructed into CAT plasmids. T antigen and the IE protein were promiscuous activators of all the promoters tested [the simian virus 40 late promoter, the adenovirus E3 promoter, the alpha 2(I) collagen promoter, and the promoter of the Rous sarcoma virus long terminal repeat]. Conversely the E1a protein was specific, activating only the adenovirus E3 promoter and suppressing the basal activity of the other promoters. This specificity of activation by E1a contrasted with the high activity generated by all of the promoter-CAT plasmids when transfected into 293 cells, which endogenously produce E1a protein. Examination of transfected 293 cells determined that they stabilized much greater amounts of plasmid DNA than any other cells tested (CV-1P, COS, NIH-3T3, KB). Thus the high activity of nonadenovirus promoter-CAT plasmids in 293 cells results from the cumulative effect of basal promoter activity from a very large number of gene copies, not from E1a activation. This conclusion was supported by similar transfection analysis of KB cell lines which endogenously produce E1a protein. These cells stabilize plasmid DNA at a level comparable to that of CV-1P cells and, in agreement with the CV-1P cotransfection results, did not activate a nonadenovirus promoter-CAT plasmid. These results indicate that the stability of plasmid DNA must be considered when transient gene expression is being compared between cell lines. The use of relative plasmid copy numbers for the standardization of transient expression results is discussed. Images PMID:2987671

  10. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA.

    PubMed

    Sampey, Gavin C; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M; Zadeh, Mohammad Asad; Lepene, Benjamin; Klase, Zachary A; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-15

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART. PMID:26553869

  11. Reactivation of a methylation-silenced gene in adenovirus-transformed cells by 5-azacytidine or by E1A trans activation.

    PubMed Central

    Knust, B; Brüggemann, U; Doerfler, W

    1989-01-01

    In the adenovirus type 2 (Ad2)-transformed hamster cell line HE3, the integrated late E2A promoter of Ad2 DNA is inactive, is methylated at all three 5'-CCGG-3' sequences, and can be reactivated by growing the cells in the presence of 50 microM 5-azacytidine (5-azaC). The three 5'-CCGG-3' sequences then become demethylated. Demethylation and reactivation are stable over 30 passages even after the removal of 5-azaC. The dormant late E2A promoter in cell line HE3 can also be reactivated by transfecting the cells with recombinant plasmids that carry the left terminal E1A and part of the E1B region of Ad2 DNA or the E1A 13S cDNA, but not with plasmids containing the E1A 12S cDNA. The E1A 13S cDNA encodes the 289-amino-acid trans-activating protein of Ad2. The E1A-mediated reactivation of the late E2A promoter is not accompanied by its demethylation in both DNA complements. Cell line HE3 produces constitutively E1A-encoded mRNAs and reactivates the methylated late E2A promoter-chloramphenicol acetyltransferase gene construct after transfection into HE3 cells. Constitutive levels of the endogenous E1A gene products in HE3 cells are detectable but, paradoxically, appear insufficient to reactivate the endogenous, chromosomally integrated E2A gene. Images PMID:2473219

  12. Functional mapping of a trans-activating gene required for expression of a baculovirus delayed-early gene.

    PubMed Central

    Guarino, L A; Summers, M D

    1986-01-01

    The temporal regulation of an early gene of the baculovirus Autographa californica nuclear polyhedrosis virus was examined. We constructed a plasmid (plasmid 39CAT) in which the bacterial gene for chloramphenicol acetyltransferase was placed under the control of the promoter for the gene for a A. californica nuclear polyhedrosis virus 39,000-dalton protein (39K). A transient expression assay of plasmid 39CAT revealed that the 39K gene was expressed in infected cells but not in uninfected cells, indicating that the 39K gene should be classified as a delayed-early gene. The 39K promoter also efficiently directed the synthesis of chloramphenicol acetyltransferase when the plasmid was cotransfected with viral DNA which had been restricted with several restriction enzymes. To map the location of the gene(s) required for the synthesis of 39K, plasmid 39CAT was cotransfected with purified restriction fragments of A. californica nuclear polyhedrosis virus DNA. Fragments which mapped between 90.7 and 100.8 map units induced plasmid 39CAT. Plasmid pEcoRI-B, containing EcoRI fragment B (90 to 100 map units), activated plasmid 39CAT. Functional mapping of plasmid pEcoRI-B indicated that the essential region was located between 95.0 and 97.5 map units. The 5' end of this gene was mapped, and the chloramphenicol acetyltransferase gene was inserted under the control of its promoter. Transient assay experiments indicated that the trans-acting regulatory gene was expressed in uninfected cells and is therefore an immediate-early gene. This gene was named IE-1. Images PMID:3944847

  13. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    PubMed Central

    Geng, Deyu; Zhang, Zhixia; Guo, Huarong

    2012-01-01

    p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933

  14. Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum).

    PubMed

    Liu, Liqing; Zhu, Kai; Yang, Yanfang; Wu, Jian; Chen, Fadi; Yu, Deyue

    2008-03-01

    Dehydration responsive element binding (DREB) proteins are important transcription factors in plant stress response and signal transduction. In this study, a DREB homolog gene, DvDREB2A, was isolated from chrysanthemum (Dendranthema vestitum) by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. It contained an open reading frame (ORF) of 1,471 bp encoding 366 amino acid residues and was classified as a DREB2 subfamily member based on multiple sequence alignment. The predicted protein sequence contained a typical AP2/EREBP DNA-binding domain near the N-terminal region. In yeast one-hybrid analysis DvDREB2A protein was specifically bound to DRE elements (core sequence, A/GCCGAC) and activated the expression of the reporter HIS3 and LacZ. Transient expression experiment suggested that DvDREB2A protein was localized to the nucleus of onion epidermis cells. Quantitative real-time PCR (QRT-PCR) experiments showed that expression level of DvDREB2A was significantly affected by heat, low temperature, drought, abscisic acid (ABA) and high salinity treatments. These results indicated that the DvDREB2A gene is a new member of the DREB transcription factors, which may play an important role in providing tolerance to environmental stresses. PMID:18224275

  15. Cotton leaf curl Multan betasatellite as a plant gene delivery vector trans-activated by taxonomically diverse geminiviruses.

    PubMed

    Kharazmi, S; Behjatnia, S A A; Hamzehzarghani, H; Niazi, A

    2012-07-01

    Cotton leaf curl Multan betasatellite (CLCuMB) replicates in tobacco, tomato and datura plants in the presence of the helper viruses tomato leaf curl virus-Australia, Iranian isolates of tomato yellow leaf curl virus, tomato leaf curl Karnataka virus, and beet severe curly top virus (BSCTV). Infectious recombinant CLCuMB constructs were made in which segments of either the CaMV 35S or the petunia ChsA promoter replaced the CLCuMB βC1 ORF, and these were designated pBinβΔC1-35S and pBinβΔC1-ChsA, respectively. Inoculation of tobacco plants containing a functional 35S-GUS transgene with pBinβΔC1-35S, and normal petunia plants with pBinβΔC1-ChsA, in the presence of helper viruses resulted in silencing of GUS and ChsA activities in transgenic tobacco and non-transgenic petunia plants, respectively. Replication of CLCuMB with different geminiviruses, especially BSCTV, a curtovirus with a broad host range, makes it a valuable gene delivery vector to the large number of host plant species of geminiviruses that support CLCuMB. PMID:22476203

  16. CDC42-Interacting Protein 4 Gene Is Down Trans-Regulated by HBV DNA polymerase Trans Activated Protein 1

    PubMed Central

    LUN, Yongzhi; XU, Chongbo; CHI, Qing; WANG, Xuelei; SUI, Wen; JIANG, Sujuan

    2014-01-01

    Abstract Background Hepatitis B Virus (HBV) DNA polymerase transactivated protein 1 (HBVDNAPTP1) is a novel protein transactivated by HBV DNA polymerase, screened by suppression subtractive hybridization technique (GenBank accession no: AY450389). The biological function of HBVDNAPTP1 was investigated in this study. Methods We constructed a vector pcDNA3.1 (-)/myc-His A-HBVDNAPTP1 and used it to transfect acute monocytic leukemia cell line THP-1. HBVDNAPTP1 expression was detected by western blot analysis in the cells. A cDNA library of genes transactivated by HBVDNAPTP1 in THP-1 cells was made in pGEM-T Easy using suppression subtractive hybridization (SSH). The cDNAs were sequenced and analyzed with BLAST search against the sequences in GenBank. Results Some sequences, such as CIP4, might be involved in apoptosis development. mRNA and protein expression of CIP4 was identified by Real time RT-PCR and western blot in THP-1 cells. HBVDNAPTP1 could down-regulate the expression of CIP4 at both transcription and translation levels. Conclusion HBVDNAPTP1 may be involved in the positive regulation on the initiation of monocyte apoptosis. The result contribute to reveal the HBVDNAPTP1 biological functions and provide new evidences for further exploration of the regulatory mechanism of HBVDNAPTP1. PMID:25988087

  17. The equine herpesvirus-1 IR3 gene that lies antisense to the sole immediate-early (IE) gene is trans-activated by the IE protein, and is poorly expressed to a protein

    SciTech Connect

    Ahn, Byung Chul; Breitenbach, Jonathan E.; Kim, Seong K.; O'Callaghan, Dennis J. . E-mail: docall@lsuhsc.edu

    2007-06-20

    The unique IR3 gene of equine herpesvirus 1 (EHV-1) is expressed as a late 1.0-kb transcript. Previous studies confirmed the IR3 transcription initiation site and tentatively identified other cis-acting elements specific to IR3 such as a TATA box, a 443 base pair 5'untranslated region (UTR), a 285 base pair open reading frame (ORF), and a poly adenylation (A) signal [Holden, V.R., Harty, R.N., Yalamanchili, R.R., O'Callaghan, D.J., 1992. The IR3 gene of equine herpesvirus type 1: a unique gene regulated by sequences within the intron of the immediate-early gene. DNA Seq. 3, 143-152]. Transient transfection assays revealed that the IR3 promoter is strongly trans-activated by the IE protein (IEP) and that coexpression of the IEP with the early EICP0 and IR4 regulatory proteins results in maximal trans-activation of the IR3 promoter. Gel shift assays revealed that the IEP directly binds to the IR3 promoter region. Western blot analysis showed that the IR3 protein produced in E. coli was detected by antibodies to IR3 synthetic peptides; however, the IR3 protein was not detected in EHV-1 infected cell extracts by these same anti-IR3 antibodies, even though the IR3 transcript was detected by northern blot. These findings suggest that the IR3 may not be expressed to a protein. Expression of an IR3/GFP fusion gene was not observed, but expression of a GFP/IR3 fusion gene was detected by fluorescent microscopy. In further attempts to detect the IR3/GFP fusion protein using anti-GFP antibody, western blot analysis showed that the IR3/GFP fusion protein was not detected in vivo. Interestingly, a truncated form of the GFP/IR3 protein was synthesized from the GFP/IR3 fusion gene. However, GFP/IR3 and IR3/GFP fusion proteins of the predicted sizes were synthesized by in vitro coupled transcription and translation of the fusion genes, suggesting poor expression of the IR3 protein in vivo. The possible role of the IR3 transcript in EHV-1 infection is discussed.

  18. Chemical synthesis of human papillomavirus type 16 E7 oncoprotein: autonomous protein domains for induction of cellular DNA synthesis and for trans activation.

    PubMed

    Rawls, J A; Pusztai, R; Green, M

    1990-12-01

    The human papillomavirus type 16 E7 protein belongs to a family of nuclear oncoproteins that share amino acid sequences and functional homology. To localize biochemical activities associated with E7, we chemically synthesized the full-length 98-amino-acid polypeptide and several deletion mutant peptides. We show that the E7 polypeptide is biologically active and possesses at least two functional domains; the first induces cellular DNA synthesis in quiescent rodent cells, and the second trans activates the adenovirus E1A-inducible early E2 promoter and binds zinc. Further, each domain is autonomous and can function on separate peptides. DNA synthesis induction activity maps within the N-terminal portion of the molecule, which contains sequences related to adenovirus E1A conserved domains 1 and 2 required for cell transformation and binding of the retinoblastoma gene product. trans-Activation and Zn-binding activities map within the C-terminal portion of the molecule, a region which contains Cys-X-X-Cys motifs. trans Activation does not require protein synthesis, implying a mechanism that involves interaction with a preexisting cellular factor(s). E7 trans activates the adenovirus E2 promoter but not other E1A-inducible viral promoters, suggesting the possibility that E7 trans activation involves interaction, directly or indirectly, with cellular transcription factor E2F. PMID:2173783

  19. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene.

    PubMed

    Liu, Yu-Chin; Chang, Pu-Yuan; Chao, Chuck C-K

    2015-12-15

    In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy. PMID:26384430

  20. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene

    PubMed Central

    Liu, Yu-Chin; Chang, Pu-Yuan; Chao, Chuck C.-K.

    2015-01-01

    In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy. PMID:26384430

  1. Localization of sequences responsible for trans-activation of the equine infectious anemia virus long terminal repeat.

    PubMed Central

    Sherman, L; Gazit, A; Yaniv, A; Kawakami, T; Dahlberg, J E; Tronick, S R

    1988-01-01

    We used the Escherichia coli chloramphenicol acetyltransferase gene (cat) to study sequences that influence expression of the equine infectious anemia virus (EIAV) genome. The EIAV long terminal repeat (LTR) directed CAT activity in a canine cell line, but at levels much lower than those achieved with other eucaryotic viral promoters. In the same cells infected with EIAV or cotransfected with molecularly cloned EIAV genomic DNA, LTR-directed activity was markedly enhanced. Comparison of cat mRNA and protein levels in these cells indicated that this trans-activating effect could be accounted for by a bimodal mechanism in which both transcriptional and posttranscriptional events are enhanced. trans-Activation but not promoter activity was abolished by deletion of the R-U5 region of the EIAV LTR. EIAV sequences responsible for the trans-activating function could be localized to a region encompassing the 3' and 5' termini of the pol and env genes, respectively (nucleotides 4474 to 5775). Interestingly, this stretch harbors a short open reading frame with some amino acid sequence similarity to the human immunodeficiency virus type I tat gene product. Images PMID:2824840

  2. EPAS1 trans-activation during hypoxia requires p42/p44 MAPK.

    PubMed

    Conrad, P W; Freeman, T L; Beitner-Johnson, D; Millhorn, D E

    1999-11-19

    Hypoxia is a common environmental stress that regulates gene expression and cell function. A number of hypoxia-regulated transcription factors have been identified and have been shown to play critical roles in mediating cellular responses to hypoxia. One of these is the endothelial PAS-domain protein 1 (EPAS1/HIF2-alpha/HLF/HRF). This protein is 48% homologous to hypoxia-inducible factor 1-alpha (HIF1-alpha). To date, virtually nothing is known about the signaling pathways that lead to either EPAS1 or HIF1-alpha activation. Here we show that EPAS1 is phosphorylated when PC12 cells are exposed to hypoxia and that p42/p44 MAPK is a critical mediator of EPAS1 activation. Pretreatment of PC12 cells with the MEK inhibitor, PD98059, completely blocked hypoxia-induced trans-activation of a hypoxia response element (HRE) reporter gene by transfected EPAS1. Likewise, expression of a constitutively active MEK1 mimicked the effects of hypoxia on HRE reporter gene expression. However, pretreatment with PD98059 had no effect on EPAS1 phosphorylation during hypoxia, suggesting that MAPK targets other proteins that are critical for the trans-activation of EPAS1. We further show that hypoxia-induced trans-activation of EPAS1 is independent of Ras. Finally, pretreatment with calmodulin antagonists nearly completely blocked both the hypoxia-induced phosphorylation of MAPK and the EPAS1 trans-activation of HRE-Luc. These results demonstrate that the MAPK pathway is a critical mediator of EPAS1 activation and that activation of MAPK and EPAS1 occurs through a calmodulin-sensitive pathway and not through the GTPase, Ras. These results are the first to identify a specific signaling pathway involved in EPAS1 activation. PMID:10559262

  3. Analysis of DNA sequences which regulate the transcription of herpes simplex virus immediate early gene 3: DNA sequences required for enhancer-like activity and response to trans-activation by a virion polypeptide.

    PubMed Central

    Bzik, D J; Preston, C M

    1986-01-01

    The far upstream region of herpes simplex virus (HSV) immediate early (IE) gene 3 has previously been shown to increase gene expression in an enhancer-like manner, and to contain sequences which respond to stimulation of transcription by a virion polypeptide, Vmw65. To analyse the specific DNA sequences which mediate these functions, sequential deletions from each end of the far upstream region were made. The effects of the deletions on transcription in the absence or presence of the Vmw65 were measured by use of a transient expression assay. The enhancer-like activity was due to three separable elements, whereas two additional DNA regions were involved in the response to Vmw65. One of the responding elements corresponded to an AT-rich consensus (TAATGARATTC, where R = purine) present in all IE gene far upstream regions, and the other was a GA-rich sequence also present in IE genes 2 and 4/5. The TAATGARATTC element could mediate responsiveness to Vmw65 but it was fully active only in the presence of the GA-rich element. The GA-rich element was unable to confer a strong response alone but could activate an otherwise nonfunctional homologue of TAATGARATTC. PMID:3003700

  4. Analysis of DNA sequences which regulate the transcription of herpes simplex virus immediate early gene 3: DNA sequences required for enhancer-like activity and response to trans-activation by a virion polypeptide.

    PubMed

    Bzik, D J; Preston, C M

    1986-01-24

    The far upstream region of herpes simplex virus (HSV) immediate early (IE) gene 3 has previously been shown to increase gene expression in an enhancer-like manner, and to contain sequences which respond to stimulation of transcription by a virion polypeptide, Vmw65. To analyse the specific DNA sequences which mediate these functions, sequential deletions from each end of the far upstream region were made. The effects of the deletions on transcription in the absence or presence of the Vmw65 were measured by use of a transient expression assay. The enhancer-like activity was due to three separable elements, whereas two additional DNA regions were involved in the response to Vmw65. One of the responding elements corresponded to an AT-rich consensus (TAATGARATTC, where R = purine) present in all IE gene far upstream regions, and the other was a GA-rich sequence also present in IE genes 2 and 4/5. The TAATGARATTC element could mediate responsiveness to Vmw65 but it was fully active only in the presence of the GA-rich element. The GA-rich element was unable to confer a strong response alone but could activate an otherwise nonfunctional homologue of TAATGARATTC. PMID:3003700

  5. A versatile cis-blocking and trans-activation strategy for ribozyme characterization

    PubMed Central

    Kennedy, Andrew B.; Liang, Joe C.; Smolke, Christina D.

    2013-01-01

    Synthetic RNA control devices that use ribozymes as gene-regulatory components have been applied to controlling cellular behaviors in response to environmental signals. Quantitative measurement of the in vitro cleavage rate constants associated with ribozyme-based devices is essential for advancing the molecular design and optimization of this class of gene-regulatory devices. One of the key challenges encountered in ribozyme characterization is the efficient generation of full-length RNA from in vitro transcription reactions, where conditions generally lead to significant ribozyme cleavage. Current methods for generating full-length ribozyme-encoding RNA rely on a trans-blocking strategy, which requires a laborious gel separation and extraction step. Here, we develop a simple two-step gel-free process including cis-blocking and trans-activation steps to support scalable generation of functional full-length ribozyme-encoding RNA. We demonstrate our strategy on various types of natural ribozymes and synthetic ribozyme devices, and the cleavage rate constants obtained for the RNA generated from our strategy are comparable with those generated through traditional methods. We further develop a rapid, label-free ribozyme cleavage assay based on surface plasmon resonance, which allows continuous, real-time monitoring of ribozyme cleavage. The surface plasmon resonance-based characterization assay will complement the versatile cis-blocking and trans-activation strategy to broadly advance our ability to characterize and engineer ribozyme-based devices. PMID:23155065

  6. Transcriptional trans activators of human and simian foamy viruses contain a small, highly conserved activation domain.

    PubMed Central

    Garrett, E D; He, F; Bogerd, H P; Cullen, B R

    1993-01-01

    The Bel-1 protein of human foamy virus is a potent transcriptional trans activator of its homologous long terminal repeat promoter element. Here, we demonstrate that Bel-1 can also efficiently activate gene expression when targeted to a heterologous promoter by fusion to the DNA-binding motif of the yeast GAL4 protein. Analysis of a series of deletion mutants of Bel-1 generated in this hybrid protein context suggests the presence of a single transcription activation domain that is fully contained within a discrete, approximately 30-amino-acid segment located proximal to the Bel-1 carboxy terminus. Although this short motif can be shown to function effectively in eukaryotic cells of mammalian, avian, and fungal origin, it does not bear any evident sequence homology to the known classes of eukaryotic activation domain. However, this Bel-1 activation domain was found to be fully conserved, in terms of both biological activity and location, in the distantly related Taf trans activator of simian foamy virus type 1. Images PMID:8411385

  7. Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus.

    PubMed Central

    Marciniak, R A; Garcia-Blanco, M A; Sharp, P A

    1990-01-01

    Human immunodeficiency virus type 1 RNAs contain a sequence, trans-activation-response (TAR) element, which is required for tat protein-mediated trans-activation of viral gene expression. We have identified a nuclear protein from extracts of HeLa cells that binds to the TAR element RNA in a sequence-specific manner. The binding of this 68-kDa polypeptide was detected by UV cross-linking proteins to TAR element RNA transcribed in vitro. Competition experiments were performed by using a partially purified preparation of the protein to quantify the relative binding affinities of TAR element RNA mutants. The binding affinity of the TAR mutants paralleled the reported ability of those mutants to support tat trans-activation in vivo. We propose that this cellular protein moderates TAR activity in vivo. Images PMID:2333305

  8. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

    PubMed

    Nilsson, L; Verbeek, H; Vijgenboom, E; van Drunen, C; Vanet, A; Bosch, L

    1992-02-01

    In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is

  9. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

    PubMed Central

    Nilsson, L; Verbeek, H; Vijgenboom, E; van Drunen, C; Vanet, A; Bosch, L

    1992-01-01

    In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is

  10. Member of the CREB/ATF protein family, but not CREB alpha plays an active role in BLV tax trans activation in vivo.

    PubMed Central

    Kiss-Toth, E; Paca-uccaralertkun, S; Unk, I; Boros, I

    1993-01-01

    The trans activator protein of Bovine Leukaemia Virus (tax) increases the rate of transcription from the virus promoter through 21 bp sequences located in three tandem copies in the virus LTR. Based on data obtained by three different experimental approaches we concluded that the central CRE-like motif found in each of the BLV 21 bp repeats plays an important and indispensable role in tax mediated trans activation. These include (i) in vivo analysis of the function of mutant 21 bp sequences in transient transfection, (ii) gel mobility shift assay to show that CREB binds to BLV 21 bp repeats in vitro and (iii) the demonstration that the production of antisense CREB mRNA inhibits tax trans activation. Further studies with different deletion mutant CREB proteins suggest that although CREB alpha can interact with factors involved in BLV trans activation, it does not promote transcription initiation; consequently some other member/s of the CREB/ATF family must be involved. Images PMID:8396235

  11. Subnuclear localization of the trans-activating protein of human T-cell leukemia virus type I.

    PubMed Central

    Slamon, D J; Boyle, W J; Keith, D E; Press, M F; Golde, D W; Souza, L M

    1988-01-01

    Human T-cell leukemia virus type I is associated with human lymphoid malignancies. The p40xI protein encoded by the x gene of this virus is believed to play some role in virally mediated transformation. This gene is known to encode a transcriptional trans activator which previous studies have shown to be a nuclear protein. Further characterization of the intracellular kinetics of this protein showed that it migrated into the nucleus very soon after synthesis. Within the nucleus, p40xI was distributed almost equally between the nucleoplasm and the nuclear matrix. Given the proposed role of the nuclear matrix in RNA transcription, the association of p40xI with the matrix places it in an appropriate cellular compartment to exercise an effect on transcription. Images PMID:2828664

  12. Subnuclear localization of the trans-activating protein of human T-cell leukemia virus type I

    SciTech Connect

    Slamon, D.J.; Keith, D.E.; Golde, D.W. ); Boyle, W.J. ); Press, M.F. ); Souza, L.M. )

    1988-03-01

    Human T-cell leukemia virus type I is associated with human lymphoid malignancies. The p40{sup xI} protein encoded by the x gene of this virus is believed to play some role in virally mediated transformation. This gene is known to encode a transcriptional trans activator which previous studies have shown to be a nuclear protein. Further characterization of the intracellular kinetics of this protein showed that it migrated into the nucleus very soon after synthesis. Within the nucleus, p40{sup xI} was distributed almost equally between the nucleoplasm and the nuclear matrix. Given the proposed role of the nuclear matrix in RNA transcription, the association of p40{sup xI} with the matrix places it in an appropriate cellular compartment to exercise an effect on transcription.

  13. trans Activation of the simian virus 40 enhancer.

    PubMed Central

    Robbins, P D; Rio, D C; Botchan, M R

    1986-01-01

    We describe experiments which demonstrated that the simian virus 40 (SV40) enhancer affects certain transcriptional units differently. We also found that a specific enhancer-transcriptional unit interaction can be regulated by trans-acting factors. Using transient assays, we examined the effects of the SV40 enhancer on herpesvirus thymidine kinase (tk) RNA levels when transcription was initiated either by the herpesvirus tk promoter or by an SV40 early promoter-tk fusion. We were unable to detect any effect of the enhancer on transcription from the tk promoter in CV-1 or HeLa cells. However, we found that the addition of T-antigen in trans allowed the enhancer to stimulate expression from the tk promoter. This induction by T-antigen did not require T-antigen-binding sites in cis and appeared to be an indirect effect. In contrast, tk expression from the SV40 early promoter fusion was greatly stimulated by the enhancer in CV-1 cells. Furthermore, in 293 cells the SV40 enhancer had only a marginal effect on the SV40 promoter-tk fusion, whereas it strongly stimulated tk expression from the tk promoter. Our results raise the possibility that the enhancer function may not show cell specificity per se; rather, the interaction between the enhancer and a specific gene may be responsible for cell specificity. We discuss these observations in terms of the SV40 early gene-to-late gene switch that occurs during SV40 lytic growth. Images PMID:3023880

  14. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA.

    PubMed

    Narayanan, Aarthi; Iordanskiy, Sergey; Das, Ravi; Van Duyne, Rachel; Santos, Steven; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Dalby, Elizabeth; Iglesias-Ussel, Maria; Popratiloff, Anastas; Hakami, Ramin; Kehn-Hall, Kylene; Young, Mary; Subra, Caroline; Gilbert, Caroline; Bailey, Charles; Romerio, Fabio; Kashanchi, Fatah

    2013-07-01

    Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 10(4)-10(6) copies/ml TAR RNA in exosomes derived from infected culture supernatants and 10(3) copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS. PMID:23661700

  15. A discrete element 3' of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans activator

    SciTech Connect

    Jakobovits, A.; Smith, D.H.; Jakobovits, E.B.; Capon, D.J.

    1988-06-01

    An important point of regulation in the reproductive growth and latency of the human and simian immunodeficiency viruses (HIV and SIV, respectively) is provided by virally encoded trans-activators (tat), proteins capable of dramatically increasing viral gene expression. The mechanism of this autostimulatory pathway has remained unclear, however, with substantial effects having been reported at the level of either mRNA accumulation, translational efficiency, or both. The authors' previous findings indicated that trans-activation results primarily from induction of RNA levels but could not distinguish between the roles of transcriptional rate, RNA stabilization, and RNA transport in this event. In addition, the boundaries of tat-responding elements, which would be valuable in elucidating the mode of tat action, are not precisely known. In this study, HIV-1 and HIV-2 long terminal repeat-directed expression was characterized by using in an vitro nuclear transcription assay to clarify this mechanism, and a detailed mutational analysis was undertaken to localize precisely the sequences participating in this process. Two key findings were revealed: an increased transcription rate was the primary event in tat-mediated activation of HIV-1 and HIV-2, and trans-activation was impaired by mutations in two regions, the TATA box and sequences between +19 to +42, a region lacking enhancer activity. These results implicate a discrete 3' regulatory element in the transcriptional activation of the HIVs.

  16. Global and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant

    PubMed Central

    Arazi, Tzahi

    2014-01-01

    DICER-like 1 (DCL1) is a major player in microRNA (miRNA) biogenesis and accordingly, its few known loss-of-function mutants are either lethal or display arrested development. Consequently, generation of dcl1 mutants by reverse genetics and functional analysis of DCL1 in late-developing organs are challenging. Here, these challenges were resolved through the unique use of trans-activated RNA interference. Global, as well as organ-specific tomato DCL1 (SlDCL1) silencing was induced by crossing the generated responder line (OP:SlDCL1IR) with the appropriate driver line. Constitutive trans-activation knocked down SlDCL1 levels by ~95%, resulting in severe abnormalities including post-germination growth arrest accompanied by decreased miRNA and 21-nucleotide small RNA levels, but prominently elevated levels of 22-nucleotide small RNAs. The increase in the 22-nucleotide small RNAs was correlated with specific up-regulation of SlDCL2b and SlDCL2d, which are probably involved in their biogenesis. Leaf- and flower-specific OP:SlDCL1IR trans-activation inhibited blade outgrowth, induced premature bud senescence and produced pale petals, respectively, emphasizing the importance of SlDCL1-dependent small RNAs in these processes. Together, these results establish OP:SlDCL1IR as an efficient tool for analysing processes regulated by SlDCL1-mediated gene regulation in tomato. PMID:24376253

  17. Effect of p40tax trans-activator of human T cell lymphotropic virus type I on expression of autoantigens.

    PubMed

    Banki, K; Ablonczy, E; Nakamura, M; Perl, A

    1994-03-01

    The possibility of a retroviral etiology has long been raised in a number of autoimmune disorders. More recently, Sjögren's syndrome and rheumatoid arthritis were noted in transgenic mice carrying the tax gene of human T cell leukemia virus type I (HTLV-I). To evaluate the involvement of HTLV-I Tax in autoimmunity, its effect on expression of autoantigens was investigated. A metallothionein promoter-driven p40tax expression plasmid, pMAXRHneo-1, was stably transfected into Molt4 and Jurkat cells and the p40tax protein was induced with CdCl2. trans-Activation or trans-repression of autoantigens by HTLV-I Tax was studied by Western blot analysis utilizing autoantigen-specific murine monoclonal and rabbit polyvalent antibodies as well as sera from 161 autoimmune patients. Induction of p40tax of HTLV-I had no significant effect on levels of expression of common autoantigens U1 snRNP, Sm, Ro, La, HSP-70, topoisomerase I/Scl70, PCNA, and HRES-1. Expression of two potentially novel autoantigens, 44 and 46 kDa, was induced by p40tax as detected by sera of progressive systemic sclerosis patients, BAK and VAR. By contrast, expression of 24- and 34-kDa proteins was suppressed in response to induction of p40tax as detected by sera of systemic lupus erythematosus patients PUS and HOR. Because none of these patients were infected by HTLV-I, a protein functionally similar to p40tax may be involved in eliciting autoantigen expression and a subsequent autoantibody response in a minority of patients with PSS and SLE. Sera of autoimmune patients may also be utilized to detect novel proteins trans-activated or trans-repressed by p40tax of HTLV-I. PMID:8018391

  18. Effects of the tat and nef gene products of human immunodeficiency virus type 1 (HIV-1) on transcription controlled by the HIV-1 long terminal repeat and on cell growth in macrophages.

    PubMed Central

    Murphy, K M; Sweet, M J; Ross, I L; Hume, D A

    1993-01-01

    The RAW264 murine macrophage cell line was used as a model to examine the role of the tat and nef gene products in the transcription regulation of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in macrophages. Contrary to claims that the activity of the HIV-1 LTR responds poorly in rodent cells to trans activation by the viral tat gene product, cotransfection of RAW264 cells with a tat expression plasmid in transient transfection assays caused a > 20-fold increase in reporter gene expression that was inhibited by mutations in the TAR region. RAW264 cells stably transfected with the tat plasmid displayed similarly elevated HIV-1 LTR-driven reporter gene activity. By contrast to previous reports indicating a negative role for nef in HIV transcription, cotransfection of RAW264 cells with a nef expression plasmid trans activated the HIV-1 LTR driving either a chloramphenicol acetyltransferase or a luciferase reporter gene. The action of nef was specific to the LTR, as expression of nef had no effect on the activity of the simian virus 40, c-fms, urokinase plasminogen activator, or type 5 acid phosphatase promoter. trans-activating activity was also manifested by a frameshift mutant expressing only the first 35 amino acids of the protein. The effects of nef were multiplicative with those of tat gene product and occurred even in the presence of bacterial lipopolysaccharide, which itself activated LTR-directed transcription. Examination of the effects of selected mutations in the LTR revealed that neither the kappa B sites in the direct repeat enhancer nor the TAR region was required as a cis-acting element in nef action. The action of nef was not species restricted; it was able to trans activate in the human monocyte-like cell line Mono Mac 6. The presence of a nef expression cassette in a neomycin phosphotransferase gene expression plasmid greatly reduced the number of G418-resistant colonies generated in stable transfection of RAW264 cells

  19. Identification of genes and gene products necessary for bacterial bioluminescence.

    PubMed

    Engebrecht, J; Silverman, M

    1984-07-01

    Expression of luminescence in Escherichia coli was recently achieved by cloning genes from the marine bacterium Vibrio fischeri. One DNA fragment on a hybrid plasmid encoded regulatory functions and enzymatic activities necessary for light production. We report the results of a genetic analysis to identify the luminescence genes (lux) that reside on this recombinant plasmid. lux gene mutations were generated by hydroxylamine treatment, and these mutations were ordered on a linear map by complementation in trans with a series of polar transposon insertions on other plasmids. lux genes were defined by complementation of lux gene defects on pairs of plasmids in trans in E. coli. Hybrid plasmids were also used to direct the synthesis of polypeptides in the E. coli minicell system. Seven lux genes and the corresponding gene products were identified from the complementation analysis and the minicell programing experiments. These genes, in the order of their position on a linear map, and the apparent molecular weights of the gene products are luxR (27,000), luxI (25,000), luxC (53,000), luxD (33,000), luxA (40,000), luxB (38,000), and luxE (42,000). From the luminescence phenotypes of E. coli containing mutant plasmids, functions were assigned to these genes: luxA, luxB, luxC, luxD, and luxE encode enzymes for light production and luxR and luxI encode regulatory functions. PMID:6377310

  20. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  1. Endosomolytic activity of cationic liposomes enhances the delivery of human immunodeficiency virus-1 trans-activator protein (TAT) to mammalian cells.

    PubMed

    Huang, L; Farhood, H; Serbina, N; Teepe, A G; Barsoum, J

    1995-12-26

    We have explored the use of cationic liposomes to deliver the human immunodeficiency virus-1 trans-activator protein tat using a reporter gene expression assay. The human epidermoid carcinoma cell A431 stably transfected with a reporter gene under the control of human immunodeficiency virus-1 promoter was used as a target cell. Phosphatidylcholine-containing cationic liposomes had no detectable tat delivery activity. In contrast, delivery of tat was enhanced by up to 150-fold using cationic liposomes enriched with dioleoyl phosphatidylethanolamine (DOPE), a lipid which readily transforms a bilayer into a nonbilayer structure. Enhanced delivery of tat by DOPE-containing liposomes was most likely the result of the endosomolytic activity of the liposome. This phospholipid-rich formulation showed no toxicity at concentrations sufficient for maximal delivery of tat. A variety of cationic liposome formulations which contain DOPE were tested successfully for tat delivery. PMID:8554596

  2. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    PubMed

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  3. APOBEC3G Inhibits HIV-1 RNA Elongation by Inactivating the Viral Trans-Activation Response Element

    PubMed Central

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-01-01

    Deamination of cytidine residues in viral DNA (vDNA) is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient HIV-1 replication. dC to dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here we demonstrate that A3G provides an additional layer of defence against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. Finally, we show that free ssDNA termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3′+5′ ends is sufficient for A3G deamination, identifying A3G as an efficient mutator, and that deamination of (−)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  4. trans activation of the simian virus 40 late promoter by large T antigen requires binding sites for the cellular transcription factor TEF-1.

    PubMed Central

    Casaz, P; Sundseth, R; Hansen, U

    1991-01-01

    Simian virus 40 (SV40) T antigen stimulates the level of transcription from several RNA polymerase II promoters, including the SV40 late promoter. The mechanism of trans activation appears to be indirect since binding of T antigen to specific DNA sequences is not required. However, specific promoter elements that respond to T antigen have not previously been defined. We identified DNA sequences from the SV40 late promoter whose ability to stimulate transcription is induced by the expression of T antigen. In particular, the Sph I + II motifs of the SV40 enhancer can confer T-antigen inducibility to the normally uninducible herpes simplex virus thymidine kinase gene promoter when multiple copies of the sequence are inserted 5' of the transcription initiation site and TATA sequence. Binding sites for the cellular transcription factor TEF-1 and octamer binding proteins are contained within the Sph I + II motifs, as well as at other positions in the SV40 promoter. To study the role of individual protein-binding sites in trans activation by T antigen, mutations were constructed in various TEF-1 and octamer protein-binding sites of the SV40 late promoter. These mutations did not significantly affect basal promoter activity. However, mutation of all three TEF-1 sites prevented detectable activation by T antigen. DNase I footprinting of the mutated promoters with purified proteins demonstrated that inducibility by T antigen correlated with binding affinity of TEF-1 for the DNA and not with binding affinity of an octamer binding protein. Images PMID:1658359

  5. Brain-Targeted Delivery of Trans-Activating Transcriptor-Conjugated Magnetic PLGA/Lipid Nanoparticles

    PubMed Central

    Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian

    2014-01-01

    Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain. PMID:25187980

  6. Trans-activation of TRPV1 by D1R in mouse dorsal root ganglion neurons.

    PubMed

    Lee, Dong Woo; Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Jung, Sung Jun; Oh, Seog Bae

    2015-10-01

    TRPV1, a ligand-gated ion channel expressed in nociceptive sensory neurons is modulated by a variety of intracellular signaling pathways. Dopamine is a neurotransmitter that plays important roles in motor control, cognition, and pain modulation in the CNS, and acts via a variety of dopamine receptors (D1R-D5R), a class of GPCRs. Although nociceptive sensory neurons express D1-like receptors, very little is known about the effect of dopamine on TRPV1 in the peripheral nervous system. Therefore, in this study, we examined the effects of D1R activation on TRPV1 in mouse DRG neurons using Ca(2+) imaging and immunohistochemical analysis. The D1R agonist SKF-38393 induced reproducible Ca(2+) responses via Ca(2+) influx through TRPV1 rather than Ca(2+) mobilization from intracellular Ca(2+) stores. Immunohistochemical analysis revealed co-expression of D1R and TRPV1 in mouse DRG neurons. The PLC-specific inhibitor blocked the SKF-38393-induced Ca(2+) response, whereas the PKC, DAG lipase, AC, and PKA inhibitors had no effect on the SKF-38393-induced Ca(2+) response. Taken together, our results suggest that the SKF-38393-induced Ca(2+) response results from the direct activation of TRPV1 by a PLC/DAG-mediated membrane-delimited pathway. These results provide evidence that the trans-activation of TRPV1 following D1R activation may contribute to the modulation of pain signaling in nociceptive sensory neurons. PMID:26319554

  7. The role of FIS in trans activation of stable RNA operons of E. coli.

    PubMed

    Nilsson, L; Vanet, A; Vijgenboom, E; Bosch, L

    1990-03-01

    The thrU(tufB) operon of Escherichia coli is endowed with a cis-acting region upstream of the promoter, designated UAS for Upstream Activator Sequence. A protein fraction has been isolated that binds specifically to DNA fragments of the UAS, thus forming three protein-DNA complexes corresponding to three binding sites on the UAS. It stimulates in vitro transcription of the operon by facilitating the binding of the RNA polymerase to the promoter. All three protein-DNA complexes contain one and the same protein. Dissociation constants for the three complexes have been determined, the lowest being in the sub-nanomolar range. The protein also binds to the UAS of the tyrT operon and to the UAS upstream of the P1 promoter of the rrnB operon, suggesting that transcription of the three operons, if not of more stable RNA operons, is activated by a common trans activator. We demonstrate that the E.coli protein FIS (Factor for Inversion Stimulation) also binds to the UAS of the thrU(tufB) operon forming three protein-DNA complexes. A burst of UAS- and FIS-dependent promoter activity is observed after reinitiation of growth of stationary cultures in fresh medium. PMID:1690124

  8. Trans-activity of plasma membrane-associated ganglioside sialyltransferase in mammalian cells.

    PubMed

    Vilcaes, Aldo A; Demichelis, Vanina Torres; Daniotti, Jose L

    2011-09-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  9. Trans-activity of Plasma Membrane-associated Ganglioside Sialyltransferase in Mammalian Cells*

    PubMed Central

    Vilcaes, Aldo A.; Demichelis, Vanina Torres; Daniotti, Jose L.

    2011-01-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  10. Combining Hierarchical and Associative Gene Ontology Relations with Textual Evidence in Estimating Gene and Gene Product Similarity

    SciTech Connect

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Riensche, Roderick M.; Beagley, Nathaniel; Baddeley, Bob L.; Tratz, Stephen C.; Gregory, Michelle L.

    2007-03-01

    Gene and gene product similarity is a fundamental diagnostic measure in analyzing biological data and constructing predictive models for functional genomics. With the rising influence of the Gene Ontology, two complementary approaches have emerged where the similarity between two genes or gene products is obtained by comparing Gene Ontology (GO) annotations associated with the genes or gene products. One approach captures GO-based similarity in terms of hierarchical relations within each gene subontology. The other approach identifies GO-based similarity in terms of associative relations across the three gene subontologies. We propose a novel methodology where the two approaches can be merged with ensuing benefits in coverage and accuracy, and demonstrate that further improvements can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  11. COMPARISON OF THE METHYL REDUCTASE GENES AND GENE PRODUCTS

    EPA Science Inventory

    The DNA sequences encoding component C of methyl coenzyme M reductase (mcr genes) in Methanothermus fervidus, Methanobacterium thermoautotrophicum, Methanococcus vannielii, and Methanosarcina barkeri have been published. omparisons of transcription initiation and termination site...

  12. Integrating Ontological Knowledge and Textual Evidence in Estimating Gene and Gene Product Similarity

    SciTech Connect

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-08

    With the rising influence of the Gene On-tology, new approaches have emerged where the similarity between genes or gene products is obtained by comparing Gene Ontology code annotations associ-ated with them. So far, these approaches have solely relied on the knowledge en-coded in the Gene Ontology and the gene annotations associated with the Gene On-tology database. The goal of this paper is to demonstrate that improvements to these approaches can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  13. Functions of the gene products of Escherichia coli.

    PubMed Central

    Riley, M

    1993-01-01

    A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome. PMID:7508076

  14. Cross-Ontological Analytics: Combining Associative and Hierarchical Relations in the Gene Ontologies to Assess Gene Product Similarity

    SciTech Connect

    Posse, Christian; Sanfilippo, Antonio P.; Gopalan, Banu; Riensche, Roderick M.; Beagley, Nathaniel; Baddeley, Bob L.

    2006-05-28

    Gene and gene product similarity is a fundamental diagnostic measure in analyzing biological data and constructing predictive models for functional genomics. With the rising influence of the gene ontologies, two complementary approaches have emerged where the similarity between two genes/gene products is obtained by comparing gene ontology (GO) annotations associated with the gene/gene products. One approach captures GO-based similarity in terms of hierarchical relations within each gene ontology. The other approach identifies GO-based similarity in terms of associative relations across the three gene ontologies. We propose a novel methodology where the two approaches can be merged with ensuing benefits in coverage and accuracy.

  15. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5' UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  16. Synthesis, cellular uptake and HIV-1 Tat-dependent trans-activation inhibition activity of oligonucleotide analogues disulphide-conjugated to cell-penetrating peptides

    PubMed Central

    Turner, John J.; Arzumanov, Andrey A.; Gait, Michael J.

    2005-01-01

    Oligonucleotides composed of 2′-O-methyl and locked nucleic acid residues complementary to HIV-1 trans-activation responsive element TAR block Tat-dependent trans-activation in a HeLa cell assay when delivered by cationic lipids. We describe an improved procedure for synthesis and purification under highly denaturing conditions of 5′-disulphide-linked conjugates of 3′-fluorescein labelled oligonucleotides with a range of cell-penetrating peptides and investigate their abilities to enter HeLa cells and block trans-activation. Free uptake of 12mer OMe/LNA oligonucleotide conjugates to Tat (48–58), Penetratin and R9F2 was observed in cytosolic compartments of HeLa cells. Uptake of the Tat conjugate was enhanced by N-terminal addition of four Lys or Arg residues or a second Tat peptide. None of the conjugates entered the nucleus or inhibited trans-activation when freely delivered, but inhibition was obtained in the presence of cationic lipids. Nuclear exclusion was seen for free delivery of Tat (48–58), Penetratin and R9 conjugates of 16mer phosphorothioate OMe oligonucleotide. Uptake into human fibroblast cytosolic compartments was seen for Tat, Penetratin, R9F2 and Transportan conjugates. Large enhancements of HeLa cell uptake into cytosolic compartments were seen when free Tat peptide was added to Tat conjugate of 12mer OMe/LNA oligonucleotide or Penetratin peptide to Penetratin conjugate of the same oligonucleotide. PMID:15640444

  17. Gene analogue finder: a GRID solution for finding functionally analogous gene products

    PubMed Central

    Tulipano, Angelica; Donvito, Giacinto; Licciulli, Flavio; Maggi, Giorgio; Gisel, Andreas

    2007-01-01

    Background To date more than 2,1 million gene products from more than 100000 different species have been described specifying their function, the processes they are involved in and their cellular localization using a very well defined and structured vocabulary, the gene ontology (GO). Such vast, well defined knowledge opens the possibility of compare gene products at the level of functionality, finding gene products which have a similar function or are involved in similar biological processes without relying on the conventional sequence similarity approach. Comparisons within such a large space of knowledge are highly data and computing intensive. For this reason this project was based upon the use of the computational GRID, a technology offering large computing and storage resources. Results We have developed a tool, GENe AnaloGue FINdEr (ENGINE) that parallelizes the search process and distributes the calculation and data over the computational GRID, splitting the process into many sub-processes and joining the calculation and the data on the same machine and therefore completing the whole search in about 3 days instead of occupying one single machine for more than 5 CPU years. The results of the functional comparison contain potential functional analogues for more than 79000 gene products from the most important species. 46% of the analyzed gene products are well enough described for such an analysis to individuate functional analogues, such as well-known members of the same gene family, or gene products with similar functions which would never have been associated by standard methods. Conclusion ENGINE has produced a list of potential functionally analogous relations between gene products within and between species using, in place of the sequence, the gene description of the GO, thus demonstrating the potential of the GO. However, the current limiting factor is the quality of the associations of many gene products from non-model organisms that often have

  18. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    PubMed

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients. PMID:26374219

  19. Efficient translation of distal cistrons of a polycistronic mRNA of a plant pararetrovirus requires a compatible interaction between the mRNA 3' end and the proteinaceous trans-activator.

    PubMed

    Edskes, H K; Kiernan, J M; Shepherd, R J

    1996-10-15

    Caulimoviruses, a type of plant pararetrovirus, employ a highly unusual mechanism to express the multiple cistrons of their pregenomic RNA. It involves translation of a polycistronic mRNA utilizing cis-acting viral RNA sequences and a transacting virus-encoded protein (P6). In addition to its role in polycistronic translation, the translational trans-activator protein P6 also activates its own expression from a monocistronic subgenomic RNA. Using Nicotiana Edwardsonii cell suspension protoplasts, we analyzed the ability of P6 proteins from three different caulimoviruses to activate viral RNA-based reporter constructs. Cis-acting elements present in figwort mosaic caulimovirus (FMV) are functional not only in the presence of the cognate P6 activator protein, but also in the presence of the heterologous activators from cauliflower mosaic caulimovirus (CaMV) and peanut chlorotic streak caulimovirus (PCISV). However, when 3' cis-acting elements essential for efficient polycistronic expression of FMV are replaced by their counterparts from PCISV, reporter gene expression is only observed in the presence of PCISV P6. Derepression of monocistronic reporter constructs tailed with FMV or CaMV 3' proximal sequences is less efficient in the presence of PCISV P6 than with either FMV or CaMV P6, but more efficient when the constructs contain a cognate PCISV 3' cis-element. Efficient expression of polycistronic and monocistronic caulimovirus mRNAs in plant cells thus requires compatible interactions between P6, a translational trans-activator, and its cognate cis-element at the 3' end of the mRNA. PMID:8874519

  20. Natural Product Biosynthetic Gene Diversity in Geographically Distinct Soil Microbiomes

    PubMed Central

    Reddy, Boojala Vijay B.; Kallifidas, Dimitris; Kim, Jeffrey H.; Charlop-Powers, Zachary; Feng, Zhiyang

    2012-01-01

    The number of bacterial species estimated to exist on Earth has increased dramatically in recent years. This newly recognized species diversity has raised the possibility that bacterial natural product biosynthetic diversity has also been significantly underestimated by previous culture-based studies. Here, we compare 454-pyrosequenced nonribosomal peptide adenylation domain, type I polyketide ketosynthase domain, and type II polyketide ketosynthase alpha gene fragments amplified from cosmid libraries constructed using DNA isolated from three different arid soils. While 16S rRNA gene sequence analysis indicates these cloned metagenomes contain DNA from similar distributions of major bacterial phyla, we found that they contain almost completely distinct collections of secondary metabolite biosynthetic gene sequences. When grouped at 85% identity, only 1.5% of the adenylation domain, 1.2% of the ketosynthase, and 9.3% of the ketosynthase alpha sequence clusters contained sequences from all three metagenomes. Although there is unlikely to be a simple correlation between biosynthetic gene sequence diversity and the diversity of metabolites encoded by the gene clusters in which these genes reside, our analysis further suggests that sequences in one soil metagenome are so distantly related to sequences in another metagenome that they are, in many cases, likely to arise from functionally distinct gene clusters. The marked differences observed among collections of biosynthetic genes found in even ecologically similar environments suggest that prokaryotic natural product biosynthesis diversity is, like bacterial species diversity, potentially much larger than appreciated from culture-based studies. PMID:22427492

  1. Identification of Escherichia coli region III flagellar gene products and description of two new flagellar genes.

    PubMed Central

    Bartlett, D H; Matsumura, P

    1984-01-01

    Region III flagellar genes in Escherichia coli are involved with the assembly and rotation of the flagella, as well as taxis. We subcloned the flaB operon from a lambda fla transducing phage onto plasmid pMK2004. Two additional genes were found at the flaB locus, and we subdivided the flaB gene into flaB1, flaBII, and flaBIII. The cheY suppressor mutations which have previously been mapped to flaB were further localized to flaB11 (Parkinson et al., J. Bacteriol. 155:265-274, 1983). Until now, gene product identification has not been possible for these genes because of their low levels of gene expression. Overexpression of the flagellar genes was accomplished by placing the flaB operon under the control of the lacUV5 or tac promoters. Plasmid-encoded proteins were examined in a minicell expression system. By correlating various deletions and insertions in the flaB operon with the ability to complement specific flagellar mutants and code for polypeptides, we made the following gene product assignments: flaB 1, 60 kilodaltons; flaB 11, 38 kilodaltons; flaB111, 28 kilodaltons; flaC, 56 kilodaltons; fla0, 16 kilodaltons; and flaE, 54 kilodaltons. Images PMID:6094477

  2. Loss of DNA-binding and new transcriptional trans-activation function in polyomavirus large T-antigen with mutation of zinc finger motif.

    PubMed Central

    Bergqvist, A; Nilsson, M; Bondeson, K; Magnusson, G

    1990-01-01

    A putative zinc finger in polyomavirus large T-antigen was investigated. We were unable to demonstrate unequivocally a requirement for zinc in specific DNA-binding using the chelating agent 1, 10-phenanthroline. An involvement of the putative zinc finger in specific DNA-binding was nevertheless suggested by the properties of a mutant protein with a cys----ser replacement in the finger motif. Probably as a result of the defective DNA-binding, the mutant protein had lost its activity in initiation of viral DNA-replication and in negative regulation of viral early transcription. However, the trans-activation of the viral late promoter was normal. The analysis also revealed a previously unrecognized activity of large T-antigen. The mutant protein trans-activated the viral early promoter. In the wild-type protein this activity is probably concealed by the separate, negative regulatory function. Images PMID:2160069

  3. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    SciTech Connect

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  4. Role of Azotobacter vinelandii mucA and mucC Gene Products in Alginate Production

    PubMed Central

    Núñez, Cinthia; León, Renato; Guzmán, Josefina; Espín, Guadalupe; Soberón-Chávez, Gloria

    2000-01-01

    Azotobacter vinelandii produces the exopolysaccharide alginate, which is essential for its differentiation to desiccation-resistant cysts. In different bacterial species, the alternative sigma factor ςE regulates the expression of functions related to the extracytoplasmic compartments. In A. vinelandii and Pseudomonas aeruginosa, the ςE factor (AlgU) is essential for alginate production. In both bacteria, the activity of this sigma factor is regulated by the product of the mucA, mucB, mucC, and mucD genes. In this work, we studied the transcriptional regulation of the A. vinelandii algU-mucABCD gene cluster, as well as the role of the mucA and mucC gene products in alginate production. Our results show the existence of AlgU autoregulation and show that both MucA and MucC play a negative role in alginate production. PMID:11073894

  5. Production of transgenic rice with agronomically useful genes: an assessment.

    PubMed

    Giri, C C; Vijaya Laxmi, G

    2000-12-01

    Rice is the most important food crop in tropical and subtropical regions of the world. Yield enhancement to increase rice production is one of the essential strategies to meet the demand for food of the growing population. Both abiotic and biotic features limit adversely the productivity of rice growing areas. Conventional breeding has been an effective means for developing high yielding varieties, however; it is associated with its own limitations. It is envisaged that recent trends in biotechnology can contribute to the agronomic improvement of rice in terms of yield and nutritional quality as a supplement to traditional breeding methods. Genetic transformation of rice has demonstrated numerous important opportunities resulting in the genetic improvement of existing elite rice varieties and production of new plant types. Significant advances have been made in the genetic engineering of rice since the first transgenic rice plant production in the late 1980s. Several gene transfer protocols have been employed successfully for the introduction of foreign genes to rice. In more than 60 rice cultivars belonging to indica, japonica, javanica, and elite African cultivars, the protocol has been standardized for transgenic rice production. Selection and use of appropriate promoters, selectable markers, and reporter genes has been helpful for development of efficient protocols for transgenic rice in a number of rice cultivars. The present review is an attempt to assess the current state of development in transgenic rice for the transfer of agronomically useful genes, emphasizing the application and future prospects of transgenic rice production for the genetic improvement of this food crop. PMID:14538093

  6. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene.

    PubMed Central

    Totten, P A; Lara, J C; Lory, S

    1990-01-01

    The product of the rpoN gene is an alternative sigma factor of RNA polymerase which is required for transcription of a number of genes in members of the family Enterobacteriaceae, including those that specify enzymes of nitrogen assimilation, amino acid uptake, and degradation of a variety of organic molecules. We have previously shown that transcription of the pilin gene of Pseudomonas aeruginosa also requires RpoN (K. S. Ishimoto and S. Lory, Proc. Natl. Acad. Sci. USA 86:1954-1957, 1989) and have undertaken a more extensive survey of genes under RpoN control. Strains of P. aeruginosa that carry an insertionally inactivated rpoN gene were constructed and shown to be nonmotile because of the inability of these mutants to synthesize flagellin. The mutation in rpoN had no effect on expression of extracellular polypeptides, outer membrane proteins, and the alginate capsule. However, the rpoN mutants were glutamine auxotrophs and were defective in glutamine synthetase, indicating defects in nitrogen assimilation. In addition, the P. aeruginosa rpoN mutants were defective in urease activity. These findings indicate that the sigma factor encoded by the rpoN gene is used by P. aeruginosa for transcription of a diverse set of genes that specify biosynthetic enzymes, degradative enzymes, and surface components. These rpoN-controlled genes include pili and flagella which are required for full virulence of the organism. Images FIG. 1 FIG. 2 PMID:2152909

  7. Preclinical development strategies for novel gene therapeutic products.

    PubMed

    Pilaro, A M; Serabian, M A

    1999-01-01

    With over 220 investigational new drug applications currently active, gene therapy represents one of the fastest growing areas in biotherapeutic research. Initially conceived for replacing defective genes in diseases such as cystic fibrosis or inborn errors of metabolism with genes encoding the normal, or wild-type, gene product, gene therapy has expanded into other novel applications such as treatment of cancer or cardiovascular disease, where the risk:benefit profiles may be more acceptable in relation to the severity of the disease. Different types of vectors, including modified retroviruses, adenoviruses, adenovirus-associated viruses, and herpesviruses and plasmid DNA, are used to transfer foreign genetic material into patients' cells or tissues. Developing a toxicology program to determine the safety of these agents, therefore, requires a modified approach that encompasses the pharmacology and toxicity of both the gene product itself and the vector system used for delivery in the context of the application for the clinical trial. In general, the issues involved in designing and developing appropriate preclinical testing to determine the safety of these products are similar to those encountered for other recombinant molecules, including protein biotherapeutics. Limitations to some of the typical toxicology studies conducted for a traditional drug development program may exist for these agents, and nontraditional approaches may be required to demonstrate their safety. Many factors may affect the safety and clinical activity of these agents, including the route, frequency, and duration of exposure and the type of vector employed. Other safety considerations include quantitation of the duration and degree of expression of the vector in target and other tissues, the effects of gene expression on organ pathology and/or histology, evaluation of trafficking of gene-transduced cells or vector after injection, and interactions of the host immune system with the

  8. Use of Galerina marginata genes and proteins for peptide production

    DOEpatents

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  9. Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products.

    PubMed Central

    Ronson, C W; Astwood, P M; Nixon, B T; Ausubel, F M

    1987-01-01

    We have sequenced two genes dctB and dctD required for the activation of the C4-dicarboxylate transport structural gene dctA in free-living Rhizobium leguminosarum. The hydropathic profile of the dctB gene product (DctB) suggested that its N-terminal region may be located in the periplasm and its C-terminal region in the cytoplasm. The C-terminal region of DctB was strongly conserved with similar regions of the products of several regulatory genes that may act as environmental sensors, including ntrB, envZ, virA, phoR, cpxA, and phoM. The N-terminal domains of the products of several regulatory genes thought to be transcriptional activators, including ntrC, ompR, virG, phoB and sfrA. In addition, the central and C-terminal regions of DctD were strongly conserved with the products of ntrC and nifA, transcriptional activators that require the alternate sigma factor rpoN (ntrA) as co-activator. The central region of DctD also contained a potential ATP-binding domain. These results are consistent with recent results that show that rpoN product is required for dctA activation, and suggest that DctB plus DctD-mediated transcriptional activation of dctA may be mechanistically similar to NtrB plus NtrC-mediated activation of glnA in E. coli. PMID:3671068

  10. Natural Products Version 2.0: Connecting Genes to Molecules

    PubMed Central

    Walsh, Christopher T.; Fischbach, Michael A.

    2009-01-01

    Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this perspective, we explore how connecting Nature’s small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and nonribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future? PMID:20121095

  11. Regulatory Oversight of Cell and Gene Therapy Products in Canada.

    PubMed

    Ridgway, Anthony; Agbanyo, Francisca; Wang, Jian; Rosu-Myles, Michael

    2015-01-01

    Health Canada regulates gene therapy products and many cell therapy products as biological drugs under the Canadian Food and Drugs Act and its attendant regulations. Cellular products that meet certain criteria, including minimal manipulation and homologous use, may be subjected to a standards-based approach under the Safety of Human Cells, Tissues and Organs for Transplantation Regulations. The manufacture and clinical testing of cell and gene therapy products (CGTPs) presents many challenges beyond those for protein biologics. Cells cannot be subjected to pathogen removal or inactivation procedures and must frequently be administered shortly after final formulation. Viral vector design and manufacturing control are critically important to overall product quality and linked to safety and efficacy in patients through concerns such as replication competence, vector integration, and vector shedding. In addition, for many CGTPs, the value of nonclinical studies is largely limited to providing proof of concept, and the first meaningful data relating to appropriate dosing, safety parameters, and validity of surrogate or true determinants of efficacy must come from carefully designed clinical trials in patients. Addressing these numerous challenges requires application of various risk mitigation strategies and meeting regulatory expectations specifically adapted to the product types. Regulatory cooperation and harmonisation at an international level are essential for progress in the development and commercialisation of these products. However, particularly in the area of cell therapy, new regulatory paradigms may be needed to harness the benefits of clinical progress in situations where the resources and motivation to pursue a typical drug product approval pathway may be lacking. PMID:26374212

  12. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    The following is a review of research accomplished in the first two years of funding for the above mentioned project. The work performed is a molecular characterization of nuclear mutants of Chlamydomonas reinhardtii which are deficient in different stages in the post-transcriptional expression of a single chloroplast encoded polypeptide, the D2 protein of Photosystem II. Our long-term goals are to understand the molecular mechanisms by which nuclear gene products affect the expression of chloroplast genes. Specifically, we which to understand how specific nuclear gene products affect the turnover rate of the D2 encoding mRNA (psbD), how other nuclear encoded factors work to promote the translation of psbD mRNA and/or stabilize the D2 protein, and what the role of the D2 protein itself is in Photosystem II assembly and in the control of expression of other chloroplast genes. This progress report will be organized into four major sections concerning (I) The characterization of nuclear mutants affected in D2 translation/turnover, (II) The study of trans-acting factors which associate with the 5{prime} end of the psbD mRNA, (III) In vitro mutagenesis of the psbD gene, and (IV) Additional studies.

  13. Technical development for production of gene-modified laboratory rats.

    PubMed

    Hirabayashi, Masumi

    2008-04-01

    Transgenic rats have been used as model animals for human diseases and organ transplantation and as animal bioreactors for protein production. In general, transgenic rats are produced by pronuclear microinjection of exogenous DNA. Improvement of post-injection survival has been achieved by micro-vibration of the injection pipette. The promoter region, structural gene, chain length and strand ends of the exogenous DNA are not involved in the production efficiency of transgenic rats. Exogenous DNA prepared at 5 microg/ml seemed to be better integrated than lower and higher concentrations. Intracytoplasmic sperm injection (ICSI) has been successfully achieved in rats using a piezo-driven injection pipette. The ICSI technique has not only been applied to rescue infertile male strains but also to produce transgenic rats. The optimal DNA concentration for the ICSI-tg method (0.1 to 0.5 microg/ml) is lower than that for the conventional pronuclear microinjection. Production efficiency was improved when the membrane structure of the sperm head was partially disrupted by detergent or ultrasonic treatment before exposure to the exogenous DNA solution. For successful production of transgenic rats with a modified endogenous gene, establishment of embryonic stem cell lines or alternatively male germline stem cell lines and technical development of somatic cell nuclear transfer are still necessary for this species. PMID:18446007

  14. Modular optimization of multi-gene pathways for fumarate production.

    PubMed

    Chen, Xiulai; Zhu, Pan; Liu, Liming

    2016-01-01

    Microbial fumarate production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here, we report a modular engineering approach that systematically removed metabolic pathway bottlenecks and led to significant titer improvements in a multi-gene fumarate metabolic pathway. On the basis of central pathway architecture, yeast fumarate biosynthesis was re-cast into three modules: reduction module, oxidation module, and byproduct module. We targeted reduction module and oxidation module to the cytoplasm and the mitochondria, respectively. Combinatorially tuning pathway efficiency by constructing protein fusions RoMDH-P160A and KGD2-SUCLG2 and optimizing metabolic balance by controlling genes RoPYC, RoMDH-P160A, KGD2-SUCLG2 and SDH1 expression strengths led to significantly improved fumarate production (20.46 g/L). In byproduct module, synthetizing DNA-guided scaffolds and designing sRNA switchs enabled further production improvement up to 33.13 g/L. These results suggest that modular pathway engineering can systematically optimize biosynthesis pathways to enable an efficient production of fumarate. PMID:26241189

  15. GOChase-II: correcting semantic inconsistencies from Gene Ontology-based annotations for gene products

    PubMed Central

    2011-01-01

    Background The Gene Ontology (GO) provides a controlled vocabulary for describing genes and gene products. In spite of the undoubted importance of GO, several drawbacks associated with GO and GO-based annotations have been introduced. We identified three types of semantic inconsistencies in GO-based annotations; semantically redundant, biological-domain inconsistent and taxonomy inconsistent annotations. Methods To determine the semantic inconsistencies in GO annotation, we used the hierarchical structure of GO graph and tree structure of NCBI taxonomy. Twenty seven biological databases were collected for finding semantic inconsistent annotation. Results The distributions and possible causes of the semantic inconsistencies were investigated using twenty seven biological databases with GO-based annotations. We found that some evidence codes of annotation were associated with the inconsistencies. The numbers of gene products and species in a database that are related to the complexity of database management are also in correlation with the inconsistencies. Consequently, numerous annotation errors arise and are propagated throughout biological databases and GO-based high-level analyses. GOChase-II is developed to detect and correct both syntactic and semantic errors in GO-based annotations. Conclusions We identified some inconsistencies in GO-based annotation and provided software, GOChase-II, for correcting these semantic inconsistencies in addition to the previous corrections for the syntactic errors by GOChase-I. PMID:21342572

  16. dcp gene of Escherichia coli: cloning, sequencing, transcript mapping, and characterization of the gene product.

    PubMed Central

    Henrich, B; Becker, S; Schroeder, U; Plapp, R

    1993-01-01

    Dipeptidyl carboxypeptidase is a C-terminal exopeptidase of Escherichia coli. We have isolated the respective gene, dcp, from a low-copy-number plasmid library by its ability to complement a dcp mutation preventing the utilization of the unique substrate N-benzoyl-L-glycyl-L-histidyl-L-leucine. Sequence analysis of a 2.9-kb DNA fragment revealed an open reading frame of 2,043 nucleotides which was assigned to the dcp gene by N-terminal amino acid sequencing and electrophoretic molecular mass determination of the purified dcp product. Transcript mapping by primer extension and S1 protection experiments verified the physiological significance of potential initiation and termination signals for dcp transcription and allowed the identification of a single species of monocistronic dcp mRNA. The codon usage pattern and the effects of elevated gene copy number indicated a relatively low level of dcp expression. The predicted amino acid sequence of dipeptidyl carboxypeptidase, containing a potential zinc-binding site, is highly homologous (78.8%) to the corresponding enzyme from Salmonella typhimurium. It also displays significant homology to the products of the S. typhimurium opdA and the E. coli prlC genes and to some metalloproteases from rats and Saccharomyces cerevisiae. No potential export signals could be inferred from the amino acid sequence. Dipeptidyl carboxypeptidase was enriched 80-fold from crude extracts of E. coli and used to investigate some of its biochemical and biophysical properties. Images PMID:8226676

  17. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    SciTech Connect

    Basen, M; Schut, GJ; Nguyen, DM; Lipscomb, GL; Benn, RA; Prybol, CJ; Vaccaro, BJ; Poole, FL; Kelly, RM; Adams, MWW

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.

  18. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    PubMed Central

    Basen, Mirko; Schut, Gerrit J.; Nguyen, Diep M.; Lipscomb, Gina L.; Benn, Robert A.; Prybol, Cameron J.; Vaccaro, Brian J.; Poole, Farris L.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways. PMID:25368184

  19. Vitreoscilla hemoglobin gene ( vgb) improves lutein production in Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Ma, Ruijuan; Lin, Xiangzhi

    2014-03-01

    Vitreoscilla hemoglobin is an oxygen-binding protein that promotes oxygen delivery and reduces oxygen consumption under low oxygen conditions to increase the efficiency of cell respiration and metabolism. In this study, we introduced a Vitreoscilla hemoglobin gene ( vgb) into Chlorella vulgaris by Agrobacterium tumefaciens -mediated transformation (ATMT). PCR analysis confirmed that the vgb gene was successfully integrated into the Chlorella vulgaris genome. Analysis of biomass obtained in shake flasks revealed transformant biomass concentrations as high as 3.28 g/L, which was 38.81% higher than that of the wild-type strain. Lutein content of transformants also increased slightly. Further experiments recovered a maximum lutein yield of 2.91 mg/L from the transformants, which was 36.77% higher than that of the wild-type strain. The above results suggest that integrated expression of the vgb gene may improve cell growth and lutein yield in Chlorella vulgaris, with applications to lutein production from Chlorella during fermentation.

  20. Gas-inducible product gene expression in bioreactors.

    PubMed

    Weber, Wilfried; Rimann, Markus; de Glutz, François-Nicolas; Weber, Eric; Memmert, Klaus; Fussenegger, Martin

    2005-05-01

    Inducible transgene expression technologies are of unmatched potential for biopharmaceutical manufacturing of unstable, growth-impairing and cytotoxic proteins as well as conditional metabolic engineering to improve desired cell phenotypes. Currently available transgene dosing modalities which rely on physical parameters or small-molecule drugs for transgene fine-tuning compromise downstream processing and/or are difficult to implement technologically. The recently designed gas-inducible acetaldehyde-inducible regulation (AIR) technology takes advantage of gaseous acetaldehyde to modulate product gene expression levels. At regulation effective concentrations gaseous acetaldehyde is physiologically inert and approved as food additive by the Federal Drug Administration (FDA). During standard bioreactor operation, gaseous acetaldehyde could simply be administered using standard/existing gas supply tubing and eventually eliminated by stripping with inducer-free air. We have determined key parameters controlling acetaldehyde transfer in three types of bioreactors and designed a mass balance-based model for optimal product gene expression fine-tuning using gaseous acetaldehyde. Operating a standard stirred-tank bioreactor set-up at 10 L scale we have validated AIR technology using CHO-K1-derived serum-free suspension cultures transgenic for gas-inducible production of human interferon-beta (IFN-beta). Gaseous acetaldehyde-inducible IFN-beta production management was fully reversible while maintaining cell viability at over 95% during the entire process. Compatible with standard bioreactor design and downstream processing procedures AIR-based technology will foster novel opportunities for pilot and large-scale manufacturing of difficult-to-produce protein pharmaceuticals. PMID:15885616

  1. Polyhydroxyalkanoate production in Rhodobacter capsulatus: genes, mutants, expression, and physiology.

    PubMed Central

    Kranz, R G; Gabbert, K K; Locke, T A; Madigan, M T

    1997-01-01

    Like many other prokaryotes, the photosynthetic bacterium Rhodobacter capsulatus produces high levels of polyhydroxyalkanoates (PHAs) when a suitable carbon source is available. The three genes that are traditionally considered to be necessary in the PHA biosynthetic pathway, phaA (beta-ketothiolase), phaB (acetoacetylcoenzyme A reductase), and phaC (PHA synthase), were cloned from Rhodobacter capsulatus. In R. capsulatus, the phaAB genes are not linked to the phaC gene. Translational beta-galactosidase fusions to phaA and phaC were constructed and recombined into the chromosome. Both phaC and phaA were constitutively expressed regardless of whether PHA production was induced, suggesting that control is posttranslational at the enzymatic level. Consistent with this conclusion, it was shown that the R. capsulatus transcriptional nitrogen-sensing circuits were not involved in PHA synthesis. The doubling times of R. capsulatus transcriptional nitrogen-sensing circuits were not involved in PHA synthesis. The doubling times of R. capsulatus grown on numerous carbon sources were determined, indicating that this bacterium grows on C2 to C12 fatty acids. Grown on acetone, caproate, or heptanoate, wild-type R. capsulatus produced high levels of PHAs. Although a phaC deletion strain was unable to synthesize PHAs on any carbon source, phaA and phaAB deletion strains were able to produce PHAs, indicating that alternative routes for the synthesis of substrates for the synthase are present. The nutritional versatility and bioenergetic versatility of R. capsulatus, coupled with its ability to produce large amounts of PHAs and its genetic tractability, make it an attractive model for the study of PHA production. PMID:9251189

  2. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products. Progress report, June 1, 1990--June 30, 1992

    SciTech Connect

    Kuchka, M.R.

    1992-08-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5` UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  3. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  4. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  5. Control of adenovirus early gene expression: Posttranscriptional control mediated by both viral and cellular gene products

    SciTech Connect

    Katze, M.G.; Persson, H.; Philipson, L.

    1981-09-01

    An adenovirus type 5 host range mutant (hr-1) located in region E1A and phenotypically defective in expressing viral messenger ribonucleic acid (RNA) from other early regions was analyzed for accumulation of viral RNA in the presence of protein synthesis inhibitors. Nuclear RNA was transcribed from all early regions at the same rate, regardless of whether the drug was present or absent. As expected, low or undetectable levels of RNA were found in the cytoplasm of hr-1-infected cells compared with the wild-type adenovirus type 5 in the absence of drug. When anisomycin was added 30 min before hr-1 infection, cytoplasmic RNA was abundant from early regions E3 and E4 when assayed by filter hybridization. In accordance, early regions E3 and E4 viral messenger RNA species were detected by the S1 endonuclease mapping technique only in hr-1-infected cells that were treated with the drug. Similar results were obtained by in vitro translation studies. Together, these results suggest that this adenovirus type 5 mutant lacks a viral gene product necessary for accumulation of viral messenger RNA, but not for transcription. It is proposed that a cellular gene product serves as a negative regulator of viral messenger RNA accumulation at the posttranscriptional level.

  6. Production and clinical development of nanoparticles for gene delivery

    PubMed Central

    Chen, Jie; Guo, Zhaopei; Tian, Huayu; Chen, Xuesi

    2016-01-01

    Gene therapy is a promising strategy for specific treatment of numerous gene-associated human diseases by intentionally altering the gene expression in pathological cells. A successful clinical application of gene-based therapy depends on an efficient gene delivery system. Many efforts have been attempted to improve the safety and efficiency of gene-based therapies. Nanoparticles have been proved to be the most promising vehicles for clinical gene therapy due to their tunable size, shape, surface, and biological behaviors. In this review, the clinical development of nanoparticles for gene delivery will be particularly highlighted. Several promising candidates, which are closest to clinical applications, will be briefly reviewed. Then, the recent developments of nanoparticles for clinical gene therapy will be identified and summarized. Finally, the development of nanoparticles for clinical gene delivery in future will be prospected. PMID:27088105

  7. Gene delivery into plant cells for recombinant protein production.

    PubMed

    Chen, Qiang; Lai, Huafang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  8. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  9. Sterol-dependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE

    SciTech Connect

    Lee, Sungsoo; Wang, Ping-Yuan; Jeong, Yangsik; Mangelsdorf, David J.; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041 ; Anderson, Richard G.W.; Michaely, Peter

    2012-10-01

    Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements. -- Highlights: Black-Right-Pointing-Pointer ORP1S translocates to the nucleus in response to sterol binding. Black-Right-Pointing-Pointer The sterols that best promote nuclear import of ORP1S are LXR agonists. Black-Right-Pointing-Pointer ORP1S binds to LXRs, enhances binding of LXRs to LXREs and promotes LXR-dependent transcription of apoE.

  10. Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene.

    PubMed

    Qin, Li-Na; Cai, Fu-Rong; Dong, Xin-Rui; Huang, Zhen-Bang; Tao, Yong; Huang, Jian-Zhong; Dong, Zhi-Yang

    2012-04-01

    A lipase gene (Lip) of the Aspergillus niger was de novo synthesized and expressed in the Trichoderma reesei under the promoter of the cellobiohydrolase I gene (cbh1). RNAi-mediated gene silencing was successfully used to further improve the recombinant lipase production via down-regulation of CBHI which comprised more than 60% of the total extracellular proteins in T. reesei. The gene and protein expression of CBHI and recombinant lipase were analyzed by real-time PCR, SDS-PAGE and activity assay. The results demonstrated that RNAi-mediated gene silencing could effectively suppress cbh1 gene expression and the reduction of CBHI could result in obvious improvement of heterologous lipase production. The reconstructed strains with decreased CBHI production exhibited 1.8- to 3.2-fold increase in lipase activity than that of parental strain. The study herein provided a feasible and advantageous method of increasing heterologous target gene expression in T. reesei through preventing the high expression of a specific endogenenous gene by RNA interference. PMID:22305540

  11. Steric inhibition of human immunodeficiency virus type-1 Tat-dependent trans-activation in vitro and in cells by oligonucleotides containing 2′-O-methyl G-clamp ribonucleoside analogues

    PubMed Central

    Holmes, Stephen C.; Arzumanov, Andrey A.; Gait, Michael J.

    2003-01-01

    We report the synthesis of a novel 2′-O-methyl (OMe) riboside phosphoramidite derivative of the G-clamp tricyclic base and incorporation into a series of small steric blocking OMe oligonucleotides targeting the apical stem–loop region of human immunodeficiency virus type 1 (HIV-1) trans- activation-responsive (TAR) RNA. Binding to TAR RNA is substantially enhanced for certain single site substitutions in the centre of the oligonucleotide, and doubly substituted anti-TAR OMe 9mers or 12mers exhibit remarkably low binding constants of <0.1 nM. G-clamp-containing oligomers achieved 50% inhibition of Tat-dependent in vitro transcription at ∼25 nM, 4-fold lower than for a TAR 12mer OMe oligonucleotide and better than found for any other oligonucleotide tested to date. Addition of one or two OMe G-clamps did not impart cellular trans-activation inhibition activity to cellularly inactive OMe oligonucleotides. Addition of an OMe G-clamp to a 12mer OMe–locked nucleic acid chimera maintained, but did not enhance, inhibition of Tat-dependent in vitro transcription and cellular trans-activation in HeLa cells. The results demonstrate clearly that an OMe G-clamp has remarkable RNA-binding enhancement ability, but that oligonucleotide effectiveness in steric block inhibition of Tat-dependent trans-activation both in vitro and in cells is governed by factors more complex than RNA-binding strength alone. PMID:12771202

  12. trans activation of the tumor necrosis factor alpha promoter by the human T-cell leukemia virus type I Tax1 protein.

    PubMed Central

    Albrecht, H; Shakhov, A N; Jongeneel, C V

    1992-01-01

    In a cotransfection assay, the human T-cell leukemia virus type I Tax1 gene product specifically activated transcription from the mouse tumor necrosis factor alpha promoter. The activation patterns of 5' deletion mutants, artificial enhancer constructs, and point mutations in the promoter indicate that the major Tax1-responsive element is a site at position -655 which binds the NF-kappa B/rel and NF-GMa transcription factors. Images PMID:1527856

  13. Metabolites production improvement by identifying minimal genomes and essential genes using flux balance analysis.

    PubMed

    Salleh, Abdul Hakim Mohamed; Mohamad, Mohd Saberi; Deris, Safaai; Illias, Rosli Md

    2015-01-01

    With the advancement in metabolic engineering technologies, reconstruction of the genome of host organisms to achieve desired phenotypes can be made. However, due to the complexity and size of the genome scale metabolic network, significant components tend to be invisible. We proposed an approach to improve metabolite production that consists of two steps. First, we find the essential genes and identify the minimal genome by a single gene deletion process using Flux Balance Analysis (FBA) and second by identifying the significant pathway for the metabolite production using gene expression data. A genome scale model of Saccharomyces cerevisiae for production of vanillin and acetate is used to test this approach. The result has shown the reliability of this approach to find essential genes, reduce genome size and identify production pathway that can further optimise the production yield. The identified genes and pathways can be extendable to other applications especially in strain optimisation. PMID:26489144

  14. Requirements for Clinical Trials with Gene Therapy and Transplant Products in Switzerland.

    PubMed

    Marti, Andreas

    2015-01-01

    This chapter aims to describe and summarize the regulation of gene and cell therapy products in Switzerland and its legal basis. Product types are briefly described, as are Swiss-specific terminologies such as the term "transplant product," which means products manufactured from cells, tissues, or even whole organs. Although some parts of this chapter may show a guideline character, they are not legally binding, but represent the current thinking of Swissmedic, the Swiss Agency for Therapeutic Products. As so far the experience with marketing approval of gene therapy and cell therapy products in Switzerland is limited, this chapter focuses on the regulation of clinical trials conducted with these products. Quality, nonclinical, and clinical aspects are summarized separately for gene therapy products and transplant products. PMID:26374216

  15. Identification of potentially hazardous human gene products in GMO risk assessment.

    PubMed

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here. PMID:18384725

  16. Characterizing Milk Production Related Genes in Holstein Using RNA-seq.

    PubMed

    Seo, Minseok; Lee, Hyun-Jeong; Kim, Kwondo; Caetano-Anolles, Kelsey; Jeong, Jin Young; Park, Sungkwon; Oh, Young Kyun; Cho, Seoae; Kim, Heebal

    2016-03-01

    Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for

  17. Characterizing Milk Production Related Genes in Holstein Using RNA-seq

    PubMed Central

    Seo, Minseok; Lee, Hyun-Jeong; Kim, Kwondo; Caetano-Anolles, Kelsey; Jeong, Jin Young; Park, Sungkwon; Oh, Young Kyun; Cho, Seoae; Kim, Heebal

    2016-01-01

    Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for

  18. The dsbB gene product is required for protease production by Burkholderia cepacia.

    PubMed Central

    Abe, M; Nakazawa, T

    1996-01-01

    Burkholderia cepacia KF1, isolated from a pneumonia patient, produces a 37-kDa extracellular metalloprotease. A protease-deficient and lipase-proficient mutant, KFT1007, was complemented by a clone having an open reading frame coding for a 170-amino-acid polypeptide which showed significant homology to Escherichia coli DsbB. KFT1007, a presumed dsbB mutant, also failed to show motility, and both protease secretion and motility were restored by the introduction of the cloned dsbB gene of B. cepacia. The mutant KFT1007 excreted a 43-kDa polypeptide that is immunologically related to the 37-kDa mature protease. These results suggested that the dsbB mutant secretes a premature and catalytically inactive form of protease and that disulfide formation is required for the production of extracellular protease by B. cepacia. PMID:8926116

  19. Comparison of Bacillus monooxygenase genes for unique fatty acid production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews Bacillus genes encoding monooxygenase enzymes producing unique fatty acid metabolites. Specifically, it examines standard monooxygenase electron transfer schemes and related domain structures of these fused domain enzymes on route to understanding the observed oxygenase activiti...

  20. C-terminal trans-activation sub-region of VP16 is uniquely required for forskolin-induced herpes simplex virus type 1 reactivation from quiescently infected-PC12 cells but not for replication in neuronally differentiated-PC12 cells.

    PubMed

    Danaher, Robert J; Cook, Ross K; Wang, Chunmei; Triezenberg, Steven J; Jacob, Robert J; Miller, Craig S

    2013-02-01

    The HSV-1 tegument protein VP16 contains a trans-activation domain (TAD) that is required for induction of immediate early (IE) genes during lytic infection and induced reactivation from latency. Here we report the differential contributions of the two sub-regions of the TAD in neuronal and non-neuronal cells during activation of IE gene expression, virus replication, and reactivation from quiescently infected (QIF)-PC12 cells. Our studies show that VP16- and chemical (hexamethylenebisacetamide)-induced IE gene activation is attenuated in neuronal cells. Irrespective of neuronal or non-neuronal cell backgrounds, IE gene activation demonstrated a greater requirement for the N-terminal sub-region of VP16 TAD (VP16N) than the C-terminal sub-region (VP16C). In surprising contrast to these findings, a recombinant virus (RP4) containing the VP16N deletion was capable of modest forskolin-induced reactivation whereas a recombinant (RP3) containing a deletion of VP16C was incapable of stress-induced reactivation from QIF-PC12 cells. These unique process-dependent functions of the VP16 TAD sub-regions may be important during particular stages of the virus life cycle (lytic, entrance, and maintenance of a quiescent state and reactivation) when viral DNA would be expected to be differentially modified. PMID:23192733

  1. Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes.

    PubMed Central

    Jørgensen, S; Skov, K W; Diderichsen, B

    1991-01-01

    The lipA gene encoding an extracellular lipase from Pseudomonas cepacia was cloned and sequenced. Downstream from the lipase gene an open reading frame was identified, and the corresponding gene was named limA. lipA was well expressed only in the presence of limA. limA exerts its effect both in cis and in trans and therefore produces a diffusible gene product, presumably a protein of 344 amino acids. Replacement of the lipA expression signals (promoter, ribosome-binding site, and signal peptide-coding sequences) by heterologous signals from gram-positive bacteria still resulted in limA-dependent lipA expression in Escherichia coli, Bacillus subtilis, and Streptomyces lividans. Images PMID:1987151

  2. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations

    SciTech Connect

    Moore, R.C.; Redhead, N.J.; Selfridge, J.

    1995-09-01

    We have developed a double replacement gene targeting strategy which enables the production of a series of mouse strains bearing different subtle alterations to endogenous genes. This is a two-step process in which a region of the gene of interest is first replaced with a selectable marker to produce an inactivated allele, which is then re-targeted with a second vector to reconstruct the inactivated allele, concomitantly introducing an engineered mutation. Five independent embryonic stem cell lines have been produced bearing different targeted alterations to the prion protein gene, including one which raises the level of expression. We have constructed mice bearing the codon 101 proline to leucine substitution linked to the human familial prion disease, Gerstmann-Straussler-Scheinker syndrome. We anticipate that this procedure will have applications to the study of human inherited diseases and the development of therapies. 43 refs., 6 figs., 1 tab.

  3. Runx1 Phosphorylation by Src Increases Trans-activation via Augmented Stability, Reduced Histone Deacetylase (HDAC) Binding, and Increased DNA Affinity, and Activated Runx1 Favors Granulopoiesis.

    PubMed

    Leong, Wan Yee; Guo, Hong; Ma, Ou; Huang, Hui; Cantor, Alan B; Friedman, Alan D

    2016-01-01

    Src phosphorylates Runx1 on one central and four C-terminal tyrosines. We find that activated Src synergizes with Runx1 to activate a Runx1 luciferase reporter. Mutation of the four Runx1 C-terminal tyrosines to aspartate or glutamate to mimic phosphorylation increases trans-activation of the reporter in 293T cells and allows induction of Cebpa or Pu.1 mRNAs in 32Dcl3 myeloid cells, whereas mutation of these residues to phenylalanine to prevent phosphorylation obviates these effects. Three mechanisms contribute to increased Runx1 activity upon tyrosine modification as follows: increased stability, reduced histone deacetylase (HDAC) interaction, and increased DNA binding. Mutation of the five modified Runx1 tyrosines to aspartate markedly reduced co-immunoprecipitation with HDAC1 and HDAC3, markedly increased stability in cycloheximide or in the presence of co-expressed Cdh1, an E3 ubiquitin ligase coactivator, with reduced ubiquitination, and allowed DNA-binding in gel shift assay similar to wild-type Runx1. In contrast, mutation of these residues to phenylalanine modestly increased HDAC interaction, modestly reduced stability, and markedly reduced DNA binding in gel shift assays and as assessed by chromatin immunoprecipitation with the -14-kb Pu.1 or +37-kb Cebpa enhancers after stable expression in 32Dcl3 cells. Affinity for CBFβ, the Runx1 DNA-binding partner, was not affected by these tyrosine modifications, and in vitro translated CBFβ markedly increased DNA affinity of both the translated phenylalanine and aspartate Runx1 variants. Finally, further supporting a positive role for Runx1 tyrosine phosphorylation during granulopoiesis, mutation of the five Src-modified residues to aspartate but not phenylalanine allows Runx1 to increase Cebpa and granulocyte colony formation by Runx1-deleted murine marrow. PMID:26598521

  4. Escherichia coli genes whose products are involved in selenium metabolism

    SciTech Connect

    Leinfelder, W.; Forchhammer, K.; Zinoni, F.; Sawers, G.; Mandrand-Berthelot, M.A.; Boeck, A.

    1988-02-01

    Mutants of Escherichia coli were isolated which were affected in the formation of both formate dehydrogenase N (phenazine methosulfate reducing) (FDN/sub N/) and formate dehydrogenase H (benzylviologen reducing) (FDH/sub H/). They were analyzed, together with previously characterized pleiotropic fdh mutants (fdhA, fdhB, and fdhC), for their ability to incorporate selenium into the selenopolypeptide subunits of FDH/sub N/ and FDH/sub H/. Results of this study support the notion that the pleiotropic fdh mutants analyzed possess a lesion in the gene(s) encoding the biosynthesis or the incorporation of selenocysteine. The gene complementing the defect in one of the isolated mutants was cloned from a cosmid library. Subclones were tested for complementation of other pleiotropic fdh mutants. The results revealed that the mutations in the eight isolates fell into two complementation groups, one of them containing the fdhA mutation. fdhB, fdhC, and two of the new fdh isolates do not belong to these complementation groups. A new nomenclature (sel) is proposed for pleiotropic fdh mutations affecting selenium metabolism. Four genes have been identified so far: selA and selB (at the fdhA locus), selC (previously fdhC), and selD (previously fdhB).

  5. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ..., 2008 (73 FR 59635), FDA announced the availability of the draft guidance of the same title. FDA... HUMAN SERVICES Food and Drug Administration Guidance for Industry: Potency Tests for Cellular and Gene... Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance...

  6. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    PubMed

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-01-01

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance. PMID:27383577

  7. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes

    PubMed Central

    2013-01-01

    Background Actinomycetes are a diverse group of medically, industrially and ecologically important bacteria, studied as much for the diseases they cause as for the cures they hold. The genomes of actinomycetes revealed that these bacteria have a large number of natural product gene clusters, although many of these are difficult to tie to products in the laboratory. Large scale comparisons of these clusters are difficult to perform due to the presence of highly similar repeated domains in the most common biosynthetic machinery: polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). Results We have used comparative genomics to provide an overview of the genomic features of a set of 102 closed genomes from this important group of bacteria with a focus on natural product biosynthetic genes. We have focused on well-represented genera and determine the occurrence of gene cluster families therein. Conservation of natural product gene clusters within Mycobacterium, Streptomyces and Frankia suggest crucial roles for natural products in the biology of each genus. The abundance of natural product classes is also found to vary greatly between genera, revealing underlying patterns that are not yet understood. Conclusions A large-scale analysis of natural product gene clusters presents a useful foundation for hypothesis formulation that is currently underutilized in the field. Such studies will be increasingly necessary to study the diversity and ecology of natural products as the number of genome sequences available continues to grow. PMID:24020438

  8. Sequence-specific and general transcriptional activation by the bovine papillomavirus-1 E2 trans-activator require an N-terminal amphipathic helix-containing E2 domain.

    PubMed

    Haugen, T H; Turek, L P; Mercurio, F M; Cripe, T P; Olson, B J; Anderson, R D; Seidl, D; Karin, M; Schiller, J

    1988-12-20

    The sequence-specific trans-activator protein of bovine papillomavirus (BPV)-1, E2, strongly increases transcription at promoters containing papillomaviral ACCG(N)4CGGT (E2P) cis motifs, but can also activate a wide range of co-transfected promoters without E2P cores to a lower extent. Analysis of multiple E2 mutants in transfected cells revealed that the C-terminal DNA binding E2 domain binds to the E2P cis sequences in the form of pre-existing nuclear dimers. The DNA binding function of E2 was required for specific trans-activation of the E2P elements, as well as for the function of the previously described C-terminal 'short E2' transrepressor. In addition to the C terminus, specific trans-activation also required an intact N-terminal half of the E2 protein. When expressed alone, the N-terminal E2 domain was found to activate heterologous promoters without E2P elements to an extent comparable to wild-type E2, and therefore represents the functional transcription activation domain of the E2 factor. In contrast to other DNA-binding activator proteins described to date, the transcriptional activation by the E2 factor can occur without specific DNA binding. Its mechanism may thus involve protein--protein interactions between common transcription factors and the N-terminal E2 domain which contains amphipathic helix motifs. PMID:2854060

  9. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products. Progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Kuchka, M.R.

    1992-05-01

    The following is a review of research accomplished in the first two years of funding for the above mentioned project. The work performed is a molecular characterization of nuclear mutants of Chlamydomonas reinhardtii which are deficient in different stages in the post-transcriptional expression of a single chloroplast encoded polypeptide, the D2 protein of Photosystem II. Our long-term goals are to understand the molecular mechanisms by which nuclear gene products affect the expression of chloroplast genes. Specifically, we which to understand how specific nuclear gene products affect the turnover rate of the D2 encoding mRNA (psbD), how other nuclear encoded factors work to promote the translation of psbD mRNA and/or stabilize the D2 protein, and what the role of the D2 protein itself is in Photosystem II assembly and in the control of expression of other chloroplast genes. This progress report will be organized into four major sections concerning (I) The characterization of nuclear mutants affected in D2 translation/turnover, (II) The study of trans-acting factors which associate with the 5{prime} end of the psbD mRNA, (III) In vitro mutagenesis of the psbD gene, and (IV) Additional studies.

  10. The product of the bovine papillomavirus type 1 modulator gene (M) is a phosphoprotein.

    PubMed Central

    Thorner, L; Bucay, N; Choe, J; Botchan, M

    1988-01-01

    The M gene of bovine papillomavirus type 1 has been genetically defined as encoding a trans-acting product which negatively regulates bovine papillomavirus type 1 replication and is important for establishment of stable plasmids in transformed cells. The gene for this regulatory protein has been mapped in part to the 5' portion of the largest open reading frame (E1) in the virus. We constructed a trpE-E1 fusion gene and expressed this gene in Escherichia coli. Rabbits were immunized with purified fusion protein, and antisera directed against the product were used to identify the M gene product in virus-transformed cells. In this way a polypeptide with an apparent molecular mass of 23 kilodaltons was detected. The virus-encoded product is phosphorylated and can be readily detected by immunoprecipitation assays from cells transformed by the virus. Cells that harbor viral DNA without M as integrated copies do not produce this protein, whereas cells that harbor integrated viral genomes which are defective for another E1 viral gene important for plasmid replication, R, do produce this protein. The protein has an anomalously low electrophoretic mobility. An in vitro translation product of an SP6 RNA product of a sequenced cDNA predicts a molecular mass of 16 kilodaltons for the protein, and this in vitro translation product has an electrophoretic mobility identical to that of the in vivo immunoprecipitated protein. The results of these studies confirm our previous genetic studies which indicated that part of the E1 open reading frame defined a discrete gene product distinct from other putative products which may be encoded by this open reading frame. Images PMID:2836626

  11. Coregulation of terpenoid pathway genes and prediction of isoprene production in Bacillus subtilis using transcriptomics

    SciTech Connect

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C.; Wiley, H. S.; Ahring, Birgitte K.; Linggi, Bryan E.

    2013-06-19

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding the system level regulation and control of the pathway. To address this limitation, we examined Bacillus subtilis grown under multiple conditions and then determined the relationship between altered isoprene production and the pattern of gene expression. We found that terpenoid genes appeared to fall into two distinct subsets with opposing correlations with respect to the amount of isoprene produced. The group whose expression levels positively correlated with isoprene production included dxs, the gene responsible for the commitment step in the pathway, as well as ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. This analysis showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model which accurately predicts production of this secondary metabolite across many simulated environmental conditions.

  12. Regulation of the human stress response gene GADD153 expression: role of ETS1 and FLI-1 gene products.

    PubMed

    Seth, A; Giunta, S; Franceschil, C; Kola, I; Venanzoni, M C

    1999-09-01

    We have previously shown that ETS transcription factors, regulate cell growth and differentiation, and ETS1 and ETS2 are able to transcriptionally regulate wt p53 gene expression. In the present study we show that the ETS transcription factors also play a role in regulating expression of GADD153, a wt p53 inducible gene, which induces growth arrest and apoptosis in response to stress signals or DNA damage. We report the presence of a single EBS in the human GADD153 promoter, and that the GADD45 gene promoter lacks EBSs. The GADD153 promoter EBS shows a very high affinity for ETS1 and FLI-1 gene products. In addition, our data show that both ETS1 and FLI-1 strongly activate transcription of the GADD153 EBS linked to the CAT reporter gene. Our results also demonstrate how ETS1 and FLI-1 specifically regulate GADD153 expression. In addition, ectopic ETS2 protein expression resulted in only a weak induction of the same CAT reporter construct. The ETS1 and FLI-1 proteins provide a novel mechanism of activation for GADD153, allowing these two ETS genes to control its expression during cell growth and differentiation, rather than in response to oxidative stress. PMID:10510472

  13. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOEpatents

    Desprez, Pierre-Yves; Campisi, Judith

    2011-10-04

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  14. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOEpatents

    Desprez, Pierre-Yves; Campisi, Judith

    2008-09-30

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  15. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    PubMed Central

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-01-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi. PMID:27143514

  16. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    NASA Astrophysics Data System (ADS)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  17. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    SciTech Connect

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  18. Production of the Ramoplanin Activity Analogue by Double Gene Inactivation

    PubMed Central

    Han, Jungang; Chen, Junsheng; Shao, Lei; Zhang, Junliang; Dong, Xiaojing; Liu, Pengyu; Chen, Daijie

    2016-01-01

    Glycopeptides such as vancomycin and telavancin are essential for treating infections caused by Gram-positive bacteria. But the dwindling availability of new antibiotics and the emergence of resistant bacteria are making effective antibiotic treatment increasingly difficult. Ramoplanin, an inhibitor of bacterial cell wall biosynthesis, is a highly effective antibiotic against a wide range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, vancomycin-intermediate resistant Clostridium difficile and vancomycin-resistant Enterococcus sp. Here, two tailoring enzyme genes in the biosynthesis of ramoplanin were deleted by double in-frame gene knockouts to produce new ramoplanin derivatives. The deschlororamoplanin A2 aglycone was purified and its structure was identified with LC-MS/MS. Deschlororamoplanin A2 aglycone and ramoplanin aglycone showed similar activity to ramoplanin A2. The results showed that α-1,2-dimannosyl disaccharide at Hpg11 and chlorination at Chp17 in the ramoplanin structure are not essential for its antimicrobial activity. This work provides new precursor compounds for the semisynthetic modification of ramoplanin. PMID:27149627

  19. Antibacterial Discovery and Development: From Gene to Product and Back

    PubMed Central

    Fedorenko, Victor; Genilloud, Olga; Horbal, Liliya; Marcone, Giorgia Letizia; Marinelli, Flavia; Paitan, Yossi; Ron, Eliora Z.

    2015-01-01

    Concern over the reports of antibiotic-resistant bacterial infections in hospitals and in the community has been publicized in the media, accompanied by comments on the risk that we may soon run out of antibiotics as a way to control infectious disease. Infections caused by Enterococcus faecium, Staphylococcus aureus, Klebsiella species, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and other Enterobacteriaceae species represent a major public health burden. Despite the pharmaceutical sector's lack of interest in the topic in the last decade, microbial natural products continue to represent one of the most interesting sources for discovering and developing novel antibacterials. Research in microbial natural product screening and development is currently benefiting from progress that has been made in other related fields (microbial ecology, analytical chemistry, genomics, molecular biology, and synthetic biology). In this paper, we review how novel and classical approaches can be integrated in the current processes for microbial product screening, fermentation, and strain improvement. PMID:26339625

  20. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes.

    PubMed

    Sindelar, Georg; Wendisch, Volker F

    2007-09-01

    For the biotechnological production of L: -lysine, mainly strains of Corynebacterium glutamicum are used, which have been obtained by classical mutagenesis and screening or selection or by metabolic engineering. Gene targets for the amplification and deregulation of the lysine biosynthesis pathway, for the improvement of carbon precursor supply and of nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) regeneration, are known. To identify novel target genes to improve lysine production, the transcriptomes of the classically obtained lysine producing strain MH20-22B and several other C. glutamicum strains were compared. As lysine production by the classically obtained strain, which possesses feedback-resistant aspartokinase and is leucine auxotrophic, exceeds that of a genetically defined leucine auxotrophic wild-type derivative possessing feedback-resistant aspartokinase, additional traits beneficial for lysine production are present. NCgl0855, putatively encoding a methyltransferase, and the amtA-ocd-soxA operon, encoding an ammonium uptake system, a putative ornithine cyclodeaminase and an uncharacterized enzyme, were among the genes showing increased expression in the classically obtained strain irrespective of the presence of feedback-resistant aspartokinase. Lysine production could be improved by about 40% through overexpression of NCgl0855 or the amtA-ocd-soxA operon. Thus, novel target genes for the improvement of lysine production could be identified in a discovery-driven approach based on global gene expression analysis. PMID:17364200

  1. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.

    PubMed

    Moriya, Yuki; Yamada, Takuji; Okuda, Shujiro; Nakagawa, Zenichi; Kotera, Masaaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu

    2016-03-28

    Although there are several databases that contain data on many metabolites and reactions in biochemical pathways, there is still a big gap in the numbers between experimentally identified enzymes and metabolites. It is supposed that many catalytic enzyme genes are still unknown. Although there are previous studies that estimate the number of candidate enzyme genes, these studies required some additional information aside from the structures of metabolites such as gene expression and order in the genome. In this study, we developed a novel method to identify a candidate enzyme gene of a reaction using the chemical structures of the substrate-product pair (reactant pair). The proposed method is based on a search for similar reactant pairs in a reference database and offers ortholog groups that possibly mediate the given reaction. We applied the proposed method to two experimentally validated reactions. As a result, we confirmed that the histidine transaminase was correctly identified. Although our method could not directly identify the asparagine oxo-acid transaminase, we successfully found the paralog gene most similar to the correct enzyme gene. We also applied our method to infer candidate enzyme genes in the mesaconate pathway. The advantage of our method lies in the prediction of possible genes for orphan enzyme reactions where any associated gene sequences are not determined yet. We believe that this approach will facilitate experimental identification of genes for orphan enzymes. PMID:26822930

  2. Lack of feedback inhibition of V kappa gene rearrangement by productively rearranged alleles.

    PubMed

    Harada, K; Yamagishi, H

    1991-02-01

    Circular DNAs excised by immunoglobulin kappa chain gene rearrangements were cloned and characterized. 16 of 17 clones examined were double recombination products containing a V kappa-J kappa rearrangement (coding joint) as well as the reciprocal element (signal joint) of another V kappa-J kappa rearrangement. These products suggested multiple recombination, primary inversion, and secondary excision. In primary events, 5 of 16 translational reading frames were in-phase. Thus, V kappa gene rearrangement may not be inhibited by the presence of a productively rearranged allele. An unusually large trinucleotide (P) insertion forming a palindrome of 12 nucleotides was also observed in one of the coding joints. PMID:1988542

  3. Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analyses.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2012-01-01

    Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their conserved motif/domain organization and phylogenetic profile. The results indicated that the core lipid metabolic pathways in all the species are carried out by a comparable number of orthologous proteins. Although the fundamental gene organizations were observed to be invariantly conserved between microalgae and Arabidopsis genome, with increased order of genome complexity there seems to be an association with more number of genes involved in triacylglycerol (TAG) biosynthesis and catabolism. Further, phylogenomic analysis of the genes provided insights into the molecular evolution of lipid biosynthetic pathway in microalgae and confirm the close evolutionary proximity between the Streptophyte and Chlorophyte lineages. Together, these studies will improve our understanding of the global lipid metabolic pathway and contribute to the engineering of regulatory networks of algal strains for higher accumulation of oil. PMID:23032611

  4. Chlamydial gene encoding a 70-kilodalton antigen in Escherichia coli: analysis of expression signals and identification of the gene product.

    PubMed Central

    Sardinia, L M; Engel, J N; Ganem, D

    1989-01-01

    In an attempt to identify chlamydial genes whose native promoters allow them to be expressed in Escherichia coli, we isolated and characterized a chlamydial gene identified by screening a library of chlamydial DNA with antichlamydial antibodies. This gene encodes a 70-kilodalton immunoreactive polypeptide in E. coli hosts. Sequence analysis of the 5' portion of the gene identified its product as the chlamydial homolog of the E. coli ribosomal protein S1. The site of transcription initiation of the mRNA in chlamydiae was determined, and its putative promoter regions were identified. These regions apparently do not function efficiently in E. coli; in vitro transcripts generated by using E. coli RNA polymerase did not start at the authentic chlamydial initiation site. Several in vitro transcripts both larger and smaller than the authentic transcript were seen; presumably, these transcripts result from adventitious promoterlike elements in adjacent chlamydial DNA and may be responsible for the expression of the gene in E. coli. Images PMID:2644193

  5. The paf gene product modulates asexual development in Penicillium chrysogenum.

    PubMed

    Hegedüs, Nikoletta; Sigl, Claudia; Zadra, Ivo; Pócsi, Istvan; Marx, Florentine

    2011-06-01

    Penicillium chrysogenum secretes a low molecular weight, cationic and cysteine-rich protein (PAF). It has growth inhibitory activity against the model organism Aspergillus nidulans and numerous zoo- and phytopathogenic fungi but shows only minimal conditional antifungal activity against the producing organism itself. In this study we provide evidence for an additional function of PAF which is distinct from the antifungal activity against putative ecologically concurrent microorganisms. Our data indicate that PAF enhances conidiation in P. chrysogenum by modulating the expression of brlA, the central regulatory gene for mitospore development. A paf deletion strain showed a significant impairment of mitospore formation which sustains our hypothesis that PAF plays an important role in balancing asexual differentiation in P. chrysogenum. PMID:21298690

  6. The paf gene product modulates asexual development in Penicillium chrysogenum

    PubMed Central

    Hegedüs, Nikoletta; Sigl, Claudia; Zadra, Ivo; Pócsi, Istvan; Marx, Florentine

    2011-01-01

    Penicillium chrysogenum secretes a low molecular weight, cationic and cysteine-rich protein (PAF). It has growth inhibitory activity against the model organism Aspergillus nidulans and numerous zoo- and phytopathogenic fungi but shows only minimal conditional antifungal activity against the producing organism itself. In this study we provide evidence for an additional function of PAF which is distinct from the antifungal activity against putative ecologically concurrent microorganisms. Our data indicate that PAF enhances conidiation in P. chrysogenum by modulating the expression of brlA, the central regulatory gene for mitospore development. A paf deletion strain showed a significant impairment of mitospore formation which sustains our hypothesis that PAF plays an important role in balancing asexual differentiation in P. chrysogenum. PMID:21298690

  7. DNA sequence analysis, gene product identification, and localization of flagellar motor components of Escherichia coli.

    PubMed Central

    Malakooti, J; Komeda, Y; Matsumura, P

    1989-01-01

    The Escherichia coli operon designated flaA contains seven flagellar genes; among them are two switch protein genes whose products are believed to interface with the motility and chemotaxis machinery of the cell. Complementation analysis using several plasmids carrying different portions of the flaA operon and analysis of expression of these plasmids in minicells allowed the identification of two flagellar gene products. The MotD (now called FliN) protein, a flagellar switch protein, was determined to have an apparent molecular weight of 16,000, and the FlaAI (FliL) protein, encoded by a previously unidentified gene, had an apparent molecular weight of 17,000. DNA sequence analysis of the motD gene revealed an open reading frame of 414 base pairs. There were two possible initiation codons (ATG) for motD translation, the first of which overlapped with the termination codon of the upstream gene, flaAII (fliN). The wild-type flaAI gene on the chromosome was replaced with a flaAI gene mutated in vitro. Loss of the flaAI gene product resulted in a nonmotile and nonflagellated phenotype. The subcellular location for both the MotD and FlaAI proteins was determined; the FlaAI protein partitioned exclusively in the insoluble fraction of a whole minicell sonic extract, whereas the MotD protein remained in both the soluble and insoluble fractions. In addition, we subcloned a 2.2-kilobase-pair DNA fragment capable of complementing the remaining four genes of the flaA operon (flbD [fliO], flaR [fliP], flaQ [fliQ], and flaP [fliR]). Images PMID:2651416

  8. Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production.

    PubMed

    Tang, Ying; Xia, Liqiu; Ding, Xuezhi; Luo, Yushuang; Huang, Fan; Jiang, Yuanwei

    2011-12-01

    Spinosyns, the secondary metabolites produced by Saccharopolyspora spinosa, are the active ingredients in a family of insect control agents. Most of the S. spinosa genes involved in spinosyn biosynthesis are found in a contiguous c. 74-kb cluster. To increase the spinosyn production through overexpression of their biosynthetic genes, part of its gene cluster (c. 18 kb) participating in the conversion of the cyclized polyketide to spinosyn was obtained by direct cloning via Red/ET recombination rather than by constructing and screening the genomic library. The resultant plasmid pUCAmT-spn was introduced into S. spinosa CCTCC M206084 from Escherichia coli S17-1 by conjugal transfer. The subsequent single-crossover homologous recombination caused a duplication of the partial gene cluster. Integration of this plasmid enhanced production of spinosyns with a total of 388 (± 25.0) mg L(-1) for spinosyns A and D in the exconjugant S. spinosa trans1 compared with 100 (± 7.7) mg L(-1) in the parental strain. Quantitative real time polymerase chain reaction analysis of three selected genes (spnH, spnI, and spnK) confirmed the positive effect of the overexpression of these genes on the spinosyn production. This study provides a simple avenue for enhancing spinosyn production. The strategies could also be used to improve the yield of other secondary metabolites. PMID:22092858

  9. Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis.

    PubMed

    Fong, Jiunn C N; Syed, Khalid A; Klose, Karl E; Yildiz, Fitnat H

    2010-09-01

    Biofilm formation enhances the survival and persistence of the facultative human pathogen Vibrio cholerae in natural ecosystems and its transmission during seasonal cholera outbreaks. A major component of the V. cholerae biofilm matrix is the Vibrio polysaccharide (VPS), which is essential for development of three-dimensional biofilm structures. The vps genes are clustered in two regions, the vps-I cluster (vpsU, vpsA-K, VC0916-27) and the vps-II cluster (vpsL-Q, VC0934-39), separated by an intergenic region containing the rbm gene cluster that encodes biofilm matrix proteins. In-frame deletions of the vps clusters and genes encoding matrix proteins drastically altered biofilm formation phenotypes. To determine which genes within the vps gene clusters are required for biofilm formation and VPS synthesis, we generated in-frame deletion mutants for all the vps genes. Many of these mutants exhibited reduced capacity to produce VPS and biofilms. Infant mouse colonization assays revealed that mutants lacking either vps clusters or rbmA (encoding secreted matrix protein RbmA) exhibited a defect in intestinal colonization compared to the wild-type. Understanding the roles of the various vps gene products will aid in the biochemical characterization of the VPS biosynthetic pathway and elucidate how vps gene products contribute to VPS biosynthesis, biofilm formation and virulence in V. cholerae. PMID:20466768

  10. Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity.

    PubMed Central

    Radziwill, G; Tucker, W; Schaller, H

    1990-01-01

    To correlate the hepatitis B virus P gene with the enzymatic activities predicted to participate in hepadnavirus reverse transcription, a series of P gene mutants containing missense mutations, in-phase insertions, and in-phase deletions was constructed by site-directed mutagenesis. These mutants were tested in the context of otherwise intact hepatitis B virus genomes for the ability to produce core particles containing the virus-associated polymerase activity. The results obtained suggest that the P protein consists of three functional domains and a nonessential spacer arranged in the following order: terminal protein, spacer, reverse transcriptase/DNA polymerase, and RNase H. The first two domains are separated by a spacer region which could be deleted to a large extent without significant loss of endogenous polymerase activity. In cotransfection experiments, all P gene mutants could be complemented in trans by constructs expressing the wild-type gene product but not by a second P gene mutant. This indicates that the multifunctional P gene is expressed as a single translational unit and independent of the core gene and furthermore that the gene product is freely diffusible and not processed before core assembly. Images PMID:2153228

  11. Can meta-omics help to establish causality between contaminant biotransformations and genes or gene products?

    PubMed Central

    Johnson, David R.; Helbling, Damian E.; Men, Yujie; Fenner, Kathrin

    2016-01-01

    There is increasing interest in using meta-omics association studies to investigate contaminant biotransformations. The general strategy is to characterize the complete set of genes, transcripts, or enzymes from in situ environmental communities and use the abundances of particular genes, transcripts, or enzymes to establish associations with the communities’ potential to biotransform one or more contaminants. The associations can then be used to generate hypotheses about the underlying biological causes of particular biotransformations. While meta-omics association studies are undoubtedly powerful, they have a tendency to generate large numbers of non-causal associations, making it potentially difficult to identify the genes, transcripts, or enzymes that cause or promote a particular biotransformation. In this perspective, we describe general scenarios that could lead to pervasive non-causal associations or conceal causal associations. We next explore our own published data for evidence of pervasive non-causal associations. Finally, we evaluate whether causal associations could be identified despite the discussed limitations. Analysis of our own published data suggests that, despite their limitations, meta-omics association studies might still be useful for improving our understanding and predicting the contaminant biotransformation capacities of microbial communities.

  12. Regulatory Oversight of Gene Therapy and Cell Therapy Products in Korea.

    PubMed

    Choi, Minjoung; Han, Euiri; Lee, Sunmi; Kim, Taegyun; Shin, Won

    2015-01-01

    The Ministry of Food and Drug Safety regulates gene therapy and cell therapy products as biological products under the authority of the Pharmaceutical Affairs Act. As with other medicinal products, gene therapy and cell therapy products are subject to approval for use in clinical trials and for a subsequent marketing authorization and to post-market surveillance. Research and development of gene therapy and cell therapy products have been progressing rapidly in Korea with extensive investment, offering great potential for the treatment of various serious diseases. To facilitate development of safe and effective products and provide more opportunities to patients suffering from severe diseases, several regulatory programs, such as the use of investigational products for emergency situations, fast-track approval, prereview of application packages, and intensive regulatory consultation, can be applied to these products. The regulatory approach for these innovative products is case by case and founded on science-based review that is flexible and balances the risks and benefits. PMID:26374218

  13. Genes, language, cognition, and culture: towards productive inquiry.

    PubMed

    Fitch, W Tecumseh

    2011-04-01

    The Queen Mary conference on “Integrating Genetic and Cultural Evolutionary Approaches to Language,” and the papers in this special issue, clearly illustrate the excitement and potential of trans-disciplinary approaches to language as an evolved biological capacity (phylogeny) and an evolving cultural entity (glossogeny). Excepting the present author, the presenters/authors are mostly young rising stars in their respective fields, and include scientists with backgrounds in linguistics, animal communication, neuroscience, evolutionary biology, anthropology, and computer science. On display was a clear willingness to engage with different approaches and terminology and a commitment to shared standards of scientific rigor, empirically driven theory, and logical argument. Because the papers assembled here, together with the introduction, speak for themselves, I will focus in this “extro-duction” on some of the terminological and conceptual difficulties which threaten to block this exciting wave of scientific progress in understanding language evolution, in both senses of that term. In particular I will first argue against the regrettably widespread practice of opposing cultural and genetic explanations of human cognition as if they were dichotomous. Second, I will unpack the debate concerning “general-purpose” and “domain-specific” mechanisms, which masquerades as a debate about nativism but is nothing of the sort. I believe that framing discussions of language in these terms has generated more heat than light, and that a modern molecular understanding of genes, development, behavior, and evolution renders many of the assumptions underlying this debate invalid. PMID:21615292

  14. The FRIABLE1 Gene Product Affects Cell Adhesion in Arabidopsis

    PubMed Central

    Neumetzler, Lutz; Humphrey, Tania; Lumba, Shelley; Snyder, Stephen; Yeats, Trevor H.; Usadel, Björn; Vasilevski, Aleksandar; Patel, Jignasha; Rose, Jocelyn K. C.; Persson, Staffan; Bonetta, Dario

    2012-01-01

    Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion. PMID:22916179

  15. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    SciTech Connect

    Tennyson, C.N.; Worton, R.G.

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  16. Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila.

    PubMed Central

    Cabrera, C V; Alonso, M C

    1991-01-01

    The achaete-scute complex (AS-C) and the daughterless (da) genes encode helix-loop-helix proteins which have been shown to interact in vivo and to be required for neurogenesis. We show in vitro that heterodimers of three AS-C products with DA bind DNA strongly, whereas DA homodimers bind weakly and homo or heterocombinations of AS-C products not at all. Proteins unable to dimerize did not bind DNA. Target sequences for the heterodimers were found in the promoters of the hunchback and the achaete genes. Using sequences of the former we show that the DNA binding results obtained in vitro fully correlate with the ability of different combinations to activate the expression of a reporter gene in yeast. Embryos deficient for the lethal of scute gene fail to activate hunchback in some neural lineages in a pattern consistent with the lack of a member of a multigene family. Images PMID:1915272

  17. Functional analysis of the Erwinia herbicola tutB gene and its product.

    PubMed

    Katayama, Takane; Suzuki, Hideyuki; Koyanagi, Takashi; Kumagai, Hidehiko

    2002-06-01

    The tutB gene, which lies just downstream of tpl, has been cloned from Erwinia herbicola, and its product was analyzed. Despite its high sequence similarity to tryptophan transporters, TutB was found to be a tyrosine-specific transporter. Tryptophan acted as a competitive inhibitor of tyrosine transport. Unlike the tryptophanase operon, the tpl and tutB genes do not constitute an operon. PMID:12003958

  18. Nonessential region of bacteriophage P4: DNA sequence, transcription, gene products, and functions.

    PubMed Central

    Ghisotti, D; Finkel, S; Halling, C; Dehò, G; Sironi, G; Calendar, R

    1990-01-01

    We sequenced the leftmost 2,640 base pairs of bacteriophage P4 DNA, thus completing the sequence of the 11,627-base-pair P4 genome. The newly sequenced region encodes three nonessential genes, which are called gop, beta, and cII (in order, from left to right). The gop gene product kills Escherichia coli when the beta protein is absent; the gop and beta genes are transcribed rightward from the same promoter. The cII gene is transcribed leftward to a rho-independent terminator. Mutation of this terminator creates a temperature-sensitive phenotype, presumably owing to a defect in expression of the beta gene. Images PMID:2403440

  19. Mutually Exclusive Expression of Virulence Genes by Malaria Parasites Is Regulated Independently of Antigen Production

    PubMed Central

    Dzikowski, Ron; Frank, Matthias; Deitsch, Kirk

    2006-01-01

    The primary virulence determinant of Plasmodium falciparum malaria parasite–infected cells is a family of heterogeneous surface receptors collectively referred to as PfEMP1. These proteins are encoded by a large, polymorphic gene family called var. The family contains approximately 60 individual genes, which are subject to strict, mutually exclusive expression, with the single expressed var gene determining the antigenic, cytoadherent, and virulence phenotype of the infected cell. The mutually exclusive expression pattern of var genes is imperative for the parasite's ability to evade the host's immune response and is similar to the process of “allelic exclusion” described for mammalian Ig and odorant receptor genes. In mammalian systems, mutually exclusive expression is ensured by negative feedback inhibition mediated by production of a functional protein. To investigate how expression of the var gene family is regulated, we have created transgenic lines of parasites in which expression of individual var loci can be manipulated. Here we show that no such negative feedback system exists in P. falciparum and that this process is dependent solely on the transcriptional regulatory elements immediately adjacent to each gene. Transgenic parasites that are selected to express a var gene in which the PfEMP1 coding region has been replaced by a drug-selectable marker silence all other var genes in the genome, thus effectively knocking out all PfEMP1 expression and indicating that the modified gene is still recognized as a member of the var gene family. Mutually exclusive expression in P. falciparum is therefore regulated exclusively at the level of transcription, and a functional PfEMP1 protein is not necessary for viability or for proper gene regulation in cultured parasites. PMID:16518466

  20. A mutant gene that increases gibberellin production in Brassica

    SciTech Connect

    Rood, S.B. ); Williams, P.H. ); Pearce, D.; Pharis, R.P. ); Murofushi, Noboru ); Mander, L.N. )

    1990-07-01

    A single gene mutant (elongated internode (ein/ein)) with accelerated shoot elongation was identified from a rapid cycling line of Brassica rapa. Relative to normal plants, mutant plants had slightly accelerated floral development, greater stem dry weights, and particularly, increased internode and inflorescence elongation. The application of the triazole plant growth retardant, paclobutrazol, inhibited shoot elongation, returning ein to a more normal phenotype. Conversely, exogenous gibberellin A{sub 3} (GA{sub 3}) can convert normal genotypes to a phenotype resembling ein. The content of endogenous GA{sub 1} and GA{sub 3} were estimated by gas chromatography-selected ion monitoring using ({sup 2}H)GA{sub 1} as a quantitative internal standard and at day 14 were 1.5- and 12.1-fold higher per stem, respectively, in ein than in normal plants, although GA concentrations were more similar. The endogenous levels of GA{sub 20} and GA{sub 1}, and the rate of GA{sub 19} metabolism were simultaneously analyzed. Levels of GA{sub 1} and GA{sub 20} were 4.6- and 12.9-fold higher, respectively, and conversions to GA{sub 20} and GA{sub 1} were 8.3 and 1.3 times faster in ein than normal plants. Confirming the enhanced rate of GA{sub 1} biosynthesis in ein, the conversion of ({sup 3}H)GA{sub 20} to ({sup 3}H) GA{sub 1} was also faster in ein than in the normal genotype. Thus, the ein allele results in accelerated GA{sub 1} biosynthesis and an elevated content of endogenous GAs, including the dihydroxylated GAs A{sub 1} and A{sub 3}.

  1. Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in Actinobacteria

    PubMed Central

    Zhang, Qi; Doroghazi, James R.; Zhao, Xiling; Walker, Mark C.

    2015-01-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities. PMID:25888176

  2. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  3. Genetic resources for advanced biofuel production described with the Gene Ontology.

    PubMed

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C; Mukhopadhyay, Biswarup; Tyler, Brett M

    2014-01-01

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way. PMID:25346727

  4. Genetic resources for advanced biofuel production described with the Gene Ontology

    PubMed Central

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-01-01

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way. PMID:25346727

  5. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE PAGESBeta

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  6. Split-gene system for hybrid wheat seed production

    PubMed Central

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-01-01

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore “linked in repulsion.” Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner. PMID:24821800

  7. Investigation of genes involved in nisin production in Enterococcus spp. strains isolated from raw goat milk.

    PubMed

    Perin, Luana Martins; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto

    2016-09-01

    Different strains of Lactococcus lactis are capable of producing the bacteriocin nisin. However, genetic transfer mechanisms allow the natural occurrence of genes involved in nisin production in members of other bacterial genera, such as Enterococcus spp. In a previous study, nisA was identified in eight enterococci capable of producing antimicrobial substances. The aim of this study was to verify the presence of genes involved in nisin production in Enterococcus spp. strains, as well as nisin expression. The nisA genes from eight Enterococcus spp. strains were sequenced and the translated amino acid sequences were compared to nisin amino-acid sequences previously described in databases. Although containing nisin structural and maturation related genes, the enterococci strains tested in the present study did not present the immunity related genes (nisFEG and nisI). The translated sequences of nisA showed some point mutations, identical to those presented by Lactococcus strains isolated from goat milk. All enterococci were inhibited by nisin, indicating the absence of immunity and thus that nisin cannot be expressed. This study demonstrated for the first time the natural occurrence of nisin structural genes in Enterococcus strains and highlights the importance of providing evidence of a link between the presence of bacteriocin genes and their expression. PMID:27255139

  8. The product of the imprinted H19 gene is an oncofetal RNA.

    PubMed Central

    Ariel, I.; Ayesh, S.; Perlman, E. J.; Pizov, G.; Tanos, V.; Schneider, T.; Erdmann, V. A.; Podeh, D.; Komitowski, D.; Quasem, A. S.; de Groot, N.; Hochberg, A.

    1997-01-01

    AIMS/BACKGROUND: The H19 gene is an imprinted, maternally expressed gene in humans. It is tightly linked and coregulated with the imprinted, paternally expressed gene of insulin-like growth factor 2. The H19 gene product is not translated into protein and functions as an RNA molecule. Although its role has been investigated for more than a decade, its biological function is still not understood fully. H19 is abundantly expressed in many tissues from early stages of embryogenesis through fetal life, and is down regulated postnatally. It is also expressed in certain childhood and adult tumours. This study was designed to screen the expression of H19 in human cancer and its relation to the expression of H19 in the fetus. METHODS: Using in situ hybridisation with a [35S] labelled probe, H19 mRNA was detected in paraffin wax sections of fetal tissues from the first and second trimesters of pregnancy and of a large array of human adult and childhood tumours arising from these tissues. RESULTS: The H19 gene is expressed in tumours arising from tissues which express this gene in fetal life. Its expression in the fetus and in cancer is closely linked with tissue differentiation. CONCLUSIONS: Based on these and previous data, H19 is neither a tumour suppressor gene nor an oncogene. Its product is an oncofetal RNA. The potential use of this RNA as a tumour marker should be evaluated. Images PMID:9208812

  9. The ERCC1 and ERCC4 (XPF) genes and gene products.

    PubMed

    Manandhar, Mandira; Boulware, Karen S; Wood, Richard D

    2015-09-15

    The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1-XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1-XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-strand is oriented 5' to 3' away from a junction. ERCC1-XPF is a core component of nucleotide excision repair and also plays a role in interstrand crosslink repair, some pathways of double-strand break repair by homologous recombination and end-joining, as a backup enzyme in base excision repair, and in telomere length regulation. In many of these activities, ERCC1-XPF complex cleaves the 3' tails of DNA intermediates in preparation for further processing. ERCC1-XPF interacts with other proteins including XPA, RPA, SLX4 and TRF2 to perform its functions. Disruption of these interactions or direct targeting of ERCC1-XPF to decrease its DNA repair function might be a useful strategy to increase the sensitivity of cancer cells to some DNA damaging agents. Complete deletion of either ERCC1 or ERCC4 is not compatible with viability in mice or humans. However, mutations in the ERCC1 or ERCC4 genes cause a remarkable array of rare inherited human disorders. These include specific forms of xeroderma pigmentosum, Cockayne syndrome, Fanconi anemia, XFE progeria and cerebro-oculo-facio-skeletal syndrome. PMID:26074087

  10. Associations between polymorphisms of the gene and milk production traits in water buffaloes.

    PubMed

    Deng, T X; Pang, C Y; Lu, X R; Zhu, P; Duan, A Q; Liang, X W

    2016-03-01

    Signal transducer and activator of transcription 1 () is an important regulator of mammary gland differentiation and cell survival that has been regarded as a candidate gene affecting milk production traits in mammals. Therefore, this study was conducted to evaluate significant associations between SNP of the gene and milk production traits in buffaloes. Here, 18 SNP were identified in the buffalo gene, including 15 intronic mutations and 3 exon mutations. All the identified SNP were then genotyped using matrix-assisted laser desorption/ionization time of flight mass spectrometry methods from 192 buffaloes. All the SNP were in Hardy-Weinberg equilibrium, and 2 haplotype blocks were successfully constructed based on these SNP data, which formed 5 and 3 major haplotypes in the population (>5%), respectively. The results of association analysis showed that only SNP13 located in exon 10 was significantly associated with the milk production traits in the population ( < 0.05). Single nucleotide polymorphism 2, SNP5, SNP8, and SNP9 were associated with protein percentage, and SNP4 and SNP10 were associated with 305-d milk yield ( < 0.05). Our results provide evidence that polymorphisms of the buffalo gene are associated with milk production traits and can be used as a candidate gene for marker-assisted selection in buffalo breeding. PMID:27065255

  11. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication

    PubMed Central

    Herod, Morgan R.; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C.; Verdaguer, Nuria; Rowlands, David J.

    2016-01-01

    occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen. PMID:27194768

  12. Eubacterial Diterpene Cyclase Genes Essential for Production of the Isoprenoid Antibiotic Terpentecin

    PubMed Central

    Dairi, Tohru; Hamano, Yoshimitsu; Kuzuyama, Tomohisa; Itoh, Nobuya; Furihata, Kazuo; Seto, Haruo

    2001-01-01

    A gene cluster containing the mevalonate pathway genes (open reading frame 2 [ORF2] to ORF7) for the formation of isopentenyl diphosphate and a geranylgeranyl diphosphate (GGDP) synthase gene (ORF1) had previously been cloned from Streptomyces griseolosporeus strain MF730-N6, a diterpenoid antibiotic, terpentecin (TP) producer (Y. Hamano, T. Dairi, M. Yamamoto, T. Kawasaki, K Kaneda, T. Kuzuyama, N. Itoh, and H. Seto, Biosci. Biotech. Biochem. 65:1627–1635, 2001). Sequence analysis in the upstream region of the cluster revealed seven new ORFs, ORF8 to ORF14, which were suggested to encode TP biosynthetic genes. We constructed two mutants, in which ORF11 and ORF12, which encode a protein showing similarities to eukaryotic diterpene cyclases (DCs) and a eubacterial pentalenene synthase, respectively, were inactivated by gene disruptions. The mutants produced no TP, confirming that these cyclase genes are essential for the production of TP. The two cyclase genes were also expressed in Streptomyces lividans together with the GGDP synthase gene under the control of the ermE* constitutive promoter. The transformant produced a novel cyclic diterpenoid, ent-clerod-3,13(16),14-triene (terpentetriene), which has the same basic skeleton as TP. The two enzymes, each of which was overproduced in Escherichia coli and purified to homogeneity, converted GGDP into terpentetriene. To the best of our knowledge, this is the first report of a eubacterial DC. PMID:11567009

  13. Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production.

    PubMed

    Muñoz-Amatriaín, M; Svensson, J T; Castillo, A M; Close, T J; Vallés, M P

    2009-08-01

    Plant microspores can be reprogrammed from their normal pollen development to an embryogenic route in a process termed microspore embryogenesis or androgenesis. Stress treatment has a critical role in this process, inducing the dedifferentiation of microspores and conditioning the following androgenic response. In this study, we have used three barley doubled haploid lines with similar genetic background but different androgenic response. The Barley1 GeneChip was used for transcriptome comparison of these lines after mannitol stress treatment, allowing the identification of 213 differentially expressed genes. Most of these genes belong to the functional categories "cell rescue, defense, and virulence"; "metabolism"; "transcription"; and "transport". These genes were grouped into clusters according to their expression profiles among lines. A principal component analysis allowed us to associate specific gene expression clusters to phenotypic variables. Genes associated with the ability of microspores to divide and form embryos were mainly involved in changes in the structure and function of membranes, efficient use of available energy sources, and cell fate. Genes related to stress response, transcription and translation regulation, and degradation of pollen-specific proteins were associated with green plant production, while expression of genes related to plastid development was associated with albino plant regeneration. PMID:19229567

  14. Isolated Fungal Promoters and Gene Transcription Terminators and Methods of Protein and Chemical Production in a Fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  15. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L; Magnuson, Jon K

    2014-05-27

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  16. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  17. Development of Ecogenomic Sensors for Remote Detection of Marine Microbes, Their Genes and Gene Products

    NASA Astrophysics Data System (ADS)

    Scholin, C.; Preston, C.; Harris, A.; Birch, J.; Marin, R.; Jensen, S.; Roman, B.; Everlove, C.; Makarewicz, A.; Riot, V.; Hadley, D.; Benett, W.; Dzenitis, J.

    2008-12-01

    An internet search using the phrase "ecogenomic sensor" will return numerous references that speak broadly to the idea of detecting molecular markers indicative of specific organisms, genes or other biomarkers within an environmental context. However, a strict and unified definition of "ecogenomic sensor" is lacking and the phrase may be used for laboratory-based tools and techniques as well as semi or fully autonomous systems that can be deployed outside of laboratory. We are exploring development of an ecogenomic sensor from the perspective of a field-portable device applied towards oceanographic research and water quality monitoring. The device is known as the Environmental Sample Processor, or ESP. The ESP employs wet chemistry molecular analytical techniques to autonomously assess the presence and abundance of specific organisms, their genes and/or metabolites in near real-time. Current detection chemistries rely on low- density DNA probe and protein arrays. This presentation will emphasize results from 2007-8 field trials when the ESP was moored in Monterey Bay, CA, as well as current engineering activities for improving analytical capacity of the instrument. Changes in microbial community structure at the rRNA level were observed remotely in accordance with changing chemical and physical oceanographic conditions. Current developments include incorporation of a reusable solid phase extraction column for purifying nucleic acids and a 4-channel real-time PCR module. Users can configure this system to support a variety of PCR master mixes, primer/probe combinations and control templates. An update on progress towards fielding a PCR- enabled ESP will be given along with an outline of plans for its use in coastal and oligotrophic oceanic regimes.

  18. In silico identification of gene amplification targets based on analysis of production and growth coupling.

    PubMed

    Jian, Xingxing; Zhou, Shengguo; Zhang, Cheng; Hua, Qiang

    2016-07-01

    Genome-scale metabolic models (GEMs) can be utilized to better understand the genotype-phenotype relationship in microbial metabolism. Manipulation strategies based on analysis of metabolic flux distributions using constraint-based methods have been validated to be effective for designing strains. Herein, we first investigated the coupled relationship of growth and production, and subsequently proposed an algorithm, called analysis of production and growth coupling (APGC), to identify amplification targets for improving production of the desired metabolite. The logical transformation of the genome-scale metabolic models (LTM) could enable a gene-level prediction, that is, direct gene targets would be determined through APGC. This algorithm was successfully employed to simulate heterogeneous biosynthesis of the antioxidant lycopene in Escherichia coli, and target genes for the improvement of lycopene production were identified. These identified gene targets were unambiguous and were closely related to the supply of essential precursors and cofactors for lycopene production, and most of these have been validated as effective in enhancing the yield of lycopene. PMID:27157785

  19. Analysis of Genes for Succinoyl Trehalose Lipid Production and Increasing Production in Rhodococcus sp. Strain SD-74

    PubMed Central

    Inaba, Tomohiro; Tokumoto, Yuta; Miyazaki, Yusuke; Inoue, Naoyuki; Maseda, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo

    2013-01-01

    Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species. PMID:24038682

  20. The dam replacing gene product enhances Neisseria gonorrhoeae FA1090 viability and biofilm formation

    PubMed Central

    Kwiatek, Agnieszka; Bacal, Pawel; Wasiluk, Adrian; Trybunko, Anastasiya; Adamczyk-Poplawska, Monika

    2014-01-01

    Many Neisseriaceae do not exhibit Dam methyltransferase activity and, instead of the dam gene, possess drg (dam replacing gene) inserted in the leuS/dam locus. The drg locus in Neisseria gonorrhoeae FA1090 has a lower GC-pairs content (40.5%) compared to the whole genome of N. gonorrhoeae FA1090 (52%). The gonococcal drg gene encodes a DNA endonuclease Drg, with GmeATC specificity. Disruption of drg or insertion of the dam gene in gonococcal genome changes the level of expression of genes as shown by transcriptome analysis. For the drg-deficient N. gonorrhoeae mutant, a total of 195 (8.94% of the total gene pool) genes exhibited an altered expression compared to the wt strain by at least 1.5 fold. In dam-expressing N. gonorrhoeae mutant, the expression of 240 genes (11% of total genes) was deregulated. Most of these deregulated genes were involved in translation, DNA repair, membrane biogenesis and energy production as shown by cluster of orthologous group analysis. In vivo, the inactivation of drg gene causes the decrease of the number of live neisserial cells and long lag phase of growth. The insertion of dam gene instead of drg locus restores cell viability. We have also shown that presence of the drg gene product is important for N. gonorrhoeae FA1090 in adhesion, including human epithelial cells, and biofilm formation. Biofilm produced by drg-deficient strain is formed by more dispersed cells, compared to this one formed by parental strain as shown by scanning electron and confocal microscopy. Also adherence assays show a significantly smaller biomass of formed biofilm (OD570 = 0.242 ± 0.038) for drg-deficient strain, compared to wild-type strain (OD570 = 0.378 ± 0.057). Dam-expressing gonococcal cells produce slightly weaker biofilm with cells embedded in an extracellular matrix. This strain has also a five times reduced ability for adhesion to human epithelial cells. In this context, the presence of Drg is more advantageous for N. gonorrhoeae biology than

  1. Plasmids with temperature-dependent copy number for amplification of cloned genes and their products.

    PubMed

    Uhlin, B E; Molin, S; Gustafsson, P; Nordström, K

    1979-06-01

    Miniplasmids (pKN402 and pKN410) were isolated from runaway-replication mutants of plasmid R1. At 30 degrees C these miniplasmids are present in 20--50 copies per cell of Escherichia coli, whereas at temperatures above 35 degrees C the plasmids replicate without copy number control during 2--3 h. At the end of this period plasmid DNA amounts to about 75% of the total DNA. During the gene amplification, growth and protein synthesis continue at normal rate leading to a drastic amplification of plasmid gene products. Plasmids pKN402 (4.6 Md) and pKN410 (10 Md) have single restriction sites for restriction endonucleases EcoRI and HindIII; in addition plamid pKN410 has a single BamHI site and carries ampicillin resistance. The plasmids can therefore be used as cloning vectors. Several genes were cloned into these vectors using the EcoRI sites; chromosomal as well as plasmid-coded beta-lactamase was found to be amplified up to 400-fold after thermal induction of the runaway replication. Vectors of this temperature-dependent class will be useful in the production of large quantities of genes and gene products. These plasmids have lost their mobilization capacity. Runaway replication is lethal to the host bacteria in rich media. These two properties contribute to the safe use of the plasmids as cloning vehicles. PMID:383579

  2. Regulatory structures for gene therapy medicinal products in the European Union.

    PubMed

    Klug, Bettina; Celis, Patrick; Carr, Melanie; Reinhardt, Jens

    2012-01-01

    Taking into account the complexity and technical specificity of advanced therapy medicinal products: (gene and cell therapy medicinal products and tissue engineered products), a dedicated European regulatory framework was needed. Regulation (EC) No. 1394/2007, the "ATMP Regulation" provides tailored regulatory principles for the evaluation and authorization of these innovative medicines. The majority of gene or cell therapy product development is carried out by academia, hospitals, and small- and medium-sized enterprises (SMEs). Thus, acknowledging the particular needs of these types of sponsors, the legislation also provides incentives for product development tailored to them. The European Medicines Agency (EMA) and, in particular, its Committee for Advanced Therapies (CAT) provide a variety of opportunities for early interaction with developers of ATMPs to enable them to have early regulatory and scientific input. An important tool to promote innovation and the development of new medicinal products by micro-, small-, and medium-sized enterprises is the EMA's SME initiative launched in December 2005 to offer financial and administrative assistance to smaller companies. The European legislation also foresees the involvement of stakeholders, such as patient organizations, in the development of new medicines. Considering that gene therapy medicinal products are developed in many cases for treatment of rare diseases often of monogenic origin, the involvement of patient organizations, which focus on rare diseases and genetic and congenital disorders, is fruitful. Two such organizations are represented in the CAT. Research networks play another important role in the development of gene therapy medicinal products. The European Commission is funding such networks through the EU Sixth Framework Program. PMID:22365782

  3. Efficient production of multi-modified pigs for xenotransplantation by 'combineering', gene stacking and gene editing.

    PubMed

    Fischer, Konrad; Kraner-Scheiber, Simone; Petersen, Björn; Rieblinger, Beate; Buermann, Anna; Flisikowska, Tatiana; Flisikowski, Krzysztof; Christan, Susanne; Edlinger, Marlene; Baars, Wiebke; Kurome, Mayuko; Zakhartchenko, Valeri; Kessler, Barbara; Plotzki, Elena; Szczerbal, Izabela; Switonski, Marek; Denner, Joachim; Wolf, Eckhard; Schwinzer, Reinhard; Niemann, Heiner; Kind, Alexander; Schnieke, Angelika

    2016-01-01

    Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - 'gene stacking', and cointegration of multiple engineered large vectors - 'combineering', to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous GGTA1 and CMAH knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before GGTA1 knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age. PMID:27353424

  4. Differential activation of RNA polymerase III-transcribed genes by the polyomavirus enhancer and the adenovirus E1A gene products.

    PubMed Central

    Berger, S L; Folk, W R

    1985-01-01

    We have compared the effect of the polyomavirus cis-acting transcriptional enhancer and the adenovirus trans-acting E1A gene on expression of RNA polymerase III-transcribed genes (the adenovirus VAI gene and a bacterial tRNA gene) using DNA transfection and transient expression assays. The polyomavirus enhancer has little effect upon transcription of the VAI gene by RNA polymerase III in any cell type tested (murine, hamster, or human). In contrast, expression of the E1A gene within adenovirus infected cells stimulates transcription of RNA polymerase III-transcribed genes from co-transfected DNAs. Human 293 cells, which constitutively produce adenovirus E1A gene products, also express high levels of RNA polymerase III transcripts from transfected DNAs. Images PMID:2987823

  5. Expression of exoinulinase genes in Saccharomyces cerevisiae to improve ethanol production from inulin sources.

    PubMed

    Yuan, Bo; Wang, Shi-An; Li, Fu-Li

    2013-10-01

    To improve inulin utilization and ethanol fermentation, exoinulinase genes from the yeast Kluyveromyces marxianus and the recently identified yeast, Candida kutaonensis, were expressed in Saccharomyces cerevisiae. S. cerevisiae harboring the exoinulinase gene from C. kutaonensis gave higher ethanol yield and productivity from both inulin (0.38 vs. 0.34 g/g and 1.35 vs. 1.22 g l(-1) h(-1)) and Jerusalem artichoke tuber flour (0.47 vs. 0.46 g/g and 1.62 vs. 1.54 g l(-1) h(-1)) compared with the strain expressing the exoinulinase gene from K. marxianus. Thus, the exoinulinase gene from C. kutaonensis is advantageous for engineering S. cerevisiae to improve ethanol fermentation from inulin sources. PMID:23743955

  6. RolB gene-induced production of isoflavonoids in transformed Maackia amurensis cells.

    PubMed

    Grishchenko, O V; Kiselev, K V; Tchernoded, G K; Fedoreyev, S A; Veselova, M V; Bulgakov, V P; Zhuravlev, Y N

    2016-09-01

    Maackia amurensis Rupr. et Maxim is a valuable leguminous tree grown in the Russian Far East, in China, and in Korea. Polyphenols from the heartwood of this species (primarily stilbenes and isoflavonoids) possess strong hepatoprotective activity. Callus culture of M. amurensis produced isoflavonoids and their derivatives. In pharmacological experiments, the callus complex was at least as effective, as the plant complex. To increase the yield of isoflavonoids, calli were transformed with the rolB gene of Agrobacterium rhizogenes. Neomycin phosphotransferase (nptII) gene was used for transgenic cell selection. Three rolB transgenic callus lines with different levels of the rolB gene expression were established. Insertion of the rolB gene caused alterations in callus structure, growth, and isoflavonoid production, and stronger alterations were observed with higher expression levels. MB1, MB2, and MB4 cultures accumulated 1.4, 1.5, and 2.1 % of dry weight (DW) isoflavonoids, respectively. In contrast, the empty vector-transformed MV culture accumulated 1.22 % DW. Isoflavonoid productivity of the obtained MB1, MB2, and MB4 cultures was equal to 117, 112, and 199 mg/L of medium, respectively, comparing to 106 mg/L for the MV culture. High level of expression of the rolB gene in MB4 culture led to a 2-fold increase in the isoflavonoid content and productivity and reliably increased dry biomass accumulation. Lower expression levels of the rolB gene in MB1 and MB2 calli did not significantly enhance biomass accumulation and isoflavonoid content, although the rolB gene activated isoflavonoid biosynthesis during the early growth stages and caused the increased content of several distinct compounds. PMID:27063013

  7. Role of nitric oxide and flavohemoglobin homolo genes in Aspergillus nidulans sexual development and mycotoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavohemoglobins are widely distributed proteins in both prokaryotic and eukaryotic organisms, conferring resistance against nitrosative stress. In the present study we investigated the role of two flavohemoglobin homologous genes, fhbA and fhbB, in morphogenesis and in the production of the mycotox...

  8. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell; Alterthum, Flavio

    1991-01-01

    A novel operon and plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase activities of Zymomonas mobilis are described. Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells.

  9. ALOX5 gene variants affect eicosanoid production and response to fish oil supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine whether 5-lipoxygenase (ALOX5) gene variants associated with cardiovascular disease affect eicosanoid production by monocytes. The study was a randomized, double-masked, parallel intervention trial with fish oil (5.0 g of fish oil daily, containing 2.0 g ...

  10. Regulation of tabtoxin production by the lemA gene in Pseudomonas syringae.

    PubMed Central

    Barta, T M; Kinscherf, T G; Willis, D K

    1992-01-01

    Pseudomonas syringae pv. coronafaciens, a pathogen of oats, was mutagenized with Tn5 to generate mutants defective in tabtoxin production. From a screen of 3,400 kanamycin-resistant transconjugants, seven independent mutants that do not produce tabtoxin (Tox-) were isolated. Although the Tn5 insertions within these seven mutants were linked, they were not located in the previously described tabtoxin biosynthetic region of P. syringae. Instead, all of the insertions were within the P. syringae pv. coronafaciens lemA gene. The lemA gene is required by strains of P. syringae pv. syringae for pathogenicity on bean plants (Phaseolus vulgaris). In contrast to the phenotype of a P. syringae pv. syringae lemA mutant, the Tox- mutants of P. syringae pv. coronafaciens were still able to produce necrotic lesions on oat plants (Avena sativa), although without the chlorosis associated with tabtoxin production. Northern (RNA) hybridization experiments indicated that a functional lemA gene was required for the detection of a transcript produced from the tblA locus located in the tabtoxin biosynthetic region. Marker exchange mutagenesis of the tblA locus resulted in loss of tabtoxin production. Therefore, both the tblA and lemA genes are required for tabtoxin biosynthesis, and the regulation of tabtoxin production by lemA probably occurs at the transcriptional level. Images PMID:1314808

  11. EpsA is an essential gene in exopolysaccharide production in Lactobacillus johnsonii FI9785.

    PubMed

    Dertli, Enes; Mayer, Melinda J; Colquhoun, Ian J; Narbad, Arjan

    2016-07-01

    Lactobacillus johnsonii FI9785 has an eps gene cluster which is required for the biosynthesis of homopolymeric exopolysaccharides (EPS)-1 and heteropolymeric EPS-2 as a capsular layer. The first gene of the cluster, epsA, is the putative transcriptional regulator. In this study we showed the crucial role of epsA in EPS biosynthesis by demonstrating that deletion of epsA resulted in complete loss of both EPS-1 and EPS-2 on the cell surface. Plasmid complementation of the epsA gene fully restored EPS production, as confirmed by transmission electron microscopy and nuclear magnetic resonance (NMR) analysis. Furthermore, this complementation resulted in a twofold increase in the expression levels of this gene, which almost doubled amounts of EPS production in comparison with the wild-type strain. Analysis of EPS by NMR showed an increased ratio of the heteropolysaccharide to homopolysaccharide in the complemented strain and allowed identification of the acetylated residue in EPS-2 as the (1,4)-linked βGlcp unit, with the acetyl group located at O-6. These findings indicate that epsA is a positive regulator of EPS production and that EPS production can be manipulated by altering its expression. PMID:26401596

  12. Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct cellobiose production from cellulose by a genetically modified fungus—Neurospora crassa, was explored in this study. A library of N. crassa sextuple beta-glucosidase (bgl) gene deletion strains was constructed. Various concentrations of cellobiose were detected in the culture broth of the N. ...

  13. Bifunctional Gene Cluster lnqBCDEF Mediates Bacteriocin Production and Immunity with Differential Genetic Requirements

    PubMed Central

    Iwatani, Shun; Horikiri, Yuko; Zendo, Takeshi; Nakayama, Jiro

    2013-01-01

    A comprehensive gene disruption of lacticin Q biosynthetic cluster lnqQBCDEF was carried out. The results demonstrated the necessity of the complete set of lnqQBCDEF for lacticin Q production, whereas immunity was flexible, with LnqEF (ABC transporter) being essential for and LnqBCD partially contributing to immunity. PMID:23335763

  14. Comprehensive identification of LMW-GS genes and their protein products in a common wheat variety.

    PubMed

    Lee, Jong-Yeol; Beom, Hye-Rang; Altenbach, Susan B; Lim, Sun-Hyung; Kim, Yeong-Tae; Kang, Chon-Sik; Yoon, Ung-Han; Gupta, Ravi; Kim, Sun-Tae; Ahn, Sang-Nag; Kim, Young-Mi

    2016-05-01

    Although it is well known that low-molecular-weight glutenin subunits (LMW-GS) from wheat affect bread and noodle processing quality, the function of specific LMW-GS proteins remains unclear. It is important to find the genes that correspond to individual LMW-GS proteins in order to understand the functions of specific proteins. The objective of this study was to link LMW-GS genes and haplotypes characterized using well known Glu-A3, Glu-B3, and Glu-D3 gene-specific primers to their protein products in a single wheat variety. A total of 36 LMW-GS genes and pseudogenes were amplified from the Korean cultivar Keumkang. These include 11 Glu-3 gene haplotypes, two from the Glu-A3 locus, two from the Glu-B3 locus, and seven from the Glu-D3 locus. To establish relationships between gene haplotypes and their protein products, a glutenin protein fraction was separated by two-dimensional gel electrophoresis (2-DGE) and 17 protein spots were analyzed by N-terminal amino acid sequencing and tandem mass spectrometry (MS/MS). LMW-GS proteins were identified that corresponded to all Glu-3 gene haplotypes except the pseudogenes. This is the first report of the comprehensive characterization of LMW-GS genes and their corresponding proteins in a single wheat cultivar. Our approach will be useful to understand the contributions of individual LMW-GS to the end-use quality of flour. PMID:26882917

  15. Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production.

    PubMed

    Rico, Juan; Yebra, María Jesús; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente

    2008-06-01

    Lactobacillus casei is a lactic acid bacterium that produces L-lactate as the main product of sugar fermentation via L-lactate dehydrogenase (Ldh1) activity. In addition, small amounts of the D-lactate isomer are produced by the activity of a D-hydroxycaproate dehydrogenase (HicD). Ldh1 is the main L-lactate producing enzyme, but mutation of its gene does not eliminate L-lactate synthesis. A survey of the L. casei BL23 draft genome sequence revealed the presence of three additional genes encoding Ldh paralogs. In order to study the contribution of these genes to the global lactate production in this organism, individual, as well as double mutants (ldh1 ldh2, ldh1 ldh3, ldh1 ldh4 and ldh1 hicD) were constructed and lactic acid production was assessed in culture supernatants. ldh2, ldh3 and ldh4 genes play a minor role in lactate production, as their single mutation or a mutation in combination with an ldh1 deletion had a low impact on L-lactate synthesis. A Deltaldh1 mutant displayed an increased production of D-lactate, which was probably synthesized via the activity of HicD, as it was abolished in a Deltaldh1 hicD double mutant. Contrarily to HicD, no Ldh1, Ldh2, Ldh3 or Ldh4 activities could be detected by zymogram assays. In addition, these assays revealed the presence of extra bands exhibiting D-/L-lactate dehydrogenase activity, which could not be attributed to any of the described genes. These results suggest that L. casei BL23 possesses a complex enzymatic system able to reduce pyruvic to lactic acid. PMID:18231816

  16. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGESBeta

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  17. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects.

    PubMed

    Sumner, Lloyd W; Lei, Zhentian; Nikolau, Basil J; Saito, Kazuki

    2015-02-01

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine. PMID:25342293

  18. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    SciTech Connect

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  19. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting.

    PubMed

    Dobler, Leticia; Vilela, Leonardo F; Almeida, Rodrigo V; Neves, Bianca C

    2016-01-25

    Rhamnolipids have emerged as a very promising class of biosurfactants in the last decades, exhibiting properties of great interest in several industrial applications, and have represented a suitable alternative to chemically-synthesized surfactants. This class of biosurfactants has been extensively studied in recent years, aiming at their large-scale production based on renewable resources, which still require high financial costs. Development of non-pathogenic, high-producing strains has been the focus of a number of studies involving heterologous microbial hosts as platforms. However, the intricate gene regulation network controlling rhamnolipid biosynthesis represents a challenge to metabolic engineering and remains to be further understood and explored. This article provides an overview of the biosynthetic pathways and the main gene regulatory factors involved in rhamnolipid production within Pseudomonas aeruginosa, the prototypal producing species. In addition, we provide a perspective view into the main strategies applied to metabolic engineering and biotechnological production. PMID:26409933

  20. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.

    PubMed

    Vogt, Michael; Haas, Sabine; Polen, Tino; van Ooyen, Jan; Bott, Michael

    2015-03-01

    2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l(-1)) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l(-1)  h(-1). Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol. PMID:25488800

  1. Correlation of gene expression and protein production rate - a system wide study

    PubMed Central

    2011-01-01

    Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR). PMID:22185473

  2. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products.

    PubMed

    Li, Yong Fuga; Tsai, Kathleen J S; Harvey, Colin J B; Li, James Jian; Ary, Beatrice E; Berlew, Erin E; Boehman, Brenna L; Findley, David M; Friant, Alexandra G; Gardner, Christopher A; Gould, Michael P; Ha, Jae H; Lilley, Brenna K; McKinstry, Emily L; Nawal, Saadia; Parry, Robert C; Rothchild, Kristina W; Silbert, Samantha D; Tentilucci, Michael D; Thurston, Alana M; Wai, Rebecca B; Yoon, Yongjin; Aiyar, Raeka S; Medema, Marnix H; Hillenmeyer, Maureen E; Charkoudian, Louise K

    2016-04-01

    Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and

  3. Complementation of nitrogen-regulatory (ntr-like) mutations in Rhodobacter capsulatus by an Escherichia coli gene: cloning and sequencing of the gene and characterization of the gene product.

    PubMed Central

    Allibert, P; Willison, J C; Vignais, P M

    1987-01-01

    In vivo genetic engineering by R' plasmid formation was used to isolate an Escherichia coli gene that restored the Ntr+ phenotype to Ntr- mutants of the photosynthetic bacterium Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata; J. F. Imhoff, H. G. Trüper, and N. Pfenning, Int. J. Syst. Bacteriol. 34:340-343, 1984). Nucleotide sequencing of the gene revealed no homology to the ntr genes of Klebsiella pneumoniae. Furthermore, hybridization experiments between the cloned gene and different F' plasmids indicated that the gene is located between 34 and 39 min on the E. coli genetic map and is therefore unlinked to the known ntr genes. The molecular weight of the gene product, deduced from the nucleotide sequence, was 30,563. After the gene was cloned in an expression vector, the gene product was purified. It was shown to have a pI of 5.8 and to behave as a dimer during gel filtration and on sucrose density gradients. Antibodies raised against the purified protein revealed the presence of this protein in R. capsulatus strains containing the E. coli gene, but not in other strains. Moreover, elimination of the plasmid carrying the E. coli gene from complemented strains resulted in the loss of the Ntr+ phenotype. Complementation of the R. capsulatus mutations by the E. coli gene therefore occurs in trans and results from the synthesis of a functional gene product. Images PMID:3025172

  4. [Adeno-associated viral vectors: methods for production and purification for gene therapy applications].

    PubMed

    Mena-Enriquez, Mayra; Flores-Contreras, Lucia; Armendáriz-Borunda, Juan

    2012-01-01

    Viral vectors based on adeno-associated virus (AAV) are widely used in gene therapy protocols, because they have characteristics that make them valuable for the treatment of genetic and chronic degenerative diseases. AAV2 serotype had been the best characterized to date. However, the AAV vectors developed from other serotypes is of special interest, since they have organ-specific tropism which increases their potential for transgene delivery to target cells for performing their therapeutic effects. This article summarizes AAV generalities, methods for their production and purification. It also discusses the use of these vectors in vitro, in vivo and their application in gene therapy clinical trials. PMID:23544311

  5. The Unfolded Protein Response and the Phosphorylations of Activating Transcription Factor 2 in the trans-Activation of il23a Promoter Produced by β-Glucans*

    PubMed Central

    Rodríguez, Mario; Domingo, Esther; Alonso, Sara; Frade, Javier García; Eiros, José; Crespo, Mariano Sánchez; Fernández, Nieves

    2014-01-01

    Current views on the control of IL-23 production focus on the regulation of il23a, the gene encoding IL-23 p19, by NF-κB in combination with other transcription factors. C/EBP homologous protein (CHOP), X2-Box-binding protein 1 (XBP1), activator protein 1 (AP1), SMAD, CCAAT/enhancer-binding protein (C/EBPβ), and cAMP-response element-binding protein (CREB) have been involved in response to LPS, but no data are available regarding the mechanism triggered by the fungal mimic and β-glucan-containing stimulus zymosan, which produces IL-23 and to a low extent the related cytokine IL-12 p70. Zymosan induced the mobilization of CHOP from the nuclear fractions to phagocytic vesicles. Hypha-forming Candida also induced the nuclear disappearance of CHOP. Assay of transcription factor binding to the il23a promoter showed an increase of Thr(P)-71–Thr(P)-69-activating transcription factor 2 (ATF2) binding in response to zymosan. PKC and PKA/mitogen- and stress-activated kinase inhibitors down-regulated Thr(P)-71–ATF2 binding to the il23a promoter and il23a mRNA expression. Consistent with the current concept of complementary phosphorylations on N-terminal Thr-71 and Thr-69 of ATF2 by ERK and p38 MAPK, MEK, and p38 MAPK inhibitors blunted Thr(P)-69–ATF2 binding. Knockdown of atf2 mRNA with siRNA correlated with inhibition of il23a mRNA, but it did not affect the expression of il12/23b and il10 mRNA. These data indicate the following: (i) zymosan decreases nuclear proapoptotic CHOP, most likely by promoting its accumulation in phagocytic vesicles; (ii) zymosan-induced il23a mRNA expression is best explained through coordinated κB- and ATF2-dependent transcription; and (iii) il23a expression relies on complementary phosphorylation of ATF2 on Thr-69 and Thr-71 dependent on PKC and MAPK activities. PMID:24982422

  6. Gene Discovery for Synthetic Biology: Exploring the Novel Natural Product Biosynthetic Capacity of Eukaryotic Microalgae.

    PubMed

    O'Neill, E C; Saalbach, G; Field, R A

    2016-01-01

    Eukaryotic microalgae are an incredibly diverse group of organisms whose sole unifying feature is their ability to photosynthesize. They are known for producing a range of potent toxins, which can build up during harmful algal blooms causing damage to ecosystems and fisheries. Genome sequencing is lagging behind in these organisms because of their genetic complexity, but transcriptome sequencing is beginning to make up for this deficit. As more sequence data becomes available, it is apparent that eukaryotic microalgae possess a range of complex natural product biosynthesis capabilities. Some of the genes concerned are responsible for the biosynthesis of known toxins, but there are many more for which we do not know the products. Bioinformatic and analytical techniques have been developed for natural product discovery in bacteria and these approaches can be used to extract information about the products synthesized by algae. Recent analyses suggest that eukaryotic microalgae produce many complex natural products that remain to be discovered. PMID:27480684

  7. Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene.

    PubMed

    Wang, Yong; Boghigian, Brett A; Pfeifer, Blaine A

    2007-11-01

    An S-adenosylmethionine synthetase gene (metK) from Streptomyces spectabilis was cloned into an expression plasmid under the control of an inducible T7 promoter and introduced into a strain of Escherichia coli (BAP1(pBP130/pBP144)) capable of producing the polyketide product 6-deoxyerythronolide B (6-dEB). The metK coexpression in BAP1(pBP130/pBP144) improved the specific production of 6-dEB from 10.86 to 20.08 mg l(-1) OD(600)(-1). In an effort to probe the reason for this improvement, a series of gene deletion and expression experiments were conducted based on a metK metabolic pathway that branches between propionyl-CoA (a 6-dEB precursor) and autoinducer compounds. The deletion and expression studies suggested that the autoinducer pathway had a larger impact on improved 6-dEB biosynthesis. Supporting these results were experiments demonstrating the positive effect conditioned media (the suspected location of the autoinducer compounds) had on 6-dEB production. Taken together, the results of this study show an increase in heterologous 6-dEB production concomitant with heterologous metK gene expression and suggest that the mechanism for this improvement is linked to native autoinducer compounds. PMID:17876579

  8. PepPSy: a web server to prioritize gene products in experimental and biocuration workflows.

    PubMed

    Sallou, Olivier; Duek, Paula D; Darde, Thomas A; Collin, Olivier; Lane, Lydie; Chalmel, Frédéric

    2016-01-01

    Among the 20 000 human gene products predicted from genome annotation, about 3000 still lack validation at protein level. We developed PepPSy, a user-friendly gene expression-based prioritization system, to help investigators to determine in which human tissues they should look for an unseen protein. PepPSy can also be used by biocurators to revisit the annotation of specific categories of proteins based on the 'omics' data housed by the system. In this study, it was used to prioritize 21 dubious protein-coding genes among the 616 annotated in neXtProt for reannotation. PepPSy is freely available at http://peppsy.genouest.orgDatabase URL: http://peppsy.genouest.org. PMID:27173522

  9. Detection of Duchenne muscular dystrophy gene products in amniotic fluid and chorionic villus sampling cells.

    PubMed

    Prigojin, H; Brusel, M; Fuchs, O; Shomrat, R; Legum, C; Nudel, U; Yaffe, D

    1993-12-01

    We have examined the expression of several Duchenne muscular dystrophy (DMD) gene products in amniotic fluid (AF) and chorionic villus sampling (CVS) cells. Variable amounts of dystrophin could be detected in most CVS and AF samples by immunoprecipitation followed by Western blot analysis. PCR analysis demonstrated the presence of the muscle type dystrophin mRNA in all AF cell cultures. The brain type dystrophin mRNA was also detected in some of these cultures. These DMD gene transcripts are of fetal origin and are produced by most or all clonable AF cells. The results may facilitate the development of a method for prenatal diagnosis of DMD, based on the expression of the gene in AF and CVS cells. PMID:8253201

  10. PepPSy: a web server to prioritize gene products in experimental and biocuration workflows

    PubMed Central

    Sallou, Olivier; Duek, Paula D.; Darde, Thomas A.; Collin, Olivier; Lane, Lydie; Chalmel, Frédéric

    2016-01-01

    Among the 20 000 human gene products predicted from genome annotation, about 3000 still lack validation at protein level. We developed PepPSy, a user-friendly gene expression-based prioritization system, to help investigators to determine in which human tissues they should look for an unseen protein. PepPSy can also be used by biocurators to revisit the annotation of specific categories of proteins based on the ‘omics’ data housed by the system. In this study, it was used to prioritize 21 dubious protein-coding genes among the 616 annotated in neXtProt for reannotation. PepPSy is freely available at http://peppsy.genouest.org. Database URL: http://peppsy.genouest.org. PMID:27173522

  11. Genome Wide Association Analysis Reveals New Production Trait Genes in a Male Duroc Population

    PubMed Central

    Wang, Kejun; Liu, Dewu; Hernandez-Sanchez, Jules; Chen, Jie; Liu, Chengkun; Wu, Zhenfang; Fang, Meiying; Li, Ning

    2015-01-01

    In this study, 796 male Duroc pigs were used to identify genomic regions controlling growth traits. Three production traits were studied: food conversion ratio, days to 100 KG, and average daily gain, using a panel of 39,436 single nucleotide polymorphisms. In total, we detected 11 genome-wide and 162 chromosome-wide single nucleotide polymorphism trait associations. The Gene ontology analysis identified 14 candidate genes close to significant single nucleotide polymorphisms, with growth-related functions: six for days to 100 KG (WT1, FBXO3, DOCK7, PPP3CA, AGPAT9, and NKX6-1), seven for food conversion ratio (MAP2, TBX15, IVL, ARL15, CPS1, VWC2L, and VAV3), and one for average daily gain (COL27A1). Gene ontology analysis indicated that most of the candidate genes are involved in muscle, fat, bone or nervous system development, nutrient absorption, and metabolism, which are all either directly or indirectly related to growth traits in pigs. Additionally, we found four haplotype blocks composed of suggestive single nucleotide polymorphisms located in the growth trait-related quantitative trait loci and further narrowed down the ranges, the largest of which decreased by ~60 Mb. Hence, our results could be used to improve pig production traits by increasing the frequency of favorable alleles via artificial selection. PMID:26418247

  12. TITER AND PRODUCT AFFECTS THE DISTRIBUTION OF GENE EXPRESSION AFTER INTRAPUTAMINAL CONVECTION-ENHANCED DELIVERY

    PubMed Central

    Emborg, Marina E.; Hurley, Samuel A.; Joers, Valerie; Tromp, Do P.M.; Swanson, Christine R.; Ohshima-Hosoyama, Sachiko; Bondarenko, Viktorya; Cummisford, Kyle; Sonnemans, Marc; Hermening, Stephan; Blits, Bas; Alexander, Andrew L.

    2014-01-01

    Background Efficacy and safety of intracerebral gene therapy for brain disorders, like Parkinson’s disease, depends on appropriate distribution of gene expression. Objectives To assess if the distribution of gene expression is affected by vector titer and protein type. Methods Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received in the right and left ventral postcommisural putamen 30μl inoculation of a high or low titer suspension of AAV5 encoding glial derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Inoculations were performed using convection enhanced delivery and intraoperative MRI (IMRI). Results IMRI confirmed targeting and infusion cloud irradiating from the catheter tip into surrounding area. Postmortem analysis six weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection side that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the Substantia Nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many SNpc and SNpr neurons. Conclusions After controlling for target and infusate volume, intracerebral distribution of gene product is affected by vector titer and product biology. PMID:24943657

  13. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production.

    PubMed

    Ishida, Nobuhiro; Saitoh, Satoshi; Onishi, Toru; Tokuhiro, Kenro; Nagamori, Eiji; Kitamoto, Katsuhiko; Takahashi, Haruo

    2006-05-01

    A plant- and crop-based renewable plastic, poly-lactic acid (PLA), is receiving attention as a new material for a sustainable society in place of petroleum-based plastics. We constructed a metabolically engineered Saccharomyces cerevisiae that has both pyruvate decarboxylase genes (PDC1 and PDC5) disrupted in the genetic background to express two copies of the bovine L-lactate dehydrogenase (LDH) gene. With this recombinant, the yield of lactate was 82.3 g/liter, up to 81.5% of the glucose being transformed into lactic acid on neutralizing cultivation, although pdc1 pdc5 double disruption led to ineffective decreases in cell growth and fermentation speed. This strain showed lactate productivity improvement as much as 1.5 times higher than the previous strain. This production yield is the highest value for a lactic acid-producing yeast yet reported. PMID:16717415

  14. Association between the enterotoxin production and presence of Coa, Nuc genes among Staphylococcus aureus isolated from various sources, in Shiraz

    PubMed Central

    Moghassem Hamidi, R; Hosseinzadeh, S; Shekarforoush, S. S.; Poormontaseri, M; Derakhshandeh, A

    2015-01-01

    The present study was aimed to identify the frequency of coagulase (Coa) and thermonuclease (Nuc) genes and Staphylococcal enterotoxin A (Sea) production among Staphylococcus aureus isolated from various sources in Shiraz. Moreover, the correlation between the Sea gene and coagulase and thermonuclease enzymes is also considered. A total of 100 S. aureus were isolated from various sources including 40 humans, 30 animals and 30 food samples by the routine biochemical tests. The frequency of Coa, Nuc and Sea genes was evaluated by PCR assay. Correlation among those genes was finally evaluated by statistical analysis. The PCR results showed that the prevalence of Coa, Nuc and Sea genes was 91%, 100% and 14%, respectively. The evaluation of the enterotoxin production indicated that 78.6% of the Sea gene was expressed. The presence of enterotoxin A was not necessarily correlated to the production of toxin. As a final conclusion to detect the enterotoxigenic strains, both genotypic and phenotypic methods are highly recommended. PMID:27175208

  15. Genetic resources for methane production from biomass described with the Gene Ontology

    PubMed Central

    Purwantini, Endang; Torto-Alalibo, Trudy; Lomax, Jane; Setubal, João C.; Tyler, Brett M.; Mukhopadhyay, Biswarup

    2014-01-01

    Methane (CH4) is a valuable fuel, constituting 70–95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing “gold standards” for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http

  16. Genetic resources for methane production from biomass described with the Gene Ontology.

    PubMed

    Purwantini, Endang; Torto-Alalibo, Trudy; Lomax, Jane; Setubal, João C; Tyler, Brett M; Mukhopadhyay, Biswarup

    2014-01-01

    Methane (CH4) is a valuable fuel, constituting 70-95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing "gold standards" for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http

  17. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    NASA Astrophysics Data System (ADS)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  18. The rkpGHI and -J genes are involved in capsular polysaccharide production by Rhizobium meliloti.

    PubMed Central

    Kiss, E; Reuhs, B L; Kim, J S; Kereszt, A; Petrovics, G; Putnoky, P; Dusha, I; Carlson, R W; Kondorosi, A

    1997-01-01

    The first complementation unit of the fix-23 region of Rhizobium meliloti, which comprises six genes (rkpAB-CDEF) exhibiting similarity to fatty acid synthase genes, is required for the production of a novel type of capsular polysaccharide that is involved in root nodule development and structurally analogous to group II K antigens found in Escherichia coli (G. Petrovics, P. Putnoky, R. Reuhs, J. Kim, T. A. Thorp, K. D. Noel, R. W. Carlson, and A. Kondorosi, Mol. Microbiol. 8:1083-1094, 1993; B. L. Reuhs, R. W. Carlson, and J. S. Kim, J. Bacteriol. 175:3570-3580, 1993). Here we present the nucleotide sequence for the other three complementation units of the fix-23 locus, revealing the presence of four additional open reading frames assigned to genes rkpGHI and -J. The putative RkpG protein shares similarity with acyltransferases, RkpH is homologous to short-chain alcohol dehydrogenases, and RkpJ shows significant sequence identity with bacterial polysaccharide transport proteins, such as KpsS of E. coli. No significant homology was found for RkpI. Biochemical and immunological analysis of Tn5 derivatives for each gene demonstrated partial or complete loss of capsular polysaccharides from the cell surface; on this basis, we suggest that all genes in the fix-23 region are required for K-antigen synthesis or transport. PMID:9079896

  19. Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides.

    PubMed

    Csernetics, Arpád; Nagy, Gábor; Iturriaga, Enrique A; Szekeres, András; Eslava, Arturo P; Vágvölgyi, Csaba; Papp, Tamás

    2011-07-01

    The zygomycete Mucor circinelloides accumulates β-carotene as the main carotenoid compound. In this study, the applicability of some early genes of the general isoprenoid pathway to improve the carotenoid production in this fungus was examined. The isopentenyl pyrophosphate isomerase gene (ipi) was cloned and used together with the genes encoding farnesyl pyrophosphate synthase (isoA) and geranylgeranyl pyrophosphate synthase (carG) in overexpression studies. Transformation experiments showed that the first bottleneck in the pathway, from the aspect of carotenoid production, is the step controlled by the carG gene, but overexpression of the ipi and isoA genes also contributes to the availability of the precursors. Transformations with these isoprenoid genes in combination with a bacterial β-carotene ketolase gene yielded Mucor strains producing canthaxanthin and echinenone. PMID:21443966

  20. EMEA and Gene Therapy Medicinal Products Development in the European Union

    PubMed Central

    2003-01-01

    The evaluation of quality, safety, and efficacy of medicinal products by the European Medicines Evaluation Agency (EMEA) via the centralized procedure is the only available regulatory procedure for obtaining marketing authorization for gene therapy (GT) medicinal products in the European Union. The responsibility for the authorization of clinical trials remains with the national competent authorities (NCA) acting in a harmonized framework from the scientific viewpoint. With the entry into force of a new directive on good clinical practice implementation in clinical trials as of 1 May 2004, procedural aspects will also be harmonized at EU level. Scientifically sound development of medicinal products is the key for the successful registration of dossiers and for contributing to the promotion and protection of public health. The objective of this paper is to introduce the EMEA regulatory processes and scientific activities relevant to GT medicinal products. PMID:12686717

  1. Induction of mitotic gene conversion by browning reaction products and its modulation by naturally occurring agents.

    PubMed

    Rosin, M P; Stich, H F; Powrie, W D; Wu, C H

    1982-05-01

    Mitotic gene conversion in the D7 strain of Saccharomyces cerevisiae was significantly enhanced by exposure to non-enzymatic browning reaction products. These products were formed during the heating of sugar (caramelization reaction) or sugar-amino acid mixtures (Maillard reaction) at temperatures normally used during the cooking of food. Several modulating factors of this convertogenic activity were identified. These factors included two main groups: (1) trace metals which are widely distributed in the environment; and (2) several cellular enzymatic systems. The convertogenic activities of a heated glucose-lysine mixture and a commercial caramel powder were completely suppresses when yeast were concurrently exposed to these products and to either FeIII or CuII. Equimolar concentrations of MnII or sodium selenite had no effect on the convertogenic activity of the products of either model system. Horse-radish peroxidase, beef liver catalase and rat liver S9 preparations each decreased the frequency of gene conversion induced by the caramel powder and the heated glucose-lysine products. This modulating activity of the enzymes was lost if they were heat-inactivated. These studies indicate the presence of a variety of protective mechanisms which can modify genotoxic components in complex food mixtures. PMID:7045641

  2. Production of Dwarf Lettuce by Overexpressing a Pumpkin Gibberellin 20-Oxidase Gene

    PubMed Central

    Niki, Tomoya; Nishijima, Takaaki; Nakayama, Masayoshi; Hisamatsu, Tamotsu; Oyama-Okubo, Naomi; Yamazaki, Hiroko; Hedden, Peter; Lange, Theo; Mander, Lewis N.; Koshioka, Masaji

    2001-01-01

    We investigated the effect of overexpressing a pumpkin gibberellin (GA) 20-oxidase gene encoding an enzyme that forms predominantly biologically inactive products on GA biosynthesis and plant morphology in transgenic lettuce (Lactuca sativa cv Vanguard) plants. Lettuce was transformed with the pumpkin GA 20-oxidase gene downstream of a strong constitutive promoter cassette (El2–35S-Ω). The transgenic plants in which the pumpkin gene was detected by polymerase chain reaction were dwarfed in the T2 generation, whereas transformants with a normal growth phenotype did not contain the transgene. The result of Southern-blot analysis showed that the transgene was integrated as a single copy; the plants segregated three dwarfs to one normal in the T2 generation, indicating that the transgene was stable and dominant. The endogenous levels of GA1 and GA4 were reduced in the dwarfs, whereas large amounts of GA17 and GA25, which are inactive products of the pumpkin GA 20-oxidase, accumulated in these lines. These results indicate that a functional pumpkin GA 20-oxidase is expressed in the transgenic lettuce, resulting in a diversion of the normal pathway of GA biosynthesis to inactive products. Furthermore, this technique may be useful for controlling plant stature in other agricultural and horticultural species. PMID:11457947

  3. Production of dwarf lettuce by overexpressing a pumpkin gibberellin 20-oxidase gene.

    PubMed

    Niki, T; Nishijima, T; Nakayama, M; Hisamatsu, T; Oyama-Okubo, N; Yamazaki, H; Hedden, P; Lange, T; Mander, L N; Koshioka, M

    2001-07-01

    We investigated the effect of overexpressing a pumpkin gibberellin (GA) 20-oxidase gene encoding an enzyme that forms predominantly biologically inactive products on GA biosynthesis and plant morphology in transgenic lettuce (Lactuca sativa cv Vanguard) plants. Lettuce was transformed with the pumpkin GA 20-oxidase gene downstream of a strong constitutive promoter cassette (El2-35S-Omega). The transgenic plants in which the pumpkin gene was detected by polymerase chain reaction were dwarfed in the T(2) generation, whereas transformants with a normal growth phenotype did not contain the transgene. The result of Southern-blot analysis showed that the transgene was integrated as a single copy; the plants segregated three dwarfs to one normal in the T(2) generation, indicating that the transgene was stable and dominant. The endogenous levels of GA(1) and GA(4) were reduced in the dwarfs, whereas large amounts of GA(17) and GA(25), which are inactive products of the pumpkin GA 20-oxidase, accumulated in these lines. These results indicate that a functional pumpkin GA 20-oxidase is expressed in the transgenic lettuce, resulting in a diversion of the normal pathway of GA biosynthesis to inactive products. Furthermore, this technique may be useful for controlling plant stature in other agricultural and horticultural species. PMID:11457947

  4. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    USGS Publications Warehouse

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  5. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression

    PubMed Central

    Li, Yan; Belshan, Michael

    2016-01-01

    A previous proteomic screen in our laboratory identified nuclear factor 45 (NF45) and nuclear factor 90 (NF90) as potential cellular factors involved in human immunodeficiency virus type 1 (HIV-1) replication. Both are RNA binding proteins that regulate gene expression; and NF90 has been shown to regulate the expression of cyclin T1 which is required for Tat-dependent trans-activation of viral gene expression. In this study the roles of NF45 and NF90 in HIV replication were investigated through overexpression studies. Ectopic expression of either factor potentiated HIV infection, gene expression, and virus production. Deletion of the RNA binding domains of NF45 and NF90 diminished the enhancement of HIV infection and gene expression. Both proteins were found to interact with the HIV RNA. RNA decay assays demonstrated that NF90, but not NF45, increased the half-life of the HIV RNA. Overall, these studies indicate that both NF45 and NF90 potentiate HIV infection through their RNA binding domains. PMID:26891316

  6. Discovery of a Linear Peptide for Improving Tumor Targeting of Gene Products and Treatment of Distal Tumors by IL-12 Gene Therapy

    PubMed Central

    Cutrera, Jeffry; Dibra, Denada; Xia, Xueqing; Hasan, Azeem; Reed, Scott; Li, Shulin

    2011-01-01

    Like many effective therapeutics, interleukin-12 (IL-12) therapy often causes side effects. Tumor targeted delivery may improve the efficacy and decrease the toxicity of systemic IL-12 treatments. In this study, a novel targeting approach was investigated. A secreted alkaline phosphatase (SEAP) reporter gene-based screening process was used to identify a mini-peptide which can be produced in vivo to target gene products to tumors. The coding region for the best peptide was inserted into an IL-12 gene to determine the antitumor efficacy. Affinity chromatography, mass spectrometry analysis, and binding studies were used to identify a receptor for this peptide. We discovered that the linear peptide VNTANST increased the tumor accumulation of the reporter gene products in five independent tumor models including one human xenogeneic model. The product from VNTANST-IL-12 fusion gene therapy increased accumulation of IL-12 in the tumor environment, and in three tumor models, VNTANST-IL-12 gene therapy inhibited distal tumor growth. In a spontaneous lung metastasis model, inhibition of metastatic tumor growth was improved compared to wild-type IL-12 gene therapy, and in a squamous cell carcinoma model, toxic liver lesions were reduced. The receptor for VNTANST was identified as vimentin. These results show the promise of using VNTANST to improve IL-12 treatments. PMID:21386825

  7. Prevalence of ten putative virulence genes in the emerging foodborne pathogen Arcobacter isolated from food products.

    PubMed

    Girbau, Cecilia; Guerra, Cristian; Martínez-Malaxetxebarria, Irati; Alonso, Rodrigo; Fernández-Astorga, Aurora

    2015-12-01

    Arcobacter spp. are considered to be emerging food- and waterborne pathogens for both humans and animals. However, their virulence mechanisms are still poorly understood. In this study the presence of ten virulence genes (cadF, ciaB, cj1349, hecA, hecB, mviN, pldA, irgA, tlyA and iroE) was assessed in a set of 47 strains of Arcobacter butzleri, 10 of Arcobacter cryaerophilus and 1 Arcobacter skirrowii strain recovered from different food products (pork, chicken, beef, milk, clams and mussels). Overall, the genes cadF, ciaB, cj1349, mviN, pldA and tlyA were detected in all A. butzleri and A. skirrowii strains. Lower detection rates were observed for irgA, iroE, hecA and hecB. The genes hecB and iroE were detected neither in A. cryaerophilus nor in A. skirrowii. The genes hecA and irgA were not detected in A. skirrowii. It was noteworthy that the genes hecA and hecB were significantly (P < 0.05) highly detected in A. butzleri strains isolated from clams compared with strains isolated from milk and chicken. Therefore, our findings underline clams as a source of A. butzleri strains with high prevalence of putative virulence genes. This could be hazardous to human health, especially because these bivalves are usually consumed raw or undercooked. PMID:26338128

  8. Silver Resistance Genes Are Overrepresented among Escherichia coli Isolates with CTX-M Production

    PubMed Central

    Edquist, Petra; Sandegren, Linus; Adler, Marlen; Tängdén, Thomas; Drobni, Mirva; Olsen, Björn; Melhus, Åsa

    2014-01-01

    Members of the Enterobacteriaceae with extended-spectrum beta-lactamases (ESBLs) of the CTX-M type have disseminated rapidly in recent years and have become a threat to public health. In parallel with the CTX-M type expansion, the consumption and widespread use of silver-containing products has increased. To determine the carriage rates of silver resistance genes in different Escherichia coli populations, the presence of three silver resistance genes (silE, silP, and silS) and genes encoding CTX-M-, TEM-, and SHV-type enzymes were explored in E. coli isolates of human (n = 105) and avian (n = 111) origin. The antibiotic profiles were also determined. Isolates harboring CTX-M genes were further characterized, and phenotypic silver resistance was examined. The silE gene was present in 13 of the isolates. All of them were of human origin. Eleven of these isolates harbored ESBLs of the CTX-M type (P = 0.007), and eight of them were typed as CTX-M-15 and three as CTX-M-14. None of the silE-positive isolates was related to the O25b-ST131 clone, but 10 out of 13 belonged to the ST10 or ST58 complexes. Phenotypic silver resistance (silver nitrate MIC > 512 mg/liter) was observed after silver exposure in 12 of them, and a concomitant reduced susceptibility to piperacillin-tazobactam developed in three. In conclusion, 12% of the human E. coli isolates but none of the avian isolates harbored silver resistance genes. This indicates another route for or level of silver exposure for humans than that caused by common environmental contamination. Since silE-positive isolates were significantly more often found in CTX-M-positive isolates, it is possible that silver may exert a selective pressure on CTX-M-producing E. coli isolates. PMID:25128339

  9. ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells.

    PubMed

    Chebbi, Mouadh; Ginis, Olivia; Courdavault, Vincent; Glévarec, Gaëlle; Lanoue, Arnaud; Clastre, Marc; Papon, Nicolas; Gaillard, Cécile; Atanassova, Rossitza; St-Pierre, Benoit; Giglioli-Guivarc'h, Nathalie; Courtois, Martine; Oudin, Audrey

    2014-10-15

    In Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production. We identified that ZCT2, one of the three members of the zinc finger Catharanthus protein (ZCT) family, can bind to a HDS promoter region involved in hormonal responsiveness. By trans-activation assays, we demonstrated that ZCT1 and ZCT2 but not ZCT3 repress the HDS promoter activity. Gene expression analyses in C. roseus cells exposed to methyljasmonate revealed a persistence of induction of ZCT2 gene expression suggesting the existence of feed-back regulatory events acting on HDS gene expression in correlation with the MIA production. PMID:25108262

  10. A gene from Renibacterium salmoninarum encoding a product which shows homology to bacterial zinc-metalloproteases.

    PubMed

    Grayson, T H; Evenden, A J; Gilpin, M L; Martin, K L; Munn, C B

    1995-06-01

    A genomic library constructed from Renibacterium salmoninarum isolate MT444 DNA in the plasmid vector pBR328 was screened using Escherichia coli host strain DH1 for the expression of genes encoding putative virulence factors. A single haemolytic clone was isolated at 22 degrees C and found to contain a 3.1 kb HindIII fragment of inserted DNA. This fragment was present in seven isolates of R. salmoninarum which were examined. Western blots of extracts from clones exhibiting haemolytic activity were performed with antisera raised against either cellular or extracellular components of R. salmoninarum and failed to identify any additional proteins compared to control E. coli containing pBR328. However, minicell analysis revealed that a polypeptide with an apparent molecular mass of 65 kDa was associated with a haemolytic activity distinct from that previously described for R. salmoninarum. The nucleotide sequence of the gene encoding this product was determined and the amino acid sequence deduced. The product was 548 amino acids with a predicted molecular mass of 66757 Da and a pl of 5.57. The deduced amino acid sequence of the gene possessed strong similarities to those of a range of secreted bacterial zinc-metalloproteases and was tentatively designed hly. Neither protease nor lecithinase activities were detectable in E. coli recombinants expressing gene hly. Haemolytic activity was observed from 6 degrees C to 37 degrees C for erythrocytes from a number of mammalian species and also from fish. Gene hly was expressed in E. coli as a fusion protein consisting of maltose-binding protein at the N-terminus linked to all but the first 24 amino acids, largely constituting the putative signal peptide, of the N-terminus of Hly. The soluble fusion protein was produced and purified by affinity chromatography. Antiserum raised against the purified fusion protein was used to probe Western blots of cell lysates and extracellular products from seven isolates of R. salmoninarum

  11. Modulation of gene transcription by natural products--a viable anticancer strategy.

    PubMed

    D'Incalci, M; Brunelli, D; Marangon, E; Simone, M; Tavecchio, M; Gescher, A; Mantovani, R

    2007-01-01

    Drug design based on the structure of specific enzymes playing a role in carcinogenesis, e.g. tyrosine kinases, has been successful at identifying novel effective anticancer drugs. In contrast, no success has been achieved in drug design attempts, in which transcription factors or DNA-transcription factor complexes involved in the pathogenesis of human neoplasms were targeted. This failure is likely to be due to the fact that the mechanism of transcription regulation is probably too complex and still too inadequately understood to be a suitable target for drug design. It seems plausible that the high selectivity of some human tumors to some DNA-interactive anticancer drugs, e.g. cisplatin, is related to an effect on the transcription of genes that are crucial for those tumors. In this article we propose that some natural products have evolutionarily evolved to exert highly specialized functions, including modulation of the transcriptional regulation of specific genes. We discuss in detail the marine natural product Yondelis (Trabectedin, ET-743) that is effective against some soft tissue sarcoma, possibly because it interferes with the aberrant transcription mechanism in these tumors. In addition we highlight the existing evidence that many different natural products are effective inhibitors of NF-kB, a transcription factor that plays a crucial role in inflammation and cancer, indicating that some of these compounds might possess antitumor properties. We propose that large-scale characterization of natural products acting as potential modulators of gene transcription is a realistic and attractive approach to discover compounds therapeutically effective against neoplastic diseases characterized by specific aberrations of transcriptional regulation. PMID:17897020

  12. Global adaptive rank truncated product method for gene-set analysis in association studies.

    PubMed

    Vilor-Tejedor, Natalia; Calle, M Luz

    2014-08-01

    Gene set analysis (GSA) aims to assess the overall association of a set of genetic variants with a phenotype and has the potential to detect subtle effects of variants in a gene or a pathway that might be missed when assessed individually. We present a new implementation of the Adaptive Rank Truncated Product method (ARTP) for analyzing the association of a set of Single Nucleotide Polymorphisms (SNPs) in a gene or pathway. The new implementation, referred to as globalARTP, improves the original one by allowing the different SNPs in the set to have different modes of inheritance. We perform a simulation study for exploring the power of the proposed methodology in a set of scenarios with different numbers of causal SNPs with different effect sizes. Moreover, we show the advantage of using the gene set approach in the context of an Alzheimer's disease case-control study where we explore the endocytosis pathway. The new method is implemented in the R function globalARTP of the globalGSA package available at http://cran.r-project.org. PMID:25082012

  13. Rhf1 gene is involved in the fruiting body production of Cordyceps militaris fungus.

    PubMed

    Jiang, Keqing; Han, Richou

    2015-08-01

    Cordyceps militaris is an important medicinal fungus. Commercialization of this fungus needs to improve the fruiting body production by molecular engineering. An improved Agrobacterium tumefaciens-mediated transformation (ATMT) method was used to select an insertional mutant (g38) which exhibited fast stromatal differentiation and increased yield. The Rhf1 gene encoding filamentation protein was destroyed by a single T-DNA and no Rhf1 transcription was detected in mutant g38. To verify the function of the Rhf1 gene, RNA interference plasmid and overexpression vector of the Rhf1 gene were constructed and transferred to the wild-type JM4 by ATMT. Fast stromatal differentiation and larger fruiting bodies were found in the RNAi-Rhf1 mutants (JM-iRhf1). In the overexpression mutants (JM-OERhf1), neither stromata nor fruiting bodies appeared. The rescued strain (38-OERhf1) showed similar growth characteristics as JM4. These results indicated that the Rhf1 gene was involved in the stromatal differentiation and the shape formation of fruiting bodies. PMID:26047996

  14. Inducibility of a gene product required for UV and chemical mutagenesis in Escherichia coli.

    PubMed Central

    Bagg, A; Kenyon, C J; Walker, G C

    1981-01-01

    The product of the umuC gene is required for UV and chemical mutagenesis in Escherichia coli. By the use of the Mud(Ap, lac) bacteriophage, we have obtained an operon fusion of the lac structural genes to the promoter/regulatory region of the umuC gene. The strain containing the umuC::Mud(Ap, lac) fusion was identified on the basis of its UV nonmutability. Strains containing this putative null allele of umuC were (i) nonmutable by UV and other agents, (ii) slightly UV sensitive, and (iii) deficient in their ability to carry out Weigle reactivation of UV-irradiation bacteriophage lambda. The UV nonmutability of the strain could be suppressed by a derivative of the mutagenesis-enhancing plasmid pKM101. beta-Galactosidase synthesis in umuC::Mud(Ap, lac) fusion strains was inducible by UV and other DNA-damaging agents. Genetic analysis of the regulation of beta-galactosidase in umuC::Mud(Ap, lac) strains suggests that the lexA protein is the direct repressor of the umuC gene and that a function of the recA protein, probably its protease activity, is required for the removal of the lexA repressor at the time of umuC induction. PMID:7029544

  15. Phytoalexin detoxification genes and gene products: Implication for the evolution of host specific traits for pathogenicity. Final report

    SciTech Connect

    VanEtten, H.

    1997-06-01

    The overall objectives of this research were to determine which differences among PDA genes were associated with different levels of virulence on pea and to clone and characterize a MAK gene. The authors also proposed to characterize the pisatin detoxifying system in pea pathogens in addition to N. haematococca to assess whether pathogens of a common host had evolved similar pathogenicity genes.

  16. RNA polymerase gene, microorganism having said gene and the production of RNA polymerase by the use of said microorganism

    DOEpatents

    Kotani, Hirokazu; Hiraoka, Nobutsugu; Obayashi, Akira

    1991-01-01

    SP6 bacteriophage RNA polymerase is produced by cultivating a new microorganism (particularly new strains of Escherichia coli) harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene and recovering SP6 bacteriophage RNA polymerase from the culture broth. SP6 bacteriophage RNA polymerase gene is provided as are new microorganisms harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene.

  17. Superoxide dismutase (SOD) genes in Streptomyces peucetius: effects of SODs on secondary metabolites production.

    PubMed

    Kanth, Bashistha Kumar; Jnawali, Hum Nath; Niraula, Narayan Prasad; Sohng, Jae Kyung

    2011-07-20

    Two superoxide dismutase (SOD) genes; sod1 and sod2, from Streptomyces peucetius ATCC 27952 show high similarity to other known SODs from Streptomyces coelicolor A3(2) and Streptomyces avermitilis MA-4680. These sod1 and sod2 were cloned into pIBR25 expression vector under a strong ermE* promoter to enhance secondary metabolites from Streptomyces strains. The recombinant expression plasmids; pIBR25SD1 and pIBR25SD2, were constructed to overexpress sod1 and sod2 respectively to enhance production of doxorubicin (DXR) in S. peucetius, clavulanic acid (CA) in Streptomyces clavuligerus NRRL 3585 and actinorhodin (ACT) and undecylprodigiosin (Red) in Streptomyces lividans TK24. Biomass variation, antibiotics production and transcriptional analysis of regulatory genes in recombinant strains have been studied to understand the effect of sod1 and sod2. The cell growth analysis shows that life span of all recombinant strains was found to be elevated as compared to wild type cells. In S. peucetius, overexpression of sod1 and sod2 was not effective in DXR production but in case of S. clavuligerus, CA production was increased by 2.5 and 1.5 times in sod1 and sod2 overexpression, respectively while in case of S. lividans, ACT production was increased by 1.4 and 1.6 times and Red production by 1.5 and 1.2 times upon sod1 and sod2 overexpressions, respectively as compared to the corresponding wild type strains. PMID:20888207

  18. Relationship between fumonisin production and FUM gene expression in Fusarium verticillioides under different environmental conditions.

    PubMed

    Fanelli, Francesca; Iversen, Anita; Logrieco, Antonio F; Mulè, Giuseppina

    2013-01-01

    Fusarium verticillioides is the main source of fumonisins, a group of mycotoxins that can contaminate maize-based food and feed and cause diseases in humans and animals. The study of the effect of different environmental conditions on toxin production should provide information that can be used to develop strategies to minimize the risk. This study analysed the effect of temperature (15°C-35°C), water activity (a(w): 0.999-0.93), salinity (0-125 g l(-1) NaCl) and pH (5-8) on the growth and production of fumonisins B(1) (FB1), B(2) (FB2) and B(3) (FB3) and the expression of FUM1 and FUM21 in F. verticillioides. The highest growth rate was measured at 25°C, a(w) of 0.998-0.99 and 0-25 g l(-1) of NaCl. Optimal conditions for fumonisin production were 30°C, a(w) of 0.99, 25 g l(-1) of NaCl and pH 5; nevertheless, the strain showed a good adaptability and was able to produce moderate levels of fumonisins under a wide range of conditions. Gene expression mirrored fumonisin production profile under all conditions with the exception of temperature: FUM1 and FUM21 expression was highest at 15°C, while maximum fumonisin production was at 30°C. These data indicate that a post-transcriptional regulation mechanism could account for the different optimal temperatures for FUM gene expression and fumonisin production. PMID:23167929

  19. Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle

    PubMed Central

    Ron, Micha; Israeli, Galit; Seroussi, Eyal; Weller, Joel I; Gregg, Jeffrey P; Shani, Moshe; Medrano, Juan F

    2007-01-01

    Background Many studies have found segregating quantitative trait loci (QTL) for milk production traits in different dairy cattle populations. However, even for relatively large effects with a saturated marker map the confidence interval for QTL location by linkage analysis spans tens of map units, or hundreds of genes. Combining mapping and arraying has been suggested as an approach to identify candidate genes. Thus, gene expression analysis in the mammary gland of genes positioned in the confidence interval of the QTL can bridge the gap between fine mapping and quantitative trait nucleotide (QTN) determination. Results We hybridized Affymetrix microarray (MG-U74v2), containing 12,488 murine probes, with RNA derived from mammary gland of virgin, pregnant, lactating and involuting C57BL/6J mice in a total of nine biological replicates. We combined microarray data from two additional studies that used the same design in mice with a total of 75 biological replicates. The same filtering and normalization was applied to each microarray data using GeneSpring software. Analysis of variance identified 249 differentially expressed probe sets common to the three experiments along the four developmental stages of puberty, pregnancy, lactation and involution. 212 genes were assigned to their bovine map positions through comparative mapping, and thus form a list of candidate genes for previously identified QTLs for milk production traits. A total of 82 of the genes showed mammary gland-specific expression with at least 3-fold expression over the median representing all tissues tested in GeneAtlas. Conclusion This work presents a web tool for candidate genes for QTL (cgQTL) that allows navigation between the map of bovine milk production QTL, potential candidate genes and their level of expression in mammary gland arrays and in GeneAtlas. Three out of four confirmed genes that affect QTL in livestock (ABCG2, DGAT1, GDF8, IGF2) were over expressed in the target organ. Thus, cg

  20. Regulation of hexuronate system genes in Escherichia coli K-12: multiple regulation of the uxu operon by exuR and uxuR gene products.

    PubMed Central

    Robert-Baudouy, J; Portalier, R; Stoeber, F

    1981-01-01

    New regulatory mutants of Escherichia coli K-1 carrying alterations of the uxuR gene were isolated and characterized. In the presence of superrepressed or derepressed uxuR mutations, mannonic hydrolyase (uxuA) and oxidoreductase relationship analyses suggested that the uxuR gene product acted as a repressor in the control of uxuA-uxuB operon expression. uxuR mutations were localized near min 97, and the following gene order was established: (argH)-uxuR-uxuB-uxuA-(thr). Properties of exuR (point and deletion) mutants showed that both exuR and uxuR regulatory gene products were involved in the control of the uxuA uxuB operon. Analysis of exuR uxuR double-derepressed mutants suggested that exuR and uxuR repressors act cooperatively to repress the uxu operon. PMID:7007313

  1. Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus.

    PubMed

    Jiang, Lingjuan; Wei, Junhong; Li, Lei; Niu, Guoqing; Tan, Huarong

    2013-12-01

    Gougerotin is a peptidyl nucleoside antibiotic produced by Streptomyces graminearus . It is a specific inhibitor of protein synthesis and exhibits a broad spectrum of biological activities. Generation of an overproducing strain is crucial for the scale-up production of gougerotin. In this study, the natural and engineered gougerotin gene clusters were reassembled into an integrative plasmid by λ-red-mediated recombination technology combined with classic cloning methods. The resulting plasmids pGOU and pGOUe were introduced into S. graminearus to obtain recombinant strains Sgr-GOU and Sgr-GOUe, respectively. Compared with the wild-type strain, Sgr-GOU led to a maximum 1.3-fold increase in gougerotin production, while Sgr-GOUe resulted in a maximum 2.1-fold increase in gougerotin production. To further increase the yield of gougerotin, the effect of different precursors on its production was investigated. All precursors, including cytosine, serine, and glycine, had stimulatory effect on gougerotin production. The maximum gougerotin yield was achieved with Sgr-GOUe in the presence of glycine, and it was approximately 2.5-fold higher than that of the wild-type strain. The strategies used in this study can be extended to other Streptomyces for improving production of industrial important antibiotics. PMID:24121866

  2. Expressing the sweet potato orange gene in transgenic potato improves drought tolerance and marketable tuber production.

    PubMed

    Cho, Kwang-Soo; Han, Eun-Heui; Kwak, Sang-Soo; Cho, Ji-Hong; Im, Ju-Seong; Hong, Su-Young; Sohn, Hwang-Bae; Kim, Yun-Hee; Lee, Shin-Woo

    2016-01-01

    Potato (Solanum tuberosum L.) is generally considered to be sensitive to drought stress. Even short periods of water shortage can result in reduced tuber production and quality. We previously reported that transgenic potato plants expressing the sweet potato orange gene (IbOr) under the control of the stress-inducible SWPA2 promoter (referred to as SOR plants) showed increased tolerance to methyl viologen-mediated oxidative stress and high salinity, along with increased carotenoid contents. In this study, in an effort to improve the productivity and environmental stress tolerance of potato, we subjected transgenic potato plants expressing IbOr to water-deficient conditions in the greenhouse. The SOR plants exhibited increased tolerance to drought stress under greenhouse conditions. IbOr expression was associated with slightly negative phenotypes, including reduced tuber production. Controlling IbOr expression imparted the same degree of drought tolerance while ameliorating these negative phenotypic effects, leading to levels of tuber production similar to or better than those of wild-type plants under drought stress conditions. In particular, under drought stress, drought tolerance and the production of marketable tubers (over 80g) were improved in transgenic plants compared with non-transgenic plants. These results suggest that expressing the IbOr transgene can lead to significant gains in drought tolerance and tuber production in potato, thereby improving these agronomically important traits. PMID:27212605

  3. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    NASA Astrophysics Data System (ADS)

    Kim, Youngnyun

    Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E

  4. Effect of precisely identified mutations in the spoIIAC gene of Bacillus subtilis on the toxicity of the sigma-like gene product to Escherichia coli.

    PubMed

    Yudkin, M D; Harrison, D

    1987-09-01

    Yudkin (1986) has shown that the spoIIAC gene of Bacillus subtilis cannot be cloned in Escherichia coli in such an orientation that it is expressed. This toxicity of the gene product has been attributed to its close homology with the sigma subunit of the E. coli RNA polymerase. The effect of six individual mutations in spoIIAC has now been studied. All six mutant genes could be cloned in E. coli in an orientation that does not allow expression. When in the orientation that permits expression, one mutant gene could not be cloned, and a second substantially hampered growth; both mutations lie in the region that is believed to encode the DNA-binding domain of the protein. By contrast, two missense mutations in the region of the gene thought to encode the domain that binds to the core RNA polymerase rendered the protein harmless in E. coli, as did two nonsense mutations. PMID:3118147

  5. A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production.

    PubMed

    Dobritsa, Anna A; Geanconteri, Aliza; Shrestha, Jay; Carlson, Ann; Kooyers, Nicholas; Coerper, Daniel; Urbanczyk-Wochniak, Ewa; Bench, Bennie J; Sumner, Lloyd W; Swanson, Robert; Preuss, Daphne

    2011-10-01

    Exine, the outer plant pollen wall, has elaborate species-specific patterns, provides a protective barrier for male gametophytes, and serves as a mediator of strong and species-specific pollen-stigma adhesion. Exine is made of sporopollenin, a material remarkable for its strength, elasticity, and chemical durability. The chemical nature of sporopollenin, as well as the developmental mechanisms that govern its assembly into diverse patterns in different species, are poorly understood. Here, we describe a simple yet effective genetic screen in Arabidopsis (Arabidopsis thaliana) that was undertaken to advance our understanding of sporopollenin synthesis and exine assembly. This screen led to the recovery of mutants with a variety of defects in exine structure, including multiple mutants with novel phenotypes. Fifty-six mutants were selected for further characterization and are reported here. In 14 cases, we have mapped defects to specific genes, including four with previously demonstrated or suggested roles in exine development (MALE STERILITY2, CYP703A2, ANTHER-SPECIFIC PROTEIN6, TETRAKETIDE α-PYRONE REDUCTASE/DIHYDROFLAVONOL-4-REDUCTASE-LIKE1), and a number of genes that have not been implicated in exine production prior to this screen (among them, fatty acid ω-hydroxylase CYP704B1, putative glycosyl transferases At1g27600 and At1g33430, 4-coumarate-coenzyme A ligase 4CL3, polygalacturonase QUARTET3, novel gene At5g58100, and nucleotide-sugar transporter At5g65000). Our study illustrates that morphological screens of pollen can be extremely fruitful in identifying previously unknown exine genes and lays the foundation for biochemical, developmental, and evolutionary studies of exine production. PMID:21849515

  6. Ocurrence of Staphylococcus aureus and multiplex pcr detection of classic enterotoxin genes in cheese and meat products

    PubMed Central

    Pelisser, Marcia Regina; Klein, Cátia Silene; Ascoli, Kelen Regina; Zotti, Thaís Regina; Arisi, Ana Carolina Maisonnave

    2009-01-01

    Multiplex PCR was used to investigate the presence of enterotoxins genes (sea, seb, sec, sed and see) and femA gene (specific for Staphylococcus aureus) in coagulase-positive staphylococci (CPS) isolated from cheese and meat products. From 102 CPS isolates, 91 were positive for femA, 10 for sea, 12 for sed and four for see. PMID:24031334

  7. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products are rich source of gene modulators for prevention and treatment of cancer. In recent days, nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) has been focused as a new target of diverse cancers like colorectal, pancreatic, prostate, and breast. A variety of natural...

  8. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  9. Genes Involved in SkfA Killing Factor Production Protect a Bacillus subtilis Lipase against Proteolysis

    PubMed Central

    Westers, Helga; Braun, Peter G.; Westers, Lidia; Antelmann, Haike; Hecker, Michael; Jongbloed, Jan D. H.; Yoshikawa, Hirofumi; Tanaka, Teruo; van Dijl, Jan Maarten; Quax, Wim J.

    2005-01-01

    Small lipases of Bacillus species, such as LipA from Bacillus subtilis, have a high potential for industrial applications. Recent studies showed that deletion of six AT-rich islands from the B. subtilis genome results in reduced amounts of extracellular LipA. Here we demonstrate that the reduced LipA levels are due to the absence of four genes, skfABCD, located in the prophage 1 region. Intact skfABCD genes are required not only for LipA production at wild-type levels by B. subtilis 168 but also under conditions of LipA overproduction. Notably, SkfA has bactericidal activity and, probably, requires the SkfB to SkfD proteins for its production. The present results show that LipA is more prone to proteolytic degradation in the absence of SkfA and that high-level LipA production can be improved significantly by employing multiple protease-deficient B. subtilis strains. In conclusion, our findings imply that SkfA protects LipA, directly or indirectly, against proteolytic degradation. Conceivably, SkfA could act as a modulator in LipA folding or as a protease inhibitor. PMID:15812018

  10. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  11. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    PubMed Central

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-01-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning “plug-and-play” approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus. PMID:25807046

  12. Exploring DNA assembler, a synthetic biology tool for characterizing and engineering natural product gene clusters

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    The majority of existing antibacterial and anticancer drugs are natural products or their derivatives. However, the characterization and engineering of these compounds are often hampered by limited ability to manipulate the corresponding biosynthetic pathways. Recently, we developed a genomics-driven, synthetic biology-based method, DNA assembler, for discovery, characterization, and engineering of natural product biosynthetic pathways (Shao et al., 2011). By taking advantage of the highly efficient yeast in vivo homologous recombination mechanism, this method synthesizes the entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication in individual hosts in a single-step manner. In this chapter, we describe the general guidelines for construct design. By using two distinct biosynthetic pathways, we demonstrate that DNA assembler can perform multiple tasks, including heterologous expression, introduction of single or multiple point mutations, scar-less gene deletion, generation of product derivatives and creation of artificial gene clusters. As such, this method offers unprecedented flexibility and versatility in pathway manipulations. PMID:23084940

  13. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S; Qian, Pei-Yuan

    2015-01-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning "plug-and-play" approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus. PMID:25807046

  14. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.

    PubMed

    Li, Jin; Stoddard, Thomas J; Demorest, Zachary L; Lavoie, Pierre-Olivier; Luo, Song; Clasen, Benjamin M; Cedrone, Frederic; Ray, Erin E; Coffman, Andrew P; Daulhac, Aurelie; Yabandith, Ann; Retterath, Adam J; Mathis, Luc; Voytas, Daniel F; D'Aoust, Marc-André; Zhang, Feng

    2016-02-01

    Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and β(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two β(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked β(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and β(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products. PMID:26011187

  15. Regulation of human immune gene expression as influenced by a commercial blended Echinacea product: preliminary studies.

    PubMed

    Randolph, R K; Gellenbeck, K; Stonebrook, K; Brovelli, E; Qian, Y; Bankaitis-Davis, D; Cheronis, J

    2003-10-01

    Consumption of Echinacea at the first sign of symptoms has been clinically shown to reduce both the severity and duration of cold and flu. Quantitative polymerase chain reaction optimized for precision and reproducibility was utilized to explore in vitro and in vivo changes in the expression of immunomodulatory genes in response to Echinacea. In vitro exposure of THP-1 cells to 250 microg/ml of Echinacea species extracts induced expression (up to 10-fold) of the interleukin-1alpha, interleukin-1beta, tumor necrosis factor-alpha, intracellular adhesion molecule, interleukin-8, and interleukin-10 genes. This preliminary result is consistent with a general immune response and activation of the nonspecific immune response cytokines. In vivo gene expression within peripheral leukocytes was evaluated in six healthy nonsmoking subjects (18-65 years of age). Blood samples were obtained at baseline and on Days 2, 3, 5, and 12 after consuming a commercial blended Echinacea product, three tablets three times daily (1518 mg/day) for two days plus one additional dose (506 mg) on day three. Serum chemistry and hematological values were not different from baseline, suggesting that liver or bone marrow responses were not involved in acute responses to Echinacea. The overall gene expression pattern at 48 hr to 12 days after taking Echinacea was consistent with an antiinflammatory response. The expression of interleukin-1beta, tumor necrosis factor-alpha, intracellular adhesion molecule, and interleukin-8 was modestly decreased up through Day 5, returning to baseline by day 12. The expression of interferon-alpha steadily rose through Day 12, consistent with an antiviral response. These preliminary data present a gene expression response pattern that is consistent with Echinacea's reported ability to reduce both the duration and intensity of cold and flu symptoms. PMID:14530514

  16. The multidrug resistance (mdr1) gene product functions as an ATP channel.

    PubMed Central

    Abraham, E H; Prat, A G; Gerweck, L; Seneveratne, T; Arceci, R J; Kramer, R; Guidotti, G; Cantiello, H F

    1993-01-01

    The multidrug resistance (mdr1) gene product, P-glycoprotein, is responsible for the ATP-dependent extrusion of a variety of compounds, including chemotherapeutic drugs, from cells. The data presented here show that cells with increased levels of the P-glycoprotein release ATP to the medium in proportion to the concentration of the protein in their plasma membrane. Furthermore, measurements of whole-cell and single-channel currents with patch-clamp electrodes indicate that the P-glycoprotein serves as an ATP-conducting channel in the plasma membrane. These findings suggest an unusual role for the P-glycoprotein. PMID:7678345

  17. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    PubMed

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. PMID:27559924

  18. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene.

    PubMed

    Li, Nan; Wang, Yuanlong; Zhu, Ping; Liu, Zhenmin; Guo, Benheng; Ren, Jing

    2015-02-01

    Lactobacillus casei LC2W is an exopolysaccharide (EPS)-producing strain with probiotic effects. To investigate the regulation mechanism of EPS biosynthesis and to improve EPS production through cofactor engineering, a H₂O-forming NADH oxidase gene was cloned from Streptococcus mutans and overexpressed in L. casei LC2W under the control of constitutive promoter P₂₃. The recombinant strain LC-nox exhibited 0.854 U/mL of NADH oxidase activity, which was elevated by almost 20-fold in comparison with that of wild-type strain. As a result, overexpression of NADH oxidase resulted in a reduction in growth rate. In addition, lactate production was decreased by 22% in recombinant strain. It was proposed that more carbon source was saved and used for the biosynthesis of EPS, the production of which was reached at 219.4 mg/L, increased by 46% compared to that of wild-type strain. This work provided a novel and convenient genetic approach to manipulate metabolic flux and to increase EPS production. To the best of our knowledge, this is the first report which correlates cofactor engineering with EPS production. PMID:25644955

  19. Regulation of the phosphate regulon in Escherichia coli K-12: regulation of the negative regulatory gene phoU and identification of the gene product.

    PubMed Central

    Nakata, A; Amemura, M; Shinagawa, H

    1984-01-01

    The phoU gene is one of the negative regulatory genes of the pho regulon of Escherichia coli. The DNA fragment carrying phoU has been cloned on pBR322 (Amemura et al., J. Bacteriol. 152:692-701, 1982). Further subcloning, Tn1000 insertion inactivation, and complementation tests localized the phoU gene within a 1.1-kilobase region on the cloned DNA fragment. The gene product of phoU was identified by the maxicell method as a protein with an approximate molecular weight of 27,000. A hybrid plasmid that contains a phoU'-lac'Z fused gene was constructed in vitro. This plasmid enabled us to study phoU gene expression by measuring the beta-galactosidase level in the cells. The plasmid was introduced into various regulatory mutants related to the pho regulon, and phoU gene expression in these strains was studied under limited and excess phosphate conditions. It was found that phoU is expressed at a higher level when the cells are cultured under the excess phosphate condition. The higher phoU expression was observed in a phoB mutant and a phoR-phoM double mutant. The implications of these findings for the regulation of pho genes are discussed. Images PMID:6090402

  20. Abundance and distribution of Macrolide-Lincosamide-Streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater.

    PubMed

    Liu, Miaomiao; Ding, Ran; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Zhang, Tong; Yang, Min

    2014-10-15

    The behaviors of the Macrolide-Lincosamide-Streptogramin (MLS) resistance genes were investigated in an anaerobic-aerobic pilot-scale system treating spiramycin (SPM) production wastewater. After screening fifteen typical MLS resistance genes with different mechanisms using conventional PCR, eight detected genes were determined by quantitative PCR, together with three mobile elements. Aerobic sludge in the pilot system exhibited a total relative abundance of MLS resistance genes (per 16S rRNA gene) 2.5 logs higher than those in control samples collected from sewage and inosine wastewater treatment systems (P < 0.05), implying the presence of SPM could induce the production of MLS resistance genes. However, the total relative gene abundance in anaerobic sludge (4.3 × 10(-1)) was lower than that in aerobic sludge (3.7 × 10(0)) despite of the higher SPM level in anaerobic reactor, showing the advantage of anaerobic treatment in reducing the production of MLS resistance genes. The rRNA methylase genes (erm(B), erm(F), erm(X)) were the most abundant in the aerobic sludge (5.3 × 10(-1)-1.7 × 10(0)), followed by esterase gene ere(A) (1.3 × 10(-1)) and phosphorylase gene mph(B) (5.7 × 10(-2)). In anaerobic sludge, erm(B), erm(F), ere(A), and msr(D) were the major ones (1.2 × 10(-2)-3.2 × 10(-1)). These MLS resistance genes (except for msr(D)) were positively correlated with Class 1 integron (r(2) = 0.74-0.93, P < 0.05), implying the significance of horizontal transfer in their proliferation. PMID:24973730

  1. Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast.

    PubMed

    Chang, Jui-Jen; Thia, Caroline; Lin, Hao-Yeh; Liu, Hsien-Lin; Ho, Feng-Ju; Wu, Jiunn-Tzong; Shih, Ming-Che; Li, Wen-Hsiung; Huang, Chieh-Chen

    2015-05-01

    The algal β-carotene hydroxylase gene Crchyb from Chlamydomonas reinhardtii, Czchyb from Chlorella zofingiensis, or Hpchyb from Haematococcus pluvialis and six other carotenoid-synthesis pathway genes were co-integrated into the genome of a yeast host. Each of these three algal genes showed a higher efficiency to convert β-carotene to downstream carotenoids than the fungal genes from Phaffia rhodozyma. Furthermore, the strain with Hpchyb displayed a higher carotenoid productivity than the strains integrated with Crchyb or Czchyb, indicating that Hpchyb is more efficient than Crchyb and Czchyb. These results suggest that β-carotene hydroxylase plays a crucial role in the biosynthesis of carotenoids. PMID:25537137

  2. Genetic Evidence for Transcriptional Activation by the Yeast Ime1 Gene Product

    PubMed Central

    Smith, H. E.; Driscoll, S. E.; Sia, RAL.; Yuan, H. E.; Mitchell, A. P.

    1993-01-01

    IME1 is required in yeast for meiosis and for expression of IME2 and other early meiotic genes. IME1 is a 360-amino acid polypeptide with central and C-terminal tyrosine-rich regions. We report here that a fusion protein composed of the lexA DNA-binding domain and IME1 activates transcription in vivo of a reporter gene containing upstream lexA binding sites. Activation by the fusion protein shares several features with natural IME1 activity: both are dependent on the RIM11 gene product; both are impaired by the same ime1 missense mutations; both are restored by intragenic suppressors. The central tyrosine-rich region is sufficient to activate transcription when fused to lexA. Deletion of this putative activation domain results in a defective IME1 derivative. Function of the deletion derivative is restored by fusion to the acidic Herpesvirus VP16 activation domain. The C-terminal tyrosine-rich region is dispensable for transcriptional activation; rather it renders activation dependent upon starvation and RIM11. Immunofluorescence studies indicate that an IME1-lacZ fusion protein is concentrated in the nucleus. These observations are consistent with a model in which IME1 normally stimulates IME2 expression by providing a transcriptional activation domain at the IME2 5' regulatory region. PMID:8462841

  3. Enhancement of ganoderic acid production by constitutively expressing Vitreoscilla hemoglobin gene in Ganoderma lucidum.

    PubMed

    Li, Huan-Jun; He, Yi-Long; Zhang, De-Huai; Yue, Tong-Hui; Jiang, Lu-Xi; Li, Na; Xu, Jun-Wei

    2016-06-10

    The Vitreoscilla hemoglobin (VHb) gene was expressed in Ganoderma lucidum to enhance antitumor ganoderic acid (GA) production. The effects of VHb expression on the accumulation of GAs and lanosterol (intermediate) and the transcription of GA biosynthesis genes were also investigated. In VHb-expressing G. lucidum, the maximum concentrations of four individual GAs (GA-S, GA-T, GA-Mk and GA-Me) were 19.1±1.8, 34.6±2.1, 191.5±13.1 and 45.2±2.8μg/100mg dry weight, respectively, which were 1.4-, 2.2, 1.9- and 2.0-fold higher than those obtained in the wild-type strain. Moreover, the maximum lanosterol concentration in the strain expressing VHb was 1.28-fold lower than that in the wild-type strain. The transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase, squalene synthase, and lanosterol synthase genes were up-regulated by 1.6-, 1.5-, and 1.6-fold, respectively, in the strain expressing VHb. This work is beneficial in developing an efficient fermentation process for the hyperproduction of GAs. PMID:27080449

  4. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

    PubMed

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-05-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  5. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production

    PubMed Central

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L.; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-01-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  6. Association of VIPR-1 gene polymorphisms and haplotypes with egg production in laying quails*

    PubMed Central

    Pu, Yue-jin; Wu, Yan; Xu, Xiao-juan; Du, Jin-ping; Gong, Yan-zhang

    2016-01-01

    The laying quail is a worldwide breed which exhibits high economic value. In our current study, the vasoactive intestinal peptide receptor-1 (VIPR-1) was selected as the candidate gene for identifying traits of egg production. A single nucleotide polymorphism (SNP) detection was performed in 443 individual quails, including 196 quails from the H line, 202 quails from the L line, and 45 wild quails. The SNPs were genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Two mutations (G373T, A313G) were detected in all the tested quail populations. The associated analysis showed that the SNP genotypes of the VIPR-1 gene were significantly linked with the egg weight of G373T and A313G in 398 quails. The quails with the genotype GG always exhibited the largest egg weight for the two mutations in the H and L lines. Linkage disequilibrium (LD) analysis indicated that G373T and A313G loci showed the weakest LD. Seven main diplotypes from the four main reconstructed haplotypes were observed, indicating a significant association of diplotypes with egg weight. Quails with the h1h2 (GGGT) diplotype always exhibited the smallest egg weight and largest egg number at 20 weeks of age. The overall results suggest that the alterations in quails may be linked with potential major loci or genes affecting reproductive traits. PMID:27487804

  7. Virulence genes in a probiotic E. coli product with a recorded long history of safe use

    PubMed Central

    Zschüttig, Anke; Beimfohr, Claudia; Geske, Thomas; Auerbach, Christian; Cook, Helen; Zimmermann, Kurt; Gunzer, Florian

    2015-01-01

    The probiotic product Symbioflor2 (DSM 17252) is a bacterial concentrate of six different Escherichia coli genotypes, whose complete genome sequences are compared here, between each other as well as to other E. coli genomes. The genome sequences of Symbioflor2 E. coli components contained a number of virulence-associated genes. Their presence seems to be in conflict with a recorded history of safe use, and with the observed low frequency of adverse effects over a period of more than 6 years. The genome sequences were used to identify unique sequences for each component, for which strain-specific hybridization probes were designed. A colonization study was conducted whereby five volunteers were exposed to an exceptionally high single dose. The results showed that the probiotic E. coli could be detected for 3 months or longer in their stools, and this was in particular the case for those components containing higher numbers of virulence-associated genes. Adverse effects from this long-term colonization were absent. Thus, the presence of the identified virulence genes does not result in a pathogenic phenotype in the genetic background of these probiotic E. coli. PMID:25883796

  8. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene

    SciTech Connect

    Van Der Werf, M.J.; Zeikus, J.G. |

    1996-10-01

    The Rhodobacter sphaeroides hemA gene codes for 5-aminolevulinate (ALA) synthase. This enzyme catalyzes the pyridoxal phosphate-dependent condensation of succinyl coenzyme A and glycine-forming ALA. The R. sphaeroides hemA gene in the pUC18/19 vector system was transformed into Escherichia coli. The effects of both genetic and physiological factors on the expression of ALA synthase and the production of ALA were studied. ALA synthase activity levels were maximal when hemA had the same transcription direction as the lac promoter. The distance between the lac promoter and hemA affected the expression of ALA synthase on different growth substrates. The E. coli host strain used had an enormous effect on the ALA synthase activity level and on the production of ALA, with E. coli DH1 being best suited. The ALA synthase activity level was also dependent on the carbon source. Succinate, L-malate, fumarate, and L-aspartate gave the highest levels of ALA synthase activity, while the use of lactose as a carbon source resulted in a repression of ALA synthase. After growth on succinate, ALA synthase represented {approx}5% of total cellular protein. The ALA synthase activity level was also dependent on the pH of the medium, with maximal activity occurring at pH 6.5. ALA production by whole cells was limited by the availability of glycine, and the addition of 2 g of glycine per liter to the growth medium increased the production of ALA fivefold, to 2.25 mM. In recombinant E. coli extracts, up to 22 mM ALA was produced from succinate, glycine, and ATP. 58 refs., 4 figs., 7 tabs.

  9. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  10. Re-examination of regulatory opinions in Europe: possible contribution for the approval of the first gene therapy product Glybera

    PubMed Central

    Watanabe, Natsumi; Yano, Kazuo; Tsuyuki, Kenichiro; Okano, Teruo; Yamato, Masayuki

    2015-01-01

    The first commercially approved human gene therapy in the Western world is Glybera (alipogene tiparvovec), which is an adenoassociated viral vector encoding the lipoprotein lipase gene. Glybera was recommended for marketing authorization by the European Medicines Agency in 2012. The European Medicines Agency had only ever reviewed three marketing authorization applications for gene therapy medicinal products. Unlike in the case of Glybera, the applications of the first two products, Cerepro and Contusugene Ladenovec Gendux/Advexin, both of which were for cancer diseases, were withdrawn. In this report, we studied the European public assessment reports of the three gene therapy products. During the assessment process, Glybera was re-examined and reviewed for a fourth time. We therefore researched the re-examination procedure of the European Union regulatory process. Approximately 25% of the new medicinal products initially given negative opinions from the Committee for Medicinal Products for Human Use were ultimately approved after re-examination from 2009 to 2013. The indications of most medicines were changed during the re-examination procedure, and the products were later approved with a mode of approval. These results suggested that the re-examination system in the European Union contributed to the approval of both several new drugs and the first gene therapy product. PMID:26052534