Sample records for gene promoter methylation

  1. [Gene promoter methylation in glucose-6-phosphate dehydrogenase deficiency].

    PubMed

    Xu, Dan-Dan; Wen, Fei-Qiu; Lv, Rong-Yu; Zhang, Min; Chen, Yun-Sheng; Chen, Xiao-Wen

    2016-05-01

    To investigate the features of methylation in the promoter region of glucose-6-phosphate dehydrogenase (G6PD) gene and the association between gene promoter methylation and G6PD deficiency. Fluorescent quantitative PCR was used to measure the mRNA expression of G6PD in 130 children with G6PD deficiency. Sixty-five children without G6PD deficiency served as the control group. The methylation-sensitive high-resolution melting curve analysis and bisulfite PCR sequencing were used to analyze gene promoter methylation in 22 children with G6PD deficiency and low G6PD mRNA expression. The G6PD gene promoter methylation was analyzed in 44 girls with normal G6PD mRNA expression (7 from G6PD deficiency group and 37 from control group). Twenty-two (16.9%) children with G6PD deficiency had relatively low mRNA expression of G6PD; among whom, 16 boys showed no methylation, and 6 girls showed partial methylation. Among the 44 girls with normal G6PD mRNA expression, 40 showed partial methylation, and 4 showed no methylation (1 case in the G6PD group and 3 cases in the control group). Gene promoter methylation is not associated with G6PD deficiency in boys. Girls have partial methylation or no methylation in the G6PD gene, suggesting that the methylation may be related to G6PD deficiency in girls.

  2. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    PubMed

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf

  3. Leptin gene promoter DNA methylation in WNIN obese mutant rats

    PubMed Central

    2014-01-01

    Background Obesity has become an epidemic in worldwide population. Leptin gene defect could be one of the causes for obesity. Two mutant obese rats WNIN/Ob and WNIN/GROb, isolated at National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, India, were found to be leptin resistant. The present study aims to understand the regulatory mechanisms underlying the resistance by promoter DNA methylation of leptin gene in these mutant obese rats. Methods Male obese mutant homozygous, carrier and heterozygous rats of WNIN/Ob and WNIN/GROb strain of 6 months old were studied to check the leptin gene expression (RT-PCR) and promoter DNA methylation (MassARRAY Compact system, SEQUENOM) of leptin gene by invivo and insilico approach. Results Homozygous WNIN/Ob and WNIN/GROb showed significantly higher leptin gene expression compared to carrier and lean counterparts. Leptin gene promoter DNA sequence region was analyzed ranging from transcription start site (TSS) to-550 bp length and found four CpGs in this sequence among them only three CpG loci (-309, -481, -502) were methylated in these WNIN mutant rat phenotypes. Conclusion The increased percentage of methylation in WNIN mutant lean and carrier phenotypes is positively correlated with transcription levels. Thus genetic variation may have effect on methylation percentages and subsequently on the regulation of leptin gene expression which may lead to obesity in these obese mutant rat strains. PMID:24495350

  4. Promoter methylation assay of SASH1 gene in breast cancer.

    PubMed

    Sheyu, Lin; Hui, Liu; Junyu, Zhang; Jiawei, Xu; Honglian, Wang; Qing, Sang; Hengwei, Zhang; Xuhui, Guo; Qinghe, Xing; Lin, He

    2013-01-01

    To analyze the relationship between the expression of SASH1 and its methylation level of SASH1 gene promoter in human breast cancer. Expression levels of SASH1 were examined in breast cancer tissues and adjacent normal tissues with immunohistochemistry and with real time PCR (RT-PCR) methylation analysis was performed with MassArray. Immunohistochemistry showed that SASH1 expression was strongly reduced in breast cancer compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed that CpG sites in SASH1 promoter shared similar methylation pattern in tumor tissue and adjacent normal tissue. The CpG sites with significant difference in methylation level were CpG_26.27 and CpG_54.55. Moreover, 5-aza-2'-deoxycytidine (5-Aza-dc) treatment of tumor cell line MDA-MB-231 caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation level in the promoter region of gene SASH1, particularly CpG_26.27 or CpG_54.55 sites, possibly repressed SASH1 expression in breast cancer.

  5. The combination of dimethoxycurcumin with DNA methylation inhibitor enhances gene re-expression of promoter-methylated genes and antagonizes their cytotoxic effect

    PubMed Central

    Hassan, Hazem E.; Keita, Jean-Arnaud; Narayan, Lawrence; Brady, Sean M.; Frederick, Richard; Carlson, Samuel; C. Glass, Karen; Natesan, Senthil; Buttolph, Thomm; Fandy, Tamer E.

    2016-01-01

    ABSTRACT Curcumin and its analogs exhibited antileukemic activity either as single agent or in combination therapy. Dimethoxycurcumin (DMC) is a more metabolically stable curcumin analog that was shown to induce the expression of promoter-methylated genes without reversing DNA methylation. Accordingly, co-treatment with DMC and DNA methyltransferase (DNMT) inhibitors could hypothetically enhance the re-expression of promoter-methylated tumor suppressor genes. In this study, we investigated the cytotoxic effects and epigenetic changes associated with the combination of DMC and the DNMT inhibitor decitabine (DAC) in primary leukemia samples and cell lines. The combination demonstrated antagonistic cytotoxic effects and was minimally cytotoxic to primary leukemia cells. The combination did not affect the metabolic stability of DMC. Although the combination enhanced the downregulation of nuclear DNMT proteins, the hypomethylating activity of the combination was not increased significantly compared to DAC alone. On the other hand, the combination significantly increased H3K27 acetylation (H3K27Ac) compared to the single agents near the promoter region of promoter-methylated genes. Furthermore, sequential chromatin immunoprecipitation (ChIP) and DNA pyrosequencing of the chromatin-enriched H3K27Ac did not show any significant decrease in DNA methylation compared to other regions. Consequently, the enhanced induction of promoter-methylated genes by the combination compared to DAC alone is mediated by a mechanism that involves increased histone acetylation and not through potentiation of the DNA hypomethylating activity of DAC. Collectively, our results provide the mechanistic basis for further characterization of this combination in leukemia animal models and early phase clinical trials. PMID:27588609

  6. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    PubMed

    Gonzalo, Victoria; Lozano, Juan José; Muñoz, Jenifer; Balaguer, Francesc; Pellisé, Maria; Rodríguez de Miguel, Cristina; Andreu, Montserrat; Jover, Rodrigo; Llor, Xavier; Giráldez, M Dolores; Ocaña, Teresa; Serradesanferm, Anna; Alonso-Espinaco, Virginia; Jimeno, Mireya; Cuatrecasas, Miriam; Sendino, Oriol; Castellví-Bel, Sergi; Castells, Antoni

    2010-01-19

    Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals) and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2), RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008) and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047) as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006). Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17), SFRP1 (r = 0.83, 0.06), HPP1 (r = 0.64, p = 0.17), 3OST2 (r = 0.83, p = 0.06) and GATA4 (r = 0.6, p = 0.24). Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant difference in any evaluated gene. These results provide

  7. [Inactivation of PMS2 gene by promoter methylation in nasopharyngeal carcinoma].

    PubMed

    Ni, H F; Jiang, B; Zhou, Z; Li, Y; Yuan, X Y; Cao, X L; Huang, G W

    2016-11-23

    Objective: To investigate the inactivation of PMS2 gene mediated by promoter methylation and its regulatory mechanism in nasopharyngeal carcinoma (NPC). Methods: Fifty-four NPC tissues, 16 normal nasopharyngeal epithelia (NNE), 5 NPC cell lines (CNE1, CNE2, TWO3, HNE1 and HONE1) and 1 normal nasopharyngeal epithelial cell line (NP69) were collected.Methylation-specific PCR (MSP) was used to detect the PMS2 promoter methylation, semi-quantitative reverse transcription PCR (qRT-PCR) was applied to determine its mRNA expression, and immunohistochemistry (IHC) was used to detect the protein expression of PMS2. The expressions of PMS2 mRNA in CNE1 and CNE2 cells before and after treated with methyltransferase inhibitor 5-aza-2-deoxycytidine were analyzed by qRT-PCR. The impact of methylation and demethylation on the mRNA expression of PMS2, and the association of mRNA and protein expression of PMS2 with clinicopathological features of nasopharyngeal cancer were analyzed. Results: Methylation of PMS2 gene was detected in all of the five NPC cell lines, but not in normal nasopharyngeal epithelial NP69 cells. The methylation rate of PMS2 gene in NPC tissues was 63% (34/54), significantly higher than that of the normal nasopharyngeal epithelia (0/16, P <0.001). The expression levels of PMS2 mRNA and protein were significantly down-regulated in the 54 NPC tissues when compared with those in the 16 NNE tissues ( P <0.001), and were also significantly lower in the 34 methylated NPC tissues than those in the 20 unmethylated NPC tissues ( P <0.001). After treatment with 5-aza-2-deoxycytidine, the expression of PMS2 mRNA was restored in the CNE1 and CNE2 cells.However, the expressions of PMS2 mRNA and protein were not significantly correlated with patients' age, gender, TNM stage, histopathologic type or lymph node metastasis ( P >0.05 for all). Conclusions: Promoter methylation-mediated inactivation of PMS2 gene participates in carcinogenesis and development of NPC. PMS2 may be

  8. Correlation between the methylation of APC gene promoter and colon cancer.

    PubMed

    Li, Bing-Qiang; Liu, Peng-Peng; Zhang, Cai-Hua

    2017-08-01

    The present study was planned to explore the correlation between the methylation of APC (adenomatous polyposis coli) and colon carcinogenesis. Colon cancer tissues and tumor-adjacent normal tissues of 60 colon cancer patients (who received surgical operation in our hospital from January 2012 to December 2014) were collected. SW1116 cells in human colon cancer tissues were selected for culturing. 5-aza-2c-deoxycytidine (5-aza-dC) was utilized as an inhibitor of the methylation for APC gene. Methylation specific PCR (MSP) was utilized for detection of APC methylation in SW1116 cells. The MTT and Transwell assays were performed to detect the effect of the methylation of APC gene on the proliferation and invasive abilities of SW1116 cells. The correlation between the methylation of APC gene and pathological parameters of colon cancer patients was analyzed. MSP results revealed that 41 cases (68.33%) showed methylation of APC gene in colon cancer tissues. No methylation of APC gene was found in tumor-adjacent normal tissues. 5-aza-dC was able to inhibit the methylation of APC gene in SW1116 cells. APC gene methylation was correlated with tumor size, differentiation degree, lymph node metastasis and Dukes staging. In conclusion, the levels of the methylation of APC in colon cancer tissues and SW1116 cells are relatively high. The methylation of APC promoted the proliferation and invasion abilities of SW1116 cells. Furthermore, methylation is correlated with a variety of clinicopathological features of colon cancer patients.

  9. Clinical significance of miRNA host gene promoter methylation in prostate cancer.

    PubMed

    Daniunaite, Kristina; Dubikaityte, Monika; Gibas, Povilas; Bakavicius, Arnas; Rimantas Lazutka, Juozas; Ulys, Albertas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2017-07-01

    Only a part of prostate cancer (PCa) patients has aggressive malignancy requiring adjuvant treatment after radical prostatectomy (RP). Biomarkers capable to predict biochemical PCa recurrence (BCR) after RP would significantly improve preoperative risk stratification and treatment decisions. MicroRNA (miRNA) deregulation has recently emerged as an important phenomenon in tumor development and progression, however, the mechanisms remain largely unstudied. In the present study, based on microarray profiling of DNA methylation in 9 pairs of PCa and noncancerous prostate tissues (NPT), host genes of miR-155-5p, miR-152-3p, miR-137, miR-31-5p, and miR-642a, -b were analyzed for promoter methylation in 129 PCa, 35 NPT, and 17 benign prostatic hyperplasia samples (BPH) and compared to the expression of mature miRNAs and their selected targets (DNMT1, KDM1A, and KDM5B). The Cancer Genome Atlas dataset was utilized for validation. Methylation of mir-155, mir-152, and mir-137 host genes was PCa-specific, and downregulation of miR-155-5p significantly correlated with promoter methylation. Higher KDM5B expression was observed in samples with methylated mir-155 or mir-137 promoters, whereas upregulation of KDM1A and DNMT1 was associated with mir-155 and mir-152 methylation status, respectively. Promoter methylation of mir-155, mir-152, and mir-31 was predictive of BCR-free survival in various Cox models and increased the prognostic value of clinicopathologic factors. In conclusion, methylated mir-155, mir-152, mir-137, and mir-31 host genes are promising diagnostic and/or prognostic biomarkers of PCa. Methylation status of particular miRNA host genes as independent variables or in combinations might assist physicians in identifying poor prognosis PCa patients preoperatively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    EPA Science Inventory

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  11. Promoter methylation profile in gallbladder cancer.

    PubMed

    Roa, Juan Carlos; Anabalón, Leonardo; Roa, Iván; Melo, Angélica; Araya, Juan Carlos; Tapia, Oscar; de Aretxabala, Xavier; Muñoz, Sergio; Schneider, Barbara

    2006-03-01

    Methylation in the promoter region of genes is an important mechanism of inactivation of tumor suppressor genes. Our objective was to analyze the methylation pattern of some of the genes involved in carcinogenesis of the gallbladder, examining the immunohistochemical expression of proteins, clinical features, and patient survival time. Twenty cases of gallbladder cancer were selected from the frozen tumor bank. The DNA extracted was analyzed by means of a methylation-specific polymerase chain reaction test for the CDKN2A (p16), MLH1, APC, FHIT, and CDH1 (E-cadherin) genes. Morphological and clinical data and follow-up information were obtained. All cases were in an advanced stage: histologically moderate or poorly differentiated tumors (95%). Methylation of the promoter area of genes was observed in 5%, 20%, 30%, 40%, and 65% of cases, and an altered immunohistochemical pattern (AIP) in 5%, 35%, 21%, 25%, and 66% for the MLH1, CDKN2A, FHIT, APC, and CDH1 genes, respectively. The Kappa concordance index between methylation of the promoter area and AIP for the MLH1 and CDH1 genes was very high (K > 0.75) and substantial for APC (K > 0.45). No correlation was found between survival time and the methylation of the genes studied. The high frequency of gene methylation (with the exception of MLH1) and the high agreement between AIP and methylation of the gene promoter area for the MLH1, APC, and CDH1 genes suggest that the inactivation of tumor suppressor genes and of the genes related to the control of cellular proliferation through this mechanism is involved in gallbladder carcinogenesis.

  12. Study of the Role of siRNA Mediated Promoter Methylation in DNMT3B Knockdown and Alteration of Promoter Methylation of CDH1, GSTP1 Genes in MDA-MB -453 Cell Line.

    PubMed

    Naghitorabi, Mojgan; Mir Mohammad Sadeghi, Hamid; Mohammadi Asl, Javad; Rabbani, Mohammad; Jafarian-Dehkordi, Abbas

    2017-01-01

    Promoter methylation is one of the main epigenetic mechanisms that leads to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifically knock down the DNMTs at mRNA level. Also many studies have focused on transcriptional gene silencing in mammalian cells via siRNA mediated promoter methylation. The present study was designed to assess the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of Cadherin-1 (CDH1), Glutathione S-Transferase Pi 1(GSTP1), and DNMT3B genes in MDA-MB-453 cell line. MDA-MB-453 cells were transfected with siDNMT targeting DNMT3B promoter and harvested at 24 and 48 h post transfection to monitor gene silencing and promoter methylation respectively. DNMT3B expression was monitored by quantitative RT-PCR method. Promoter methylation was quantitatively evaluated using differential high resolution melting analysis. A non-significant 20% reduction in DNMT3B mRNA level was shown only after first transfection with siDNMT, which was not reproducible. Promoter methylation levels of DNMT3B, CDH1, and GSTP1 were detected at about 15%, 70% and 10% respectively, in the MDA-MB-453 cell line, with no significant change after transfection. Our results indicated that siDNMT sequence were not able to affect promoter methylation and silencing of DNMT3B in MDA-MB-453 cells. However, quantitation of methylation confirmed a hypermethylated phenotype at CDH1 and GSTP1 promoters as well as a differential methylation pattern at DNMT3B promoter in breast cancer.

  13. Promoter methylation of AREG, HOXA11, hMLH1, NDRG2, NPTX2 and Tes genes in glioblastoma.

    PubMed

    Skiriutė, Daina; Vaitkienė, Paulina; Ašmonienė, Virginija; Steponaitis, Giedrius; Deltuva, Vytenis Pranas; Tamašauskas, Arimantas

    2013-07-01

    Epigenetic alterations alone or in combination with genetic mechanisms play a key role in brain tumorigenesis. Glioblastoma is one of the most common, lethal and poor clinical outcome primary brain tumors with extraordinarily miscellaneous epigenetic alterations profile. The aim of this study was to investigate new potential prognostic epigenetic markers such as AREG, HOXA11, hMLH1, NDRG2, NTPX2 and Tes genes promoter methylation, frequency and value for patients outcome. We examined the promoter methylation status using methylation-specific polymerase chain reaction in 100 glioblastoma tissue samples. The value for clinical outcome was calculated using Kaplan-Meier estimation with log-rank test. DNA promoter methylation was frequent event appearing more than 45 % for gene. AREG and HOXA11 methylation status was significantly associated with patient age. HOXA11 showed the tendency to be associated with patient outcome in glioblastomas. AREG gene promoter methylation showed significant correlation with poor patient outcome. AREG methylation remained significantly associated with patient survival in a Cox multivariate model including MGMT promoter methylation status. This study of new epigenetic targets has shown considerably high level of analyzed genes promoter methylation variability in glioblastoma tissue. AREG gene might be valuable marker for glioblastoma patient survival prognosis, however further analysis is needed to clarify the independence and appropriateness of the marker.

  14. Methylation Analysis of the BMPR2 Gene Promoter Region in Patients With Pulmonary Arterial Hypertension.

    PubMed

    Pousada, Guillermo; Baloira, Adolfo; Valverde, Diana

    2016-06-01

    Pulmonary arterial hypertension is characterizated by obstruction of the pulmonary arteries. The gene mainly related to pathology is the bone morphogenetic protein receptor type II (BMPR2). The aim of this study was to analyze the methylation pattern of the BMPR2 promoter region in patients and controls. We used Methyl Primer Express(®) v.1.0 and MatInspector softwares to analyze this region. Genomic DNA obtained from the peripheral blood of patients and controls was modified with sodium bisulphite. Methylation was analyzed using methylation-specific PCR. DNA treated with CpG methyltransferase was used as a positive control for methylation and H1299 cell culture DNA was used as positive control for gene expression. We identified a CpG island, which may have been methylated, in the BMPR2 promoter region, in addition to NIT-2 (global-acting regulatory protein), sex-determining region Y) and heat shock factor transcription factor binding sites. We found no evidence of methylation in patients and controls. No methylated CpG sites were identified in H1299 cells expressing the BMPR2 gene. The BMPR2 promoter region is the most suitable for study because of the high number of transcription factor binding sites that could alter gene function. No evidence of methylation was detected in this region in patients and controls. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.

  15. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters.

    PubMed

    Grunseich, Christopher; Wang, Isabel X; Watts, Jason A; Burdick, Joshua T; Guber, Robert D; Zhu, Zhengwei; Bruzel, Alan; Lanman, Tyler; Chen, Kelian; Schindler, Alice B; Edwards, Nancy; Ray-Chaudhury, Abhik; Yao, Jianhua; Lehky, Tanya; Piszczek, Grzegorz; Crain, Barbara; Fischbeck, Kenneth H; Cheung, Vivian G

    2018-02-01

    R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression.

    PubMed Central

    Ngô, V; Gourdji, D; Laverrière, J N

    1996-01-01

    The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo. PMID:8668139

  17. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    PubMed Central

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (p<0.0003). There was a variable frequency and individual methylation quotient detected, depending on the TSG and the tumor type. When comparing normal, benign, and malignant SGTs, there was a statistically significant trend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  18. Lack of death receptor 4 (DR4) expression through gene promoter methylation in gastric carcinoma.

    PubMed

    Lee, Kyung Hwa; Lim, Sang Woo; Kim, Ho Gun; Kim, Dong Yi; Ryu, Seong Yeob; Joo, Jae Kyun; Kim, Jung Chul; Lee, Jae Hyuk

    2009-07-01

    To determine the underlying mechanism for the differential expression, the extent of promoter methylation in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-related genes acting downstream of TRAIL was examined in early and advanced gastric carcinomas. The extent of promoter methylation in the DR4, DR5, DcR1, DcR2, and CASP8 genes was quantified using bisulfite modification and methylation-specific polymerase chain reaction. The promoters for DcR1, DcR2, and CASP8 were largely unmethylated in early gastric carcinoma, advanced gastric carcinoma, and controls, with no significant difference among them. Protein levels of DR4, DcR1, and DcR2 as revealed by immunohistochemistry correlated with the extent of the respective promoter methylation (P < 0.05 in all cases). Hypomethylation, rather than hypermethylation, of the DR4 promoter was noted in invasive gastric malignancies, with statistical significance (P = 0.003). The promoter methylation status of TRAIL receptors in gastric carcinoma may have clinical implications for improving therapeutic strategies in patients with gastric carcinoma.

  19. The association between runt-related transcription factor 3 gene promoter methylation and gastric cancer: A meta-analysis.

    PubMed

    Liu, Xu; Wang, Lina; Guo, Yongtie

    2016-10-01

    To systematically evaluate the relationship of the methylation of the human-runt-related transcription factor 3 (RUNX3) promoter region and gastric cancer risk through meta-analysis. The studies published in PubMed, EMBASE, Ovid, and CNKI were retrieved. The association between RUNX3 gene promoter methylation and gastric cancer was analyzed using Stata 11.0 (http://www.stata.com; Stata Corporation, College Station, TX, USA) and Review Man 5.0 software (http://ims.cochrane.org/revman/download). Seventeen studies are included in the analysis. Meta-analysis reveals that the odds ratio of the methylation of the RUNX3 promoter region in gastric was 7.32 (95% confidence interval: 5.12-10.47), which was significant higher than the normal gastric tissues (P < 0.05). The RUNX3 gene promoter methylation rate was much higher in tumor tissue than that in normal gastric tissue in patient with gastric cancer, which indicates a close association between gastric cancer and RUNX3 gene promoter methylation.

  20. Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects.

    PubMed

    Lintas, Carla; Sacco, Roberto; Persico, Antonio M

    2016-01-01

    Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients. In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval. ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls. The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.

  1. Evaluation of promoter methylation status of MLH1 gene in Iranian patients with colorectal tumors and adenoma polyps.

    PubMed

    Zarandi, Ashkan; Irani, Shiva; Savabkar, Sanaz; Chaleshi, Vahid; Ghavideldarestani, Maryam; Mirfakhraie, Reza; Khodadoostan, Mahsa; Nazemalhosseini-Mojarad, Ehsan; Asadzadeh Aghdaei, Hamid

    2017-01-01

    The aim of this study was to evaluate the methylation status of the promoter region of MLH1 gene in colorectal cancer (CRC) and its precursor lesions as well as elucidate its association with various clinicopathological characteristics among Iranian population. Epigenetic silencing of mismatch repair genes, such as MLH1 , by methylation of CpG islands of their promoter region has been proved to be an important mechanism in colorectal carcinogenesis. Fifty colorectal cancer and polyp tissue samples including 13 Primary colorectal tumor and 37 Adenoma polyp samples were enrolled in this study. Methylation-specific polymerase chain reaction (MSP) was performed to find the frequency of MLH1 Promoter Methylation. Promoter methylation of MLH1 gene was detected in 5 out of 13 tumor tissues and 4 out of 37 adenoma polyp. The frequency of MLH1 methylation in tumor samples was significantly higher compared to that in polyp tissues (P= 0.026). No significant association was observed between MLH1 promoter methylation and clinicopathological characteristics of the patients. The frequency of  MLH1  promoter methylation in CRC and colon polyp was 18%. Our findings indicated that methylation of MLH1 promoter region alone cannot be considered as a biomarker for early detection of CRC.

  2. Promoter methylation assay of SASH1 gene in hepatocellular carcinoma.

    PubMed

    Peng, Liu; Wei, He; Liren, Li

    2014-01-01

    To analyse the relationship between the expression of SASH1 and its methylation level in human hepatocellular carcinoma. Expression levels of SASH1 were examined with real-time PCR (RT-PCR) in tissues and cells, and methylation analysis was performed with MassArray. The expression levels of SASH1 were strongly reduced in liver cancer tissues compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed different CpG sites in SASH1 promoter shared similar methylation pattern between liver cancer tissues and adjacent normal tissues and the CpG sites of significant difference in methylation level were found as follows: CpG_3, CpG_17, CpG_21.22, CpG_25, CpG_26.27, CpG_28, CpG_34.35.36 and CpG_51.52. Moreover, 5-aza-2'-deoxycytidine treatment of Hep-G2 cell line caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation degree in the promoter region of SASH1 gene, particularly CpG_26.27 sites, possibly repressed SASH1 expression in liver cancer.

  3. Protective vaccination and blood-stage malaria modify DNA methylation of gene promoters in the liver of Balb/c mice.

    PubMed

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel-Azeem S; Ghanjati, Foued; Erichsen, Lars; Santourlidis, Simeon; Wunderlich, Frank; Araúzo-Bravo, Marcos J

    2017-05-01

    Epigenetic mechanisms such as DNA methylation are increasingly recognized to be critical for vaccination efficacy and outcome of different infectious diseases, but corresponding information is scarcely available for host defense against malaria. In the experimental blood-stage malaria Plasmodium chabaudi, we investigate the possible effects of a blood-stage vaccine on DNA methylation of gene promoters in the liver, known as effector against blood-stage malaria, using DNA methylation microarrays. Naturally susceptible Balb/c mice acquire, by protective vaccination, the potency to survive P. chabaudi malaria and, concomitantly, modifications of constitutive DNA methylation of promoters of numerous genes in the liver; specifically, promoters of 256 genes are hyper(=up)- and 345 genes are hypo(=down)-methylated (p < 0.05). Protective vaccination also leads to changes in promoter DNA methylation upon challenge with P. chabaudi at peak parasitemia on day 8 post infection (p.i.), when 571 and 1013 gene promoters are up- and down-methylated, respectively, in relation to constitutive DNA methylation (p < 0.05). Gene set enrichment analyses reveal that both vaccination and P. chabaudi infections mainly modify promoters of those genes which are most statistically enriched with functions relating to regulation of transcription. Genes with down-methylated promoters encompass those encoding CX3CL1, GP130, and GATA2, known to be involved in monocyte recruitment, IL-6 trans-signaling, and onset of erythropoiesis, respectively. Our data suggest that vaccination may epigenetically improve parts of several effector functions of the liver against blood-stage malaria, as, e.g., recruitment of monocyte/macrophage to the liver accelerated liver regeneration and extramedullary hepatic erythropoiesis, thus leading to self-healing of otherwise lethal P. chabaudi blood-stage malaria.

  4. A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma

    PubMed Central

    Do, Hongdo; Wong, Nicholas C.; Murone, Carmel; John, Thomas; Solomon, Benjamin; Mitchell, Paul L.; Dobrovic, Alexander

    2014-01-01

    DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation. PMID:24569633

  5. Study on the relationship between the methylation of the MMP-9 gene promoter region and diabetic nephropathy.

    PubMed

    Yang, Xiao-Hui; Feng, Shi-Ya; Yu, Yang; Liang, Zhou

    2018-01-01

    This study aims to explore the relationship between the methylation of matrix metalloproteinase (MMP)-9 gene promoter region and diabetic nephropathy (DN) through the detection of the methylation level of MMP-9 gene promoter region in the peripheral blood of patients with DN in different periods and serum MMP-9 concentration. The methylation level of the MMP-9 gene promoter region was detected by methylation-specific polymerase chain reaction (MSP), and the content of MMP-9 in serum was determined by enzyme-linked immunosorbent assay (ELISA). Results of the statistical analysis revealed that serum MMP-9 protein expression levels gradually increased in patients in the simple diabetic group, early diabetic nephropathy group and clinical diabetic nephropathy group, compared with the control group; and the difference was statistically significant (P < 0.05). Compared with the control group, the methylation levels of MMP-9 gene promoter regions gradually decreased in patients in the simple diabetic group, early diabetic nephropathy group, and clinical diabetic nephropathy group; and the difference was statistically significant (P < 0.05). Furthermore, correlation analysis results indicated that the demethylation levels of the MMP-9 gene promoter region was positively correlated with serum protein levels, urinary albumin to creatinine ratio (UACR), urea and creatinine; and was negatively correlated with GFR. The demethylation of the MMP-9 gene promoter region may be involved in the occurrence and development of diabetic nephropathy by regulating the expression of MMP-9 protein in serum.

  6. Cysteine Dioxygenase 1 Is a Tumor Suppressor Gene Silenced by Promoter Methylation in Multiple Human Cancers

    PubMed Central

    Brait, Mariana; Ling, Shizhang; Nagpal, Jatin K.; Chang, Xiaofei; Park, Hannah Lui; Lee, Juna; Okamura, Jun; Yamashita, Keishi; Sidransky, David; Kim, Myoung Sook

    2012-01-01

    The human cysteine dioxygenase 1 (CDO1) gene is a non-heme structured, iron-containing metalloenzyme involved in the conversion of cysteine to cysteine sulfinate, and plays a key role in taurine biosynthesis. In our search for novel methylated gene promoters, we have analyzed differential RNA expression profiles of colorectal cancer (CRC) cell lines with or without treatment of 5-aza-2′-deoxycytidine. Among the genes identified, the CDO1 promoter was found to be differentially methylated in primary CRC tissues with high frequency compared to normal colon tissues. In addition, a statistically significant difference in the frequency of CDO1 promoter methylation was observed between primary normal and tumor tissues derived from breast, esophagus, lung, bladder and stomach. Downregulation of CDO1 mRNA and protein levels were observed in cancer cell lines and tumors derived from these tissue types. Expression of CDO1 was tightly controlled by promoter methylation, suggesting that promoter methylation and silencing of CDO1 may be a common event in human carcinogenesis. Moreover, forced expression of full-length CDO1 in human cancer cells markedly decreased the tumor cell growth in an in vitro cell culture and/or an in vivo mouse model, whereas knockdown of CDO1 increased cell growth in culture. Our data implicate CDO1 as a novel tumor suppressor gene and a potentially valuable molecular marker for human cancer. PMID:23028699

  7. Relationship between methylation status of RASSF2A gene promoter and endometriosis-associated ovarian cancer.

    PubMed

    Xia, Y; Xiong, N; Huang, Y

    2018-01-01

    Relationship between the methylation status of the RASSF2A gene promoter and endometriosis-associated ovarian cancer (EAOC) was explored. Between January 2013 and January 2016, tissue samples were collected from 30 patients diagnosed with ovarian endometriosis cyst (EC group), 30 patients diagnosed with ovarian endometrial adenocarcinoma (OEA group) and 30 patients diagnosed with ovarian clear cell carcinoma (OCC group). Additionally, 30 cases of normal endometrium tissues were collected for the control group. The methylation status of the RASSF2A promoter was evaluated by combined bisulfite restriction enzyme analysis (COBRA). RT-PCR was used to detect the expression level of RASSF2A mRNA in tissues. Relationship between methylation status and RASSF2A mRNA expression level and the patient age, tumor clinical stage, tumor grading and pathological type were analyzed. Results showed that in the OEA and OCC groups, the methylation degrees of the RASSF2A promoter were obviously higher than that of the other two groups. The expression level of RASSF2A mRNA in the OEA and OCC groups was lower than that of the other two groups. The methylation degree of the RASSF2A promoter was related to clinical staging and grading. No relationship between the methylation degree of the RASSF2A promoter and patient’s age and the pathological type of the tissue was detected. We concluded that the methylation status of the RASSF2A gene promoter could be considered an excellent indicator for early detection of ovarian cancers.

  8. Gene promoter methylation and DNA repair capacity in monozygotic twins with discordant smoking habits.

    PubMed

    Ottini, Laura; Rizzolo, Piera; Siniscalchi, Ester; Zijno, Andrea; Silvestri, Valentina; Crebelli, Riccardo; Marcon, Francesca

    2015-02-01

    The influence of DNA repair capacity, plasma nutrients and tobacco smoke exposure on DNA methylation was investigated in blood cells of twenty-one couples of monozygotic twins with discordant smoking habits. All study subjects had previously been characterized for mutagen sensitivity with challenge assays with ionizing radiation in peripheral blood lymphocytes. Plasma levels of folic acid, vitamin B12 and homocysteine were also available from a previous investigation. In this work DNA methylation in the promoter region of a panel of ten genes involved in cell cycle control, differentiation, apoptosis and DNA repair (p16, FHIT, RAR, CDH1, DAPK1, hTERT, RASSF1A, MGMT, BRCA1 and PALB2) was assessed in the same batches of cells isolated for previous studies, using the methylation-sensitive high-resolution melting technique. Fairly similar profiles of gene promoter methylation were observed within co-twins compared to unrelated subjects (p= 1.23 × 10(-7)), with no significant difference related to smoking habits (p = 0.23). In a regression analysis the methylation index of study subjects, used as synthetic descriptor of overall promoter methylation, displayed a significant inverse correlation with radiation-induced micronuclei (p = 0.021) and plasma folic acid level (p = 0.007) both in smokers and in non-smokers. The observed association between repair of radiation-induced DNA damage and promoter methylation suggests the involvement of the DNA repair machinery in DNA modification. Data also highlight the possible modulating effect of folate deficiency on DNA methylation and the strong influence of familiarity on the individual epigenetic profile. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Urinary retinoic acid receptor-β2 gene promoter methylation and hyaluronidase activity as noninvasive tests for diagnosis of bladder cancer.

    PubMed

    Eissa, Sanaa; Zohny, Samir F; Shehata, Hanan Hussien; Hegazy, Marwa G A; Salem, Ahmed M; Esmat, Mohamed

    2012-04-01

    We evaluated the significance of urinary retinoic acid receptor-β2 (RAR-β2) gene promoter methylation and hyaluronidase activity in comparison with voided urine cytology (VUC) in diagnosis of bladder cancer. This study included 100 patients diagnosed with bladder cancer, 65 patients with benign urological disorders and 51 healthy volunteers. Urine supernatant was used for determining hyaluronidase activity by zymography while urine sediment was used for cytology and detection of methylated RAR-β2 gene promoter by methylation specific nested PCR. The sensitivity and specificity were 53% and 90.5% for VUC, 65% and 89.7% for percent methylation fraction of RAR-β2 gene promoter, and 89% and 90.5% for hyaluronidase activity; combination of the three parameters increased sensitivity to 95%. A significant association was observed between investigated markers and advanced grade tumor. Combined use of RAR-β2 gene promoter methylation, hyaluronidase activity and VUC is promising non-invasive tool for bladder cancer detection. Copyright © 2012. Published by Elsevier Inc.

  10. Unique Epstein-Barr virus (EBV) latent gene expression, EBNA promoter usage and EBNA promoter methylation status in chronic active EBV infection.

    PubMed

    Yoshioka, Mikio; Kikuta, Hideaki; Ishiguro, Nobuhisa; Ma, Xiaoming; Kobayashi, Kunihiko

    2003-05-01

    Chronic active Epstein-Barr virus infection (CAEBV) has been considered to be a non-neoplastic T-cell lymphoproliferative disease associated with Epstein-Barr virus (EBV) infection. In EBV-associated diseases, the cell phenotype-dependent differences in EBV latent gene expression may reflect the strategy of the virus in relation to latent infection. We previously reported that EBV latent gene expression was restricted; EBV nuclear antigen 1 (EBNA1) transcripts were consistently detected in all spleen samples from five CAEBV patients, but EBNA2 transcripts were detected in only one sample. EBV latent gene expression is controlled by distinct usage of three EBNA promoters (Cp, Wp and Qp). In this study, we examined the EBNA promoter usage by RT-PCR and the methylation status in the Cp and Wp regions using bisulfite PCR analysis in spleen samples from CAEBV patients. EBNA1 transcripts were unexpectedly initiated not from Qp but from Cp in all samples in spite of the restricted form of latency. Furthermore, while Cp was active, Cp was heavily methylated, indicating that CAEBV has unique EBV latent gene expression, EBNA promoter usage and EBNA promoter methylation status, in part due to unique splicing of Cp-initiated transcripts and an activation mechanism in hypermethylated Cp.

  11. Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters

    PubMed Central

    Maunakea, Alika K.; Nagarajan, Raman P.; Bilenky, Mikhail; Ballinger, Tracy J.; D’Souza, Cletus; Fouse, Shaun D.; Johnson, Brett E.; Hong, Chibo; Nielsen, Cydney; Zhao, Yongjun; Turecki, Gustavo; Delaney, Allen; Varhol, Richard; Thiessen, Nina; Shchors, Ksenya; Heine, Vivi M.; Rowitch, David H.; Xing, Xiaoyun; Fiore, Chris; Schillebeeckx, Maximiliaan; Jones, Steven J.M.; Haussler, David; Marra, Marco A.; Hirst, Martin; Wang, Ting; Costello, Joseph F.

    2014-01-01

    While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear1–5. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences5–10. Tissue-specific intragenic methylation might reduce,3 or, paradoxically, enhance transcription elongation efficiency1,2,4,5. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes11–15. To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters16. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies. PMID:20613842

  12. MGMT promoter methylation in Peruvian patients with glioblastoma

    PubMed Central

    Belmar-Lopez, Carolina; Castaneda, Carlos A; Castillo, Miluska; García-Corrochano, Pamela; Orrego, Enrique; Meléndez, Barbara; Casavilca, Sandro; Flores, Claudio; Orrego, Enrique

    2018-01-01

    Purpose O6-methylguanine–DNA methyltransferase (MGMT) promoter methylation predicts the outcome and response to alkylating chemotherapy in glioblastoma. The aim of this study is to evaluate the prevalence of MGMT methylation in Peruvian glioblastoma cases. Patients and methods We evaluated retrospectively 50 cases of resected glioblastoma during the period 2008–2013 at Instituto Nacional de Enfermedades Neoplasicas in Peru. Samples consisted of paraffin embedded and frozen tumour tissue. MGMT-promoter methylation status and the expression level of MGMT gene were evaluated by methylation-specific PCR and real-time PCR, respectively. Results Unmethylated, methylated and partially methylated statuses were found in 54%, 20% and 26% of paraffin-embedded samples, respectively. Methylation status was confirmed in the Virgen de la Salud Hospital and frozen samples. There was an association between the status of MGMT-promoter methylation and the level of gene expression (p = 0.001). Methylation was associated with increased progression-free survival (p = 0.002) and overall survival (OS) (p < 0.001). Conclusion MGMT-promoter methylation frequency in Peruvian glioblastoma is similar to that reported in other populations and the detection test has been standardised. PMID:29515653

  13. On the presence and role of human gene-body DNA methylation

    PubMed Central

    Jjingo, Daudi; Conley, Andrew B.; Yi, Soojin V.; Lunyak, Victoria V.; Jordan, I. King

    2012-01-01

    DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription, which is inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes. PMID:22577155

  14. Promoter CpG methylation of multiple genes in pituitary adenomas: frequent involvement of caspase-8.

    PubMed

    Bello, M Josefa; De Campos, Jose M; Isla, Alberto; Casartelli, Cacilda; Rey, Juan A

    2006-02-01

    The epigenetic changes in pituitary adenomas were identified by evaluating the methylation status of nine genes (RB1, p14(ARF), p16(INK4a), p73, TIMP-3, MGMT, DAPK, THBS1 and caspase-8) in a series of 35 tumours using methylation-specific PCR analysis plus sequencing. The series included non-functional adenomas (n=23), prolactinomas (n=6), prolactinoma plus thyroid-stimulating hormone adenoma (n=1), growth hormone adenomas (n=4), and adrenocorticotropic adenoma (n=1). All of the tumours had methylation of at least one of these genes and 40% of samples (14 of 35) displayed concurrent methylation of at least three genes. The frequencies of aberrant methylation were: 20% for RB1, 17% for p14(ARF), 34% for p16(INK4a), 29% for p73, 11% for TIMP-3, 23% for MGMT, 6% for DAPK, 43% for THBS1 and 54% for caspase-8. No aberrant methylation was observed in two non-malignant pituitary samples from healthy controls. Although some differences in the frequency of gene methylation between functional and non-functional adenomas were detected, these differences did not reach statistical significance. Our results suggest that promoter methylation is a frequent event in pituitary adenoma tumourigenesis, a process in which inactivation of apoptosis-related genes (DAPK, caspase-8) might play a key role.

  15. Methylation Status of the RIZ1 Gene Promoter in Human Glioma Tissues and Cell Lines.

    PubMed

    Zhang, Chenran; Meng, Wei; Wang, Jiajia; Lu, Yicheng; Hu, Guohan; Hu, Liuhua; Ma, Jie

    2017-08-01

    Retinoblastoma protein-interacting zinc-finger gene 1 (RIZ1), a strong tumor suppressor, is silenced in many human cancers. Our previous studies showed that RIZ1 expression was negatively correlated with the grade of glioma and was a key predictor of patient survival. Therefore, RIZ1 could be a potential tumor suppressor during glioma pathogenesis, although the mechanism underlying RIZ1 gene inactivation in gliomas is unknown. We investigated the methylation status of the RIZ1 promoter in human glioma tissues and four glioblastoma (GBM) cell lines, and verified the effect of the methyltransferase inhibitor 5-aza-2-deoxycytidine (5-aza-CdR) on RIZ1 transcription and cell proliferation. Methylation-specific PCR (MSP) was performed to determine RIZ1 promoter methylation in human glioma specimens. The correlation between RIZ1 hypermethylation in tumors and clinicopathological features also was analyzed. 5-Aza-CdR treatment was used to reactivate gene expression silenced by hypermethylation in the U87 glioblastoma cell line, and real-time PCR was then used to measure RIZ1 expression. The ability of 5-aza-CdR to inhibit the proliferation of glioma cell lines whose RIZ1 promoters were hypermethylated was measured by bromodeoxyuridine (BrdU) incorporation. Among 51 human glioma specimens, RIZ1 promoter methylation was detected in 23 cases. Clinicopathological evaluation suggested that RIZ1 hypermethylation was negatively associated with tumor grade and patient age (P < 0.05). Hypermethylation of the RIZ1 promoter was detected in the U87 and U251 cell lines. RIZ1 mRNA expression in U87 cells was upregulated after treatment with 5-aza-Cdr, which correlated with inhibition of cell proliferation in a time- and concentration-dependent manner. Promoter hypermethylation may play an important role in the epigenetic silencing of RIZ1 expression in human glioma tissues and GBM cell lines.

  16. Large Sex Differences in Chicken Behavior and Brain Gene Expression Coincide with Few Differences in Promoter DNA-Methylation

    PubMed Central

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation. PMID:24782041

  17. Expression and promoter methylation of succinate dehydrogenase and fumarase genes in maize under anoxic conditions.

    PubMed

    Eprintsev, Alexander T; Fedorin, Dmitry N; Dobychina, Maria A; Igamberdiev, Abir U

    2017-09-01

    Succinate dehydrogenase (SDH) and fumarase enzyme activity and expression of genes encoding the SDH subunits A (Sdh1-2), B (Sdh2-3), C (Sdh3), D (Sdh4) and the mitochondrial (Fum1) and cytosolic (Fum2) isoforms of fumarase were quantified in maize (Zea mays L.) seedlings exposed to atmospheres of air (control), N 2, and CO 2 . The catalytic activity of SDH gradually declined in plants exposed to N 2 atmospheres, with ∼40% activity remaining after 24h. In seedlings incubated in CO 2, the suppression was even more pronounced. Fumarase activity was more stable, decreasing by one third after 24h of anoxia. The level of Sdh1-2 transcripts in seedlings declined significantly under N 2 and even more rapidly upon exposure to CO 2 , with a concomitant increase in methylation of the corresponding promoters. The level of Sdh2-3 and Sdh3 transcripts also decreased under N 2 and CO 2, but the changes in promoter methylation were less pronounced, whereas the changes in the level of Sdh4 expression and promoter methylation were minor. Expression of Fum1 and Fum2 was affected by N 2 and CO 2 atmospheres, however without changes in corresponding promoter methylation. It is concluded that, under conditions of oxygen deficiency, succinate accumulates mainly due to downregulation of SDH gene expression and reduction of enzyme activity, and to a lesser extent due to the decrease of fumarase gene expression. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Allele-specific DNA methylation and its interplay with repressive histone marks at promoter-mutant TERT genes

    PubMed Central

    Stern, Josh Lewis; Paucek, Richard D.; Huang, Franklin W.; Ghandi, Mahmoud; Nwumeh, Ronald; Costello, James C.; Cech, Thomas R.

    2017-01-01

    SUMMARY A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT) gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here we find that DNA methylation of the TERT CpG Island (CGI) is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2) on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter-mutant cancers. Finally, in several cancers DNA methylation levels at the TERT CGI correlate with altered patient survival. PMID:29281820

  19. Smoking, but not malnutrition, influences promoter-specific DNA methylation of the proopiomelanocortin gene in patients with and without anorexia nervosa.

    PubMed

    Ehrlich, Stefan; Walton, Esther; Roffman, Joshua L; Weiss, Deike; Puls, Imke; Doehler, Nico; Burghardt, Roland; Lehmkuhl, Ulrike; Hillemacher, Thomas; Muschler, Marc; Frieling, Helge

    2012-03-01

    Our pilot study evaluates the impact of environmental factors, such as nutrition and smoking status, on epigenetic patterns in a disease-associated gene. We measured the effects of malnutrition and cigarette smoking on proopiomelanocortin (POMC) promoter-specific DNA methylation in female patients with and without anorexia nervosa (AN). POMC and its derived peptides (alpha melanocyte stimulating hormone and adrenocorticotropic hormone) are implicated in stress and feeding response. Promoter-specific DNA methylation of the POMC gene was determined in peripheral blood mononuclear cells of 54 healthy female control subjects, 40 underweight patients with AN, and 21 weight-restored patients with AN using bisulfite sequencing. Malnutrition was characterized by plasma leptin. POMC promoter-specific DNA methylation was not affected by diagnosis or nutritional status but significantly negatively associated with cigarette smoking. Although malnutrition may be expected to reduce DNA methylation through its effects on one-carbon metabolism, our negative results are in line with several in vitro and clinical studies that did not show a direct relation between gene-specific DNA methylation and folate levels. In contrast, smoking has been repeatedly reported to alter DNA methylation of specific genes and should be controlled for in future epigenetic studies.

  20. Epigenetics in type 1 diabetes: TNFa gene promoter methylation status in Chilean patients with type 1 diabetes mellitus.

    PubMed

    Arroyo-Jousse, Viviana; Garcia-Diaz, Diego F; Codner, Ethel; Pérez-Bravo, Francisco

    2016-12-01

    TNF-α is a pro-inflammatory cytokine that is involved in type 1 diabetes (T1D) pathogenesis. The TNFa gene is subject of epigenetic regulation in which folate and homocysteine are important molecules because they participate in the methionine cycle where the most important methyl group donor (S-adenosylmethionine) is formed. We investigated whether TNFa gene promoter methylation status in T1D patients was related to blood folate, homocysteine and TNF-α in a transversal case-control study. We studied T1D patients (n 25, mean=13·7 years) and healthy control subjects (n 25, mean=31·1 years), without T1D and/or other autoimmune diseases or direct family history of these diseases. A blood sample was obtained for determination of serum folate, plasma homocysteine and TNF-α concentrations. Whole blood was used for the extraction of DNA to determine the percentage of methylation by real-time PCR and melting-curve analysis. Results are expressed as means and standard deviations for parametric variables and as median (interquartile range) for non-parametric variables. T1D patients showed a higher TNFa gene promoter methylation (39·2 (sd 19·5) %) when compared with control subjects (25·4 (sd 13·7) %) (P=0·008). TNFa gene promoter methylation was positively associated only with homocysteine levels in T1D patients (r 0·55, P=0·007), but not in control subjects (r -0·122, P=0·872). To our knowledge, this is the first work that reports the methylation status of the TNFa gene promoter and its relationship with homocysteine metabolism in Chilean T1D patients without disease complications.

  1. High frequency of genes' promoter methylation, but lack of BRAF V600E mutation among Iranian colorectal cancer patients.

    PubMed

    Naghibalhossaini, Fakhraddin; Hosseini, Hamideh Mahmoodzadeh; Mokarram, Pooneh; Zamani, Mozhdeh

    2011-12-01

    Gene silencing due to DNA hypermethylation is a major mechanism for loss of tumor suppressor genes function in colorectal cancer. Activating V600E mutation in BRAF gene has been linked with widespread methylation of CpG islands in sporadic colorectal cancers. The aim of the present study was to evaluate the methylation status of three cancer-related genes, APC2, p14ARF, and ECAD in colorectal carcinogenesis and their association with the mutational status of BRAF and KRAS among Iranian colorectal cancer patients. DNA from 110 unselected series of sporadic colorectal cancer patients was examined for BRAF V600E mutation by PCR-RFLP. Promoter methylation of genes in tumors was determined by methylation specific PCR. The frequency of APC2, E-CAD, and p14 methylation was 92.6%, 40.4% and 16.7%, respectively. But, no V600E mutation was identified in the BRAF gene in any sample. No association was found in cases showing epigenetic APC, ECAD, and p14 abnormality with the clinicopathological parameters under study. The association between KRAS mutations and the so called methylator phenotype was previously reported. Therefore, we also analyzed the association between the hot spot KRAS gene mutations in codons of 12 and 13 with genes' promoter hypermethylation in a subset of this group of patients. Out of 86 tumors, KRAS was mutated in 24 (28%) of tumors, the majority occurring in codon 12. KRAS mutations were not associated with genes' methylation in this tumor series. These findings suggest a distinct molecular pathway for methylation of APC2, p14, and ECAD genes from those previously described for colorectal cancers with BRAF or KRAS mutations.

  2. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes.

    PubMed

    Stern, Josh Lewis; Paucek, Richard D; Huang, Franklin W; Ghandi, Mahmoud; Nwumeh, Ronald; Costello, James C; Cech, Thomas R

    2017-12-26

    A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT) gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here, we find that DNA methylation of the TERT CpG island (CGI) is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2) on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter mutant cancers. Finally, in several cancers, DNA methylation levels at the TERT CGI correlate with altered patient survival. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer.

    PubMed

    Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi

    2011-10-01

    DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

  4. DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation.

    PubMed

    Moon, Eun-Kyung; Hong, Yeonchul; Lee, Hae-Ahm; Quan, Fu-Shi; Kong, Hyun-Hee

    2017-04-01

    Encystation mediating cyst specific cysteine proteinase (CSCP) of Acanthamoeba castellanii is expressed remarkably during encystation. However, the molecular mechanism involved in the regulation of CSCP gene expression remains unclear. In this study, we focused on epigenetic regulation of gene expression during encystation of Acanthamoeba . To evaluate methylation as a potential mechanism involved in the regulation of CSCP expression, we first investigated the correlation between promoter methylation status of CSCP gene and its expression. A 2,878 bp of promoter sequence of CSCP gene was amplified by PCR. Three CpG islands (island 1-3) were detected in this sequence using bioinformatics tools. Methylation of CpG island in trophozoites and cysts was measured by bisulfite sequence PCR. CSCP promoter methylation of CpG island 1 (1,633 bp) was found in 8.2% of trophozoites and 7.3% of cysts. Methylation of CpG island 2 (625 bp) was observed in 4.2% of trophozoites and 5.8% of cysts. Methylation of CpG island 3 (367 bp) in trophozoites and cysts was both 3.6%. These results suggest that DNA methylation system is present in CSCP gene expression of Acanthamoeba . In addition, the expression of encystation mediating CSCP is correlated with promoter CpG island 1 hypomethylation.

  5. Cigarette smoke induces methylation of the tumor suppressor gene NISCH

    PubMed Central

    Ostrow, Kimberly Laskie; Michalidi, Christina; Guerrero-Preston, Rafael; Hoque, Mohammad O.; Greenberg, Alissa; Rom, William; Sidransky, David

    2013-01-01

    We have previously identified a putative tumor suppressor gene, NISCH, whose promoter is methylated in lung tumor tissue as well as in plasma obtained from lung cancer patients. NISCH was observed to be more frequently methylated in smoker lung cancer patients than in non-smoker lung cancer patients. Here, we investigated the effect of tobacco smoke exposure on methylation of the NISCH gene. We tested methylation of NISCH after oral keratinocytes were exposed to mainstream and side stream cigarette smoke extract in culture. Methylation of the promoter region of the NISCH gene was also evaluated in plasma obtained from lifetime non-smokers and light smokers (< 20 pack/year), with and without lung tumors, and heavy smokers (20+ pack/year) without disease. Promoter methylation of NISCH was tested by quantitative fluorogenic real-time PCR in all samples. Promoter methylation of NISCH occurred after exposure to mainstream tobacco smoke as well as to side stream tobacco smoke in normal oral keratinocyte cell lines. NISCH methylation was also detected in 68% of high-risk, heavy smokers without detectable tumors. Interestingly, in light smokers, NISCH methylation was present in 69% of patients with lung cancer and absent in those without disease. Our pilot study indicates that tobacco smoke induces methylation changes in the NISCH gene promoter before any detectable cancer. Methylation of the NISCH gene was also found in lung cancer patients’ plasma samples. After confirming these findings in longitudinally collected plasma samples from high-risk populations (such as heavy smokers), examining patients for hypermethylation of the NISCH gene may aid in identifying those who should undergo additional screening for lung cancer. PMID:23503203

  6. DNA Methylation in Promoter Region as Biomarkers in Prostate Cancer

    PubMed Central

    Yang, Mihi; Park, Jong Y.

    2013-01-01

    The prostate gland is the most common site of cancer and the second leading cause of cancer death in American men. Recent emerging molecular biological technologies help us to know that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. In this chapter, we updated current information on methylated genes associated with the development and progression of prostate cancer. Over 40 genes have been investigated for methylation in promoter region in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is discussed. These findings may provide new information of the pathogenesis, the exciting potential to be predictive and to provide personalized treatment of prostate cancer. Indeed, some epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use. PMID:22359288

  7. Promoter methylation of APC and RAR-β genes as prognostic markers in non-small cell lung cancer (NSCLC).

    PubMed

    Feng, Hongxiang; Zhang, Zhenrong; Qing, Xin; Wang, Xiaowei; Liang, Chaoyang; Liu, Deruo

    2016-02-01

    Aberrant promoter hypermethylations of tumor suppressor genes are promising markers for lung cancer diagnosis and prognosis. The purpose of this study was to determine methylation status at APC and RAR-β promoters in primary NSCLC, and whether they have any relationship with survival. APC and RAR-β promoter methylation status were determined in 41 NSCLC patients using methylation specific PCR. APC promoter methylation was detectable in 9 (22.0%) tumor samples and 6 (14.6%) corresponding non-tumor samples (P=0.391). RAR-β promoter methylation was detectable in 13 (31.7%) tumor samples and 4 (9.8%) corresponding non-tumor samples (P=0.049) in the NSCLC patients. APC promoter methylation was found to be associated with T stage (P=0.046) and nodal status (P=0.019) in non-tumor samples, and with smoking (P=0.004) in tumor samples. RAR-β promoter methylation was found associated with age (P=0.031) in non-tumor samples and with primary tumor site in tumor samples. Patients with APC promoter methylation in tumor samples showed significantly longer survival than patients without it (Log-rank P=0.014). In a multivariate analysis of prognostic factors, APC methylation in tumor samples was an independent prognostic factor (P=0.012), as were N1 positive lymph node number (P=0.025) and N2 positive lymph node number (P=0.06). Our study shows that RAR-β methylation detected in lung tissue may be used as a predictive marker for NSCLC diagnosis and that APC methylation in tumor sample may be a useful marker for superior survival in NSCLC patients. Copyright © 2015. Published by Elsevier Inc.

  8. Genome-wide Mapping Reveals Conservation of Promoter DNA Methylation Following Chicken Domestication

    PubMed Central

    Li, Qinghe; Wang, Yuanyuan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Ning

    2015-01-01

    It is well-known that environment influences DNA methylation, however, the extent of heritable DNA methylation variation following animal domestication remains largely unknown. Using meDIP-chip we mapped the promoter methylomes for 23,316 genes in muscle tissues of ancestral and domestic chickens. We systematically examined the variation of promoter DNA methylation in terms of different breeds, differentially expressed genes, SNPs and genes undergo genetic selection sweeps. While considerable changes in DNA sequence and gene expression programs were prevalent, we found that the inter-strain DNA methylation patterns were highly conserved in promoter region between the wild and domestic chicken breeds. Our data suggests a global preservation of DNA methylation between the wild and domestic chicken breeds in either a genome-wide or locus-specific scale in chick muscle tissues. PMID:25735894

  9. Promoter Methylation in the Genesis of Gastrointestinal Cancer

    PubMed Central

    Shin, Sung Kwan; Goel, Ajay

    2009-01-01

    Colorectal cancers (CRC)-and probably all cancers-are caused by alterations in genes. This includes activation of oncogenes and inactivation of tumor suppressor genes (TSGs). There are many ways to achieve these alterations. Oncogenes are frequently activated by point mutation, gene amplification, or changes in the promoter (typically caused by chromosomal rearrangements). TSGs are typically inactivated by mutation, deletion, or promoter methylation, which silences gene expression. About 15% of CRC is associated with loss of the DNA mismatch repair system, and the resulting CRCs have a unique phenotype that is called microsatellite instability, or MSI. This paper reviews the types of genetic alterations that can be found in CRCs and hepatocellular carcinoma (HCC), and focuses upon the epigenetic alterations that result in promoter methylation and the CpG island methylator phenotype (CIMP). The challenge facing CRC research and clinical care at this time is to deal with the heterogeneity and complexity of these genetic and epigenetic alterations, and to use this information to direct rational prevention and treatment strategies. PMID:19568590

  10. Gene promoter DNA methylation patterns have a limited role in orchestrating transcriptional changes in the fetal liver in response to maternal folate depletion during pregnancy.

    PubMed

    McKay, Jill A; Adriaens, Michiel; Evelo, Chris T; Ford, Dianne; Mathers, John C

    2016-09-01

    Early-life exposures are critical in fetal programming and may influence function and health in later life. Adequate maternal folate consumption during pregnancy is essential for healthy fetal development and long-term offspring health. The mechanisms underlying fetal programming are poorly understood, but are likely to involve gene regulation. Epigenetic marks, including DNA methylation, regulate gene expression and are modifiable by folate supply. We observed transcriptional changes in fetal liver in response to maternal folate depletion and hypothesized that these changes are concomitant with altered gene promoter methylation. Female C57BL/6J mice were fed diets containing 2 or 0.4 mg folic acid/kg for 4 wk before mating and throughout pregnancy. At 17.5-day gestation, genome-wide gene expression and promoter methylation were measured by microarray analysis in male fetal livers. While 989 genes were differentially expressed, 333 promoters had altered methylation (247 hypermethylated, 86 hypomethylated) in response to maternal folate depletion. Only 16 genes had both expression and methylation changes. However, most methylation changes occurred in genomic regions neighboring expression changes. In response to maternal folate depletion, altered expression at the mRNA level was not associated with altered promoter methylation of the same gene in fetal liver. © 2016 The Authors. Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Methylation of miRNA genes and oncogenesis.

    PubMed

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  12. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul

    2012-01-01

    Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  13. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders.

    PubMed

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-07-05

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic-pituitary-adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene.

  14. Plasticity of DNA methylation and gene expression under zinc deficiency in Arabidopsis roots.

    PubMed

    Chen, Xiaochao; Schönberger, Brigitte; Menz, Jochen; Ludewig, Uwe

    2018-05-25

    DNA methylation is a heritable chromatin modification that maintains chromosome stability, regulates transposon silencing and appears to be involved in gene expression in response to environmental conditions. Environmental stress alters DNA methylation patterns that are correlated with gene expression differences. Here, genome-wide differential DNA-methylation was identified upon prolonged Zn deficiency, leading to hypo- and hyper-methylated chromosomal regions. Preferential CpG methylation changes occurred in gene promoters and gene bodies, but did not overlap with transcriptional start sites. Methylation changes were also prominent in transposable elements. By contrast, non-CG methylation differences were exclusively found in promoters of protein coding genes and in transposable elements. Strongly Zn deficiency-induced genes and their promoters were mostly non-methylated, irrespective of Zn supply. Differential DNA methylation in the CpG and CHG, but not in the CHH context, was found close to a few up-regulated Zn-deficiency genes. However, the transcriptional Zn-deficiency response in roots appeared little correlated with associated DNA methylation changes in promoters or gene bodies. Furthermore, under Zn deficiency, developmental defects were identified in an Arabidopsis mutant lacking non-CpG methylation. The root methylome thus responds specifically to a micro-nutrient deficiency and is important for efficient Zn utilization at low availability, but the relationship of differential methylation and differentially expressed genes is surprisingly poor.

  15. [The Role of 5-Aza-CdR on Methylation of Promoter in RASSF1A Gene in Endometrial Carcinoma].

    PubMed

    Huang, Li-ping; Chen, Chen; Wang, Xue-ping; Liu, Hui

    2015-05-01

    To explore the effect of demethylating drug 5-Aza-2'-deoxycytidine (5-Aza-CdR) on methtylation status of the Ras-association domain familylA gene (RASSF1A) in human endometrial carcinoma. Randomly'assign the human endometrial carcinoma cell line HEC-1-B into groups and use demethylating drug 5-Aza-CdR of different concentration to treat them. Then Methylation-specific polymerase chain reaction (MSP), real-time PCR, Western blot, TUNEL technology were used to analyze methylation status of RASSF1A promoter CpG islands, RASSF1A mRNA expression, RASSF1A protein expression and apoptosis of HEC-1-B cell. High DNA methylation in RASSF1A gene promoter region, low RASSF1A mRNA level and protein expression and out of control of human endometrial carcinoma cell HEC-1-B apoptosis were observed. 5-Aza-CdR of different concentration could reverse RASSF1A gene's methylation status, recover the expression of mRNA and protein, and control the growth of HEC-1-B by inducing apoptosis. Aberrant methylation of RASSF1A in endometrial cancer as a therapeutic target, demethylating agent 5-Aza-CdR could be an effective way of gene therapy.

  16. Prognostic significance of aberrant gene methylation in gastric cancer.

    PubMed

    Shi, Jing; Zhang, Guanjun; Yao, Demao; Liu, Wei; Wang, Na; Ji, Meiju; He, Nongyue; Shi, Bingyin; Hou, Peng

    2012-01-01

    Promoter methylation acts as an important alternative to genetic alterations for gene inactivation in gastric carcinogenesis. Although a number of gastric cancer-associated genes have been found to be methylated in gastric cancer, valuable methylation markers for early diagnosis and prognostic evaluation of this cancer remain largely unknown. In the present study, we used methylation-specific PCR (MSP) to analyze promoter methylation of 9 gastric cancer-associated genes, including MLF1, MGMT, p16, RASSF2, hMLH1, HAND1, HRASLS, TM, and FLNc, and their association with clinicopathological characteristics and clinical outcome in a large cohort of gastric cancers. Our data showed that all of these genes were aberrantly methylated in gastric cancer, ranging from 8% to 51%. Moreover, gene methylation was strongly associated with certain clinicopathological characteristics, such as tumor differentiation, lymph node metastasis, and cancer-related death. Of interest, methylation of MGMT, p16, RASSF2, hMLH1, HAND1, and FLNc was closely associated with poor survival in gastric cancer, particularly MGMT, p16, RASSF2 and FLNc. Thus, our findings suggested these epigenetic events may contribute to the initiation and progression of gastric cancer. Importantly, methylation of some genes were closely relevant to poor prognosis in gastric cancer, providing the strong evidences that these hypermethylated genes may be served as valuable biomarkers for prognostic evaluation in this cancer.

  17. Prognostic significance of aberrant gene methylation in gastric cancer

    PubMed Central

    Shi, Jing; Zhang, Guanjun; Yao, Demao; Liu, Wei; Wang, Na; Ji, Meiju; He, Nongyue; Shi, Bingyin; Hou, Peng

    2012-01-01

    Promoter methylation acts as an important alternative to genetic alterations for gene inactivation in gastric carcinogenesis. Although a number of gastric cancer-associated genes have been found to be methylated in gastric cancer, valuable methylation markers for early diagnosis and prognostic evaluation of this cancer remain largely unknown. In the present study, we used methylation-specific PCR (MSP) to analyze promoter methylation of 9 gastric cancer-associated genes, including MLF1, MGMT, p16, RASSF2, hMLH1, HAND1, HRASLS, TM, and FLNc, and their association with clinicopathological characteristics and clinical outcome in a large cohort of gastric cancers. Our data showed that all of these genes were aberrantly methylated in gastric cancer, ranging from 8% to 51%. Moreover, gene methylation was strongly associated with certain clinicopathological characteristics, such as tumor differentiation, lymph node metastasis, and cancer-related death. Of interest, methylation of MGMT, p16, RASSF2, hMLH1, HAND1, and FLNc was closely associated with poor survival in gastric cancer, particularly MGMT, p16, RASSF2 and FLNc. Thus, our findings suggested these epigenetic events may contribute to the initiation and progression of gastric cancer. Importantly, methylation of some genes were closely relevant to poor prognosis in gastric cancer, providing the strong evidences that these hypermethylated genes may be served as valuable biomarkers for prognostic evaluation in this cancer. PMID:22206050

  18. The 14-3-3σ gene promoter is methylated in both human melanocytes and melanoma

    PubMed Central

    2009-01-01

    Background Recent evidence demonstrates that 14-3-3σ acts as a tumor suppressor gene inactivated by methylation of its 5' CpG islands in epithelial tumor cells, while remaining un-methylated in normal human epithelia. The methylation analysis of 14-3-3σ has been largely overlooked in melanoma. Methods The methylation status of 14-3-3σ CpG island in melanocytes and melanoma cells was analyzed by methylation-specific sequencing (MSS) and quantitative methylation-specific PCR (Q-MSP). 14-3-3σ mRNA and protein expression in cell lines was detected by real-time RT-PCR and western blot. Melanoma cells were also treated by 5-aza-2'-deoxycytidine (DAC), a demethylating agent, and/or histone deacetylase inhibitor, Trichostatin A (TSA), to evaluate their effects on 14-3-3σ gene expression. Results 14-3-3σ is hypermethylated in both human melanocytes and most melanoma cells in a lineage-specific manner, resulting in the silencing of 14-3-3σ gene expression and the active induction of 14-3-3σ mRNA and protein expression following treatment with DAC. We also observed a synergistic effect upon gene expression when DAC was combined with TSA. The promoter methylation status of 14-3-3σ was analyzed utilizing Q-MSP in 20 melanoma tissue samples and 10 cell lines derived from these samples, showing that the majority of melanoma samples maintain their hypermethylation status of the 14-3-3σ gene. Conclusion 14-3-3σ is hypermethylated in human melanoma in a cell-linage specific manner. Spontaneous demethylation and re-expression of 14-3-3σ is a rare event in melanoma, indicating 14-3-3σ might have a tentative role in the pathogenesis of melanoma. PMID:19473536

  19. Rotating night work, lifestyle factors, obesity and promoter methylation in BRCA1 and BRCA2 genes among nurses and midwives

    PubMed Central

    Bukowska, Agnieszka; Wieczorek, Edyta; Przybek, Monika; Zienolddiny, Shanbeh; Reszka, Edyta

    2017-01-01

    Some recent evidence suggests that environmental and lifestyle factors may modify DNA methylation. We hypothesized that rotating night work and several modifiable factors may be associated with the methylation of the promoter regions within two tumor suppressor and DNA repair genes: BRCA1 and BRCA2. The methylation status of BRCA1 and BRCA2 was determined via qMSP reactions using DNA samples derived from blood leucocytes of 347 nurses and midwives working rotating nights and 363 working during the days. The subjects were classified into unmethylated vs methylated BRCA1 and BRCA2 when the methylation index was 0% or >0%, respectively. The adjusted odds ratios with 95% confidence intervals were calculated for night work status, smoking, obesity, physical activity and alcohol drinking. Current night shift work or night work history was not associated with methylation status of the promoter sites within BRCA1 and BRCA2 genes. We observed weak associations between smoking and the methylation status of BRCA1 with OR = 1.50 (95%CI: 0.98–2.29) for current smoking, OR = 1.83, 95CI: 1.08–3.13 for smoking longer than 31 years, and 0.1>p>0.05 for trends for the number of cigarettes per day, smoking duration and packyears. In conclusion, no links between night shift work and methylation of the promoter region within the BRCA1, and BRCA2 genes were observed in this exploratory analysis. The findings of our study weakly support the hypothesis that smoking may contribute to epigenetic events. PMID:28594926

  20. IGF-II promoter methylation and ovarian cancer prognosis.

    PubMed

    Beeghly, A C; Katsaros, D; Wiley, A L; Rigault de la Longrais, I A; Prescott, A T; Chen, H; Puopolo, M; Rutherford, T J; Yu, H

    2007-10-01

    The insulin-like growth factor-II (IGF-II) gene has four promoters that produce distinct transcripts which vary by tissue type and developmental stage. Dysregulation of normal promoter usage has been shown to occur in cancer; DNA methylation regulates promoter use. Thus, we sought to examine if DNA methylation varies among IGF-II promoters in ovarian cancer and if methylation patterns are related to clinical features of the disease. Tumor tissue, clinical data, and follow-up information were collected from 215 patients diagnosed with primary epithelial ovarian cancer. DNA extracted from tumor tissues was analyzed for IGF-II promoter methylation with seven methylation specific PCR (MSP) assays: three for promoter 2 (P2) and two assays each for promoters 3 and 4 (P3 and P4). Methylation was found to vary among the seven assays: 19.3% in P2A, 45.6% in P2B, 50.9% in P2C, 48.4% in P3A, 13.1% in P3B, 5.1% in P4A, and 6.1% in P4B. Methylation in any of the three P2 assays was associated with high tumor grade (P = 0.043), suboptimal debulking (P = 0.036), and disease progression [hazards ratio (HR) = 1.73, 95% confidence interval (CI) 1.09-2.74]. When comparing promoter methylation patterns, differential methylation of P2 and P3 was found to be associated with disease prognosis; patients with P3 but not P2 methylation were less likely to have disease progression (HR = 0.39, 95% CI 0.17-0.91) compared to patients with P2 but not P3 methylation. This study shows that methylation varies among three IGF-II promoters in ovarian cancer and that this variation seems to have biologic implications as it relates to clinical features and prognosis of the disease.

  1. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection.

    PubMed

    Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi

    2017-08-15

    Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were "DNA methylation-sensitive" genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A . The other half were "DNA methylation-resistant" genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site.

  2. Promoter methylation and expression of DNA repair genes MGMT and ERCC1 in tissue and blood of rectal cancer patients.

    PubMed

    Shalaby, Sally M; El-Shal, Amal S; Abdelaziz, Lobna A; Abd-Elbary, Eman; Khairy, Mostafa M

    2018-02-20

    Rectal cancer involves one-third of colorectal cancers (CRCs). Recently, data supported that DNA methylation have a role in CRC pathogenesis. In the present study we aimed to analyze the methylation status of MGMT and ERCC1 promoter regions in blood and tissue of patients with benign and malignant rectal tumors. We also studied the methylated MGMT and ERCC1 genes and their relations with clinicopathological features. Furthermore, we suggested that methylation may play a critical function in the regulation of MGMT and ERCC1 expression. Fifty patients with non-metastatic cancer rectum and 43 patients with benign rectal lesions were involved in the study. DNA extraction from blood and rectal specimens was done to analyze the methylation status of MGMT and ERCC1 genes by methylation-specific PCR method. RNA was extracted also to determine the expression levels of these genes by real time-PCR. The frequency of MGMT and ERCC1 methylation was significantly higher in rectum cancers than in benign tumors both for the tissue and the blood (p<0.001). There was no relation between MGMT or ERCC1 methylation and clinicopathological features; while they were correlated with the response to therapy. An interesting finding that the agreement of the methylation levels in the blood and rectal tissue was classified as good (κ=0.78) for MGMT gene and as very good (κ=0.85) for ERCC1. Lastly, the MGMT and ERCC1 genes methylation was associated with down-regulation of their mRNA expression when compared with the non-methylated status. Our findings provided evidence that both blood and tumor tissue MGMT and ERCC1 methylation were associated with cancer rectum. MGMT or ERCC1 methylation in blood could be suitable non-invasive biomarkers differentiating benign and malignant rectal tumors. Furthermore, the methylation of the MGMT and ERCC1 promoter regions was associated with down-regulation of their mRNA expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

    PubMed Central

    Tarantini, Letizia; Bonzini, Matteo; Apostoli, Pietro; Pegoraro, Valeria; Bollati, Valentina; Marinelli, Barbara; Cantone, Laura; Rizzo, Giovanna; Hou, Lifang; Schwartz, Joel; Bertazzi, Pier Alberto; Baccarelli, Andrea

    2009-01-01

    Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM. PMID:19270791

  4. Promoter methylation status in genes related with inflammation, nitrosative stress and xenobiotic metabolism in low-level benzene exposure: Searching for biomarkers of oncogenesis.

    PubMed

    Jiménez-Garza, Octavio; Guo, Liqiong; Byun, Hyang-Min; Carrieri, Mariella; Bartolucci, Giovanni Battista; Zhong, Jia; Baccarelli, Andrea A

    2017-11-01

    Exposure to low levels of benzene may cause acute myeloid leukemia in humans. Epigenetic effects in benzene exposure have been studied for tumor suppressor genes and oxidative stress-related genes, but other cellular pathways must be explored. Here, we studied promoter DNA methylation of IL6, CYP2E1 and iNOS in blood cells from three groups of workers: a) gas station attendants (GS) exposed to low levels of benzene; b) plastic shoe factory workers (PS) exposed to other solvents different to benzene and c) administrative workers as a reference group with no solvent exposure (C). IL6 promoter methylation was higher in GS workers (p < 0.05). Also in GS, CYP2E1 promoter methylation negatively correlated with benzene levels (r = -0.47, p < 0.05); iNOS promoter methylation positively correlated with CYP2E1 promoter methylation (r = 0.29, p < 0.05), cumulative time of exposure (r = 0.31, p < 0.05) as well as with urinary levels of S- Phenyl mercapturic acid (SPMA), (r = 0.55, p < 0.05). Our results demonstrate alterations in the inflammation pathway at the epigenetic level associated with exposure to benzene. Correlations between iNOS methylation with both CYP2E1 methylation and urinary SPMA levels represent novel evidence about CYP2E1 epigenetic regulation and activity related with nitrosative stress, making promoter methylation status of these genes a potential biomarker in early stages of oncogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders

    PubMed Central

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic–pituitary–adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene. PMID

  6. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection

    PubMed Central

    Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi

    2017-01-01

    Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were “DNA methylation-sensitive” genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A. The other half were “DNA methylation-resistant” genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site. PMID:28903418

  7. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    PubMed Central

    Ma, Yiyi; Smith, Caren E.; Lai, Chao-Qiang; Irvin, Marguerite R.; Parnell, Laurence D.; Lee, Yu-Chi; Pham, Lucia D.; Aslibekyan, Stella; Claas, Steven A.; Tsai, Michael Y.; Borecki, Ingrid B.; Kabagambe, Edmond K.; Ordovás, José M.; Absher, Devin M.; Arnett, Donna K.

    2016-01-01

    Scope Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Methods and results Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10−7). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Conclusion Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. PMID:26518637

  8. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter.

    PubMed

    Ma, Yiyi; Smith, Caren E; Lai, Chao-Qiang; Irvin, Marguerite R; Parnell, Laurence D; Lee, Yu-Chi; Pham, Lucia D; Aslibekyan, Stella; Claas, Steven A; Tsai, Michael Y; Borecki, Ingrid B; Kabagambe, Edmond K; Ordovás, José M; Absher, Devin M; Arnett, Donna K

    2016-02-01

    Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10(-7) ). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. [Methylation Status of the SOCS3 Gene Promoter in H2228 Cells and 
EML4-ALK-positive Lung Cancer Tissues].

    PubMed

    Liu, Chunlai; Li, Yongwen; Dong, Yunlong; Zhang, Hongbing; Li, Ying; Liu, Hongyu; Chen, Jun

    2016-09-20

    The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.

  10. Promoter methylation of glucocorticoid receptor gene is associated with subclinical atherosclerosis: A monozygotic twin study.

    PubMed

    Zhao, Jinying; An, Qiang; Goldberg, Jack; Quyyumi, Arshed A; Vaccarino, Viola

    2015-09-01

    Endothelial dysfunction assessed by brachial artery flow-mediated dilation (FMD) is a marker of early atherosclerosis. Glucocorticoid receptor gene (NR3C1) regulates many biological processes, including stress response, behavioral, cardiometabolic and immunologic functions. Genetic variants in NR3C1 have been associated with atherosclerosis and related risk factors. This study investigated the association of NR3C1 promoter methylation with FMD, independent of genetic and family-level environmental factors. We studied 84 middle-aged, male-male monozygotic twin pairs recruited from the Vietnam Era Twin Registry. Brachial artery FMD was measured by ultrasound. DNA methylation levels at 22 CpG residues in the NR3C1 exon 1F promoter region were quantified by bisulfite pyrosequencing in genomic DNA isolated from peripheral blood leukocytes. Co-twin control analyses were conducted to examine the association of methylation variation with FMD, adjusting for smoking, physical activity, body mass index, lipids, blood pressure, fasting glucose, and depressive symptoms. Multiple testing was corrected using the false discovery rate. Mean methylation level across the 22 studied CpG sites was 2.02%. Methylation alterations at 12 out of the 22 CpG residues were significantly associated with FMD. On average, a 1% increase in the intra-pair difference in mean DNA methylation was associated with 2.83% increase in the intra-pair difference in FMD (95% CI: 1.46-4.20; P < 0.0001) after adjusting for risk factors and multiple testing. Methylation variation in NR3C1 exon 1F promoter significantly influences subclinical atherosclerosis, independent of genetic, early family environmental and other risk factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Promoter methylation and age-related downregulation of Klotho in rhesus monkey.

    PubMed

    King, Gwendalyn D; Rosene, Douglas L; Abraham, Carmela R

    2012-12-01

    While overall DNA methylation decreases with age, CpG-rich areas of the genome can become hypermethylated. Hypermethylation near transcription start sites typically decreases gene expression. Klotho (KL) is important in numerous age-associated pathways including insulin/IGF1 and Wnt signaling and naturally decreases with age in brain, heart, and liver across species. Brain tissues from young and old rhesus monkeys were used to determine whether epigenetic modification of the KL promoter underlies age-related decreases in mRNA and protein levels of KL. The KL promoter in genomic DNA from brain white matter did not show evidence of oxidation in vivo but did exhibit an increase in methylation with age. Further analysis identified individual CpG motifs across the region of interest with increased methylation in old animals. In vitro methyl modification of these individual cytosine residues confirmed that methylation of the promoter can decrease gene transcription. These results provide evidence that changes in KL gene expression with age may, at least in part, be the result of epigenetic changes to the 5' regulatory region.

  12. CaMV-35S promoter sequence-specific DNA methylation in lettuce.

    PubMed

    Okumura, Azusa; Shimada, Asahi; Yamasaki, Satoshi; Horino, Takuya; Iwata, Yuji; Koizumi, Nozomu; Nishihara, Masahiro; Mishiba, Kei-ichiro

    2016-01-01

    We found 35S promoter sequence-specific DNA methylation in lettuce. Additionally, transgenic lettuce plants having a modified 35S promoter lost methylation, suggesting the modified sequence is subjected to the methylation machinery. We previously reported that cauliflower mosaic virus 35S promoter-specific DNA methylation in transgenic gentian (Gentiana triflora × G. scabra) plants occurs irrespective of the copy number and the genomic location of T-DNA, and causes strong gene silencing. To confirm whether 35S-specific methylation can occur in other plant species, transgenic lettuce (Lactuca sativa L.) plants with a single copy of the 35S promoter-driven sGFP gene were produced and analyzed. Among 10 lines of transgenic plants, 3, 4, and 3 lines showed strong, weak, and no expression of sGFP mRNA, respectively. Bisulfite genomic sequencing of the 35S promoter region showed hypermethylation at CpG and CpWpG (where W is A or T) sites in 9 of 10 lines. Gentian-type de novo methylation pattern, consisting of methylated cytosines at CpHpH (where H is A, C, or T) sites, was also observed in the transgenic lettuce lines, suggesting that lettuce and gentian share similar methylation machinery. Four of five transgenic lettuce lines having a single copy of a modified 35S promoter, which was modified in the proposed core target of de novo methylation in gentian, exhibited 35S hypomethylation, indicating that the modified sequence may be the target of the 35S-specific methylation machinery.

  13. Racial Differences in DNA-Methylation of CpG Sites Within Preterm-Promoting Genes and Gene Variants.

    PubMed

    Salihu, H M; Das, R; Morton, L; Huang, H; Paothong, A; Wilson, R E; Aliyu, M H; Salemi, J L; Marty, P J

    2016-08-01

    Objective To evaluate the role DNA methylation may play in genes associated with preterm birth for higher rates of preterm births in African-American women. Methods Fetal cord blood samples from births collected at delivery and maternal demographic and medical information were used in a cross-sectional study to examine fetal DNA methylation of genes implicated in preterm birth among black and non-black infants. Allele-specific DNA methylation analysis was performed using a methylation bead array. Targeted maximum likelihood estimation was applied to examine the relationship between race and fetal DNA methylation of candidate preterm birth genes. Receiver-operating characteristic analyses were then conducted to validate the CpG site methylation marker within the two racial groups. Bootstrapping, a method of validation and replication, was employed. Results 42 CpG sites were screened within 20 candidate gene variants reported consistently in the literature as being associated with preterm birth. Of these, three CpG sites on TNFAIP8 and PON1 genes (corresponding to: cg23917399; cg07086380; and cg07404485, respectively) were significantly differentially methylated between black and non-black individuals. The three CpG sites showed lower methylation status among infants of black women. Bootstrapping validated and replicated results. Conclusion for Practice Our study identified significant differences in levels of methylation on specific genes between black and non-black individuals. Understanding the genetic/epigenetic mechanisms that lead to preterm birth may lead to enhanced prevention strategies to reduce morbidity and mortality by eventually providing a means to identify individuals with a genetic predisposition to preterm labor.

  14. Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder.

    PubMed

    Checknita, D; Maussion, G; Labonté, B; Comai, S; Tremblay, R E; Vitaro, F; Turecki, N; Bertazzo, A; Gobbi, G; Côté, G; Turecki, G

    2015-03-01

    Antisocial personality disorder (ASPD) is characterised by elevated impulsive aggression and increased risk for criminal behaviour and incarceration. Deficient activity of the monoamine oxidase A (MAOA) gene is suggested to contribute to serotonergic system dysregulation strongly associated with impulsive aggression and antisocial criminality. To elucidate the role of epigenetic processes in altered MAOA expression and serotonin regulation in a population of incarcerated offenders with ASPD compared with a healthy non-incarcerated control population. Participants were 86 incarcerated participants with ASPD and 73 healthy controls. MAOA promoter methylation was compared between case and control groups. We explored the functional impact of MAOA promoter methylation on gene expression in vitro and blood 5-HT levels in a subset of the case group. Results suggest that MAOA promoter hypermethylation is associated with ASPD and may contribute to downregulation of MAOA gene expression, as indicated by functional assays in vitro, and regression analysis with whole-blood serotonin levels in offenders with ASPD. These results are consistent with prior literature suggesting MAOA and serotonergic dysregulation in antisocial populations. Our results offer the first evidence suggesting epigenetic mechanisms may contribute to MAOA dysregulation in antisocial offenders. Royal College of Psychiatrists.

  15. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas.

    PubMed

    Felsberg, Jörg; Thon, Niklas; Eigenbrod, Sabina; Hentschel, Bettina; Sabel, Michael C; Westphal, Manfred; Schackert, Gabriele; Kreth, Friedrich Wilhelm; Pietsch, Torsten; Löffler, Markus; Weller, Michael; Reifenberger, Guido; Tonn, Jörg C

    2011-08-01

    Epigenetic silencing of the O(6) -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care. Copyright © 2011 UICC.

  16. Promoter Methylation and BDNF and DAT1 Gene Expression Profiles in Patients with Drug Addiction.

    PubMed

    Kordi-Tamandani, Dor Mohammad; Tajoddini, Shahrad; Salimi, Farzaneh

    2015-01-01

    Drug addiction is a brain disorder that has negative consequences for individuals and society. Addictions are chronic relapsing diseases of the brain that are caused by direct drug-induced effects and persevering neuroadaptations at the epigenetic, neuropeptide and neurotransmitter levels. Because the dopaminergic system has a significant role in drug abuse, the purpose of this study was to analyze the methylation and expression profile of brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes in individuals with drug addiction. BDNF and DAT1 promoter methylation were investigated with a methylation-specific polymerase chain reaction (PCR) technique in blood samples from 75 individuals with drug addiction and 65 healthy controls. The expression levels of BDNF and DAT1 were assessed in 12 mRNA samples from the blood of patients and compared to the samples of healthy controls (n = 12) with real-time quantitative reverse transcription PCR. No significant differences were found in the methylation of BDNF and DAT1 between patients and controls, but the relative levels of expression of BDNF and DAT1 mRNA differed significantly in the patients compared to controls (p < 0.0001). These results showed that the methylation status of the BDNF and DAT1 genes had no significant function in the processes of drug addiction.

  17. Promoter methylation, mRNA expression of goat tumor‑associated genes and mRNA expression of DNA methyltransferase in enzootic nasal tumors.

    PubMed

    Quan, Zifang; Ye, Ni; Hao, Zhongxiang; Wen, Caifang; Liao, Hong; Zhang, Manli; Luo, Lu; Cao, Sanjie; Wen, Xintian; Wu, Rui; Yan, Qigui

    2015-10-01

    The aim of the present study was to investigate the promoter methylation status and mRNA expression of goat tumor‑associated genes, in addition to the mRNA expression of DNA methyltransferase genes in enzootic nasal tumors (ENT). Methylation‑specific polymerase chain reaction and SYBR Green reverse transcription‑quantitative polymerase chain reaction were used to detect the methylation status and the mRNA expression levels of DNA methyltransferases (DNMTs), O6‑methylguanine‑DNA methyltransferase (MGMT), the tumor suppressor genes P73, P53, GADD45G, CHFR and THBS1, the transcription factor CEBPA, the proto‑oncogenes KRAS, NRAS and C‑myc and EGFR in 24 nasal tumor tissue samples and 20 normal nasal epithelia tissue samples. The associations between promoter methylation and DNMT, and promoter methylation and mRNA expression of the genes were analyzed. The results indicated that the expression levels of DNMT1 increased by 56% compared with those in normal nasal epithelial tissues, while MGMT, DNMT3a and DNMT3b had similar expression levels in the two tissue types. The expression levels of P53 decreased by 36.8% and those of THBS1 by 43%, while C‑myc increased by 2.9‑fold and CEBPA by 2‑fold compared with that in normal nasal epithelial tissues. GADD45G, P73, CHFR and NRAS were observed to have similar expression levels in the two tissue types. However, no expression was observed for EGFR and KRAS. CHFR, GADD45G and THBS1 were identified to be methylated in tumor suppressor genes. The methylation expression rate of the CHFR gene was ~60% in the two tissue types and for THBS1 it was 100% in the nasal tumor tissues as opposed to 20% in the normal nasal epithelial tissues. The exhaustive methylation expression rate of GADD45G was 62.5% and the partial methylation expression rate was 37.5% in nasal tumor tissue, while no methylation was observed in normal nasal epithelial tissues. C‑myc was the only gene identified to be methylated amongst proto

  18. Variable promoter methylation contributes to differential expression of key genes in human placenta-derived venous and arterial endothelial cells.

    PubMed

    Joo, Jihoon E; Hiden, Ursula; Lassance, Luciana; Gordon, Lavinia; Martino, David J; Desoye, Gernot; Saffery, Richard

    2013-07-15

    The endothelial compartment, comprising arterial, venous and lymphatic cell types, is established prenatally in association with rapid phenotypic and functional changes. The molecular mechanisms underpinning this process in utero have yet to be fully elucidated. The aim of this study was to investigate the potential for DNA methylation to act as a driver of the specific gene expression profiles of arterial and venous endothelial cells. Placenta-derived venous and arterial endothelial cells were collected at birth prior to culturing. DNA methylation was measured at >450,000 CpG sites in parallel with expression measurements taken from 25,000 annotated genes. A consistent set of genomic loci was found to show coordinate differential methylation between the arterial and venous cell types. This included many loci previously not investigated in relation to endothelial function. An inverse relationship was observed between gene expression and promoter methylation levels for a limited subset of genes implicated in endothelial function, including NOS3, encoding endothelial Nitric Oxide Synthase. Endothelial cells derived from the placental vasculature at birth contain widespread methylation of key regulatory genes. These are candidates involved in the specification of different endothelial cell types and represent potential target genes for environmentally mediated epigenetic disruption in utero in association with cardiovascular disease risk later in life.

  19. Methylation in promoter regions of PITX2 and RASSF1A genes in association with clinicopathological features in breast cancer patients.

    PubMed

    Jezkova, Eva; Kajo, Karol; Zubor, Pavol; Grendar, Marian; Malicherova, Bibiana; Mendelova, Andrea; Dokus, Karol; Lasabova, Zora; Plank, Lukas; Danko, Jan

    2016-10-15

    Breast cancer is a heterogeneous disease with very different responses to therapy and different length of survival. In many cases, however, the determination of the stage and histopathological characteristics of breast cancer is insufficient to predict prognosis and response to treatment for the vast heterogeneity of the disease. To understand the molecular signature of subtypes of breast cancer, we attempted to identify the methylation status of key tumour suppressor gene Ras association (RalGDS/AF-6) domain family member 1 isoform a (RASSF1A) and a member of the paired-like homeodomain transcription factor family which functions in left-right asymmetry development (PITX2) and to correlate results with known clinicopathological features of breast cancer. Formalin-fixed, paraffin-embedded (FFPE) tissues of breast carcinomas (n = 149) were used for DNA extraction. DNA was modified by bisulphite conversion. Detection of the methylation level of the genes mentioned above was performed by methylation-sensitive high-resolution melting assay (MS-HRM). Based on MS-HRM results for RASSF1A and PITX2, we subdivided the samples into four groups according to methylation level (≤50 % methylated, >50 % methylated, 100 % methylated and completely unmethylated alleles). All degrees of methylation status for both genes underwent analysis of dependence with known clinicopathological features, and we found significant associations. In 134 of 149 (89.9 %) primary breast carcinomas, the RASSF1A promoter was methylated. Total hypermethylation of PITX2 was observed in 60 of 135 (44.4 %) breast cancer cases. RASSF1A hypermethylation had significant association with increased age (p < 0.05), tumour grade (p < 0.0001) and stage (p < 0.0001) in the 100 % methylated group. There was significant association of PITX2 hypermethylation with tumour grade (p < 0.0001) and stage (p < 0.0001). Association between the methylation level of both investigated genes and tumour type was

  20. Promoter methylation in head and neck tumorigenesis.

    PubMed

    Stephen, Josena K; Chen, Kang Mei; Havard, Shaleta; Harris, Glynis; Worsham, Maria J

    2012-01-01

    In addition to genetic alterations of gains and losses, epigenetic events of promoter methylation appear to further undermine a destabilized genomic repertoire in squamous head and neck carcinoma (HNSCC). This chapter provides an overview of frequently methylated tumor suppressor genes in benign head and neck papillomas, primary HNSCC tumors, and HNSCC cell lines and their relevance as epigenetic markers in head and neck tumorigenesis.

  1. Aberrant Promoter Methylation and Expression of UTF1 during Cervical Carcinogenesis

    PubMed Central

    Deplus, Rachel; Lampe, Xavier; Krusy, Nathalie; Calonne, Emilie; Delbecque, Katty; Kridelka, Frederic; Fuks, François; Ennaji, My Mustapha; Delvenne, Philippe

    2012-01-01

    Promoter methylation profiles are proposed as potential prognosis and/or diagnosis biomarkers in cervical cancer. Up to now, little is known about the promoter methylation profile and expression pattern of stem cell (SC) markers during tumor development. In this study, we were interested to identify SC genes methylation profiles during cervical carcinogenesis. A genome-wide promoter methylation screening revealed a strong hypermethylation of Undifferentiated cell Transcription Factor 1 (UTF1) promoter in cervical cancer in comparison with normal ectocervix. By direct bisulfite pyrosequencing of DNA isolated from liquid-based cytological samples, we showed that UTF1 promoter methylation increases with lesion severity, the highest level of methylation being found in carcinoma. This hypermethylation was associated with increased UTF1 mRNA and protein expression. By using quantitative RT-PCR and Western Blot, we showed that both UTF1 mRNA and protein are present in epithelial cancer cell lines, even in the absence of its two main described regulators Oct4A and Sox2. Moreover, by immunofluorescence, we confirmed the nuclear localisation of UTF1 in cell lines. Surprisingly, direct bisulfite pyrosequencing revealed that the inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine was associated with decreased UTF1 gene methylation and expression in two cervical cancer cell lines of the four tested. These findings strongly suggest that UTF1 promoter methylation profile might be a useful biomarker for cervical cancer diagnosis and raise the questions of its role during epithelial carcinogenesis and of the mechanisms regulating its expression. PMID:22880087

  2. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    PubMed Central

    2012-01-01

    Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation. PMID:22251412

  3. Changes in the methylation status of DAT, SERT, and MeCP2 gene promoters in the blood cell in families exposed to alcohol during the periconceptional period.

    PubMed

    Lee, Bom-Yi; Park, So-Yeon; Ryu, Hyun-Mee; Shin, Chan-Young; Ko, Ki-Nam; Han, Jung-Yeol; Koren, Gideon; Cho, Youl-Hee

    2015-02-01

    Alcohol exposure has been shown to cause devastating effects on neurobehavioral development in numerous animal and human studies. The alteration of DNA methylation levels in gene-specific promoter regions has been investigated in some studies of human alcoholics. This study was aimed to investigate whether social alcohol consumption during periconceptional period is associated with epigenetic alteration and its generational transmission in the blood cells. We investigated patterns of alcohol intake in a prospective cohort of 355 pairs of pregnant women and their spouses who reported alcohol intake during the periconceptional period. A subpopulation of 164 families was established for the epigenetic study based on the availability of peripheral blood and cord blood DNA. The relative methylation changes of dopamine transporter (DAT), serotonin transporter (SERT), and methyl CpG binding protein 2 (MeCP2) gene promoters were analyzed using methylation-specific endonuclease digestion followed by quantitative real-time polymerase chain reaction. The relative methylation level of the DAT gene promoter was decreased in the group of mothers reporting above moderate drinking (p = 0.029) and binge drinking (p = 0.037) during pregnancy. The relative methylation level of the DAT promoter was decreased in the group of fathers reporting heavy binge drinking (p = 0.003). The relative methylation levels of the SERT gene promoter were decreased in the group of newborns of light drinking mothers before pregnancy (p = 0.012) and during pregnancy (p = 0.003). The methylation level in the MeCP2 promoter region of babies whose mothers reported above moderate drinking during pregnancy was increased (p = 0.02). In addition, methylation pattern in the DAT promoter region of babies whose fathers reported heavy binge drinking was decreased (p = 0.049). These findings suggest that periconceptional alcohol intake may cause epigenetic changes in specific locus of parental and

  4. Detecting methylation patterns of p16, MGMT, DAPK and E-cadherin genes in multiple myeloma patients.

    PubMed

    Yuregir, O Ozalp; Yurtcu, E; Kizilkilic, E; Kocer, N E; Ozdogu, H; Sahin, F I

    2010-04-01

    Multiple myeloma (MM) is a B-cell neoplasia characterized by the clonal proliferation of plasma cells. Besides known genetic abnormalities, epigenetic changes are also known to effect MM pathogenesis. DNA methylation is an epigenetic mechanism that silences genes by adding methyl groups to cytosine-guanine dinucleotides at the promoter regions. In this study, the methylation status of four genes; p16, O6-methyl guanine DNA methyl transferase (MGMT), death-associated protein kinase (DAPK) and E-cadherin (ECAD); at the time of diagnosis was investigated using methylation-specific polymerase chain reaction (MS-PCR). In the 20 cases studied; methylation of the promoter regions of p16, MGMT, DAPK and ECAD genes was detected in 10%, 40%, 10% and 45% of the cases, respectively. In 65% (13/20) of cases, at least one of the genes studied had promoter methylation; while 35% of cases (7/20) had methylated promoters of more than one gene. There was a significant correlation between promoter hypermethylation of MGMT and the presence of extramedullary involvement; but for the other genes no correlation was found regarding disease properties like age, disease stage, clinical course and the presence of lytic bone lesions. Determining the methylation profiles of genes in MM, could lead to a new understanding of the disease pathogenesis and guide the assessment of treatment options.

  5. Islet cells share promoter hypomethylation independently of expression, but exhibit cell-type-specific methylation in enhancers.

    PubMed

    Neiman, Daniel; Moss, Joshua; Hecht, Merav; Magenheim, Judith; Piyanzin, Sheina; Shapiro, A M James; de Koning, Eelco J P; Razin, Aharon; Cedar, Howard; Shemer, Ruth; Dor, Yuval

    2017-12-19

    DNA methylation at promoters is an important determinant of gene expression. Earlier studies suggested that the insulin gene promoter is uniquely unmethylated in insulin-expressing pancreatic β-cells, providing a classic example of this paradigm. Here we show that islet cells expressing insulin, glucagon, or somatostatin share a lack of methylation at the promoters of the insulin and glucagon genes. This is achieved by rapid demethylation of the insulin and glucagon gene promoters during differentiation of Neurogenin3 + embryonic endocrine progenitors, regardless of the specific endocrine cell-type chosen. Similar methylation dynamics were observed in transgenic mice containing a human insulin promoter fragment, pointing to the responsible cis element. Whole-methylome comparison of human α- and β-cells revealed generality of the findings: genes active in one cell type and silent in the other tend to share demethylated promoters, while methylation differences between α- and β-cells are concentrated in enhancers. These findings suggest an epigenetic basis for the observed plastic identity of islet cell types, and have implications for β-cell reprogramming in diabetes and diagnosis of β-cell death using methylation patterns of circulating DNA. Copyright © 2017 the Author(s). Published by PNAS.

  6. DNA methylation pattern of apoptosis-related genes in ameloblastoma.

    PubMed

    Costa, Sfs; Pereira, N B; Pereira, Kma; Campos, K; de Castro, W H; Diniz, M G; Gomes, C C; Gomez, R S

    2017-09-01

    DNA methylation is an important mechanism of gene control expression, and it has been poorly addressed in odontogenic tumours. On this basis, we aimed to assess the methylation pattern of 22 apoptosis-related genes in solid ameloblastomas. Ameloblastoma fresh samples (n = 10) and dental follicles (n = 8) were included in the study. The percentage fraction of methylated and unmethylated DNA promoter of 22 apoptosis-related genes was determined using enzymatic restriction digestion and quantitative real-time PCR (qPCR) array. The relative expressions of the genes that showed the most discrepant methylation profile between tumours and controls were analysed by reverse-transcription quantitative PCR (RT-qPCR). Lower methylation percentages of TNFRSF25 (47.2%) and BCL2L11 (33.2%) were observed in ameloblastomas compared with dental follicles (79.3% and 59.5%, respectively). The RT-qPCR analysis showed increased expression of BCL2L11 in ameloblastomas compared with dental follicles, in agreement with the methylation analysis results, while there was no difference between the expression levels of TNFRSF25 between both groups. On the basis of our results, the transcription of the apoptosis-related gene BCL2L11 is possibly regulated by promoter DNA methylation in ameloblastoma. The biological significance of this finding in ameloblastoma pathobiology remains to be clarified. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Gene methylation in gastric cancer.

    PubMed

    Qu, Yiping; Dang, Siwen; Hou, Peng

    2013-09-23

    Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Prognostic significance of promoter CpG island methylation of obesity-related genes in patients with nonmetastatic renal cell carcinoma.

    PubMed

    Mendoza-Pérez, Julia; Gu, Jian; Herrera, Luis A; Tannir, Nizar M; Zhang, Shanyu; Matin, Surena; Karam, Jose A; Wood, Christopher G; Wu, Xifeng

    2017-09-15

    Greater than 40% of renal cell carcinoma (RCC) cases in the United States are attributed to excessive body weight. Moreover, obesity also may be linked to RCC prognosis. However, the molecular mechanisms underlying these associations are unclear. In the current study, the authors evaluated the role of promoter methylation in obesity-related genes in RCC tumorigenesis and disease recurrence. Paired tumors (TU) and normal adjacent (N-Adj) tissues from 240 newly diagnosed and previously untreated white patients with RCC were examined. For the discovery phase, 63 RCC pairs were analyzed. An additional 177 RCC pairs were evaluated for validation. Pyrosequencing was used to determine CpG methylation in 20 candidate obesity-related genes. An independent data set from The Cancer Genome Atlas also was analyzed for functional validation. The association between methylation and disease recurrence was analyzed using multivariate Cox proportional hazards models and Kaplan-Meier survival analysis. Methylation in neuropeptide Y (NPY), leptin (LEP), and leptin receptor (LEPR) was significantly higher in TU compared with N-Adj tissues (P<.0001) in both the discovery and validation groups. High methylation in LEPR was associated with an increased risk of disease recurrence (hazard ratio, 3.15; 95% confidence interval, 1.23-8.07 [P = .02]). Patients with high methylation in LEPR had a shorter recurrence-free survival compared with patients in the low-methylation group (log-rank P = 2.25 × 10 -3 ). In addition, high LEPR methylation in TU was associated with more advanced features (P≤.05). Consistent with the findings of the current study, lower LEPR expression in TU compared with N-Adj tissues (P = 1.00 × 10 -3 ) was found in data from The Cancer Genome Atlas. Somatic alterations of promoter methylation in the NPY, LEP, and LEPR genes are involved in RCC tumorigenesis. Furthermore, LEPR methylation appears to be associated with RCC recurrence. Future research to

  9. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage.

    PubMed

    Taguchi, Y-h

    2015-01-01

    Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.

  10. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  11. Differential vitamin D 24-hydroxylase/CYP24A1 gene promoter methylation in endothelium from benign and malignant human prostate

    PubMed Central

    Karpf, Adam R; Omilian, Angela R; Bshara, Wiam; Tian, Lili; Tangrea, Michael A; Morrison, Carl D; Johnson, Candace S

    2011-01-01

    Epigenetic alterations occur in tumor-associated vessels in the tumor microenvironment. Methylation of the CYP24A1 gene promoter differs in endothelial cells isolated from tumors and non-tumor microenvironments in mice. The epigenetic makeup of endothelial cells of human tumor-associated vasculature is unknown due to difficulty of isolating endothelial cells populations from a heterogeneous tissue microenvironment. To ascertain CYP24A1 promoter methylation in tumor-associated endothelium, we utilized laser microdissection guided by CD31 immunohistochemistry to procure endothelial cells from human prostate tumor specimens. Prostate tissues were obtained following robotic radical prostatectomy from men with clinically localized prostate cancer. Adjacent histologically benign prostate tissues were used to compare endothelium from benign versus tumor microenvironments. Sodium bisulfite sequencing of CYP24A1 promoter region showed that the average CYP24A1 promoter methylation in the endothelium was 20% from the tumor microenvironment compared with 8.2% in the benign microenvironment (p < 0.05). A 2-fold to 17-fold increase in CYP24A1 promoter methylation was observed in the prostate tumor endothelium compared with the matched benign prostate endothelium in four patient samples, while CYP24A1 promoter methylation remained unchanged in two patient samples. In addition, there is no correlation of the level of CYP24A1 promoter methylation in prostate tumor-associated endothelium with that of epithelium/stroma. This study demonstrates that the CYP24A1 promoter is methylated in tumor-associated endothelium, indicating that epigenetic alterations in CYP24A1 may play a role in determining the phenotype of tumor-associated vasculature in the prostate tumor microenvironment. PMID:21725204

  12. Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity.

    PubMed

    Zheng, Min; Lin, Feiliang; Hou, Fenxia; Li, Guilan; Zhu, Caiying; Xu, Peiyu; Xing, Caihong; Wang, Qianfei

    2017-08-16

    Benzene is a primary industrial chemical and a ubiquitous environmental pollutant. ERCC3 is a key player in nucleotide excision repair. Recent studies suggested that site-specific methylation is a possible mechanism of the transcriptional dysregulation by blocking transcription factors binding. We previously found that the average promoter methylation level of ERCC3 was increased in benzene-exposed workers. In order to test whether specific CpG sites of ERCC3 play an important role in benzene-induced epigenetic changes and whether the specific methylation patterns are associated with benzene hematotoxicity, we analyzed the promoter methylation levels of individual CpG sites, transcription factor binding motif and the correlation between aberrant CpG methylation and hematotoxicity in 76 benzene-exposed workers and 24 unexposed controls in China. Out of all the CpGs analyzed, two CpG units located 43 bp upstream and 99 bp downstream of the transcription start site of ERCC3 (CpG 2-4 and CpG 17-18, respectively), showed the most pronounced increase in methylation levels in benzene-exposed workers, compared with unexposed controls (Mean ± SD: 5.86 ± 2.77% vs. 4.92 ± 1.53%, p = 0.032; 8.45 ± 4.09% vs. 6.79 ± 2.50%, p = 0.024, respectively). Using the JASPAR CORE Database, we found that CpG 2-4 and CpG 17-18 were bound by three putative transcription factors (TFAP2A, E2F4 and MZF1). Furthermore, the methylation levels for CpG 2-4 were correlated negatively with the percentage of neutrophils ( β = -0.676, p = 0.005) in benzene-exposed workers. This study demonstrates that CpG-specific DNA methylation in the ERCC3 promoter region may be involved in benzene-induced epigenetic modification and it may contribute to benzene-induced hematotoxicity.

  13. DNA methylation of amino acid transporter genes in the human placenta.

    PubMed

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  14. Identification of methylated genes in salivary gland adenoid cystic carcinoma xenografts using global demethylation and methylation microarray screening

    PubMed Central

    LING, SHIZHANG; RETTIG, ELENI M.; TAN, MARIETTA; CHANG, XIAOFEI; WANG, ZHIMING; BRAIT, MARIANA; BISHOP, JUSTIN A.; FERTIG, ELANA J.; CONSIDINE, MICHAEL; WICK, MICHAEL J.; HA, PATRICK K.

    2016-01-01

    Salivary gland adenoid cystic carcinoma (ACC) is a rare head and neck malignancy without molecular biomarkers that can be used to predict the chemotherapeutic response or prognosis of ACC. The regulation of gene expression of oncogenes and tumor suppressor genes (TSGs) through DNA promoter methylation may play a role in the carcinogenesis of ACC. To identify differentially methylated genes in ACC, a global demethylating agent, 5-aza-2′-deoxycytidine (5-AZA) was utilized to unmask putative TSG silencing in ACC xenograft models in mice. Fresh xenografts were passaged, implanted in triplicate in mice that were treated with 5-AZA daily for 28 days. These xenografts were then evaluated for genome-wide DNA methylation patterns using the Illumina Infinium HumanMethylation27 BeadChip array. Validation of the 32 candidate genes was performed by bisulfite sequencing (BS-seq) in a separate cohort of 6 ACC primary tumors and 6 normal control salivary gland tissues. Hypermethylation was identified in the HCN2 gene promoter in all 6 control tissues, but hypomethylation was found in all 6 ACC tumor tissues. Quantitative validation of HCN2 promoter methylation level in the region detected by BS-seq was performed in a larger cohort of primary tumors (n=32) confirming significant HCN2 hypomethylation in ACCs compared with normal samples (n=10; P=0.04). HCN2 immunohistochemical staining was performed on an ACC tissue microarray. HCN2 staining intensity and H-score, but not percentage of the positively stained cells, were significantly stronger in normal tissues than those of ACC tissues. With our novel screening and sequencing methods, we identified several gene candidates that were methylated. The most significant of these genes, HCN2, was actually hypomethylated in tumors. However, promoter methylation status does not appear to be a major determinant of HCN2 expression in normal and ACC tissues. HCN2 hypomethylation is a biomarker of ACC and may play an important role in the

  15. Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain.

    PubMed

    Stadler, Florian; Kolb, Gabriele; Rubusch, Lothar; Baker, Stephen P; Jones, Edward G; Akbarian, Schahram

    2005-07-01

    Glutamatergic signaling is regulated, in part, through differential expression of NMDA and AMPA/KA channel subunits and G protein-coupled metabotropic receptors. In human brain, region-specific expression patterns of glutamate receptor genes are maintained over the course of decades, suggesting a role for molecular mechanisms involved in long-term regulation of transcription, including methylation of lysine residues at histone N-terminal tails. Using a native chromatin immunoprecipitation assay, we studied histone methylation marks at proximal promoters of 16 ionotropic and metabotropic glutamate receptor genes (GRIN1,2A-D; GRIA1,3,4; GRIK2,4,5; GRM1,3,4,6,7 ) in cerebellar cortex collected across a wide age range from midgestation to 90 years old. Levels of di- and trimethylated histone H3-lysine 4, which are associated with open chromatin and transcription, showed significant differences between promoters and a robust correlation with corresponding mRNA levels in immature and mature cerebellar cortex. In contrast, levels of trimethylated H3-lysine 27 and H4-lysine 20, two histone modifications defining silenced or condensed chromatin, did not correlate with transcription but were up-regulated overall in adult cerebellum. Furthermore, differential gene expression patterns in prefrontal and cerebellar cortex were reflected by similar differences in H3-lysine 4 methylation at promoters. Together, these findings suggest that histone lysine methylation at gene promoters is involved in developmental regulation and maintenance of region-specific expression patterns of ionotropic and metabotropic glutamate receptors. The association of a specific epigenetic mark, H3-(methyl)-lysine 4, with the molecular architecture of glutamatergic signaling in human brain has potential implications for schizophrenia and other disorders with altered glutamate receptor function.

  16. [Methylation of selected tumor-supressor genes in benign and malignant ovarian tumors].

    PubMed

    Cul'bová, M; Lasabová, Z; Stanclová, A; Tilandyová, P; Zúbor, P; Fiolka, R; Danko, J; Visnovský, J

    2011-09-01

    To evaluate the usefullness of examination of methylation status of selected tumor-supressor genes in early diagnosis of ovarian cancer. Prospective clinical study. Department of Gynecology and Obstetrics, Department of Molecular Biology, Jessenius Medical Faculty, Commenius University, Martin, Slovak Republic. In this study we analyzed hypermethylation of 5 genes RASSF1A, GSTP, E-cadherin, p16 and APC in ovarian tumor samples from 34 patients - 13 patients with epithelial ovarian cancer, 2 patients with border-line ovarian tumors, 12 patients with benign lesions of ovaries and 7 patients with healthy ovarian tissue. The methylation status of promoter region of tumor-supressor genes was determined by Methylation Specific Polymerase Chain Reaction (MSP) using a nested two-step approach with bisulfite modified DNA template and specific primers. Gene methylation analysis revealed hypermethylation of gene RASSF1A (46%) and GSTP (8%) only in malignant ovarian tissue samples. Ecad, p16 and APC genes were methylated both in maignant and benign tissue samples. Methylation positivity in observed genes was present independently to all clinical stages of ovarian cancer and to tumor grades. However, there was observed a trend of increased number and selective involvement of methylated genes with increasing disease stages. Furthermore, there was no association between positive methylation status and histological subtypes of ovarian carcinomas. RASSF1A and GSTP promoter methylation positivity is associated with ovarian cancer. The revealed gene-selective methylation positivity and the increased number of methylated genes with advancing disease stages could be considered as a useful molecular marker for early detection of ovarian cancer. However, there is need to find diagnostic approach of specifically and frequently methylated genes to determining a methylation phenotype for early detection of ovarian malignancies.

  17. Placenta-specific Methylation of the Vitamin D 24-Hydroxylase Gene

    PubMed Central

    Novakovic, Boris; Sibson, Mandy; Ng, Hong Kiat; Manuelpillai, Ursula; Rakyan, Vardhman; Down, Thomas; Beck, Stephan; Fournier, Thierry; Evain-Brion, Danielle; Dimitriadis, Eva; Craig, Jeffrey M.; Morley, Ruth; Saffery, Richard

    2009-01-01

    Plasma concentrations of biologically active vitamin D (1,25-(OH)2D) are tightly controlled via feedback regulation of renal 1α-hydroxylase (CYP27B1; positive) and 24-hydroxylase (CYP24A1; catabolic) enzymes. In pregnancy, this regulation is uncoupled, and 1,25-(OH)2D levels are significantly elevated, suggesting a role in pregnancy progression. Epigenetic regulation of CYP27B1 and CYP24A1 has previously been described in cell and animal models, and despite emerging evidence for a critical role of epigenetics in placentation generally, little is known about the regulation of enzymes modulating vitamin D homeostasis at the fetomaternal interface. In this study, we investigated the methylation status of genes regulating vitamin D bioavailability and activity in the placenta. No methylation of the VDR (vitamin D receptor) and CYP27B1 genes was found in any placental tissues. In contrast, the CYP24A1 gene is methylated in human placenta, purified cytotrophoblasts, and primary and cultured chorionic villus sampling tissue. No methylation was detected in any somatic human tissue tested. Methylation was also evident in marmoset and mouse placental tissue. All three genes were hypermethylated in choriocarcinoma cell lines, highlighting the role of vitamin D deregulation in this cancer. Gene expression analysis confirmed a reduced capacity for CYP24A1 induction with promoter methylation in primary cells and in vitro reporter analysis demonstrated that promoter methylation directly down-regulates basal promoter activity and abolishes vitamin D-mediated feedback activation. This study strongly suggests that epigenetic decoupling of vitamin D feedback catabolism plays an important role in maximizing active vitamin D bioavailability at the fetomaternal interface. PMID:19237542

  18. The effects of dietary supplementation of methionine on genomic stability and p53 gene promoter methylation in rats.

    PubMed

    Amaral, Cátia Lira Do; Bueno, Rafaela de Barros E Lima; Burim, Regislaine Valéria; Queiroz, Regina Helena Costa; Bianchi, Maria de Lourdes Pires; Antunes, Lusânia Maria Greggi

    2011-05-18

    Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet's effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet's effects on genomic stability and DNA methylation. 2011 Elsevier B.V. All rights reserved.

  19. DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns

    PubMed Central

    Schumann, Ulrike; Lee, Joanne; Kazan, Kemal; Ayliffe, Michael; Wang, Ming-Bo

    2017-01-01

    Recent research has indicated that a subset of defense-related genes is downregulated in the Arabidopsis DNA demethylase triple mutant rdd (ros1 dml2 dml3) resulting in increased susceptibility to the fungal pathogen Fusarium oxysporum. In rdd plants these downregulated genes contain hypermethylated transposable element sequences (TE) in their promoters, suggesting that this methylation represses gene expression in the mutant and that these sequences are actively demethylated in wild-type plants to maintain gene expression. In this study, the tissue-specific and pathogen-inducible expression patterns of rdd-downregulated genes were investigated and the individual role of ROS1, DML2, and DML3 demethylases in these spatiotemporal regulation patterns was determined. Large differences in defense gene expression were observed between pathogen-infected and uninfected tissues and between root and shoot tissues in both WT and rdd plants, however, only subtle changes in promoter TE methylation patterns occurred. Therefore, while TE hypermethylation caused decreased gene expression in rdd plants it did not dramatically effect spatiotemporal gene regulation, suggesting that this latter regulation is largely methylation independent. Analysis of ros1-3, dml2-1, and dml3-1 single gene mutant lines showed that promoter TE hypermethylation and defense-related gene repression was predominantly, but not exclusively, due to loss of ROS1 activity. These data demonstrate that DNA demethylation of TE sequences, largely by ROS1, promotes defense-related gene expression but does not control spatiotemporal expression in Arabidopsis. Summary: Ros1-mediated DNA demethylation of promoter transposable elements is essential for activation of defense-related gene expression in response to fungal infection in Arabidopsis thaliana. PMID:28894455

  20. Gene Expression, DNA Methylation and Prognostic Significance of DNA Repair Genes in Human Bladder Cancer.

    PubMed

    Wojtczyk-Miaskowska, Anita; Presler, Malgorzata; Michajlowski, Jerzy; Matuszewski, Marcin; Schlichtholz, Beata

    2017-01-01

    This study investigated the gene expression and DNA methylation of selected DNA repair genes (MBD4, TDG, MLH1, MLH3) and DNMT1 in human bladder cancer in the context of pathophysiological and prognostic significance. To determine the relationship between the gene expression pattern, global methylation and promoter methylation status, we performed real-time PCR to quantify the mRNA of selected genes in 50 samples of bladder cancer and adjacent non-cancerous tissue. The methylation status was analyzed by methylation-specific polymerase chain reaction (MSP) or digestion of genomic DNA with a methylation-sensitive restriction enzyme and PCR with gene-specific primers (MSRE-PCR). The global DNA methylation level was measured using the antibody-based 5-mC detection method. The relative levels of mRNA for MBD4, MLH3, and MLH1 were decreased in 28% (14/50), 34% (17/50) and 36% (18/50) of tumor samples, respectively. The MBD4 mRNA expression was decreased in 46% of non-muscle invasive tumors (Ta/T1) compared with 11% found in muscle invasive tumors (T2-T4) (P<0.003). Analysis of mRNA expression for TDG did not show any significant differences between Ta/T1 and T2-T4 tumors. The frequency of increased DNMT1 mRNA expression was higher in T2-T4 (52%) comparing to Ta/T1 (16%). The overall methylation rates in tumor tissue were 18% for MBD4, 25% for MLH1 and there was no evidence of MLH3 promoter methylation. High grade tumors had significantly lower levels of global DNA methylation (P=0.04). There was a significant association between shorter survival and increased expression of DNMT1 mRNA (P=0.002), decreased expression of MLH1 mRNA (P=0.032) and the presence of MLH1 promoter methylation (P=0.006). This study highlights the importance of DNA repair pathways and provides the first evidence of the role of MBD4 and MLH3 in bladder cancer. In addition, our findings suggest that DNMT1 mRNA and MLH1 mRNA expression, as well as the status of MLH1 promoter methylation, are attractive

  1. Promoter specific DNA methylation and gene expression of POMC in acutely underweight and recovered patients with anorexia nervosa.

    PubMed

    Ehrlich, Stefan; Weiss, Deike; Burghardt, Roland; Infante-Duarte, Carmen; Brockhaus, Simone; Muschler, Marc A; Bleich, Stefan; Lehmkuhl, Ulrike; Frieling, Helge

    2010-10-01

    Proopiomelanocortin (POMC) and its derived peptides, in particular alpha-MSH, have been shown to play a crucial role in the regulation of hunger, satiety and energy homeostasis. Studies in patients with anorexia nervosa (AN) suggest an abnormal expression of appetite-regulating hormones. Hormone expression levels may be modulated by epigenetic mechanisms, which were recently shown to be implicated in the pathophysiology of eating disorders. We hypothesised that POMC promoter specific DNA methylation and gene expression will be affected by malnutrition and therefore differ in AN patients at distinct stages of the disorder. Promoter specific DNA methylation of the POMC gene and expression of POMC mRNA variants were determined in peripheral blood mononuclear cells (PBMC) of 30 healthy control women (HCW), 31 underweight (acAN) and 30 weight-recovered patients with AN (recAN). Malnutrition was characterized by plasma leptin. Expression of the functionally relevant long POMC mRNA transcript was significantly correlated with leptin levels and higher in acAN compared to recAN and HCW. Expression of the truncated form and mean promoter DNA methylation was similar in all three subgroups. Methylation of single CpG residues in the E2F binding site was inversely related to POMC expression. Our preliminary data on pattern of POMC regulation suggests an association with the underweight state rather than with persisting trait markers of AN. In contrast to POMC expression in the central nervous system, peripheral POMC mRNA expression decreased with malnutrition and hypoleptinemia. This may represent a counterregulatory mechanism as part of the crosstalk between the immune and neuroendocrine systems.

  2. SMAD3 Is Upregulated in Human Osteoarthritic Cartilage Independent of the Promoter DNA Methylation.

    PubMed

    Aref-Eshghi, Erfan; Liu, Ming; Razavi-Lopez, Seyd Babak; Hirasawa, Kensuke; Harper, Patricia E; Martin, Glynn; Furey, Andrew; Green, Roger; Sun, Guang; Rahman, Proton; Zhai, Guangju

    2016-02-01

    To compare SMAD3 gene expression between human osteoarthritic and healthy cartilage and to examine whether expression is regulated by the promoter DNA methylation of the gene. Human cartilage samples were collected from patients undergoing total hip/knee joint replacement surgery due to primary osteoarthritis (OA), and from patients with hip fractures as controls. DNA/RNA was extracted from the cartilage tissues. Real-time quantitative PCR was performed to measure gene expression, and Sequenom EpiTyper was used to assay DNA methylation. Mann-Whitney test was used to compare the methylation and expression levels between OA cases and controls. Spearman rank correlation coefficient was calculated to examine the association between the methylation and gene expression. A total of 58 patients with OA (36 women, 22 men; mean age 64 ± 9 yrs) and 55 controls (43 women, 12 men; mean age 79 ± 10 yrs) were studied. SMAD3 expression was on average 83% higher in OA cartilage than in controls (p = 0.0005). No difference was observed for DNA methylation levels in the SMAD3 promoter region between OA cases and controls. No correlation was found between SMAD3 expression and promoter DNA methylation. Our study demonstrates that SMAD3 is significantly overexpressed in OA. This overexpression cannot be explained by DNA methylation in the promoter region. The results suggest that the transforming growth factor-β/SMAD3 pathway may be overactivated in OA cartilage and has potential in developing targeted therapies for OA.

  3. Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity

    PubMed Central

    Lin, Feiliang; Hou, Fenxia; Li, Guilan; Zhu, Caiying; Xu, Peiyu; Xing, Caihong; Wang, Qianfei

    2017-01-01

    Benzene is a primary industrial chemical and a ubiquitous environmental pollutant. ERCC3 is a key player in nucleotide excision repair. Recent studies suggested that site-specific methylation is a possible mechanism of the transcriptional dysregulation by blocking transcription factors binding. We previously found that the average promoter methylation level of ERCC3 was increased in benzene-exposed workers. In order to test whether specific CpG sites of ERCC3 play an important role in benzene-induced epigenetic changes and whether the specific methylation patterns are associated with benzene hematotoxicity, we analyzed the promoter methylation levels of individual CpG sites, transcription factor binding motif and the correlation between aberrant CpG methylation and hematotoxicity in 76 benzene-exposed workers and 24 unexposed controls in China. Out of all the CpGs analyzed, two CpG units located 43 bp upstream and 99 bp downstream of the transcription start site of ERCC3 (CpG 2–4 and CpG 17–18, respectively), showed the most pronounced increase in methylation levels in benzene-exposed workers, compared with unexposed controls (Mean ± SD: 5.86 ± 2.77% vs. 4.92 ± 1.53%, p = 0.032; 8.45 ± 4.09% vs. 6.79 ± 2.50%, p = 0.024, respectively). Using the JASPAR CORE Database, we found that CpG 2–4 and CpG 17–18 were bound by three putative transcription factors (TFAP2A, E2F4 and MZF1). Furthermore, the methylation levels for CpG 2–4 were correlated negatively with the percentage of neutrophils (β = −0.676, p = 0.005) in benzene-exposed workers. This study demonstrates that CpG-specific DNA methylation in the ERCC3 promoter region may be involved in benzene-induced epigenetic modification and it may contribute to benzene-induced hematotoxicity. PMID:28813025

  4. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    PubMed Central

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  5. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates

    PubMed Central

    Long, Hannah K; Sims, David; Heger, Andreas; Blackledge, Neil P; Kutter, Claudia; Wright, Megan L; Grützner, Frank; Odom, Duncan T; Patient, Roger; Ponting, Chris P; Klose, Robert J

    2013-01-01

    Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI: http://dx.doi.org/10.7554/eLife.00348.001 PMID:23467541

  6. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    PubMed Central

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761

  7. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer.

    PubMed

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-12-22

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan-Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients.

  8. GFRA3 promoter methylation may be associated with decreased postoperative survival in gastric cancer.

    PubMed

    Eftang, Lars Lohne; Klajic, Jovana; Kristensen, Vessela N; Tost, Jörg; Esbensen, Qin Ying; Blom, Gustav Peter; Bukholm, Ida Rashida Khan; Bukholm, Geir

    2016-03-16

    A large number of epigenetic alterations has been found to be implicated in the etiology of gastric cancer. We have studied the DNA methylation status of 27 500 gene promoter regions in 24 gastric adenocarcinomas from a Norwegian cohort, and aimed at identifying the hypermethylated regions. We have compared our findings to the gene expression in the same tissue, and linked our results to prognosis and survival. Biopsies from gastric adenocarcinomas and adjacent normal gastric mucosa were obtained from 24 patients following surgical resection of the tumor. Genome-wide DNA methylation profiling of the tumor and matched non-cancerous mucosa was performed. The results were compared to whole transcriptome cDNA microarray analysis of the same material. Most of the gene promoter regions in both types of tissue showed a low degree of methylation, however there was a small, but significant hypermethylation of the tumors. Hierarchical clustering showed separate grouping of the tumor and normal tissue. Hypermethylation of the promoter region of the GFRA3 gene showed a strong correlation to post-operative survival and several of the clinicopathological parameters, however no difference was found between the two main histological types of gastric cancer. There was only a modest correlation between the DNA methylation status and gene expression. The different DNA methylation clusters of the tumors and normal tissue indicate that aberrant DNA methylation is a distinct feature of gastric cancer, although there is little difference in the overall, and low, methylation levels between the two tissue types. The GFRA3 promoter region showed marked hypermethylation in almost all tumors, and its correlation with survival and other clinicopathological parameters may have important prognostic significance.

  9. Association between human papillomavirus and Epstein - Barr virus DNA and gene promoter methylation of RB1 and CDH1 in the cervical lesions: a transversal study.

    PubMed

    McCormick, Thaís M; Canedo, Nathalie H S; Furtado, Yara L; Silveira, Filomena A; de Lima, Roberto J; Rosman, Andréa D F; Almeida Filho, Gutemberg L; Carvalho, Maria da Glória da C

    2015-06-02

    Human papillomavirus (HPV) inactivates the retinoblastoma 1 (RB1) gene by promoter methylation and reduces cellular E-cadherin expression by overexpression of DNA methyltransferase 1 (DNMT1). The Epstein-Barr virus (EBV) is an oncogenic virus that may be related to cervical carcinogenesis. In gastric cancer, it has been demonstrated that E-cadherin gene (CDH1) hypermethylation is associated with DNMT1 overexpression by EBV infection. Our aim was to analyze the gene promoter methylation frequency of RB1 and CDH1 and verify the association between that methylation frequency and HPV and EBV infection in cervical lesions. Sixty-five samples were obtained from cervical specimens: 15 normal cervices, 17 low-grade squamous intraepithelial lesions (LSIL), 15 high-grade squamous intraepithelial lesions (HSIL), and 18 cervical cancers. HPV and EBV DNA testing was performed by PCR, and the methylation status was verified by MSP. HPV frequency was associated with cervical cancer cases (p = 0.005) but not EBV frequency (p = 0.732). Viral co-infection showed a statistically significant correlation with cancer (p = 0.027). No viral infection was detected in 33.3% (5/15) of controls. RB1 methylated status was associated with cancer (p = 0.009) and HPV infection (p = 0.042). CDH1 methylation was not associated with cancer (p = 0.181). Controls and LSIL samples did not show simultaneous methylation, while both genes were methylated in 27.8% (5/18) of cancer samples. In the presence of EBV, CDH1 methylation was present in 27.8% (5/18) of cancer samples. Only cancer cases presented RB1 promoter methylation in the presence of HPV and EBV (33.3%). The methylation status of both genes increased with disease progression. With EBV, RB1 methylation was a tumor-associated event because only the cancer group presented methylated RB1 with HPV infection. HPV infection was shown to be significantly correlated with cancer conditions. The global methylation frequency was

  10. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts and breast cancer: modification by gene promoter methylation in a population-based study.

    PubMed

    White, Alexandra J; Chen, Jia; McCullough, Lauren E; Xu, Xinran; Cho, Yoon Hee; Teitelbaum, Susan L; Neugut, Alfred I; Terry, Mary Beth; Hibshoosh, Hanina; Santella, Regina M; Gammon, Marilie D

    2015-12-01

    Polycyclic aromatic hydrocarbon (PAH)-DNA adducts have been associated with breast cancer incidence. Aberrant changes in DNA methylation may be an early event in carcinogenesis. However, possible relations between PAH-DNA adducts, methylation, and breast cancer are unknown. The objectives of this study were to (1) assess associations between PAH-DNA adducts, and breast cancer, stratified by DNA methylation markers and (2) examine interactions between adducts and DNA methylation in association with breast cancer and tumor subtype. In a population-based case-control study, promoter methylation of 13 breast cancer-related genes was measured in tumor tissue (n = 765-851 cases). Blood DNA from breast cancer cases (n = 873) and controls (n = 941) was used to assess PAH-DNA adducts and global methylation. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CI); and the ratio of the OR (ROR) was used to assess heterogeneity. Women with detectable PAH-DNA adducts and methylated RARβ (ROR 2.69, 95% CI 1.02-7.12; p for interaction = 0.03) or APC (ROR 1.76, 95% CI 0.87-3.58; p for interaction = 0.09) genes were more likely to have hormone receptor-positive tumors than other subtypes. Interactions with other methylation markers were not apparent (p ≥ 0.10). The association between adducts and breast cancer did not vary by methylation status of the tumor nor did adducts associate with global methylation in the controls. Gene-specific methylation of RARβ, and perhaps APC, may interact with PAH-DNA adducts to increase risk of hormone receptor-positive breast cancer. There was little evidence that adducts were associated with or interacted with other methylation markers of interest.

  11. Genome-wide screening identifies Plasmodium chabaudi-induced modifications of DNA methylation status of Tlr1 and Tlr6 gene promoters in liver, but not spleen, of female C57BL/6 mice.

    PubMed

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel Azeem S; Delic, Denis; Santourlidis, Simeon; Wunderlich, Frank

    2013-11-01

    Epigenetic reprogramming of host genes via DNA methylation is increasingly recognized as critical for the outcome of diverse infectious diseases, but information for malaria is not yet available. Here, we investigate the effect of blood-stage malaria of Plasmodium chabaudi on the DNA methylation status of host gene promoters on a genome-wide scale using methylated DNA immunoprecipitation and Nimblegen microarrays containing 2,000 bp oligonucleotide features that were split into -1,500 to -500 bp Ups promoters and -500 to +500 bp Cor promoters, relative to the transcription site, for evaluation of differential DNA methylation. Gene expression was analyzed by Agilent and Affymetrix microarray technology. Challenging of female C57BL/6 mice with 10(6) P. chabaudi-infected erythrocytes resulted in a self-healing outcome of infections with peak parasitemia on day 8 p.i. These infections induced organ-specific modifications of DNA methylation of gene promoters. Among the 17,354 features on Nimblegen arrays, only seven gene promoters were identified to be hypermethylated in the spleen, whereas the liver exhibited 109 hyper- and 67 hypomethylated promoters at peak parasitemia in comparison with non-infected mice. Among the identified genes with differentially methylated Cor-promoters, only the 7 genes Pigr, Ncf1, Klkb1, Emr1, Ndufb11, and Tlr6 in the liver and Apol6 in the spleen were detected to have significantly changed their expression. Remarkably, the Cor promoter of the toll-like receptor Tlr6 became hypomethylated and Tlr6 expression increased by 3.4-fold during infection. Concomitantly, the Ups promoter of the Tlr1 was hypermethylated, but Tlr1 expression also increased by 11.3-fold. TLR6 and TLR1 are known as auxillary receptors to form heterodimers with TLR2 in plasma membranes of macrophages, which recognize different pathogen-associated molecular patterns (PAMPs), as, e.g., intact 3-acyl and sn-2-lyso-acyl glycosylphosphatidylinositols of P. falciparum

  12. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer.

    PubMed

    Khatami, Fatemeh; Larijani, Bagher; Heshmat, Ramin; Keshtkar, Abbasali; Mohammadamoli, Mahsa; Teimoori-Toolabi, Ladan; Nasiri, Shirzad; Tavangar, Seyed Mohammad

    2017-01-01

    Promoter methylation in a number of tumor-suppressor genes (TSGs) can play crucial roles in the development of thyroid carcinogenesis. The focus of the current meta-analysis was to determine the impact of promoter methylation of eight selected candidate TSGs on thyroid cancer and to identify the most important molecules in this carcinogenesis pathway. A comprehensive search was performed using Pub Med, Scopus, and ISI Web of Knowledge databases, and eligible studies were included. The methodological quality of the included studies was evaluated according to the Newcastle Ottawa scale table and pooled odds ratios (ORs); 95% confidence intervals (CIs) were used to estimate the strength of the associations with Stata 12.0 software. Egger's and Begg's tests were applied to detect publication bias, in addition to the "Metatrim" method. A total of 55 articles were selected, and 135 genes with altered promoter methylation were found. Finally, we included eight TSGs that were found in more than four studies (RASSF1, TSHR, PTEN, SLC5A, DAPK, P16, RARβ2, and CDH1). The order of the pooled ORs for these eight TSGs from more to less significant was CDH1 (OR = 6.73), SLC5 (OR = 6.15), RASSF1 (OR = 4.16), PTEN (OR = 3.61), DAPK (OR = 3.51), P16 (OR = 3.31), TSHR (OR = 2.93), and RARβ2 (OR = 1.50). Analyses of publication bias and sensitivity confirmed that there was very little bias. Thus, our findings showed that CDH1 and SCL5A8 genes were associated with the risk of thyroid tumor genesis.

  13. Gene-Specific DNA Methylation Changes Predict Remission in Patients with ANCA-Associated Vasculitis

    PubMed Central

    Jones, Britta E.; Yang, Jiajin; Muthigi, Akhil; Hogan, Susan L.; Hu, Yichun; Starmer, Joshua; Henderson, Candace D.; Poulton, Caroline J.; Brant, Elizabeth J.; Pendergraft, William F.; Jennette, J. Charles; Falk, Ronald J.

    2017-01-01

    ANCA-associated vasculitis is an autoimmune condition characterized by vascular inflammation and organ damage. Pharmacologically induced remission of this condition is complicated by relapses. Potential triggers of relapse are immunologic challenges and environmental insults, both of which associate with changes in epigenetic silencing modifications. Altered histone modifications implicated in gene silencing associate with aberrant autoantigen expression. To establish a link between DNA methylation, a model epigenetic gene silencing modification, and autoantigen gene expression and disease status in ANCA-associated vasculitis, we measured gene-specific DNA methylation of the autoantigen genes myeloperoxidase (MPO) and proteinase 3 (PRTN3) in leukocytes of patients with ANCA-associated vasculitis observed longitudinally (n=82) and of healthy controls (n=32). Patients with active disease demonstrated hypomethylation of MPO and PRTN3 and increased expression of the autoantigens; in remission, DNA methylation generally increased. Longitudinal analysis revealed that patients with ANCA-associated vasculitis could be divided into two groups, on the basis of whether DNA methylation increased or decreased from active disease to remission. In patients with increased DNA methylation, MPO and PRTN3 expression correlated with DNA methylation. Kaplan–Meier estimate of relapse revealed patients with increased DNA methylation at the PRTN3 promoter had a significantly greater probability of a relapse-free period (P<0.001), independent of ANCA serotype. Patients with decreased DNA methylation at the PRTN3 promoter had a greater risk of relapse (hazard ratio, 4.55; 95% confidence interval, 2.09 to 9.91). Thus, changes in the DNA methylation status of the PRTN3 promoter may predict the likelihood of stable remission and explain autoantigen gene regulation. PMID:27821628

  14. The TP53 gene promoter is not methylated in families suggestive of Li-Fraumeni syndrome with no germline TP53 mutations.

    PubMed

    Finkova, Alena; Vazna, Alzbeta; Hrachovina, Ondrej; Bendova, Sarka; Prochazkova, Kamila; Sedlacek, Zdenek

    2009-08-01

    Germline TP53 mutations are found in only 70% of families with the Li-Fraumeni syndrome (LFS), and with an even lower frequency in families suggestive of LFS but not meeting clinical criteria of the syndrome. Despite intense efforts, to date, no other genes have been associated with the disorder in a significant number of TP53 mutation-negative families. A search for defects in TP53 other than heterozygous missense mutations showed that neither intron variants nor sequence variants in the TP53 promoter are frequent in LFS, and multiexon deletions have been found to be responsible for LFS only in several cases. Another cancer predisposition syndrome, hereditary non-polyposis colon cancer, has been associated with epigenetic silencing of one allele of the MLH1 or MSH2 genes. This prompted us to test the methylation of the TP53 gene promoter in a set of 14 families suggestive of LFS using bisulphite sequencing of three DNA fragments from the 5' region of the gene. We found no detectable methylation at any of the CG dinucleotides tested. Thus, epigenetic silencing of the TP53 promoter is not a frequent cause of the disorder in families suggestive of LFS but with no germline mutations in the coding part of the gene.

  15. Comprehensive analysis of MGMT promoter methylation: correlation with MGMT expression and clinical response in GBM.

    PubMed

    Shah, Nameeta; Lin, Biaoyang; Sibenaller, Zita; Ryken, Timothy; Lee, Hwahyung; Yoon, Jae-Geun; Rostad, Steven; Foltz, Greg

    2011-01-07

    O⁶-methylguanine DNA-methyltransferase (MGMT) promoter methylation has been identified as a potential prognostic marker for glioblastoma patients. The relationship between the exact site of promoter methylation and its effect on gene silencing, and the patient's subsequent response to therapy, is still being defined. The aim of this study was to comprehensively characterize cytosine-guanine (CpG) dinucleotide methylation across the entire MGMT promoter and to correlate individual CpG site methylation patterns to mRNA expression, protein expression, and progression-free survival. To best identify the specific MGMT promoter region most predictive of gene silencing and response to therapy, we determined the methylation status of all 97 CpG sites in the MGMT promoter in tumor samples from 70 GBM patients using quantitative bisulfite sequencing. We next identified the CpG site specific and regional methylation patterns most predictive of gene silencing and improved progression-free survival. Using this data, we propose a new classification scheme utilizing methylation data from across the entire promoter and show that an analysis based on this approach, which we call 3R classification, is predictive of progression-free survival (HR  = 5.23, 95% CI [2.089-13.097], p<0.0001). To adapt this approach to the clinical setting, we used a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) test based on the 3R classification and show that this test is both feasible in the clinical setting and predictive of progression free survival (HR  = 3.076, 95% CI [1.301-7.27], p = 0.007). We discuss the potential advantages of a test based on this promoter-wide analysis and compare it to the commonly used methylation-specific PCR test. Further prospective validation of these two methods in a large independent patient cohort will be needed to confirm the added value of promoter wide analysis of MGMT methylation in the clinical setting.

  16. Comprehensive Analysis of MGMT Promoter Methylation: Correlation with MGMT Expression and Clinical Response in GBM

    PubMed Central

    Shah, Nameeta; Lin, Biaoyang; Sibenaller, Zita; Ryken, Timothy; Lee, Hwahyung; Yoon, Jae-Geun; Rostad, Steven; Foltz, Greg

    2011-01-01

    O6-methylguanine DNA-methyltransferase (MGMT) promoter methylation has been identified as a potential prognostic marker for glioblastoma patients. The relationship between the exact site of promoter methylation and its effect on gene silencing, and the patient's subsequent response to therapy, is still being defined. The aim of this study was to comprehensively characterize cytosine-guanine (CpG) dinucleotide methylation across the entire MGMT promoter and to correlate individual CpG site methylation patterns to mRNA expression, protein expression, and progression-free survival. To best identify the specific MGMT promoter region most predictive of gene silencing and response to therapy, we determined the methylation status of all 97 CpG sites in the MGMT promoter in tumor samples from 70 GBM patients using quantitative bisulfite sequencing. We next identified the CpG site specific and regional methylation patterns most predictive of gene silencing and improved progression-free survival. Using this data, we propose a new classification scheme utilizing methylation data from across the entire promoter and show that an analysis based on this approach, which we call 3R classification, is predictive of progression-free survival (HR  = 5.23, 95% CI [2.089–13.097], p<0.0001). To adapt this approach to the clinical setting, we used a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) test based on the 3R classification and show that this test is both feasible in the clinical setting and predictive of progression free survival (HR  = 3.076, 95% CI [1.301–7.27], p = 0.007). We discuss the potential advantages of a test based on this promoter-wide analysis and compare it to the commonly used methylation-specific PCR test. Further prospective validation of these two methods in a large independent patient cohort will be needed to confirm the added value of promoter wide analysis of MGMT methylation in the clinical setting. PMID

  17. Aberrant EPHB4 gene methylation and childhood acute lymphoblastic leukemia

    PubMed Central

    Li, Yuhua; Wang, Huihui; Chen, Xiaowen; Mai, Huirong; Li, Changgang; Wen, Feiqiu

    2017-01-01

    The present study aimed to investigate the association between aberrant DNA methylation of the promoter region of the ephrin type-B receptor 4 (EPHB4) gene and the development of childhood acute lymphoblastic leukemia (ALL). Bisulfite sequencing polymerase chain reaction (BSP) was performed to determine the methylation density of cytosine-guanine pair islands in the promoter region of EPHB4, in bone marrow samples from 40 children with ALL. The mRNA and protein expression levels of EPHB4 were detected using reverse transcription-quantitative polymerase chain reaction and western blot analysis. A total of 10 children with idiopathic thrombocytopenic purpura (ITP) were recruited as controls. The results revealed that the average methylation density of the bone marrow samples from the patients with ALL was significantly higher, compared with the patients with ITP (P=0.046). The relative mRNA expression levels of EPHB4 in the patients with ITP (25.08±4.03) and the patients with ALL without methylation (12.33±2.16) were significantly higher, compared with that observed in the patients with ALL with methylation (6.48±2.73; P<0.01). Pearson analysis revealed a significant negative linear correlation between EPHB4 gene methylation and its expression levels (r=−0.957; P<0.01). Western blot analysis indicated that EPHB4 protein expression levels were low in the methylated ALL samples. An evaluation of the two-year disease-free survival (DFS) of the patients with ALL was performed, which revealed that the patients with unmethylated ALL exhibited a significantly higher two-year DFS rate, as compared with patients with methylated ALL (P=0.036). These results suggest that the methylation of the EPHB4 gene is prevalent in childhood ALL and may result in expressional inactivation, which consequently promotes ALL pathogenesis and is associated with an unfavorable prognosis. Therefore, the EPHB4 gene may function as a potential tumor suppressor in childhood ALL. PMID:29085439

  18. PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonen, Nitzan; Bram, Eran E.; Assaraf, Yehuda G.

    2008-11-28

    The proton-coupled folate transporter (PCFT/SLC46A1) displays optimal and prominent folate and antifolate transport activity at acidic pH in human carcinoma cells but poor activity in leukemia cells. Consistently herein, human leukemia cell lines expressed poor PCFT transcript levels, whereas various carcinoma cell lines showed substantial PCFT gene expression. We identified a CpG island with high density at nucleotides -200 through +100 and explored its role in PCFT promoter silencing. Leukemia cells with barely detectable PCFT transcripts consistently harbored 85-100% methylation of this CpG island, whereas no methylation was found in carcinoma cells. Treatment with 5-Aza-2'-deoxycytidine which induced demethylation but notmore » with the histone deacetylase inhibitor trichostatin A, restored 50-fold PCFT expression only in leukemia cells. These findings constitute the first demonstration of the dominant epigenetic silencing of the PCFT gene in leukemia cells. The potential translational implications of the restoration of PCFT expression in chemotherapy of leukemia are discussed.« less

  19. Prognostic value of MLH1 promoter methylation in male patients with esophageal squamous cell carcinoma.

    PubMed

    Wu, Dongping; Chen, Xiaoying; Xu, Yan; Wang, Haiyong; Yu, Guangmao; Jiang, Luping; Hong, Qingxiao; Duan, Shiwei

    2017-04-01

    The DNA mismatch repair (MMR) gene MutL homolog 1 ( MLH1 ) is critical for the maintenance of genomic integrity. Methylation of the MLH1 gene promoter was identified as a prognostic marker for numerous types of cancer including glioblastoma, colorectal, ovarian and gastric cancer. The present study aimed to determine whether MLH1 promoter methylation was associated with survival in male patients with esophageal squamous cell carcinoma (ESCC). Formalin-fixed, paraffin-embedded ESCC tissues were collected from 87 male patients. MLH1 promoter methylation was assessed using the methylation-specific polymerase chain reaction approach. Kaplan-Meier survival curves and log-rank tests were used to evaluate the association between MLH1 promoter methylation and overall survival (OS) in patients with ESCC. Cox regression analysis was used to obtain crude and multivariate hazard ratios (HR), and 95% confidence intervals (CI). The present study revealed that MLH1 promoter methylation was observed in 53/87 (60.9%) of male patients with ESCC. Kaplan-Meier survival analysis demonstrated that MLH1 promoter hypermethylation was significantly associated with poorer prognosis in patients with ESCC (P=0.048). Multivariate survival analysis revealed that MLH1 promoter hypermethylation was an independent predictor of poor OS in male patients with ESCC (HR=1.716; 95% CI=1.008-2.921). Therefore, MLH1 promoter hypermethylation may be a predictor of prognosis in male patients with ESCC.

  20. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation

    PubMed Central

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849

  1. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

    PubMed

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo . The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

  2. Epigenetic Alteration by DNA Methylation of ESR1, MYOD1 and hTERT Gene Promoters is Useful for Prediction of Response in Patients of Locally Advanced Invasive Cervical Carcinoma Treated by Chemoradiation.

    PubMed

    Sood, S; Patel, F D; Ghosh, S; Arora, A; Dhaliwal, L K; Srinivasan, R

    2015-12-01

    Locally advanced invasive cervical cancer [International Federation of Gynecology and Obstetrics (FIGO) IIB/III] is treated by chemoradiation. The response to treatment is variable within a given FIGO stage. Therefore, the aim of the present study was to evaluate the gene promoter methylation profile and corresponding transcript expression of a panel of six genes to identify genes which could predict the response of patients treated by chemoradiation. In total, 100 patients with invasive cervical cancer in FIGO stage IIB/III who underwent chemoradiation treatment were evaluated. Ten patients developed systemic metastases during therapy and were excluded. On the basis of patient follow-up, 69 patients were chemoradiation-sensitive, whereas 21 were chemoradiation-resistant. Gene promoter methylation and gene expression was determined by TaqMan assay and quantitative real-time PCR, respectively, in tissue samples. The methylation frequency of ESR1, BRCA1, RASSF1A, MLH1, MYOD1 and hTERT genes ranged from 40 to 70%. Univariate and hierarchical cluster analysis revealed that gene promoter methylation of MYOD1, ESR1 and hTERT could predict for chemoradiation response. A pattern of unmethylated MYOD1, unmethylated ESR1 and methylated hTERT promoter as well as lower ESR1 transcript levels predicted for chemoradiation resistance. Methylation profiling of a panel of three genes that includes MYOD1, ESR1 and hTERT may be useful to predict the response of invasive cervical carcinoma patients treated with standard chemoradiation therapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    PubMed

    Hinrichsen, Inga; Kemp, Matthias; Peveling-Oberhag, Jan; Passmann, Sandra; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-01

    Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  4. Gene structure, expression, and DNA methylation characteristics of sea cucumber cyclin B gene during aestivation.

    PubMed

    Zhu, Aijun; Chen, Muyan; Zhang, Xiumei; Storey, Kenneth B

    2016-12-05

    The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation.

    PubMed

    Chalertpet, Kanwalat; Pakdeechaidan, Watcharapong; Patel, Vyomesh; Mutirangura, Apiwat; Yanatatsaneejit, Pattamawadee

    2015-10-01

    Human papillomavirus (HPV) oncoproteins drive distinctive promoter methylation patterns in cancer. However, the underlying mechanism remains to be elucidated. Cyclin A1 (CCNA1) promoter methylation is strongly associated with HPV-associated cancer. CCNA1 methylation is found in HPV-associated cervical cancers, as well as in head and neck squamous cell cancer. Numerous pieces of evidence suggest that E7 may drive CCNA1 methylation. First, the CCNA1 promoter is methylated in HPV-positive epithelial lesions after transformation. Second, the CCNA1 promoter is methylated at a high level when HPV is integrated into the human genome. Finally, E7 has been shown to interact with DNA methyltransferase 1 (Dnmt1). Here, we sought to determine the mechanism by which E7 increases methylation in cervical cancer by using CCNA1 as a gene model. We investigated whether E7 induces CCNA1 promoter methylation, resulting in the loss of expression. Using both E7 knockdown and overexpression approaches in SiHa and C33a cells, our data showed that CCNA1 promoter methylation decreases with a corresponding increase in expression in E7 siRNA-transfected cells. By contrast, CCNA1 promoter methylation was augmented with a corresponding reduction in expression in E7-overexpressing cells. To confirm whether the binding of the E7-Dnmt1 complex to the CCNA1 promoter induced methylation and loss of expression, ChIP assays were carried out in E7-, del CR3-E7 and vector control-overexpressing C33a cells. The data showed that E7 induced CCNA1 methylation by forming a complex with Dnmt1 at the CCNA1 promoter, resulting in the subsequent reduction of expression in cancers. It is interesting to further explore the genome-wide mechanism of E7 oncoprotein-mediated DNA methylation. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  6. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene

    PubMed Central

    Niculescu, Mihai D.; Yamamuro, Yutaka; Zeisel, Steven H.

    2006-01-01

    Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G1/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518

  7. Methylation analysis of CMTM3 and DUSP1 gene promoters in high-quality brush hair in the Yangtze River delta white goat.

    PubMed

    Qiang, Wang; Guo, Haiyan; Li, Yongjun; Shi, Jianfei; Yin, Xiuyuan; Qu, Jingwen

    2018-08-20

    The Yangtze River delta white goat is the only goat breed that produces high-quality brush hair, which is specifically used in top-grade writing brushes. Previous studies have indicated that the CMTM3 and DUSP1 genes are involved in the growth and cycle of high-quality brush hair, and these genes are thought to be involved in the formation of high-quality brush hair traits. In this study, we investigated the relationship between methylation of CMTM3 and DUSP1 and such traits. The results indicated that the relative expression levels of the CMTM3 and DUSP1 genes were higher in non-high-quality brush hair than in high-quality brush hair. Furthermore, the CpG sites of the DUSP1 gene were not methylated, and the methylation level of CMTM3 was negatively correlated with the gene expression level. We believe that the DUSP1 gene regulates the formation of high-quality brush hair by non-methylated, and that methylation of the CMTM3 gene results in a decrease in its expression, causing an increase in the activity of the androgen receptor and the level of androgen. This high androgen level promotes the growth of high-quality brush hair. These study results provide a theoretical basis for further elucidating the molecular mechanism of the formation of high-quality brush hair characteristics, and provide scientific reference for the molecular breeding of high-quality brush hair. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Association between P16INK4a Promoter Methylation and Non-Small Cell Lung Cancer: A Meta-Analysis

    PubMed Central

    Zhu, Siwei; Hua, Feng; Zhao, Hui; Xu, Hongrui; You, Jiacong; Sun, Linlin; Wang, Weiqiang; Chen, Jun; Zhou, Qinghua

    2013-01-01

    Background Aberrant methylation of CpG islands acquired in tumor cells in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates P16INK4a gene promoter hypermethylation is involved in non-small cell lung carcinoma (NSCLC), indicating it may be a potential biomarker for this disease. The aim of this study is to evaluate the frequency of P16INK4a gene promoter methylation between cancer tissue and autologous controls by summarizing published studies. Methods By searching Medline, EMBSE and CNKI databases, the open published studies about P16INK4a gene promoter methylation and NSCLC were identified using a systematic search strategy. The pooled odds of P16INK4A promoter methylation in lung cancer tissue versus autologous controls were calculated by meta-analysis method. Results Thirty-four studies, including 2 652 NSCLC patients with 5 175 samples were included in this meta-analysis. Generally, the frequency of P16INK4A promoter methylation ranged from 17% to 80% (median 44%) in the lung cancer tissue and 0 to 80% (median 15%) in the autologous controls, which indicated the methylation frequency in cancer tissue was much higher than that in autologous samples. We also find a strong and significant correlation between tumor tissue and autologous controls of P16INK4A promoter methylation frequency across studies (Correlation coefficient 0.71, 95% CI:0.51–0.83, P<0.0001). And the pooled odds ratio of P16INK4A promoter methylation in cancer tissue was 3.45 (95% CI: 2.63–4.54) compared to controls under random-effect model. Conclusion Frequency of P16INK4a promoter methylation in cancer tissue was much higher than that in autologous controls, indicating promoter methylation plays an important role in carcinogenesis of the NSCLC. Strong and significant correlation between tumor tissue and autologous samples of P16INK4A promoter methylation demonstrated a promising biomarker for NSCLC. PMID:23577085

  9. Discovering high-resolution patterns of differential DNA methylation that correlate with gene expression changes

    PubMed Central

    VanderKraats, Nathan D.; Hiken, Jeffrey F.; Decker, Keith F.; Edwards, John R.

    2013-01-01

    Methylation of the CpG-rich region (CpG island) overlapping a gene’s promoter is a generally accepted mechanism for silencing expression. While recent technological advances have enabled measurement of DNA methylation and expression changes genome-wide, only modest correlations between differential methylation at gene promoters and expression have been found. We hypothesize that stronger associations are not observed because existing analysis methods oversimplify their representation of the data and do not capture the diversity of existing methylation patterns. Recently, other patterns such as CpG island shore methylation and long partially hypomethylated domains have also been linked with gene silencing. Here, we detail a new approach for discovering differential methylation patterns associated with expression change using genome-wide high-resolution methylation data: we represent differential methylation as an interpolated curve, or signature, and then identify groups of genes with similarly shaped signatures and corresponding expression changes. Our technique uncovers a diverse set of patterns that are conserved across embryonic stem cell and cancer data sets. Overall, we find strong associations between these methylation patterns and expression. We further show that an extension of our method also outperforms other approaches by generating a longer list of genes with higher quality associations between differential methylation and expression. PMID:23748561

  10. Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma

    PubMed Central

    Navarro, Antonia; Yin, Ping; Monsivais, Diana; Lin, Simon M.; Du, Pan; Wei, Jian-Jun; Bulun, Serdar E.

    2012-01-01

    Background Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown. Principal Findings We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62%) displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels. Conclusions These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women. PMID:22428009

  11. Splice variants and promoter methylation status of the Bovine Vasa Homology (Bvh) gene may be involved in bull spermatogenesis

    PubMed Central

    2013-01-01

    Background Vasa is a member of the DEAD-box protein family that plays an indispensable role in mammalian spermatogenesis, particularly during meiosis. Bovine vasa homology (Bvh) of Bos taurus has been reported, however, its function in bovine testicular tissue remains obscure. This study aimed to reveal the functions of Bvh and to determine whether Bvh is a candidate gene in the regulation of spermatogenesis in bovine, and to illustrate whether its transcription is regulated by alternative splicing and DNA methylation. Results Here we report the molecular characterization, alternative splicing pattern, expression and promoter methylation status of Bvh. The full-length coding region of Bvh was 2190 bp, which encodes a 729 amino acid (aa) protein containing nine consensus regions of the DEAD box protein family. Bvh is expressed only in the ovary and testis of adult cattle. Two splice variants were identified and termed Bvh-V4 (2112 bp and 703 aa) and Bvh-V45 (2040 bp and 679 aa). In male cattle, full-length Bvh (Bvh-FL), Bvh-V4 and Bvh-V45 are exclusively expressed in the testes in the ratio of 2.2:1.6:1, respectively. Real-time PCR revealed significantly reduced mRNA expression of Bvh-FL, Bvh-V4 and Bvh-V45 in testes of cattle-yak hybrids, with meiotic arrest compared with cattle and yaks with normal spermatogenesis (P < 0.01). The promoter methylation level of Bvh in the testes of cattle-yak hybrids was significantly greater than in cattle and yaks (P < 0.01). Conclusion In the present study, Bvh was isolated and characterized. These data suggest that Bvh functions in bovine spermatogenesis, and that transcription of the gene in testes were regulated by alternative splice and promoter methylation. PMID:23815438

  12. Integrated analysis of gene expression and methylation profiles of 48 candidate genes in breast cancer patients.

    PubMed

    Li, Zibo; Heng, Jianfu; Yan, Jinhua; Guo, Xinwu; Tang, Lili; Chen, Ming; Peng, Limin; Wu, Yepeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Wang, Jun

    2016-11-01

    Gene-specific methylation and expression have shown biological and clinical importance for breast cancer diagnosis and prognosis. Integrated analysis of gene methylation and gene expression may identify genes associated with biology mechanism and clinical outcome of breast cancer and aid in clinical management. Using high-throughput microfluidic quantitative PCR, we analyzed the expression profiles of 48 candidate genes in 96 Chinese breast cancer patients and investigated their correlation with gene methylation and associations with breast cancer clinical parameters. Breast cancer-specific gene expression alternation was found in 25 genes with significant expression difference between paired tumor and normal tissues. A total of 9 genes (CCND2, EGFR, GSTP1, PGR, PTGS2, RECK, SOX17, TNFRSF10D, and WIF1) showed significant negative correlation between methylation and gene expression, which were validated in the TCGA database. Total 23 genes (ACADL, APC, BRCA2, CADM1, CAV1, CCND2, CST6, EGFR, ESR2, GSTP1, ICAM5, NPY, PGR, PTGS2, RECK, RUNX3, SFRP1, SOX17, SYK, TGFBR2, TNFRSF10D, WIF1, and WRN) annotated with potential TFBSs in the promoter regions showed negative correlation between methylation and expression. In logistics regression analysis, 31 of the 48 genes showed improved performance in disease prediction with combination of methylation and expression coefficient. Our results demonstrated the complex correlation and the possible regulatory mechanisms between DNA methylation and gene expression. Integration analysis of methylation and expression of candidate genes could improve performance in breast cancer prediction. These findings would contribute to molecular characterization and identification of biomarkers for potential clinical applications.

  13. Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP- primary glioblastoma.

    PubMed

    Zhang, Wei; Yan, Wei; You, Gan; Bao, Zhaoshi; Wang, Yongzhi; Liu, Yanwei; You, Yongping; Jiang, Tao

    2013-01-01

    To date, the aberrations in the DNA methylation patterns that are associated with different prognoses of G-CIMP- primary GBMs remain to be elucidated. Here, DNA methylation profiling of primary GBM tissues from 13 long-term survivors (LTS; overall survival ⩾18months) and 20 short-term survivors (STS; overall survival ⩽9months) was performed. Then G-CIMP+ samples were excluded. The differentially expressed CpG loci were identified between residual 18 STS and 9 LTS G-CIMP- samples. Methylation levels of 11 CpG loci (10genes) were statistically significantly lower, and 43 CpG loci (40genes) were statistically significantly higher in the tumor tissues of LTS than those of STS G-CIMP- samples (P<0.01). Of the 43 CpG loci that were hypermethylated in LTS G-CIMP- samples, 3 CpG loci localized in the promoter of ALDH1A3. Furthermore, using an independent validation cohort containing 37 primary GBM samples without IDH1 mutation and MGMT promoter methylation, the hypermethylation status of ALDH1A3 promoter predicted a better prognosis with an accompanied low expression of ALDH1A3 protein. Taken together, our results defined prognosis-related methylation signatures systematically for the first time in G-CIMP- primary GBMs. ALDH1A3 promoter methylation conferred a favorable prognosis in G-CIMP- primary GBMs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Clinical Significance of Retinoic Acid Receptor Beta Promoter Methylation in Prostate Cancer: A Meta-Analysis.

    PubMed

    Dou, MengMeng; Zhou, XueLiang; Fan, ZhiRui; Ding, XianFei; Li, LiFeng; Wang, ShuLing; Xue, Wenhua; Wang, Hui; Suo, Zhenhe; Deng, XiaoMing

    2018-01-01

    Retinoic acid receptor beta (RAR beta) is a retinoic acid receptor gene that has been shown to play key roles during multiple cancer processes, including cell proliferation, apoptosis, migration and invasion. Numerous studies have found that methylation of the RAR beta promoter contributed to the occurrence and development of malignant tumors. However, the connection between RAR beta promoter methylation and prostate cancer (PCa) remains unknown. This meta-analysis evaluated the clinical significance of RAR beta promoter methylation in PCa. We searched all published records relevant to RAR beta and PCa in a series of databases, including PubMed, Embase, Cochrane Library, ISI Web of Science and CNKI. The rates of RAR beta promoter methylation in the PCa and control groups (including benign prostatic hyperplasia and normal prostate tissues) were summarized. In addition, we evaluated the source region of available samples and the methods used to detect methylation. To compare the incidence and variation in RAR beta promoter methylation in PCa and non-PCa tissues, the odds ratio (OR) and 95% confidence interval (CI) were calculated accordingly. All the data were analyzed with the statistical software STATA 12.0. Based on the inclusion and exclusion criteria, 15 articles assessing 1,339 samples were further analyzed. These data showed that the RAR beta promoter methylation rates in PCa tissues were significantly higher than the rates in the non-PCa group (OR=21.65, 95% CI: 9.27-50.57). Subgroup analysis according to the source region of samples showed that heterogeneity in Asia was small (I2=0.0%, P=0.430). Additional subgroup analysis based on the method used to detect RAR beta promoter methylation showed that the heterogeneity detected by MSP (methylation-specific PCR) was relatively small (I2=11.3%, P=0.343). Although studies reported different rates for RAR beta promoter methylation in PCa tissues, the total analysis demonstrated that RAR beta promoter methylation

  15. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    PubMed

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-02

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.

  16. Validation study of genes with hypermethylated promoter regions associated with prostate cancer recurrence

    PubMed Central

    Stott-Miller, Marni; Zhao, Shanshan; Wright, Jonathan L.; Kolb, Suzanne; Bibikova, Marina; Klotzle, Brandy; Ostrander, Elaine A.; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L.

    2014-01-01

    Background One challenge in prostate cancer (PCa) is distinguishing indolent from aggressive disease at diagnosis. DNA promoter hypermethylation is a frequent epigenetic event in PCa, but few studies of DNA methylation in relation to features of more aggressive tumors or PCa recurrence have been completed. Methods We used the Infinium® HumanMethylation450 BeadChip to assess DNA methylation in tumor tissue from 407 patients with clinically localized PCa who underwent radical prostatectomy. Recurrence status was determined by follow-up patient surveys, medical record review, and linkage with the SEER registry. The methylation status of 14 genes for which promoter hypermethylation was previously correlated with advanced disease or biochemical recurrence was evaluated. Average methylation level for promoter region CpGs in patients who recurred compared to those with no evidence of recurrence was analyzed. For two genes with differential methylation, time to recurrence was examined. Results During an average follow-up of 11.7 years, 104 (26%) patients recurred. Significant promoter hypermethylation in at least 50% of CpG sites in two genes, ABHD9 and HOXD3, was found in tumors from patients who recurred compared to those without recurrence. Evidence was strongest for HOXD3 (lowest P = 9.46x10−6), with higher average methylation across promoter region CpGs associated with reduced recurrence-free survival (P = 2×10−4). DNA methylation profiles did not differ by recurrence status for the other genes. Conclusions These results validate the association between promoter hypermethylation of ADHB9 and HOXD3 and PCa recurrence. Impact Tumor DNA methylation profiling may help distinguish PCa patients at higher risk for disease recurrence. PMID:24718283

  17. Silencing of TESTIN by dense biallelic promoter methylation is the most common molecular event in childhood acute lymphoblastic leukaemia

    PubMed Central

    2010-01-01

    Background Aberrant promoter DNA methylation has been reported in childhood acute lymphoblastic leukaemia (ALL) and has the potential to contribute to its onset and outcome. However, few reports demonstrate consistent, prevalent and dense promoter methylation, associated with tumour-specific gene silencing. By screening candidate genes, we have detected frequent and dense methylation of the TESTIN (TES) promoter. Results Bisulfite sequencing showed that 100% of the ALL samples (n = 20) were methylated at the TES promoter, whereas the matched remission (n = 5), normal bone marrow (n = 6) and normal PBL (n = 5) samples were unmethylated. Expression of TES in hyperdiploid, TEL-AML+, BCR-ABL+, and E2A-PBX+ subtypes of B lineage ALL was markedly reduced compared to that in normal bone marrow progenitor cells and in B cells. In addition TES methylation and silencing was demonstrated in nine out of ten independent B ALL propagated as xenografts in NOD/SCID mice. Conclusion In total, 93% of B ALL samples (93 of 100) demonstrated methylation with silencing or reduced expression of the TES gene. Thus, TES is the most frequently methylated and silenced gene yet reported in ALL. TES, a LIM domain-containing tumour suppressor gene and component of the focal adhesion complex, is involved in adhesion, motility, cell-to-cell interactions and cell signalling. Our data implicate TES methylation in ALL and provide additional evidence for the involvement of LIM domain proteins in leukaemogenesis. PMID:20573277

  18. CDO1 promoter methylation is associated with gene silencing and is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients.

    PubMed

    Meller, Sebastian; Zipfel, Lisa; Gevensleben, Heidrun; Dietrich, Jörn; Ellinger, Jörg; Majores, Michael; Stein, Johannes; Sailer, Verena; Jung, Maria; Kristiansen, Glen; Dietrich, Dimo

    2016-12-01

    Molecular biomarkers may facilitate the distinction between aggressive and clinically insignificant prostate cancer (PCa), thereby potentially aiding individualized treatment. We analyzed cysteine dioxygenase 1 (CDO1) promoter methylation and mRNA expression in order to evaluate its potential as prognostic biomarker. CDO1 methylation and mRNA expression were determined in cell lines and formalin-fixed paraffin-embedded prostatectomy specimens from a first cohort of 300 PCa patients using methylation-specific qPCR and qRT-PCR. Univariate and multivariate Cox proportional hazards and Kaplan-Meier analyses were performed to evaluate biochemical recurrence (BCR)-free survival. Results were confirmed in an independent second cohort comprising 498 PCa cases. Methylation and mRNA expression data from the second cohort were generated by The Cancer Genome Atlas (TCGA) Research Network by means of Infinium HumanMethylation450 BeadChip and RNASeq. CDO1 was hypermethylated in PCa compared to normal adjacent tissues and benign prostatic hyperplasia (P < 0.001) and was associated with reduced gene expression (ρ = -0.91, P = 0.005). Using two different methodologies for methylation quantification, high CDO1 methylation as continuous variable was associated with BCR in univariate analysis (first cohort: HR = 1.02, P = 0.002, 95% CI [1.01-1.03]; second cohort: HR = 1.02, P = 0.032, 95% CI [1.00-1.03]) but failed to reach statistical significance in multivariate analysis. CDO1 promoter methylation is involved in gene regulation and is a potential prognostic biomarker for BCR-free survival in PCa patients following radical prostatectomy. Further studies are needed to validate CDO1 methylation assays and to evaluate the clinical utility of CDO1 methylation for the management of PCa.

  19. Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma

    PubMed Central

    Margetts, Caroline D E; Morris, Mark; Astuti, Dewi; Gentle, Dean C; Cascon, Alberto; McRonald, Fiona E; Catchpoole, Daniel; Robledo, Mercedes; Neumann, Hartmut P H; Latif, Farida; Maher, Eamonn R

    2008-01-01

    The molecular genetics of inherited phaeochromocytoma have received considerable attention, but the somatic genetic and epigenetic events that characterise tumourigenesis in sporadic phaeochromocytomas are less well defined. Previously, we found considerable overlap between patterns of promoter region tumour suppressor gene (TSG) hypermethylation in two neural crest tumours, neuroblastoma and phaeochromocytoma. In order to identify candidate biomarkers and epigenetically inactivated TSGs in phaeochromocytoma and neuroblastoma, we characterised changes in gene expression in three neuroblastoma cell lines after treatment with the demethylating agent 5-azacytidine. Promoter region methylation status was then determined for 28 genes that demonstrated increased expression after demethylation. Three genes HSP47, homeobox A9 (HOXA9) and opioid binding protein (OPCML) were methylated in >10% of phaeochromocytomas (52, 17 and 12% respectively). Two of the genes, epithelial membrane protein 3 (EMP3) and HSP47, demonstrated significantly more frequent methylation in neuroblastoma than phaeochromocytoma. These findings extend epigenotype of phaeochromocytoma and identify candidate genes implicated in sporadic phaeochromocytoma tumourigenesis. PMID:18499731

  20. Novel approaches to global mining of aberrantly methylated promoter sites in squamous head and neck cancer.

    PubMed

    Worsham, Maria J; Chen, Kang Mei; Stephen, Josena K; Havard, Shaleta; Benninger, Michael S

    2010-07-01

    Promoter hypermethylation is emerging as a promising molecular strategy for early detection of cancer. We examined promoter methylation status of 1143 cancer-associated genes to perform a global but unbiased inspection of methylated regions in head and neck squamous cell carcinoma (HNSCC). Laboratory-based study. Integrated health care system. Five samples, two frozen primary HNSCC biopsies and three HNSCC cell lines, were examined. Whole genomic DNA was interrogated using a combination of DNA immunoprecipitation (IP) and Affymetrix whole-genome tiling arrays. Of the 1143 unique cancer genes on the array, 265 were recorded across five samples. Of the 265 genes, 55 were present in all five samples, and 36 were common to four of five samples, 46 to three of five, 56 to two of five, and 72 to one of five samples. Hypermethylated genes in the five samples were cross-examined against those in PubMeth, a cancer methylation database combining text mining and expert annotation (http://www.pubmeth.org). Of the 441 genes in PubMeth, only 33 are referenced to HNSCC. We matched 34 genes in our samples to the 441 genes in the PubMeth database. Of the 34 genes, eight are reported in PubMeth as HNSCC associated. This pilot study examined the contribution of global DNA hypermethylation to the pathogenesis of HNSCC. The whole-genome methylation approach indicated 231 new genes with methylated promoter regions not yet reported in HNSCC. Examination of this comprehensive gene panel in a larger HNSCC cohort should advance selection of HNSCC-specific candidate genes for further validation as biomarkers in HNSCC. 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  1. Global hypomethylation and promoter methylation in small intestinal neuroendocrine tumors: an in vivo and in vitro study.

    PubMed

    Fotouhi, Omid; Adel Fahmideh, Maral; Kjellman, Magnus; Sulaiman, Luqman; Höög, Anders; Zedenius, Jan; Hashemi, Jamileh; Larsson, Catharina

    2014-07-01

    Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2-3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2-3, and CXCL14 expression was reduced in metastases vs. primary tumors (P<0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.

  2. A significant association between BDNF promoter methylation and the risk of drug addiction.

    PubMed

    Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei

    2016-06-10

    As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction. Copyright © 2016. Published by Elsevier B.V.

  3. Genome-wide DNA methylation profile identified a unique set of differentially methylated immune genes in oral squamous cell carcinoma patients in India.

    PubMed

    Basu, Baidehi; Chakraborty, Joyeeta; Chandra, Aditi; Katarkar, Atul; Baldevbhai, Jadav Ritesh Kumar; Dhar Chowdhury, Debjit; Ray, Jay Gopal; Chaudhuri, Keya; Chatterjee, Raghunath

    2017-01-01

    Oral squamous cell carcinoma (OSCC) is one of the common malignancies in Southeast Asia. Epigenetic changes, mainly the altered DNA methylation, have been implicated in many cancers. Considering the varied environmental and genotoxic exposures among the Indian population, we conducted a genome-wide DNA methylation study on paired tumor and adjacent normal tissues of ten well-differentiated OSCC patients and validated in an additional 53 well-differentiated OSCC and adjacent normal samples. Genome-wide DNA methylation analysis identified several novel differentially methylated regions associated with OSCC. Hypermethylation is primarily enriched in the CpG-rich regions, while hypomethylation is mainly in the open sea. Distinct epigenetic drifts for hypo- and hypermethylation across CpG islands suggested independent mechanisms of hypo- and hypermethylation in OSCC development. Aberrant DNA methylation in the promoter regions are concomitant with gene expression. Hypomethylation of immune genes reflect the lymphocyte infiltration into the tumor microenvironment. Comparison of methylome data with 312 TCGA HNSCC samples identified a unique set of hypomethylated promoters among the OSCC patients in India. Pathway analysis of unique hypomethylated promoters indicated that the OSCC patients in India induce an anti-tumor T cell response, with mobilization of T lymphocytes in the neoplastic environment. Survival analysis of these epigenetically regulated immune genes suggested their prominent role in OSCC progression. Our study identified a unique set of hypomethylated regions, enriched in the promoters of immune response genes, and indicated the presence of a strong immune component in the tumor microenvironment. These methylation changes may serve as potential molecular markers to define risk and to monitor the prognosis of OSCC patients in India.

  4. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    PubMed

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  5. Curcumin-Mediated Reversal of p15 Gene Promoter Methylation: Implication in Anti-Neoplastic Action against Acute Lymphoid Leukaemia Cell Line.

    PubMed

    Sharma, V; Jha, A K; Kumar, A; Bhatnagar, A; Narayan, G; Kaur, J

    2015-01-01

    Curcumin has been documented to exert anticancer effects by interacting with altered proliferative and apoptotic pathways in cancer models. In this study, we evaluated the potential of curcumin to reverse promoter methylation of the p15 gene in Raji cells and its ability to induce apoptosis and genomic instability. Anti-neoplastic action of curcumin showed an augmentation in reactive oxygen species (ROS) and cell cycle arrest in G1 phase. Subsequently, curcumin- exposed Raji cells showed structural abnormalities in chromosomes. These observations suggest that curcumin also causes ROS-mediated apoptosis and genomic instability. The treatment of Raji cell line with 10 μM curcumin caused hypomethylation of the p15 promoter after six days. Hypomethylation of p15 was further found to be favoured by downregulation of DNA methyltransferase 1 after 10 μM curcumin treatment for six days. Methylation-specific PCR suggested demethylation of the p15 promoter. Demethylation was further validated by DNA sequencing. Reverse-transcription PCR demonstrated that treatment with curcumin (10 μM) for six days led to the up-regulation of p15 and down-regulation of DNA methyltransferase 1. Furthermore, curcumin- mediated reversal of p15 promoter methylation might be potentiated by down-regulation of DNA methyltransferase 1 expression, which was supported by cell cycle analysis. Furthermore, curcumin acts as a double-pronged agent, as it caused apoptosis and promoter hypomethylation in Raji cells.

  6. Meta-analysis of the association between APC promoter methylation and colorectal cancer.

    PubMed

    Ding, Zhenyu; Jiang, Tong; Piao, Ying; Han, Tao; Han, Yaling; Xie, Xiaodong

    2015-01-01

    Previous studies investigating the association between adenomatous polyposis coli (APC) gene promoter methylation and colorectal cancer (CRC) have yielded conflicting results. The aim of this study was to comprehensively evaluate the potential application of the detection of APC promoter methylation to the prevention and treatment of CRC. PubMed, Embase, and MEDLINE (results updated to October 2014) were searched for relevant studies. The effect size was defined as the weighted odds ratio (OR), which was calculated using either the fixed-effects or random-effects model. Prespecified subgroup and sensitivity analyses were conducted to evaluate potential heterogeneity among the included studies. Nineteen studies comprising 2,426 participants were selected for our meta-analysis. The pooled results of nine studies comprising a total of 740 subjects indicated that APC promoter methylation was significantly associated with CRC risk (pooled OR 5.53; 95% confidence interval [CI] 3.50-8.76; P<0.01). Eleven studies with a total of 1,219 patients evaluated the association between APC promoter methylation and the presence of CRC metastasis, and the pooled OR was 0.80 (95% CI 0.44-1.46; P=0.47). A meta-analysis conducted with four studies with a total of 467 patients found no significant correlation between APC promoter methylation and the presence of colorectal adenoma (pooled OR 1.85; 95% CI 0.67-5.10; P=0.23). No significant correlation between APC promoter methylation and patients' Dukes' stage, TNM stage, differentiation grade, age, or sex was identified. In conclusion, APC promoter methylation was found to be significantly associated with a higher risk of developing CRC. The findings indicate that APC promoter methylation may be a potential biomarker for the carcinogenesis of CRC.

  7. Association of DNA methylation and monoamine oxidase A gene expression in the brains of different dog breeds.

    PubMed

    Eo, JungWoo; Lee, Hee-Eun; Nam, Gyu-Hwi; Kwon, Yun-Jeong; Choi, Yuri; Choi, Bong-Hwan; Huh, Jae-Won; Kim, Minkyu; Lee, Sang-Eun; Seo, Bohyun; Kim, Heui-Soo

    2016-04-15

    The monoamine oxidase A (MAOA) gene is an important candidate gene for human behavior that encodes an enzyme regulating the metabolism of key neurotransmitters. The regulatory mechanisms of the MAOA gene in dogs are yet to be elucidated. We measured MAOA gene transcription and analyzed the VNTR genotype and methylation status of the gene promoter region in different dog breeds to determine whether MAOA expression is correlated with the MAOA genotype or epigenetic modification in dogs. We found brain-specific expression of the MAOA gene and different transcription levels in different dog breeds including Beagle, Sapsaree, and German shepherd, and also a robust association of the DNA methylation of the gene promoter with mRNA levels. However, the 90 bp tandem repeats that we observed near the transcription start site were not variable, indicating no correlation with canine MAOA activity. These results show that differential DNA methylation in the MAOA promoter region may affect gene expression by modulating promoter activity. Moreover, the distinctive patterns of MAOA expression and DNA methylation may be involved in breed-specific or individual behavioral characteristics, such as aggression, because behavioral phenotypes are related to different physiological and neuroendocrine responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. DNA methylation of the BRD2 promoter is associated with juvenile myoclonic epilepsy in Caucasians.

    PubMed

    Pathak, Shilpa; Miller, James; Morris, Emily C; Stewart, William C L; Greenberg, David A

    2018-05-01

    Juvenile myoclonic epilepsy (JME) is a common adolescent-onset genetic generalized epilepsy (GGE) syndrome. Multiple linkage and association studies have found that BRD2 influences the expression of JME. The BRD2-JME connection is further corroborated by our murine model; Brd2 haploinsufficiency produces characteristics that typify the clinical hallmarks of JME. Neither we, nor several large-scale studies of JME, found JME-related BRD2 coding mutations. Therefore, we investigated noncoding BRD2 regions, seeking the origin of BRD2's JME influence. BRD2's promoter harbors a JME-associated single nucleotide polymorphism (rs3918149) and a CpG (C-phosphate-G dinucleotides) island (CpG76), making it a potential "hotspot" for JME-associated epigenetic variants. Methylating promoter CpG sites causes gene silencing, often resulting in reduced gene expression. We tested for differences in DNA methylation at CpG76 in 3 different subgroups: (1) JME patients versus their unaffected family members, (2) JME versus patients with other forms of GGE, and (3) Caucasian versus non-Caucasian JME patients. We used DNA pyrosequencing to analyze the methylation status of 10 BRD2 promoter CpG sites in lymphoblastoid cells from JME patients of Caucasian and non-Caucasian origin, unaffected family members, and also non-JME GGE patients. We also measured global methylation levels and DNA methyl transferase 1 (DNMT1) transcript expression in JME families by standard methods. CpG76 is highly methylated in JME patients compared to unaffected family members. In families with non-JME GGE, we found no relationship between promoter methylation and epilepsy. In non-Caucasian JME families, promoter methylation was mostly not associated with epilepsy. This makes the BRD2 promoter a JME-specific, ethnicity-specific, differentially methylated region. Global methylation was constant across groups. BRD2 promoter methylation in JME, and the lack of methylation in unaffected relatives, in non-JME GGE

  9. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos

    PubMed Central

    Auclair, Ghislain; Borgel, Julie; Sanz, Lionel A.; Vallet, Judith; Guibert, Sylvain; Dumas, Michael; Cavelier, Patricia; Girardot, Michael; Forné, Thierry; Feil, Robert; Weber, Michael

    2016-01-01

    The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2−/− embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development. PMID:26576615

  10. Gene-Specific Methylation Analysis in Thymomas of Patients with Myasthenia Gravis

    PubMed Central

    Lopomo, Angela; Ricciardi, Roberta; Maestri, Michelangelo; De Rosa, Anna; Melfi, Franca; Lucchi, Marco; Mussi, Alfredo; Coppedè, Fabio; Migliore, Lucia

    2016-01-01

    Thymomas are uncommon neoplasms that arise from epithelial cells of the thymus and are often associated with myasthenia gravis (MG), an autoimmune disease characterized by autoantibodies directed to different targets at the neuromuscular junction. Little is known, however, concerning epigenetic changes occurring in thymomas from MG individuals. To further address this issue, we analyzed DNA methylation levels of genes involved in one-carbon metabolism (MTHFR) and DNA methylation (DNMT1, DNMT3A, and DNMT3B) in blood, tumor tissue, and healthy thymic epithelial cells from MG patients that underwent a surgical resection of a thymic neoplasm. For the analyses we applied the methylation-sensitive high-resolution melting technique. Both MTHFR and DNMT3A promoters showed significantly higher methylation in tumor tissue with respect to blood, and MTHFR also showed significantly higher methylation levels in tumor tissue respect to healthy adjacent thymic epithelial cells. Both DNMT1 and DNMT3B promoter regions were mostly hypomethylated in all the investigated tissues. The present study suggests that MTHFR methylation is increased in thymomas obtained from MG patients; furthermore, some degrees of methylation of the DNMT3A gene were observed in thymic tissue with respect to blood. PMID:27999265

  11. Gene methylation profile of gastric cancerous tissue according to tumor site in the stomach.

    PubMed

    Kupcinskaite-Noreikiene, Rita; Ugenskiene, Rasa; Noreika, Alius; Rudzianskas, Viktoras; Gedminaite, Jurgita; Skieceviciene, Jurgita; Juozaityte, Elona

    2016-01-26

    There is considerable information on the methylation of the promoter regions of different genes involved in gastric carcinogenesis. However, there is a lack of information on how this epigenetic process differs in tumors originating at different sites in the stomach. The aim of this study is to assess the methylation profiles of the MLH1, MGMT, and DAPK-1 genes in cancerous tissues from different stomach sites. Samples were acquired from 81 patients suffering stomach adenocarcinoma who underwent surgery for gastric cancer in the Lithuanian University of Health Sciences Hospital Kaunas Clinics in 2009-2012. Gene methylation was investigated with methylation-specific PCR. The study was approved by the Lithuanian Biomedical Research Ethics Committee. The frequencies of methylation in cancerous tissues from the upper, middle, and lower thirds of the stomach were 11.1, 23.1, and 45.4%, respectively, for MLH1; 22.2, 30.8, and 57.6%, respectively, for MGMT; and 44.4, 48.7, and 51.5%, respectively, for DAPK-1. MLH1 and MGMT methylation was observed more often in the lower third of the stomach than in the upper third (p < 0.05). In the middle third, DAPK-1 promoter methylation was related to more-advanced disease in the lymph nodes (N2-3 compared with N0-1 [p = 0.02]) and advanced tumor stage (stage III rather than stages I-II [p = 0.05]). MLH1 and MGMT methylation correlated inversely when the tumor was located in the lower third of the stomach (coefficient, -0.48; p = 0.01). DAPK-1 and MLH1 methylation correlated inversely in tumors in the middle-third of the stomach (coefficient, -0.41; p = 0.01). Gene promoter methylation depends on the gastric tumor location.

  12. Chromatin structure and methylation of rat rRNA genes studied by formaldehyde fixation and psoralen cross-linking.

    PubMed Central

    Stancheva, I; Lucchini, R; Koller, T; Sogo, J M

    1997-01-01

    By using formaldehyde cross-linking of histones to DNA and gel retardation assays we show that formaldehyde fixation, similar to previously established psoralen photocross-linking, discriminates between nucleosome- packed (inactive) and nucleosome-free (active) fractions of ribosomal RNA genes. By both cross-linking techniques we were able to purify fragments from agarose gels, corresponding to coding, enhancer and promoter sequences of rRNA genes, which were further investigated with respect to DNA methylation. This approach allows us to analyse independently and in detail methylation patterns of active and inactive rRNA gene copies by the combination of Hpa II and Msp I restriction enzymes. We found CpG methylation mainly present in enhancer and promoter regions of inactive rRNA gene copies. The methylation of one single Hpa II site, located in the promoter region, showed particularly strong correlation with the transcriptional activity. PMID:9108154

  13. [Association between serum aluminium level and methylation of amyloid precursor protein gene in workers engaged in aluminium electrolysis].

    PubMed

    Yang, X J; Yuan, Y Z; Niu, Q

    2016-04-20

    To investigate the association between serum aluminium level and methylation of the promoter region of amyloid precursor protein (APP)gene in workers engaged in aluminium electrolysis. In 2012, 366 electrolysis workers in an aluminium factory were enrolled as exposure group (working years >10 and age >40 years)and divided into low-exposure group and high-exposure group based on the median serum aluminium level. Meanwhile, 102 workers in a cement plant not exposed to aluminium were enrolled as control group. Graphite furnace atomic absorption spectrometry was used to measure serum aluminium level, methylation specific PCR was used to measure the methylation rate of the promoter region of APP gene, and ELI-SA was used to measure the protein expression of APP in lymphocytes in peripheral blood. The exposure group had a significantly higher serum aluminium level than the control group (45.07 μg/L vs 30.51 μg/L, P< 0.01). The exposure group had a significantly lower methylation rate of the promoter region of APP gene than the control group (18.85% vs 25.49%, P=0.025), and the high-exposure group had a significantly lower methylation rate of the promoter region of APP gene than the low-exposure group (15.84% vs 21.85%, P<0.05). The exposure group had a significantly higher protein expression of APP in lymphocytes in peripheral blood than the control group (66.73 ng/ml vs 54.17 ng/ml, P<0.05); compared with the low-exposure group (65.39 ng/ml), the high-exposure group showed an increase in the protein expression of APP in lymphocytes in peripheral blood (67.22 ng/ml), but there was no significant difference between these two groups (P>0.05). The multivariate logistic regression analysis showed that with reference to the control group, low aluminium exposure (OR=1.86, 95% CI 1.67~3.52)and high aluminium exposure (OR=2.98, 95% CI 1.97~4.15)were risk factors for a reduced methylation rate of the promoter region of APP gene. Reduced methylation of the promoter region of APP

  14. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice.

    PubMed

    Schraut, K G; Jakob, S B; Weidner, M T; Schmitt, A G; Scholz, C J; Strekalova, T; El Hajj, N; Eijssen, L M T; Domschke, K; Reif, A; Haaf, T; Ortega, G; Steinbusch, H W M; Lesch, K P; Van den Hove, D L

    2014-10-21

    The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/- offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt

  15. DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds.

    PubMed

    Banlaki, Zsofia; Cimarelli, Giulia; Viranyi, Zsofia; Kubinyi, Eniko; Sasvari-Szekely, Maria; Ronai, Zsolt

    2017-06-01

    A growing body of evidence highlights the relationship between epigenetics, especially DNA methylation, and population divergence as well as speciation. However, little is known about how general the phenomenon of epigenetics-wise separation of different populations is, or whether population assignment is, possible based on solely epigenetic marks. In the present study, we compared DNA methylation profiles between four different canine populations: three domestic dog breeds and their ancestor the gray wolf. Altogether, 79 CpG sites constituting the 65 so-called CpG units located in the promoter regions of genes affecting behavioral and temperamental traits (COMT, HTR1A, MAOA, OXTR, SLC6A4, TPH1, WFS1)-regions putatively targeted during domestication and breed selection. Methylation status of buccal cells was assessed using EpiTYPER technology. Significant inter-population methylation differences were found in 52.3% of all CpG units investigated. DNA methylation profile-based hierarchical cluster analysis indicated an unambiguous segregation of wolf from domestic dog. In addition, one of the three dog breeds (Golden Retriever) investigated also formed a separate, autonomous group. The findings support that population segregation is interrelated with shifts in DNA methylation patterns, at least in putative selection target regions, and also imply that epigenetic profiles could provide a sufficient basis for population assignment of individuals.

  16. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterationsmore » in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory

  17. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression.

    PubMed

    Sonne, Si Brask; Yadav, Rachita; Yin, Guangliang; Dalgaard, Marlene Danner; Myrmel, Lene Secher; Gupta, Ramneek; Wang, Jun; Madsen, Lise; Kajimura, Shingo; Kristiansen, Karsten

    2017-04-03

    The present study aimed to identify genes exhibiting concomitant obesity-dependent changes in DNA methylation and gene expression in adipose tissues in the mouse using diet-induced obese (DIO) C57BL/6J and genetically obese ob/ob mice as models. Mature adipocytes were isolated from epididymal and inguinal adipose tissues of ob/ob and DIO C57BL/6J mice. DNA methylation was analyzed by MeDIP-sequencing and gene expression by microarray analysis. The majority of differentially methylated regions (DMRs) were hypomethylated in obese mice. Global methylation of long interspersed elements indicated that hypomethylation did not reflect methyl donor deficiency. In both DIO and ob/ob mice, we observed more obesity-associated methylation changes in epididymal than in inguinal adipocytes. Assignment of DMRs to promoter, exon, intron and intergenic regions demonstrated that DIO-induced changes in DNA methylation in C57BL/6J mice occurred primarily in exons, whereas inguinal adipocytes of ob/ob mice exhibited a higher enrichment of DMRs in promoter regions than in other regions of the genome, suggesting an influence of leptin on DNA methylation in inguinal adipocytes. We observed altered methylation and expression of 9 genes in epididymal adipocytes, including the known obesity-associated genes, Ehd2 and Kctd15, and a novel candidate gene, Irf8, possibly involved in immune type 1/type2 balance. The use of 2 obesity models enabled us to dissociate changes associated with high fat feeding from those associated with obesity per se. This information will be of value in future studies on the mechanisms governing the development of obesity and changes in adipocyte function associated with obesity.

  18. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jing; Chen, Xi; Liu, Yanan

    2015-12-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly withmore » hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.« less

  19. Inactivation of MSH3 by promoter methylation correlates with primary tumor stage in nasopharyngeal carcinoma

    PubMed Central

    Ni, Haifeng; Jiang, Bo; Zhou, Zhen; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong

    2017-01-01

    The aim of this study was to investigate the inactivation of the MutS homolog human 3 (MSH3) gene by promoter methylation in nasopharyngeal carcinoma (NPC). Methylation-specific PCR, semi-quantitative reverse transcription PCR and immunohistochemical analysis were used to detect methylation and the mRNA and protein expression levels of MSH3 in 54 cases of NPC tissues and 16 cases of normal nasopharyngeal epithelial (NNE) tissues. The association between promoter methylation and mRNA expression, and the mRNA and protein expression of the gene and clinical factors was analyzed. The promoter methylation of MSH3 was detected in 50% (27/54) of the primary tumors, but not in the 16 NNE tissues. The mRNA and protein expression levels were significantly decreased in the 54 cases of human NPC as compared to the 16 NNE tissues (P<0.05). The MSH3-methylated cases exhibited significantly lower mRNA and protein expression levels than the unmethylated cases (P<0.05). The MSH3 mRNA and protein expression levels were significantly associated with the variable T stage (P<0.05); however, they did not correlate with the age and sex of the patients, or with the N stage, TNM classification or histopathological subtype (P>0.05). On the whole, MSH3 was frequently inactivated by promoter methylation and its mRNA and protein expression correlated with the primary tumor stage in NPC. PMID:28656302

  20. Quantitative Evaluation of MMP-9 and TIMP-1 Promoter Methylation in Chronic Periodontitis.

    PubMed

    Li, Xiting; Lu, Jiaxuan; Teng, Wei; Zhao, Chuanjiang; Ye, Xiaolei

    2018-03-01

    In this study, we investigated the promoter DNA methylation (DNAm) status of the MMP-9 and TIMP-1 genes in patients with chronic periodontitis to evaluate disease progression. Using pyrosequencing technology, DNAm levels of MMP-9 and TIMP-1 CpG islands were measured in 88 chronic periodontitis patients and 15 healthy controls. We found a positive correlation between methylation levels of MMP-9 CpG islands and the severity of chronic periodontitis. Methylated CpG islands were also closely associated with the duration of chronic periodontitis. Moreover, female patients exhibited lower methylation levels of MMP-9 but higher methylation levels of TIMP-1 compared with male patients, and the methylation levels of TIMP-1 gradually decreased with age. The findings of gender disparity in the DNAm of MMP-9 and TIMP-1 genes provide novel insights into chronic periodontitis.

  1. DNA methylation and differentiation: HOX genes in muscle cells

    PubMed Central

    2013-01-01

    Background Tight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues. Results In this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3′ half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5

  2. Inhibition of DNA methylation and reactivation of silenced genes by zebularine.

    PubMed

    Cheng, Jonathan C; Matsen, Cindy B; Gonzales, Felicidad A; Ye, Wei; Greer, Sheldon; Marquez, Victor E; Jones, Peter A; Selker, Eric U

    2003-03-05

    Gene silencing by abnormal methylation of promoter regions of regulatory genes is commonly associated with cancer. Silenced tumor suppressor genes are obvious targets for reactivation by methylation inhibitors such as 5-azacytidine (5-Aza-CR) and 5-aza-2'-deoxycytidine (5-Aza-CdR). However, both compounds are chemically unstable and toxic and neither can be given orally. We characterized a new demethylating agent, zebularine [1-(beta-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one], which is a chemically stable cytidine analog. We tested the ability of zebularine to reactivate a silenced Neurospora crassa gene using a hygromycin gene reactivation assay. We then analyzed the ability of zebularine to inhibit DNA methylation in C3H 10T1/2 Cl8 (10T1/2) mouse embryo cells as assayed by induction of a myogenic phenotype and in T24 human bladder carcinoma cells, using the methylation-sensitive single nucleotide primer extension (Ms-SNuPE) assay. We also evaluated the effects of zebularine (administered orally or intraperitoneally) on growth of EJ6 human bladder carcinoma cells grown in BALB/c nu/nu mice (five mice per group) and the in vivo reactivation of a methylated p16 gene in these cells. All statistical tests were two-sided. In N. crassa, zebularine inhibited DNA methylation and reactivated a gene previously silenced by methylation. Zebularine induced the myogenic phenotype in 10T1/2 cells, which is a phenomenon unique to DNA methylation inhibitors. Zebularine reactivated a silenced p16 gene and demethylated its promoter region in T24 bladder carcinoma cells in vitro and in tumors grown in mice. Zebularine was only slightly cytotoxic to T24 cells in vitro (1 mM zebularine for 48 hours decreased plating efficiency by 17% [95% confidence interval (CI) = 12.8% to 21.2%]) and to tumor-bearing mice (average maximal weight change in mice treated with 1000 mg/kg zebularine = 11% [95% CI = 4% to 19%]). Compared with those in control mice, tumor volumes were statistically

  3. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    PubMed Central

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  4. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression

    PubMed Central

    Ponnaluri, V. K. Chaithanya; Ehrlich, Kenneth C.; Zhang, Guoqiang; Lacey, Michelle; Johnston, Douglas; Pradhan, Sriharsa; Ehrlich, Melanie

    2017-01-01

    ABSTRACT Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study—owing to their myogenic DMRs—overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage. PMID:27911668

  5. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    PubMed

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  6. The correlations between DNA methylation and polymorphisms in the promoter region of the human telomerase reverse transcriptase (hTERT) gene with postoperative recurrence in patients with thyroid carcinoma (TC).

    PubMed

    Li, Jian-Jun; Zheng, Ping Chen Jue-Ru; Wang, Yao-Zong

    2017-06-06

    This study aims at exploring the correlations between DNA methylation and polymorphisms in the promoter region of the human telomerase reverse transcriptase (hTERT) gene and postoperative recurrence in patients with thyroid carcinoma (TC). A total of 312 patients diagnosed with TC were chosen for the study and categorized into recurrence (n = 75) and non-recurrence (n = 237) groups. The hTERT rs2736100 and rs2736098 polymorphisms were detected by performing polymerase chain reaction-restriction fragment length polymorphism. DNA methylation in the promoter region of hTERT gene was evaluated by pyrosequencing. A telephonic and/or outpatient follow-up was conducted for all patients. The correlations of DNA methylation and polymorphisms in the promoter region of hTERT with postoperative recurrence of TC patients underwent analysis. The patient in the recurrence group showed evidently different pathological types and tumor stages in comparison to the non-recurrence group. The GG genotype of hTERT rs2736100 might increase the recurrence risk of TC patients. No correlations between hTERT rs2736098 polymorphisms and recurrence risk were observed. Compared to the TT + TG genotype frequency, the rs2736100 GG genotype frequency increased in patients without multicentricity, patients with extrathyroidal invasion, patients with lymph node metastasis, patients with undifferentiated carcinoma, and patients in the III + IV stage. The recurrence group showed significantly higher DNA methylation level compared to the non-recurrence group. The DNA methylation level was closely associated to tumor stage and lymph node metastasis of TC patients in the recurrence group. The DNA methylation and rs2736100 polymorphisms in the promoter region of hTERT gene might be in correlation to postoperative recurrence of TC patients.

  7. Dietary vitamin A impacts DNA methylation patterns of adipogenesis-related genes in suckling rats.

    PubMed

    Arreguín, A; Ribot, J; Mušinović, H; von Lintig, J; Palou, A; Bonet, M L

    2018-05-11

    We previously showed that vitamin A supplementation in early life impacts white adipose tissue (WAT) biology. We here studied the vitamin's effects on DNA methylation of genes crucial for WAT cell development, determination and metabolism. CpG promoter methylation and mRNA expression of Pparg, Zfp423, Pcna, and Rbp4 was compared in inguinal WAT of 21-day-old rats supplemented during the suckling period with vehicle (controls) or an emulsion of vitamin A as retinyl ester (RE) or β-carotene (BC). The methylation profile of promoters was affected by vitamin A supplementation with pronounced differences between the RE and BC groups. In the RE group, hypermethylation of the Rbp4 (at multiple CpGs) and the Pparg2 (at a specific CpG) promoters and hypomethylation of the Pcna promoter (at multiple CpGs) was observed, together with inverse changes in gene expression levels. In the BC group, hypomethylation of the Rbp4 and hypermethylation of the Pcna promoter at distinct CpGs was observed, with no effects on gene expression. In both supplemention groups, hypomethylation and increased expression was found for Zfp423. Thus, modest vitamin A supplementation in early postnatal life impacts methylation marks in developing WAT. Differential epigenetic effects of RE and BC in early life may affect adipose tissue programming activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Methylation Status of the Follistatin Gene at Different Development Stages of Japanese Flounder (Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Huang, Yajuan; Hu, Nan; Si, Yufeng; Li, Siping; Wu, Shuxian; Zhang, Meizhao; Wen, Haishen; Li, Jifang; Li, Yun; He, Feng

    2018-06-01

    Follistatin (Fst) is a hyperplasia factor that plays a crucial role in muscle development. DNA methylation, a significant process, regulates gene expression. The aim of our study is to examine the DNA methylation and expression patterns of Fst gene at five different development stages of Japanese flounder (stage A, 7 dph; stage B, 90 dph; stage C, about 180 dph; stage D, about 24 months; stage E, about 36 months). The muscle tissue of Japanese flounder was obtained at different development stages in this experiment. DNA methylation levels in the promoter and exon 2 of Fst were determined by bisulfite sequencing, and the relative expression of the Fst gene at the five stages was measured by quantitative PCR. The results showed that the lowest methylation level was at stage A and the highest methylation level was at stage B. Moreover, the highest expression level of the Fst gene was observed at stage A. The mRNA abundance was negatively correlated with DNA methylation level. Three CpG islands in the promoter region and three CpG islands in exon 2 of Fst were found in the binding sequence of the putative transcription factor. These results offered a theoretical basis for the mechanism of Fst gene regulation to muscle development at different development stages.

  9. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    PubMed

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. © 2014 Scandinavian Plant Physiology Society.

  10. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States

    PubMed Central

    Hopp, Lydia; Löffler-Wirth, Henry; Binder, Hans

    2015-01-01

    Mature B-cell lymphoma is a clinically and biologically highly diverse disease. Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We here present an integrative analysis of DNA methylation and gene expression data of several lymphoma subtypes. Our study confirms previous results about the role of stemness genes during development and maturation of B-cells and their dysfunction in lymphoma locking in more proliferative or immune-reactive states referring to B-cell functionalities in the dark and light zone of the germinal center and also in plasma cells. These dysfunctions are governed by widespread epigenetic effects altering the promoter methylation of the involved genes, their activity status as moderated by histone modifications and also by chromatin remodeling. We identified four groups of genes showing characteristic expression and methylation signatures among Burkitt’s lymphoma, diffuse large B cell lymphoma, follicular lymphoma and multiple myeloma. These signatures are associated with epigenetic effects such as remodeling from transcriptionally inactive into active chromatin states, differential promoter methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12. PMID:26371046

  11. Genome-wide DNA methylation drives human embryonic stem cell erythropoiesis by remodeling gene expression dynamics.

    PubMed

    Liu, Zhijing; Feng, Qiang; Sun, Pengpeng; Lu, Yan; Yang, Minlan; Zhang, Xiaowei; Jin, Xiangshu; Li, Yulin; Lu, Shi-Jiang; Quan, Chengshi

    2017-12-01

    To investigate the role of DNA methylation during erythrocyte production by human embryonic stem cells (hESCs). We employed an erythroid differentiation model from hESCs, and then tracked the genome-wide DNA methylation maps and gene expression patterns through an Infinium HumanMethylation450K BeadChip and an Ilumina Human HT-12 v4 Expression Beadchip, respectively. A negative correlation between DNA methylation and gene expression was substantially enriched during the later differentiation stage and was present in both the promoter and the gene body. Moreover, erythropoietic genes with differentially methylated CpG sites that were primarily enriched in nonisland regions were upregulated, and demethylation of their gene bodies was associated with the presence of enhancers and DNase I hypersensitive sites. Finally, the components of JAK-STAT-NF-κB signaling were DNA hypomethylated and upregulated, which targets the key genes for erythropoiesis. Erythroid lineage commitment by hESCs requires genome-wide DNA methylation modifications to remodel gene expression dynamics.

  12. DNA methylation analysis of the gene CDKN2B in Gallus gallus (chicken).

    PubMed

    Gryzińska, Magdalena; Andraszek, Katarzyna; Jocek, Grzegorz

    2013-01-01

    Methylation is an epigenetic modification of DNA affecting gene expression without changing the structure of nucleotides. It plays a crucial role in the embryonic and post-embryonic development of living organisms. Methylation level is tissue and species-specific and changes with age. The study was aimed at identifying the methylation of the CDKN2B gene situated at locus bar in Polbar chickens on the 6th and 18th day of embryonic development using the MSP (methylation-specific PCR) method. Methylation was not detected in the promoter region of gene CDKN2B on the 6th and 18th day of embryonic development. As one of the five genes responsible for melanine activity in melanocytes and highly active, it can contribute to the production of this pigment. The present research broadens the current knowledge of the chicken epigenome and the mechanism of autosexing in birds.

  13. TIMP3 Promoter Methylation Represents an Epigenetic Marker of BRCA1ness Breast Cancer Tumours.

    PubMed

    Maleva Kostovska, Ivana; Jakimovska, Milena; Popovska-Jankovic, Katerina; Kubelka-Sabit, Katerina; Karagjozov, Mitko; Plaseska-Karanfilska, Dijana

    2018-03-09

    Tumours presenting BRCAness profile behave more aggressively and are more invasive as a consequence of their complex genetic and epigenetic alterations, caused by impaired fidelity of the DNA repair processes. Methylation of promoter CpG islands represents an alternative mechanism to inactivate DNA repair and tumour suppressor genes. In our study, we analyzed the frequency of methylation changes of 24 tumour suppressor genes and explored their association with BRCAness profile. BRCA1ness profile and aberrant methylation were studied in 233 fresh frozen breast tumour tissues by Multiplex Ligation-dependent Probe Amplification (MLPA) and Methylation Specific (MS)-MLPA methods, respectively. Our analyses revealed that 12.4% of the breast cancer (BC) patients had tumours with a BRCA1ness profile. TIMP3 showed significantly higher (p = 5.8х10 -5 ) methylation frequency in tumours with BRCA1ness, while methylation of APC, GSTP1 and RASSF1 promoters was negatively associated with BRCA1ness (р = 0.0017, р = 0.007 and р = 0.046, respectively). TIMP3 methylation was also associated with triple negative (TN) BC. Furthermore, TN tumours showing BRCA1ness showed stronger association with TIMP3 methylation (p = 0.0008) in comparison to TN tumours without BRCA1ness (p = 0.009). In conclusion, we confirmed that TIMP3 methylation is a marker for TN tumours and furthermore we showed for the first time that TIMP3 promoter methylation is an epigenetic marker of BRCA1ness tumours.

  14. Quantitative analysis of DNA methylation in the promoter region of the methylguanine-O(6) -DNA-methyltransferase gene by COBRA and subsequent native capillary gel electrophoresis.

    PubMed

    Goedecke, Simon; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2015-12-01

    Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine-O(6) -DNA-Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non-methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non-linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Air pollution and gene-specific methylation in the Normative Aging Study

    PubMed Central

    Bind, Marie-Abele; Lepeule, Johanna; Zanobetti, Antonella; Gasparrini, Antonio; Baccarelli, Andrea A; Coull, Brent A; Tarantini, Letizia; Vokonas, Pantel S; Koutrakis, Petros; Schwartz, Joel

    2014-01-01

    The mechanisms by which air pollution has multiple systemic effects in humans are not fully elucidated, but appear to include inflammation and thrombosis. This study examines whether concentrations of ozone and components of fine particle mass are associated with changes in methylation on tissue factor (F3), interferon gamma (IFN-γ), interleukin 6 (IL-6), toll-like receptor 2 (TLR-2), and intercellular adhesion molecule 1 (ICAM-1). We investigated associations between air pollution exposure and gene-specific methylation in 777 elderly men participating in the Normative Aging Study (1999–2009). We repeatedly measured methylation at multiple CpG sites within each gene’s promoter region and calculated the mean of the position-specific measurements. We examined intermediate-term associations between primary and secondary air pollutants and mean methylation and methylation at each position with distributed-lag models. Increase in air pollutants concentrations was significantly associated with F3, ICAM-1, and TLR-2 hypomethylation, and IFN-γ and IL-6 hypermethylation. An interquartile range increase in black carbon concentration averaged over the four weeks prior to assessment was associated with a 12% reduction in F3 methylation (95% CI: -17% to -6%). For some genes, the change in methylation was observed only at specific locations within the promoter region. DNA methylation may reflect biological impact of air pollution. We found some significant mediated effects of black carbon on fibrinogen through a decrease in F3 methylation, and of sulfate and ozone on ICAM-1 protein through a decrease in ICAM-1 methylation. PMID:24385016

  16. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas

    PubMed Central

    Everhard, Sibille; Tost, Jörg; Abdalaoui, Hafida El; Crinière, Emmanuelle; Busato, Florence; Marie, Yannick; Gut, Ivo G.; Sanson, Marc; Mokhtari, Karima; Laigle-Donadey, Florence; Hoang-Xuan, Khê; Delattre, Jean-Yves; Thillet, Joëlle

    2009-01-01

    The O6-methylguanine-DNA methyltransferase gene (MGMT) is methylated in several cancers, including gliomas. However, the functional role of cysteine-phosphate-guanine (CpG) island (CGI) methylation in MGMT silencing is still controversial. The aim of this study was to investigate whether MGMT CGI methylation correlates inversely with RNA expression of MGMT in glioblastomas and to determine the CpG region whose methylation best reflects the level of expression. The methylation level of CpG sites that are potentially related to expression was investigated in 54 glioblastomas by pyrosequencing, a highly quantitative method, and analyzed with respect to their MGMT mRNA expression status. Three groups of patients were identified according to the methylation pattern of all 52 analyzed CpG sites. Overall, an 85% rate of concordance was observed between methylation and expression (p < 0.0001). When analyzing each CpG separately, six CpG sites were highly correlated with expression (p < 0.0001), and two CpG regions could be used as surrogate markers for RNA expression in 81.5% of the patients. This study indicates that there is good statistical agreement between MGMT methylation and expression, and that some CpG regions better reflect MGMT expression than do others. However, if transcriptional repression is the key mechanism in explaining the higher chemosensitivity of MGMT-methylated tumors, a substantial rate of discordance should lead clinicians to be cautious when deciding on a therapeutic strategy based on MGMT methylation status alone. PMID:19224763

  17. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas.

    PubMed

    Everhard, Sibille; Tost, Jörg; El Abdalaoui, Hafida; Crinière, Emmanuelle; Busato, Florence; Marie, Yannick; Gut, Ivo G; Sanson, Marc; Mokhtari, Karima; Laigle-Donadey, Florence; Hoang-Xuan, Khê; Delattre, Jean-Yves; Thillet, Joëlle

    2009-08-01

    The O(6)-methylguanine-DNA methyltransferase gene (MGMT) is methylated in several cancers, including gliomas. However, the functional role of cysteine-phosphate-guanine (CpG) island (CGI) methylation in MGMT silencing is still controversial. The aim of this study was to investigate whether MGMT CGI methylation correlates inversely with RNA expression of MGMT in glioblastomas and to determine the CpG region whose methylation best reflects the level of expression. The methylation level of CpG sites that are potentially related to expression was investigated in 54 glioblastomas by pyrosequencing, a highly quantitative method, and analyzed with respect to their MGMT mRNA expression status. Three groups of patients were identified according to the methylation pattern of all 52 analyzed CpG sites. Overall, an 85% rate of concordance was observed between methylation and expression (p < 0.0001). When analyzing each CpG separately, six CpG sites were highly correlated with expression (p < 0.0001), and two CpG regions could be used as surrogate markers for RNA expression in 81.5% of the patients. This study indicates that there is good statistical agreement between MGMT methylation and expression, and that some CpG regions better reflect MGMT expression than do others. However, if transcriptional repression is the key mechanism in explaining the higher chemosensitivity of MGMT-methylated tumors, a substantial rate of discordance should lead clinicians to be cautious when deciding on a therapeutic strategy based on MGMT methylation status alone.

  18. N-hexane inhalation during pregnancy alters DNA promoter methylation in the ovarian granulosa cells of rat offspring.

    PubMed

    Li, Hong; Liu, Jin; Sun, Yan; Wang, Wenxiang; Weng, Shaozheng; Xiao, Shihua; Huang, Huiling; Zhang, Wenchang

    2014-08-01

    The N-hexane-induced impact on the reproductive system of the offspring of animals exposed to n-hexane has caused great concern. Pregnant Wistar rats inhaled 500, 2 500 or 12 500 ppm n-hexane during gestational days 1-20. Clinical characteristics and developmental indices were observed. Ovarian granulosa cells were extracted from F1 rats, the number of follicles was determined in ovarian slices and promoter methylation was assessed using MeDIP-Chip. Several methods were used to analyze the scanned genes, including the Gene Ontology Consortium tools, the DAVID Functional Annotation Clustering Tool, hierarchical clustering and KEGG pathway analysis. The results indicated that the live pups/litter ratio was significantly lowest in the 12 500 ppm group. A significant decrease in secondary follicles and an increase in atresic follicles were observed in the 12 500 ppm group. The number of shared demethylated genes was higher than that of the methylated genes, and the differentially methylated genes were enriched in cell death and apoptosis, cell growth and hormone regulation. The methylation profiles of the offspring from the 500 ppm and control groups were different from those of the 2500 and 12 500 ppm groups. Furthermore, the methylation status of genes in the PI3K-Akt and NF-kappa B signaling pathways was changed after n-hexane exposure. The Cyp11a1, Cyp17a1, Hsd3b1, Cyp1a1 and Srd5a1 promoters were hypermethylated in the n-hexane-exposed groups. These results indicate that the developmental toxicity of n-hexane in F1 ovaries is accompanied by the altered methylation of promoters of genes associated with apoptotic processes and steroid hormone biosynthesis. Copyright © 2013 John Wiley & Sons, Ltd.

  19. FOXF2 promoter methylation is associated with prognosis in esophageal squamous cell carcinoma.

    PubMed

    Chen, Xiaoying; Hu, Haochang; Liu, Jing; Yang, Yong; Liu, Guili; Ying, Xiuru; Chen, Yingmin; Li, Bin; Ye, Cong; Wu, Dongping; Duan, Shiwei

    2017-02-01

    Esophageal squamous cell carcinoma is a commonly malignant tumor of digestive tract with poor prognosis. Previous studies suggested that forkhead box F2 ( FOXF2) could be a candidate gene for assessing and predicting the prognosis of human cancers. However, the relationship between FOXF2 promoter methylation and the prognosis of esophageal squamous cell carcinoma remained unclear. Formalin-fixed, paraffin-embedded esophageal squamous cell carcinoma tissues of 135 esophageal squamous cell carcinoma patients were detected for FOXF2 promoter methylation status by methylation-specific polymerase chain reaction approach. DNA methylation results were evaluated with regard to clinicopathological features and overall survival. Our study confirmed that FOXF2 promoter hypermethylation could independently predict a poorer overall survival of esophageal squamous cell carcinoma patients ( p = 0.002), which was consistent with the data mining results of the data from 82 esophageal squamous cell carcinoma patients in The Cancer Genome Atlas datasets ( p = 0.036). In addition, no correlation was found between FOXF2 promoter methylation and other clinic pathological parameters (age, gender, differentiation, lymph node metastasis, stage, cutting edge, vascular invasion, smoking behavior, and drinking history). In conclusion, FOXF2 methylation might be a useful prognostic biomarker for esophageal squamous cell carcinoma patients.

  20. MethHC: a database of DNA methylation and gene expression in human cancer.

    PubMed

    Huang, Wei-Yun; Hsu, Sheng-Da; Huang, Hsi-Yuan; Sun, Yi-Ming; Chou, Chih-Hung; Weng, Shun-Long; Huang, Hsien-Da

    2015-01-01

    We present MethHC (http://MethHC.mbc.nctu.edu.tw), a database comprising a systematic integration of a large collection of DNA methylation data and mRNA/microRNA expression profiles in human cancer. DNA methylation is an important epigenetic regulator of gene transcription, and genes with high levels of DNA methylation in their promoter regions are transcriptionally silent. Increasing numbers of DNA methylation and mRNA/microRNA expression profiles are being published in different public repositories. These data can help researchers to identify epigenetic patterns that are important for carcinogenesis. MethHC integrates data such as DNA methylation, mRNA expression, DNA methylation of microRNA gene and microRNA expression to identify correlations between DNA methylation and mRNA/microRNA expression from TCGA (The Cancer Genome Atlas), which includes 18 human cancers in more than 6000 samples, 6548 microarrays and 12 567 RNA sequencing data. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koczor, Christopher A., E-mail: ckoczor@emory.edu; Fields, Earl; Jedrzejczak, Mark J.

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides formore » calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein

  2. Promoter Methylation of PTEN Is a Significant Prognostic Factor in Melanoma Survival.

    PubMed

    Roh, Mi Ryung; Gupta, Sameer; Park, Kyu-Hyun; Chung, Kee Yang; Lauss, Martin; Flaherty, Keith T; Jönsson, Göran; Rha, Sun Young; Tsao, Hensin

    2016-05-01

    Structural compromise of the tumor suppressor gene, phosphatase and tensin homolog (PTEN), occurs in 10% of melanoma specimens, and loss of PTEN expression through DNA methylation of the PTEN promoter region has also been reported in a number of other malignancies. However, the role of PTEN promoter methylation in melanoma is not well understood. We thus sought to elucidate the prevalence of PTEN promoter methylation in melanoma specimens, its relationship to clinical features, and its impact on the outcome of patients with melanoma. PTEN promoter methylation data were acquired from an archived primary Korean melanoma cohort (KMC) of 158 patients and, for validation, 234 patients from The Cancer Genome Atlas melanoma (TCGA-MEL) cohort. Hierarchical clustering was performed to identify PTEN "high methylated" and "low methylated" samples. Subsequently, differences in clinical features and outcomes based on PTEN promoter methylation status were then analyzed using SPSS and R. In the KMC, all tumors were acquired from primary tumors and 65.7% (n = 105) were acral or mucosal by site, whereas in the TCGA-MEL cohort, 90.5% of the tumors were from regional lymph node and distant metastatic lesions. Overall, 17.7% and 45.7% of the specimens harbored BRAF mutations in the KMC and TCGA-MEL cohort, respectively. Neuroblastoma RAS viral oncogene homolog was mutated in 12.2% and 26.9% of the tumors in the KMC and TCGA-MEL cohort, respectively. In the KMC, 31 cases (19.6%) were included in the high methylated group versus 142 cases (60.7%) in the TCGA-MEL cohort (P < 0.001). Multivariate Cox-regression analysis revealed promoter methylation of PTEN to be an independent negative prognostic factor for survival in both the KMC (hazard ratio 3.76, 95% confidence interval = 1.24-11.12, P = 0.017) and TCGA-MEL cohort (HR 1.88, 95% confidence interval = 1.13-3.12, P = 0.015). Our results indicate that PTEN promoter methylation is an independent predictor for impaired survival in

  3. Patterns of DNA Methylation Across the Leptin Core Promoter in Four Diverse Asian and North American Populations.

    PubMed

    Mosher, M J; Melton, P E; Stapleton, P; Schanfield, M S; Crawford, M H

    2016-04-01

    DNA methylation is the most widely studied of epigenetic mechanisms, with environmental effects recorded through patterned attachments of methyl groups along the DNA that are capable of modifying gene expression without altering the DNA sequencing. The degree to which these patterns of DNA methylation are heritable, the expected range of normality across populations, and the phenotypic relevance of pattern variation remain unclear. Genes regulating metabolic pathways appear to be vulnerable to ongoing nutritional programming over the life course, as dietary nutrients are significant environmental determinants of DNA methylation, supplying both the methyl groups and energy to generate the methylation process. Here we examine methylation patterns along a region of the metabolic gene leptin (LEP). LEP's putative functions include regulation of energy homeostasis, with its signals affecting energy intake and expenditure, adipogenesis and energy storage, lipid and glucose metabolism, bone metabolism, and reproductive endocrine function. A pattern of differential methylation across CpG sites of the LEP core promoter has been previously identified; however, any consistency of pattern or its phenotypic significance is not fully elucidated among populations. Using DNA extracted from unfractionated white blood cells of peripheral blood samples, our pilot study, divided into two parts, examined the significance of variation in DNA methylation patterns along the leptin core promoter in four populations (phase 1) and used biomarkers reflecting leptin's functional process in two of those populations, western Buryat of Siberia and the Mennonite of central Kansas, to investigate the relevance of the ethnic variation identified in the DNA methylation (phase 2). LEP's core promoter region contains both the binding site for C/EBPα (CCAAT/enhancer binding protein alpha), which tempers the final step in adipocyte maturity and capacity to synthesize leptin, and the TATA motif

  4. Effect of dietary betaine supplementation on lipogenesis gene expression and CpG methylation of lipoprotein lipase gene in broilers.

    PubMed

    Xing, Jinyi; Kang, Li; Jiang, Yunliang

    2011-03-01

    Experiments were conducted to investigate the effect of betaine supplementation on mRNA expression levels of lipogenesis genes and CpG methylation of lipoprotein lipase gene (LPL) in broilers. From 22 days of age, 78 broilers were feed basal diet without betaine and basal diet supplemented with 0.1% betaine, respectively, and at 56 and 66 days of age, the traits of 15 chickens (7 males and 8 females) of each group were recorded and abdominal fat pads were collected. The mRNA expression levels of several lipogenesis gene were analyzed by semi-quantitative RT-PCR and real-time quantitative RT-PCR (qPCR), respectively. The CpG methylation profile at the promoter region of LPL gene in 66-day-old broilers was determined by bisulfite sequencing. The average daily gain and percent abdominal fat traits were slightly improved in 56-day-old and 66-day-old broilers after dietary supplementation of betaine to diet. After adding 0.1% betaine to diet, the mRNA levels of fatty acid synthase (FAS) and adipocyte-type fatty acid-binding protein genes in abdominal adipose were significantly decreased in 56-day-old broilers, and those of LPL and FAS genes in abdominal adipose were significantly decreased in 66-day-old broilers comparing with the control group (P < 0.05 and P < 0.001). Moreover, in 66-day-old broilers fed 0.1% betaine diet, a different CpG methylation pattern was observed: the CpG dinucleotides of 1st, 6th, 7th, 8th and from 10th to 50th were less methylated; however, those of 2nd, 5th and 9th were more heavily methylated. The results suggest that transcription of some lipogenesis genes was decreased by betaine supplementation and betaine may decrease LPL mRNA expression by altering CpG methylation pattern on LPL promoter region.

  5. Gene promoter methylation and protein expression of BRMS1 in uterine cervix in relation to high-risk human papilloma virus infection and cancer.

    PubMed

    Panagopoulou, Maria; Lambropoulou, Maria; Balgkouranidou, Ioanna; Nena, Evangelia; Karaglani, Makrina; Nicolaidou, Christina; Asimaki, Anthi; Konstantinidis, Theocharis; Constantinidis, Theodoros C; Kolios, George; Kakolyris, Stylianos; Agorastos, Theodoros; Chatzaki, Ekaterini

    2017-04-01

    Cervical cancer is strongly related to certain high-risk types of human papilloma virus infection. Breast cancer metastasis suppressor 1 (BRMS1) is a tumor suppressor gene, its expression being regulated by DNA promoter methylation in several types of cancers. This study aims to evaluate the methylation status of BRMS1 promoter in relation to high-risk types of human papilloma virus infection and the development of pre-cancerous lesions and describe the pattern of BRMS1 protein expression in normal, high-risk types of human papilloma virus-infected pre-cancerous and malignant cervical epithelium. We compared the methylation status of BRMS1 in cervical smears of 64 women with no infection by high-risk types of human papilloma virus to 70 women with proven high-risk types of human papilloma virus infection, using real-time methylation-specific polymerase chain reaction. The expression of BRMS1 protein was described by immunohistochemistry in biopsies from cervical cancer, pre-cancerous lesions, and normal cervices. Methylation of BRMS1 promoter was detected in 37.5% of women with no high-risk types of human papilloma virus infection and was less frequent in smears with high-risk types of human papilloma virus (11.4%) and in women with pathological histology (cervical intraepithelial neoplasia) (11.9%). Methylation was detected also in HeLa cervical cancer cells. Immunohistochemistry revealed nuclear BRMS1 protein staining in normal high-risk types of human papilloma virus-free cervix, in cervical intraepithelial neoplasias, and in malignant tissues, where staining was occasionally also cytoplasmic. In cancer, expression was stronger in the more differentiated cancer blasts. In conclusion, BRMS1 promoter methylation and aberrant protein expression seem to be related to high-risk types of human papilloma virus-induced carcinogenesis in uterine cervix and is worthy of further investigation.

  6. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus

    PubMed Central

    Zhao, Ming; Zhou, Yin; Zhu, Bochen; Wan, Mengjie; Jiang, Tingting; Tan, Qiqun; Liu, Yan; Jiang, Juqing; Luo, Shuaihantian; Tan, Yixin; Wu, Haijing; Renauer, Paul; Gutiérrez, Maria del Mar Ayala; Palma, Maria Jesús Castillo; Castro, Rafaela Ortega; Fernández-Roldán, Concepción; Raya, Enrique; Faria, Raquel; Carvalho, Claudia; Alarcón-Riquelme, Marta E; Xiang, Zhongyuan; Chen, Jinwei; Li, Fen; Ling, Guanghui; Zhao, Hongjun; Liao, Xiangping; Lin, Youkun; Sawalha, Amr H; Lu, Qianjin

    2016-01-01

    Objective Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease with limited reliable diagnostic biomarkers. We investigated whether gene methylation could meet sensitivity and specificity criteria for a robust biomarker. Methods IFI44L promoter methylation was examined using DNA samples from a discovery set including 377 patients with SLE, 358 healthy controls (HCs) and 353 patients with rheumatoid arthritis (RA). Two independent sets including 1144 patients with SLE, 1350 HCs, 429 patients with RA and 199 patients with primary Sjögren’s syndrome (pSS) were used for validation. Results Significant hypomethylation of two CpG sites within IFI44L promoter, Site1 (Chr1: 79 085 222) and Site2 (Chr1: 79 085 250; cg06872964), was identified in patients with SLE compared with HCs, patients with RA and patients with pSS. In a comparison between patients with SLE and HCs included in the first validation cohort, Site1 methylation had a sensitivity of 93.6% and a specificity of 96.8% at a cut-off methylation level of 75.5% and Site2 methylation had a sensitivity of 94.1% and a specificity of 98.2% at a cut-off methylation level of 25.5%. The IFI44L promoter methylation marker was also validated in an European-derived cohort. In addition, the methylation levels of Site1 and Site2 within IFI44L promoter were significantly lower in patients with SLE with renal damage than those without renal damage. Patients with SLE showed significantly increased methylation levels of Site1 and Site2 during remission compared with active stage. Conclusions The methylation level of IFI44L promoter can distinguish patients with SLE from healthy persons and other autoimmune diseases, and is a highly sensitive and specific diagnostic marker for SLE. PMID:26787370

  7. Epigenetic Gene Promoter Methylation at Birth Is Associated With Child’s Later Adiposity

    PubMed Central

    Godfrey, Keith M.; Sheppard, Allan; Gluckman, Peter D.; Lillycrop, Karen A.; Burdge, Graham C.; McLean, Cameron; Rodford, Joanne; Slater-Jefferies, Joanne L.; Garratt, Emma; Crozier, Sarah R.; Emerald, B. Starling; Gale, Catharine R.; Inskip, Hazel M.; Cooper, Cyrus; Hanson, Mark A.

    2011-01-01

    OBJECTIVE Fixed genomic variation explains only a small proportion of the risk of adiposity. In animal models, maternal diet alters offspring body composition, accompanied by epigenetic changes in metabolic control genes. Little is known about whether such processes operate in humans. RESEARCH DESIGN AND METHODS Using Sequenom MassARRAY we measured the methylation status of 68 CpGs 5′ from five candidate genes in umbilical cord tissue DNA from healthy neonates. Methylation varied greatly at particular CpGs: for 31 CpGs with median methylation ≥5% and a 5–95% range ≥10%, we related methylation status to maternal pregnancy diet and to child’s adiposity at age 9 years. Replication was sought in a second independent cohort. RESULTS In cohort 1, retinoid X receptor-α (RXRA) chr9:136355885+ and endothelial nitric oxide synthase (eNOS) chr7:150315553+ methylation had independent associations with sex-adjusted childhood fat mass (exponentiated regression coefficient [β] 17% per SD change in methylation [95% CI 4–31], P = 0.009, n = 64, and β = 20% [9–32], P < 0.001, n = 66, respectively) and %fat mass (β = 10% [1–19], P = 0.023, n = 64 and β =12% [4–20], P = 0.002, n = 66, respectively). Regression analyses including sex and neonatal epigenetic marks explained >25% of the variance in childhood adiposity. Higher methylation of RXRA chr9:136355885+, but not of eNOS chr7:150315553+, was associated with lower maternal carbohydrate intake in early pregnancy, previously linked with higher neonatal adiposity in this population. In cohort 2, cord eNOS chr7:150315553+ methylation showed no association with adiposity, but RXRA chr9:136355885+ methylation showed similar associations with fat mass and %fat mass (β = 6% [2–10] and β = 4% [1–7], respectively, both P = 0.002, n = 239). CONCLUSIONS Our findings suggest a substantial component of metabolic disease risk has a prenatal developmental basis. Perinatal epigenetic analysis may have utility in

  8. DNA methylation profiling of esophageal adenocarcinoma using Methylation Ligation-dependent Macroarray (MLM).

    PubMed

    Guilleret, Isabelle; Losi, Lorena; Chelbi, Sonia T; Fonda, Sergio; Bougel, Stéphanie; Saponaro, Sara; Gozzi, Gaia; Alberti, Loredana; Braunschweig, Richard; Benhattar, Jean

    2016-10-14

    Most types of cancer cells are characterized by aberrant methylation of promoter genes. In this study, we described a rapid, reproducible, and relatively inexpensive approach allowing the detection of multiple human methylated promoter genes from many tissue samples, without the need of bisulfite conversion. The Methylation Ligation-dependent Macroarray (MLM), an array-based analysis, was designed in order to measure methylation levels of 58 genes previously described as putative biomarkers of cancer. The performance of the design was proven by screening the methylation profile of DNA from esophageal cell lines, as well as microdissected formalin-fixed and paraffin-embedded (FFPE) tissues from esophageal adenocarcinoma (EAC). Using the MLM approach, we identified 32 (55%) hypermethylated promoters in EAC, and not or rarely methylated in normal tissues. Among them, 21promoters were found aberrantly methylated in more than half of tumors. Moreover, seven of them (ADAMTS18, APC, DKK2, FOXL2, GPX3, TIMP3 and WIF1) were found aberrantly methylated in all or almost all the tumor samples, suggesting an important role for these genes in EAC. In addition, dysregulation of the Wnt pathway with hypermethylation of several Wnt antagonist genes was frequently observed. MLM revealed a homogeneous pattern of methylation for a majority of tumors which were associated with an advanced stage at presentation and a poor prognosis. Interestingly, the few tumors presenting less methylation changes had a lower pathological stage. In conclusion, this study demonstrated the feasibility and accuracy of MLM for DNA methylation profiling of FFPE tissue samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. DNA Methylation Analysis of the Angiotensin Converting Enzyme (ACE) Gene in Major Depression

    PubMed Central

    Zill, Peter; Baghai, Thomas C.; Schüle, Cornelius; Born, Christoph; Früstück, Clemens; Büttner, Andreas; Eisenmenger, Wolfgang; Varallo-Bedarida, Gabriella; Rupprecht, Rainer; Möller, Hans-Jürgen; Bondy, Brigitta

    2012-01-01

    Background The angiotensin converting enzyme (ACE) has been repeatedly discussed as susceptibility factor for major depression (MD) and the bi-directional relation between MD and cardiovascular disorders (CVD). In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ∼40%–50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. Materials and Methods The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. Results We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008) and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02). Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04). Conclusion The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders. PMID:22808171

  10. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Heyu; Nan, Xu; Li, Xuefen

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 wasmore » down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.« less

  11. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  12. The Human ARF Cell Cycle Regulatory Gene Promoter Is a CpG Island Which Can Be Silenced by DNA Methylation and Down-Regulated by Wild-Type p53

    PubMed Central

    Robertson, Keith D.; Jones, Peter A.

    1998-01-01

    The INK4a/ARF locus encodes two proteins involved in tumor suppression in a manner virtually unique in mammalian cells. Distinct first exons, driven from separate promoters, splice onto a common exon 2 and 3 but utilize different reading frames to produce two completely distinct proteins, both of which play roles in cell cycle control. INK4a, a critical element of the retinoblastoma gene pathway, binds to and inhibits the activities of CDK4 and CDK6, while ARF, a critical element of the p53 pathway, increases the level of functional p53 via interaction with MDM2. Here we clone and characterize the promoter of the human ARF gene and show that it is a CpG island characteristic of a housekeeping gene which contains numerous Sp1 sites. Both ARF and INK4a are coordinately expressed in cells except when their promoter regions become de novo methylated. In one of these situations, ARF transcription could be reactivated by treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine, and the reactivation kinetics of ARF and INK4a were found to differ slightly in a cell line in which both genes were silenced by methylation. The ARF promoter was also found to be highly responsive to E2F1 expression, in keeping with previous results at the RNA level. Lastly, transcription from the ARF promoter was down-regulated by wild-type p53 expression, and the magnitude of the effect correlated with the status of the endogenous p53 gene. This finding points to the existence of an autoregulatory feedback loop between p53, MDM2, and ARF, aimed at keeping p53 levels in check. PMID:9774662

  13. Inactivation of MSH3 by promoter methylation correlates with primary tumor stage in nasopharyngeal carcinoma.

    PubMed

    Ni, Haifeng; Jiang, Bo; Zhou, Zhen; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong

    2017-09-01

    The aim of this study was to investigate the inactivation of the MutS homolog human 3 (MSH3) gene by promoter methylation in nasopharyngeal carcinoma (NPC). Methylation‑specific PCR, semi‑quantitative reverse transcription PCR and immunohistochemical analysis were used to detect methylation and the mRNA and protein expression levels of MSH3 in 54 cases of NPC tissues and 16 cases of normal nasopharyngeal epithelial (NNE) tissues. The association between promoter methylation and mRNA expression, and the mRNA and protein expression of the gene and clinical factors was analyzed. The promoter methylation of MSH3 was detected in 50% (27/54) of the primary tumors, but not in the 16 NNE tissues. The mRNA and protein expression levels were significantly decreased in the 54 cases of human NPC as compared to the 16 NNE tissues (P<0.05). The MSH3‑methylated cases exhibited significantly lower mRNA and protein expression levels than the unmethylated cases (P<0.05). The MSH3 mRNA and protein expression levels were significantly associated with the variable T stage (P<0.05); however, they did not correlate with the age and sex of the patients, or with the N stage, TNM classification or histopathological subtype (P>0.05). On the whole, MSH3 was frequently inactivated by promoter methylation and its mRNA and protein expression correlated with the primary tumor stage in NPC.

  14. The DNA methylation profile of liver tumors in C3H mice and identification of differentially methylated regions involved in the regulation of tumorigenic genes.

    PubMed

    Matsushita, Junya; Okamura, Kazuyuki; Nakabayashi, Kazuhiko; Suzuki, Takehiro; Horibe, Yu; Kawai, Tomoko; Sakurai, Toshihiro; Yamashita, Satoshi; Higami, Yoshikazu; Ichihara, Gaku; Hata, Kenichiro; Nohara, Keiko

    2018-03-22

    C3H mice have been frequently used in cancer studies as animal models of spontaneous liver tumors and chemically induced hepatocellular carcinoma (HCC). Epigenetic modifications, including DNA methylation, are among pivotal control mechanisms of gene expression leading to carcinogenesis. Although information on somatic mutations in liver tumors of C3H mice is available, epigenetic aspects are yet to be clarified. We performed next generation sequencing-based analysis of DNA methylation and microarray analysis of gene expression to explore genes regulated by DNA methylation in spontaneous liver tumors of C3H mice. Overlaying these data, we selected cancer-related genes whose expressions are inversely correlated with DNA methylation levels in the associated differentially methylated regions (DMRs) located around transcription start sites (TSSs) (promoter DMRs). We further assessed mutuality of the selected genes for expression and DNA methylation in human HCC using the Cancer Genome Atlas (TCGA) database. We obtained data on genome-wide DNA methylation profiles in the normal and tumor livers of C3H mice. We identified promoter DMRs of genes which are reported to be related to cancer and whose expressions are inversely correlated with the DNA methylation, including Mst1r, Slpi and Extl1. The association between DNA methylation and gene expression was confirmed using a DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) in Hepa1c1c7 cells and Hepa1-6 cells. Overexpression of Mst1r in Hepa1c1c7 cells illuminated a novel downstream pathway via IL-33 upregulation. Database search indicated that gene expressions of Mst1r and Slpi are upregulated and the TSS upstream regions are hypomethylated also in human HCC. These results suggest that DMRs, including those of Mst1r and Slpi, are involved in liver tumorigenesis in C3H mice, and also possibly in human HCC. Our study clarified genome wide DNA methylation landscape of C3H mice. The data provide useful information

  15. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  16. Methylation profile analysis of DNA repair genes in hepatocellular carcinoma with MS-MLPA.

    PubMed

    Ozer, Ozge; Bilezikci, Banu; Aktas, Sema; Sahin, Feride I

    2013-12-01

    Hepatocellular carcinoma (HCC) is one of the rare tumors with well-defined risk factors. The multifactorial etiology of HCC can be explained by its complex molecular pathogenesis. In the current study, the methylation status of 7 genes involved in DNA repair mechanisms, namely MLH1, PMS2, MSH6, MSH2, MGMT, MSH3, and MLH3, was investigated in tumor samples from HCC patients, using the methylation-specific-multiplex ligated probe amplification method and the results were correlated with available clinical findings. The most common etiological factor in these cases was the presence of hepatitis B alone (47.2%). Among the 56 cases that were studied, promoter methylation was detected in at least one of the genes in 27 (48.2%) cases, only in 1 gene in 13 (23.2%) cases, and in >1 gene in 14 (25%) cases. Of the 7 genes investigated, methylation was most frequently observed in MSH3, in 14 (25%) cases. Methylation of at least 1 gene was significantly more frequent in patients with single tumors than multifocal tumors. There were significant differences regarding hepatitis B status, Child Class, tumor number, grade, and TNM stage in cases where PMS2 methylation was detected. Our results suggest that methylation of genes involved in mismatch repair may be responsible in the pathogenesis of HCC, and evaluating changes in multiple genes in these pathways simultaneously would be more informative. Despite being a robust and relatively inexpensive method, the methylation-specific-multiplex ligated probe amplification assay could be more extensively applied with improvements in the currently intricate data analysis component.

  17. Identification of Methylated Genes Associated with Aggressive Bladder Cancer

    PubMed Central

    Marsit, Carmen J.; Houseman, E. Andres; Christensen, Brock C.; Gagne, Luc; Wrensch, Margaret R.; Nelson, Heather H.; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K.; Andrew, Angeline S.; Schned, Alan R.; Karagas, Margaret R.; Kelsey, Karl T.

    2010-01-01

    Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment. PMID:20808801

  18. Identification of methylated genes associated with aggressive bladder cancer.

    PubMed

    Marsit, Carmen J; Houseman, E Andres; Christensen, Brock C; Gagne, Luc; Wrensch, Margaret R; Nelson, Heather H; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K; Andrew, Angeline S; Schned, Alan R; Karagas, Margaret R; Kelsey, Karl T

    2010-08-23

    Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.

  19. Association between promoter hypermethylation of the DACT2 gene and tumor stages in breast cancer.

    PubMed

    Marusa Borgonio-Cuadra, Veronica; Miranda-Duarte, Antonio; Rojas-Toledo, Xochitl; Garcia-Hernandez, Normand; Alfredo Sierra-Ramirez, Jose; Cardenas-Garcia, Maura; Elena Hernandez-Caballero, Marta

    2018-01-01

    Aberrant methylation of CpG islands in the promoter is a hallmark of cancer, leading to transcriptional silencing of tumor suppressor genes. The aim of this work was to evaluate the promoter methylation status of the DACT2 gene in breast cancer (BC) tissue and to analyze its possible effect on tumor type or grade. CpG island from the DACT2 promoter in region -240 to -14 from transcriptional start site (TSS) were obtained. Through the use of sodium bisulfite DNA conversion analysis, followed by detection with MSP (methylation specific PCR), we analyzed 79 BC and 15 adjacent healthy samples. T he c ases a nalyzed w ere i n s tage I ( 2.5%), I I (38%), or III (59.5%). The most frequent tumor type was invasive ductal carcinoma (71.4%). Methylation analysis comparing tumor tissues with adjacent non-cancerous tissues showed statistical significance. Methylation was observed in 32.9% (26/79) of the samples; no methylation was found in adjacent healthy tissue. DACT2 methylation was associated with tumor stage I-II (p=0.03) and stage III (p=0.004). An association was found of DACT2 promoter methylation with advanced tumor stages. This gene has been suggested as a potential biomarker, however, more investigation is required to validate this function.

  20. Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat

    PubMed Central

    Williams, Ben P.; Pignatta, Daniela; Henikoff, Steven; Gehring, Mary

    2015-01-01

    Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. PMID:25826366

  1. Quantitative assessment of the association between APC promoter methylation and breast cancer.

    PubMed

    He, Keli; Zhang, Li; Long, Xinghua

    2016-06-21

    Adenomatous polyposis coli (APC) is an important tumor suppressor gene in breast cancer. However, there were inconsistent conclusions in the association between APC promoter methylation and breast cancer. Hence, we conducted a meta-analysis to quantitatively assess the clinicopathological significance and diagnosis role of APC methylation in breast cancer. In total, 3172 samples from 29 studies were performed in this study. The odds ratio (OR) of APC methylation was 5.92 (95% CI = 3.16-11.07) in breast cancer cases compared to controls,. The APC promoter methylation was associated with cancer stage (OR = 0.47, 95% CI = 0.28-0.80, P = 0.006), lymph node metastases (OR = 0.55, 95% CI = 0.36-0.84, P = 0.005) and ER status (OR = 1.34, 95% CI = 1.03-1.73, P = 0.003) in breast cancer. Furthermore, the sensitivity and specificity for all included studies were 0.444 (95% CI: 0.321-0.575, P < 0.0001) and 0.976 (95% CI: 0.916-0.993, P < 0.0001), respectively. These results suggested that APC promoter methylation was associated with breast cancer risk, and it could be a valuable biomarker for diagnosis, treatment and prognosis of breast cancer.

  2. Global methylation and promoter-specific methylation of the P16, SOCS-1, E-cadherin, P73 and SHP-1 genes and their expression in patients with multiple myeloma during active disease and remission

    PubMed Central

    Martínez-Baños, Déborah; Sánchez-Hernández, Beatríz; Jiménez, Guadalupe; Barrera-Lumbreras, Georgina; Barrales-Benítez, Olga

    2017-01-01

    Tumor suppressor gene promoter CpG island methylation is a well-recognized mechanism in cancer pathogenesis, but its role in multiple myeloma (MM) is controversial. The present study investigated the methylation status and expression of P16, suppressor of cytokine signaling 1 (SOCS-1), P73, E-cadherin and Src homology region 2 domain-containing phosphatase 1 (SHP-1), as well as global methylation in patients with MM during active disease and remission. Bone marrow samples were obtained from 43 patients at the Multiple Myeloma Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (Mexico City, Mexico) during active disease and remission. Methylation-specific polymerase chain reaction and ELISA were performed on bisulfite-treated or untreated DNA to determine promoter-specific or genomic methylation, respectively. Gene expression was measured using reverse-transcription polymerase chain reaction. The results indicated that SOCS-1 methylation occurred more frequently during active disease than remission [29 vs. 3.2% (P=0.021)] and was associated with more advanced forms of the disease [international staging system (ISS) 3, 16.67% vs. ISS 1, 8.3% (P=0.037)]. SHP-1 methylation during active disease was associated with a lower probability of survival at 39-month follow up (median), 52.5 vs. 87.5% (P=0.025). The percentage of methylation was associated with active disease at remission, but this was not significant. Global hypomethylation at remission was a negative predictor factor for overall survival (OS). The results indicated that methylated P16, SOCS-1 and SHP-1 were associated with clinical variables of poor prognosis in MM, likewise the persistence of global hypomethylation at remission. The negative impact on OS of global hypomethylation at remission must be confirmed in a larger sample. Future studies are necessary to investigate whether patients with global hypermethylation at remission should receive more aggressive treatments to

  3. Global methylation and promoter-specific methylation of the P16, SOCS-1, E-cadherin, P73 and SHP-1 genes and their expression in patients with multiple myeloma during active disease and remission.

    PubMed

    Martínez-Baños, Déborah; Sánchez-Hernández, Beatríz; Jiménez, Guadalupe; Barrera-Lumbreras, Georgina; Barrales-Benítez, Olga

    2017-05-01

    Tumor suppressor gene promoter CpG island methylation is a well-recognized mechanism in cancer pathogenesis, but its role in multiple myeloma (MM) is controversial. The present study investigated the methylation status and expression of P16 , suppressor of cytokine signaling 1 ( SOCS-1 ), P73, E-cadherin and Src homology region 2 domain-containing phosphatase 1 ( SHP-1 ), as well as global methylation in patients with MM during active disease and remission. Bone marrow samples were obtained from 43 patients at the Multiple Myeloma Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (Mexico City, Mexico) during active disease and remission. Methylation-specific polymerase chain reaction and ELISA were performed on bisulfite-treated or untreated DNA to determine promoter-specific or genomic methylation, respectively. Gene expression was measured using reverse-transcription polymerase chain reaction. The results indicated that SOCS-1 methylation occurred more frequently during active disease than remission [29 vs. 3.2% (P=0.021)] and was associated with more advanced forms of the disease [international staging system (ISS) 3, 16.67% vs. ISS 1, 8.3% (P=0.037)]. SHP-1 methylation during active disease was associated with a lower probability of survival at 39-month follow up (median), 52.5 vs. 87.5% (P=0.025). The percentage of methylation was associated with active disease at remission, but this was not significant. Global hypomethylation at remission was a negative predictor factor for overall survival (OS). The results indicated that methylated P16 , SOCS-1 and SHP-1 were associated with clinical variables of poor prognosis in MM, likewise the persistence of global hypomethylation at remission. The negative impact on OS of global hypomethylation at remission must be confirmed in a larger sample. Future studies are necessary to investigate whether patients with global hypermethylation at remission should receive more aggressive treatments to

  4. Term placenta shows methylation independent down regulation of Cyp19 gene in animals with retained fetal membranes.

    PubMed

    Ghai, Sandeep; Monga, Rachna; Mohanty, T K; Chauhan, M S; Singh, Dheer

    2012-02-01

    Retention of fetal membranes (RFM) is the major post-partum disorder in dairy cattle. Cyp19 gene encodes the aromatase enzyme responsible for catalyzing the rate limiting step in estrogen biosynthesis, an important hormone for placental maturation and expulsion. The present study was aimed for comparative analysis of Cyp19 gene expression and its epigenetic regulation in placental cotyledons of animals with and without RFM. Significantly lower expression of Cyp19 gene was found in placental samples of RFM affected animals in comparison to normal animals. Methylation analysis of 5 CpG dinucleotides of placenta specific Cyp19 gene promoter I.1 and proximal promoter, PII showed hypo-methylation of both PI.1 and PII in term placenta of normal and diseased animals. In conclusion, a mechanism other than promoter methylation is responsible for decreased aromatase expression in placental cotyledons of animals suffering from RFM. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. CpG methylation of APC promoter 1A in sporadic and familial breast cancer patients.

    PubMed

    Debouki-Joudi, Saoussen; Trifa, Fatma; Khabir, Abdelmajid; Sellami-Boudawara, Tahia; Frikha, Mounir; Daoud, Jamel; Mokdad-Gargouri, Raja

    2017-01-01

    Tumour suppressor gene (TSG) silencing through promoter hypermethylation plays an important role in cancer initiation. The aim of this study was to assess the extent of methylation of APC gene promoter in 91 sporadic and 44 familial cases of Tunisian patients with breast cancer (BC) in. The frequency of APC promoter methylation is somewhat similar for sporadic and familial breast cancer cases, (52.1%, and 54.5% respectively). For sporadic breast cancer patients, there was a significant correlation of APC promoter hypermethylation with TNM stage (p = 0.024) and 3-year survival (p = 0.025). Regarding the hormonal status (HR), we found significant association between negativity to PR and unmethylated APC (p= 0.005) while ER and Her2/neu are not correlated. Moreover, unmethylated APC promoter is more frequent in tumours expressing at least one out the 3 proteins compared to triple negative cases (p= 0.053). On the other hand, aberrant methylation of APC was associated with tumour size (p = 0.036), lymph node (p = 0.028), distant metastasis (p = 0.031), and 3-year survival (p = 0.046) in the group of patients with familial breast cancer. Moreover, patients with sporadic breast cancer displaying the unmethylated profile have a significant prolonged overall survival compared to those with the methylated pattern of APC promoter (p log rank = 0.008). Epigenetic change at the CpG islands in the APC promoter was associated with the silence of its transcript and the loss of protein expression suggesting that this event is the main mechanism regulating the APC expression in breast cancer. In conclusion, our data showed that the loss of APC through aberrant methylation is associated with the aggressive behavior of both sporadic and familial breast cancer in Tunisian patients.

  6. Bronchial lavage P 16INK4A gene promoter methylation and lung cancer diagnosis: A meta-analysis.

    PubMed

    Yifan, D; Qun, L; Yingshuang, H; Xulin, L; Jianjun, W; Qian, M; Yuman, Yu; Zhaoyang, R

    2015-12-01

    To evaluate the diagnostic value of bronchial lavage P16INK4A promoter methylation and lung cancer. The databases of PubMed, Medline, China National Knowledge Infrastructure, and Wanfang were electronically searched by two reviewers to find the suitable studies related to the association between P16INK4A promoter methylation and lung cancer. The P16INK4A promoter methylation rate was extracted from each included individual study. The diagnostic sensitivity, specificity, and area under the receiver operating characteristic ROC curve of bronchial lavage P16INK4Aas a biomarker for diagnosis of lung cancer were pooled by stata 11.0 software (Stata Corporation, College Station, TX, USA). At last, 10 publications were included in this meta-analysis. Of the included 10 studies, five are published in English with relatively high quality and other five papers published in Chinese have relatively low quality. The pooled sensitivity and specificity of bronchial lavage P16INK4A promoter methylation for lung cancer diagnosis were 0.61 (95% confidence interval [CI]: 0.57-0.65) and 0.81 (95% CI: 0.78-0.85), respectively, with random effect model. The ROC curve were calculated and drawn according to Bayes' theorem by stata 11.0 software. The systematic area under the ROC was 0.72 (95% CI: 0.68-0.76), which indicated that the diagnostic value of bronchial lavage P16INK4A promoter methylation for lung cancer was relatively high. Moreover, no significant publication bias was existed in this meta-analysis (t = 0.69, P > 0.05). Bronchial lavage P16INK4A promoter methylation can be a potential biomarker for diagnosis of lung cancer.

  7. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tingting; Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Chen, Man

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a singlemore » site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine

  8. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    PubMed

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  9. Promoting gene expression in plants by permissive histone lysine methylation

    PubMed Central

    Millar, Tony; Finnegan, E Jean

    2009-01-01

    Plants utilize sophisticated epigenetic regulatory mechanisms to coordinate changes in gene expression during development and in response to environmental stimuli. Epigenetics refers to the modification of DNA and chromatin associated proteins, which affect gene expression and cell function, without changing the DNA sequence. Such modifications are inherited through mitosis, and in rare instances through meiosis, although it can be reversible and thus regulatory. Epigenetic modifications are controlled by groups of proteins, such as the family of histone lysine methytransferases (HKMTs). The catalytic core known as the SET domain encodes HKMT activity and either promotes or represses gene expression. A large family of SET domain proteins is present in Arabidopsis where there is growing evidence that two classes of these genes are involved in promoting gene expression in a diverse range of developmental processes. This review will focus on the function of these two classes and the processes that they control, highlighting the huge potential this regulatory mechanism has in plants. PMID:19816124

  10. DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors

    PubMed Central

    Kneitz, Susanne; Weber, Dana; Fuchs, Joerg; Hedrich, Rainer; Deeken, Rosalia

    2013-01-01

    Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA–encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA–mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene

  11. DNA methylation mediated control of gene expression is critical for development of crown gall tumors.

    PubMed

    Gohlke, Jochen; Scholz, Claus-Juergen; Kneitz, Susanne; Weber, Dana; Fuchs, Joerg; Hedrich, Rainer; Deeken, Rosalia

    2013-01-01

    Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene

  12. The impact of endurance exercise on global and AMPK gene-specific DNA methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King-Himmelreich, Tanya S.; Schramm, Stefanie; Wolters, Miriam C.

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as wellmore » as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. -- Highlights: •AMPK gene methylation increases after moderate endurance exercise in humans and mice. •AMPKα mRNA and protein decrease after moderate endurance exercise in mice. •Global DNA methylation is not affected under the same conditions.« less

  13. The relationship between RASSF1A promoter methylation and thyroid carcinoma: A meta-analysis of 14 articles and a bioinformatics of 2 databases (PRISMA).

    PubMed

    Niu, Heng; Yang, Jingyu; Yang, Kunxian; Huang, Yingze

    2017-11-01

    DNA promoter methylation can suppresses gene expression and shows an important role in the biological functions of Ras association domain family 1A (RASSF1A). Many studies have performed to elucidate the role of RASSF1A promoter methylation in thyroid carcinoma, while the results were conflicting and heterogeneous. Here, we analyzed the data of databases to determine the relationship between RASSF1A promoter methylation and thyroid carcinoma. We used the data from 14 cancer-normal studies and Gene Expression Omnibus (GEO) database to analyze RASSF1A promoter methylation in thyroid carcinoma susceptibility. The data from the Cancer Genome Atlas project (TCGA) database was used to analyze the relationship between RASSF1A promoter methylation and thyroid carcinoma susceptibility, clinical characteristics, prognosis. Odds ratios were estimated for thyroid carcinoma susceptibility and hazard ratios were estimated for thyroid carcinoma prognosis. The heterogeneity between studies of meta-analysis was explored using H, I values, and meta-regression. We adopted quality criteria to classify the studies of meta-analysis. Subgroup analyses were done for thyroid carcinoma susceptibility according to ethnicity, methods, and primers. Result of meta-analysis indicated that RASSF1A promoter methylation is associated with higher susceptibility to thyroid carcinoma with small heterogeneity. Similarly, the result from GEO database also showed that a significant association between RASSF1A gene promoter methylation and thyroid carcinoma susceptibility. For the results of TCGA database, we found that RASSF1A promoter methylation is associated with susceptibility and poor disease-free survival (DFS) of thyroid carcinoma. In addition, we also found a close association between RASSF1A promoter methylation and patient tumor stage and age, but not in patients of different genders. The methylation status of RASSF1A promoter is strongly associated with thyroid carcinoma susceptibility and DFS

  14. Association of the CpG Methylation Pattern of the Proximal Insulin Gene Promoter with Type 1 Diabetes

    PubMed Central

    Fradin, Delphine; Le Fur, Sophie; Mille, Clémence; Naoui, Nadia; Groves, Chris; Zelenika, Diana; McCarthy, Mark I.; Lathrop, Mark; Bougnères, Pierre

    2012-01-01

    The insulin (INS) region is the second most important locus associated with Type 1 Diabetes (T1D). The study of the DNA methylation pattern of the 7 CpGs proximal to the TSS in the INS gene promoter revealed that T1D patients have a lower level of methylation of CpG -19, -135 and -234 (p = 2.10−16) and a higher methylation of CpG -180 than controls, while methylation was comparable for CpG -69, -102, -206. The magnitude of the hypomethylation relative to a control population was 8–15% of the corresponding levels in controls and was correlated in CpGs -19 and -135 (r = 0.77) and CpG -135 and -234 (r = 0.65). 70/485 (14%) of T1D patients had a simultaneous decrease in methylation of CpG -19, -135, -234 versus none in 317 controls. CpG methylation did not correlate with glycated hemoglobin or with T1D duration. The methylation of CpG -69, -102, -180, -206, but not CpG -19, -135, -234 was strongly influenced by the cis-genotype at rs689, a SNP known to show a strong association with T1D. We hypothesize that part of this genetic association could in fact be mediated at the statistical and functional level by the underlying changes in neighboring CpG methylation. Our observation of a CpG-specific, locus-specific methylation pattern, although it can provide an epigenetic biomarker of a multifactorial disease, does not indicate whether the reported epigenetic pattern preexists or follows the establishment of T1D. To explore the effect of chronic hyperglycemia on CpG methylation, we studied non obese patients with type 2 diabetes (T2D) who were found to have decreased CpG-19 methylation versus age-matched controls, similar to T1D (p = 2.10−6) but increased CpG-234 methylation (p = 5.10−8), the opposite of T1D. The causality and natural history of the different epigenetic changes associated with T1D or T2D remain to be determined. PMID:22567146

  15. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus.

    PubMed

    Zhao, Ming; Zhou, Yin; Zhu, Bochen; Wan, Mengjie; Jiang, Tingting; Tan, Qiqun; Liu, Yan; Jiang, Juqing; Luo, Shuaihantian; Tan, Yixin; Wu, Haijing; Renauer, Paul; Del Mar Ayala Gutiérrez, Maria; Castillo Palma, Maria Jesús; Ortega Castro, Rafaela; Fernández-Roldán, Concepción; Raya, Enrique; Faria, Raquel; Carvalho, Claudia; Alarcón-Riquelme, Marta E; Xiang, Zhongyuan; Chen, Jinwei; Li, Fen; Ling, Guanghui; Zhao, Hongjun; Liao, Xiangping; Lin, Youkun; Sawalha, Amr H; Lu, Qianjin

    2016-11-01

    Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease with limited reliable diagnostic biomarkers. We investigated whether gene methylation could meet sensitivity and specificity criteria for a robust biomarker. IFI44L promoter methylation was examined using DNA samples from a discovery set including 377 patients with SLE, 358 healthy controls (HCs) and 353 patients with rheumatoid arthritis (RA). Two independent sets including 1144 patients with SLE, 1350 HCs, 429 patients with RA and 199 patients with primary Sjögren's syndrome (pSS) were used for validation. Significant hypomethylation of two CpG sites within IFI44L promoter, Site1 (Chr1: 79 085 222) and Site2 (Chr1: 79 085 250; cg06872964), was identified in patients with SLE compared with HCs, patients with RA and patients with pSS. In a comparison between patients with SLE and HCs included in the first validation cohort, Site1 methylation had a sensitivity of 93.6% and a specificity of 96.8% at a cut-off methylation level of 75.5% and Site2 methylation had a sensitivity of 94.1% and a specificity of 98.2% at a cut-off methylation level of 25.5%. The IFI44L promoter methylation marker was also validated in an European-derived cohort. In addition, the methylation levels of Site1 and Site2 within IFI44L promoter were significantly lower in patients with SLE with renal damage than those without renal damage. Patients with SLE showed significantly increased methylation levels of Site1 and Site2 during remission compared with active stage. The methylation level of IFI44L promoter can distinguish patients with SLE from healthy persons and other autoimmune diseases, and is a highly sensitive and specific diagnostic marker for SLE. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Identification of Novel Gene Targets and Putative Regulators of Arsenic-Associated DNA Methylation in Human Urothelial Cells and Bladder Cancer

    PubMed Central

    Rager, Julia E.; Miller, Sloane; Tulenko, Samantha E.; Smeester, Lisa; Ray, Paul D.; Yosim, Andrew; Currier, Jenna M.; Ishida, María C.; González-Horta, Maria del Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Gutiérrez-Torres, Daniela S.; Drobná, Zuzana; Del Razo, Luz M.; García-Vargas, Gonzalo G.; Kim, William Y.; Zhou, Yi-Hui; Wright, Fred A.; Stýblo, Miroslav; Fry, Rebecca C.

    2016-01-01

    There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to a myriad of adverse health effects, including cancer of the bladder. The present study set out to identify DNA methylation patterns associated with iAs and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic (As)-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total As (tAs) and As species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 As-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the As- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer. PMID:26039340

  17. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers.

    PubMed

    Dallol, Ashraf; Forgacs, Eva; Martinez, Alonso; Sekido, Yoshitaka; Walker, Rosemary; Kishida, Takeshi; Rabbitts, Pamela; Maher, Eamonn R; Minna, John D; Latif, Farida

    2002-05-02

    The human homologue of the Drosophila Roundabout gene DUTT1 (Deleted in U Twenty Twenty) or ROBO1 (Locus Link ID 6091), a member of the NCAM family of receptors, was recently cloned from the lung cancer tumour suppressor gene region 2 (LCTSGR2 or U2020 region) at 3p12. DUTT1 maps within a region of overlapping homozygous deletions characterized in both small cell lung cancer lines (SCLC) and in a breast cancer line. In this report we (a) defined the genomic organization of the DUTT1 gene, (b) performed mutation and expression analysis of DUTT1 in lung, breast and kidney cancers, (c) identified tumour specific promoter region methylation of DUTT1 in human cancers. The gene was found to contain 29 exons and spans at least 240 kb of genomic sequence. The 5' region contains a CpG island, and the poly(A)(+) tail has an atypical 5'-GATAAA-3' signal. We analysed DUTT1 for mutations in lung, breast and kidney cancers, no inactivating mutations were detected by PCR-SSCP. However, seven germline missense changes were found and characterized. DUTT1 expression was not detectable in one out of 18 breast tumour lines analysed by RT-PCR. Bisulfite sequencing of the promoter region of DUTT1 gene in the HTB-19 breast tumour cell line (not expressing DUTT1) showed complete hypermethylation of CpG sites within the promoter region of the DUTT1 gene (-244 to +27 relative to the translation start site). The expression of DUTT1 gene was reactivated in HTB-19 after treatment with the demethylating agent 5-aza-2'-deoxycytidine. The same region was also found to be hypermethylated in six out of 32 (19%) primary invasive breast carcinomas and eight out of 44 (18%) primary clear cell renal cell carcinomas (CC-RCC) and in one out of 26 (4%) primary NSCLC tumours. Furthermore 80% of breast and 75% of CC-RCC tumours showing DUTT1 methylation had allelic losses for 3p12 markers hence obeying Knudson's two hit hypothesis. Our findings suggest that DUTT1 warrants further analysis as a candidate for

  18. The survival decrease in gastric cancer is associated with the methylation of B-cell CLL/lymphoma 6 member B promoter.

    PubMed

    Deng, Jingyu; Liang, Han; Dong, Qiuping; Hou, Yachao; Xie, Xingming; Yu, Jun; Fan, Daiming; Hao, Xishan

    2014-07-01

    The methylation of B-cell CLL/lymphoma 6 member B (BCL6B) DNA promoter was detected in several malignancies. Here, we quantitatively detect the methylated status of CpG sites of BCL6B DNA promoter of 459 patients with gastric cancer (GC) by using bisulfite gene sequencing. We show that patients with three or more methylated CpG sites in the BCL6B promoter were significantly associated with poor survival. Furthermore, by using the Akaike information criterion value calculation, we show that the methylated count of BCL6B promoter was identified to be the optimal prognostic predictor of GC patients.

  19. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  20. The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status

    PubMed Central

    Li, Dongming; Palanca, Ana Marie S; Won, So Youn; Gao, Lei; Feng, Ying; Vashisht, Ajay A; Liu, Li; Zhao, Yuanyuan; Liu, Xigang; Wu, Xiuyun; Li, Shaofang; Le, Brandon; Kim, Yun Ju; Yang, Guodong; Li, Shengben; Liu, Jinyuan; Wohlschlegel, James A; Guo, Hongwei; Mo, Beixin; Chen, Xuemei; Law, Julie A

    2017-01-01

    DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing. DOI: http://dx.doi.org/10.7554/eLife.19893.001 PMID:28452714

  1. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana.

    PubMed

    Wollmann, Heike; Stroud, Hume; Yelagandula, Ramesh; Tarutani, Yoshiaki; Jiang, Danhua; Jing, Li; Jamge, Bhagyshree; Takeuchi, Hidenori; Holec, Sarah; Nie, Xin; Kakutani, Tetsuji; Jacobsen, Steven E; Berger, Frédéric

    2017-05-18

    Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.

  2. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii.

    PubMed

    Li, Wanzhen; Wang, Yulong; Zhu, Jianyu; Wang, Zhangxun; Tang, Guiliang; Huang, Bo

    2017-03-01

    Conidia and mycelia are two important developmental stages in the asexual life cycle of entomopathogenic fungus Metarhizium. Despite the crucial role that DNA methylation plays in many biological processes, its role in regulation of gene expression and development in fungi is not yet fully understood. We performed genome-wide analysis of DNA methylation patterns of an M. robertsii strain with single base pair resolution. Specifically, we examined for changes in methylation patterns between the conidia and mycelia stages. The results showed that approximately 0.38 % of cytosines are methylated in conidia, which is lower than the DNA methylation level (0.42 %) in mycelia. We found that DNA methylation undergoes genome-wide reprogramming during fungal development in M. robertsii. 132 differentially methylated regions (DMRs), which were mostly distributed in gene regions, were identified. KEGG analysis revealed that the DMR-associated genes belong to metabolic pathways. Intriguingly, in contrast to most other eukaryotes, promoter activities in M. robertsii seemed differentially modulated by DNA methylation levels. We found that transcription tended to be enhanced in genes with moderate promoter methylation, while gene expression was decreased in genes with high or low promoter methylation. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.

    PubMed

    Baur, Brittany; Bozdag, Serdar

    2016-01-01

    DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.

  4. DNA methylation of miRNA-encoding genes in non-small cell lung cancer patients.

    PubMed

    Heller, Gerwin; Altenberger, Corinna; Steiner, Irene; Topakian, Thais; Ziegler, Barbara; Tomasich, Erwin; Lang, György; End-Pfützenreuter, Adelheid; Zehetmayer, Sonja; Döme, Balazs; Arns, Britt-Madeleine; Klepetko, Walter; Zielinski, Christoph C; Zöchbauer-Müller, Sabine

    2018-03-23

    De-regulated DNA methylation leading to transcriptional inactivation of certain genes occurs frequently in non-small cell lung cancers (NSCLC). Besides protein-encoding genes also microRNA (miRNA)-encoding genes may be targets for methylation in NSCLCs, however, the number of known methylated miRNA genes is still small. Thus, we investigated methylation of miRNA genes in primary tumours (TU) and corresponding non-malignant lung tissue samples (NL) of 50 NSCLC patients using methylated DNA immunoprecipitation followed by custom designed tiling microarray analyses (MeDIP-chip) and 252 differentially methylated probes between TU and NL samples were identified. These probes were annotated which resulted in the identification of 34 miRNA-encoding genes with increased methylation in TU specimens. While some of these miRNA-encoding genes were already known to be methylated in NSCLCs (e.g. miR-9-3, miR-124), methylation of the vast majority of them was unknown so far. We selected six miRNA genes (miR-10b, miR-1179, miR-137, miR-572, miR-3150b and miR-129-2) for gene-specific methylation analyses in TU and corresponding NL samples of 104 NSCLC patients and observed a statistically significant increase of methylation of these miRNA genes in TU samples (p<0.0001, respectively). In silico target prediction of the six miRNAs identified several oncogenic/cell proliferation promoting factors (e.g. CCNE1 as miR-1179 target). To investigate if miR-1179 indeed targets CCNE1, we transfected miR-1179 mimics into CCNE1 expressing NSCLC cells and observed down-regulated CCNE1 mRNA expression in these cells compared to control cells. Similar effects on Cyclin E1 expression were seen in Western blot analyses. In addition, we found a statistically significant growth reduction of NSCLC cells transfected with miR-1179 mimics compared to control cells. In conclusion, we identified many methylated miRNA genes in NSCLC patients and found that miR-1179 is a potential tumour cell growth

  5. Inactivation of parkin by promoter methylation correlated with lymph node metastasis and genomic instability in nasopharyngeal carcinoma.

    PubMed

    Ni, Haifeng; Zhou, Zhen; Jiang, Bo; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong

    2017-03-01

    This study aimed to investigate the inactivation of the parkin gene by promoter methylation and its relationship with genome instability in nasopharyngeal carcinoma. Parkin was considered as a tumor suppressor gene in various types of cancers. However, its role in nasopharyngeal carcinoma is unexplored. Genomic instabilities were detected in nasopharyngeal carcinoma tissues by the random amplified polymorphic DNA. The methylation-specific polymerase chain reaction, semi-quantitative reverse transcription polymerase chain reaction, and immunohistochemical analysis were used to detect methylation and mRNA and protein expression of parkin in 54 cases of nasopharyngeal carcinoma tissues and 16 cases of normal nasopharyngeal epithelia tissues, and in 5 nasopharyngeal carcinoma cell lines (CNE1, CNE2, TWO3, C666, and HONE1) and 1 normal nasopharyngeal epithelia cell line (NP69). mRNA expression of parkin in CNE1 and CNE2 was analyzed before and after methyltransferase inhibitor 5-aza-2-deoxycytidine treatment. The relationship between promoter methylation and mRNA expression, demethylation and mRNA expression, and mRNA and protein expression of the gene and clinical factors and genomic instabilities were analyzed. The mRNA and protein expression levels were significantly reduced in 54 cases of human nasopharyngeal carcinoma compared with 16 cases of normal nasopharyngeal epithelia. Parkin-methylated cases showed significantly lower mRNA and protein expression levels compared with unmethylated cases. After 5-aza-2-deoxycytidine treatment, parkin mRNA expression was restored in CNE1 and CNE2; 92.59% (50/54) of nasopharyngeal carcinoma demonstrated genomic instability. Parkin is frequently inactivated by promoter methylation, and its mRNA and protein expression correlate with lymph node metastasis and genomic instability. Parkin deficiency probably promotes tumorigenesis in nasopharyngeal carcinoma.

  6. Promoter hypermethylation and downregulation of the FAS gene may be involved in colorectal carcinogenesis.

    PubMed

    Manoochehri, Mehdi; Borhani, Nasim; Karbasi, Ashraf; Koochaki, Ameneh; Kazemi, Bahram

    2016-07-01

    Aberrant DNA methylation has been investigated in carcinogenesis and as biomarker for the early detection of colorectal cancer (CRC). The present study aimed to define the methylation status in the regulatory elements of two proapoptotic genes, Fas cell surface death receptor (FAS) and BCL2-associated X protein (BAX). DNA methylation analysis was performed in tumor and adjacent normal tissue using Hpa II/ Msp I restriction digestion and methylation-specific polymerase chain reaction (PCR). The results observed downregulation of the FAS and BAX genes in the CRC tissues compared with the adjacent normal samples. Furthermore, demethylation using 5-aza-2'-deoxycytidine treatment followed by reverse-transcription quantitative PCR were performed on the HT-29 cell line to measure BAX and FAS mRNA expression following demethylation. The 5-aza-2'-deoxycytidine treatment resulted in significant FAS gene upregulation in the HT-29 cell line, but no significant difference in BAX expression. Furthermore, analysis of CpG islands in the FAS gene promoter revealed that the FAS promoter was significantly hypermethylated in 53.3% of tumor tissues compared with adjacent normal samples. Taken together, the results indicate that decreased expression of the FAS gene due to hypermethylation of its promoter may lead to apoptotic resistance, and acts as an important step during colorectal carcinogenesis.

  7. Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals.

    PubMed

    Pavanello, Sofia; Bollati, Valentina; Pesatori, Angela Cecilia; Kapka, Lucyna; Bolognesi, Claudia; Bertazzi, Pier Alberto; Baccarelli, Andrea

    2009-10-01

    We investigated the effect of chronic exposure to polycyclic aromatic hydrocarbons (PAHs) on DNA methylation states (percentage of methylated cytosines (%mC)) in Polish male nonsmoking coke-oven workers and matched controls. Methylation states of gene-specific promoters (p53, p16, HIC1 and IL-6) and of Alu and LINE-1 repetitive elements, as surrogate measures of global methylation, were quantified by pyrosequencing in peripheral blood lymphocytes (PBLs). DNA methylation was evaluated in relation to PAH exposure, assessed by urinary 1-pyrenol and anti-benzo[a]pyrene diolepoxide (anti-B[a]PDE)-DNA adduct levels, a critical genetic damage from B[a]P. We also evaluated whether PAH-induced DNA methylation states were in turn associated with micronuclei in PBLs, an indicator of chromosomal instability.

  8. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients.

    PubMed

    Balgkouranidou, I; Matthaios, D; Karayiannakis, A; Bolanaki, H; Michailidis, P; Xenidis, N; Amarantidis, K; Chelis, L; Trypsianis, G; Chatzaki, E; Lianidou, E S; Kakolyris, S

    2015-08-01

    Gastric carcinogenesis is a multistep process including not only genetic mutations but also epigenetic alterations. The best known and more frequent epigenetic alteration is DNA methylation affecting tumor suppressor genes that may be involved in various carcinogenetic pathways. The aim of the present study was to investigate the methylation status of APC promoter 1A and RASSF1A promoter in cell free DNA of operable gastric cancer patients. Using methylation specific PCR, we examined the methylation status of APC promoter 1A and RASSF1A promoter in 73 blood samples obtained from patients with gastric cancer. APC and RASSF1A promoters were found to be methylated in 61 (83.6%) and 50 (68.5%) of the 73 gastric cancer samples examined, but in none of the healthy control samples (p < 0.001). A significant association between methylated RASSF1A promoter status and lymph node positivity was observed (p = 0.005). Additionally, a significant correlation between a methylated APC promoter and elevated CEA (p = 0.033) as well as CA-19.9 (p = 0.032) levels, was noticed. The Kaplan-Meier estimates of survival, significantly favored patients with a non-methylated APC promoter status (p = 0.008). No other significant correlations between APC and RASSF1A methylation status and different tumor variables examined was observed. Serum RASSF1A and APC promoter hypermethylation is a frequent epigenetic event in patients with early operable gastric cancer. The observed correlations between APC promoter methylation status and survival as well as between a hypermethylated RASSF1A promoter and nodal positivity may be indicative of a prognostic role for those genes in early operable gastric cancer. Additional studies, in a larger cohort of patients are required to further explore whether these findings could serve as potential molecular biomarkers of survival and/or response to specific treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium.

    PubMed

    Feng, Sheng Jun; Liu, Xue Song; Tao, Hua; Tan, Shang Kun; Chu, Shan Shan; Oono, Youko; Zhang, Xian Duo; Chen, Jian; Yang, Zhi Min

    2016-12-01

    We report genome-wide single-base resolution maps of methylated cytosines and transcriptome change in Cd-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between Cd-exposed and Cd-free rice genomes. There are 2320 non-redundant differentially methylated regions detected in the genome. RNA sequencing revealed 2092 DNA methylation-modified genes differentially expressed under Cd exposure. More genes were found hypermethylated than those hypomethylated in CG, CHH and CHG (where H is A, C or T) contexts in upstream, gene body and downstream regions. Many of the genes were involved in stress response, metal transport and transcription factors. Most of the DNA methylation-modified genes were transcriptionally altered under Cd stress. A subset of loss of function mutants defective in DNA methylation and histone modification activities was used to identify transcript abundance of selected genes. Compared with wide type, mutation of MET1 and DRM2 resulted in general lower transcript levels of the genes under Cd stress. Transcripts of OsIRO2, OsPR1b and Os09g02214 in drm2 were significantly reduced. A commonly used DNA methylation inhibitor 5-azacytidine was employed to investigate whether DNA demethylation affected physiological consequences. 5-azacytidine provision decreased general DNA methylation levels of selected genes, but promoted growth of rice seedlings and Cd accumulation in rice plant. © 2016 John Wiley & Sons Ltd.

  10. Dietary folate deficiency in pseudopregnant mice has no effect on homeobox A10 promoter methylation or expression.

    PubMed

    Long, Chunlan; He, Junlin; Liu, Xueqing; Chen, Xuemei; Gao, Rufei; Wang, Yingxiong; Ding, Yubin

    2012-12-01

    During the reproductive cycle, a number of genes controlling endometrial changes are regulated by DNA methylation, a common epigenetic modification. Because dietary folate affects DNA methylation, we determined whether a folate-deficient diet (FDD) alters DNA methylation in endometria of pseudopregnant mice, focusing on the homeobox A10 (Hoxa10) promoter. Mice were given an FDD or control diet for 40 to 45 days and examined on day 5 of pseudopregnancy. Compared to control mice, FDD mice had lower folate levels in liver and serum (P = .004). However, the FDD did not significantly affect DNA methylation within the cytosine-guanine dinucleotide (CpG)-rich Hoxa10 promoter, even when specific CpG sites were examined (P > .05). In endometrial tissue sections, the localization of anti-Hoxa10 staining was unchanged in FDD mice. Therefore, folate deficiency did not significantly affect promoter methylation or expression of Hoxa10.

  11. Decreased expression level of BER genes in Alzheimer's disease patients is not derivative of their DNA methylation status.

    PubMed

    Sliwinska, Agnieszka; Sitarek, Przemysław; Toma, Monika; Czarny, Piotr; Synowiec, Ewelina; Krupa, Renata; Wigner, Paulina; Bialek, Katarzyna; Kwiatkowski, Dominik; Korycinska, Anna; Majsterek, Ireneusz; Szemraj, Janusz; Galecki, Piotr; Sliwinski, Tomasz

    2017-10-03

    Neurodegeneration in Alzheimer's disease can be caused by accumulation of oxidative DNA damage resulting from altered expression of genes involved in the base excision repair system (BER). Promoter methylation can affect the profile of BER genes expression. Decreased expression of BER genes was observed in the brains of AD patients. The aim of our study was to compare the expression and methylation profiles of six genes coding for proteins involved in BER, namely: hOGG1, APE1, MUTYH, NEIL1, PARP1 and XRCC1, in the peripheral blood cells of AD patients and healthy volunteers. The study consisted of 100 persons diagnosed with Alzheimer's disease according to DSM-IV criteria, and 110 healthy volunteers. DNA and total RNA were isolated from venous blood cells. Promoter methylation profiles were obtained by High Resolution Melting (HRM) analysis of bisulfide converted DNA samples. Real-time PCR with TaqMan probes was employed for gene expression analysis. APE1, hOGG1, MUTYH, PARP1 and NEIL1 were significantly (p<0.001) down-regulated in the lymphocytes of AD patients, as compared to healthy volunteers. Expression of XRCC1 didn't differ significantly between both groups. We did not find any differences in the methylation pattern of any of the investigated BER genes. The methylation status of promoters is not associated with downregulation of BER genes. Our results show that downregulation of BER genes detected in peripheral blood samples could reflect the changes occurring in the brain of patients with AD, and may be a useful biomarker of this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Serotonin 1B Receptor Gene (HTR1B) Methylation as a Risk Factor for Callous-Unemotional Traits in Antisocial Boys.

    PubMed

    Moul, Caroline; Dobson-Stone, Carol; Brennan, John; Hawes, David J; Dadds, Mark R

    2015-01-01

    The serotonin system is thought to play a role in the aetiology of callous-unemotional (CU) traits in children. Previous research identified a functional single nucleotide polymorphism (SNP) from the promoter region of the serotonin 1B receptor gene as being associated with CU traits in boys with antisocial behaviour problems. This research tested the hypothesis that CU traits are associated with reduced methylation of the promoter region of the serotonin 1B receptor gene due to the influence of methylation on gene expression. Participants (N = 117) were boys with antisocial behaviour problems aged 3-16 years referred to University of New South Wales Child Behaviour Research Clinics. Participants volunteered a saliva sample from which the genotype of a SNP from the promoter region of the serotonin 1B receptor gene and the methylation levels of 30 CpG sites from 3 CpG regions surrounding the location of this polymorphism were assayed. Lower levels of serotonin 1B receptor gene methylation were associated with higher levels of CU traits. This relationship, however, was found to be moderated by genotype and carried exclusively by two CpG sites for which levels of methylation were negatively associated with overall methylation levels in this region of the gene. Results provide support to the emerging literature that argues for a genetically-driven system-wide alteration in serotonin function in the aetiology of CU traits. Furthermore, the results suggest that there may be two pathways to CU traits that involve methylation of the serotonin 1B receptor gene; one that is driven by a genotypic risk and another that is associated with risk for generally increased levels of methylation. Future research that aims to replicate and further investigate these results is required.

  13. Differential DNA methylation of the meiosis-specific gene FKBP6 in testes of yak and cattle-yak hybrids.

    PubMed

    Li, B; Luo, H; Weng, Q; Wang, S; Pan, Z; Xie, Z; Wu, W; Liu, H; Li, Q

    2016-12-01

    FK506-binding protein 6 (FKBP6) is essential for meiosis during mammalian spermatogenesis. However, the molecular regulation of FKBP6 during spermatogenesis remains unclear. In the present study, we performed molecular characterization of the meiosis-specific gene FKBP6 in yak testes. Yak FKBP6 encodes a polypeptide of 295 amino acid residues with an FK506-binding domain (FKBP_C) and three tetratricopeptide repeat domains. The methylation level of the FKBP6 promoter in testes was significantly higher in cattle-yak with male sterility than in yak, and the FKBP6 promoter was methylated in liver tissues in which FKBP6 is not expressed. FKBP6 promoter activity was significantly decreased after treatment with the M.SssI methyltransferase in vitro. Furthermore, the FKBP6 gene was remarkably activated in bovine mammary epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine. Taken together, our results demonstrate for the first time that the FKBP6 promoter is differentially methylated in testes; together with the functional promoter analysis, this suggests that methylation of this promoter may contribute to cattle-yak male infertility. © 2016 Blackwell Verlag GmbH.

  14. CpG island methylation of TMS1/ASC and CASP8 genes in cervical cancer

    PubMed Central

    2009-01-01

    Background Gene silencing associated with aberrant methylation of promoter region CpG islands is an acquired epigenetic alteration that serves as an alternative to genetic defects in the inactivation of tumor suppressor and other genes in human cancers. Aims This study describes the methylation status of TMS1/ASC and CASP8 genes in cervical cancer. We also examined the prevalence of TMS1/ASC and CASP8 genes methylation in cervical cancer tissue and none - neo plastic samples in an effort to correlate with smoking habit and clinicopathological features. Method Target DNA was modified by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequently amplified by Methylation Specific (MS) PCR with primers specific for methylated versus unmethylated DNA. The PCR product was detected by gel electrophoresis and combined with the clinical records of patients. Results The methylation pattern of the TMS1/ASC and CASP8 genes in specimens of cervical cancer and adjacent normal tissues were detected [5/80 (6.2%), 3/80 (3.75%)-2/80 (2.5%), 1/80 (1.2%) respectively]. No statistical differences were seen in the extent of differentiation, invasion, pathological type and smoking habit between the methylated and unmethylated tissues (P > 0.05). Conclusion The present study conclude that the frequency of TMS1/ASC and CASP8 genes methylation in cervical cancer are rare (< 6%), and have no any critical role in development of cervical cancer. PMID:19258216

  15. What triggers differential DNA methylation of genes and TEs: contribution of body methylation?

    PubMed

    Inagaki, S; Kakutani, T

    2012-01-01

    Transposable elements (TEs) are epigenetically silenced with extensive DNA methylation. The silent epigenetic marks should, however, be excluded from active genes. By genetic approaches, we study mechanisms to remove the heterochromatin marks from transcribed genes. Based on our observations on control of TE transcription, we propose a possible trigger for the TE-specific accumulation of DNA methylation. A critical difference between TEs and genes could be their responses to the DNA methylation in the internal part of transcribed regions. When their internal region is methylated, genes are still transcribed, but TEs could be silenced, which may reflect the obligatory position of every critical cis-acting element within the TE itself. This initial difference of TEs and genes will be amplified by positive feedback loops to stabilize active or silent states. Thus, the mechanisms to accumulate heterochromatin marks within transcribed regions could provide a trigger to induce differential DNA methylation between genes and TEs.

  16. Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC.

    PubMed

    Scarpa, Marco; Scarpa, Melania; Castagliuolo, Ignazio; Erroi, Francesca; Kotsafti, Andromachi; Basato, Silvia; Brun, Paola; D'Incà, Renata; Rugge, Massimo; Angriman, Imerio; Castoro, Carlo

    2016-03-01

    BACKGROUND PROMOTER: hypermethylation plays a major role in cancer through transcriptional silencing of critical genes. The aim of our study is to evaluate the methylation status of these genes in the colonic mucosa without dysplasia or adenocarcinoma at the different steps of sporadic and UC-related carcinogenesis and to investigate the possible role of genomic methylation as a marker of CRC. The expression of Dnmts 1 and 3A was significantly increased in UC-related carcinogenesis compared to non inflammatory colorectal carcinogenesis. In non-neoplastic colonic mucosa, the number of methylated genes resulted significantly higher in patients with CRC and in those with UC-related CRC compared to the HC and UC patients and patients with dysplastic lesion of the colon. The number of methylated genes in non-neoplastic colonic mucosa predicted the presence of CRC with good accuracy either in non inflammatory and inflammatory related CRC. Colonic mucosal samples were collected from healthy subjects (HC) (n = 30) and from patients with ulcerative colitis (UC) (n = 29), UC and dysplasia (n = 14), UC and cancer (n = 10), dysplastic adenoma (n = 14), and colon adenocarcinoma (n = 10). DNA methyltransferases-1, -3a, -3b, mRNA expression were quantified by real time qRT-PCR. The methylation status of CDH13, APC, MLH1, MGMT1 and RUNX3 gene promoters was assessed by methylation-specific PCR. Methylation status of APC, CDH13, MGMT, MLH1 and RUNX3 in the non-neoplastic mucosa may be used as a marker of CRC: these preliminary results could allow for the adjustment of a patient's surveillance interval and to select UC patients who should undergo intensive surveillance.

  17. Changes in SCD gene DNA methylation after bariatric surgery in morbidly obese patients are associated with free fatty acids

    PubMed Central

    Morcillo, Sonsoles; Martín-Núñez, Gracia Mª; García-Serrano, Sara; Gutierrez-Repiso, Carolina; Rodriguez-Pacheco, Francisca; Valdes, Sergio; Gonzalo, Montserrat; Rojo-Martinez, Gemma; Moreno-Ruiz, Francisco J.; Rodriguez-Cañete, Alberto; Tinahones, Francisco; García-Fuentes, Eduardo

    2017-01-01

    Stearoyl CoA Desaturase-1 (SCD) is considered as playing an important role in the explanation of obesity. The aim of this study was to evaluate whether the DNA methylation SCD gene promoter is associated with the metabolic improvement in morbidly obese patients after bariatric surgery. The study included 120 subjects with morbid obesity who underwent a laparoscopic Roux-en Y gastric by-pass (RYGB) and a control group of 30 obese subjects with a similar body mass index (BMI) to that found in morbidly obese subjects six months after RYGB. Fasting blood samples were obtained before and at six months after RYGB. DNA methylation was measured by pyrosequencing technology. DNA methylation levels of the SCD gene promoter were lower in morbidly obese subjects before bariatric surgery but increased after RYGB to levels similar to those found in the control group. Changes of DNA methylation SCD gene were associated with the changes of free fatty acids levels (r = −0.442, p = 0.006) and HOMA-IR (r = −0.249, p = 0.035) after surgery. RYGB produces an increase in the low SCD methylation promoter levels found in morbidly obese subjects. This change of SCD methylation levels is associated with changes in FFA and HOMA-IR. PMID:28393901

  18. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter.

    PubMed

    Lovinsky-Desir, Stephanie; Jung, Kyung Hwa; Jezioro, Jacqueline R; Torrone, David Z; de Planell-Saguer, Mariangels; Yan, Beizhan; Perera, Frederica P; Rundle, Andrew G; Perzanowski, Matthew S; Chillrud, Steven N; Miller, Rachel L

    2017-01-01

    Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 ( FOXP3 ) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). We performed a cross-sectional study of 135 children ages 9-14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation ( p  > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m 3 ), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs -77, -65, and -58) ( β estimate  = -2.37%, p  < 0.01) but not among those with lower BC exposure ( β estimate  = 0.54%, p  > 0.05). Differences across strata were statistically significant ( p interaction  = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV 1 /FVC ( β estimate  = -0.40%, p  < 0.01) and reduced FEF 25-75% ( β estimate  = -1.46%, p  < 0.01). Physical

  19. Promoter hypermethylation and downregulation of the FAS gene may be involved in colorectal carcinogenesis

    PubMed Central

    MANOOCHEHRI, MEHDI; BORHANI, NASIM; KARBASI, ASHRAF; KOOCHAKI, AMENEH; KAZEMI, BAHRAM

    2016-01-01

    Aberrant DNA methylation has been investigated in carcinogenesis and as biomarker for the early detection of colorectal cancer (CRC). The present study aimed to define the methylation status in the regulatory elements of two proapoptotic genes, Fas cell surface death receptor (FAS) and BCL2-associated X protein (BAX). DNA methylation analysis was performed in tumor and adjacent normal tissue using HpaII/MspI restriction digestion and methylation-specific polymerase chain reaction (PCR). The results observed downregulation of the FAS and BAX genes in the CRC tissues compared with the adjacent normal samples. Furthermore, demethylation using 5-aza-2′-deoxycytidine treatment followed by reverse-transcription quantitative PCR were performed on the HT-29 cell line to measure BAX and FAS mRNA expression following demethylation. The 5-aza-2′-deoxycytidine treatment resulted in significant FAS gene upregulation in the HT-29 cell line, but no significant difference in BAX expression. Furthermore, analysis of CpG islands in the FAS gene promoter revealed that the FAS promoter was significantly hypermethylated in 53.3% of tumor tissues compared with adjacent normal samples. Taken together, the results indicate that decreased expression of the FAS gene due to hypermethylation of its promoter may lead to apoptotic resistance, and acts as an important step during colorectal carcinogenesis. PMID:27347139

  20. Integrin α9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma

    PubMed Central

    Hu, Li-Fu; Moumad, Khalid; Pavlova, Tatiana V.; Kashuba, Vladimir; Almgren, Malin; Zabarovsky, Eugene R.; Ernberg, Ingemar

    2015-01-01

    Epigenetic silencing of tumor suppressor genes (TSGs) by promoter methylation can be an early event in the multi-step process of carcinogenesis. Human chromosome 3 contains clusters of TSGs involved in many cancer types including nasopharyngeal carcinoma (NPC), the most common cancer in Southern China. Among ten candidate TSGs identified in chromosome 3 using NotI microarray, ITGA9 and WNT7A could be validated. 5′-aza-2′ deoxycytidine treatment restored the expression of ITGA9 and WNT7A in two NPC cell lines. Immunostaining showed strong expression of these genes in the membrane and cytoplasm of adjacent control nasopharyngeal epithelium cells, while they were weakly expressed in NPC tumor cells. The ITGA9 promoter showed marked differentially methylation between tumor and control tissue, whereas no differentially methylation could be detected for the WNT7A promoter. The expression level of ITGA9 in NPC tumors was downregulated 4.9-fold, compared to the expression in control. ITGA9 methylation was detected by methylation specific PCR (MSP) in 56% of EBV positive NPC- cases with 100% specificity. Taken together, this suggests that ITGA9 might be a TSG in NPC that is involved in tumor cell biology. The possibility of using ITGA9 methylation as a marker for early detection of NPC should further be explored. PMID:26372814

  1. Analysis of RTEL1 and PCDHGB6 promoter methylation in circulating-free DNA of lung cancer patients using liquid biopsy: A pilot study.

    PubMed

    Powrózek, Tomasz; Krawczyk, Paweł; Kuźnar-Kamińska, Barbara; Batura-Gabryel, Halina; Milanowski, Janusz

    2016-08-01

    Analysis of epigenetic alterations such as methylation of circulating-free DNA (cf-DNA) expression significantly broadened perspectives of lung cancer (LC) screening. Moreover, methylation of tumor suppressor genes may be analyzed with non-invasive manner in patients' blood samples (liquid biopsy), what underline necessity of detailed investigation of tumor cf-DNA. The purpose of current study was to assess methylation of RTEL1 and PCDHGB6 promoter regions in cf-DNA of 70 LC patients and 80 healthy individuals using qMSP-PCR technique. Methylation status of both genes has not been investigated in cf-DNA of LC patients before. PCDHGB6 promoter methylation was found in 41.4% of LC patients and in 1.3% of healthy individuals, whereas promoter of RTEL1 was found methylated in 51.4% of LC patients and in 8.8% of healthy individuals. Combined analysis of two markers improved test sensitivity up to 62.9% and specificity up to 90% with area under the curve (AUC) in receiver operating curve (ROC) of 0.755. The evaluation of RTEL1 and PCDHGB6 promoter methylation may be an useful tool for non-invasive diagnosis of LC in liquid biopsy.

  2. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

    PubMed Central

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-01-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. PMID:25617468

  3. Methylation, expression, and mutation analysis of the cell cycle control genes in human brain tumors.

    PubMed

    Yin, Dong; Xie, Dong; Hofmann, Wolf-Karsten; Miller, Carl W; Black, Keith L; Koeffler, H Phillip

    2002-11-28

    Methylation status of the p15(INK4B), p16(INK4A), p14(ARF) and retinoblastoma (RB) genes was studied using methylation specific polymerase chain reaction (MSP) in 85 human brain tumors of various subtypes and four normal brain samples. These genes play an important role in the control of the cell cycle. Twenty-four out of 85 cases (28%) had at least one of these genes methylated. The frequency of p14(ARF) methylation was 15 out of 85 (18%) cases, and the expression of p14(ARF) in methylated gliomas was significantly lower than in unmethylated gliomas. The incidence of methylation of p15(INK4B), p16(INK4A) and RB gene was 4%, 7%, and 4%, respectively. Samples with p14(ARF) methylation did not have p16(INK4A) methylation even though both genes physically overlap. None of the target genes was methylated in the normal brain samples. In addition, the p53 gene was mutated in 19 out of 85 (22%) samples as determined by single strand conformation polymorphism (SSCP) analysis and DNA sequencing. Thirty out of 85 (35%) brain tumors had either a p53 mutation or methylation of p14(ARF). Also, the p14(ARF) expression in p53 wild-type gliomas was lower than levels in p53 mutated gliomas. This finding is consistent with wild-type p53 being able to autoregulate its levels by down-regulating expression of p14(ARF). In summary, inactivation of the apoptosis pathway that included the p14(ARF) and p53 genes by hypermethylation and mutation, respectively, occurred frequently in human brain tumors. Down-regulation of p14(ARF) in gliomas was associated with hypermethylation of its promoter and the presence of a wild-type p53 in these samples.

  4. Hypermethylation of the TSLC1 Gene Promoter in Primary Gastric Cancers and Gastric Cancer Cell Lines

    PubMed Central

    Honda, Teiichiro; Waki, Takayoshi; Jin, Zhe; Sato, Kiyoshi; Motoyama, Teiichi; Kawata, Sumio; Kimura, Wataru; Nishizuka, Satoshi; Murakami, Yoshinori

    2002-01-01

    The TSLC1 (tumor suppressor in lung cancer–1) gene is a novel tumor suppressor gene on chromosomal region 11q23.2, and is frequently inactivated by concordant promoter hypermethylation and loss of heterozygosity (LOH) in non‐small cell lung cancer (NSCLC). Because LOH on 11q has also been observed frequently in other human neoplasms including gastric cancer, we investigated the promoter methylation status of TSLC1 in 10 gastric cancer cell lines and 97 primary gastric cancers, as well as the corresponding non‐cancerous gastric tissues, by bisulfite‐SSCP analysis followed by direct sequencing. Allelic status of the TSLC1 gene was also investigated in these cell lines and primary gastric cancers. The TSLC1 promoter was methylated in two gastric cancer cell lines, KATO‐III and ECC10, and in 15 out of 97 (16%) primary gastric cancers. It was not methylated in non‐cancerous gastric tissues, suggesting that this hypermethylation is a cancer‐specific alteration. KATO‐III and ECC10 cells retained two alleles of TSLC1, both of which showed hypermethylation, associated with complete loss of gene expression. Most of the primary gastric cancers with promoter methylation also retained heterozygosity at the TSLC1 locus on 11q23.2. These data indicate that bi‐allelic hypermethylation of the TSLC1 promoter and resulting gene silencing occur in a subset of primary gastric cancers. PMID:12716461

  5. The Progeny of Arabidopsis thaliana Plants Exposed to Salt Exhibit Changes in DNA Methylation, Histone Modifications and Gene Expression

    PubMed Central

    Bilichak, Andriy; Ilnystkyy, Yaroslav; Hollunder, Jens; Kovalchuk, Igor

    2012-01-01

    Plants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis) plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 5′ and 3′ ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants. PMID:22291972

  6. Analysis of methylated patterns and quality-related genes in tobacco (Nicotiana tabacum) cultivars.

    PubMed

    Jiao, Junna; Jia, Yanlong; Lv, Zhuangwei; Sun, Chuanfei; Gao, Lijie; Yan, Xiaoxiao; Cui, Liusu; Tang, Zongxiang; Yan, Benju

    2014-08-01

    Methylation-sensitive amplified polymorphism was used in this study to investigate epigenetic information of four tobacco cultivars: Yunyan 85, NC89, K326, and Yunyan 87. The DNA fragments with methylated information were cloned by reamplified PCR and sequenced. The results of Blast alignments showed that the genes with methylation information included chitinase, nitrate reductase, chloroplast DNA, mitochondrial DNA, ornithine decarboxylase, ribulose carboxylase, and promoter sequences. Homologous comparison in three cloned gene sequences (nitrate reductase, ornithine decarboxylase, and ribulose decarboxylase) indicated that geographic factors had significant influence on the whole genome methylation. Introns also contained different information in different tobacco cultivars. These findings suggest that synthetic mechanisms for tobacco aromatic components could be affected by different environmental factors leading to variation of noncoding regions in the genome, which finally results in different fragrance and taste in different tobacco cultivars.

  7. Promoter Hypermethylation of the ATM Gene as a Novel Biomarker for Breast Cancer

    PubMed

    Begam, Nasrin; Jamil, Kaiser; Raju, Suryanarayana G

    2017-11-26

    Background: Breast cancer may be induced by activation of protooncogenes to oncogenes and in many cases inactivation of tumor suppressor genes. Ataxia telangiectasia mutated (ATM) is an important tumor suppressor gene which plays central roles in the maintenance of genomic integrity by activating cell cycle checkpoints and promoting repair of double-strand breaks of DNA. In breast cancer, decrease ATM expression correlates with a poor outcome; however, the molecular mechanisms underlying downregulation are still unclear. Promoter hypermethylation may contribute in downregulation. Hence the present investigation was designed to evaluate promoter methylation and expression of the ATM gene in breast cancer cases, and to determine links with clinical and demographic manifestations, in a South Indian population. Methods: Tumor biopsy samples were collected from 50 pathologically confirmed sporadic breast cancer cases. DNA was isolated from tumor and adjacent non-tumorous regions, and sodium bisulfite conversion and methylation-specific PCR were performed using MS-PCR primers for the ATM promoter region. In addition, ATM mRNA expression was also analyzed for all samples using real-time PCR. Results: Fifty eight percent (58%) of cancer tissue samples showed promoter hypermethylation for the ATM gene, in contrast to only 4.44% of normal tissues (p= 0.0001). Furthermore, ATM promoter methylation was positively associated with age (p = 0.01), tumor size (p=0.045) and advanced stage of disease i.e. stages III and IV (p =0.019). An association between promoter hypermethylation and lower expression of ATM mRNA was also found (p=0.035). Conclusion: We report for the first time that promoter hypermethylation of ATM gene may be useful as a potential new biomarker for breast cancer, especially in the relatively young patients. Creative Commons Attribution License

  8. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice.

    PubMed

    Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-15

    The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training. Copyright © 2015 the American Physiological Society.

  9. Inhibition of histone deacetylation and DNA methylation improves gene expression mediated by the adeno-associated virus/phage in cancer cells.

    PubMed

    Kia, Azadeh; Yata, Teerapong; Hajji, Nabil; Hajitou, Amin

    2013-10-22

    Bacteriophage (phage), viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV). This novel AAV/phage hybrid (AAVP) specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  10. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar.

    PubMed

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-04-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5' and 3' flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Nicotine Induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    PubMed Central

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt −377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. PMID:21971485

  12. The relationship between promoter methylation of p16 gene and bladder cancer risk: a meta-analysis

    PubMed Central

    Qi, Defeng; Li, Jinhui; Jiang, Mei; Liu, Chenli; Hu, Yuan; Li, Mengxi; Su, Jialin; Que, Biao; Ji, Weidong

    2015-01-01

    Purpose: Many scientific evidences suggested that the methylation of p16INK4a (p16) was associated with bladder cancer, but some existing studies have yielded inconclusive results about the relationship between p16 promoter methylation and pathological features or the tumor grade of bladder cancer. This meta-analysis of studies aims to evaluate the clinical and prognostic significance of p16 methylation in bladder carcinogenesis. Methods: Studies were systemically searched via PubMed and Google Scholar in English up to Sept 2015 and a total of ten appropriate studies (693 cases and 290 controls) with an average NOS score of 6.8 were included. The quality of the appropriate studies was measured by the Newcastle-Ottawa Scale (NOS) assessment. Results: The meta-analysis results revealed that the methylation state of p16 was statistically significantly associated with an increased risk of bladder cancer (OR=6.71, 95% CI=3.79-11.87) compared to control, and there is no statistically significantly association between the p16 methylation and the tumor pTNM staging (OR=0.59, 95% CI=0.22-1.60) or the tumor grade (OR=1.01, 95% CI=0.52-1.94) in p16 methylated patients compared to unmethylated patients. Conclusions: our meta-analysis indicates that p16 promoter methylation may be a promising biomarker for the diagnosis of bladder cancer and the inactivation of p16 may be an early event in bladder carcinogenesis. More studies with larger numbers of participants worldwide are needed to further identify the obvious association above. PMID:26884993

  13. Promoter CpG island methylation in ion transport mechanisms and associated dietary intakes jointly influence the risk of clear-cell renal cell cancer.

    PubMed

    Deckers, Ivette Ag; van Engeland, Manon; van den Brandt, Piet A; Van Neste, Leander; Soetekouw, Patricia Mmb; Aarts, Maureen Jb; Baldewijns, Marcella Mll; Keszei, András P; Schouten, Leo J

    2017-04-01

    Sodium intake, but not potassium or fluid intake, has been associated with higher renal cell cancer (RCC) risk. However, risk factors may differ by molecular subtypes of the tumour. In renal physiology, electrolyte and water homeostasis is facilitated by ion transport mechanisms (ITM). Aberrant regulation of ITM genes, for example by promoter CpG island methylation, may modify associations between sodium, potassium and fluid intake and RCC risk. We identified ARHGDIG , ATP1A1 , SCNN1B and SLC8A3 as ITM genes exhibiting RCC-specific promoter methylation and down-regulation. Methylation-specific polymerase chain reaction (PCR) was used to analyse promoter CpG island methylation in tumour DNA of 453 RCC cases from the Netherlands Cohort Study ( n = 120 852) after 20.3 years of follow-up. Diet was measured at baseline using food-frequency questionnaires. Cox regression analyses were restricted to clear-cell (cc)RCC ( n = 306) and stratified by tumours with no, low (1 gene) and high (≥ 2 genes) methylation. Sodium intake (high vs low) increased ccRCC risk particularly in tumours with a high methylation index: hazard ratio (HR) [95% confidence interval (CI)]: 2.04 (1.16-3.58), whereas heterogeneity across the methylation index was not significant ( P -heterogeneity = 0.26). Potassium intake was differentially associated with ccRCC risk ( P -heterogeneity = 0.008); the risk for high (vs low) potassium intake was low for unmethylated tumours [HR (95% CI): 0.60 (0.36-1.01)], but high for tumours with a high methylation index [HR (95% CI): 1.60 (0.96-2.65)]. Risks similarly differed for fluid intake, though not significantly ( P -heterogeneity = 0.54). Our findings suggest for the first time that dietary intakes are differentially associated with ccRCC risk according to molecular subtypes defined by ITM gene-specific promoter methylation. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological

  14. Case-Control Study of Candidate Gene Methylation and Adenomatous Polyp Formation

    PubMed Central

    M, Alexander; JB, Burch; SE, Steck; C-F, Chen; TG, Hurley; P, Cavicchia; N, Shivappa; J, Guess; H, Zhang; SD, Youngstedt; KE, Creek; S, Lloyd; K, Jones; JR, Hébert

    2016-01-01

    Purpose Colorectal cancer (CRC) is one of the most common and preventable forms of cancer, but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70–90% of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation. Methods Patients recruited from a local endoscopy clinic provided informed consent, and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy, or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios and 95% confidence intervals (OR, 95% CI) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders. Results Complete data were available for 107 participants; 36% had adenomas (men: 40%, women: 31%). Hypomethylation of the MINT1 locus (OR: 5.3, 95% CI: 1.0–28.2), and the PER1 (OR: 2.9, 95% CI: 1.1–7.7) and PER3 (OR: 11.6, 95% CI: 1.6–78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71–97%), sensitivity was relatively low (18–45%). Conclusion Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance. PMID:27771773

  15. Transgelin gene is frequently downregulated by promoter DNA hypermethylation in breast cancer.

    PubMed

    Sayar, Nilufer; Karahan, Gurbet; Konu, Ozlen; Bozkurt, Betul; Bozdogan, Onder; Yulug, Isik G

    2015-01-01

    CpG hypermethylation in gene promoters is a frequent mechanism of tumor suppressor gene silencing in various types of cancers. It usually occurs at early steps of cancer progression and can be detected easily, giving rise to development of promising biomarkers for both detection and progression of cancer, including breast cancer. 5-aza-2'-deoxycytidine (AZA) is a DNA demethylating and anti-cancer agent resulting in induction of genes suppressed via DNA hypermethylation. Using microarray expression profiling of AZA- or DMSO-treated breast cancer and non-tumorigenic breast (NTB) cells, we identified for the first time TAGLN gene as a target of DNA hypermethylation in breast cancer. TAGLN expression was significantly and frequently downregulated via promoter DNA hypermethylation in breast cancer cells compared to NTB cells, and also in 13/21 (61.9 %) of breast tumors compared to matched normal tissues. Analyses of public microarray methylation data showed that TAGLN was also hypermethylated in 63.02 % of tumors compared to normal tissues; relapse-free survival of patients was worse with higher TAGLN methylation; and methylation levels could discriminate between tumors and healthy tissues with 83.14 % sensitivity and 100 % specificity. Additionally, qRT-PCR and immunohistochemistry experiments showed that TAGLN expression was significantly downregulated in two more independent sets of breast tumors compared to normal tissues and was lower in tumors with poor prognosis. Colony formation was increased in TAGLN silenced NTB cells, while decreased in overexpressing BC cells. TAGLN gene is frequently downregulated by DNA hypermethylation, and TAGLN promoter methylation profiles could serve as a future diagnostic biomarker, with possible clinical impact regarding the prognosis in breast cancer.

  16. Methylation of Exons 1D, 1F, and 1H of the Glucocorticoid Receptor Gene Promoter and Exposure to Adversity in Pre-School Aged Children

    PubMed Central

    Tyrka, Audrey R.; Parade, Stephanie H.; Eslinger, Nicole M.; Marsit, Carmen J.; Lesseur, Corina; Armstrong, David A.; Philip, Noah S.; Josefson, Brittney; Seifer, Ronald

    2016-01-01

    Epigenetic modifications to the genome are a key mechanism involved in the biological encoding of experience. Animal studies and a growing body of literature in humans have shown that early adversity is linked to methylation of the gene for the glucocorticoid receptor (GR) which is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis as well as a broad range of physiological systems including metabolic and immune function. One hundred eighty-four families participated, including n=74 with child welfare documentation of moderate-severe maltreatment in the past six months. Children ranged in age from 3 to 5 years, and were racially and ethnically diverse. Structured record review and interviews in the home were used to assess a history of maltreatment, other traumas, and contextual life stressors, and a composite variable assessed the number exposures to these adversities. Methylation of regions 1D, 1F, and 1H of the GR gene was measured via sodium bisulfite pyrosequencing. The composite measure of adversity was positively correlated with methylation at exons 1D and 1F in the promoter of NR3C1. Individual stress measures were significantly associated with a several CpG sites in these regions. GR gene methylation may be a mechanism of the bio-behavioral effects of adverse exposures in young children. PMID:25997773

  17. Detection of 14-3-3 sigma (σ) promoter methylation as a noninvasive biomarker using blood samples for breast cancer diagnosis

    PubMed Central

    Ye, Meng; Huang, Tao; Ying, Ying; Li, Jinyun; Yang, Ping; Ni, Chao; Zhou, Chongchang; Chen, Si

    2017-01-01

    As a tumor suppressor gene, 14-3-3 σ has been reported to be frequently methylated in breast cancer. However, the clinical effect of 14-3-3 σ promoter methylation remains to be verified. This study was performed to assess the clinicopathological significance and diagnostic value of 14-3-3 σ promoter methylation in breast cancer. 14-3-3 σ promoter methylation was found to be notably higher in breast cancer than in benign lesions and normal breast tissue samples. We did not observe that 14-3-3 σ promoter methylation was linked to the age status, tumor grade, clinic stage, lymph node status, histological subtype, ER status, PR status, HER2 status, or overall survival of patients with breast cancer. The combined sensitivity, specificity, AUC (area under the curve), positive likelihood ratios (PLR), negative likelihood ratios (NLR), diagnostic odds ratio (DOR), and post-test probability values (if the pretest probability was 30%) of 14-3-3 σ promoter methylation in blood samples of breast cancer patients vs. healthy subjects were 0.69, 0.99, 0.86, 95, 0.31, 302, and 98%, respectively. Our findings suggest that 14-3-3 σ promoter methylation may be associated with the carcinogenesis of breast cancer and that the use of 14-3-3 σ promoter methylation might represent a useful blood-based biomarker for the clinical diagnosis of breast cancer. PMID:27999208

  18. Regulation and function of the pepper pectin methylesterase inhibitor (CaPMEI1) gene promoter in defense and ethylene and methyl jasmonate signaling in plants.

    PubMed

    An, Soo Hyun; Choi, Hyong Woo; Hong, Jeum Kyu; Hwang, Byung Kook

    2009-11-01

    Analysis of the promoters of defense-related genes is valuable for determining stress signaling and transcriptional activation during pathogen infection. Here, we have isolated and functionally characterized the promoter region of the pepper (Capsicum annuum) pectin methylesterase inhibitor 1 (CaPMEI1) gene in transiently transformed tobacco plants and stably transformed Arabidopsis plants. Among four 5' deletion constructs analyzed, the -958-bp CaPMEI1 promoter induced a high level of GUS reporter activity in tobacco leaf tissue, driven by pathogen infection as well as by ethylene and methyl jasmonate (MeJA) treatment. The 204-bp region from -958 bp to -754 bp of the CaPMEI1 promoter is responsible for the stress-responsive expression. In addition, the pepper transcription factor CARAV1 activated the CaPMEI1 promoter in tobacco leaves, whereas the transcription factor CAbZIP1 did not. In the transgenic Arabidopsis plants, the -958 bp CaPMEI1 promoter was functionally regulated by developmental cues, bacterial and oomycete pathogen infections, and treatment with ethylene and MeJA. Histochemical GUS staining analyses of Arabidopsis tissues revealed that the CaPMEI1 promoter was mainly activated in leaf veins in response to various biotic and abiotic stimuli. Together, these results suggest that CaPMEI1 promoter activation may be a critical molecular event for host defense response and ethylene- and MeJA-mediated CaPMEI1 gene expression.

  19. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer.

    PubMed

    Teschendorff, Andrew E; Menon, Usha; Gentry-Maharaj, Aleksandra; Ramus, Susan J; Weisenberger, Daniel J; Shen, Hui; Campan, Mihaela; Noushmehr, Houtan; Bell, Christopher G; Maxwell, A Peter; Savage, David A; Mueller-Holzner, Elisabeth; Marth, Christian; Kocjan, Gabrijela; Gayther, Simon A; Jones, Allison; Beck, Stephan; Wagner, Wolfgang; Laird, Peter W; Jacobs, Ian J; Widschwendter, Martin

    2010-04-01

    Polycomb group proteins (PCGs) are involved in repression of genes that are required for stem cell differentiation. Recently, it was shown that promoters of PCG target genes (PCGTs) are 12-fold more likely to be methylated in cancer than non-PCGTs. Age is the most important demographic risk factor for cancer, and we hypothesized that its carcinogenic potential may be referred by irreversibly stabilizing stem cell features. To test this, we analyzed the methylation status of over 27,000 CpGs mapping to promoters of approximately 14,000 genes in whole blood samples from 261 postmenopausal women. We demonstrate that stem cell PCGTs are far more likely to become methylated with age than non-targets (odds ratio = 5.3 [3.8-7.4], P < 10(-10)), independently of sex, tissue type, disease state, and methylation platform. We identified a specific subset of 69 PCGT CpGs that undergo hypermethylation with age and validated this methylation signature in seven independent data sets encompassing over 900 samples, including normal and cancer solid tissues and a population of bone marrow mesenchymal stem/stromal cells (P < 10(-5)). We find that the age-PCGT methylation signature is present in preneoplastic conditions and may drive gene expression changes associated with carcinogenesis. These findings shed substantial novel insights into the epigenetic effects of aging and support the view that age may predispose to malignant transformation by irreversibly stabilizing stem cell features.

  20. Methylation of an alpha-foetoprotein gene intragenic site modulates gene activity.

    PubMed Central

    Opdecamp, K; Rivière, M; Molné, M; Szpirer, J; Szpirer, C

    1992-01-01

    By comparing the methylation pattern of Mspl/Hpall sites in the 5' region of the mouse alpha-foetoprotein (AFP) gene of different cells (hepatoma cells, foetal and adult liver, fibroblasts), we found a correlation between gene expression and unmethylation of a site located in the first intron of the gene. Other sites did not show this correlation. In transfection experiments of unmethylated and methylated AFP-CAT chimeric constructions, we then showed that methylation of the intronic site negatively modulates expression of CAT activity. We also found that a DNA segment centered on this site binds nuclear proteins; however methylation did not affect protein binding. Images PMID:1371343

  1. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    PubMed

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  2. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data

    PubMed Central

    Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S.

    2016-01-01

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region. PMID:26657508

  3. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data.

    PubMed

    Singhal, Sandeep K; Usmani, Nawaid; Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S; Kovalchuk, Olga; Parliament, Matthew

    2016-01-19

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.

  4. MeDIP-seq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination.

    PubMed

    Radhakrishnan, Srihari; Literman, Robert; Mizoguchi, Beatriz; Valenzuela, Nicole

    2017-01-01

    DNA methylation alters gene expression but not DNA sequence and mediates some cases of phenotypic plasticity. Temperature-dependent sex determination (TSD) epitomizes phenotypic plasticity where environmental temperature drives embryonic sexual fate, as occurs commonly in turtles. Importantly, the temperature-specific transcription of two genes underlying gonadal differentiation is known to be induced by differential methylation in TSD fish, turtle and alligator. Yet, how extensive is the link between DNA methylation and TSD remains unclear. Here we test for broad differences in genome-wide DNA methylation between male and female hatchling gonads of the TSD painted turtle Chrysemys picta using methyl DNA immunoprecipitation sequencing, to identify differentially methylated candidates for future study. We also examine the genome-wide nCpG distribution (which affects DNA methylation) in painted turtles and test for historic methylation in genes regulating vertebrate gonadogenesis. Turtle global methylation was consistent with other vertebrates (57% of the genome, 78% of all CpG dinucleotides). Numerous genes predicted to regulate turtle gonadogenesis exhibited sex-specific methylation and were proximal to methylated repeats. nCpG distribution predicted actual turtle DNA methylation and was bimodal in gene promoters (as other vertebrates) and introns (unlike other vertebrates). Differentially methylated genes, including regulators of sexual development, had lower nCpG content indicative of higher historic methylation. Ours is the first evidence suggesting that sexually dimorphic DNA methylation is pervasive in turtle gonads (perhaps mediated by repeat methylation) and that it targets numerous regulators of gonadal development, consistent with the hypothesis that it may regulate thermosensitive transcription in TSD vertebrates. However, further research during embryogenesis will help test this hypothesis and the alternative that instead, most differential methylation

  5. Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas

    PubMed Central

    Kleb, Brittany; Estécio, Marcos R.H.; Zhang, Jiexin; Tzelepi, Vassiliki; Chung, Woonbok; Jelinek, Jaroslav; Navone, Nora M.; Tahir, Salahaldin; Marquez, Victor E.; Issa, Jean-Pierre; Maity, Sankar; Aparicio, Ana

    2016-01-01

    ABSTRACT Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor–derived xenografts (PDX) revealed that AR–negative SCPC (AR−SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR–positive castration-resistant adenocarcinomas (AR+ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR− and AR+ PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR−SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR−SCPC cell lines. We conclude that the epigenome of AR− is distinct from that of AR+ castration-resistant prostate carcinomas, and that the AR− phenotype can be reversed with epigenetic drugs. PMID:26890396

  6. Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas.

    PubMed

    Kleb, Brittany; Estécio, Marcos R H; Zhang, Jiexin; Tzelepi, Vassiliki; Chung, Woonbok; Jelinek, Jaroslav; Navone, Nora M; Tahir, Salahaldin; Marquez, Victor E; Issa, Jean-Pierre; Maity, Sankar; Aparicio, Ana

    2016-03-03

    Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor-derived xenografts (PDX) revealed that AR-negative SCPC (AR(-)SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR-positive castration-resistant adenocarcinomas (AR(+)ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR(-) and AR(+) PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR(-)SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR(-)SCPC cell lines. We conclude that the epigenome of AR(-) is distinct from that of AR(+) castration-resistant prostate carcinomas, and that the AR(-) phenotype can be reversed with epigenetic drugs.

  7. Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats

    PubMed Central

    López-Álvarez, Guadalupe S.; Wojdacz, Tomasz K.; García-Cuellar, Claudia M.; Monroy-Ramírez, Hugo C.; Rodríguez-Segura, Miguel A.; Pacheco-Rivera, Ruth A.; Valencia-Antúnez, Carlos A.; Cervantes-Anaya, Nancy; Soto-Reyes, Ernesto; Vásquez-Garzón, Verónica R.; Sánchez-Pérez, Yesennia; Villa-Treviño, Saúl

    2017-01-01

    ABSTRACT The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4) using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively) after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats. PMID:27895046

  8. Cigarette smoke condensate induces differential expression and promoter methylation profiles of critical genes involved in lung cancer in NL-20 lung cells in vitro: short-term and chronic exposure.

    PubMed

    Word, Beverly; Lyn-Cook, Lascelles E; Mwamba, Bibi; Wang, Honggang; Lyn-Cook, Beverly; Hammons, George

    2013-01-01

    Establishing early diagnostic markers of harm is critical for effective prevention programs and regulation of tobacco products. This study examined effects of cigarette smoke condensate (CSC) on expression and promoter methylation profile of critical genes (DAPK, ECAD, MGMT, and RASSF1A) involved in lung cancer development in different human lung cell lines. NL-20 cells were treated with 0.1-100 μg/ml of CSC for 24 to 72 hrs for short-term exposures. DAPK expression or methylation status was not significantly affected. However, CSC treatment resulted in changes in expression and promoter methylation profile of ECAD, MGMT, and RASSF1A. For chronic studies, cells were exposed to 1 or 10 μg/ml CSC up to 28 days. Cells showed morphological changes associated with transformation and changes in invasion capacities and global methylation status. This study provides critical data suggesting that epigenetic changes could serve as an early biomarker of harm due to exposure to cigarette smoke.

  9. Betaine supplement alleviates hepatic triglyceride accumulation of apolipoprotein E deficient mice via reducing methylation of peroxisomal proliferator-activated receptor alpha promoter

    PubMed Central

    2013-01-01

    Background Betaine is a methyl donor and has been considered as a lipotropic effect substance. But its mechanism remains unclear. Hepatic steatosis is associated with abnormal expression of genes involved in hepatic lipid metabolism. DNA methylation contributes to the disregulation of gene expression. Here we hypothesized that betaine supplement and subsequent DNA methylation modifications alter the expression of genes that are involved in hepatic lipid metabolism and hence alleviate hepatic triglyceride accumulation. Methods Male wild-type (WT) C57BL/6 mice (n = 6) were fed with the AIN-93 G diet. ApoE−/− mice (n = 12), weight-matched with the WT mice, were divided into two groups (n = 6 per group), and fed with the AIN-93 G diet and AIN-93 G supplemented with 2% betaine/100 g diet. Seven weeks after the intervention, mice were sacrificed. Liver betaine, choline, homocysteine concentration were measured by HPLC. Liver oxidants activity and triglyceride level were assessed by ultraviolet spectrophotometry. Finally, hepatic PPAR alpha gene and its target genes expression levels and the methylation status of the PPAR alpha gene were determined. Results ApoE−/− mice had higher hepatic triglyceride and lower GSH-Px activity when compared with the WT mice. Betaine intervention reversed triglyceride deposit, enhanced SOD and GSH-Px activity in the liver. Interestingly, mice fed on betaine-supplemented diet showed a dramatic increase of hepatic choline concentration and a decrease of betaine and homocysteine concentration relative to the WT mice and the ApoE−/− mice absent with betaine intervention. Expression of PPAR alpha and CPT1 were decreased and expression of FAS was markedly increased in ApoE−/− mice. In parallel, PPAR alpha promoter methylation level were slightly increased in ApoE−/− mice though without significance. Betaine supplement upregulated expression of PPAR alpha and its target genes (CPT1, CYP2E1) and reversed

  10. MethylMix 2.0: an R package for identifying DNA methylation genes. | Office of Cancer Genomics

    Cancer.gov

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes.

  11. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants.

    PubMed

    Hong, Jeum Kyu; Hwang, Byung Kook

    2009-01-01

    The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-beta-glucuronidase (GUS) gene fusion, serially 5'-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The -1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The -417- and -593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than -793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, beta-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection.

  12. H. pylori modifies methylation of global genomic DNA and the gastrin gene promoter in gastric mucosal cells and gastric cancer cells.

    PubMed

    Xie, Yuan; Zhou, Jian Jiang; Zhao, Yan; Zhang, Ting; Mei, Liu Zheng

    2017-07-01

    The aim of this study was to evaluate the correlation between H. pylori infection and global DNA methylation, as well as the methylation levels of the gastrin promoters. We constructed a eukaryotic expression vector, pcDNA3.1::cagA, and transfected it into GES-1 gastric mucosal cells and SGC-7901 gastric cancer cells. Both cell lines were infected with the H. pylori/CagA + strain NCTC11637. Then, we detected global DNA methylation by capture and detection antibodies, followed by colorimetric quantification. The methylation levels of the gastrin promoter were evaluated by base-specific cleavage and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In H. pylori/CagA + -infected GES-1 and SGC-7901 cells, the methylation levels of genomic DNA decreased by 49.4% and 18.8%, and in GES-1 and SGC-7901 cells transfected with pcDNA3.1::cagA, the methylation levels of genomic DNA decreased by 17.05% and 25.6%, respectively. Among 24 methylation sites detected in the gastrin promoter region, the methylation levels of 9 CpG sites were significantly decreased in H. pylori/CagA+-infected and pcDNA3.1:: cagA-transfected cells in comparison to corresponding control cells. These results indicate that H. pylori/CagA + decreases the methylation of the genome and the gastrin promoter at some CpG sites in gastric mucosal and gastric cancer cells. Copyright © 2017. Published by Elsevier Ltd.

  13. Methylation status of the APC and RASSF1A promoter in cell-free circulating DNA and its prognostic role in patients with colorectal cancer.

    PubMed

    Matthaios, Dimitrios; Balgkouranidou, Ioanna; Karayiannakis, Anastasios; Bolanaki, Helen; Xenidis, Nikolaos; Amarantidis, Kyriakos; Chelis, Leonidas; Romanidis, Konstantinos; Chatzaki, Aikaterini; Lianidou, Evi; Trypsianis, Grigorios; Kakolyris, Stylianos

    2016-07-01

    DNA methylation is the most frequent epigenetic alteration. Using methylation-specific polymerase chain reaction (MSP), the methylation status of the adenomatous polyposis coli ( APC ) and Ras association domain family 1 isoform A ( RASSF1A ) genes was examined in cell-free circulating DNA from 155 plasma samples obtained from patients with early and advanced colorectal cancer (CRC). APC and RASSF1A hypermethylation was frequently observed in both early and advanced disease, and was significantly associated with a poorer disease outcome. The methylation status of the APC and RASSF1A promoters was investigated in cell-free DNA of patients with CRC. Using MSP, the promoter methylation status of APC and RASSF1A was examined in 155 blood samples obtained from patients with CRC, 88 of whom had operable CRC (oCRC) and 67 had metastatic CRC (mCRC). The frequency of APC methylation in patients with oCRC was 33%. Methylated APC promoter was significantly associated with older age (P=0.012), higher stage (P=0.014) and methylated RASSF1A status (P=0.050). The frequency of APC methylation in patients with mCRC was 53.7%. In these patients, APC methylation was significantly associated with methylated RASSF1A status (P=0.016). The frequency of RASSF1A methylation in patients with oCRC was 25%. Methylated RASSF1A in oCRC was significantly associated with higher stage (P=0.021). The frequency of RASSF1A methylation in mCRC was 44.8%. Methylated RASSF1A in mCRC was associated with moderate differentiation (P=0.012), high levels of carcinoembryonic antigen (P=0.023) and methylated APC status (P=0.016). Patients with an unmethylated APC gene had better survival in both early (81±5 vs. 27±4 months, P<0.001) and advanced disease (37±7 vs. 15±3 months, P<0.001), compared with patients with methylated APC . Patients with an unmethylated RASSF1A gene had better survival in both early (71±6 vs. 46±8 months, P<0.001) and advanced disease (28±4 vs. 16±3 months, P<0.001) than patients

  14. Multiplexed methylation profiles of tumor suppressor genes and clinical outcome in oligodendroglial tumors.

    PubMed

    Kuo, Lu-Ting; Lu, Hsueh-Yi; Lee, Chien-Chang; Tsai, Jui-Chang; Lai, Hong-Shiee; Tseng, Ham-Min; Kuo, Meng-Fai; Tu, Yong-Kwang

    2016-08-01

    Aberrant methylation has been associated with transcriptional inactivation of tumor-related genes in a wide spectrum of human neoplasms. The influence of DNA methylation in oligodendroglial tumors is not fully understood. Genomic DNA was isolated from 61 oligodendroglial tumors for analysis of methylation using methylation-specific multiplex ligation-dependent probe amplification assay (MS-MLPA). We correlated methylation status with clinicopathological findings and outcome. The genes found to be most frequently methylated in oligodendroglial tumors were RASSF1A (80.3%), CASP8 (70.5%), and CDKN2A (52.5%). Kaplan-Meier survival curve analysis demonstrated longer duration of progression-free survival in patients with 19q loss, aged less than 38 years, and with a proliferative index of less than 5%. Methylation of the ESR1 promoter is significantly associated with shorter duration of overall survival and progression-free survival, and that methylation of IGSF4 and RASSF1A is significantly associated with shorter duration of progression-free survival. However, none of the methylation status of ESR1, IGSF4, and RASSF1A was of prognostic value for survival in a multivariate Cox model. A number of novel and interesting epigenetic alterations were identified in this study. The findings highlight the importance of methylation profiles in oligodendroglial tumors and their possible involvement in tumorigenesis. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    USDA-ARS?s Scientific Manuscript database

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  16. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR.more » Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.« less

  17. Correlating Gene-specific DNA Methylation Changes with Expression and Transcriptional Activity of Astrocytic KCNJ10 (Kir4.1)

    PubMed Central

    Nwaobi, Sinifunanya E.; Olsen, Michelle L.

    2015-01-01

    DNA methylation serves to regulate gene expression through the covalent attachment of a methyl group onto the C5 position of a cytosine in a cytosine-guanine dinucleotide. While DNA methylation provides long-lasting and stable changes in gene expression, patterns and levels of DNA methylation are also subject to change based on a variety of signals and stimuli. As such, DNA methylation functions as a powerful and dynamic regulator of gene expression. The study of neuroepigenetics has revealed a variety of physiological and pathological states that are associated with both global and gene-specific changes in DNA methylation. Specifically, striking correlations between changes in gene expression and DNA methylation exist in neuropsychiatric and neurodegenerative disorders, during synaptic plasticity, and following CNS injury. However, as the field of neuroepigenetics continues to expand its understanding of the role of DNA methylation in CNS physiology, delineating causal relationships in regards to changes in gene expression and DNA methylation are essential. Moreover, in regards to the larger field of neuroscience, the presence of vast region and cell-specific differences requires techniques that address these variances when studying the transcriptome, proteome, and epigenome. Here we describe FACS sorting of cortical astrocytes that allows for subsequent examination of a both RNA transcription and DNA methylation. Furthermore, we detail a technique to examine DNA methylation, methylation sensitive high resolution melt analysis (MS-HRMA) as well as a luciferase promoter assay. Through the use of these combined techniques one is able to not only explore correlative changes between DNA methylation and gene expression, but also directly assess if changes in the DNA methylation status of a given gene region are sufficient to affect transcriptional activity. PMID:26436772

  18. Impact of the Location of CpG Methylation within the GSTP1 Gene on Its Specificity as a DNA Marker for Hepatocellular Carcinoma

    PubMed Central

    Jain, Surbhi; Boldbaatar, Batbold; Hamilton, James P.; Lin, Selena Y.; Chang, Ting-Tsung; Chen, Shun-Hua; Song, Wei; Meltzer, Stephen J.; Block, Timothy M.; Su, Ying-Hsiu

    2012-01-01

    Hypermethylation of the glutathione S-transferase π 1 (GSTP1) gene promoter region has been reported to be a potential biomarker to distinguish hepatocellular carcinoma (HCC) from other liver diseases. However, reports regarding how specific a marker it is have ranged from 100% to 0%. We hypothesized that, to a large extent, the variation of specificity depends on the location of the CpG sites analyzed. To test this hypothesis, we compared the methylation status of the GSTP1 promoter region of the DNA isolated from HCC, cirrhosis, hepatitis, and normal liver tissues by bisulfite–PCR sequencing. We found that the 5′ region of the position −48 nt from the transcription start site of the GSTP1 gene is selectively methylated in HCC, whereas the 3′ region is methylated in all liver tissues examined, including normal liver and the HCC tissue. Interestingly, when DNA derived from fetal liver and 11 nonhepatic normal tissue was also examined by bisulfite-PCR sequencing, we found that methylation of the 3′ region of the promoter appeared to be liver-specific. A methylation-specific PCR assay targeting the 5′ region of the promoter was developed and used to quantify the methylated GSTP1 gene in various diseased liver tissues including HCC. When we used an assay targeting the 3′ region, we found that the methylation of the 5′-end of the GSTP1 promoter was significantly more specific than that of the 3′-end (97.1% vs. 60%, p<0.0001 by Fisher's exact test) for distinguishing HCC (n = 120) from hepatitis (n = 35) and cirrhosis (n = 35). Encouragingly, 33.8% of the AFP-negative HCC contained the methylated GSTP1 gene. This study clearly demonstrates the importance of the location of CpG site methylation for HCC specificity and how liver-specific DNA methylation should be considered when an epigenetic DNA marker is studied for detection of HCC. PMID:22536438

  19. Methylation of DAPK and THBS1 genes in esophageal gastric-type columnar metaplasia

    PubMed Central

    Herrera-Goepfert, Roberto; Oñate-Ocaña, Luis F; Mosqueda-Vargas, José Luis; Herrera, Luis A; Castro, Clementina; Mendoza, Julia; González-Barrios, Rodrigo

    2016-01-01

    AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori (H. pylori) status in individuals harboring esophageal columnar metaplasia. METHODS: Distal esophageal mucosal samples obtained by endoscopy and histologically diagnosed as gastric-type (non-specialized) columnar metaplasia, were studied thoroughly. DNA was extracted from paraffin blocks, and methylation status of death-associated protein kinase (DAPK), thrombospondin-1 (THBS1), cadherin-1 (CDH1), and p14 genes, was examined using a methyl-sensitive polymerase chain reaction (MS-PCR) and sodium bisulfite modification protocol. H. pylori cagA status was determined by PCR. RESULTS: In total, 68 subjects (33 females and 35 males), with a mean age of 52 years, were included. H. pylori cagA positive was present in the esophageal gastric-type metaplastic mucosa of 18 individuals. DAPK, THSB1, CDH1, and p14 gene promoters were methylated by MS-PCR in 40 (58.8%), 33 (48.5%), 46 (67.6%), and 23 (33.8%) cases of the 68 esophageal samples. H. pylori status was associated with methylation of DAPK (P = 0.003) and THBS1 (P = 0.019). CONCLUSION: DNA methylation occurs in cases of gastric-type (non-specialized) columnar metaplasia of the esophagus, and this modification is associated with H. pylori cagA positive infection. PMID:27182166

  20. GPER Promoter Methylation Controls GPER Expression in Breast Cancer Patients.

    PubMed

    Weissenborn, Christine; Ignatov, Tanja; Nass, Norbert; Kalinski, Thomas; Dan Costa, Serban; Zenclussen, Ana Claudia; Ignatov, Atanas

    2017-02-07

    Recently, we found that G-protein-coupled estrogen receptor (GPER) protein expression decreased during breast carcinogenesis, and that GPER promoter is methylated. Here we analyzed GPER promoter methylation in 260 primary breast cancer specimens by methylation-specific polymerized chain reaction. The results demonstrated that GPER protein down-regulation significantly correlated with GPER promoter hypermethylation (p < .001). Comparison of 108 tumors and matched normal breast tissues indicated a significant GPER down-regulation in cancer tissues correlating with GPER promoter hypermethylation (p < .001). The latter was an unfavorable factor for overall survival of patients with triple-negative breast cancer (p = .025). Thus GPER promoter hypermethylation might be used as a prognostic factor.

  1. Hypermethylation of testis derived transcript gene promoter significantly correlates with worse outcomes in glioblastoma patients.

    PubMed

    Wang, Li-jia; Bai, Yu; Bao, Zhao-shi; Chen, Yan; Yan, Zhuo-hong; Zhang, Wei; Zhang, Quan-geng

    2013-01-01

    Glioblastoma is the most common and lethal cancer of the central nervous system. Global genomic hypomethylation and some CpG island hypermethylation are common hallmarks of these malignancies, but the effects of these methylation abnormalities on glioblastomas are still largely unclear. Methylation of the O6-methylguanine-DNA methyltransferase promoter is currently an only confirmed molecular predictor of better outcome in temozolomide treatment. To better understand the relationship between CpG island methylation status and patient outcome, this study launched DNA methylation profiles for thirty-three primary glioblastomas (pGBMs) and nine secondary glioblastomas (sGBMs) with the expectation to identify valuable prognostic and therapeutic targets. We evaluated the methylation status of testis derived transcript (TES) gene promoter by microarray analysis of glioblastomas and the prognostic value for TES methylation in the clinical outcome of pGBM patients. Significance analysis of microarrays was used for genes significantly differently methylated between 33 pGBM and nine sGBM. Survival curves were calculated according to the Kaplan-Meier method, and differences between curves were assessed using the log-rank test. Then, we treated glioblastoma cell lines (U87 and U251) with 5-aza-2-deoxycytidines (5-aza-dC) and detected cell biological behaviors. Microarray data analysis identified TES promoter was hypermethylated in pGBMs compared with sGBMs (P < 0.05). Survival curves from the Kaplan-Meier method analysis revealed that the patients with TES hypermethylation had a short overall survival (P < 0.05). This abnormality is also confirmed in glioblastoma cell lines (U87 and U251). Treating these cells with 5-aza-dC released TES protein expression resulted in significant inhibition of cell growth (P = 0.013). Hypermethylation of TES gene promoter highly correlated with worse outcome in pGBM patients. TES might represent a valuable prognostic marker for glioblastoma.

  2. Bayesian inference supports a location and neighbour-dependent model of DNA methylation propagation at the MGMT gene promoter in lung tumours.

    PubMed

    Bonello, Nicolas; Sampson, James; Burn, John; Wilson, Ian J; McGrown, Gail; Margison, Geoff P; Thorncroft, Mary; Crossbie, Philip; Povey, Andrew C; Santibanez-Koref, Mauro; Walters, Kevin

    2013-11-07

    We exploit model-based Bayesian inference methodologies to analyse lung tumour-derived methylation data from a CpG island in the O6-methylguanine-DNA methyltransferase (MGMT) promoter. Interest is in modelling the changes in methylation patterns in a CpG island in the first exon of the promoter during lung tumour development. We propose four competils of methylation state propagation based on two mechanisms. The first is the location-dependence mechanism in which the probability of a gain or loss of methylation at a CpG within the promoter depends upon its location in the CpG sequence. The second mechanism is that of neighbour-dependence in which gain or loss of methylation at a CpG depends upon the methylation status of the immediately preceding CpG. Our data comprises the methylation status at 12 CpGs near the 5' end of the CpG island in two lung tumour samples for both alleles of a nearby polymorphism. We use approximate Bayesian computation, a computationally intensive rejection-sampling algorithm to infer model parameters and compare models without the need to evaluate the likelihood function. We compare the four proposed models using two criteria: the approximate Bayes factors and the distribution of the Euclidean distance between the summary statistics of the observed and simulated datasets. Our model-based analysis demonstrates compelling evidence for both location and neighbour dependence in the process of aberrant DNA methylation of this MGMT promoter CpG island in lung tumours. We find equivocal evidence to support the hypothesis that the methylation patterns of the two alleles evolve independently. © 2013 Published by Elsevier Ltd. All rights reserved.

  3. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status.

    PubMed

    Bady, Pierre; Sciuscio, Davide; Diserens, Annie-Claire; Bloch, Jocelyne; van den Bent, Martin J; Marosi, Christine; Dietrich, Pierre-Yves; Weller, Michael; Mariani, Luigi; Heppner, Frank L; Mcdonald, David R; Lacombe, Denis; Stupp, Roger; Delorenzi, Mauro; Hegi, Monika E

    2012-10-01

    The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg12434587 [corrected] and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.

  4. Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer.

    PubMed

    Ma, Yunxia; Chen, Yuan; Petersen, Iver

    2017-04-01

    Aberrant DNA methylation is a common molecular feature in human cancer. The aims of this study were to analyze the methylation status of MLH1, one of the DNA mismatch repair (MMR) genes, in human colorectal and lung cancer and to evaluate its clinical relevance. The expression of MLH1 was analyzed in 8 colorectal cancer (CRC) and 8 lung cancer cell lines by real-time RT-PCR and western blotting. The MLH1 protein expression was evaluated by immunohistochemistry on tissue microarrays including 121 primary CRC and 90 lung cancer patient samples. In cancer cell lines, the methylation status of MLH1 promoter and exon 2 was investigated by bisulfite sequencing (BS). Methylation-specific-PCR (MSP) was used to evaluate methylation status of MLH1. The expression of MLH1 mRNA was detected in 8 CRC cell lines as well as normal colonic fibroblast cells CCD-33Co. At protein levels, MLH1 was lost in one CRC cell line HCT-116 and normal cells CCD-33Co. No methylation was found in the promoter and exon 2 of MLH1 in CRC cell lines. MLH1 was expressed in 8 lung cancer cell lines at both mRNA and protein levels. Compared to cancer cells, normal bronchial epithelial cells (HBEC) had lower expression of MLH1 protein. In primary CRC, 54.5% of cases exhibited positive staining, while 47.8% of lung tumors were positive for MLH1 protein. MSP analysis showed that 58 out of 92 (63.0%) CRC and 41 out of 73 (56.2%) lung cancer exhibited MLH1 methylation. In CRC, the MLH1 methylation was significantly associated with tumor invasion in veins (P=0.012). However, no significant links were found between MLH1 expression and promoter methylation in both tumor entities. MLH1 methylation is a frequent molecular event in CRC and lung cancer patients. In CRC, methylation of MLH1 could be linked to vascular invasiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Whole genome DNA methylation: beyond genes silencing.

    PubMed

    Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati

    2017-01-17

    The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology.

  6. Whole genome DNA methylation: beyond genes silencing

    PubMed Central

    Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati

    2017-01-01

    The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology. PMID:27895318

  7. Differential SLC1A2 Promoter Methylation in Bipolar Disorder With or Without Addiction

    PubMed Central

    Jia, Yun-Fang; Choi, YuBin; Ayers-Ringler, Jennifer R.; Biernacka, Joanna M.; Geske, Jennifer R.; Lindberg, Daniel R.; McElroy, Susan L.; Frye, Mark A.; Choi, Doo-Sup; Veldic, Marin

    2017-01-01

    While downregulation of excitatory amino acid transporter 2 (EAAT2), the main transporter removing glutamate from the synapse, has been recognized in bipolar disorder (BD), the underlying mechanisms of downregulation have not been elucidated. BD is influenced by environmental factors, which may, via epigenetic modulation of gene expression, differentially affect illness presentation. This study thus focused on epigenetic DNA methylation regulation of SLC1A2, encoding for EAAT2, in BD with variable environmental influences of addiction. High resolution melting PCR (HRM-PCR) and thymine–adenine (TA) cloning with sequence analysis were conducted to examine methylation of the promoter region of the SLC1A2. DNA was isolated from blood samples drawn from BD patients (N = 150) with or without addiction to alcohol, nicotine, or food, defined as binge eating, and matched controls (N = 32). In comparison to controls, the SLC1A2 promoter region was hypermethylated in BD without addiction but was hypomethylated in BD with addiction. After adjusting for age and sex, the association of methylation levels with nicotine addiction (p = 0.0009) and binge eating (p = 0.0002) remained significant. Consistent with HRM-PCR, direct sequencing revealed increased methylation in CpG site 6 in BD, but decreased methylation in three CpG sites (6, 48, 156) in BD with alcohol and nicotine addictions. These results suggest that individual point methylation within the SLC1A2 promoter region may be modified by exogenous addiction and may have a potential for developing clinically valuable epigenetic biomarkers for BD diagnosis and monitoring. PMID:28785205

  8. Differential SLC1A2 Promoter Methylation in Bipolar Disorder With or Without Addiction.

    PubMed

    Jia, Yun-Fang; Choi, YuBin; Ayers-Ringler, Jennifer R; Biernacka, Joanna M; Geske, Jennifer R; Lindberg, Daniel R; McElroy, Susan L; Frye, Mark A; Choi, Doo-Sup; Veldic, Marin

    2017-01-01

    While downregulation of excitatory amino acid transporter 2 (EAAT2), the main transporter removing glutamate from the synapse, has been recognized in bipolar disorder (BD), the underlying mechanisms of downregulation have not been elucidated. BD is influenced by environmental factors, which may, via epigenetic modulation of gene expression, differentially affect illness presentation. This study thus focused on epigenetic DNA methylation regulation of SLC1A2 , encoding for EAAT2, in BD with variable environmental influences of addiction. High resolution melting PCR (HRM-PCR) and thymine-adenine (TA) cloning with sequence analysis were conducted to examine methylation of the promoter region of the SLC1A2 . DNA was isolated from blood samples drawn from BD patients ( N = 150) with or without addiction to alcohol, nicotine, or food, defined as binge eating, and matched controls ( N = 32). In comparison to controls, the SLC1A2 promoter region was hypermethylated in BD without addiction but was hypomethylated in BD with addiction. After adjusting for age and sex, the association of methylation levels with nicotine addiction ( p = 0.0009) and binge eating ( p = 0.0002) remained significant. Consistent with HRM-PCR, direct sequencing revealed increased methylation in CpG site 6 in BD, but decreased methylation in three CpG sites (6, 48, 156) in BD with alcohol and nicotine addictions. These results suggest that individual point methylation within the SLC1A2 promoter region may be modified by exogenous addiction and may have a potential for developing clinically valuable epigenetic biomarkers for BD diagnosis and monitoring.

  9. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    PubMed

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  10. DNMT1-interacting RNAs block gene specific DNA methylation

    PubMed Central

    Di Ruscio, Annalisa; Ebralidze, Alexander K.; Benoukraf, Touati; Amabile, Giovanni; Goff, Loyal A.; Terragni, Joylon; Figueroa, Maria Eugenia; De Figureido Pontes, Lorena Lobo; Alberich-Jorda, Meritxell; Zhang, Pu; Wu, Mengchu; D’Alò, Francesco; Melnick, Ari; Leone, Giuseppe; Ebralidze, Konstantin K.; Pradhan, Sriharsa; Rinn, John L.; Tenen, Daniel G.

    2013-01-01

    Summary DNA methylation was described almost a century ago. However, the rules governing its establishment and maintenance remain elusive. Here, we present data demonstrating that active transcription regulates levels of genomic methylation. We identified a novel RNA arising from the CEBPA gene locus critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extended the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene selective demethylation of therapeutic targets in disease. PMID:24107992

  11. Aberrant methylation of the MSH3 promoter and distal enhancer in esophageal cancer patients exposed to first-hand tobacco smoke.

    PubMed

    Vogelsang, Matjaz; Paccez, Juliano D; Schäfer, Georgia; Dzobo, Kevin; Zerbini, Luiz F; Parker, M Iqbal

    2014-11-01

    Polymorphisms in MSH3 gene confer risk of esophageal cancer when in combination with tobacco smoke exposure. The purpose of this study was to investigate the methylation status of MSH3 gene in esophageal cancer patients in order to further elucidate possible role of MSH3 in esophageal tumorigenesis. We applied nested methylation-specific polymerase chain reaction to investigate the methylation status of the MSH3 promoter in tumors and matching adjacent normal-looking tissues of 84 esophageal cancer patients from a high-risk South African population. The Cancer Genome Atlas data were used to examine DNA methylation profiles at 17 CpG sites located in the MSH3 locus. Overall, promoter methylation was detected in 91.9 % of tumors, which was significantly higher compared to 76.0 % in adjacent normal-looking esophageal tissues (P = 0.008). When samples were grouped according to different demographics (including age, gender and ethnicity) and smoking status of patients, methylation frequencies were found to be significantly higher in tumor tissues of Black subjects (P = 0.024), patients of 55-65 years of age (P = 0.032), males (P = 0.037) and tobacco smokers (P = 0.015). Furthermore, methylation of the MSH3 promoter was significantly more frequent in tumor samples from smokers compared to tumor samples from non-smokers [odds ratio (OR) = 31.9, P = 0.031]. The TCGA data confirmed significantly higher DNA methylation level at the MSH3 promoter region in tumors (P = 0.0024). In addition, we found evidence of an aberrantly methylated putative MSH3-associated distal enhancer element. Our results suggest that methylation of MSH3 together with exposure to tobacco smoke is involved in esophageal carcinogenesis. Due to the active role of the MSH3 protein in modulating chemosensitivity of cells, methylation of MSH3 should further be examined in association with the outcome of esophageal cancer treatment using anticancer drugs.

  12. No simple answers for the Finnish and Russian Karelia allergy contrast: Methylation of CD14 gene.

    PubMed

    Khoo, Siew-Kim; Mäkelä, Mika; Chandler, David; Schultz, En Nee; Jamieson, Sarra E; Goldblatt, Jack; Haahtela, Tari; LeSouëf, Peter; Zhang, Guicheng

    2016-11-01

    Finnish and Russian Karelian children have a highly contrasting occurrence of asthma and allergy. In these two environments, we studied associations between total serum immunoglobulin E (IgE) with methylation levels in cluster of differentiation 14 (CD14). Five hundred Finnish and Russian Karelian children were included in four groups: Finnish children with high IgE (n = 126) and low IgE (n = 124) as well as Russian children with high IgE (n = 125) and low IgE (n = 125). DNA was extracted from whole blood cells and pyrosequenced. Three CpG sites were selected in the promoter region of CD14. Methylation levels in two of the three CpG sites were higher in the Finnish compared to Russian Karelian children. In the promoter area of CD14, the Finnish compared to Russian children with low IgE had a significant (p < 0.0001) increase in methylation levels at the Amp5Site 2. Likewise, the Finnish compared to Russian children with high IgE had a significant (p = 0.003) increase in methylation levels at the Amp5Site 3. In Russian children with low vs. high IgE, there were significant differences in methylation levels, but this was not the case on the Finnish side. In the regression analysis, adding the methylation variation of CD14 to the model did not explain the higher asthma and allergy risk in the Finnish children. The methylation levels in the promoter region of CD14 gene were higher in the Finnish compared to Russian Karelian children. However, the methylation variation of this candidate gene did not explain the asthma and allergy contrast between these two areas. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Sera DNA Methylation of CDH1, DNMT3b and ESR1 Promoters as Biomarker for the Early Diagnosis of Hepatitis B Virus-Related Hepatocellular Carcinoma.

    PubMed

    Dou, Cheng-Yun; Fan, Yu-Chen; Cao, Chuang-Jie; Yang, Yang; Wang, Kai

    2016-04-01

    DNA methylation mainly affects tumor suppressor genes in the development of hepatocellular carcinoma (HCC). However, sera methylation of specific genes in hepatitis B virus (HBV)-related HCC remains unknown. The purpose of this study was to identify methylation frequencies of sera E-cadherin (CDH1), DNA methyltransferase 3b (DNMT3b) and estrogen receptor 1 (ESR1) promoter in HBV-related HCC and analyze the associated clinical significance. Methylation-specific PCR was used to determine the frequencies of DNA methylation for CDH1, DNMT3b and ESR1 genes in sera from 183 patients with HCC, 47 liver cirrhosis (LC), 126 chronic hepatitis B (CHB), and 50 normal controls (NCs). Significantly higher frequencies of methylation of CDH1, DNMT3b and ESR1 were found in HBV-related HCC compared with LC, CHB and NCs. Nodule numbers, tumor size and the presence of liver cirrhosis were significantly associated with gene methylation status in HBV-related HCC. Moreover, HBV may have a strong and enhanced effect on the concurrent methylation of CDH1, DNMT3b and ESR1 in HBV-related HCC. More importantly, combined methylation as a biomarker displayed significantly higher diagnostic value than AFP to discriminate HCC from CHB and LC. Aberrant sera DNA methylation of CDH1, DNMT3b and ESR1 gene promoters could be a biomarker in the early diagnosis of HBV-related HCC.

  14. Roles of Distal and Genic Methylation in the Development of Prostate Tumorigenesis Revealed by Genome-wide DNA Methylation Analysis.

    PubMed

    Wang, Yao; Jadhav, Rohit Ramakant; Liu, Joseph; Wilson, Desiree; Chen, Yidong; Thompson, Ian M; Troyer, Dean A; Hernandez, Javier; Shi, Huidong; Leach, Robin J; Huang, Tim H-M; Jin, Victor X

    2016-02-29

    Aberrant DNA methylation at promoters is often linked to tumorigenesis. But many aspects of DNA methylation remain unexplored, including the individual roles of distal and gene body methylation, as well as their collaborative roles with promoter methylation. Here we performed a MBD-seq analysis on prostate specimens classified into low, high, and very high risk group based on Gleason score and TNM stages. We identified gene sets with differential methylation regions (DMRs) in Distal, TSS, gene body and TES. To understand the collaborative roles, TSS was compared with the other three DMRs, resulted in 12 groups of genes with collaborative differential methylation patterns (CDMPs). We found several groups of genes that show opposite methylation patterns in Distal and Genic regions compared to TSS region, and in general they are differentially expressed genes (DEGs) in tumors in TCGA RNA-seq data. IPA (Ingenuity Pathway Analysis) reveals AR/TP53 signaling network to be a major signaling pathway, and survival analysis indicates genes subsets significantly associated with prostate cancer recurrence. Our results suggest that DNA methylation in Distal and Genic regions also plays critical roles in contributing to prostate tumorigenesis, and may act either positively or negatively with TSSs to alter gene regulation in tumors.

  15. MGMT Gene Promoter Methylation as a Potent Prognostic Factor in Glioblastoma Treated With Temozolomide-Based Chemoradiotherapy: A Single-Institution Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Suk; Kim, Se Hoon; Cho, Jaeho

    2012-11-01

    Purpose: Recently, cells deficient in O{sup 6}-methylguanine-DNA methyltransferase (MGMT) were found to show increased sensitivity to temozolomide (TMZ). We evaluated whether hypermethylation of MGMT was associated with survival in patients with glioblastoma multiforme (GBM). Methods and Materials: We retrospectively analyzed 93 patients with histologically confirmed GBM who received involved-field radiotherapy with TMZ from 2001 to 2008. The median age was 58 years (range, 24-78 years). Surgical resection was total in 39 patients (42%), subtotal in 30 patients (32%), and partial in 17 patients (18%); only a biopsy was performed in 7 patients (8%). Postoperative radiotherapy began within 3 weeks ofmore » surgery in 87% of the patients. Radiotherapy doses ranged from 50 to 74 Gy (median, 70 Gy). MGMT gene methylation was determined in 78 patients; MGMT was unmethylated in 43 patients (55%) and methylated in 35 patients (45%). The median follow-up period was 22 months (range, 3-88 months) for all patients. Results: The median overall survival (OS) was 22 months, and progression-free survival (PFS) was 11 months. MGMT gene methylation was an independently significant prognostic factor for both OS (p = 0.002) and PFS (p = 0.008) in multivariate analysis. The median OS was 29 months for the methylated group and 20 months for the unmethylated group. In 35 patients with methylated MGMT genes, the 2-year and 5-year OS rates were 54% and 31%, respectively. Six patients with combined prognostic factors of methylated MGMT genes, age {<=}50 years, and total/subtotal resections are all alive 38 to 77 months after operation, whereas the median OS in 8 patients with unmethylated MGMT genes, age >50 years, and less than subtotal resection was 13.2 months. Conclusion: We confirmed that MGMT gene methylation is a potent prognostic factor in patients with GBM. Our results suggest that early postoperative radiotherapy and a high total/subtotal resection rate might further improve

  16. Acquired alterations of hypothalamic gene expression of insulin and leptin receptors and glucose transporters in prenatally high-glucose exposed three-week old chickens do not coincide with aberrant promoter DNA methylation.

    PubMed

    Rancourt, Rebecca C; Schellong, Karen; Ott, Raffael; Bogatyrev, Semen; Tzschentke, Barbara; Plagemann, Andreas

    2015-01-01

    Prenatal exposures may have a distinct impact for long-term health, one example being exposure to maternal 'diabesity' during pregnancy increasing offspring 'diabesity' risk. Malprogramming of the central nervous regulation of body weight, food intake and metabolism has been identified as a critical mechanism. While concrete disrupting factors still remain unclear, growing focus on acquired epigenomic alterations have been proposed. Due to the independent development from the mother, the chicken embryo provides a valuable model to distinctively establish causal factors and mechanisms. The aim of this study was to determine the effects of prenatal hyperglycemia on postnatal hypothalamic gene expression and promoter DNA methylation in the chicken. To temporarily induce high-glucose exposure in chicken embryos, 0.5 ml glucose solution (30 mmol/l) were administered daily via catheter into a vessel of the chorioallantoic egg membrane from days 14 to 17 of incubation. At three weeks of postnatal age, body weight, total body fat, blood glucose, mRNA expression (INSR, LEPR, GLUT1, GLUT3) as well as corresponding promoter DNA methylation were determined in mediobasal hypothalamic brain slices (Nucleus infundibuli hypothalami). Although no significant changes in morphometric and metabolic parameters were detected, strongly decreased mRNA expression occurred in all candidate genes. Surprisingly, however, no relevant alterations were observed in respective promoter methylation. Prenatal hyperglycemia induces strong changes in later hypothalamic expression of INSR, LEPR, GLUT1, and GLUT3 mRNA. While the chicken provides an interesting approach for developmental malprogramming, the classical expression regulation via promoter methylation was not observed here. This may be due to alternative/interacting brain mechanisms or the thus far under-explored bird epigenome.

  17. Genetic Determinants for Promoter Hypermethylation in the Lungs of Smokers: A Candidate Gene-Based Study

    PubMed Central

    Leng, Shuguang; Stidley, Christine A.; Liu, Yushi; Edlund, Christopher K.; Willink, Randall P.; Han, Younghun; Landi, Maria Teresa; Thun, Michael; Picchi, Maria A.; Bruse, Shannon E.; Crowell, Richard E.; Van Den Berg, David; Caporaso, Neil E.; Amos, Christopher I.; Siegfried, Jill M.; Tesfaigzi, Yohannes; Gilliland, Frank D.; Belinsky, Steven A.

    2011-01-01

    The detection of tumor suppressor gene promoter methylation in sputum-derived exfoliated cells predicts early lung cancer. Here we identified genetic determinants for this epigenetic process and examined their biological effects on gene regulation. A two-stage approach involving discovery and replication was employed to assess the association between promoter hypermethylation of a 12-gene panel and common variation in 40 genes involved in carcinogen metabolism, regulation of methylation, and DNA damage response in members of the Lovelace Smokers Cohort (n=1434). Molecular validation of three identified variants was conducted using primary bronchial epithelial cells. Association of study-wide significance (P<8.2×10−5) was identified for rs1641511, rs3730859, and rs1883264 in TP53, LIG1, and BIK, respectively. These SNPs were significantly associated with altered expression of the corresponding genes in primary bronchial epithelial cells. In addition, rs3730859 in LIG1 was also moderately associated with increased risk for lung cancer among Caucasian smokers. Together, our findings suggest that genetic variation in DNA replication and apoptosis pathways impacts the propensity for gene promoter hypermethylation in the aerodigestive tract of smokers. The incorporation of genetic biomarkers for gene promoter hypermethylation with clinical and somatic markers may improve risk assessment models for lung cancer. PMID:22139380

  18. 6-mercaptopurine influences TPMT gene transcription in a TPMT gene promoter variable number of tandem repeats-dependent manner.

    PubMed

    Kotur, Nikola; Stankovic, Biljana; Kassela, Katerina; Georgitsi, Marianthi; Vicha, Anna; Leontari, Iliana; Dokmanovic, Lidija; Janic, Dragana; Krstovski, Nada; Klaassen, Kristel; Radmilovic, Milena; Stojiljkovic, Maja; Nikcevic, Gordana; Simeonidis, Argiris; Sivolapenko, Gregory; Pavlovic, Sonja; Patrinos, George P; Zukic, Branka

    2012-02-01

    TPMT activity is characterized by a trimodal distribution, namely low, intermediate and high methylator. TPMT gene promoter contains a variable number of GC-rich tandem repeats (VNTRs), namely A, B and C, ranging from three to nine repeats in length in an A(n)B(m)C architecture. We have previously shown that the VNTR architecture in the TPMT gene promoter affects TPMT gene transcription. MATERIALS, METHODS & RESULTS: Here we demonstrate, using reporter assays, that 6-mercaptopurine (6-MP) treatment results in a VNTR architecture-dependent decrease of TPMT gene transcription, mediated by the binding of newly recruited protein complexes to the TPMT gene promoter, upon 6-MP treatment. We also show that acute lymphoblastic leukemia patients undergoing 6-MP treatment display a VNTR architecture-dependent response to 6-MP. These data suggest that the TPMT gene promoter VNTR architecture can be potentially used as a pharmacogenomic marker to predict toxicity due to 6-MP treatment in acute lymphoblastic leukemia patients.

  19. Methylation variable position profiles of hMLH1 promoter CpG islands in human sporadic colorectal carcinoma.

    PubMed

    Huang, Qing; Huang, Jun-Fu; Zhang, Bo; Baum, Larry; Fu, Wei-Ling

    2012-03-01

    Aberrant hypermethylation of CpG islands (CGIs) in hMLH1 promoter regions has been well known to play an important role in the tumorigenesis of human sporadic colorectal carcinoma (SCRC). In this study, bisulfite sequencing was performed to analyze the methylation variable positions (MVPs) profiles of hMLH1 promoter CGIs in 30 clinical SCRC patients, and further analysis was carried out to evaluate the associations between the CGI methylation and the clinicopathological features in SCRC. Among the 2 CGIs in the hMLH1 promoter, that is, CGI-I and CGI-II, 20% (6/30) and 13% (4/30) of the patients had methylated CGI-I and CGI-II, respectively. Suppressed expression of hMLH1was significantly correlated with methylation of CGI-I but not CGI-II. Further analysis of the MVP profiles of CGI-I showed that most of the MVPs were hypermethylated and others were poorly methylated or unmethylated. The profiles could be classified into at least 4 groups based on the methylation status of 3 MVPs at positions 21 to 23 in CGI-I. All 6 patients with methylated CGI-I belonged to group I. This result suggests that the above 3 MVPs in CGI-I should be a targeted region to further analyze the epigenetic features of hMLH1 in human SCRC. Our results further suggest that MVP profiling is useful for identifying the aberrantly methylated CGIs associated with suppressed gene expression.

  20. Epigenetic silencing of BTB and CNC homology 2 and concerted promoter CpG methylation in gastric cancer.

    PubMed

    Haam, Keeok; Kim, Hee-Jin; Lee, Kyung-Tae; Kim, Jeong-Hwan; Kim, Mirang; Kim, Seon-Young; Noh, Seung-Moo; Song, Kyu-Sang; Kim, Yong Sung

    2014-09-01

    BTB and CNC homology 2 (BACH2) is a lymphoid-specific transcription factor with a prominent role in B-cell development. Genetic polymorphisms within a single locus encoding BACH2 are associated with various autoimmune diseases and allergies. In this study, restriction landmark genomic scanning revealed methylation at a NotI site in a CpG island covering the BACH2 promoter in gastric cancer cell lines and primary gastric tumors. Increased methylation of the BACH2 promoter was observed in 52% (43/83) of primary gastric tumors, and BACH2 hypermethylation was significantly associated with decreased gene expression. Treatment with 5-aza-2'-deoxycytidine and/or trichostatin. A restored BACH2 expression in BACH2-silenced gastric cancer cell lines, and knockdown of BACH2 using short hairpin RNA (i.e. RNA interference) increased cell proliferation in gastric cancer cells. Clinicopathologic data showed that decreased BACH2 expression occurred significantly more frequently in intestinal-type (27/44, 61%) compared with diffuse-type (13/50, 26%) gastric cancers (P<0.001). Furthermore, BACH2 promoter methylation paralleled that of previously identified targets, such as LRRC3B, LIMS2, PRKD1 and POPDC3, in a given set of gastric tumors. We propose that concerted methylation in many promoters plays a role in accelerating gastric tumor formation and that methylated promoter loci may be targets for therapeutic treatment, such as the recently introduced technique of epigenetic editing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content

    PubMed Central

    Harvey, Nicholas C.; Lillycrop, Karen A.; Garratt, Emma; Sheppard, Allan; McLean, Cameron; Burdge, Graham; Slater-Jefferies, Jo; Rodford, Joanne; Crozier, Sarah; Inskip, Hazel; Emerald, Bright Starling; Gale, Catharine R; Hanson, Mark; Gluckman, Peter; Godfrey, Keith; Cooper, Cyrus

    2013-01-01

    Aim Our previous work has shown associations between childhood adiposity and perinatal methylation status of several genes in umbilical cord tissue, including endothelial nitric oxide synthase (eNOS). There is increasing evidence that eNOS is important in bone metabolism; we therefore related the methylation status of the eNOS gene promoter in stored umbilical cord to childhood bone size and density in a group of 9-year old children. Methods We used Sequenom MassARRAY to assess the methylation status of 2 CpGs in the eNOS promoter, identified from our previous study, in stored umbilical cords of 66 children who formed part of a Southampton birth cohort and who had measurements of bone size and density at age 9 years (Lunar DPXL DXA instrument). Results Percentage methylation varied greatly between subjects. For one of the two CpGs, eNOS chr7:150315553+, after taking account of age and sex there was a strong positive association between methylation status and the child’s whole body bone area (r=0.28,p=0.02), bone mineral content (r=0.34,p=0.005) and areal bone mineral density (r=0.34,p=0.005) at age 9 years. These associations were independent of previously documented maternal determinants of offspring bone mass. Conclusions Our findings suggest an association between methylation status at birth of a specific CpG within the eNOS promoter and bone mineral content in childhood. This supports a role for eNOS in bone growth and metabolism and implies that its contribution may at least in part occur during early skeletal development. PMID:22159788

  2. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants.

    PubMed

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; Langie, Sabine A S; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-01

    Maternal nutrition during pregnancy and infant nutrition in the early postnatal period (lactation) are critically involved in the development and health of the newborn infant. The Maternal Nutrition and Offspring's Epigenome (MANOE) study was set up to assess the effect of maternal methyl-group donor intake (choline, betaine, folate, methionine) on infant DNA methylation. Maternal intake of dietary methyl-group donors was assessed using a food-frequency questionnaire (FFQ). Before and during pregnancy, we evaluated maternal methyl-group donor intake through diet and supplementation (folic acid) in relation to gene-specific ( IGF2 DMR, DNMT1 , LEP , RXRA ) buccal epithelial cell DNA methylation in 6 months old infants ( n  = 114) via pyrosequencing. In the early postnatal period, we determined the effect of maternal choline intake during lactation (in mothers who breast-fed for at least 3 months) on gene-specific buccal DNA methylation ( n  = 65). Maternal dietary and supplemental intake of methyl-group donors (folate, betaine, folic acid), only in the periconception period, was associated with buccal cell DNA methylation in genes related to growth ( IGF2 DMR), metabolism ( RXRA ), and appetite control ( LEP ). A negative association was found between maternal folate and folic acid intake before pregnancy and infant LEP (slope = -1.233, 95% CI -2.342; -0.125, p  = 0.0298) and IGF2 DMR methylation (slope = -0.706, 95% CI -1.242; -0.107, p  = 0.0101), respectively. Positive associations were observed for maternal betaine (slope = 0.875, 95% CI 0.118; 1.633, p  = 0.0241) and folate (slope = 0.685, 95% CI 0.245; 1.125, p  = 0.0027) intake before pregnancy and RXRA methylation. Buccal DNMT1 methylation in the infant was negatively associated with maternal methyl-group donor intake in the first and second trimester of pregnancy and negatively in the third trimester. We found no clear association between maternal choline intake

  3. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars.

    PubMed

    Liu, Xiao-Jing; Chuang, Yao-Nung; Chiou, Chung-Yi; Chin, Dan-Chu; Shen, Fu-Quan; Yeh, Kai-Wun

    2012-08-01

    The anthocyanin-biosynthetic pathway was studied in flowers of Oncidium Gower Ramsey with yellow floral color and mosaic red anthocyanin in lip crests, sepals and petals, and compared with the anthocyanin biosynthesis in flowers of Oncidium Honey Dollp, a natural somatoclone derived from tissue culture of Gower Ramsey, with a yellow perianth without red anthocyanins in floral tissues. HPLC analysis revealed that the red anthocyanin in lip crests of the Gower Ramsey cultivar comprised peonidin-3-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, whereas Honey Dollp was devoid of anthocyanin compounds. Among the five anthocyanin-biosynthetic genes, OgCHS was actively expressed in lip crests of Gower Ramsey flowers, but no transcripts of OgCHS were detected in Honey Dollp floral tissues. Transient expression of OgCHS by bombardment confirmed that recovery of the OgCHS gene expression completed the anthocyanin pathway and produced anthocyanin compounds in lip crests of Honey Dollp flowers. Transcription factor genes regulating anthocyanin biosynthesis showed no distinctive differences in the expression level of OgMYB1, OgbHLH and OgWD40 between the two cultivars. A methylation assay revealed that the promoter of OgCHS was not methylated in Gower Ramsey, while a positive methylation effect was present in the upstream promoter region of OgCHS in Honey Dollp. Overall, our results suggest that the failure of anthocyanin accumulation in Honey Dollp floral tissues may be attributed to inactivation of the OgCHS gene resulting from the epigenetic methylation of 5'-upstream promoter region.

  4. DNA methylation induced changes in chromatin conformation of the promoter of the vitellogenin II gene of Japanese quail during aging.

    PubMed

    Gupta, Sanjay; Pathak, Rashmi U; Kanungo, Madhu S

    2006-08-01

    One approach to the understanding of the molecular basis of aging in higher organisms may be to use genes whose timing and rate of expression during the life span run parallel with specific functions that can be monitored. The genes for egg proteins, such as vitellogenin (VTG), which is expressed in the liver, and ovalbumin, lysozyme etc. that are expressed in the oviduct of birds, meet these requirements. Egg laying function is dependent on the production of these proteins, which, in turn, depends on the expression of their genes. In this communication we present the age-related studies on the VTG II gene of the bird, Japanese quail. The gene is expressed only in the liver and its expression is considerably lower in old birds that do not lay eggs. Comparison of the promoter region of the gene carrying the two important cis-acting elements, estrogen responsive element (ERE) and progesterone responsive element (PRE), shows it to be 100% homologous to the corresponding region of the chicken VTG II gene. Methylation of DNA and conformation of chromatin of this region were studied, as they are known to be important for regulation of expression of genes. Our studies show that in the liver of adult female quails which lay eggs, a -CCGG- sequence located in this region is hypomethylated, and the chromatin encompassing this region of the gene is relaxed. In the old, the -CCGG- sequence is hypermethylated and the chromatin is compact. This is correlated with a decrease in the expression of the gene and decrease in egg production. Further, electrophoretic mobility shift assay (EMSA) shows that the levels/affinity of specific trans-acting factors that bind to ERE and PRE present in the region, are not different in adult and old birds. Hence the methylation status of the -CCGG- sequence that is located in-between the ERE and the PRE may be crucial for the conformation of chromatin and availability of these two important cis-acting elements for the binding of the trans

  5. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors.

    PubMed

    Chen, Xiaofei; Liu, Liang; Mims, Jade; Punska, Elizabeth C; Williams, Kristin E; Zhao, Weiling; Arcaro, Kathleen F; Tsang, Allen W; Zhou, Xiaobo; Furdui, Cristina M

    2015-01-01

    Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC.

  6. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  7. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination.

    PubMed

    Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.

  8. Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation.

    PubMed

    Novakovic, Boris; Fournier, Thierry; Harris, Lynda K; James, Joanna; Roberts, Claire T; Yong, Hannah E J; Kalionis, Bill; Evain-Brion, Danièle; Ebeling, Peter R; Wallace, Euan M; Saffery, Richard; Murthi, Padma

    2017-07-03

    Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta. Nevertheless, several genes showed variable methylation patterns across gestation, with a general trend towards an increase in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) showed inverse gains of methylation with decreasing mRNA expression throughout pregnancy, supporting a role for DNA methylation in their regulation. Proteins encoded by these genes were primarily localised to the syncytiotrophoblast layer, and showed decreased expression later in gestation. siRNA mediated downregulation of DLX5, TLX1 and HOXA10 in primary term villous cytotrophoblast resulted in decreased proliferation and increased expression of differentiation markers, including ERVW-1. Our data suggest that loss of DLX5, TLX1 and HOXA10 expression in late gestation is required for proper placental differentiation and function.

  9. Hypomethylation of specific CpG sites in the promoter region of steroidogeneic genes (GATA6 and StAR) in prenatally androgenized rats.

    PubMed

    Jahromi, Marziyeh Salehi; Hill, Jennifer W; Tehrani, Fahimeh Ramezani; Zadeh-Vakili, Azita

    2018-05-30

    The methylation level of promoters is one of the most studied and well-known epigenetic mechanisms that programs the amount of gene expression. Over expression of steroidogenesis genes via epigenetic control can result in hypetandrogenism, which is the main endocrine aspect of polycystic ovarian syndrome (PCOS). In the present study we aimed to determine and compare the promoter methylation levels of three steroidogenic genes, CYP17, GATA6 and StAR, in theca cells of prenatally androgenized (PNA) rats to those of controls. Pregnant Wistar rats in the PNA group received 5 mg free testosterone, dissolved in 500 mL solvent, subcutaneously injected on day 20 of pregnancy, while controls were injected with 500 mL of solvent only. Theca cell samples, taken from the ovaries of eight to ten female offspring of both the PNA and control groups, were measured for promoter methylation levels of the aforementioned genes, using the bisulfite sequence PCR (BSP) method. Although the promoters of all three genes were slightly hypomethylated in the PNA group, the differences observed were not significant compared to the control group. The methylation of -520 and -822 positions, in the GATA6 and the StAR promoter respectively, were significantly decreased in the PNA group. The results of this study suggest that alterations in the steroidogenesis pathway after exposure to excess androgen may be a result of changes in the pattern of the methylation of the relevant genes. Copyright © 2017. Published by Elsevier Inc.

  10. Human TERT promoter mutation enables survival advantage from MGMT promoter methylation in IDH1 wild-type primary glioblastoma treated by standard chemoradiotherapy.

    PubMed

    Nguyen, HuyTram N; Lie, Amy; Li, Tie; Chowdhury, Reshmi; Liu, Fei; Ozer, Byram; Wei, Bowen; Green, Richard M; Ellingson, Benjamin M; Wang, He-Jing; Elashoff, Robert; Liau, Linda M; Yong, William H; Nghiemphu, Phioanh L; Cloughesy, Timothy; Lai, Albert

    2017-03-01

    Promoter mutation in the human telomerase reverse transcriptase gene (hTERT) occurs in ~75% of primary glioblastoma (GBM). Although the mutation appears to upregulate telomerase expression and contributes to the maintenance of telomere length, its clinical significance remains unclear. We performed hTERT promoter genotyping on 303 isocitrate dehydrogenase 1 wild-type GBM tumors treated with standard chemoradiotherapy. We also stratified 190 GBM patients from the database of The Cancer Genome Atlas (TCGA) by hTERT gene expression. We analyzed overall and progression-free survival by Kaplan-Meier and Cox regression. We detected hTERT promoter mutation in 75% of the patients. When included as the only biomarker, hTERT mutation was not prognostic in our patient cohort by Cox regression analysis. However, when hTERT and O6-DNA methylguanine-methyltransferase (MGMT) were included together, we observed an interaction between these 2 factors. To further investigate this interaction, we performed pairwise comparison of the 4 patient subcohorts grouped by hTERT-MGMT status (MUT-M, WT-M, MUT-U, and WT-U). MGMT methylated patients showed improved survival only in the presence of hTERT promoter mutation: MUT-M versus MUT-U (overall survival of 28.3 vs 15.9 mos, log-rank P < .0001 and progression-free survival of 15.4 vs 7.86 mo, log-rank P < .0001). These results were confirmed by Cox analyses. Analogously, the cohort from TCGA demonstrated survival benefit of MGMT promoter methylation only in patients with high hTERT expression. In addition, hTERT mutation was negatively prognostic in our MGMT unmethylated patients, while the analogous association with high expression was not observed in the cohort from TCGA. The prognostic influence of MGMT promoter methylation depends on hTERT promoter mutation. This interaction warrants further mechanistic investigation. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights

  11. Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmina, Nina S., E-mail: nin-kuzmin@youndex.ru; Lapteva, Nellya Sh.; Rubanovich, Alexander V.

    Some human genes known to undergo age-related promoter hypermethylation. These epigenetic modifications are similar to those occurring in the course of certain diseases, e.g. some types of cancer, which in turn may also associate with age. Given external genotoxic factors may additionally contribute to hypermethylation, this study was designed to analyzes, using methylation-sensitive polymerase chain reaction (PCR), the CpG island hypermethylation in RASSF1A, CDKN2A (including p16/INK4A and p14/ARF) and GSTP1 promoters in peripheral blood leukocytes of individuals exposed to ionizing radiation long time ago. One hundred and twenty-four irradiated subjects (24–77 years old at sampling: 83 Chernobyl Nuclear Power Plantmore » clean-up workers, 21 nuclear workers, 20 residents of territories with radioactive contamination) and 208 unirradiated volunteers (19–77 years old at sampling) were enrolled. In addition, 74 non-exposed offspring (2–51 years old at sampling) born to irradiated parents were examined. The frequency of individuals displaying promoter methylation of at least one gene in exposed group was significantly higher as compared to the control group (OR=5.44, 95% CI=2.62–11.76, p=3.9×10{sup −7}). No significant difference was found between the frequency of subjects with the revealed promoter methylation in the group of offspring born to irradiated parents and in the control group. The increase in the number of methylated loci of RASSF1A and p14/ARF was associated with age (β=0.242; p=1.7×10{sup −5}). In contrast, hypermethylation of p16/INK4A and GSTP1 genes correlated with the fact of radiation exposure only (β=0.290; p=1.7×10{sup −7}). The latter finding demonstrates that methylation changes in blood leukocytes of healthy subjects exposed to radiation resemble those reported in human malignancies. Additional studies are required to identify the dose-response of epigenetic markers specifically associating with radiation-induced premature

  12. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2'-deoxycytidine treatment and oligonucleotide microarray.

    PubMed

    Yamashita, Satoshi; Tsujino, Yoshimi; Moriguchi, Kazuki; Tatematsu, Masae; Ushijima, Toshikazu

    2006-01-01

    To identify novel methylation-silenced genes in gastric cancers, we carried out a chemical genomic screening, a genome-wide search for genes upregulated by treatment with a demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC). After 5-aza-dC treatment of a gastric cancer cell line (AGS) 579 genes were upregulated 16-fold or more, using an oligonucleotide microarray with 39,000 genes. From these genes, we selected 44 known genes on autosomes whose silencing in gastric cancer has not been reported. Thirty-two of these had CpG islands (CGI) in their putative promoter regions, and all of the CGI were methylated in AGS, giving an estimated number of 421+/-75 (95% confidence interval) methylation-silenced genes. Additionally, we analyzed the methylation status of 16 potential tumor-related genes with promoter CGI that were upregulated four-fold or more, and 14 of these were methylated in AGS. Methylation status of the 32 randomly selected and 16 potential tumor-related genes was analyzed in 10 primary gastric cancers, and 42 genes (ABHD9, ADFP, ALDH1A3, ANXA5, AREG, BDNF, BMP7, CAV1, CDH2, CLDN3, CTSL, EEF1A2, F2R, FADS1, FSD1, FST, FYN, GPR54, GREM1, IGFBP3, IGFBP7, IRS2, KISS1, MARK1, MLF1, MSX1, MTSS1, NT5E, PAX6, PLAGL1, PLAU, PPIC, RBP4, RORA, SCRN1, TBX3, TFAP2C, TNFSF9, ULBP2, WIF1, ZNF177 and ZNF559) were methylated in at least one primary gastric cancer. A metastasis suppressor gene, MTSS1, was located in a genomic region with frequent loss of heterozygosity (8q22), and was expressed abundantly in the normal gastric mucosa, suggesting its role in gastric carcinogenesis. (Cancer Sci 2006; 97: 64 -71). (Cancer Sci 2006; 97: 64 -71).

  13. Fetal DNA methylation of autism spectrum disorders candidate genes: association with spontaneous preterm birth.

    PubMed

    Behnia, Fara; Parets, Sasha E; Kechichian, Talar; Yin, Huaizhi; Dutta, Eryn H; Saade, George R; Smith, Alicia K; Menon, Ramkumar

    2015-04-01

    Autism spectrum disorder (ASD) is associated with preterm birth (PTB), although the reason underlying this relationship is still unclear. Our objective was to examine DNA methylation patterns of 4 ASD candidate genes in human fetal membranes from spontaneous PTB and uncomplicated term birth. A literature search for genes that have been implicated in ASD yielded 14 candidate genes (OXTR, SHANK3, BCL2, RORA, EN2, RELN, MECP2, AUTS2, NLGN3, NRXN1, SLC6A4, UBE3A, GABA, AFF2) that were epigenetically modified in relation to ASD. DNA methylation in fetal leukocyte DNA in 4 of these genes (OXTR, SHANK3, BCL2, and RORA) was associated with PTB in a previous study. This study evaluated DNA methylation, transcription (reverse transcription polymerase chain reaction), and translation patterns (immunostaining and Western blot) in fetal membrane from term labor (n = 14), term not in labor (TNIL; n = 29), and spontaneous preterm birth (PTB; n = 27). Statistical analysis was performed with analysis of variance; a probability value of < .05 was significant. Higher methylation of the OXTR promoter was seen in fetal membranes from PTB, compared with term labor or TNIL. No other gene showed any methylation differences among groups. Expression of OXTR was not different among groups, but the 70 kDa OXTR protein was seen only in PTB, and immunostaining was more intense in PTB amniocytes than term labor or TNIL. Among the 4 genes that were studied, fetal membranes from PTB demonstrate differences in OXTR methylation and regulation and expression, which suggest that epigenetic alteration of this gene in fetal membrane may likely be indicating an in utero programing of this gene and serve as a surrogate in a subset of PTB. The usefulness of OXTR hypermethylation as a surrogate for a link to ASD should be further evaluated in longitudinal and in vitro studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. MAOA promoter methylation and susceptibility to carotid atherosclerosis: role of familial factors in a monozygotic twin sample

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. Methods We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. Results When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. Conclusions The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease. PMID:23116433

  15. MAOA promoter methylation and susceptibility to carotid atherosclerosis: role of familial factors in a monozygotic twin sample.

    PubMed

    Zhao, Jinying; Forsberg, Christopher W; Goldberg, Jack; Smith, Nicholas L; Vaccarino, Viola

    2012-11-02

    Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease.

  16. DNA methylome profiling identifies novel methylated genes in African American patients with colorectal neoplasia.

    PubMed

    Ashktorab, Hassan; Daremipouran, M; Goel, Ajay; Varma, Sudhir; Leavitt, R; Sun, Xueguang; Brim, Hassan

    2014-04-01

    The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject's colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands-in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)-were significantly hypermethylated in tumor vs. normal tissues (P<0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network-the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated

  17. Endothelial glucocorticoid receptor promoter methylation according to dexamethasone sensitivity

    PubMed Central

    Mata-Greenwood, Eugenia; Jackson, P Naomi; Pearce, William J; Zhang, Lubo

    2016-01-01

    We have previously shown that in vitro sensitivity to dexamethasone (DEX) stimulation in human endothelial cells is positively regulated by the glucocorticoid receptor (NR3C1, GR). The present study determined the role of differential GR transcriptional regulation in glucocorticoid sensitivity. We studied 25 human umbilical vein endothelial cells (HUVECs) that had been previously characterized as DEX-sensitive (n = 15), or resistant (n = 10). Real-time PCR analysis of GR 5′UTR mRNA isoforms showed that all HUVECs expressed isoforms 1B, 1C, 1D, 1F, and 1H, and isoforms 1B and 1C were predominantly expressed. DEX-resistant cells expressed higher basal levels of the 5′UTR mRNA isoforms 1C and 1D, but lower levels of the 5′UTR mRNA isoform 1F than DEX-sensitive cells. DEX treatment significantly decreased GRα and GR-1C mRNA isoform expression in DEX-resistant cells only. Reporter luciferase assays indicated that differential GR mRNA isoform expression was not due to differential promoter usage between DEX-sensitive and DEX-resistant cells. Analysis of promoter methylation, however, showed that DEX-sensitive cells have higher methylation levels of promoter 1D and lower methylation levels of promoter 1F than DEX-resistant cells. Treatment with 5-aza-2-deoxycytidine abolished the differential 5′UTR mRNA isoform expression between DEX-sensitive and DEX-resistant cells. Finally, both GRα overexpression and 5-aza-2-deoxycytidine treatment eliminated the differences between sensitivity groups to DEX-mediated downregulation of endothelial nitric oxide synthase (NOS3), and upregulation of plasminogen activator inhibitor 1 (SERPINE1). In sum, human endothelial GR 5′UTR mRNA expression is regulated by promoter methylation with DEX-sensitive and DEX-resistant cells having different GR promoter methylation patterns. PMID:26242202

  18. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells.

    PubMed

    Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing

    2012-06-14

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Promoter methylation patterns in Richter syndrome affect stem-cell maintenance and cell cycle regulation and differ from de novo diffuse large B-cell lymphoma.

    PubMed

    Rinaldi, Andrea; Mensah, Afua Adjeiwaa; Kwee, Ivo; Forconi, Francesco; Orlandi, Ester M; Lucioni, Marco; Gattei, Valter; Marasca, Roberto; Berger, Françoise; Cogliatti, Sergio; Cavalli, Franco; Zucca, Emanuele; Gaidano, Gianluca; Rossi, Davide; Bertoni, Francesco

    2013-10-01

    In a fraction of patients, chronic lymphocytic leukaemia (CLL) can transform to Richter syndrome (RS), usually a diffuse large B-cell lymphoma (DLBCL). We studied genome-wide promoter DNA methylation in RS and clonally related CLL-phases of transformed patients, alongside de novo DLBCL (of non-germinal centre B type), untransformed-CLL and normal B-cells. The greatest differences in global DNA methylation levels were observed between RS and DLBCL, indicating that these two diseases, although histologically similar, are epigenetically distinct. RS was more highly methylated for genes involved in cell cycle regulation. When RS was compared to the preceding CLL-phase and with untransformed-CLL, RS presented a higher degree of methylation for genes possessing the H3K27me3 mark and PRC2 targets, as well as for gene targets of TP53 and RB1. Comparison of the methylation levels of individual genes revealed that OSM, a stem cell regulatory gene, exhibited significantly higher methylation levels in RS compared to CLL-phases. Its transcriptional repression by DNA methylation was confirmed by 5-aza-2'deoxycytidine treatment of DLBCL cells, determining an increased OSM expression. Our results showed that methylation patterns in RS are largely different from de novo DLBCL. Stem cell-related genes and cell cycle regulation genes are targets of DNA methylation in RS. © 2013 John Wiley & Sons Ltd.

  20. Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome.

    PubMed

    Manzardo, A M; Butler, M G

    2016-01-01

    Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. None. Percentage methylation and the methylation index. The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology.

  1. Targeted disruption of the 3p12 gene, Dutt1/Robo1, predisposes mice to lung adenocarcinomas and lymphomas with methylation of the gene promoter.

    PubMed

    Xian, Jian; Aitchison, Alan; Bobrow, Linda; Corbett, Gerard; Pannell, Richard; Rabbitts, Terence; Rabbitts, Pamela

    2004-09-15

    The DUTT1 gene is located on human chromosome 3, band p12, within a region of nested homozygous deletions in breast and lung tumors. It is therefore a candidate tumor suppressor gene in humans and is the homologue (ROBO1) of the Drosophila axonal guidance receptor gene, Roundabout. We have shown previously that mice with a targeted homozygous deletion within the Dutt1/Robo1 gene generally die at birth due to incomplete lung development: survivors die within the first year of life with epithelial bronchial hyperplasia as a common feature. Because Dutt1/Robo1 heterozygous mice develop normally, we have determined their tumor susceptibility. Mice with a targeted deletion within one Dutt1/Robo1 allele spontaneously develop lymphomas and carcinomas in their second year of life with a 3-fold increase in incidence compared with controls: invasive lung adenocarcinomas are by far the predominant carcinoma. In addition to the mutant allele, loss of heterozygosity analysis indicates that these tumors retain the structurally normal allele but with substantial methylation of the gene's promoter. Substantial reduction of Dutt1/Robo1 protein expression in tumors is observed by Western blotting and immunohistochemistry. This suggests that Dutt1/Robo1 is a classic tumor suppressor gene requiring inactivation of both alleles to elicit tumorigenesis in these mice.

  2. Methylation of the chicken vitellogenin gene: influence of estradiol administration.

    PubMed Central

    Meijlink, F C; Philipsen, J N; Gruber, M; Ab, G

    1983-01-01

    The degree of methylation of the chicken vitellogenin gene has been investigated. Upon induction by administration of estradiol to a rooster, methyl groups at specific sites near the 5'-end of the gene are eliminated. The process of demethylation is slower than the activation of the gene. Demethylation is therefore probably not a prerequisite to gene transcription. At least two other sites in the coding region of the gene are methylated in the liver of estrogenized roosters, but not in the liver of a laying hen, where the gene is naturally active. Images PMID:6298743

  3. MGMT and CALCA promoter methylation are associated with poor prognosis in testicular germ cell tumor patients

    PubMed Central

    Martinelli, Camila Maria da Silva; Lengert, André van Helvoort; Cárcano, Flavio Mavignier; Silva, Eduardo Caetano Albino; Brait, Mariana; Lopes, Luiz Fernando; Vidal, Daniel Onofre

    2017-01-01

    Testicular germ cell tumors (TGCT) represent the second main cause of cancer-related death in young men. Despite high cure rates, refractory disease results in poor prognosis. Epigenetic reprogramming occurs during the development of seminomas and non-seminomas. Understanding the molecular and genetic basis of these tumors would represent an important advance in the search for new TGCT molecular markers. Hence the frequency of methylation of a gene panel (VGF, MGMT, ADAMTS1, CALCA, HOXA9, CDKN2B, CDO1 and NANOG) was evaluated in 72 primary TGCT by quantitative methylation specific PCR. A high frequency of MGMT (90.9%, 20/22; p=0.019) and CALCA (90.5%, 19/21; p<0.026) methylation was associated with non-seminomatous tumors while CALCA methylation was also associated with refractory disease (47.4%, 09/19; p=0.005). Moreover, promoter methylation of both genes predicts poor clinical outcome for TGCT patients (5-year EFS: 50.5% vs 77.1%; p=0.032 for MGMT and 51.3% vs 77.0%; p=0.029 for CALCA). The findings of this study indicate that methylation of MGMT and CALCA are frequent and could be used as new molecular markers of prognosis in TGCT. PMID:28881587

  4. Effect of folate deficiency on promoter methylation and gene expression of Esr1, Cav1, and Elavl1, and its influence on spermatogenesis.

    PubMed

    Yuan, Hong-Fang; Zhao, Kai; Zang, Yu; Liu, Chun-Yan; Hu, Zhi-Yong; Wei, Jia-Jing; Zhou, Ting; Li, Ying; Zhang, Hui-Ping

    2017-04-11

    This study aims to investigate the effect of folate deficiency on the male reproductive function and the underlying mechanism. A total of 269 screened participants from 421 recruitments were enrolled in this study. An animal model of folate deficiency was constructed. Folate concentration was measured in the ejaculate, and its association with semen parameters was then determined. The expression and promoter methylation status of ESR1, CAV1, and ELAVL1 were also evaluated. Results showed that seminal plasma folate level was significantly lower among subjects with azoospermia than those with normozoospermia. Low folate level was significantly correlated with low sperm concentration in men with normozoospermia. Folate deficiency significantly reduced the expression of ESR1, CAV1, and ELAVL1, which are critical to spermatogenesis. However, low folate levels did not increase the methylation levels of the promoter regions of ESR1, CAV1, and ELAVL1 in human sperm DNA. Thus, folate deficiency impairs spermatogenesis may partly due to inhibiting the expression of these genes. Thus future research should determine the significance of sufficient folate status in male fertilization and subsequent pregnancy outcomes.

  5. The CpG Island in the Murine Foxl2 Proximal Promoter Is Differentially Methylated in Primary and Immortalized Cells

    PubMed Central

    Tran, Stella; Wang, Ying; Lamba, Pankaj; Zhou, Xiang; Boehm, Ulrich; Bernard, Daniel J.

    2013-01-01

    Forkhead box L2 (Foxl2), a member of the forkhead transcription factor family, plays important roles in pituitary follicle-stimulating hormone synthesis and in ovarian maintenance and function. Mutations in the human FOXL2 gene cause eyelid malformations and premature ovarian failure. FOXL2/Foxl2 is expressed in pituitary gonadotrope and thyrotrope cells, the perioptic mesenchyme of the developing eyelid, and ovarian granulosa cells. The mechanisms governing this cell-restricted expression have not been described. We mapped the Foxl2 transcriptional start site in immortalized murine gonadotrope-like cells, LβT2, by 5’ rapid amplification of cDNA ends and then PCR amplified approximately 1 kb of 5’ flanking sequence from murine genomic DNA. When ligated into a reporter plasmid, the proximal promoter conferred luciferase activity in both homologous (LβT2) and, unexpectedly, heterologous (NIH3T3) cells. In silico analyses identified a CpG island in the proximal promoter and 5’ untranslated region, suggesting that Foxl2 transcription might be regulated epigenetically. Indeed, pyrosequencing and quantitative analysis of DNA methylation using real-time PCR revealed Foxl2 proximal promoter hypomethylation in homologous compared to some, though not all, heterologous cell lines. The promoter was also hypomethylated in purified murine gonadotropes. In vitro promoter methylation completely silenced reporter activity in heterologous and homologous cells. Collectively, the data suggest that differential proximal promoter DNA methylation may contribute to cell-specific Foxl2 expression in some cellular contexts. However, gonadotrope-specific expression of the gene cannot be explained by promoter hypomethylation alone. PMID:24098544

  6. Methylation detection oligonucleotide microarray analysis: a high-resolution method for detection of CpG island methylation

    PubMed Central

    Kamalakaran, Sitharthan; Kendall, Jude; Zhao, Xiaoyue; Tang, Chunlao; Khan, Sohail; Ravi, Kandasamy; Auletta, Theresa; Riggs, Michael; Wang, Yun; Helland, Åslaug; Naume, Bjørn; Dimitrova, Nevenka; Børresen-Dale, Anne-Lise; Hicks, Jim; Lucito, Robert

    2009-01-01

    Methylation of CpG islands associated with genes can affect the expression of the proximal gene, and methylation of non-associated CpG islands correlates to genomic instability. This epigenetic modification has been shown to be important in many pathologies, from development and disease to cancer. We report the development of a novel high-resolution microarray that detects the methylation status of over 25 000 CpG islands in the human genome. Experiments were performed to demonstrate low system noise in the methodology and that the array probes have a high signal to noise ratio. Methylation measurements between different cell lines were validated demonstrating the accuracy of measurement. We then identified alterations in CpG islands, both those associated with gene promoters, as well as non-promoter-associated islands in a set of breast and ovarian tumors. We demonstrate that this methodology accurately identifies methylation profiles in cancer and in principle it can differentiate any CpG methylation alterations and can be adapted to analyze other species. PMID:19474344

  7. Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome

    PubMed Central

    Manzardo, AM; Butler, MG

    2016-01-01

    Context Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). Objective Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. Design Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. Setting Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. Participants Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). Results A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. Intervention None. Main outcome measures Percentage methylation and the methylation index. Conclusion The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology. PMID:28111641

  8. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines

    PubMed Central

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes. PMID:29263807

  9. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    PubMed

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  10. PiiL: visualization of DNA methylation and gene expression data in gene pathways.

    PubMed

    Moghadam, Behrooz Torabi; Zamani, Neda; Komorowski, Jan; Grabherr, Manfred

    2017-08-02

    DNA methylation is a major mechanism involved in the epigenetic state of a cell. It has been observed that the methylation status of certain CpG sites close to or within a gene can directly affect its expression, either by silencing or, in some cases, up-regulating transcription. However, a vertebrate genome contains millions of CpG sites, all of which are potential targets for methylation, and the specific effects of most sites have not been characterized to date. To study the complex interplay between methylation status, cellular programs, and the resulting phenotypes, we present PiiL, an interactive gene expression pathway browser, facilitating analyses through an integrated view of methylation and expression on multiple levels. PiiL allows for specific hypothesis testing by quickly assessing pathways or gene networks, where the data is projected onto pathways that can be downloaded directly from the online KEGG database. PiiL provides a comprehensive set of analysis features that allow for quick and specific pattern searches. Individual CpG sites and their impact on host gene expression, as well as the impact on other genes present in the regulatory network, can be examined. To exemplify the power of this approach, we analyzed two types of brain tumors, Glioblastoma multiform and lower grade gliomas. At a glance, we could confirm earlier findings that the predominant methylation and expression patterns separate perfectly by mutations in the IDH genes, rather than by histology. We could also infer the IDH mutation status for samples for which the genotype was not known. By applying different filtering methods, we show that a subset of CpG sites exhibits consistent methylation patterns, and that the status of sites affect the expression of key regulator genes, as well as other genes located downstream in the same pathways. PiiL is implemented in Java with focus on a user-friendly graphical interface. The source code is available under the GPL license from https://github.com/behroozt/PiiL.git .

  11. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer.

    PubMed

    Galetzka, Danuta; Hansmann, Tamara; El Hajj, Nady; Weis, Eva; Irmscher, Benjamin; Ludwig, Marco; Schneider-Rätzke, Brigitte; Kohlschmidt, Nicolai; Beyer, Vera; Bartsch, Oliver; Zechner, Ulrich; Spix, Claudia; Haaf, Thomas

    2012-01-01

    We describe monozygotic twins discordant for childhood leukemia and secondary thyroid carcinoma. We used bisulfite pyrosequencing to compare the constitutive promoter methylation of BRCA1 and several other tumor suppressor genes in primary fibroblasts. The affected twin displayed an increased BRCA1 methylation (12%), compared with her sister (3%). Subsequent bisulfite plasmid sequencing demonstrated that 13% (6 of 47) BRCA1 alleles were fully methylated in the affected twin, whereas her sister displayed only single CpG errors without functional implications. This between-twin methylation difference was also found in irradiated fibroblasts and untreated saliva cells. The BRCA1 epimutation may have originated by an early somatic event in the affected twin: approximately 25% of her body cells derived from different embryonic cell lineages carry one epigenetically inactivated BRCA1 allele. This epimutation was associated with reduced basal protein levels and a higher induction of BRCA1 after DNA damage. In addition, we performed a genome-wide microarray analysis of both sisters and found several copy number variations, i.e., heterozygous deletion and reduced expression of the RSPO3 gene in the affected twin. This monozygotic twin pair represents an impressive example of epigenetic somatic mosaicism, suggesting a role for constitutive epimutations, maybe along with de novo genetic alterations in recurrent tumor development.

  12. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer

    PubMed Central

    Galetzka, Danuta; Hansmann, Tamara; El Hajj, Nady; Weis, Eva; Irmscher, Benjamin; Ludwig, Marco; Schneider-Rätzke, Brigitte; Kohlschmidt, Nicolai; Beyer, Vera; Bartsch, Oliver; Zechner, Ulrich; Spix, Claudia; Haaf, Thomas

    2012-01-01

    We describe monozygotic twins discordant for childhood leukemia and secondary thyroid carcinoma. We used bisulfite pyrosequencing to compare the constitutive promoter methylation of BRCA1 and several other tumor suppressor genes in primary fibroblasts. The affected twin displayed an increased BRCA1 methylation (12%), compared with her sister (3%). Subsequent bisulfite plasmid sequencing demonstrated that 13% (6 of 47) BRCA1 alleles were fully methylated in the affected twin, whereas her sister displayed only single CpG errors without functional implications. This between-twin methylation difference was also found in irradiated fibroblasts and untreated saliva cells. The BRCA1 epimutation may have originated by an early somatic event in the affected twin: approximately 25% of her body cells derived from different embryonic cell lineages carry one epigenetically inactivated BRCA1 allele. This epimutation was associated with reduced basal protein levels and a higher induction of BRCA1 after DNA damage. In addition, we performed a genome-wide microarray analysis of both sisters and found several copy number variations, i.e., heterozygous deletion and reduced expression of the RSPO3 gene in the affected twin. This monozygotic twin pair represents an impressive example of epigenetic somatic mosaicism, suggesting a role for constitutive epimutations, maybe along with de novo genetic alterations in recurrent tumor development. PMID:22207351

  13. Nested methylation-specific polymerase chain reaction cancer detection method

    DOEpatents

    Belinsky, Steven A [Albuquerque, NM; Palmisano, William A [Edgewood, NM

    2007-05-08

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

  14. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing

    PubMed Central

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L.

    2016-01-01

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells. PMID:27570841

  15. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing.

    PubMed

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1 , an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from -938 to -337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1 . We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34 + selected hematopoietic stem and progenitor cells.

  16. Aberrant methylation of MUC1 and MUC4 promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas.

    PubMed

    Yokoyama, Seiya; Higashi, Michiyo; Kitamoto, Sho; Oeldorf, Monika; Knippschild, Uwe; Kornmann, Marko; Maemura, Kosei; Kurahara, Hiroshi; Wiest, Edwin; Hamada, Tomofumi; Kitazono, Ikumi; Goto, Yuko; Tasaki, Takashi; Hiraki, Tsubasa; Hatanaka, Kazuhito; Mataki, Yuko; Taguchi, Hiroki; Hashimoto, Shinichi; Batra, Surinder K; Tanimoto, Akihide; Yonezawa, Suguru; Hollingsworth, Michael A

    2016-07-05

    Pancreatic cancer is still a disease of high mortality despite availability of diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. MUC1 and MUC4 are high molecular weight transmembrane mucins. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis. We evaluated the methylation status of MUC1 and MUC4 promoter regions in pancreatic tissue samples from 169 patients with various pancreatic lesions by the methylation specific electrophoresis (MSE) method. These results were compared with expression of MUC1 and MUC4, several DNA methylation/demethylation factors (e.g. ten-eleven translocation or TET, and activation-induced cytidine deaminase or AID) and CAIX (carbonic anhydrase IX, as a hypoxia biomarker). These results were also analyzed with clinicopathological features including time of overall survival of PDAC patients. We show that the DNA methylation status of the promoters of MUC1 and MUC4 in pancreatic tissue correlates with the expression of MUC1 and MUC4 mRNA. In addition, the expression of several DNA methylation/demethylation factors show a significant correlation with MUC1 and MUC4 methylation status. Furthermore, CAIX expression significantly correlates with the expression of MUC1 and MUC4. Interestingly, our results indicate that low methylation of MUC1 and/or MUC4 promoters correlates with decreased overall survival. This is the first report to show a relationship between MUC1 and/or MUC4 methylation status and prognosis. Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with PDAC.

  17. Aberrant methylation of MUC1 and MUC4 promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas

    PubMed Central

    Yokoyama, Seiya; Higashi, Michiyo; Kitamoto, Sho; Oeldorf, Monika; Knippschild, Uwe; Kornmann, Marko; Maemura, Kosei; Kurahara, Hiroshi; Wiest, Edwin; Hamada, Tomofumi; Kitazono, Ikumi; Goto, Yuko; Tasaki, Takashi; Hiraki, Tsubasa; Hatanaka, Kazuhito; Mataki, Yuko; Taguchi, Hiroki; Hashimoto, Shinichi; Batra, Surinder K.; Tanimoto, Akihide; Yonezawa, Suguru; Hollingsworth, Michael A.

    2016-01-01

    Pancreatic cancer is still a disease of high mortality despite availability of diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. MUC1 and MUC4 are high molecular weight transmembrane mucins. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis. We evaluated the methylation status of MUC1 and MUC4 promoter regions in pancreatic tissue samples from 169 patients with various pancreatic lesions by the methylation specific electrophoresis (MSE) method. These results were compared with expression of MUC1 and MUC4, several DNA methylation/demethylation factors (e.g. ten-eleven translocation or TET, and activation-induced cytidine deaminase or AID) and CAIX (carbonic anhydrase IX, as a hypoxia biomarker). These results were also analyzed with clinicopathological features including time of overall survival of PDAC patients. We show that the DNA methylation status of the promoters of MUC1 and MUC4 in pancreatic tissue correlates with the expression of MUC1 and MUC4 mRNA. In addition, the expression of several DNA methylation/demethylation factors show a significant correlation with MUC1 and MUC4 methylation status. Furthermore, CAIX expression significantly correlates with the expression of MUC1 and MUC4. Interestingly, our results indicate that low methylation of MUC1 and/or MUC4 promoters correlates with decreased overall survival. This is the first report to show a relationship between MUC1 and/or MUC4 methylation status and prognosis. Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with PDAC. PMID:27283771

  18. APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation.

    PubMed

    Furlan, Daniela; Sahnane, Nora; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Marando, Alessandro; Zhang, Lizhi; Vanoli, Alessandro; Casnedi, Selenia; Adsay, Volkan; Notohara, Kenji; Albarello, Luca; Asioli, Sofia; Sessa, Fausto; Capella, Carlo; La Rosa, Stefano

    2014-05-01

    Genetic and epigenetic alterations involved in the pathogenesis of pancreatic acinar cell carcinomas (ACCs) are poorly characterized, including the frequency and role of gene-specific hypermethylation, chromosome aberrations, and copy number alterations (CNAs). A subset of ACCs is known to show alterations in the APC/β-catenin pathway which includes mutations of APC gene. However, it is not known whether, in addition to mutation, loss of APC gene function can occur through alternative genetic and epigenetic mechanisms such as gene loss or promoter methylation. We investigated the global methylation profile of 34 tumor suppressor genes, CNAs of 52 chromosomal regions, and APC gene alterations (mutation, methylation, and loss) together with APC mRNA level in 45 ACCs and related peritumoral pancreatic tissues using methylation-specific multiplex ligation probe amplification (MS-MLPA), fluorescence in situ hybridization (FISH), mutation analysis, and reverse transcription-droplet digital PCR. ACCs did not show an extensive global gene hypermethylation profile. RASSF1 and APC were the only two genes frequently methylated. APC mutations were found in only 7 % of cases, while APC loss and methylation were more frequently observed (48 and 56 % of ACCs, respectively). APC mRNA low levels were found in 58 % of cases and correlated with CNAs. In conclusion, ACCs do not show extensive global gene hypermethylation. APC alterations are frequently involved in the pathogenesis of ACCs mainly through gene loss and promoter hypermethylation, along with reduction of APC mRNA levels.

  19. Sleep quality and methylation status of selected tumor suppressor genes among nurses and midwives.

    PubMed

    Bukowska-Damska, Agnieszka; Reszka, Edyta; Kaluzny, Pawel; Wieczorek, Edyta; Przybek, Monika; Zienolddiny, Shanbeh; Peplonska, Beata

    2018-01-01

    Chronic sleep restriction may affect metabolism, hormone secretion patterns and inflammatory responses. Limited reports suggest also epigenetic effects, such as changes in DNA methylation profiles. The study aims to assess the potential association between poor sleep quality or sleep duration and the levels of 5-methylcytosine in the promoter regions of selected tumor suppressor genes. A cross-sectional study was conducted on 710 nurses and midwives aged 40-60 years. Data from interviews regarding sleep habits and potential confounders were used. The methylation status of tumor suppressor genes was determined via qMSP reactions using DNA samples derived from leucocytes. No significant findings were observed in the total study population or in the two subgroups of women stratified by the current system of work. A borderline significance association was observed between a shorter duration of sleep and an increased methylation level in CDKN2A among day working nurses and midwives. Further studies are warranted to explore this under-investigated topic.

  20. Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis

    PubMed Central

    Chen, Chao; Hua, Haiqing; Han, Chenglong; Cheng, Yuan; Cheng, Yin; Wang, Zhen; Bao, Jutao

    2015-01-01

    The role of MGMT promoter methylation in lung cancer (LC) remains controversial. To clarify the association of MGMT promoter methylation with survival in LC, we performed a meta-analysis of the literature with meta-analysis. Trials were selected for further analysis if they provided an independent assessment of MGMT promoter methylation in LC and reported the survival data in the context of MGMT promoter methylation status. Subgroup analyses were conducted according to the study characteristic. A total of 9 trials, which comprised 859 patients, were included in the meta-analysis. The combined hazard ratio (HR) of 1.27 [95% CI 0.88-1.82; test for heterogeneity P = 0.027] suggests that MGMT promoter methylation has none impact on patient survival. In Stage I-III or younger populations, a significant association was found for MGMT promoter methylation in the prognosis of LC. In addition, the heterogeneity disappeared when the analysis was restricted to Stage I-III LC. Our analysis indicates that MGMT promoter methylation in stage I-III or younger patients was significantly correlated with wore survival. Further study is needed to determine these specific subgroups of LC patients. PMID:26617891

  1. Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis.

    PubMed

    Chen, Chao; Hua, Haiqing; Han, Chenglong; Cheng, Yuan; Cheng, Yin; Wang, Zhen; Bao, Jutao

    2015-01-01

    The role of MGMT promoter methylation in lung cancer (LC) remains controversial. To clarify the association of MGMT promoter methylation with survival in LC, we performed a meta-analysis of the literature with meta-analysis. Trials were selected for further analysis if they provided an independent assessment of MGMT promoter methylation in LC and reported the survival data in the context of MGMT promoter methylation status. Subgroup analyses were conducted according to the study characteristic. A total of 9 trials, which comprised 859 patients, were included in the meta-analysis. The combined hazard ratio (HR) of 1.27 [95% CI 0.88-1.82; test for heterogeneity P = 0.027] suggests that MGMT promoter methylation has none impact on patient survival. In Stage I-III or younger populations, a significant association was found for MGMT promoter methylation in the prognosis of LC. In addition, the heterogeneity disappeared when the analysis was restricted to Stage I-III LC. Our analysis indicates that MGMT promoter methylation in stage I-III or younger patients was significantly correlated with wore survival. Further study is needed to determine these specific subgroups of LC patients.

  2. Promoter DNA methylation regulates progranulin expression and is altered in FTLD

    PubMed Central

    2013-01-01

    Background Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of neurodegenerative diseases associated with personality changes and progressive dementia. Loss-of-function mutations in the growth factor progranulin (GRN) cause autosomal dominant FTLD, but so far the pathomechanism of sporadic FTLD is unclear. Results We analyzed whether DNA methylation in the GRN core promoter restricts GRN expression and, thus, might promote FTLD in the absence of GRN mutations. GRN expression in human lymphoblast cell lines is negatively correlated with methylation at several CpG units within the GRN promoter. Chronic treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) strongly induces GRN mRNA and protein levels. In a reporter assay, CpG methylation blocks transcriptional activity of the GRN core promoter. In brains of FTLD patients several CpG units in the GRN promoter are significantly hypermethylated compared to age-matched healthy controls, Alzheimer and Parkinson patients. These CpG motifs are critical for GRN promoter activity in reporter assays. Furthermore, DNA methyltransferase 3a (DNMT3a) is upregulated in FTLD patients and overexpression of DNMT3a reduces GRN promoter activity and expression. Conclusion These data suggest that altered DNA methylation is a novel pathomechanism for FTLD that is potentially amenable to targeted pharmacotherapy. PMID:24252647

  3. DNA Methylation in the Neuropeptide S Receptor 1 (NPSR1) Promoter in Relation to Asthma and Environmental Factors

    PubMed Central

    Reinius, Lovisa E.; Gref, Anna; Sääf, Annika; Acevedo, Nathalie; Joerink, Maaike; Kupczyk, Maciej; D'Amato, Mauro; Bergström, Anna; Melén, Erik; Scheynius, Annika; Dahlén, Sven-Erik; Pershagen, Göran; Söderhäll, Cilla; Kere, Juha

    2013-01-01

    Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1) has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA) was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001) and childhood allergic asthma (p = 0.01). Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04), parental smoking during infancy in the children (p = 0.02) and in which month the sample was taken (p = 0.01). In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy. PMID:23372674

  4. Biallelic MLH1 SNP cDNA expression or constitutional promoter methylation can hide genomic rearrangements causing Lynch syndrome.

    PubMed

    Morak, Monika; Koehler, Udo; Schackert, Hans Konrad; Steinke, Verena; Royer-Pokora, Brigitte; Schulmann, Karsten; Kloor, Matthias; Höchter, Wilhelm; Weingart, Josef; Keiling, Cortina; Massdorf, Trisari; Holinski-Feder, Elke

    2011-08-01

    A positive family history, germline mutations in DNA mismatch repair genes, tumours with high microsatellite instability, and loss of mismatch repair protein expression are the hallmarks of hereditary non-polyposis colorectal cancer (Lynch syndrome). However, in ~10-15% of cases of suspected Lynch syndrome, no disease-causing mechanism can be detected. Oligo array analysis was performed to search for genomic imbalances in patients with suspected mutation-negative Lynch syndrome with MLH1 deficiency in their colorectal tumours. A deletion in the LRRFIP2 (leucine-rich repeat flightless-interacting protein 2) gene flanking the MLH1 gene was detected, which turned out to be a paracentric inversion on chromosome 3p22.2 creating two new stable fusion transcripts between MLH1 and LRRFIP2. A single-nucleotide polymorphism in MLH1 exon 8 was expressed from both alleles, initially pointing to appropriate MLH1 function at least in peripheral cells. In a second case, an inherited duplication of the MLH1 gene region resulted in constitutional MLH1 promoter methylation. Constitutional MLH1 promoter methylation may therefore in rare cases be a heritable disease mechanism and should not be overlooked in seemingly sporadic patients.

  5. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus

    PubMed Central

    Saunderson, Emily A.; Spiers, Helen; Gutierrez-Mecinas, Maria; Trollope, Alexandra F.; Shaikh, Abeera; Mill, Jonathan; Reul, Johannes M. H. M.

    2016-01-01

    Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5′-cytosine–phosphate–guanine-3′) sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental

  6. Combined DNA methylation and gene expression profiling in gastrointestinal stromal tumors reveals hypomethylation of SPP1 as an independent prognostic factor.

    PubMed

    Haller, Florian; Zhang, Jitao David; Moskalev, Evgeny A; Braun, Alexander; Otto, Claudia; Geddert, Helene; Riazalhosseini, Yasser; Ward, Aoife; Balwierz, Aleksandra; Schaefer, Inga-Marie; Cameron, Silke; Ghadimi, B Michael; Agaimy, Abbas; Fletcher, Jonathan A; Hoheisel, Jörg; Hartmann, Arndt; Werner, Martin; Wiemann, Stefan; Sahin, Ozgür

    2015-03-01

    Gastrointestinal stromal tumors (GISTs) have distinct gene expression patterns according to localization, genotype and aggressiveness. DNA methylation at CpG dinucleotides is an important mechanism for regulation of gene expression. We performed targeted DNA methylation analysis of 1.505 CpG loci in 807 cancer-related genes in a cohort of 76 GISTs, combined with genome-wide mRNA expression analysis in 22 GISTs, to identify signatures associated with clinicopathological parameters and prognosis. Principal component analysis revealed distinct DNA methylation patterns associated with anatomical localization, genotype, mitotic counts and clinical follow-up. Methylation of a single CpG dinucleotide in the non-CpG island promoter of SPP1 was significantly correlated with shorter disease-free survival. Hypomethylation of this CpG was an independent prognostic parameter in a multivariate analysis compared to anatomical localization, genotype, tumor size and mitotic counts in a cohort of 141 GISTs with clinical follow-up. The epigenetic regulation of SPP1 was confirmed in vitro, and the functional impact of SPP1 protein on tumorigenesis-related signaling pathways was demonstrated. In summary, SPP1 promoter methylation is a novel and independent prognostic parameter in GISTs, and might be helpful in estimating the aggressiveness of GISTs from the intermediate-risk category. © 2014 UICC.

  7. Methylation of miR-145a-5p promoter mediates adipocytes differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jingjing; Cheng, Xiao; Shen, Linyuan

    MicroRNAs (miRNAs, miR) play important roles in adipocyte development. Recent studies showed that the expression of several miRNAs is closely related with promoter methylation. However, it is not known whether miRNA mediates adipocytes differentiation by means of DNA methylation. Here, we showed that miR-145a-5p was poorly expressed in adipose tissue from mice fed a high fat diet (HFD). Overexpression or inhibition of miR-145a-5p was unfavorable or beneficial, respectively, for adipogenesis, and these effects were achieved by regulating adipocyte-specific genes involved in lipogenic transcription, fatty acid synthesis, and fatty acid transportation. Particularly, we first suggested that miR-145a-5p mimics or inhibitors promotedmore » or repressed adipocytes proliferation by regulating p53 and p21, which act as cell cycle regulating factors. Surprisingly, the miR-145a-5p-repressed adipocyte differentiation was enhanced or rescued when cells treated with 5-Aza-dC were transfected with miR-145a-5p mimics or inhibitors, respectively. These data indicated that, as a new mean to positively regulate adipocyte proliferation, the process of miR-145a-5p-inhibited adipogenesis may be regulated by DNA methylation. -- Highlights: •MiR-145a-5p promotes adipocytes proliferation. •MiR-145a-5p is negatively correlated with obesity. •MiR-145a-5p mediates adipocytes differentiation via regulating pathway related adipocytes differentiation. MiR-145a-5p mediating adipocytes differentiation was regulated by DNA methylation.« less

  8. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder.

    PubMed

    Abdolmaleky, Hamid M; Pajouhanfar, Sara; Faghankhani, Masoomeh; Joghataei, Mohammad Taghi; Mostafavi, Ashraf; Thiagalingam, Sam

    2015-12-01

    Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance. © 2015 Wiley Periodicals, Inc.

  9. DNA methylation and expression of proopiomelanocortin (POMC) gene in the hypothalamus of three-week-old chickens show sex-specific differences.

    PubMed

    Rancourt, Rebecca C; Schellong, Karen; Tzschentke, Barbara; Henrich, Wolfgang; Plagemann, Andreas

    2018-06-01

    Increased availability and improved sequence annotation of the chicken ( Gallus gallus f.  domestica ) genome have sparked interest in the bird as a model system to investigate translational embryonic development and health/disease outcomes. However, the epigenetics of this bird genome remain unclear. The aim of this study was to determine the levels of gene expression and DNA methylation at the proopiomelanocortin ( POMC ) gene in the hypothalamus of 3-week-old chickens. POMC is a key player in the control of the stress response, food intake, and metabolism. DNA methylation of the promoter, CpG island, and gene body regions of POMC were measured. Our data illustrate the pattern, variability, and functionality of DNA methylation for POMC expression in the chicken. Our findings show correlation of methylation pattern and gene expression along with sex-specific differences in POMC . Overall, these novel data highlight the promising potential of the chicken as a model and also the need for breeders and researchers to consider sex ratios in their studies.

  10. Abundance of genes involved in mercury methylation in oceanic environments

    NASA Astrophysics Data System (ADS)

    Palumbo, A. V.; Podar, M.; Gilmour, C. C.; Brandt, C. C.; Brown, S. D.; Crable, B. R.; Weighill, D.; Jacobson, D. A.; Somenahally, A. C.; Elias, D. A.

    2016-02-01

    The distribution and diversity of genes involved in mercury methylation in oceanic environments is of interest in determining the source of mercury in ocean environments and may have predictive value for mercury methylation rates. The highly conserved hgcAB genes involved in mercury methylation provide an avenue for evaluating the genetic potential for mercury methylation. The genes are sporadically present in a few diverse groups of bacteria and Archaea including Deltaproteobacteria, Firmicutes and Archaea and of over 7000 sequenced species they are only present in about 100 genomes. Examination of sequence data from methylators and non-methylators indicates that these genes are associated with other genes involved in metal transformations and transport. We examined hgcAB presence in over 3500 microbial metagenomes (from all environments) and found the hgcAB genes were present in anaerobic oceanic environments but not in aerobic layers of the open ocean. The genes were common in sediments from marine, coastal and estuarine sources as well as polluted environments. The genes were rare, found in 7 of 138 samples, in metagenomes from the pelagic water column including profiles though the oxygen minimum zone. Other oxic and sub-oxic coastal waters also demonstrated a lack of hgcAB genes including the OMZ in the Eastern North Pacific Ocean. There were some unique hgcA like unique sequences found in metagenomes from depth in the Pacific and Southern Atlantic Ocean. Coastal "dead zone" waters may be important sources of MeHg as the hgcAB genes were abundant in the anoxic waters of a stratified fjord. The genes were absent in microbiomes from vertebrates but were in invertebrate microbiomes However, oceanic species were underrepresented in these samples. Climate change could provide an additional flux of MeHg to the oceans as we found the most abundant representation of hgcAB genes in arctic permafrost. Thus warming could increase flux of methyl mercury to arctic waters.

  11. Variation in the DNA methylation pattern of expressed and nonexpressed genes in chicken.

    PubMed

    Cooper, D N; Errington, L H; Clayton, R M

    1983-01-01

    Using methyl-sensitive and -insensitive restriction enzymes, Hpa II and Msp I, the methylation status of various chicken genes was examined in different tissues and developmental stages. Tissue-specific differences in methylation were found for the delta-crystallin, beta-tubulin, G3PDH, rDNA, and actin genes but not for the histone genes. Developmental decreases in methylation were noted for the delta-crystallin and actin genes in chicken kidney between embryo and adult. Since most of the sequences examined were housekeeping genes, transcriptional differences are apparently not a necessary accompaniment to changes in DNA methylation at the CpG sites examined. The only exception is sperm DNA where the delta-crystallin, beta-tubulin, and actin genes are highly methylated and almost certainly not transcribed. However the G3PDH genes are no more highly methylated in sperm than in other somatic tissues. Many sequences homologous to the rDNA and histone probes used are unmethylated in all tissues examined including sperm, but a methylated rDNA subfraction is more heavily methylated in sperm than in other tissues. We speculate as to the significance of these differences in sperm DNA methylation in the light of possible requirements for early gene activation and the probable deleterious mutagenic effects of heavy methylation within coding sequences.

  12. Aberrant DNA methylation of tumor-related genes in oral rinse: a noninvasive method for detection of oral squamous cell carcinoma.

    PubMed

    Nagata, Satoshi; Hamada, Tomofumi; Yamada, Norishige; Yokoyama, Seiya; Kitamoto, Sho; Kanmura, Yuji; Nomura, Masahiro; Kamikawa, Yoshiaki; Yonezawa, Suguru; Sugihara, Kazumasa

    2012-09-01

    The early detection of oral squamous cell carcinoma (OSCC) is important, and a screening test with high sensitivity and specificity is urgently needed. Therefore, in this study, the authors investigated the methylation status of tumor-related genes with the objective of establishing a noninvasive method for the detection of OSCC. Oral rinse samples were obtained from 34 patients with OSCC and from 24 healthy individuals (controls). The methylation status of 13 genes was determined by using methylation-specific polymerase chain reaction analysis and was quantified using a microchip electrophoresis system. Promoter methylation in each participant was screened by receiver operating characteristic analysis, and the utility of each gene's methylation status, alone and in combination with other genes, was evaluated as a tool for oral cancer detection. Eight of the 13 genes had significantly higher levels of DNA methylation in samples from patients with OSCC than in controls. The genes E-cadherin (ECAD), transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2), retinoic acid receptor beta (RARβ), and O-6 methylguanine DNA methyltransferase (MGMT) had high sensitivity (>75%) and specificity for the detection of oral cancer. OSCC was detected with 100% sensitivity and 87.5% specificity using a combination of ECAD, TMEFF2, RARβ, and MGMT and with 97.1% sensitivity and 91.7% specificity using a combination of ECAD, TMEFF2, and MGMT. The aberrant methylation of a combination of marker genes present in oral rinse samples was used to detect OSCC with >90% sensitivity and specificity. The detection of methylated marker genes from oral rinse samples has great potential for the noninvasive detection of OSCC. Copyright © 2012 American Cancer Society.

  13. Methylation and expression patterns of tropomyosin-related kinase genes in different grades of glioma.

    PubMed

    Palani, Mahalakshmi; Arunkumar, R; Vanisree, Arrambakam Janardhanam

    2014-09-01

    Tropomyosin-related kinase family (NTRK1, NTRK2 and NTRK3) is well known to play an important role in the pathogenesis of brain tumour, which exhibit heterogeneity in its biological and clinical behaviour. However, the mechanism that regulates NTRKs in glioma is not well understood. The present study investigates the epigenetic status (methylation) of NTRKs and their expression in different grades of glioma. Promoter methylation and structural relationship of NTRKs was assessed using methylation-specific PCR followed by chromatin immunoprecipitation in brain tissue samples from 220 subjects with different grades of glioma. Control brain samples were also assessed similarly. Reverse transcriptase PCR was performed to analyse the expressions of NTRK mRNAs in the grades of glioma. In addition, the expression level of p75(NTR) protein was analysed using immunofluorescent technique in all of the samples. The overall percentage of NTRK3 gene methylation frequency with subsequent loss of mRNA expression was significantly higher in glioma compared with control samples (p < 0.05). No such significance was observed in other NTRK1 and NTRK2 genes. Further, mRNA expression pattern of NTRK1 and NTRK2 genes was found to be significantly higher in low grades as compared with high grades (HG) and control samples (p < 0.05). Survival rate of HG patients with negative expressions of NTRK1 and NTRK2 was poor than those with the positive expressions of both NTRK1 and NTRK2. Further, a significant correlation was observed with reduced expression of p75(NTR) and the expression pattern of NTRK family in glioma as compared with the control samples (p < 0.05). There exists a correlation between the expression of NTRK family and different grades of glioma with a significant suggestion that the promoter methylation does not play role in the regulation of these genes in glioma. Further, poor survival could be associated with NTRK mRNAs 1 and 2. Hence, NTRKs are potential probes for

  14. Corruption of the intra-gene DNA methylation architecture is a hallmark of cancer.

    PubMed

    Bartlett, Thomas E; Zaikin, Alexey; Olhede, Sofia C; West, James; Teschendorff, Andrew E; Widschwendter, Martin

    2013-01-01

    Epigenetic processes--including DNA methylation--are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test [Formula: see text] in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers.

  15. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation

    PubMed Central

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  16. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue

    PubMed Central

    Geybels, Milan S.; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A.; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L.

    2016-01-01

    Background Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. Methods The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. Results In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value <0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for ten genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. Conclusions This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. PMID:26383847

  17. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue.

    PubMed

    Geybels, Milan S; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L

    2015-12-01

    Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. © 2015 Wiley Periodicals, Inc.

  18. Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring.

    PubMed

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin; Qi, Cuijuan; Wang, Tong

    2015-10-01

    Substantial evidence demonstrated that maternal dietary nutrients can significantly determine the susceptibility to developing metabolic disorders in the offspring. Therefore, we aimed to investigate the later-life effects of maternal and postweaning diets interaction on epigenetic modification of the central nervous system in the offspring. We examined the effects of dams fed a high-fat, high-sucrose (FS) diet during pregnancy and lactation and weaned to FS diet continuously until 32 weeks of age. Then, DNA methylation and gene expressions of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in the offspring. Offspring of FS diet had heavier body weight, impaired glucose tolerance, decreased insulin sensitivity and higher serum leptin level at 32-week age (p < 0.05). The expression of POMC and MC4R genes were significantly increased in offspring exposed to FS diet during gestation, lactation and into 32-week age (p < 0.05). Consistently, hypomethylation of POMC promoter in the hypothalamus occurred in the FS diet offspring (p < 0.05), compared with the C group. However, no methylation was detected of MC4R promoter in both the two groups. Furthermore, POMC-specific methylation (%) was negatively associated with glucose response to a glucose load (r = -0.273, p = 0.039). Maternal and post-weaning high-fat diet predisposes the offspring for obesity, glucose intolerance and insulin resistance in later life. Our findings can advance our thinking around the DNA methylation status of the promoter of the POMC and MC4R genes between long-term high-fat, high-sucrose diet and glucose homeostasis in mouse.

  19. Early Onset Pre-Eclampsia Is Associated with Altered DNA Methylation of Cortisol-Signalling and Steroidogenic Genes in the Placenta

    PubMed Central

    Hogg, Kirsten; Blair, John D.; McFadden, Deborah E.; von Dadelszen, Peter; Robinson, Wendy P.

    2013-01-01

    Placental cortisol is inactivated in normotensive pregnancies, but is frequently present in pre-eclampsia associated placentae. Since glucocorticoids are strongly associated with the programming of long-term health, we assessed DNA methylation of genes involved in cortisol signalling and bioavailability, and hormonal signalling in the placenta of normotensive and hypertensive pregnancies. Candidate genes/CpG sites were selected through analysis of Illumina Infinium HumanMethylation450 BeadChip array data on control (n = 19) and early onset pre-eclampsia (EOPET; n = 19) placental samples. DNA methylation was further quantified by bisulfite pyrosequencing in a larger cohort of control (n = 111) cases, in addition to EOPET (n = 19), late onset pre-eclampsia (LOPET; n = 18) and normotensive intrauterine growth restriction (nIUGR; n = 13) cases. DNA methylation (percentage points) was increased at CpG sites within genes encoding the glucocorticoid receptor (NR3C1 exon 1D promoter; +8.46%; P<0.01) and corticotropin releasing hormone (CRH) binding protein (CRHBP intron 3; +9.14%; P<0.05), and decreased within CRH (5′ UTR; −4.30%; P = 0.11) in EOPET-associated placentae, but not in LOPET nor nIUGR cases, compared to controls. Differential DNA methylation was not observed among groups at the 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) gene promoter. Significant hypomethylation was observed in pre-eclampsia but not nIUGR placentae for steroidogenic genes, including CYP11A1 (exon1; EOPET; −9.66%; P<0.00001, and LOPET; −5.77%; P<0.001), 3β-hydroxy-delta-5-steroid dehydrogenase type 1 (HSD3B1 exon 2; EOPET; −12.49%; P<0.00001, and LOPET; −6.88%; P<0.001), TEA domain family member 3 (TEAD3 intron 1; EOPET; −12.56%; P<0.00001) and CYP19 (placental-specific exon 1.1 promoter; EOPET; −10.62%, P<0.0001). These data represent dysregulation of the placental epigenome in pre-eclampsia related to genes involved in maintaining the

  20. Paradoxical Role of DNA Methylation in Activation of FoxA2 Gene Expression during Endoderm Development*

    PubMed Central

    Bahar Halpern, Keren; Vana, Tal; Walker, Michael D.

    2014-01-01

    The transcription factor FoxA2 is a master regulator of endoderm development and pancreatic beta cell gene expression. To elucidate the mechanisms underlying the activation of the FoxA2 gene during differentiation, we have compared the epigenetic status of undifferentiated human embryonic stem cells (hESCs), hESC-derived early endoderm stage cells (CXCR4+ cells), and pancreatic islet cells. Unexpectedly, a CpG island in the promoter region of the FoxA2 gene displayed paradoxically high levels of DNA methylation in expressing tissues (CXCR4+, islets) and low levels in nonexpressing tissues. This CpG island region was found to repress reporter gene expression and bind the Polycomb group protein SUZ12 and the DNA methyltransferase (DNMT)3b preferentially in undifferentiated hESCs as compared with CXCR4+ or islets cells. Consistent with this, activation of FoxA2 gene expression, but not CXCR4 or SOX17, was strongly inhibited by 5-aza-2′-deoxycytidine and by knockdown of DNMT3b. We hypothesize that in nonexpressing tissues, the lack of DNA methylation allows the binding of DNA methyltransferases and repressing proteins, such as Polycomb group proteins; upon differentiation, DNMT activation leads to CpG island methylation, causing loss of repressor protein binding. These results suggest a novel and unexpected role for DNA methylation in the activation of FoxA2 gene expression during differentiation. PMID:25016019

  1. miRNA-Processing Gene Methylation and Cancer Risk.

    PubMed

    Joyce, Brian T; Zheng, Yinan; Zhang, Zhou; Liu, Lei; Kocherginsky, Masha; Murphy, Robert; Achenbach, Chad J; Musa, Jonah; Wehbe, Firas; Just, Allan; Shen, Jincheng; Vokonas, Pantel; Schwartz, Joel; Baccarelli, Andrea A; Hou, Lifang

    2018-05-01

    Background: Dysregulation of miRNA and methylation levels are epigenetic hallmarks of cancer, potentially linked via miRNA-processing genes. Studies have found genetic alterations to miRNA-processing genes in cancer cells and human population studies. Our objective was to prospectively examine changes in DNA methylation of miRNA-processing genes and their associations with cancer risk. Methods: We examined cohort data from the Department of Veterans' Affairs Normative Aging Study. Participants were assessed every 3 to 5 years starting in 1999 through 2013 including questionnaires, medical record review, and blood collection. Blood from 686 consenting participants was analyzed using the Illumina 450K BeadChip array to measure methylation at CpG sites throughout the genome. We selected 19 genes based on a literature review, with 519 corresponding CpG sites. We then used Cox proportional hazards models to examine associations with cancer incidence, and generalized estimating equations to examine associations with cancer prevalence. Associations at false discovery rate < 0.05 were considered statistically significant. Results: Methylation of three CpGs ( DROSHA : cg23230564, TNRC6B : cg06751583, and TNRC6B : cg21034183) was prospectively associated with time to cancer development (positively for cg06751583, inversely for cg23230564 and cg21034183), whereas methylation of one CpG site ( DROSHA : cg16131300) was positively associated with cancer prevalence. Conclusions: DNA methylation of DROSHA , a key miRNA-processing gene, and TNRC6B may play a role in early carcinogenesis. Impact: Changes in miRNA processing may exert multiple effects on cancer development, including protecting against it via altered global miRNAs, and may be a useful early detection biomarker of cancer. Cancer Epidemiol Biomarkers Prev; 27(5); 550-7. ©2018 AACR . ©2018 American Association for Cancer Research.

  2. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4+ T cells.

    PubMed

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A

    2016-10-17

    CD4 + T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4 + T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4 + T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4 + T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4 + T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4 + T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4 + T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4 + T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. A cross-study analysis of prenatal exposures to environmental contaminants and the epigenome: support for stress-responsive transcription factor occupancy as a mediator of gene-specific CpG methylation patterning

    PubMed Central

    Martin, Elizabeth M.; Fry, Rebecca C.

    2016-01-01

    Abstract A biological mechanism by which exposure to environmental contaminants results in gene-specific CpG methylation patterning is currently unknown. We hypothesize that gene-specific CpG methylation is related to environmentally perturbed transcription factor occupancy. To test this hypothesis, a database of 396 genes with altered CpG methylation either in cord blood leukocytes or placental tissue was compiled from 14 studies representing assessments of six environmental contaminants. Subsequently, an in silico approach was used to identify transcription factor binding sites enriched among the genes with altered CpG methylation in relationship to the suite of environmental contaminants. For each study, the sequences of the promoter regions (representing −1000 to +500 bp from the transcription start site) of all genes with altered CpG methylation were analyzed for enrichment of transcription factor binding sites. Binding sites for a total of 56 unique transcription factors were identified to be enriched within the promoter regions of the genes. Binding sites for the Kidney-Enriched Krupple-like Factor 15, a known responder to endogenous stress, were enriched ( P  < 0.001–0.041) among the genes with altered CpG methylation associated for five of the six environmental contaminants. These data support the transcription factor occupancy theory as a potential mechanism underlying environmentally-induced gene-specific CpG methylation. PMID:27066266

  4. Cytosine methylation at CG and CNG sites is not a prerequisite for the initiation of transcriptional gene silencing in plants, but it is required for its maintenance.

    PubMed

    Diéguez, M J; Vaucheret, H; Paszkowski, J; Mittelsten Scheid, O

    1998-08-01

    Transgenes integrated into plant chromosomes, and/or endogenous plant genes, may be subjected to epigenetic silencing at the transcriptional or post-transcriptional level. Transcriptional inactivation is correlated with hypermethylation of CG/CNG sites at the silent loci. It is not known whether local hypermethylation is part of the inactivation process, or just an outcome of the silent state. To address this issue, we generated transgenic tobacco lines containing a selectable marker gene controlled by a derivative of the 35S promoter of the cauliflower mosaic virus (CaMV) devoid of CG and CNG methylation acceptor sites. Silencing was triggered by crossing to the silencer locus of tobacco line 271. This line contains inactive and methylated copies of the 35S promoter and is able to silence homologous promoter copies at ectopic chromosomal positions. The mutated promoter lacking CG/CNG methylation acceptor sites was as susceptible to Trans-silencing as the unmodified 35S promoter control. Thus, methylation at CG and CNG sites is not a prerequisite for the initiation of epigenetic gene inactivation. Interestingly, while methylation of the remaining cytosines is usually only slightly affected by silencing, it was significantly increased in the absence of CG/CNG sequences. Since this sequence preference is the same as that of known methyltransferases, this may imply that silencing is accompanied or directly followed by recruitment of methyltransferase, which, in the absence of cytosines in the optimal sequence context, modifies other C residues in the affected area. However, silencing without CG/CNG methylation was immediately relieved in the absence of the silencer. Thus, CG/CNG methylation is probably essential for the maintenance of previously established epigenetic states.

  5. Methylation of the oxytocin receptor gene in clinically depressed patients compared to controls: The role of OXTR rs53576 genotype.

    PubMed

    Reiner, I; Van IJzendoorn, M H; Bakermans-Kranenburg, M J; Bleich, S; Beutel, M; Frieling, H

    2015-06-01

    The emerging field of epigenetics provides a biological basis for gene-environment interactions relevant to depression. We focus on DNA methylation of exon 1 and 2 of the oxytocin receptor gene (OXTR) promoter. The research aims of the current study were to compare OXTR DNA methylation of depressed patients with healthy control subjects and to investigate possible influences of the OXTR rs53576 genotype. The sample of the present study consisted of 43 clinically depressed women recruited from a psychosomatic inpatient unit and 42 healthy, female control subjects - mean age 30 years (SD = 9). DNA methylation profiles of the OXTR gene were assessed from leukocyte DNA by means of bisulfite sequencing. Depressed female patients had decreased OXTR exon 1 DNA methylation compared to non-depressed women. The association between depression and methylation level was moderated by OXTR rs53576 genotype. Exon 2 methylation was associated with OXTR rs53576 genotype but not with depression. Our findings suggest exon-specific methylation mechanisms. Exon 1 methylation appears to be associated with depressive phenotypes whereas exon 2 methylation is influenced by genotype. Previously reported divergent associations between OXTR genotype and depression might be explained by varying exon 1 methylation. In order to further understand the etiology of depression, research on the interplay between genotype, environmental influences and exon-specific methylation patterns is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss.

    PubMed

    Benton, Miles C; Johnstone, Alice; Eccles, David; Harmon, Brennan; Hayes, Mark T; Lea, Rod A; Griffiths, Lyn; Hoffman, Eric P; Stubbs, Richard S; Macartney-Coxson, Donia

    2015-01-22

    Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3' untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity.

  7. DNA methylation alterations in response to pesticide exposure in vitro

    PubMed Central

    Zhang, Xiao; Wallace, Andrew D.; Du, Pan; Kibbe, Warren A.; Jafari, Nadereh; Xie, Hehuang; Lin, Simon; Baccarelli, Andrea; Soares, Marcelo Bento; Hou, Lifang

    2013-01-01

    Although pesticides are subject to extensive carcinogenicity testing before regulatory approval, pesticide exposure has repeatedly been associated with various cancers. This suggests that pesticides may cause cancer via non-mutagenicity mechanisms. The present study provides evidence to support the hypothesis that pesticide-induced cancer may be mediated in part by epigenetic mechanisms. We examined whether exposure to 7 commonly used pesticides (i.e., fonofos, parathion, terbufos, chlorpyrifos, diazinon, malathion, and phorate) induces DNA methylation alterations in vitro. We conducted genome-wide DNA methylation analyses on DNA samples obtained from the human hematopoietic K562 cell line exposed to ethanol (control) and several OPs using the Illumina Infinium HumanMethylation27 BeadChip. Bayesian-adjusted t-tests were used to identify differentially methylated gene promoter CpG sites. In this report, we present our results on three pesticides (fonofos, parathion, and terbufos) that clustered together based on principle component analysis and hierarchical clustering. These three pesticides induced similar methylation changes in the promoter regions of 712 genes, while also exhibiting their own OP-specific methylation alterations. Functional analysis of methylation changes specific to each OP, or common to all three OPs, revealed that differential methylation was associated with numerous genes that are involved in carcinogenesis-related processes. Our results provide experimental evidence that pesticides may modify gene promoter DNA methylation levels, suggesting that epigenetic mechanisms may contribute to pesticide-induced carcinogenesis. Further studies in other cell types and human samples are required, as well as determining the impact of these methylation changes on gene expression. PMID:22847954

  8. [Analysis of tissue-specific differentially methylated genes with differential gene expression in non-small cell lung cancer].

    PubMed

    Yin, L G; Zou, Z Q; Zhao, H Y; Zhang, C L; Shen, J G; Qi, L; Qi, M; Xue, Z Q

    2014-01-01

    Adenocarcinoma (ADC) and squamous cell carcinomas (SCC) are two subtypes of non-small cell lung carcinomas which are regarded as the leading cause of cancer-related malignancy worldwide. The aim of this study is to detect the differentially methylated loci (DMLs) and differentially methylated genes (DMGs) of these two tumor sets, and then to illustrate the different expression level of specific methylated genes. Using TCGA database and Illumina HumanMethylation 27 arrays, we first screened the DMGs and DMLs in tumor samples. Then, we explored the BiologicalProcess terms of hypermethylated and hypomethylated genes using Functional Gene Ontology (GO) catalogues. Hypermethylation intensively occurred in CpG-island, whereas hypomethylation was located in non-CpG-island. Most SCC and ADC hypermethylated genes involved GO function of DNA dependenit regulation of transcription, and hypomethylated genes mainly 'enriched in the term of immune responses. Additionally, the expression level of specific differentially methylated genesis distinctbetween ADC and SCC. It is concluded that ADC and SCC have different methylated status that might play an important role in carcinogenesis.

  9. Association between methylation of the glucocorticoid receptor gene, childhood maltreatment, and clinical severity in borderline personality disorder.

    PubMed

    Martín-Blanco, Ana; Ferrer, Marc; Soler, Joaquim; Salazar, Juliana; Vega, Daniel; Andión, Oscar; Sanchez-Mora, Cristina; Arranz, Maria Jesús; Ribases, Marta; Feliu-Soler, Albert; Pérez, Víctor; Pascual, Juan Carlos

    2014-10-01

    The hypothalamus-pituitary-adrenal axis (HPA) is essential in the regulation of stress responses. Increased methylation of the promoter region of the glucocorticoid receptor gene (NR3C1) has been described both in subjects with history of childhood trauma and in patients with Borderline Personality Disorder (BPD). However, no data on the possible association between a higher methylation of this gene and clinical severity is available. The aim of this study was to evaluate the association between NR3C1 methylation status, the history of childhood trauma, and current clinical severity in subjects with BPD. A sample of 281 subjects with BPD (diagnosed by SCID-II and DIB-R semi-structured diagnostic interviews) was recruited. Clinical variables included previous hospitalizations, self-injurious behavior, and self-reported history of childhood trauma. DNA was extracted from peripheral blood. The results indicated a significant positive correlation between NR3C1 methylation status and childhood maltreatment (specifically physical abuse). In addition, a positive correlation between methylation status and clinical severity (DIB-R total score and hospitalizations) was observed. These findings suggest that NR3C1 methylation in subjects with BPD may be associated not only with childhood trauma but also with clinical severity, adding new evidence to the involvement of gene-environment interactions in this disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Identification of Methylated Genes Associated with Aggressive Clinicopathological Features in Mantle Cell Lymphoma

    PubMed Central

    Hernández, Luis; Navarro, Alba; Beà, Sílvia; Pinyol, Magda; López-Guillermo, Armando; Rosenwald, Andreas; Ott, German; Campo, Elías; Jares, Pedro

    2011-01-01

    Background Mantle cell lymphoma (MCL) is genetically characterized by the t(11;14)(q13;q32) translocation and a high number of secondary chromosomal alterations. The contribution of DNA methylation to MCL lymphomagenesis is not well known. We sought to identify epigenetically silenced genes in these tumours that might have clinical relevance. Methodology/Principal Findings To identify potential methylated genes in MCL we initially investigated seven MCL cell lines treated with epigenetic drugs and gene expression microarray profiling. The methylation status of selected candidate genes was validated by a quantitative assay and subsequently analyzed in a series of primary MCL (n = 38). After pharmacological reversion we identified 252 potentially methylated genes. The methylation analysis of a subset of these genes (n = 25) in the MCL cell lines and normal B lymphocytes confirmed that 80% of them were methylated in the cell lines but not in normal lymphocytes. The subsequent analysis in primary MCL identified five genes (SOX9, HOXA9, AHR, NR2F2, and ROBO1) frequently methylated in these tumours. The gene methylation events tended to occur in the same primary neoplasms and correlated with higher proliferation, increased number of chromosomal abnormalities, and shorter survival of the patients. Conclusions We have identified a set of genes whose methylation degree and gene expression levels correlate with aggressive clinicopathological features of MCL. Our findings also suggest that a subset of MCL might show a CpG island methylator phenotype (CIMP) that may influence the behaviour of the tumours. PMID:21603610

  11. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.

    PubMed

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam

    2015-07-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation.

  12. iMETHYL: an integrative database of human DNA methylation, gene expression, and genomic variation.

    PubMed

    Komaki, Shohei; Shiwa, Yuh; Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Otomo, Ryo; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Sasaki, Makoto; Shimizu, Atsushi

    2018-01-01

    We launched an integrative multi-omics database, iMETHYL (http://imethyl.iwate-megabank.org). iMETHYL provides whole-DNA methylation (~24 million autosomal CpG sites), whole-genome (~9 million single-nucleotide variants), and whole-transcriptome (>14 000 genes) data for CD4 + T-lymphocytes, monocytes, and neutrophils collected from approximately 100 subjects. These data were obtained from whole-genome bisulfite sequencing, whole-genome sequencing, and whole-transcriptome sequencing, making iMETHYL a comprehensive database.

  13. Identification of Highly Methylated Genes across Various Types of B-Cell Non-Hodgkin Lymphoma

    PubMed Central

    Bethge, Nicole; Honne, Hilde; Hilden, Vera; Trøen, Gunhild; Eknæs, Mette; Liestøl, Knut; Holte, Harald; Delabie, Jan; Smeland, Erlend B.; Lind, Guro E.

    2013-01-01

    Epigenetic alterations of gene expression are important in the development of cancer. In this study, we identified genes which are epigenetically altered in major lymphoma types. We used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified 233 genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples (n = 480) when compared to normal B cells (n = 5). The top 30 genes were further analyzed by methylation specific PCR (MSP) in 18 lymphoma cell lines. Seven of the genes were methylated in more than 70% of the cell lines and were further subjected to quantitative MSP in 37 B-cell lymphoma patient samples (diffuse large B-cell lymphoma (activated B-cell like and germinal center B-cell like subtypes), follicular lymphoma and Burkitt`s lymphoma) and normal B lymphocytes from 10 healthy donors. The promoters of DSP, FZD8, KCNH2, and PPP1R14A were methylated in 28%, 67%, 22%, and 78% of the 36 tumor samples, respectively, but not in control samples. Validation using a second series of healthy donor controls (n = 42; normal B cells, peripheral blood mononuclear cells, bone marrow, tonsils and follicular hyperplasia) and fresh-frozen lymphoma biopsies (n = 25), confirmed the results. The DNA methylation biomarker panel consisting of DSP, FZD8, KCNH2, and PPP1R14A was positive in 89% (54/61) of all lymphomas. Receiver operating characteristic analysis to determine the discriminative power between lymphoma and healthy control samples showed a c-statistic of 0.96, indicating a possible role for the biomarker panel in monitoring of lymphoma patients. PMID:24260260

  14. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozden, Sibel, E-mail: stopuz@istanbul.edu.tr; Turgut Kara, Neslihan; Sezerman, Osman Ugur

    Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC–MS/MSmore » in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity. - Highlights: • Studied non-genotoxic carcinogens caused no change on global DNA hypomethylation. • d-Limonene, DCB and chloroform did not show any genome-wide methylation changes. • Some genes were differentially methylated in response to MPY, TCDD and OTA. • Protein kinase

  15. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    PubMed Central

    2012-01-01

    Background The M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia. Methods Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5`-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Results Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. Conclusions The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis. PMID:23217014

  16. Aberrant expression and DNA methylation of lipid metabolism genes in PCOS: a new insight into its pathogenesis.

    PubMed

    Pan, Jie-Xue; Tan, Ya-Jing; Wang, Fang-Fang; Hou, Ning-Ning; Xiang, Yu-Qian; Zhang, Jun-Yu; Liu, Ye; Qu, Fan; Meng, Qing; Xu, Jian; Sheng, Jian-Zhong; Huang, He-Feng

    2018-01-01

    Polycystic ovary syndrome (PCOS), whose etiology remains uncertain, is a highly heterogenous and genetically complex endocrine disorder. The aim of this study was to identify differentially expressed genes (DEGs) in granulosa cells (GCs) from PCOS patients and make epigenetic insights into the pathogenesis of PCOS. Included in this study were 110 women with PCOS and 119 women with normal ovulatory cycles undergoing in vitro fertilization acting as the control group. RNA-seq identified 92 DEGs unique to PCOS GCs in comparison with the control group. Bioinformatic analysis indicated that synthesis of lipids and steroids was activated in PCOS GCs. 5-Methylcytosine analysis demonstrated that there was an approximate 25% reduction in global DNA methylation of GCs in PCOS women (4.44 ± 0.65%) compared with the controls (6.07 ± 0.72%; P  < 0.05). Using MassArray EpiTYPER quantitative DNA methylation analysis, we also found hypomethylation of several gene promoters related to lipid and steroid synthesis, which might result in the aberrant expression of these genes. Our results suggest that hypomethylated genes related to the synthesis of lipid and steroid may dysregulate expression of these genes and promote synthesis of steroid hormones including androgen, which could partially explain mechanisms of hyperandrogenism in PCOS.

  17. DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition

    PubMed Central

    Ivanova, Elena; Chen, Jian-Hua; Segonds-Pichon, Anne; Ozanne, Susan E.; Kelsey, Gavin

    2012-01-01

    The nutritional environment in which the mammalian fetus or infant develop is recognized as influencing the risk of chronic diseases, such as type 2 diabetes and hypertension, in a phenomenon that has become known as developmental programming. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, because epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. One class of genes that has been considered a potential target or mediator of programming events is imprinted genes, because these genes critically depend upon epigenetic modifications for correct expression and because many imprinted genes have roles in controlling fetal growth as well as neonatal and adult metabolism. In this study, we have used an established model of developmental programming—isocaloric protein restriction to female mice during gestation or lactation—to examine whether there are effects on expression and DNA methylation of imprinted genes in the offspring. We find that although expression of some imprinted genes in liver of offspring is robustly and sustainably changed, methylation of the differentially methylated regions (DMRs) that control their monoallelic expression remains largely unaltered. We conclude that deregulation of imprinting through a general effect on DMR methylation is unlikely to be a common factor in developmental programming. PMID:22968513

  18. Dietary betaine supplementation in hens modulates hypothalamic expression of cholesterol metabolic genes in F1 cockerels through modification of DNA methylation.

    PubMed

    Idriss, Abdulrahman A; Hu, Yun; Hou, Zhen; Hu, Yan; Sun, Qinwei; Omer, Nagmeldin A; Abobaker, Halima; Ni, Yingdong; Zhao, Ruqian

    2018-03-01

    Betaine is widely used in animal nutrition to promote growth, development and methyl donor during methionine metabolism through nutritional reprogramming via regulation of gene expression. Prenatal betaine exposure is reported to modulate hypothalamic cholesterol metabolism in chickens, yet it remains unknown whether feeding hens with betaine-supplemented diet may affect hypothalamic cholesterol metabolism in F1 offspring. In this study, hens were fed with basal or betaine-supplemented (0.5%) for 30days, and the eggs were collected for incubation. The hatchlings were raised under the same condition up to 56days of age. Betaine-treated group showed significantly (P<0.05) higher plasma concentration of total cholesterol and HDL-cholesterol, together with increased hypothalamic content of total cholesterol and cholesterol ester. Concordantly, hypothalamic gene expression of SREBP2, HMGCR, and LDLR was significantly up regulated (P<0.05). Also, mRNA abundances of SREBP1, ACAT1 and APO-A1 were up-regulated, while that of CYP46A1 was significantly down-regulated (P<0.05). These changes coincided with a significant down-regulation of BDNF and CRH, and a significant up-regulation of NPY mRNA expression. Moreover, genes involved in methyl transfer cycle were also modulated. DNMT1 and BHMT were up-regulated (P<0.05) at both mRNA and protein levels, which was associated with significant modifications of CpG methylation on the promoter of SREBP-1, SREBP-2 and APO-A1 genes as detected by bisulfate sequencing. These results indicate that feeding betaine to hens modulates hypothalamic expression of genes involved in cholesterol metabolism and brain functions in F1 cockerels with modification of promoter DNA methylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells.

    PubMed

    Swathy, Babu; Banerjee, Moinak

    2017-01-01

    Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission

  20. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells

    PubMed Central

    Swathy, Babu

    2017-01-01

    Introduction Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. Methods SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Results Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes

  1. Predicting aberrant CpG island methylation

    PubMed Central

    Feltus, F. A.; Lee, E. K.; Costello, J. F.; Plass, C.; Vertino, P. M.

    2003-01-01

    Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context. PMID:14519846

  2. Predicting aberrant CpG island methylation.

    PubMed

    Feltus, F A; Lee, E K; Costello, J F; Plass, C; Vertino, P M

    2003-10-14

    Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context.

  3. The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer.

    PubMed

    Zhao, Zhenzhen; Liu, Wen; Liu, Jincheng; Wang, Jiayi; Luo, Bing

    2017-10-01

    Epstein-Barr virus (EBV) is an important DNA tumor virus that is associated with approximately 10% of gastric carcinomas and 99% of nasopharyngeal cancers (NPC). DNA methylation and microRNAs (miRNAs) are the most studied epigenetic mechanisms that can prompt disease susceptibility. This study aimed to detect the effect of EBV on Wnt inhibitory factor 1 (WIF1), Nemo-like kinase (NLK), and adenomatous polyposis coli (APC) gene methylation, and expression in gastric carcinoma and NPC. The WIF1, NLK, and APC gene mRNA expression levels were measured by real-time quantitative RT-PCR in four EBV-positive cell lines and four EBV-negative cell lines. Bisulfite genomic sequencing or methylation-specific PCR was used to detect the methylation status of the WIF1, NLK, and APC promoters. All cell lines were treated with 5-azacytidine (5-aza-dC), miR-BART19-3p mimics or an inhibitor, and analyzed by flow cytometry and MTT cell proliferation assays. The WIF1, NLK, and APC promoters were hypermethylated in all eight cell lines. 5-Aza-dC displayed a growth inhibitory effect on cells . After transfection with miR-BART19-3p mimics, the expression of WIF1, and APC decreased, and the cellular proliferation rate increased. After transfection with the miR-BART19-3p inhibitor, the expression levels were higher, and the cell growth was inhibited. In the NPC and GC cell lines, the promoters of WIF1, NLK, and APC are highly methylated, and the expression of these three genes is regulated by miR-BART19-3p. The activity of the Wnt pathway in EBV-associated tumors may be enhanced by miR-BART19-3p. © 2017 Wiley Periodicals, Inc.

  4. DNA methylation patterns in ulcerative colitis-associated cancer: a systematic review.

    PubMed

    Emmett, Ruth A; Davidson, Katherine L; Gould, Nicholas J; Arasaradnam, Ramesh P

    2017-07-01

    Evidence points to the role of DNA methylation in ulcerative colitis (UC)-associated cancer (UCC), the most serious complication of ulcerative colitis. A better understanding of the etiology of UCC may facilitate the development of new therapeutic targets and help to identify biomarkers of the disease risk. A search was performed in three databases following PRISMA protocol. DNA methylation in UCC was compared with sporadic colorectal cancer (SCRC), and individual genes differently methylated in UCC identified. While there were some similarities in the methylation patterns of UCC compared with SCRC, generally lower levels of hypermethylation in promoter regions of individual genes was evident in UCC. Certain individual genes are, however, highly methylated in colitis-associated cancer: RUNX3, MINT1, MYOD and p16 exon1 and the promoter regions of EYA4 and ESR. Patterns of DNA methylation differ between UCC and SCRC. Seven genes appear to be promising putative biomarkers.

  5. Regulatory link between DNA methylation and active demethylation in Arabidopsis

    PubMed Central

    Lei, Mingguang; Zhang, Huiming; Julian, Russell; Tang, Kai; Xie, Shaojun; Zhu, Jian-Kang

    2015-01-01

    De novo DNA methylation through the RNA-directed DNA methylation (RdDM) pathway and active DNA demethylation play important roles in controlling genome-wide DNA methylation patterns in plants. Little is known about how cells manage the balance between DNA methylation and active demethylation activities. Here, we report the identification of a unique RdDM target sequence, where DNA methylation is required for maintaining proper active DNA demethylation of the Arabidopsis genome. In a genetic screen for cellular antisilencing factors, we isolated several REPRESSOR OF SILENCING 1 (ros1) mutant alleles, as well as many RdDM mutants, which showed drastically reduced ROS1 gene expression and, consequently, transcriptional silencing of two reporter genes. A helitron transposon element (TE) in the ROS1 gene promoter negatively controls ROS1 expression, whereas DNA methylation of an RdDM target sequence between ROS1 5′ UTR and the promoter TE region antagonizes this helitron TE in regulating ROS1 expression. This RdDM target sequence is also targeted by ROS1, and defective DNA demethylation in loss-of-function ros1 mutant alleles causes DNA hypermethylation of this sequence and concomitantly causes increased ROS1 expression. Our results suggest that this sequence in the ROS1 promoter region serves as a DNA methylation monitoring sequence (MEMS) that senses DNA methylation and active DNA demethylation activities. Therefore, the ROS1 promoter functions like a thermostat (i.e., methylstat) to sense DNA methylation levels and regulates DNA methylation by controlling ROS1 expression. PMID:25733903

  6. Clinicopathologic Risk Factor Distributions for MLH1 Promoter Region Methylation in CIMP-Positive Tumors.

    PubMed

    Levine, A Joan; Phipps, Amanda I; Baron, John A; Buchanan, Daniel D; Ahnen, Dennis J; Cohen, Stacey A; Lindor, Noralane M; Newcomb, Polly A; Rosty, Christophe; Haile, Robert W; Laird, Peter W; Weisenberger, Daniel J

    2016-01-01

    The CpG island methylator phenotype (CIMP) is a major molecular pathway in colorectal cancer. Approximately 25% to 60% of CIMP tumors are microsatellite unstable (MSI-H) due to DNA hypermethylation of the MLH1 gene promoter. Our aim was to determine if the distributions of clinicopathologic factors in CIMP-positive tumors with MLH1 DNA methylation differed from those in CIMP-positive tumors without DNA methylation of MLH1. We assessed the associations between age, sex, tumor-site, MSI status BRAF and KRAS mutations, and family colorectal cancer history with MLH1 methylation status in a large population-based sample of CIMP-positive colorectal cancers defined by a 5-marker panel using unconditional logistic regression to assess the odds of MLH1 methylation by study variables. Subjects with CIMP-positive tumors without MLH1 methylation were significantly younger, more likely to be male, and more likely to have distal colon or rectal primaries and the MSI-L phenotype. CIMP-positive MLH1-unmethylated tumors were significantly less likely than CIMP-positive MLH1-methylated tumors to harbor a BRAF V600E mutation and significantly more likely to harbor a KRAS mutation. MLH1 methylation was associated with significantly better overall survival (HR, 0.50; 95% confidence interval, 0.31-0.82). These data suggest that MLH1 methylation in CIMP-positive tumors is not a completely random event and implies that there are environmental or genetic determinants that modify the probability that MLH1 will become methylated during CIMP pathogenesis. MLH1 DNA methylation status should be taken into account in etiologic studies. ©2015 American Association for Cancer Research.

  7. Clinicopathological risk factor distributions for MLH1 promoter region methylation in CIMP positive tumors

    PubMed Central

    Levine, A. Joan; Phipps, Amanda I.; Baron, John A.; Buchanan, Daniel D.; Ahnen, Dennis J.; Cohen, Stacey A.; Lindor, Noralane M.; Newcomb, Polly A.; Rosty, Christophe; Haile, Robert W.; Laird, Peter W.; Weisenberger, Daniel J.

    2015-01-01

    Background The CpG Island Methylator Phenotype (CIMP) is a major molecular pathway in colorectal cancer (CRC). Approximately 25% to 60% of CIMP tumors are microsatellite unstable (MSI-H) due to DNA hypermethylation of the MLH1 gene promoter. Our aim was to determine if the distributions of clinicopathologic factors in CIMP-positive tumors with MLH1 DNA methylation differed from those in CIMP-positive tumors without DNA methylation of MLH1. Methods We assessed the associations between age, sex, tumor-site, MSI status BRAF and KRAS mutations and family CRC history with MLH1 methylation status in a large population-based sample of CIMP-positive CRCs defined by a 5-marker panel using unconditional logistic regression to assess the odds of MLH1 methylation by study variables. Results Subjects with CIMP-positive tumors without MLH1 methylation were significantly younger, more likely to be male, more likely to have distal colon or rectal primaries and the MSI-L phenotype. CIMP-positive MLH1-unmethylated tumors were significantly less likely than CIMP-positive MLH1-methylated tumors to harbor a BRAF V600E mutation and significantly more likely to harbor a KRAS mutation. MLH1 methylation was associated with significantly better overall survival (HR=0.50; 95% Confidence Interval (0.31, 0.82)). Conclusions These data suggest that MLH1 methylation in CIMP-positive tumors is not a completely random event and implies that there are environmental or genetic determinants that modify the probability that MLH1 will become methylated during CIMP pathogenesis. Impact MLH1 DNA methylation status should be taken into account in etiologic studies. PMID:26512054

  8. Regulation of expression of the ada gene controlling the adaptive response. Interactions with the ada promoter of the Ada protein and RNA polymerase.

    PubMed

    Sakumi, K; Sekiguchi, M

    1989-01-20

    The Ada protein of Escherichia coli catalyzes transfer of methyl groups from methylated DNA to its own molecule, and the methylated form of Ada protein promotes transcription of its own gene, ada. Using an in vitro reconstituted system, we found that both the sigma factor and the methylated Ada protein are required for transcription of the ada gene. To elucidate molecular mechanisms involved in the regulation of the ada transcription, we investigated interactions of the non-methylated and methylated forms of Ada protein and the RNA polymerase holo enzyme (the core enzyme and sigma factor) with a DNA fragment carrying the ada promoter region. Footprinting analyses revealed that the methylated Ada protein binds to a region from positions -63 to -31, which includes the ada regulatory sequence AAAGCGCA. No firm binding was observed with the non-methylated Ada protein, although some DNase I-hypersensitive sites were produced in the promoter by both types of Ada protein. RNA polymerase did bind to the promoter once the methylated Ada protein had bound to the upstream sequence. To correlate these phenomena with the process in vivo, we used the DNAs derived from promoter-defective mutants. No binding of Ada protein nor of RNA polymerase occurred with a mutant DNA having a C to G substitution at position -47 within the ada regulatory sequence. In the case of a -35 box mutant with a T to A change at position -34, the methylated Ada protein did bind to the ada regulatory sequence, yet there was no RNA polymerase binding. Thus, the binding of the methylated Ada protein to the upstream region apparently facilitates binding of the RNA polymerase to the proper region of the promoter. The Ada protein possesses two known methyl acceptor sites, Cys69 and Cys321. The role of methylation of each cysteine residue was investigated using mutant forms of the Ada protein. The Ada protein with the cysteine residue at position 69 replaced by alanine was incapable of binding to the ada

  9. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells.

    PubMed

    Toghill, Bradley J; Saratzis, Athanasios; Freeman, Peter J; Sylvius, Nicolas; Bown, Matthew J

    2018-01-01

    Abdominal aortic aneurysm (AAA) is a deadly cardiovascular disease characterised by the gradual, irreversible dilation of the abdominal aorta. AAA is a complex genetic disease but little is known about the role of epigenetics. Our objective was to determine if global DNA methylation and CpG-specific methylation at known AAA risk loci is associated with AAA, and the functional effects of methylation changes. We assessed global methylation in peripheral blood mononuclear cell DNA from 92 individuals with AAA and 93 controls using enzyme-linked immunosorbent assays, identifying hyper-methylation in those with large AAA and a positive linear association with AAA diameter ( P  < 0.0001, R 2  = 0.3175).We then determined CpG methylation status of regulatory regions in genes located at AAA risk loci identified in genome-wide association studies, using bisulphite next-generation sequencing (NGS) in vascular smooth muscle cells (VSMCs) taken from aortic tissues of 44 individuals (24 AAAs and 20 controls). In IL6R , 2 CpGs were hyper-methylated ( P  = 0.0145); in ERG , 13 CpGs were hyper-methylated ( P  = 0.0005); in SERPINB9 , 6 CpGs were hypo-methylated ( P  = 0.0037) and 1 CpG was hyper-methylated ( P  = 0.0098); and in SMYD2 , 4 CpGs were hypo-methylated ( P  = 0.0012).RT-qPCR was performed for each differentially methylated gene on mRNA from the same VSMCs and compared with methylation. This analysis revealed downregulation of SMYD2 and SERPINB9 in AAA, and a direct linear relationship between SMYD2 promoter methylation and SMYD2 expression ( P  = 0.038). Furthermore, downregulation of SMYD2 at the site of aneurysm in the aortic wall was further corroborated in 6 of the same samples used for methylation and gene expression analysis with immunohistochemistry. This study is the first to assess DNA methylation in VSMCs from individuals with AAA using NGS, and provides further evidence there is an epigenetic basis to AAA. Our study shows that

  10. [p16 and MGMT gene methylation in sputum cells of uranium workers].

    PubMed

    Su, Shi-biao; Yang, Lu-jing; Zhang, Wei; Jin, Ya-li; Nie, Ji-hua; Tong, Jian

    2006-02-01

    To study the methylation of O-6-methylguanine-DNA methyltransferase (MGMT) and p16 gene in the sputum cells of radon-exposed population. To provide the experimental base for finding the molecular biomarker of the high risk population of the radon-induced lung cancer. 91 radon-exposed workers were divided into 4 groups, high dosage group (> 120 WLM), middle dosage group (between 60 and 120 WLM), low dosage group (between 30 and 60 WLB) and lower dosage group (between 2 and 30 WLM) according to the accumulated exposure dosage of the radon daughters. The abnormal methylation of p16 and MGMT gene in the sputum cells of the population in the four groups was detected with the methylation specific PCR (MSP). There was significantly upward trend for the p16 gene methylation rate (0.00%-20.00%), the MGMT gene methylation rate (0.00%-28.00%) and the total methylation rate (0.00%-40.00%) with the increase of the accumulated exposure dosage of the radon daughters (P < 0.01). The methylation of p16 and MGMT gene is related to the accumulate exposure dosage of the radon daughters.

  11. Evidence that steroid 5alpha-reductase isozyme genes are differentially methylated in human lymphocytes.

    PubMed

    Rodríguez-Dorantes, M; Lizano-Soberón, M; Camacho-Arroyo, I; Calzada-León, R; Morimoto, S; Téllez-Ascencio, N; Cerbón, M A

    2002-03-01

    The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.

  12. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea.

    PubMed

    Fukushima, Takao; Katayama, Yoichi; Watanabe, Takao; Yoshino, Atsuo; Ogino, Akiyoshi; Ohta, Takashi; Komine, Chiaki

    2005-02-15

    In certain types of human cancers, transcriptional inactivation of hMLH1 by promoter hypermethylation plays a causal role in the loss of mismatch repair functions that modulate cytotoxic pathways in response to DNA-damaging agents. The aim of the present study was to investigate the role of promoter methylation of the hMLH1 gene in malignant astrocytomas. We examined the hMLH1 promoter methylation in a homogeneous cohort of patients with 41 malignant astrocytomas treated by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea chemotherapy in combination with radiation and interferon therapy, and assessed the correlation of such methylation with clinical outcome. hMLH1 promoter methylation was found in 6 (15%) of the 41 newly diagnosed malignant astrocytomas. Hypermethylation of the hMLH1 promoter corresponded closely with a loss of immunohistochemical staining for hMLH1 protein (P = 0.0013). Patients with hMLH1-methylated tumors displayed a greater chance of responding to adjuvant therapy as compared with those with hMLH1-unmethylated tumors (P = 0.0150). The presence of hMLH1 hypermethylation was significantly associated with a longer progression-free survival on both univariate analysis (P = 0.0340) and multivariate analysis (P = 0.0161). The present study identified hMLH1 methylation status as a predictor of the clinical response of malignant astrocytomas to chloroethylnitrosourea-based adjuvant therapy. The findings obtained suggest that determination of the methylation status of hMLH1 could provide a potential basis for designing rational chemotherapeutic strategies, as well as for predicting prognosis.

  13. Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and "BRCA-Like" Status, in Both Blood and Tumour DNA.

    PubMed

    Daniels, Sarah L; Burghel, George J; Chambers, Philip; Al-Baba, Shadi; Connley, Daniel D; Brock, Ian W; Cramp, Helen E; Dotsenko, Olena; Wilks, Octavia; Wyld, Lynda; Cross, Simon S; Cox, Angela

    2016-01-01

    Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies.

  14. DNA Methylation Status of the Estrogen Receptor α Gene in Canine Mammary Tumors.

    PubMed

    Brandão, Yara de Oliveira; Toledo, Mariana Busato; Chequin, Andressa; Cristo, Thierry Grima; Sousa, Renato Silva; Ramos, Edneia Amancio Souza; Klassen, Giseli

    2018-01-01

    Estrogen receptor α (ERα) has an important role in mammary carcinogenesis, prognosis, and treatment. In human and canine mammary cancer, the most aggressive tumors show loss of ERα expression, which in human breast cancer has been attributed to methylation of the cytosine followed by guanine (CpG) island within the estrogen receptor α gene ( ESR1) promoter. This study aimed to investigate the role of ESR1 CpG island (CGI) methylation in ERα expression in canine mammary tumors. Twenty-one canine mammary samples were sorted into three groups: malignant tumor (n = 9), benign tumor (n = 8), and normal gland (n = 4). Immunohistochemical analysis and reverse-transcription quantitative real-time PCR were performed to assess ERα expression and ESR1 mRNA levels. The methylation status was determined using sodium-bisulfite-treated DNA sequencing. All normal mammary glands and benign tumors showed high ERα expression (score range, 5-8). Six of the nine malignant tumors did not show ERα expression (score 0), two had score 2, and one had score 4. Lower ERα ( P < .005) and ESR1 mRNA levels ( P < .005) were found in malignant mammary tumors than in the other two groups. Canine ESR1 has an intragenic and non-promoter-associated CGI, different from humans. No significant variation in methylation percentage was observed among the groups, suggesting that ESR1 is not regulated by DNA methylation, unlike that in humans. This difference should be considered in further research using ERα as a biomarker for mammary tumors in canine studies on ERα-targeting therapy.

  15. The Cables Gene on Chromosome 18q Is Silenced by Promoter Hypermethylation and Allelic Loss in Human Colorectal Cancer

    PubMed Central

    Park, Do Youn; Sakamoto, Hideo; Kirley, Sandra D.; Ogino, Shuji; Kawasaki, Takako; Kwon, Eunjeong; Mino-Kenudson, Mari; Lauwers, Gregory Y.; Chung, Daniel C.; Rueda, Bo R.; Zukerberg, Lawrence R.

    2007-01-01

    Cables is a cyclin-dependent kinase-binding nuclear protein that maps to chromosome 18q11-12. Here, we assessed Cables expression in 160 colorectal cancers (CRCs), its role in colon cancer cell growth, and the potential mechanisms of Cables inactivation. Expression levels, promoter methylation, and mutational status of Cables were investigated in colon cancer cell lines and primary colon tumors. Chromosome 18q loss of heterozygosity (LOH) was evaluated with multiple polymorphic markers. Cables inhibited cellular proliferation and colony formation in colon cancer cell lines. Cables expression was reduced in 65% of primary CRCs. No mutations were detected in 10 exons of Cables in 20 primary colon tumors. Cables promoter was methylated in cell lines with decreased Cables expression and vice versa. 5-Aza-2′-deoxycytidine resulted in increased Cables expression in methylated cell lines. There was a significant correlation between promoter methylation and Cables gene expression in primary colon tumors. Sixty-five percent of primary colon tumors demonstrated chromosome 18q LOH. LOH involving the Cables region was observed in 35% of cases, including those in which more distal portions of chromosome 18q were retained, and Cables expression was decreased in all such cases. Loss of Cables expression in 65% of CRCs suggests that it is a common event in colonic carcinogenesis, with promoter methylation and LOH appearing to be important mechanisms of Cables gene inactivation. PMID:17982127

  16. Intragenic DNA methylation prevents spurious transcription initiation.

    PubMed

    Neri, Francesco; Rapelli, Stefania; Krepelova, Anna; Incarnato, Danny; Parlato, Caterina; Basile, Giulia; Maldotti, Mara; Anselmi, Francesca; Oliviero, Salvatore

    2017-03-02

    In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cancer.

  17. Analysis of RET promoter CpG island methylation using methylation-specific PCR (MSP), pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM): impact on stage II colon cancer patient outcome.

    PubMed

    Draht, Muriel X G; Smits, Kim M; Jooste, Valérie; Tournier, Benjamin; Vervoort, Martijn; Ramaekers, Chantal; Chapusot, Caroline; Weijenberg, Matty P; van Engeland, Manon; Melotte, Veerle

    2016-01-01

    Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested

  18. Evidence that the methylation state of the monoamine oxidase A (MAOA) gene predicts brain activity of MAOA enzyme in healthy men

    PubMed Central

    Shumay, Elena; Logan, Jean; Volkow, Nora D.; Fowler, Joanna S.

    2012-01-01

    Human brain function is mediated by biochemical processes, many of which can be visualized and quantified by positron emission tomography (PET). PET brain imaging of monoamine oxidase A (MAOA)—an enzyme metabolizing neurotransmitters—revealed that MAOA levels vary widely between healthy men and this variability was not explained by the common MAOA genotype (VNTR genotype), suggesting that environmental factors, through epigenetic modifications, may mediate it. Here, we analyzed MAOA methylation in white blood cells (by bisulphite conversion of genomic DNA and subsequent sequencing of cloned DNA products) and measured brain MAOA levels (using PET and [11C]clorgyline, a radiotracer with specificity for MAOA) in 34 healthy non-smoking male volunteers. We found significant interindividual differences in methylation status and methylation patterns of the core MAOA promoter. The VNTR genotype did not influence the methylation status of the gene or brain MAOA activity. In contrast, we found a robust association of the regional and CpG site-specific methylation of the core MAOA promoter with brain MAOA levels. These results suggest that the methylation status of the MAOA promoter (detected in white blood cells) can reliably predict the brain endophenotype. Therefore, the status of MAOA methylation observed in healthy males merits consideration as a variable contributing to interindividual differences in behavior. PMID:22948232

  19. Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure.

    PubMed

    Kuzmina, Nina S; Lapteva, Nellya Sh; Rubanovich, Alexander V

    2016-04-01

    Some human genes known to undergo age-related promoter hypermethylation. These epigenetic modifications are similar to those occurring in the course of certain diseases, e.g. some types of cancer, which in turn may also associate with age. Given external genotoxic factors may additionally contribute to hypermethylation, this study was designed to analyzes, using methylation-sensitive polymerase chain reaction (PCR), the CpG island hypermethylation in RASSF1A, CDKN2A (including p16/INK4A and p14/ARF) and GSTP1 promoters in peripheral blood leukocytes of individuals exposed to ionizing radiation long time ago. One hundred and twenty-four irradiated subjects (24-77 years old at sampling: 83 Chernobyl Nuclear Power Plant clean-up workers, 21 nuclear workers, 20 residents of territories with radioactive contamination) and 208 unirradiated volunteers (19-77 years old at sampling) were enrolled. In addition, 74 non-exposed offspring (2-51 years old at sampling) born to irradiated parents were examined. The frequency of individuals displaying promoter methylation of at least one gene in exposed group was significantly higher as compared to the control group (OR=5.44, 95% CI=2.62-11.76, p=3.9×10(-7)). No significant difference was found between the frequency of subjects with the revealed promoter methylation in the group of offspring born to irradiated parents and in the control group. The increase in the number of methylated loci of RASSF1A and p14/ARF was associated with age (β=0.242; p=1.7×10(-5)). In contrast, hypermethylation of p16/INK4A and GSTP1 genes correlated with the fact of radiation exposure only (β=0.290; p=1.7×10(-7)). The latter finding demonstrates that methylation changes in blood leukocytes of healthy subjects exposed to radiation resemble those reported in human malignancies. Additional studies are required to identify the dose-response of epigenetic markers specifically associating with radiation-induced premature aging and/or with the development

  20. Integrated data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas.

    PubMed

    Beltrami, Caroline Moraes; Dos Reis, Mariana Bisarro; Barros-Filho, Mateus Camargo; Marchi, Fabio Albuquerque; Kuasne, Hellen; Pinto, Clóvis Antônio Lopes; Ambatipudi, Srikant; Herceg, Zdenko; Kowalski, Luiz Paulo; Rogatto, Silvia Regina

    2017-01-01

    Papillary thyroid carcinoma (PTC) is a common endocrine neoplasm with a recent increase in incidence in many countries. Although PTC has been explored by gene expression and DNA methylation studies, the regulatory mechanisms of the methylation on the gene expression was poorly clarified. In this study, DNA methylation profile (Illumina HumanMethylation 450K) of 41 PTC paired with non-neoplastic adjacent tissues (NT) was carried out to identify and contribute to the elucidation of the role of novel genic and intergenic regions beyond those described in the promoter and CpG islands (CGI). An integrative and cross-validation analysis were performed aiming to identify molecular drivers and pathways that are PTC-related. The comparisons between PTC and NT revealed 4995 methylated probes (88% hypomethylated in PTC) and 1446 differentially expressed transcripts cross-validated by the The Cancer Genome Atlas data. The majority of these probes was found in non-promoters regions, distant from CGI and enriched by enhancers. The integrative analysis between gene expression and DNA methylation revealed 185 and 38 genes (mainly in the promoter and body regions, respectively) with negative and positive correlation, respectively. Genes showing negative correlation underlined FGF and retinoic acid signaling as critical canonical pathways disrupted by DNA methylation in PTC. BRAF mutation was detected in 68% (28 of 41) of the tumors, which presented a higher level of demethylation (95% hypomethylated probes) compared with BRAF wild-type tumors. A similar integrative analysis uncovered 40 of 254 differentially expressed genes, which are potentially regulated by DNA methylation in BRAF V600E-positive tumors. The methylation and expression pattern of six selected genes ( ERBB3 , FGF1 , FGFR2 , GABRB2 , HMGA2 , and RDH5 ) were confirmed as altered by pyrosequencing and RT-qPCR. DNA methylation loss in non-promoter, poor CGI and enhancer-enriched regions was a significant event in PTC

  1. SOX17 promoter methylation in plasma circulating tumor DNA of patients with non-small cell lung cancer.

    PubMed

    Balgkouranidou, Ioanna; Chimonidou, Maria; Milaki, Georgia; Tsaroucha, Emily; Kakolyris, Stylianos; Georgoulias, Vasilis; Lianidou, Evi

    2016-08-01

    SOX17 belongs to the high-mobility group-box transcription factor superfamily and down-regulates the Wnt pathway. The aim of our study was to evaluate the prognostic significance of SOX17 promoter methylation in circulating tumor DNA (ctDNA) in plasma of non-small cell lung cancer (NSCLC) patients. We examined the methylation status of SOX17 promoter in 57 operable NSCLC primary tumors and paired adjacent non-cancerous tissues and in ctDNA isolated from 48 corresponding plasma samples as well as in plasma from 74 patients with advanced NSCLC and 49 healthy individuals. SOX17 promoter methylation was examined by Methylation Specific PCR (MSP). In operable NSCLC, SOX17 promoter was fully methylated in primary tumors (57/57, 100%), and in corresponding ctDNA (27/48, 56.2%) while it was detected in only 1/49 (2.0%) healthy individuals. In advanced NSCLC, SOX17 promoter was methylated in ctDNA in 27/74 (36.4%) patients and OS was significantly different in favor of patients with non-methylated SOX17 promoter (p=0.012). Multivariate analysis revealed that SOX17 promoter methylation in ctDNA was an independent prognostic factor associated with OS in patients with advanced but not operable NSCLC. Our results show that SOX17 promoter is highly methylated in primary tumors and in corresponding plasma samples both in operable and advanced NSCLC. In the advanced setting, SOX17 promoter methylation in plasma ctDNA has a statistical significant influence on NSCLC patient's survival time. Detection of SOX17 promoter methylation in plasma provides prognostic information and merits to be further evaluated as a circulating tumor biomarker in patients with operable and advanced NSCLC.

  2. Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle.

    PubMed

    Li, Yin; Hamilton, Katherine J; Lai, Anne Y; Burns, Katherine A; Li, Leping; Wade, Paul A; Korach, Kenneth S

    2014-03-01

    Diethylstilbestrol (DES) is a synthetic estrogen associated with adverse effects on reproductive organs. DES-induced toxicity of the mouse seminal vesicle (SV) is mediated by estrogen receptor α (ERα), which alters expression of seminal vesicle secretory protein IV (Svs4) and lactoferrin (Ltf) genes. We examined a role for nuclear receptor activity in association with DNA methylation and altered gene expression. We used the neonatal DES exposure mouse model to examine DNA methylation patterns via bisulfite conversion sequencing in SVs of wild-type (WT) and ERα-knockout (αERKO) mice. The DNA methylation status at four specific CpGs (-160, -237, -306, and -367) in the Svs4 gene promoter changed during mouse development from methylated to unmethylated, and DES prevented this change at 10 weeks of age in WT SV. At two specific CpGs (-449 and -459) of the Ltf gene promoter, DES altered the methylation status from methylated to unmethylated. Alterations in DNA methylation of Svs4 and Ltf were not observed in αERKO SVs, suggesting that changes of methylation status at these CpGs are ERα dependent. The methylation status was associated with the level of gene expression. In addition, gene expression of three epigenetic modifiers-DNMT3A, MBD2, and HDAC2-increased in the SV of DES-exposed WT mice. DES-induced hormonal toxicity resulted from altered gene expression of Svs4 and Ltf associated with changes in DNA methylation that were mediated by ERα. Alterations in gene expression of DNMT3A, MBD2, and HDAC2 in DES-exposed male mice may be involved in mediating the changes in methylation status in the SV. Li Y, Hamilton KJ, Lai AY, Burns KA, Li L, Wade PA, Korach KS. 2014. Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle. Environ Health Perspect 122:262-268; http://dx.doi.org/10.1289/ehp.1307351.

  3. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes

    PubMed Central

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meena

    2012-01-01

    The farnesoid X receptor (FXR) is a ligand (bile acid)-dependent nuclear receptor that regulates target genes involved in every aspect of bile acid homeostasis. Upon binding of ligand, FXR recruits an array of coactivators and associated proteins, some of which have intrinsic enzymatic activity that modify histones or even components of the transcriptional complex. In this study, we show chromatin occupancy by the Set7/9 methyltransferase at the FXR response element (FXRE) and direct methylation of FXR in vivo and in vitro at lysine 206. siRNA depletion of Set7/9 in the Huh-7 liver cell line decreased endogenous mRNAs of the FXR target genes, the short heterodimer partner (SHP) and bile salt export pump (BSEP). Mutation of the methylation site at K206 of FXR to an arginine prevented methylation by Set7/9. A pan-methyllysine antibody recognized the wild-type FXR but not the K206R mutant form. An electromobility shift assay showed that methylation by Set7/9 enhanced binding of FXR/retinoic X receptor-α to the FXRE. Interaction between hinge domain of FXR (containing K206) and Set7/9 was confirmed by coimmunoprecipitation, GST pull down, and mammalian two-hybrid experiments. Set7/9 overexpression in Huh-7 cells significantly enhanced transactivation of the SHP and BSEP promoters in a ligand-dependent fashion by wild-type FXR but not the K206R mutant FXR. A Set7/9 mutant deficient in methyltransferase activity was also not effective in increasing transactivation of the BSEP promoter. These studies demonstrate that posttranslational methylation of FXR by Set7/9 contributes to the transcriptional activation of FXR-target genes. PMID:22345554

  4. Methylation Patterns of SOX3, SOX9, and WNT4 Genes in Gonads of Dogs with XX (SRY-Negative) Disorder of Sexual Development.

    PubMed

    Salamon, Sylwia; Flisikowski, Krzysztof; Switonski, Marek

    2017-01-01

    Ovotesticular or testicular disorder of sexual development in dogs with female karyotype and lack of SRY (XX DSD) is a common sexual anomaly diagnosed in numerous breeds. The molecular background, however, remains unclear, and epigenetic mechanisms, including DNA methylation, have not been studied. The aim of our study was comparative methylation analysis of CpG islands in promoters of candidate genes for XX DSD: SOX9, SOX3, and WNT4. Methylation studies were performed on DNA extracted from formalin-fixed/paraffin-embedded or frozen gonads from 2 dogs with ovotesticular and 2 dogs with testicular XX DSD as well as control females (n = 4) and males (n = 2). Bisulfite-converted DNA was used for CpG methylation analysis using quantitative pyrosequencing. Promoter regions of SOX9 and WNT4 showed similar CpG methylation in each group, ranging from 0 to 5.5% and from 39 to 74%, respectively. The SOX3 promoter showed significantly higher methylation in the ovotesticular XX DSD cases and the testicular XX DSD and control males, suggesting that SOX3 methylation may play a role in canine XX DSD pathogenesis. © 2017 S. Karger AG, Basel.

  5. PD-1 (PDCD1) Promoter Methylation Is a Prognostic Factor in Patients With Diffuse Lower-Grade Gliomas Harboring Isocitrate Dehydrogenase (IDH) Mutations.

    PubMed

    Röver, Lea Kristin; Gevensleben, Heidrun; Dietrich, Jörn; Bootz, Friedrich; Landsberg, Jennifer; Goltz, Diane; Dietrich, Dimo

    2018-02-01

    Immune checkpoints are important targets for immunotherapies. However, knowledge on the epigenetic modification of immune checkpoint genes is sparse. In the present study, we investigated promoter methylation of CTLA4, PD-L1, PD-L2, and PD-1 in diffuse lower-grade gliomas (LGG) harboring isocitrate dehydrogenase (IDH) mutations with regard to mRNA expression levels, clinicopathological parameters, previously established methylation subtypes, immune cell infiltrates, and survival in a cohort of 419 patients with IDH-mutated LGG provided by The Cancer Genome Atlas. PD-L1, PD-L2, and CTLA-4 mRNA expression levels showed a significant inverse correlation with promoter methylation (PD-L1: p=0.005; PD-L2: p<0.001; CTLA-4: p<0.001). Furthermore, immune checkpoint methylation was significantly associated with age (PD-L2: p=0.003; PD-1: p=0.015), molecular alterations, i.e. MGMT methylation (PD-L1: p<0.001; PD-L2: p<0.001), ATRX mutations (PD-L2: p<0.001, PD-1: p=0.001), and TERT mutations (PD-L1: p=0.035, PD-L2: p<0.001, PD-1: p<0.001, CTLA4: p<0.001) as well as methylation subgroups and immune cell infiltrates. In multivariate Cox proportional hazard analysis, PD-1 methylation qualified as strong prognostic factor (HR=0.51 [0.34-0.76], p=0.001). Our findings suggest an epigenetic regulation of immune checkpoint genes via DNA methylation in LGG. PD-1 methylation may assist the identification of patients that might benefit from an alternative treatment, particularly in the context of emerging immunotherapies. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer

    PubMed Central

    Ross-Adams, Helen; Ball, Stephen; Lawrenson, Kate; Halim, Silvia; Russell, Roslin; Wells, Claire; Strand, Siri H.; Ørntoft, Torben F.; Larson, Melissa; Armasu, Sebastian; Massie, Charles E.; Asim, Mohammad; Mortensen, Martin M.; Borre, Michael; Woodfine, Kathryn; Warren, Anne Y.; Lamb, Alastair D.; Kay, Jonathan; Whitaker, Hayley; Ramos-Montoya, Antonio; Murrell, Adele; Sørensen, Karina D.; Fridley, Brooke L.; Goode, Ellen L.; Gayther, Simon A.; Masters, John

    2016-01-01

    Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor. PMID:27732966

  7. Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer.

    PubMed

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Suemoto, Yuko; Meyerhardt, Jeffrey A; Fuchs, Charles S

    2007-11-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer. In contrast, a phenotype with less widespread promoter methylation (CIMP-low) has not been well characterised. O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and silencing have been associated with G>A mutations and microsatellite instability-low (MSI-low). To examine molecular correlates with MGMT methylation/silencing in colorectal cancer. Utilising MethyLight technology, we quantified DNA methylation in MGMT and eight other markers (a CIMP-diagnostic panel; CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) in 920 population-based colorectal cancers. Tumours with both MGMT methylation and loss were correlated positively with MSI-low (p = 0.02), CIMP-high (>or=6/8 methylated CIMP markers, p = 0.005), CIMP-low (1/8-5/8 methylated CIMP markers, p = 0.002, compared to CIMP-0 with 0/8 methylated markers), KRAS G>A mutation (p = 0.02), and inversely with 18q loss of heterozygosity (p = 0.0002). Tumours were classified into nine MSI/CIMP subtypes. Among the CIMP-low group, tumours with both MGMT methylation and loss were far more frequent in MSI-low tumours (67%, 12/18) than MSI-high tumours (5.6%, 1/18; p = 0.0003) and microsatellite stable (MSS) tumours (33%, 52/160; p = 0.008). However, no such relationship was observed among the CIMP-high or CIMP-0 groups. The relationship between MGMT methylation/silencing and MSI-low is limited to only CIMP-low tumours, supporting the suggestion that CIMP-low in colorectal cancer may be a different molecular phenotype from CIMP-high and CIMP-0. Our data support a molecular difference between MSI-low and MSS in colorectal cancer, and a possible link between CIMP-low, MSI-low, MGMT methylation/loss and KRAS mutation.

  8. VEZF1 Elements Mediate Protection from DNA Methylation

    PubMed Central

    Strogantsev, Ruslan; Gaszner, Miklos; Hair, Alan; Felsenfeld, Gary; West, Adam G.

    2010-01-01

    There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin state. PMID:20062523

  9. The Methylation of the PcMYB10 Promoter Is Associated with Green-Skinned Sport in Max Red Bartlett Pear1[C][W

    PubMed Central

    Wang, Zhigang; Meng, Dong; Wang, Aide; Li, Tianlai; Jiang, Shuling; Cong, Peihua; Li, Tianzhong

    2013-01-01

    Varieties of the European pear (Pyrus communis) can produce trees with both red- and green-skinned fruits, such as the Max Red Bartlett (MRB) variety, although little is known about the mechanism behind this differential pigmentation. In this study, we investigated the pigmentation of MRB and its green-skinned sport (MRB-G). The results suggest that a reduction in anthocyanin concentration causes the MRB-G sport. Transcript levels of PcUFGT (for UDP-glucose:flavonoid 3-O-glucosyltransferase), the key structural gene in anthocyanin biosynthesis, paralleled the change of anthocyanin concentration in both MRB and MRB-G fruit. We cloned the PcMYB10 gene, a transcription factor associated with the promoter of PcUFGT. An investigation of the 2-kb region upstream of the ATG translation start site of PcMYB10 showed the regions −604 to −911 bp and −1,218 to −1,649 bp to be highly methylated. A comparison of the PcMYB10 promoter methylation level between the MRB and MRB-G forms indicated a correlation between hypermethylation and the green-skin phenotype. An Agrobacterium tumefaciens infiltration assay was conducted on young MRB fruits by using a plasmid constructed to silence endogenous PcMYB10 via DNA methylation. The infiltrated fruits showed blocked anthocyanin biosynthesis, higher methylation of the PcMYB10 promoter, and lower expression of PcMYB10 and PcUFGT. We suggest that the methylation level of PcMYB10 is associated with the formation of the green-skinned sport in the MRB pear. The potential mechanism behind the regulation of anthocyanin biosynthesis is discussed. PMID:23629835

  10. The RON Receptor Tyrosine Kinase Promotes Metastasis by Triggering MBD4-Dependent DNA Methylation Reprogramming

    PubMed Central

    Cunha, Stéphanie; Lin, Yi-Chun; Goossen, Elizabeth A.; DeVette, Christa I.; Albertella, Mark R.; Thomson, Stuart; Mulvihill, Mark J.; Welm, Alana L.

    2017-01-01

    SUMMARY Metastasis is the major cause of death in cancer patients, yet the genetic and epigenetic programs that drive metastasis are poorly understood. Here, we report an epigenetic reprogramming pathway that is required for breast cancer metastasis. Concerted differential DNA methylation is initiated by the activation of the RON receptor tyrosine kinase by its ligand, macrophage stimulating protein (MSP). Through PI3K signaling, RON/MSP promotes expression of the G:T mismatch-specific thymine glycosylase MBD4. RON/MSP and MBD4-dependent aberrant DNA methylation results in the misregulation of a specific set of genes. Knockdown of MBD4 reverses methylation at these specific loci and blocks metastasis. We also show that the MBD4 glycosylase catalytic residue is required for RON/MSP-driven metastasis. Analysis of human breast cancers revealed that this epigenetic program is significantly associated with poor clinical outcome. Furthermore, inhibition of Ron kinase activity with a pharmacological agent blocks metastasis of patient-derived breast tumor grafts in vivo. PMID:24388747

  11. Promoter Hypermethylation of Tumour Suppressor Genes as Potential Biomarkers in Colorectal Cancer

    PubMed Central

    Ng, Jennifer Mun-Kar; Yu, Jun

    2015-01-01

    Colorectal cancer (CRC) is a common malignancy and the fourth leading cause of cancer deaths worldwide. It results from the accumulation of multiple genetic and epigenetic changes leading to the transformation of colon epithelial cells into invasive adenocarcinomas. In CRC, epigenetic changes, in particular promoter CpG island methylation, occur more frequently than genetic mutations. Hypermethylation contributes to carcinogenesis by inducing transcriptional silencing or downregulation of tumour suppressor genes and currently, over 600 candidate hypermethylated genes have been identified. Over the past decade, a deeper understanding of epigenetics coupled with technological advances have hinted at the potential of translating benchtop research into biomarkers for clinical use. DNA methylation represents one of the largest bodies of literature in epigenetics, and hence has the highest potential for minimally invasive biomarker development. Most progress has been made in the development of diagnostic markers and there are currently two, one stool-based and one blood-based, biomarkers that are commercially available for diagnostics. Prognostic and predictive methylation markers are still at their infantile stages. PMID:25622259

  12. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved

    PubMed Central

    Long, Hannah K.; King, Hamish W.; Patient, Roger K.; Odom, Duncan T.; Klose, Robert J.

    2016-01-01

    DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945

  13. Native American Ancestry Affects the Risk for Gene Methylation in the Lungs of Hispanic Smokers from New Mexico

    PubMed Central

    Liu, Yushi; Thomas, Cynthia L.; Gauderman, W. James; Picchi, Maria A.; Bruse, Shannon E.; Zhang, Xiequn; Flores, Kristina G.; Van Den Berg, David; Stidley, Christine A.; Gilliland, Frank D.

    2013-01-01

    Rationale: Gene promoter methylation detected in sputum predicts lung cancer risk in smokers. Compared with non-Hispanic whites (NHW), Hispanics have a lower age-standardized incidence for lung cancer. Objectives: This study compared the methylation prevalence in sputum of NHWs with Hispanics using the Lovelace Smokers cohort (n = 1998) and evaluated the effect of Native American ancestry (NAA) and diet on biomarkers for lung cancer risk. Methods: Genetic ancestry was estimated using 48 ancestry markers. Diet was assessed by the Harvard University Dietary Assessment questionnaire. Methylation of 12 genes was measured in sputum using methylation-specific polymerase chain reaction. The association between NAA and risk for methylation was assessed using generalized estimating equations. The ethnic difference in the association between pack-years and risk for lung cancer was assessed in the New Mexico lung cancer study. Measurements and Main Results: Overall Hispanics had a significantly increased risk for methylation across the 12 genes analyzed (odds ratio, 1.18; P = 0.007). However, the risk was reduced by 32% (P = 0.032) in Hispanics with high versus low NAA. In the New Mexico lung cancer study, Hispanic non–small cell lung cancer cases have significantly lower pack-years than NHW counterparts (P = 0.007). Furthermore, compared with NHW smokers, Hispanic smokers had a more rapidly increasing risk for lung cancer as a function of pack-years (P = 0.058). Conclusions: NAA may be an important risk modifier for methylation in Hispanic smokers. Smoking intensity may have a greater impact on risk for lung cancer in Hispanics compared with NHWs. PMID:24032348

  14. Profiling the genome-wide DNA methylation pattern of porcine ovaries using reduced representation bisulfite sequencing.

    PubMed

    Yuan, Xiao-Long; Gao, Ning; Xing, Yan; Zhang, Hai-Bin; Zhang, Ai-Ling; Liu, Jing; He, Jin-Long; Xu, Yuan; Lin, Wen-Mian; Chen, Zan-Mou; Zhang, Hao; Zhang, Zhe; Li, Jia-Qi

    2016-02-25

    Substantial evidence has shown that DNA methylation regulates the initiation of ovarian and sexual maturation. Here, we investigated the genome-wide profile of DNA methylation in porcine ovaries at single-base resolution using reduced representation bisulfite sequencing. The biological variation was minimal among the three ovarian replicates. We found hypermethylation frequently occurred in regions with low gene abundance, while hypomethylation in regions with high gene abundance. The DNA methylation around transcriptional start sites was negatively correlated with their own CpG content. Additionally, the methylation level in the bodies of genes was higher than that in their 5' and 3' flanking regions. The DNA methylation pattern of the low CpG content promoter genes differed obviously from that of the high CpG content promoter genes. The DNA methylation level of the porcine ovary was higher than that of the porcine intestine. Analyses of the genome-wide DNA methylation in porcine ovaries would advance the knowledge and understanding of the porcine ovarian methylome.

  15. Biallelic expression of the L-arginine:glycine amidinotransferase gene with different methylation status between male and female primordial germ cells in chickens.

    PubMed

    Jang, H J; Lee, M O; Kim, S; Kim, T H; Kim, S K; Song, G; Womack, J E; Han, J Y

    2013-03-01

    The basic functions of DNA methylation include in gene silencing by methylation of specific gene promoters, defense of the host genome from retrovirus, and transcriptional suppression of transgenes. In addition, genomic imprinting, by which certain genes are expressed in a parent-of-origin-specific manner, has been observed in a wide range of plants and animals and has been associated with differential methylation. However, imprinting phenomena of DNA methylation effects have not been revealed in chickens. To analyze whether genomic imprinting occurs in chickens, methyl-DNA immunoprecipitation array analysis was applied across the entire genome of germ cells in early chick embryos. A differentially methylated region (DMR) was detected in the eighth intron of the l-arginine:glycine amidinotransferase (GATM) gene. When the DMR in GATM was analyzed by bisulfite sequencing, the methylation in male primordial germ cells (PGC) of 6-d-old embryos was higher than that in female PGC (57.5 vs. 35.0%). At 8 d, the DMR methylation of GATM in male PGC was 3.7-fold higher than that in female PGC (65.0 vs. 17.5%). Subsequently, to investigate mono- or biallelic expression of the GATM gene during embryo development, we found 2 indel sequences (GTTTAATGC and CAAAAA) within the GATM 3'-untranslated region in Korean Oge (KO) and White Leghorn (WL) chickens. When individual WL and KO chickens were genotyped for indel sequences, 3 allele combinations (homozygous insertion, homozygous deletion, and heterozygotes) were detected in both breeds using a gel shift assay and high-resolution melt assay. The deletion allele was predominant in KO, whereas the insertion allele was predominant in WL. Heterozygous animals were evenly distributed in both breeds (P < 0.01). Despite the different methylation status between male and female PGC, the GATM gene conclusively displayed biallelic expression in PGC as well as somatic embryonic, extraembryonic, and adult chicken tissues.

  16. Methylation of the tryptophan hydroxylase‑2 gene is associated with mRNA expression in patients with major depression with suicide attempts.

    PubMed

    Zhang, Yuqi; Chang, Zaohuo; Chen, Jionghua; Ling, Yang; Liu, Xiaowei; Feng, Zhang; Chen, Caixia; Xia, Minghua; Zhao, Xingfu; Ying, Wang; Qing, Xu; Li, Guilin; Zhang, Changsong

    2015-08-01

    Tryptophan hydroxylase-2 (TPH2) contributes to alterations in the function of neuronal serotonin (5-HT), which are associated with various psychopathologies, including major depressive disorder (MDD) or suicidal behavior. The methylation of a single CpG site in the promoter region of TPH2 affects gene expression. Suicide and MDD are strongly associated and genetic factors are at least partially responsible for the variability in suicide risk. The aim of the present study was to investigate whether variations in TPH2 methylation in peripheral blood samples may predispose patients with MDD to suicide attempts. TPH2 mRNA expression levels differed significantly between 50 patients with MDD who had attempted suicide (MDD + suicide group) and 75 control patients with MDD (MDD group); TPH2 expression levels were significantly decreased (P=0.0005) in the patients who had attempted suicide. Furthermore, the frequency of TPH2 methylation was 36.0% in the MDD + suicide group, while it was 13.0% in the MDD group. The results of the present study demonstrated that methylation in the promoter region of TPH2 significantly affected the mRNA expression levels of TPH2, thus suggesting that methylation of the TPH2 promoter may silence TPH2 mRNA expression in MDD patients with or without suicidal behavior. In addition, there was a significant correlation between the methylation status of the TPH2 promoter and depression, hopelessness and cognitive impairment in the MDD + suicide group. In conclusion, the present study demonstrated that TPH2 expression was regulated by DNA methylation of the TPH2 promoter region in patients with MDD.

  17. Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine

    PubMed Central

    Lu, Yi Chen; Feng, Sheng Jun; Zhang, Jing Jing; Luo, Fang; Zhang, Shuang; Yang, Hong

    2016-01-01

    Atrazine (ATR) is a pesticide widely used for controlling weeds for crop production. Crop contamination with ATR negatively affects crop growth and development. This study presents the first genome-wide single-base-resolution maps of DNA methylation in ATR-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between the ATR-exposed and ATR-free (control) rice. Most of DNA methyltransferases, histone methyltransferases and DNA demethylase were differentially regulated by ATR. We found more genes hypermethylated than those hypomethylated in the regions of upstream, genebody and downstream under ATR exposure. A stringent group of 674 genes (p < 0.05, two-fold change) with a strong preference of differential expression in ATR-exposed rice was identified. Some of the genes were identified in a subset of loss of function mutants defective in DNA methylation/demethylation. Provision of 5-azacytidine (AZA, inhibitor of DNA methylation) promoted the rice growth and reduced ATR content. By UPLC/Q-TOF-MS/MS, 8 degraded products and 9 conjugates of ATR in AZA-treated rice were characterized. Two of them has been newly identified in this study. Our data show that ATR-induced changes in DNA methylation marks are possibly involved in an epigenetic mechanism associated with activation of specific genes responsible for ATR degradation and detoxification. PMID:26739616

  18. Detection of Promoter DNA Methylation of APC, DAPK, and GSTP1 Genes in tissue Biopsy and Matched Serum of Advanced-Stage Lung Cancer Patients.

    PubMed

    Ali, Ashraf; Kumar, Sachin; Kakaria, Vinod Kumar; Mohan, Anant; Luthra, Kalpana; Upadhyay, Ashish Dutt; Guleria, Randeep

    2017-07-03

    Promoter DNA hypermethylation of APC, DAPK, and GSTP1 genes was evaluated in biopsy and matched serum of 160 lung cancer patients and 70 controls. In biopsy, 83.1, 83.1, and 78.1% of lung cancer patients and 72.9, 70, and 70% of controls, while in serum, 52.5, 30.6, and 65.6% of lung cancer patients and 14.3, 18.6, and 30% of controls were positive for APC, DAPK, and GSTP1 hypermethylation respectively. We couldn't find any significant role of DNA hypermethylation in lung cancer. However, long follow-up of methylation positive controls will be required to confirm its role for the prediction of lung cancer.

  19. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas

    PubMed Central

    Schroeder, Diane I.; Jayashankar, Kartika; Douglas, Kory C.; Thirkill, Twanda L.; York, Daniel; Dickinson, Pete J.; Williams, Lawrence E.; Samollow, Paul B.; Ross, Pablo J.; Bannasch, Danika L.; Douglas, Gordon C.; LaSalle, Janine M.

    2015-01-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  20. DNA methylation analysis of phenotype specific stratified Indian population.

    PubMed

    Rotti, Harish; Mallya, Sandeep; Kabekkodu, Shama Prasada; Chakrabarty, Sanjiban; Bhale, Sameer; Bharadwaj, Ramachandra; Bhat, Balakrishna K; Dedge, Amrish P; Dhumal, Vikram Ram; Gangadharan, G G; Gopinath, Puthiya M; Govindaraj, Periyasamy; Joshi, Kalpana S; Kondaiah, Paturu; Nair, Sreekumaran; Nair, S N Venugopalan; Nayak, Jayakrishna; Prasanna, B V; Shintre, Pooja; Sule, Mayura; Thangaraj, Kumarasamy; Patwardhan, Bhushan; Valiathan, Marthanda Varma Sankaran; Satyamoorthy, Kapaettu

    2015-05-08

    DNA methylation and its perturbations are an established attribute to a wide spectrum of phenotypic variations and disease conditions. Indian traditional system practices personalized medicine through indigenous concept of distinctly descriptive physiological, psychological and anatomical features known as prakriti. Here we attempted to establish DNA methylation differences in these three prakriti phenotypes. Following structured and objective measurement of 3416 subjects, whole blood DNA of 147 healthy male individuals belonging to defined prakriti (Vata, Pitta and Kapha) between the age group of 20-30years were subjected to methylated DNA immunoprecipitation (MeDIP) and microarray analysis. After data analysis, prakriti specific signatures were validated through bisulfite DNA sequencing. Differentially methylated regions in CpG islands and shores were significantly enriched in promoters/UTRs and gene body regions. Phenotypes characterized by higher metabolism (Pitta prakriti) in individuals showed distinct promoter (34) and gene body methylation (204), followed by Vata prakriti which correlates to motion showed DNA methylation in 52 promoters and 139 CpG islands and finally individuals with structural attributes (Kapha prakriti) with 23 and 19 promoters and CpG islands respectively. Bisulfite DNA sequencing of prakriti specific multiple CpG sites in promoters and 5'-UTR such as; LHX1 (Vata prakriti), SOX11 (Pitta prakriti) and CDH22 (Kapha prakriti) were validated. Kapha prakriti specific CDH22 5'-UTR CpG methylation was also found to be associated with higher body mass index (BMI). Differential DNA methylation signatures in three distinct prakriti phenotypes demonstrate the epigenetic basis of Indian traditional human classification which may have relevance to personalized medicine.

  1. Association between promoter methylation of MLH1 and MSH2 and reactive oxygen species in oligozoospermic men-A pilot study.

    PubMed

    Gunes, S; Agarwal, A; Henkel, R; Mahmutoglu, A M; Sharma, R; Esteves, S C; Aljowair, A; Emirzeoglu, D; Alkhani, A; Pelegrini, L; Joumah, A; Sabanegh, E

    2018-04-01

    MLH1 and MSH2 are important genes for DNA mismatch repair and crossing over during meiosis and are implicated in male infertility. Therefore, the methylation patterns of the DNA mismatch repair genes MLH1 and MSH2 in oligozoospermic males were investigated. Ten oligozoospermic patients and 29 normozoospermic donors were analysed. Methylation profiles of the MLH1 and MSH2 promotors were analysed. In addition, sperm motility and seminal reactive oxygen species (ROS) were recorded. Receiver operating characteristic (ROC) analysis was conducted to determine the accuracy of the DNA methylation status of MLH1 and MSH2 to distinguish between oligozoospermic and normozoospermic men. In oligozoospermic men, MLH1 was significantly (p = .0013) more methylated compared to normozoospermic men. Additionally, there was a significant positive association (r = .384; p = .0159) between seminal ROS levels and MLH1 methylation. Contrary, no association between MSH2 methylation and oligozoospermia was found. ROC curve analysis for methylation status of MLH1 was significant (p = .0275) with an area under the curve of 61.1%, a sensitivity of 22.2% and a specificity of 100.0%. This pilot study indicates oligozoospermic patients have more methylation of MLH1 than normozoospermic patients. Whether hypermethylation of the MLH1 promoter plays a role in repairing relevant mismatches of sperm DNA strands in idiopathic oligozoospermia warrants further investigation. © 2017 Blackwell Verlag GmbH.

  2. Candidate Luminal B Breast Cancer Genes Identified by Genome, Gene Expression and DNA Methylation Profiling

    PubMed Central

    Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype. PMID:24416132

  3. MLH1 Promoter Methylation and Prediction/Prognosis of Gastric Cancer: A Systematic Review and Meta and Bioinformatic Analysis.

    PubMed

    Shen, Shixuan; Chen, Xiaohui; Li, Hao; Sun, Liping; Yuan, Yuan

    2018-01-01

    Background: The promoter methylation of MLH1 gene and gastric cancer (GC)has been investigated previously. To get a more credible conclusion, we performed a systematic review and meta and bioinformatic analysis to clarify the role of MLH1 methylation in the prediction and prognosis of GC. Methods: Eligible studies were targeted after searching the PubMed, Web of Science, Embase, BIOSIS, CNKI and Wanfang Data to collect the information of MLH1 methylation and GC. The link strength between the two was estimated by odds ratio with its 95% confidence interval. The Newcastle-Ottawa scale was used for quantity assessment . Subgroup and sensitivity analysis were conducted to explore sources of heterogeneity. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were employed for bioinformatics analysis on the correlation between MLH1 methylation and GC risk, clinicopathological behavior as well as prognosis. Results: 2365 GC and 1563 controls were included in the meta-analysis. The pooled OR of MLH1 methylation in GC was 4.895 (95% CI: 3.149-7.611, P<0.001), which considerably associated with increased GC risk. No significant difference was found in relation to Lauren classification, tumor invasion, lymph node/distant metastasis and tumor stage in GC. Analysis based on GEO and TCGA showed that high MLH1 methylation enhanced GC risk but might not related with GC clinicopathological features and prognosis. Conclusion: MLH1 methylation is an alive biomarker for the prediction of GC and it might not affect GC behavior. Further study could be conducted to verify the impact of MLH1 methylation on GC prognosis.

  4. MLH1 Promoter Methylation and Prediction/Prognosis of Gastric Cancer: A Systematic Review and Meta and Bioinformatic Analysis

    PubMed Central

    Shen, Shixuan; Chen, Xiaohui; Li, Hao; Sun, Liping; Yuan, Yuan

    2018-01-01

    Background: The promoter methylation of MLH1 gene and gastric cancer (GC)has been investigated previously. To get a more credible conclusion, we performed a systematic review and meta and bioinformatic analysis to clarify the role of MLH1 methylation in the prediction and prognosis of GC. Methods: Eligible studies were targeted after searching the PubMed, Web of Science, Embase, BIOSIS, CNKI and Wanfang Data to collect the information of MLH1 methylation and GC. The link strength between the two was estimated by odds ratio with its 95% confidence interval. The Newcastle-Ottawa scale was used for quantity assessment. Subgroup and sensitivity analysis were conducted to explore sources of heterogeneity. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were employed for bioinformatics analysis on the correlation between MLH1 methylation and GC risk, clinicopathological behavior as well as prognosis. Results: 2365 GC and 1563 controls were included in the meta-analysis. The pooled OR of MLH1 methylation in GC was 4.895 (95% CI: 3.149-7.611, P<0.001), which considerably associated with increased GC risk. No significant difference was found in relation to Lauren classification, tumor invasion, lymph node/distant metastasis and tumor stage in GC. Analysis based on GEO and TCGA showed that high MLH1 methylation enhanced GC risk but might not related with GC clinicopathological features and prognosis. Conclusion: MLH1 methylation is an alive biomarker for the prediction of GC and it might not affect GC behavior. Further study could be conducted to verify the impact of MLH1 methylation on GC prognosis. PMID:29896277

  5. Global and gene specific DNA methylation changes during zebrafish development

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is dynamic through the life of an organism. In this study, we measured the global and gene specific DNA methylation changes in zebrafish at different developmental stages. We found that the methylation percentage of cytosines was 11.75 ± 0.96% in 3.3 hour post fertilization (hpf) zeb...

  6. Feedback regulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 via ATM/Chk2 pathway contributes to the resistance of MCF-7 breast cancer cells to cisplatin.

    PubMed

    Lv, Juan; Qian, Ying; Ni, Xiaoyan; Xu, Xiuping; Dong, Xuejun

    2017-03-01

    The methyl methanesulfonate and ultraviolet-sensitive gene clone 81 protein is a structure-specific nuclease that plays important roles in DNA replication and repair. Knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 has been found to sensitize cancer cells to chemotherapy. However, the underlying molecular mechanism is not well understood. We found that methyl methanesulfonate and ultraviolet-sensitive gene clone 81 was upregulated and the ATM/Chk2 pathway was activated at the same time when MCF-7 cells were treated with cisplatin. By using lentivirus targeting methyl methanesulfonate and ultraviolet-sensitive gene clone 81 gene, we showed that knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 enhanced cell apoptosis and inhibited cell proliferation in MCF-7 cells under cisplatin treatment. Abrogation of ATM/Chk2 pathway inhibited cell viability in MCF-7 cells in response to cisplatin. Importantly, we revealed that ATM/Chk2 was required for the upregulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 resulted in inactivation of ATM/Chk2 pathway in response to cisplatin. Meanwhile, knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 activated the p53/Bcl-2 pathway in response to cisplatin. These data suggest that the ATM/Chk2 may promote the repair of DNA damage caused by cisplatin by sustaining methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and the double-strand breaks generated by methyl methanesulfonate and ultraviolet-sensitive gene clone 81 may activate the ATM/Chk2 pathway in turn, which provide a novel mechanism of how methyl methanesulfonate and ultraviolet-sensitive gene clone 81 modulates DNA damage response and repair.

  7. Associations among oxytocin receptor gene (OXTR) DNA methylation in adulthood, exposure to early life adversity, and childhood trajectories of anxiousness.

    PubMed

    Gouin, J P; Zhou, Q Q; Booij, L; Boivin, M; Côté, S M; Hébert, M; Ouellet-Morin, I; Szyf, M; Tremblay, R E; Turecki, G; Vitaro, F

    2017-08-07

    Recent models propose deoxyribonucleic acid methylation of key neuro-regulatory genes as a molecular mechanism underlying the increased risk of mental disorder associated with early life adversity (ELA). The goal of this study was to examine the association of ELA with oxytocin receptor gene (OXTR) methylation among young adults. Drawing from a 21-year longitudinal cohort, we compared adulthood OXTR methylation frequency of 46 adults (23 males and 23 females) selected for high or low ELA exposure based on childhood socioeconomic status and exposure to physical and sexual abuse during childhood and adolescence. Associations between OXTR methylation and teacher-rated childhood trajectories of anxiousness were also assessed. ELA exposure was associated with one significant CpG site in the first intron among females, but not among males. Similarly, childhood trajectories of anxiousness were related to one significant CpG site within the promoter region among females, but not among males. This study suggests that females might be more sensitive to the impact of ELA on OXTR methylation than males.

  8. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation

    PubMed Central

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P.; Zhou, Feng C.

    2009-01-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88 mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10 and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p < 0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes

  9. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.

    PubMed

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C

    2009-10-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in

  10. MLH1 Promoter Methylation Frequency in Colorectal Cancer Patients and Related Clinicopathological and Molecular Features

    PubMed Central

    Li, Xia; Yao, Xiaoping; Wang, Yibaina; Hu, Fulan; Wang, Fan; Jiang, Liying; Liu, Yupeng; Wang, Da; Sun, Guizhi; Zhao, Yashuang

    2013-01-01

    Purpose To describe the frequency of MLH1 promoter methylation in colorectal cancer (CRC); to explore the associations between MLH1 promoter methylation and clinicopathological and molecular factors using a systematic review and meta-analysis. Methods A literature search of the PubMed and Embase databases was conducted to identify relevant articles published up to September 7, 2012 that described the frequency of MLH1 promoter methylation or its associations with clinicopathological and molecular factors in CRC. The pooled frequency, odds ratio (OR) and 95% confidence intervals (95% CI) were calculated. Results The pooled frequency of MLH1 promoter methylation in unselected CRC was 20.3% (95% CI: 16.8–24.1%). They were 18.7% (95% CI: 14.7–23.6%) and 16.4% (95% CI: 11.9–22.0%) in sporadic and Lynch syndrome (LS) CRC, respectively. Significant associations were observed between MLH1 promoter methylation and gender (pooled OR = 1.641, 95% CI: 1.215–2.215; P = 0.001), tumor location (pooled OR = 3.804, 95% CI: 2.715–5.329; P<0.001), tumor differentiation (pooled OR = 2.131, 95% CI: 1.464–3.102; P<0.001), MSI (OR: 27.096, 95% CI: 13.717–53.526; P<0.001). Significant associations were also observed between MLH1 promoter methylation and MLH1 protein expression, BRAF mutation (OR = 14.919 (95% CI: 6.427–34.631; P<0.001) and 9.419 (95% CI: 2.613–33.953; P = 0.001), respectively). Conclusion The frequency of MLH1 promoter methylation in unselected CRC was 20.3%. They were 18.7% in sporadic CRC and 16.4% in LS CRC, respectively. MLH1 promoter methylation may be significantly associated with gender, tumor location, tumor differentiation, MSI, MLH1 protein expression, and BRAF mutation. PMID:23555617

  11. Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and “BRCA-Like” Status, in Both Blood and Tumour DNA

    PubMed Central

    Burghel, George J.; Chambers, Philip; Al-Baba, Shadi; Connley, Daniel D.; Brock, Ian W.; Cramp, Helen E.; Dotsenko, Olena; Wilks, Octavia; Wyld, Lynda; Cross, Simon S.; Cox, Angela

    2016-01-01

    Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies. PMID:27463681

  12. DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).

    PubMed

    Zakrzewski, Falk; Schmidt, Martin; Van Lijsebettens, Mieke; Schmidt, Thomas

    2017-06-01

    The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome-wide cytosine methylation in the sugar beet genome was studied in leaves and leaf-derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome-wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants.

    PubMed

    Bewick, Adam J; Niederhuth, Chad E; Ji, Lexiang; Rohr, Nicholas A; Griffin, Patrick T; Leebens-Mack, Jim; Schmitz, Robert J

    2017-05-01

    The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns. The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.

  14. Methylation patterns in marginal zone lymphoma.

    PubMed

    Arribas, Alberto J; Bertoni, Francesco

    Promoter DNA methylation is a major regulator of gene expression and transcription. The identification of methylation changes is important for understanding disease pathogenesis, for identifying prognostic markers and can drive novel therapeutic approaches. In this review we summarize the current knowledge regarding DNA methylation in MALT lymphoma, splenic marginal zone lymphoma, nodal marginal zone lymphoma. Despite important differences in the study design for different publications and the existence of a sole large and genome-wide methylation study for splenic marginal zone lymphoma, it is clear that DNA methylation plays an important role in marginal zone lymphomas, in which it contributes to the inactivation of tumor suppressors but also to the expression of genes sustaining tumor cell survival and proliferation. Existing preclinical data provide the rationale to target the methylation machinery in these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: Cohort study and literature review.

    PubMed

    Shima, Kaori; Nosho, Katsuhiko; Baba, Yoshifumi; Cantor, Mami; Meyerhardt, Jeffrey A; Giovannucci, Edward L; Fuchs, Charles S; Ogino, Shuji

    2011-03-01

    A cyclin-dependent kinase inhibitor CDKN2A (p16/Ink4a) is a tumor suppressor and upregulated in cellular senescence. CDKN2A promoter methylation and gene silencing are associated with the CpG island methylator phenotype (CIMP) in colon cancer. However, prognostic significance of CDKN2A methylation or loss of CDKN2A (p16) expression independent of CIMP status remains uncertain. Using a database of 902 colorectal cancers in 2 independent cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study), we quantified CDKN2A promoter methylation and detected hypermethylation in 269 tumors (30%). By immunohistochemistry, we detected loss of CDKN2A (p16) expression in 25% (200/804) of tumors. We analyzed for LINE-1 hypomethylation and hypermethylation at 7 CIMP-specific CpG islands (CACNA1G, CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1); microsatellite instability (MSI); KRAS, BRAF and PIK3CA mutations; and expression of TP53 (p53), CTNNB1 (β-catenin), CDKN1A (p21), CDKN1B (p27), CCND1 (cyclin D1), FASN (fatty acid synthase) and PTGS2 (cyclooxygenase-2). CDKN2A promoter methylation and loss of CDKN2A (p16) were associated with shorter overall survival in univariate Cox regression analysis [hazard ratio (HR): 1.36, 95% CI: 1.10-1.66, p = 0.0036 for CDKN2A methylation; HR: 1.30, 95% CI: 1.03-1.63, p = 0.026 for CDKN2A (p16) loss] but not in multivariate analysis that adjusted for clinical and tumor variables, including CIMP, MSI and LINE-1 methylation. Neither CDKN2A promoter methylation nor loss of CDKN2A (p16) was associated with colorectal cancer-specific mortality in uni- or multivariate analysis. Despite its well-established role in carcinogenesis, CDKN2A (p16) promoter methylation or loss of expression in colorectal cancer is not independently associated with patient prognosis. Copyright © 2010 UICC.

  16. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.

    PubMed

    Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J

    2016-08-19

    DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure.

    PubMed

    Li, Chunping; Yang, Xiaolin; Xu, Ming; Zhang, Jinlong; Sun, Na

    2013-05-01

    Occupational and environmental exposures to lead (Pb) are a worldwide concern. DNA methylation plays an important role in the development of Pb toxicity. Here, we try to find out the evidence to prove that the methylation of the LINE-1 promoter may be involved in Pb toxicity. To determine whether the methylation level of the LINE-1 is associated with the risk of Pb poisoning, we first constructed a Pb acetate-treated cell model to detect the association between LINE-1 methylation and Pb exposure. A case-control study involving 53 workers from a battery plant and 57 healthy volunteers with matching age and gender distribution was carried out. We employed methylation-specific real-time PCR to determine the relationship between LINE-1 methylation level and Pb exposure. In the cell model, Pb exposure significantly decreased the level of LINE-1 methylation (p = 0.009). Significant difference in methylation frequencies was found between the exposed and control samples (p < 0.001). We also found a decreasing trend of LINE-1 methylation level with increasing blood Pb level (p < 0.001). Therefore, the LINE-1 promoter methylation might contribute to the risk of Pb poisoning and identified a possible epigenetic biomarker for Pb toxicity, especially in individuals occupationally exposed to Pb.

  18. Increased expression of interleukin-6 (IL-6) gene transcript in relation to IL-6 promoter hypomethylation in gingival tissue from patients with chronic periodontitis.

    PubMed

    Kobayashi, Tetsuo; Ishida, Kohei; Yoshie, Hiromasa

    2016-09-01

    DNA methylation of the cytokine genes may play a role in the pathogenesis of periodontitis. The aim of this study is to evaluate whether the alteration of interleukin-6 (IL-6) gene promoter methylation in the gingival tissue (GT) and peripheral blood (PB) is unique to chronic periodontitis (CP). DNA isolated from the GT and PB of 25 patients with (CP) and 20 healthy controls (H) was modified with sodium bisulfite and analyzed for IL-6 promoter methylation with direct sequencing. The levels of IL-6 mRNA and serum IL-6 protein were evaluated by a quantitative reverse transcription polymerase chain reaction and an enzyme-linked immunosorbent assay. The CP group showed that the overall methylation rates of IL-6 promoter that contained 19 cytosine-guanine dinucleotide (CpG) motifs were significantly decreased in GT in comparison to PB (p<0.001), which was significantly negatively correlated with the probing depth (p=0.003). The GT and PB of the H group displayed similar overall methylation rates. No significant difference was observed in the methylation rates at each CpG in GT in comparison to the PB in both groups. The levels of IL-6 mRNA in the GT and PB and serum IL-6 of the two groups were comparable. The ratio of IL-6 mRNA in the GT relative to the PB was significantly higher in the CP group than in the H group (p=0.03). The increased expression of IL-6 gene transcription may be related to IL-6 promoter hypomethylation in the GT from CP patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Novel Approaches in DNA Methylation Studies - MS-HRM Analysis and Electrochemistry].

    PubMed

    Bartošík, M; Ondroušková, E

    Cytosine methylation in DNA is an epigenetic mechanism regulating gene expression and plays a vital role in cell differentiation or proliferation. Tumor cells often exhibit aberrant DNA methylation, e.g. hypermethylation of tumor suppressor gene promoters. New methods, capable of determining methylation status of specific DNA sequences, are thus being developed. Among them, MS-HRM (methylation-specific high resolution melting) and electrochemistry offer relatively inexpensive instrumentation, fast assay times and possibility of screening multiple samples/DNA regions simultaneously. MS-HRM is due to its sensitivity and simplicity an interesting alternative to already established techniques, including methylation-specific PCR or bisulfite sequencing. Electrochemistry, when combined with suitable electroactive labels and electrode surfaces, has been applied in several unique strategies for discrimination of cytosines and methylcytosines. Both techniques were successfully tested in analysis of DNA methylation within promoters of important tumor suppressor genes and could thus help in achieving more precise diagnostics and prognostics of cancer. Aberrant methylation of promoters has already been described in hundreds of genes associated with tumorigenesis and could serve as important biomarker if new methods applicable into clinical practice are sufficiently advanced.Key words: DNA methylation - 5-methylcytosine - HRM analysis - melting temperature - DNA duplex - electrochemistry - nucleic acid hybridizationThis work was supported by MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 6. 5. 2016Accepted: 16. 5. 2016.

  20. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73.

    PubMed

    van Doorn, Remco; Zoutman, Willem H; Dijkman, Remco; de Menezes, Renee X; Commandeur, Suzan; Mulder, Aat A; van der Velden, Pieter A; Vermeer, Maarten H; Willemze, Rein; Yan, Pearlly S; Huang, Tim H; Tensen, Cornelis P

    2005-06-10

    To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance. DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes. The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL. Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.

  1. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment.

    PubMed

    Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet

    2017-01-01

    DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016

  2. Surfactant protein DNA methylation: A new entrant in the field of lung cancer diagnostics? (Review)

    PubMed Central

    Vaid, Mudit; Floros, Joanna

    2010-01-01

    Lung cancer is a major cause of cancer-related mortality in both men and women. A 5-year survival of lung cancer patients is only 15% with a negative correlation between progressively advanced lung cancer stage and a 5-year survival period. The only chance for cure is surgical resection if done at the early stage of the disease. Therefore, an early diagnosis and a better prediction of prognosis could decrease mortality. An early diagnosis could provide the opportunity for a therapeutic intervention early in the course of the disease. Genetic alterations in the cancer genome include aneuploidy, deletions and amplifications of chromosomal regions, loss of heterozygosity (LOH), microsatellite alterations, point mutations and aberrant promoter methylation. Of the various types of genetic alterations (i.e. gene amplifications, allele deletions, point mutations or deletions and methylation) reported in different tumor types, aberrant promoter methylation of genes is recent and is the focus of the present review. Specifically, we will briefly review the role of promoter methylation in various malignancies and then focus on lung cancer diagnosis and promoter gene methylation with emphasis on the methylation status of genes of the innate host defense, namely the surfactant proteins A and D. PMID:19082436

  3. Rapid electrochemical assessment of tumor suppressor gene methylations in raw human serum, and tumor cells and tissues using immuno-magnetic beads and selective DNA hybridization.

    PubMed

    Povedano, Eloy; Valverde, Alejandro; Ruiz-Valdepeñas Montiel, Víctor; Pedrero, María; Yáñez-Sedeño, Paloma; Barderas, Rodrigo; San Segundo-Acosta, Pablo; Peláez-García, Alberto; Mendiola, Marta; Hardisson, David; Campuzano, Susana; Pingarron, José Manuel

    2018-05-09

    We report a rapid and sensitive electrochemical strategy for the detection of gene-specific 5-methylcytosine DNA methylation. Magnetic beads (MBs) modified with an antibody specific for 5-methylcytosines (5-mC) are employed for the selective capture of any 5-mC methylated single-stranded (ss)DNA sequence. A flanking region next to the 5-mCs of the captured methylated ssDNA is recognized by selective hybridization with a synthetic biotinylated DNA sequence, further labeled with an HRP streptavidin conjugate. Amperometric transduction at disposable screen-printed carbon electrodes (SPCEs) is employed. The developed biosensor exhibits a dynamic range from 3.9 to 500 pM and a detection limit of 1.2 pM for the methylated synthetic sequence of the tumor suppressor gene O-6-methylguanine-DNA methyltransferase (MGMT) promoter region. The applicability of this strategy is demonstrated through the 45 min-analysis of specific methylation in the MGMT promoter region directly in raw spiked human serum samples and in genomic DNA extracted from U-87 glioblastoma cells and paraffin-embedded brain tumor tissues without any amplification and pretreatment step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modification of Epigenetic Patterns in Low Birth Weight Children: Importance of Hypomethylation of the ACE Gene Promoter

    PubMed Central

    Rangel, Marina; dos Santos, Jéssica Cassilla; Ortiz, Paula Helena Lima; Hirata, Mario; Jasiulionis, Miriam Galvonas; Araujo, Ronaldo C.; Ierardi, Daniela Filippini; Franco, Maria do Carmo

    2014-01-01

    There is a growing body of evidence that epigenetic alterations are involved in the pathological mechanisms of many chronic disorders linked to fetal programming. Angiotensin-converting enzyme (ACE) appears as one candidate gene that brings new insights into the epigenetic control and later development of diseases. In this view, we have postulated that epigenetic modifications in the ACE gene might show different interactions between birth weight (BW), blood pressure levels, plasma ACE activity and ACE I/D polymorphism. To explore this hypothesis, we performed a cross-sectional study to evaluate the DNA methylation of 3 CpG sites using pyrosequencing within the ACE gene promoter of peripheral blood leukocytes from 45 LBW children compared with 70 NBW children. Our results have revealed that LBW children have lower methylation levels (P<0.001) in parallel with a higher ACE activity (P = 0.001). Adjusting for prematurity, gender, age, body mass index, and family history of cardiovascular disease did not alter these findings. We have also performed analyses of individual CpG sites. The frequency of DNA methylation was significantly different at two CpG sites (site 1: nucleotide position +555; and site 3: nucleotide position +563). In addition, we have found a significant inverse correlation between degree of DNA methylation and both ACE activity (P<0.001) and systolic blood pressure levels (P<0.001). We also observed that the methylation level was significantly lower in LBW children who are carriers of the DD genotype compared to NBW children with DD genotype (P<0.024). In conclusion, we are able to demonstrate that the hypomethylation in the 3 CpG sites of ACE gene promoter is associated with LBW in 6 to 12 year-old children. The magnitude of these epigenetic changes appears to be clinically important, which is supported by the observation that discrete changes in DNA methylation can affect systolic blood pressure and ACE protein activity levels. PMID:25170764

  5. Modification of epigenetic patterns in low birth weight children: importance of hypomethylation of the ACE gene promoter.

    PubMed

    Rangel, Marina; dos Santos, Jéssica Cassilla; Ortiz, Paula Helena Lima; Hirata, Mario; Jasiulionis, Miriam Galvonas; Araujo, Ronaldo C; Ierardi, Daniela Filippini; Franco, Maria do Carmo

    2014-01-01

    There is a growing body of evidence that epigenetic alterations are involved in the pathological mechanisms of many chronic disorders linked to fetal programming. Angiotensin-converting enzyme (ACE) appears as one candidate gene that brings new insights into the epigenetic control and later development of diseases. In this view, we have postulated that epigenetic modifications in the ACE gene might show different interactions between birth weight (BW), blood pressure levels, plasma ACE activity and ACE I/D polymorphism. To explore this hypothesis, we performed a cross-sectional study to evaluate the DNA methylation of 3 CpG sites using pyrosequencing within the ACE gene promoter of peripheral blood leukocytes from 45 LBW children compared with 70 NBW children. Our results have revealed that LBW children have lower methylation levels (P<0.001) in parallel with a higher ACE activity (P = 0.001). Adjusting for prematurity, gender, age, body mass index, and family history of cardiovascular disease did not alter these findings. We have also performed analyses of individual CpG sites. The frequency of DNA methylation was significantly different at two CpG sites (site 1: nucleotide position +555; and site 3: nucleotide position +563). In addition, we have found a significant inverse correlation between degree of DNA methylation and both ACE activity (P<0.001) and systolic blood pressure levels (P<0.001). We also observed that the methylation level was significantly lower in LBW children who are carriers of the DD genotype compared to NBW children with DD genotype (P<0.024). In conclusion, we are able to demonstrate that the hypomethylation in the 3 CpG sites of ACE gene promoter is associated with LBW in 6 to 12 year-old children. The magnitude of these epigenetic changes appears to be clinically important, which is supported by the observation that discrete changes in DNA methylation can affect systolic blood pressure and ACE protein activity levels.

  6. Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring.

    PubMed

    Li, Hong; Zhang, Chenyun; Ni, Feng; Guo, Suhua; Wang, Wenxiang; Liu, Jing; Lu, Xiaoli; Huang, Huiling; Zhang, Wenchang

    2015-12-15

    Research has revealed that n-hexane can disrupt adult female endocrine functions; however, few reports have focused on endocrine changes in adult F1 females after maternal exposure during gestation. In this study, female Wistar rats inhaled 100, 500, 2500, or 12,500 ppm n-hexane for 4 h daily during their initial 20 gestational days. The F1 female offspring exhibited abnormal oestrus cycles. Compared with the controls, the in vitro-cultured ovarian granulosa cells of the 12,500 ppm group showed significantly reduced in vitro progesterone and oestradiol secretion. Elevated progesterone secretion was observed in the 500 ppm group, and decreased and significantly upregulated mRNA expression of the Star, Cyp11a1, Cyp17a1, and Hsd3b genes was observed in the 12,500 ppm and 500 ppm groups, respectively. The protein expression levels were consistent with the mRNA expression levels. Methylation screening of the promoter regions of these genes was performed using MeDIP-chip and confirmed by methylation-sensitive high-resolution melting (MS-HRM), and the observed methylation state changes of the promoter regions were correlated with the gene expression levels. The results suggest that the hormone levels in the female offspring after gestational n-hexane inhalation correspond to the expression levels and DNA methylation states of the hormone production genes. Copyright © 2015. Published by Elsevier Ireland Ltd.

  7. Protein Arginine Methyltransferase 7 Regulates Cellular Response to DNA Damage by Methylating Promoter Histones H2A and H4 of the Polymerase δ Catalytic Subunit Gene, POLD1*

    PubMed Central

    Karkhanis, Vrajesh; Wang, Li; Tae, Sookil; Hu, Yu-Jie; Imbalzano, Anthony N.; Sif, Saïd

    2012-01-01

    Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage. PMID:22761421

  8. Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase δ catalytic subunit gene, POLD1.

    PubMed

    Karkhanis, Vrajesh; Wang, Li; Tae, Sookil; Hu, Yu-Jie; Imbalzano, Anthony N; Sif, Saïd

    2012-08-24

    Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage.

  9. Evidence that the methylation state of the monoamine oxidase A (MAOA) gene predicts brain activity of MAO A enzyme in healthy men.

    PubMed

    Shumay, Elena; Logan, Jean; Volkow, Nora D; Fowler, Joanna S

    2012-10-01

    Human brain function is mediated by biochemical processes, many of which can be visualized and quantified by positron emission tomography (PET). PET brain imaging of monoamine oxidase A (MAO A)-an enzyme metabolizing neurotransmitters-revealed that MAO A levels vary widely between healthy men and this variability was not explained by the common MAOA genotype (VNTR genotype), suggesting that environmental factors, through epigenetic modifications, may mediate it. Here, we analyzed MAOA methylation in white blood cells (by bisulphite conversion of genomic DNA and subsequent sequencing of cloned DNA products) and measured brain MAO A levels (using PET and [(11)C]clorgyline, a radiotracer with specificity for MAO A) in 34 healthy non-smoking male volunteers. We found significant interindividual differences in methylation status and methylation patterns of the core MAOA promoter. The VNTR genotype did not influence the methylation status of the gene or brain MAO A activity. In contrast, we found a robust association of the regional and CpG site-specific methylation of the core MAOA promoter with brain MAO A levels. These results suggest that the methylation status of the MAOA promoter (detected in white blood cells) can reliably predict the brain endophenotype. Therefore, the status of MAOA methylation observed in healthy males merits consideration as a variable contributing to interindividual differences in behavior.

  10. Quantitative methylation level of the EPHX1 promoter in peripheral blood DNA is associated with polycystic ovary syndrome.

    PubMed

    Sang, Qing; Li, Xin; Wang, Haojue; Wang, Huan; Zhang, Shaozhen; Feng, Ruizhi; Xu, Yao; Li, Qiaoli; Zhao, Xinzhi; Xing, Qinghe; Jin, Li; He, Lin; Wang, Lei

    2014-01-01

    Steroid synthesis and metabolic pathways play important roles in the pathophysiology of PCOS, but until now there have been no studies on the methylation profiles of specific genes in steroid synthesis pathways that are known to be associated with PCOS. Here we used MassARRAY quantitative methylation analysis to determine the methylation levels of each CpG site or cluster in the promoters of EPHX1, SRD5A1, and CYP11A1 in 64 peripheral blood samples. We further examined the methylation level of EPHX1 in an independent cohort consisting of 116 people. Finally, we investigated the role of EPHX1 in steroidogenesis in the KGN cell line. For SRD5A1 and CYP11A1, there was no significant difference in methylation level between patients and controls. For EPHX1, however, the methylation levels of a few consecutive CpG sites and clusters were found to be significantly associated with PCOS. The methylation levels of a number of CpG clusters or sites were significantly lower in patients than in controls in the first cohort consisting of 64 people, such as clusters 13-14 (P<0.05), 15-16 (P<0.001), and 19-24 (P<0.001) and sites CpG_53 (P<0.01) and CpG_54 (P<0.05). Among differentiated methylation sites and clusters, the methylation levels of the CpG cluster 13-14 and CpG cluster 19-24 in PCOS patients were significantly lower than in controls in the second cohort of 116 people (P<0.05 for both). In addition, knockdown and overexpression experiments in KGN cells showed that EPHX1 can regulate estradiol concentrations, and this indicates a role for EPHX1 in steroidogenesis. Our study has demonstrated that methylation of the EPHX1 promoter might be associated with PCOS. This study provides direct evidence that methylation plays an important role in PCOS and demonstrates a novel role for EPHX1 in female reproduction.

  11. Quantitative Methylation Level of the EPHX1 Promoter in Peripheral Blood DNA Is Associated with Polycystic Ovary Syndrome

    PubMed Central

    Wang, Huan; Zhang, Shaozhen; Feng, Ruizhi; Xu, Yao; Li, Qiaoli; Zhao, Xinzhi; Xing, Qinghe; Jin, Li; He, Lin; Wang, Lei

    2014-01-01

    Steroid synthesis and metabolic pathways play important roles in the pathophysiology of PCOS, but until now there have been no studies on the methylation profiles of specific genes in steroid synthesis pathways that are known to be associated with PCOS. Here we used MassARRAY quantitative methylation analysis to determine the methylation levels of each CpG site or cluster in the promoters of EPHX1, SRD5A1, and CYP11A1 in 64 peripheral blood samples. We further examined the methylation level of EPHX1 in an independent cohort consisting of 116 people. Finally, we investigated the role of EPHX1 in steroidogenesis in the KGN cell line. For SRD5A1 and CYP11A1, there was no significant difference in methylation level between patients and controls. For EPHX1, however, the methylation levels of a few consecutive CpG sites and clusters were found to be significantly associated with PCOS. The methylation levels of a number of CpG clusters or sites were significantly lower in patients than in controls in the first cohort consisting of 64 people, such as clusters 13–14 (P<0.05), 15–16 (P<0.001), and 19–24 (P<0.001) and sites CpG_53 (P<0.01) and CpG_54 (P<0.05). Among differentiated methylation sites and clusters, the methylation levels of the CpG cluster 13–14 and CpG cluster 19–24 in PCOS patients were significantly lower than in controls in the second cohort of 116 people (P<0.05 for both). In addition, knockdown and overexpression experiments in KGN cells showed that EPHX1 can regulate estradiol concentrations, and this indicates a role for EPHX1 in steroidogenesis. Our study has demonstrated that methylation of the EPHX1 promoter might be associated with PCOS. This study provides direct evidence that methylation plays an important role in PCOS and demonstrates a novel role for EPHX1 in female reproduction. PMID:24505354

  12. Dynamics and Context-Dependent Roles of DNA Methylation.

    PubMed

    Ambrosi, Christina; Manzo, Massimiliano; Baubec, Tuncay

    2017-05-19

    DNA methylation is one of the most extensively studied epigenetic marks. It is involved in transcriptional gene silencing and plays important roles during mammalian development. Its perturbation is often associated with human diseases. In mammalian genomes, DNA methylation is a prevalent modification that decorates the majority of cytosines. It is found at the promoters and enhancers of inactive genes, at repetitive elements, and within transcribed gene bodies. Its presence at promoters is dynamically linked to gene activity, suggesting that it could directly influence gene expression patterns and cellular identity. The genome-wide distribution and dynamic behaviour of this mark have been studied in great detail in a variety of tissues and cell lines, including early embryonic development and in embryonic stem cells. In combination with functional studies, these genome-wide maps of DNA methylation revealed interesting features of this mark and provided important insights into its dynamic nature and potential functional role in genome regulation. In this review, we discuss how these recent observations, in combination with insights obtained from biochemical and functional genetics studies, have expanded our current knowledge about the regulation and context-dependent roles of DNA methylation in mammalian genomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers

    PubMed Central

    Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki

    2011-01-01

    Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes. PMID:22016810

  14. DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.

    PubMed

    Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki

    2011-01-01

    Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.

  15. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma.

    PubMed

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W

    2017-04-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.

  16. Genome‐wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma

    PubMed Central

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R.; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J.; Almutairi, Bader; Etchevers, Heather C.; McConville, Carmel; Malik, Karim T. A.

    2016-01-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27862318

  17. Mutations in TET2 and DNMT3A genes are associated with changes in global and gene-specific methylation in acute myeloid leukemia.

    PubMed

    Ponciano-Gómez, Alberto; Martínez-Tovar, Adolfo; Vela-Ojeda, Jorge; Olarte-Carrillo, Irma; Centeno-Cruz, Federico; Garrido, Efraín

    2017-10-01

    Acute myeloid leukemia is characterized by its high biological and clinical heterogeneity, which represents an important barrier for a precise disease classification and accurate therapy. While epigenetic aberrations play a pivotal role in acute myeloid leukemia pathophysiology, molecular signatures such as change in the DNA methylation patterns and genetic mutations in enzymes needed to the methylation process can also be helpful for classifying acute myeloid leukemia. Our study aims to unveil the relevance of DNMT3A and TET2 genes in global and specific methylation patterns in acute myeloid leukemia. Peripheral blood samples from 110 untreated patients with acute myeloid leukemia and 15 healthy control individuals were collected. Global 5-methylcytosine and 5-hydroxymethylcytosine in genomic DNA from peripheral blood leukocytes were measured by using the MethylFlashTM Quantification kits. DNMT3A and TET2 expression levels were evaluated by real-time quantitative polymerase chain reaction. The R882A hotspot of DNMT3A and exons 6-10 of TET2 were amplified by polymerase chain reaction and sequenced using the Sanger method. Methylation patterns of 16 gene promoters were evaluated by pyrosequencing after treating DNA with sodium bisulfite, and their transcriptional products were measured by real-time quantitative polymerase chain reaction.Here, we demonstrate altered levels of 5-methylcytosine and 5-hydroxymethylcytosine and highly variable transcript levels of DNMT3A and TET2 in peripheral blood leukocytes from acute myeloid leukemia patients. We found a mutation prevalence of 2.7% for DNMT3A and 11.8% for TET2 in the Mexican population with this disease. The average overall survival of acute myeloid leukemia patients with DNMT3A mutations was only 4 months. In addition, we showed that mutations in DNMT3A and TET2 may cause irregular DNA methylation patterns and transcriptional expression levels in 16 genes known to be involved in acute myeloid leukemia pathogenesis

  18. Multigene methylation analysis of conventional renal cell carcinoma.

    PubMed

    Onay, H; Pehlivan, S; Koyuncuoglu, M; Kirkali, Z; Ozkinay, F

    2009-01-01

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Since RCC is curable when it is confined to the renal capsule, early diagnosis is extremely important. Promoter hypermethylation is the most common mechanism for the inactivation of the tumor suppressor genes (TSG) in the development of human cancer. This study aimed to investigate the methylation profiles of 7 TSG (RASSF1A, ECAD, TIMP3, APC, MGMT, p16 and RARbeta2) in 3 different tissue samples (normal, premalign, malign) of patients with RCC. Twenty-one patients diagnosed with RCC were included in the study. Methylation-specific polymerase chain reaction was performed to detect the methylation patterns of the 7 TSG. High methylation rates for the genes RASSF1A (76%), p16 (80%), ECAD (42%), TIMP3 (33%) and MGMT (33%) were observed in the patients with RCC. The APC (14%) and RARbeta2 (19%) genes showed low methylation rates. In conclusion, 5 TSG (RASSF1A, ECAD, TIMP3, MGMT and p16) showed high methylation rates in RCC patients. A methylation-based gene test including these genes may be useful in the early detection of RCC. Copyright 2009 S. Karger AG, Basel.

  19. A pyrosequencing assay for the quantitative methylation analysis of the PCDHB gene cluster, the major factor in neuroblastoma methylator phenotype.

    PubMed

    Banelli, Barbara; Brigati, Claudio; Di Vinci, Angela; Casciano, Ida; Forlani, Alessandra; Borzì, Luana; Allemanni, Giorgio; Romani, Massimo

    2012-03-01

    Epigenetic alterations are hallmarks of cancer and powerful biomarkers, whose clinical utilization is made difficult by the absence of standardization and of common methods of data interpretation. The coordinate methylation of many loci in cancer is defined as 'CpG island methylator phenotype' (CIMP) and identifies clinically distinct groups of patients. In neuroblastoma (NB), CIMP is defined by a methylation signature, which includes different loci, but its predictive power on outcome is entirely recapitulated by the PCDHB cluster only. We have developed a robust and cost-effective pyrosequencing-based assay that could facilitate the clinical application of CIMP in NB. This assay permits the unbiased simultaneous amplification and sequencing of 17 out of 19 genes of the PCDHB cluster for quantitative methylation analysis, taking into account all the sequence variations. As some of these variations were at CpG doublets, we bypassed the data interpretation conducted by the methylation analysis software to assign the corrected methylation value at these sites. The final result of the assay is the mean methylation level of 17 gene fragments in the protocadherin B cluster (PCDHB) cluster. We have utilized this assay to compare the methylation levels of the PCDHB cluster between high-risk and very low-risk NB patients, confirming the predictive value of CIMP. Our results demonstrate that the pyrosequencing-based assay herein described is a powerful instrument for the analysis of this gene cluster that may simplify the data comparison between different laboratories and, in perspective, could facilitate its clinical application. Furthermore, our results demonstrate that, in principle, pyrosequencing can be efficiently utilized for the methylation analysis of gene clusters with high internal homologies.

  20. DNA methylation of ESR-1 and N-33 in colorectal mucosa of patients with ulcerative colitis (UC).

    PubMed

    Arasaradnam, Ramesh P; Khoo, Kevin; Bradburn, Mike; Mathers, John C; Kelly, Seamus B

    2010-07-01

    Epigenetic marking such as DNA methylation influence gene transcription and chromosomal stability and may also be affected by environmental exposures. Few studies exist on alteration in DNA methylation profiles (genomic and gene specific methylation) in patients with Ulcerative Colitis (UC) and no studies exist that assess its relationship with lifestyle exposures. The methylation level of both ESR-1 and N-33 genes were significantly higher in UC subjects compared with controls (7.9% vs. 5.9%; p = 0.015 and 66% vs. 9.3%; p < 0.001 respectively). There was no detectable difference in global DNA methylation between patients with UC and age and sex matched controls. No associations between indices of DNA methylation and anthropometric measures or smoking patterns were detected. To assess genomic methylation and promoter methylation of the ESR-1 (oestrogen receptor-1) and N-33 (tumor suppressor candidate-3) genes in the macroscopically normal mucosa of UC patients as well as to investigate effects of anthropometric and lifestyle exposures on DNA methylation. Sixty eight subjects were recruited (24 UC and 44 age and sex matched controls). Colorectal mucosal biopsies were obtained and DNA was extracted. Genomic DNA methylation was quantified using the tritium-labelled cytosine extension assay (3[H] dCTP) while gene specific methylation was quantified using the COBRA method. For the first time, we have shown increased methylation in the promoter regions of the putative tumor suppressor gene N-33 in macroscopically normal mucosa of patients with UC. In addition, we have confirmed that methylation of ESR-1 promoter is higher in UC patients compared with age and sex matched controls. These findings suggest that inactivation through methylation of the putative tumor suppressor genes N-33 and ESR-1 may not be associated with colorectal carcinogenesis in UC.

  1. Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake.

    PubMed

    Ramos-Lopez, Omar; Samblas, Mirian; Milagro, Fermin I; Riezu-Boj, Jose I; Crujeiras, A B; Martinez, J Alfredo; Project, Mena

    2018-03-26

    The circadian clock regulates the daily rhythms of several physiological and behavioral processes. Disruptions in clock genes have been associated with obesity and related comorbidities. This study aimed to analyze the association of DNA methylation signatures at circadian rhythm pathway genes with body mass index (BMI), metabolic profiles and dietary intakes. DNA methylation profiling was determined by microarray in white blood cells from 474 adults from the Methyl Epigenome Network Association (MENA) project. Kyoto Encyclopedia of Genes and Genomes database was used to identify the genes integrating the circadian rhythm pathway. Network enrichment analyses were performed with the PathDIP platform. Associations between circadian methylation patterns with anthropometric measurements, the metabolic profile, clinical data and dietary intakes were analyzed. DNA methylation patterns of nine CpG sites at six circadian rhythm pathway genes were strongly correlated with BMI (false discovery rates <0.0001). These CpGs encompassed cg09578018 (RORA), cg20406576 (PRKAG2), cg10059324 (PER3), cg01180628 (BHLHE40), cg23871860 (FBXL3), cg16964728 (RORA), cg14129040 (CREB1), cg07012178 (PRKAG2) and cg24061580 (PRKAG2). Interestingly, network enrichment analyses revealed that the six BMI-associated genes statistically contributed to the regulation of the circadian rhythm pathway (p = 1.9E-10). In addition, methylation signatures at cg09578018 (RORA), cg24061580 (PRKAG2), cg01180628 (BHLHE40) and cg10059324 (PER3) also correlated with insulin resistance (p < 0.0001) and mean arterial blood pressure (p < 0.0001). Furthermore, relevant correlations (p < 0.05) between methylation at cg09578018 (RORA) and cg01180628 (BHLHE40) with total energy and carbohydrate intakes were found. This investigation revealed potential associations of DNA methylation profiles at circadian genes with obesity, metabolic disturbances and carbohydrate intake, with potential impact on weight

  2. Effects of cytosine methylation on transcription factor binding sites

    PubMed Central

    2014-01-01

    Background DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important. Results We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines “traffic lights”. We observed a strong selection against CpG “traffic lights” within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions. Conclusions Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. PMID:24669864

  3. Western environment/lifestyle is associated with increased genome methylation and decreased gene expression in Chinese immigrants living in Australia.

    PubMed

    Zhang, Guicheng; Wang, Kui; Schultz, Ennee; Khoo, Siew-Kim; Zhang, Xiaopeng; Annamalay, Alicia; Laing, Ingrid A; Hales, Belinda J; Goldblatt, Jack; Le Souëf, Peter N

    2016-01-01

    Several human diseases and conditions are disproportionally distributed in the world with a significant "Western-developed" vs. "Eastern-developing" gradient. We compared genome-wide DNA methylation of peripheral blood mononuclear cells in 25 newly arrived Chinese immigrants living in a Western environment for less than 6 months ("Newly arrived") with 23 Chinese immigrants living in the Western environment for more than two years ("Long-term") with a mean of 8.7 years, using the Infinium HumanMethylation450 BeadChip. In a sub-group of both subject groups (n = 12 each) we also investigated genome-wide gene expression using a Human HT-12 v4 expression beadChip. There were 62.5% probes among the total number of 382,250 valid CpG sites with greater mean Beta (β) in "Long-term" than in "Newly arrived". In the regions of CpG islands and gene promoters, compared with the CpG sites in all other regions, lower percentages of CpG sites with mean methylation levels in "Long-term" greater than "Newly arrived" were observed, but still >50%. The increase of methylation was associated with a general decrease of gene expression in Chinese immigrants living in the Western environment for a longer period of time. After adjusting for age, gender and other confounding factors the findings remained. Chinese immigrants living in Australia for a longer period of time have increased overall genome methylation and decreased overall gene expression compared with newly arrived immigrants. © 2015 Wiley Periodicals, Inc.

  4. Methylation profiling in individuals with Russell-Silver syndrome.

    PubMed

    Peñaherrera, Maria S; Weindler, Susanne; Van Allen, Margot I; Yong, Siu-Li; Metzger, Daniel L; McGillivray, Barbara; Boerkoel, Cornelius; Langlois, Sylvie; Robinson, Wendy P

    2010-02-01

    Russell-Silver syndrome (RSS) is a heterogeneous disorder associated with pre- and post-natal growth restriction and relative macrocephaly. Involvement of imprinted genes on both chromosome 7 and 11p15.5 has been reported. To further characterize the role of epimutations in RSS we evaluated the methylation status at both 11p15.5 imprinting control regions (ICRs): ICR1 associated with H19/IGF2 expression and ICR2 (KvDMR1) associated with CDKN1C expression in a series of 35 patients with RSS. We also evaluated methylation at the promoter regions of other imprinted genes involved in growth such as PLAGL1 (6q24), GCE (7q21), and PEG10 (7q21) in this series of 35 patients with RSS. Thirteen of the 35 patient samples, but none of 22 controls, showed methylation levels at ICR1 that were more than 2 SD below the mean for controls. Three RSS patients were highly methylated at the SCGE promoter, all of which were diagnosed with upd(7)mat. To identify further potential global methylation changes in RSS patients, a subset of 22 patients were evaluated at 1505 CpG sites by the Illumina GoldenGate methylation array. Among the few CpG sites displaying a significant difference between RSS patients and controls, was a CpG associated with the H19 promoter. No other sites associated with known imprinted genes were identified as abnormally methylated in RSS patients by this approach. While the association of hypomethylation of the H19/IGF2 ICR1 is clear, the continuous distribution of methylation values among the patients and controls complicates the establishment of clear cut-offs for clinical diagnosis. Copyright 2010 Wiley-Liss, Inc.

  5. Significant associations between driver gene mutations and DNA methylation alterations across many cancer types

    PubMed Central

    Chen, Yun-Ching; Margolin, Gennady

    2017-01-01

    Recent evidence shows that mutations in several driver genes can cause aberrant methylation patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of tumor genomes and epigenomes are tightly interconnected. We measured this relationship using principal component analyses and methylation-mutation associations applied at the nucleotide level and with respect to genome-wide trends. We found that a few mutated driver genes were associated with genome-wide patterns of aberrant hypomethylation or CpG island hypermethylation in specific cancer types. In addition, we identified associations between 737 mutated driver genes and site-specific methylation changes. Moreover, using these mutation-methylation associations, we were able to distinguish between two uterine and two thyroid cancer subtypes. The driver gene mutation–associated methylation differences between the thyroid cancer subtypes were linked to differential gene expression in JAK-STAT signaling, NADPH oxidation, and other cancer-related pathways. These results establish that driver gene mutations are associated with methylation alterations capable of shaping regulatory network functions. In addition, the methodology presented here can be used to subdivide tumors into more homogeneous subsets corresponding to underlying molecular characteristics, which could improve treatment efficacy. PMID:29125844

  6. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.

    PubMed

    Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2017-10-15

    Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. CpG islands: algorithms and applications in methylation studies.

    PubMed

    Zhao, Zhongming; Han, Leng

    2009-05-15

    Methylation occurs frequently at 5'-cytosine of the CpG dinucleotides in vertebrate genomes; however, this epigenetic feature is rarely observed in CpG islands (CGIs) or CpG clusters in the promoter regions of genes. Aberrant methylation of the promoter-associated CGIs might influence gene expression and cause carcinogenesis. Because of the functional importance, multiple algorithms have been available for identifying CGIs in a genome or a sequence. They can be categorized into the traditional algorithms (e.g., Gardiner-Garden and Frommer (1987), Takai and Jones (2002), and CpGPRoD (2002)) or statistical property based algorithms (CpGcluster (2006) and CG cluster (2007)). We reviewed the features of these algorithms and evaluated their performance on identifying functional CGIs using genome-wide methylation data. Moreover, identification of CGIs is an initial step in many recent studies for predicting methylation status as well as in the design of methylation detection platforms. We reviewed the benchmarks and features used in these studies.

  8. Absolute Quantitation of DNA Methylation of 28 Candidate Genes in Prostate Cancer Using Pyrosequencing

    PubMed Central

    Vasiljeviš, Nataڑa; Wu, Keqiang; Brentnall, Adam R.; Kim, Dae Cheol; Thorat, Mangesh A.; Kudahetti, Sakunthala C.; Mao, Xueying; Xue, Liyan; Yu, Yongwei; Shaw, Greg L.; Beltran, Luis; Lu, Yong-Jie; Berney, Daniel M.; Cuzick, Jack; Lorincz, Attila T.

    2011-01-01

    Aberrant DNA methylation plays a pivotal role in carcinogenesis and its mapping is likely to provide biomarkers for improved diagnostic and risk assessment in prostate cancer (PCa). We quantified and compared absolute methylation levels among 28 candidate genes in 48 PCa and 29 benign prostate hyperplasia (BPH) samples using the pyrosequencing (PSQ) method to identify genes with diagnostic and prognostic potential. RARB, HIN1, BCL2, GSTP1, CCND2, EGFR5, APC, RASSF1A, MDR1, NKX2-5, CDH13, DPYS, PTGS2, EDNRB, MAL, PDLIM4, HLAa, ESR1 and TIG1 were highly methylated in PCa compared to BPH (p < 0.001), while SERPINB5, CDH1, TWIST1, DAPK1, THRB, MCAM, SLIT2, CDKN2a and SFN were not. RARB methylation above 21% completely distinguished PCa from BPH. Separation based on methylation level of SFN, SLIT2 and SERPINB5 distinguished low and high Gleason score cancers, e.g. SFN and SERPINB5 together correctly classified 81% and 77% of high and low Gleason score cancers respectively. Several genes including CDH1 previously reported as methylation markers in PCa were not confirmed in our study. Increasing age was positively associated with gene methylation (p < 0.0001). Accurate quantitative measurement of gene methylation in PCa appears promising and further validation of genes like RARB, HIN1, BCL2, APC and GSTP1 is warranted for diagnostic potential and SFN, SLIT2 and SERPINB5 for prognostic potential. PMID:21694441

  9. Genome-Wide Methylation Analyses in Glioblastoma Multiforme

    PubMed Central

    Lai, Rose K.; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E.; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M.; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill

    2014-01-01

    Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal. PMID:24586730

  10. Effects of in ovo exposure to benzo[k]fluoranthene (BkF) on CYP1A expression and promoter methylation in developing chicken embryos.

    PubMed

    Brandenburg, Jonas; Head, Jessica A

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are potent teratogens. Recent research suggests that early life exposure to PAHs can affect health outcomes later in life. Some of these latent responses may be mediated by epigenetic mechanisms such as DNA methylation. The role of DNA methylation in regulating responses to PAHs in birds is currently unknown. Here, we assess the effect of in ovo exposure to the model PAH, benzo[k]fluoranthene (BkF), on aryl hydrocarbon receptor (AHR) mediated cytochrome P4501A (CYP1A) gene expression and promoter methylation in chicken embryos. Fertilized chicken eggs were injected with BkF (0-100μg/kg) prior to incubation. BkF exposure was associated with an increase in CYP1A4 and CYP1A5 mRNA levels at mid-incubation (embryonic day 10), which dropped to baseline levels towards the end of the incubation period (embryonic day 19). The transient induction in CYP1A expression was accompanied by small but significant increases in CYP1A promoter methylation, which persisted until after shortly after hatching. Methylation within the CYP1A promoter was correlated with levels of CYP1A5, but not CYP1A4 mRNA. Characterization of the role of DNA methylation in the AHR response pathway may increase our understanding of the effects of early life exposure to PAHs in birds. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer.

    PubMed

    Long, Mark D; Smiraglia, Dominic J; Campbell, Moray J

    2017-02-14

    The process of DNA CpG methylation has been extensively investigated for over 50 years and revealed associations between changing methylation status of CpG islands and gene expression. As a result, DNA CpG methylation is implicated in the control of gene expression in developmental and homeostasis processes, as well as being a cancer-driver mechanism. The development of genome-wide technologies and sophisticated statistical analytical approaches has ushered in an era of widespread analyses, for example in the cancer arena, of the relationships between altered DNA CpG methylation, gene expression, and tumor status. The remarkable increase in the volume of such genomic data, for example, through investigators from the Cancer Genome Atlas (TCGA), has allowed dissection of the relationships between DNA CpG methylation density and distribution, gene expression, and tumor outcome. In this manner, it is now possible to test that the genome-wide correlations are measurable between changes in DNA CpG methylation and gene expression. Perhaps surprisingly is that these associations can only be detected for hundreds, but not thousands, of genes, and the direction of the correlations are both positive and negative. This, perhaps, suggests that CpG methylation events in cancer systems can act as disease drivers but the effects are possibly more restricted than suspected. Additionally, the positive and negative correlations suggest direct and indirect events and an incomplete understanding. Within the prostate cancer TCGA cohort, we examined the relationships between expression of genes that control DNA methylation, known targets of DNA methylation and tumor status. This revealed that genes that control the synthesis of S -adenosyl-l-methionine (SAM) associate with altered expression of DNA methylation targets in a subset of aggressive tumors.

  12. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation.

    PubMed

    Rivière, Guillaume; Lienhard, Daniel; Andrieu, Thomas; Vieau, Didier; Frey, Brigitte M; Frey, Felix J

    2011-04-01

    Somatic angiotensin-converting enzyme (sACE) is crucial in cardiovascular homeostasis and displays a tissue-specific profile. Epigenetic patterns modulate genes expression and their alterations were implied in pathologies including hypertension. However, the influence of DNA methylation and chromatin condensation state on the expression of sACE is unknown. We examined whether such epigenetic mechanisms could participate in the control of sACE expression in vitro and in vivo. We identified two CpG islands in the human ace-1 gene 3 kb proximal promoter region. Their methylation abolished the luciferase activity of ace-1 promoter/reporter constructs transfected into human liver (HepG2), colon (HT29), microvascular endothelial (HMEC-1) and lung (SUT) cell lines (p < 0.001). Bisulphite sequencing revealed a cell-type specific basal methylation pattern of the ace-1 gene -1,466/+25 region. As assessed by RT-qPCR, inhibition of DNA methylation by 5-aza-2'-deoxycytidine and/or of histone deacetylation by trichostatin A highly stimulated sACE mRNA expression cell-type specifically (p < 0.001 vs. vehicle treated cells). In the rat, in vivo 5-aza-cytidine injections demethylated the ace-1 promoter and increased sACE mRNA expression in the lungs and liver (p = 0.05), but not in the kidney. In conclusion, the expression level of somatic ACE is modulated by CpG-methylation and histone deacetylases inhibition. The basal methylation pattern of the promoter of the ace-1 gene is cell-type specific and correlates to sACE transcription. DNMT inhibition is associated with altered methylation of the ace-1 promoter and a cell-type and tissue-specific increase of sACE mRNA levels. This study indicates a strong influence of epigenetic mechanisms on sACE expression.

  13. Promoter methylation of E-cadherin, p16, and RAR-beta(2) genes in breast tumors and dietary intake of nutrients important in one-carbon metabolism

    USDA-ARS?s Scientific Manuscript database

    Aberrant DNA methylation plays a critical role in carcinogenesis, and the availability of dietary factors involved in 1-carbon metabolism may contribute to aberrant DNA methylation. We investigated the association of intake of folate, vitamins B(2), B(6), B(12), and methionine with promoter methylat...

  14. [Neuroepigenetics: Desoxyribonucleic acid methylation in Alzheimer's disease and other dementias].

    PubMed

    Mendioroz Iriarte, Maite; Pulido Fontes, Laura; Méndez-López, Iván

    2015-05-21

    DNA methylation is an epigenetic mechanism that controls gene expression. In Alzheimer's disease (AD), global DNA hypomethylation of neurons has been described in the human cerebral cortex. Moreover, several variants in the methylation pattern of candidate genes have been identified in brain tissue when comparing AD patients and controls. Specifically, DNA methylation changes have been observed in PSEN1 and APOE, both genes previously being involved in the pathophysiology of AD. In other degenerative dementias, methylation variants have also been described in key genes, such as hypomethylation of the SNCA gene in Parkinson's disease and dementia with Lewy bodies or hypermethylation of the GRN gene promoter in frontotemporal dementia. The finding of aberrant DNA methylation patterns shared by brain tissue and peripheral blood opens the door to use those variants as epigenetic biomarkers in the diagnosis of neurodegenerative diseases. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  15. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours

    PubMed Central

    Murai, M; Toyota, M; Satoh, A; Suzuki, H; Akino, K; Mita, H; Sasaki, Y; Ishida, T; Shen, L; Garcia-Manero, G; Issa, J-P J; Hinoda, Y; Tokino, T; Imai, K

    2005-01-01

    Hypoxia is a key factor contributing to the progression of human neoplasias and to the development of resistance to chemotherapy. BNIP3 is a proapoptotic member of the Bcl-2 protein family involved in hypoxia-induced cell death. We evaluated the expression and methylation status of BNIP3 gene to better understand the role of epigenetic alteration of its expression in haematopoietic tumours. Methylation of the region around the BNIP3 transcription start site was detected in four acute lymphocytic leukaemia, one multiple myeloma and one Burkitt lymphoma cell lines, and was closely associated with silencing the gene. That expression of BNIP3 was restored by treatment with 5-aza2′-deoxycytidine (5-aza-dC), a methyltransferase inhibitor, which confirmed the gene to be epigenetically inactivated by methylation. Notably, re-expression of BNIP3 using 5-aza2-dC also restored hypoxia-mediated cell death in methylated cell lines. Acetylation of histone H3 in the 5′ region of the gene, which was assessed using chromatin immunoprecipitation assays, correlated directly with gene expression and inversely with DNA methylation. Among primary tumours, methylation of BNIP3 was detected in five of 34 (15%) acute lymphocytic leukaemias, six of 35 (17%) acute myelogenous leukaemias and three of 14 (21%) multiple myelomas. These results suggest that aberrant DNA methylation of the 5′ CpG island and histone deacetylation play key roles in silencing BNIP3 expression in haematopoietic tumours. PMID:15756280

  16. Methylation of HPA axis related genes in men with hypersexual disorder.

    PubMed

    Jokinen, Jussi; Boström, Adrian E; Chatzittofis, Andreas; Ciuculete, Diana M; Öberg, Katarina Görts; Flanagan, John N; Arver, Stefan; Schiöth, Helgi B

    2017-06-01

    Hypersexual Disorder (HD) defined as non-paraphilic sexual desire disorder with components of compulsivity, impulsivity and behavioral addiction, and proposed as a diagnosis in the DSM 5, shares some overlapping features with substance use disorder including common neurotransmitter systems and dysregulated hypothalamic-pituitary-adrenal (HPA) axis function. In this study, comprising 67 HD male patients and 39 male healthy volunteers, we aimed to identify HPA-axis coupled CpG-sites, in which modifications of the epigenetic profile are associated with hypersexuality. The genome-wide methylation pattern was measured in whole blood using the Illumina Infinium Methylation EPIC BeadChip, measuring the methylation state of over 850K CpG sites. Prior to analysis, the global DNA methylation pattern was pre-processed according to standard protocols and adjusted for white blood cell type heterogeneity. We included CpG sites located within 2000bp of the transcriptional start site of the following HPA-axis coupled genes: Corticotropin releasing hormone (CRH), corticotropin releasing hormone binding protein (CRHBP), corticotropin releasing hormone receptor 1 (CRHR1), corticotropin releasing hormone receptor 2 (CRHR2), FKBP5 and the glucocorticoid receptor (NR3C1). We performed multiple linear regression models of methylation M-values to a categorical variable of hypersexuality, adjusting for depression, dexamethasone non-suppression status, Childhood Trauma Questionnaire total score and plasma levels of TNF-alpha and IL-6. Of 76 tested individual CpG sites, four were nominally significant (p<0.05), associated with the genes CRH, CRHR2 and NR3C1. Cg23409074-located 48bp upstream of the transcription start site of the CRH gene - was significantly hypomethylated in hypersexual patients after corrections for multiple testing using the FDR-method. Methylation levels of cg23409074 were positively correlated with gene expression of the CRH gene in an independent cohort of 11 healthy

  17. In epithelial cancers, aberrant COL17A1 promoter methylation predicts its misexpression and increased invasion.

    PubMed

    Thangavelu, Pulari U; Krenács, Tibor; Dray, Eloise; Duijf, Pascal H G

    2016-01-01

    Metastasis is a leading cause of death among cancer patients. In the tumor microenvironment, altered levels of extracellular matrix proteins, such as collagens, can facilitate the first steps of cancer cell metastasis, including invasion into surrounding tissue and intravasation into the blood stream. However, the degree of misexpression of collagen genes in tumors remains understudied, even though this knowledge could greatly facilitate the development of cancer treatment options aimed at preventing metastasis. We systematically evaluate the expression of all 44 collagen genes in breast cancer and assess whether their misexpression provides clinical prognostic significance. We use immunohistochemistry on 150 ductal breast cancers and 361 cervical cancers and study DNA methylation in various epithelial cancers. In breast cancer, various tests show that COL4A1 and COL4A2 overexpression and COL17A1 ( BP180 , BPAG2 ) underexpression provide independent prognostic strength (HR = 1.25, 95% CI = 1.17-1.34, p  = 3.03 × 10 -10 ; HR = 1.18, 95% CI = 1.11-1.25, p  = 8.11 × 10 -10 ; HR = 0.86, 95% CI = 0.81-0.92, p  = 4.57 × 10 -6 ; respectively). Immunohistochemistry on ductal breast cancers confirmed that the COL17A1 protein product, collagen XVII, is underexpressed. This strongly correlates with advanced stage, increased invasion, and postmenopausal status. In contrast, immunohistochemistry on cervical tumors showed that collagen XVII is overexpressed in cervical cancer and this is associated with increased local dissemination. Interestingly, consistent with the opposed direction of misexpression in these cancers, the COL17A1 promoter is hypermethylated in breast cancer and hypomethylated in cervical cancer. We also find that the COL17A1 promoter is hypomethylated in head and neck squamous cell carcinoma, lung squamous cell carcinoma, and lung adenocarcinoma, in all of which collagen XVII overexpression has previously been

  18. Promoter hypermethylation of CDKN2A, MGMT, MLH1, and DAPK genes in laryngeal squamous cell carcinoma and their associations with clinical profiles of the patients.

    PubMed

    Pierini, Stefano; Jordanov, Stanislav H; Mitkova, Atanaska V; Chalakov, Ivan J; Melnicharov, Mincho B; Kunev, Kuncho V; Mitev, Vanio I; Kaneva, Radka P; Goranova, Teodora E

    2014-08-01

    Laryngeal squamous cell carcinoma (laryngeal SCC) is a frequently occurring cancer of the head and neck area. Epigenetic changes of tumor-related genes contribute to its genesis and progression. We assessed promoter methylation status of the selected genes (CDKN2A, MGMT, MLH1, and DAPK) using methylation-sensitive high resolution melting (MS-HRM) in 100 patients with laryngeal SCC and studied the correlations with clinical characteristics. The prevalence of promoter methylation in MGMT, CDKN2A, MLH1, and DAPK was 59 of 97 (60.8%), 46 of 97 (47.4%), 45 of 97 (46.4%), and 41 of 97 patients (42.3%), respectively. Significantly increased methylation of CDKN2A was observed in heavy smokers. Epigenetic inactivation of CDKN2A and MLH1 were found to be associated with lymph node involvement. An inverse correlation was present between MLH1 methylation and alcohol consumption. Our results strongly suggest that deregulation of p16-associated, and MLH1-associated pathways, because of promoter hypermethylation, is associated with increased cancer cell migration, tumor invasiveness, and, thus, aggressive phenotype. Copyright © 2013 Wiley Periodicals, Inc.

  19. Analysis of estrogen receptor β gene methylation in autistic males in a Chinese Han population.

    PubMed

    Wang, Xuelai; Liang, Shuang; Sun, Yi; Li, Haixin; Endo, Fumio; Nakao, Mitsuyoshi; Saitoh, Noriko; Wu, Lijie

    2017-08-01

    Autism spectrum disorder (ASD) is a neurodevelopment disorder with abnormalities of social interaction, communication and repetitive behaviors. The higher prevalence of ASD in men implies a potential relationship between sex hormones and ASD etiology. The ESR2 gene encodes estrogen receptor beta (ESR2) and plays an important role during brain development. A relationship between ESR2 and ASD has been suggested by studies on single nucleotide polymorphisms and mRNA and protein expression levels in ASD patients. Here, we explored the possible epigenetic regulation of the ESR2 gene in autism. We collected genomic DNA from the peripheral blood of Chinese Han males with autism and age-matched normal males and measured DNA methylation of CpG islands in the ESR2 gene, which consisted of 41 CpG sites among the proximal promoter region and an untranslated exon, by bisulfite sequencing. We also investigated a relationship between DNA methylation and phenotypic features of autism, as assessed by the Children Autism Rating Scale. We found little overall difference in the DNA methylation of the ESR2 5'-flanking region in individuals with autism compared with normal individuals. However, detailed analyses revealed that eight specific CpG sites were hypermethylated in autistic individuals and that four specific CpG sites were positively associated with the severity of autistic symptoms. Our study indicates that the epigenetic dysregulation of ESR2 may govern the development of autism.

  20. DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta

    PubMed Central

    Kwon, Seulgi; Park, Da Hye; Kim, Tae Wan; Kang, Deok Gyeong; Yu, Go Eun; Kim, Il-Suk; Park, Hwa Chun; Ha, Jeongim; Kim, Chul Wook

    2017-01-01

    Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows. PMID:28880934

  1. DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance.

    PubMed

    García-Cardona, M C; Huang, F; García-Vivas, J M; López-Camarillo, C; Del Río Navarro, B E; Navarro Olivos, E; Hong-Chong, E; Bolaños-Jiménez, F; Marchat, L A

    2014-11-01

    Epigenetic alterations have been suggested to be associated with obesity and related metabolic disorders. Here we examined the correlation between obesity and insulin resistance with the methylation frequency of the leptin (LEP) and adiponectin (ADIPOQ) promoters in obese adolescents with the aim to identify epigenetic markers that might be used as tools to predict and follow up the physiological alterations associated with the development of the metabolic syndrome. One hundred and six adolescents were recruited and classified according to body mass index and homeostasis model of assessment-insulin resistance index. The circulating concentrations of leptin, adiponectin and of several metabolic markers of obesity and insulin resistance were determined by standard methods. The methylation frequency of the LEP and ADIPOQ promoters was determined by methylation-specific PCR (MS-PCR) in DNA obtained from peripheral blood samples. Obese adolescents without insulin resistance showed higher and lower circulating levels of, respectively, leptin and adiponectin along with increased plasmatic concentrations of insulin and triglycerides. They also exhibited the same methylation frequency than lean subjects of the CpG sites located at -51 and -31 nt relative to the transcription start site of the LEP gene. However, the methylation frequency of these nucleotides dropped markedly in obese adolescents with insulin resistance. We found the same inverse relationship between the combined presence of obesity and insulin resistance and the methylation frequency of the CpG site located at -283 nt relative to the start site of the ADIPOQ promoter. These observations sustain the hypothesis that epigenetic modifications might underpin the development of obesity and related metabolic disorders. They also validate the use of blood leukocytes and MS-PCR as a reliable and affordable methodology for the identification of epigenetic modifications that could be used as molecular markers to

  2. Increasing methylation of the calcitonin gene during disease progression in sequential samples from CML patients.

    PubMed

    Mills, K I; Guinn, B A; Walsh, V A; Burnett, A K

    1996-09-01

    In chronic myeloid leukaemia (CML), disease progression from the initial chronic phase to the acute phase or blast crisis has previously been shown to be correlated with progressive increases in hyper-methylation of the calcitonin gene, located at chromosome 11p15. However, sequential studies of individual patients were not performed in these investigations. We have analysed 44 samples from nine patients with typical Philadelphia chromosome positive CML throughout their disease progression to determine the methylation state of the calcitonin gene at these time points. Densitometry was used to quantitate the ratio of the normal 2.0 kb Hpa II fragments, indicating normal methylation status of the gene, compared to the intensity of the abnormal, hyper-methylated, 2.6-3.1 kb Hpa II fragments. We found a gradual increase in the ratio of methylated:unmethylated calcitonin gene during chronic phase with a dramatic rise at blast crisis. Further, the ratio of the abnormal hypermethylated 3.1 kb fragments to the methylated 2.6 kb fragment resulted in the identification of a clonal expansion of abnormally methylated cells. This expansion of cells with hypermethylation of the calcitonin gene during chronic phase was shown to coincide with the presence of a mutation in the p53 gene. The data presented in this study would suggest that an increased methylation status of the calcitonin gene during disease progression may indicate the expansion of abnormal blast cell populations and subsequent progression to blast crisis.

  3. Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter methylation are altered in peripartal dairy cows fed rumen-protected methionine.

    PubMed

    Osorio, J S; Jacometo, C B; Zhou, Z; Luchini, D; Cardoso, F C; Loor, J J

    2016-01-01

    The availability of Met in metabolizable protein (MP) of a wide range of diets for dairy cows is low. During late pregnancy and early lactation, in particular, suboptimal Met in MP limits its use for mammary and liver metabolism and also for the synthesis of S-adenosylmethionine, which is essential for many biological processes, including DNA methylation. The latter is an epigenetic modification involved in the regulation of gene expression, hence, tissue function. Thirty-nine Holstein cows were fed throughout the peripartal period (-21 d to 30 d in milk) a basal control (CON) diet (n=14) with no Met supplementation, CON plus MetaSmart (MS; Adisseo NA, Alpharetta, GA; n=12), or CON plus Smartamine M (SM; Adisseo NA; n=13). The total mixed ration dry matter for the close-up and lactation diets was measured weekly, then the Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 (MS) or 0.07% (SM) on a dry matter basis. Liver tissue was collected on -10, 7, and 21 d for global DNA and peroxisome proliferator-activated receptor alpha (PPARα) promoter region-specific methylation. Several PPARα target and putative target genes associated with carnitine synthesis and uptake, fatty acid metabolism, hepatokines, and carbohydrate metabolism were also studied. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrast CON versus SM + MS. Global hepatic DNA methylation on d 21 postpartum was lower in Met-supplemented cows than CON. However, of 2 primers used encompassing 4 to 12 CpG sites in the promoter region of bovine PPARA, greater methylation occurred in the region encompassing -1,538 to -1,418 from the transcription start site in cows supplemented with Met. Overall expression of PPARA was greater in Met-supplemented cows than CON. Concomitantly, PPARA-target genes, such as ANGPTL4, FGF21, and PCK1, were also upregulated overall by Met supplementation. The upregulation of PPAR

  4. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    PubMed

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  5. DNA methylation profiling of phyllodes and fibroadenoma tumours of the breast.

    PubMed

    Huang, Katie T; Dobrovic, Alexander; Yan, Max; Karim, Rooshdiya Z; Lee, C Soon; Lakhani, Sunil R; Fox, Stephen B

    2010-11-01

    Phyllodes tumours and cellular fibroadenomas are both fibroepithelial tumours of the breast. Phyllodes tumours, unlike fibroadenomas, have the ability to recur and metastasise. Although these lesions can be distinguished by their stromal cellularity, mitotic index, presence or absence of stromal overgrowth and cellular atypia, there is overlap and not infrequently a definitive diagnosis cannot be made, particularly on biopsy. We sought to evaluate whether DNA promoter methylation profiling using selected genes known to be methylated in cancer would allow us to learn more about the biology of these tumours, and whether it could identify methylation markers that could differentiate phyllodes tumours from fibroadenomas and/or distinguish phyllodes tumours of different grades. Methylation-sensitive high resolution melting (MS-HRM) was used to screen promoter DNA methylation changes in 86 phyllodes tumours (15 benign, 28 borderline, 43 malignant) and 26 fibroadenomas. A panel of 11 genes (RASSF1A, TWIST1, APC, WIF1, MGMT, MAL, RARβ, CDKN2A, CDH1, TP73 and MLH1) was tested. Methylation status was correlated with histology and with clinicopathological parameters. Five of the gene promoters showed some methylation in a proportion of phyllodes tumours; RASSF1A, 45.3%; TWIST1, 10.7%; APC, 4.1%; WIF1, 2.9% and MGMT, 1.3%. Only two genes showed any methylation in fibroadenomas usually at background levels; RASSF1A, 53.8% and MGMT, 8.3%. No CDKN2A methylation was observed in either tumour type, contrary to previous reports. Overall, the methylation patterns differed little from that which might be seen in normal cells. However, significant levels of methylation of RASSF1A (24.4%) and TWIST1 (7.1%) was observed in some phyllodes tumours. Elevated RASSF1A and/or TWIST1 methylation was significantly associated with phyllodes tumours compared with fibroadenomas (P = 0.02), TWIST1 methylation correlated with increasing malignancy in phyllodes tumours (P < 0.001). In conclusion

  6. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome.

    PubMed

    Yu, Ying-Ying; Sun, Cui-Xiang; Liu, Yin-Kun; Li, Yan; Wang, Li; Zhang, Wei

    2015-07-01

    To compare genome-wide DNA methylation profiles in ovary tissue from women with polycystic ovary syndrome (PCOS) and healthy controls. Case-control study matched for age and body mass index. University-affiliated hospital. Ten women with PCOS who underwent ovarian drilling to induce ovulation and 10 healthy women who were undergoing laparoscopic sterilization, hysterectomy for benign conditions, diagnostic laparoscopy for pelvic pain, or oophorectomy for nonovarian indications. None. Genome-wide DNA methylation patterns determined by immunoprecipitation and microarray (MeDIP-chip) analysis. The methylation levels were statistically significantly higher in CpG island shores (CGI shores), which lie outside of core promoter regions, and lower within gene bodies in women with PCOS relative to the controls. In addition, high CpG content promoters were the most frequently hypermethylated promoters in PCOS ovaries but were more often hypomethylated in controls. Second, 872 CGIs, specifically methylated in PCOS, represented 342 genes that could be associated with various molecular functions, including protein binding, hormone activity, and transcription regulator activity. Finally, methylation differences were validated in seven genes by methylation-specific polymerase chain reaction. These genes correlated to several functional families related to the pathogenesis of PCOS and may be potential biomarkers for this disease. Our results demonstrated that epigenetic modification differs between PCOS and normal ovaries, which may help to further understand the pathophysiology of this disease. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation

    PubMed Central

    Sebastian, Soji; Sreenivas, Prethish; Sambasivan, Ramkumar; Cheedipudi, Sirisha; Kandalla, Prashanth; Pavlath, Grace K.; Dhawan, Jyotsna

    2009-01-01

    Most cells in adult tissues are nondividing. In skeletal muscle, differentiated myofibers have exited the cell cycle permanently, whereas satellite stem cells withdraw transiently, returning to active proliferation to repair damaged myofibers. We have examined the epigenetic mechanisms operating in conditional quiescence by analyzing the function of a predicted chromatin regulator mixed lineage leukemia 5 (MLL5) in a culture model of reversible arrest. MLL5 is induced in quiescent myoblasts and regulates both the cell cycle and differentiation via a hierarchy of chromatin and transcriptional regulators. Knocking down MLL5 delays entry of quiescent myoblasts into S phase, but hastens S-phase completion. Cyclin A2 (CycA) mRNA is no longer restricted to S phase, but is induced throughout G0/G1, with activation of the cell cycle regulated element (CCRE) in the CycA promoter. Overexpressed MLL5 physically associates with the CCRE and impairs its activity. MLL5 also regulates CycA indirectly: Cux, an activator of CycA promoter and S phase is induced in RNAi cells, and Brm/Brg1, CCRE-binding repressors that promote differentiation are repressed. In knockdown cells, H3K4 methylation at the CCRE is reduced, reflecting quantitative global changes in methylation. MLL5 appears to lack intrinsic histone methyl transferase activity, but regulates expression of histone-modifying enzymes LSD1 and SET7/9, suggesting an indirect mechanism. Finally, expression of muscle regulators Pax7, Myf5, and myogenin is impaired in MLL5 knockdown cells, which are profoundly differentiation defective. Collectively, our results suggest that MLL5 plays an integral role in novel chromatin regulatory mechanisms that suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells. PMID:19264965

  8. Epigenetic Regulation of Bovine Spermatogenic Cell-Specific Gene Boule

    PubMed Central

    Luo, Hua; Xu, Hongtao; Pan, Zengxiang; Xie, Zhuang; Li, Qifa

    2015-01-01

    Non-primate mammals have two deleted azoospermia (DAZ) family genes, DAZL and Boule; genes in this family encode RNA-binding proteins essential for male fertility in diverse animals. Testicular DAZL transcription is regulated by epigenetic factors such as DNA methylation. However, nothing is known about the epigenetic regulation of Boule. Here, we explored the role of DNA methylation in the regulation of the bovine Boule (bBoule) gene. We found that a long CpG island (CGI) in the bBoule promoter was hypermethylated in the testes of cattle-yak hybrids with low bBoule expression, whereas cattle had relatively low methylation levels (P < 0.01), and there was no difference in the methylation level in the short CGI of the gene body between cattle and cattle-yak hybrids (P > 0.05). We identified a 107 bp proximal core promoter region of bBoule. Intriguingly, the differences in the methylation level between cattle and cattle-yak hybrids were larger in the core promoter than outside the core promoter. An in vitro methylation assay showed that the core promoter activity of bBoule decreased significantly after M.SssI methylase treatment (P < 0.01). We also observed dramatically increased bBoule transcription in bovine mammary epithelial cells (BMECs) after treatment with the methyltransferase inhibitor 5-Aza-dC. Taken together, our results establish that methylation status of the core promoter might be involved in testicular bBoule transcription, and may provide new insight into the epigenetic regulation of DAZ family genes and clinical insights regarding male infertility. PMID:26030766

  9. DNA methylation in CHO cells.

    PubMed

    Wippermann, Anna; Noll, Thomas

    2017-09-20

    Chinese hamster ovary (CHO) cells account for the production of the majority of biopharmaceutical molecules - however, the molecular basis for their versatile properties is not entirely understood yet and the underlying cellular processes need to be characterized in detail. One such process that is supposed to contribute significantly to CHO cell phenotype is methylation of DNA at cytosine residues. DNA methylation was shown to be involved in several central biological processes in humans and to contribute to diseases like cancer. Early studies of DNA methylation in CHO mostly focused on methylation of single recombinant genes and promoters and proved a correlation between DNA methylation status and recombinant gene expression or production stability. More recent publications utilized the CHO genomic and transcriptomic data available since 2011 and provided first insights into the CHO DNA methylation landscape and DNA methylation changes in response to effector molecules or culture conditions. Generally, further genome-wide studies of DNA methylation in CHO will be required to shed light on the relevance of this process regarding biopharmaceuticals production and might, e.g., address a potential link between CHO cell metabolism and DNA methylation or provide novel targets for rational cell line engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations.

    PubMed

    Busch, Robert; Qiu, Weiliang; Lasky-Su, Jessica; Morrow, Jarrett; Criner, Gerard; DeMeo, Dawn

    2016-11-05

    Chronic obstructive pulmonary disease (COPD) is the third-leading cause of death worldwide. Identifying COPD-associated DNA methylation marks in African-Americans may contribute to our understanding of racial disparities in COPD susceptibility. We determined differentially methylated genes and co-methylation network modules associated with COPD in African-Americans recruited during exacerbations of COPD and smoking controls from the Pennsylvania Study of Chronic Obstructive Pulmonary Exacerbations (PA-SCOPE) cohort. We assessed DNA methylation from whole blood samples in 362 African-American smokers in the PA-SCOPE cohort using the Illumina Infinium HumanMethylation27 BeadChip Array. Final analysis included 19302 CpG probes annotated to the nearest gene transcript after quality control. We tested methylation associations with COPD case-control status using mixed linear models. Weighted gene comethylation networks were constructed using weighted gene coexpression network analysis (WGCNA) and network modules were analyzed for association with COPD. There were five differentially methylated CpG probes significantly associated with COPD among African-Americans at an FDR less than 5 %, and seven additional probes that approached significance at an FDR less than 10 %. The top ranked gene association was MAML1, which has been shown to affect NOTCH-dependent angiogenesis in murine lung. Network modeling yielded the "yellow" and "blue" comethylation modules which were significantly associated with COPD (p-value 4 × 10 -10 and 4 × 10 -9 , respectively). The yellow module was enriched for gene sets related to inflammatory pathways known to be relevant to COPD. The blue module contained the top ranked genes in the concurrent differential methylation analysis (FXYD1/LGI4, gene significance p-value 1.2 × 10 -26 ; MAML1, p-value 2.0 × 10 -26 ; CD72, p-value 2.1 × 10 -25 ; and LPO, p-value 7.2 × 10 -25 ), and was significantly associated with lung

  11. DNA methylation in adult diffuse gliomas.

    PubMed

    LeBlanc, Veronique G; Marra, Marco A

    2016-11-01

    Adult diffuse gliomas account for the majority of primary malignant brain tumours, and are in most cases lethal. Current therapies are often only marginally effective, and improved options will almost certainly benefit from further insight into the various processes contributing to gliomagenesis and pathology. While molecular characterization of these tumours classifies them on the basis of genetic alterations and chromosomal abnormalities, DNA methylation patterns are increasingly understood to play a role in glioma pathogenesis. Indeed, a subset of gliomas associated with improved survival is characterized by the glioma CpG island methylator phenotype (G-CIMP), which can be induced by the expression of mutant isocitrate dehydrogenase (IDH1/2). Aberrant methylation of particular genes or regulatory elements, within the context of G-CIMP-positive and/or negative tumours, has also been shown to be associated with differential survival. In this review, we provide an overview of the current knowledge regarding the role of DNA methylation in adult diffuse gliomas. In particular, we discuss IDH mutations and G-CIMP, MGMT promoter methylation, DNA methylation-mediated microRNA regulation and aberrant methylation of specific genes or groups of genes. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Methylation Analysis of DNA Mismatch Repair Genes Using DNA Derived from the Peripheral Blood of Patients with Endometrial Cancer: Epimutation in Endometrial Carcinogenesis.

    PubMed

    Takeda, Takashi; Banno, Kouji; Yanokura, Megumi; Adachi, Masataka; Iijima, Moito; Kunitomi, Haruko; Nakamura, Kanako; Iida, Miho; Nogami, Yuya; Umene, Kiyoko; Masuda, Kenta; Kobayashi, Yusuke; Yamagami, Wataru; Hirasawa, Akira; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2016-10-14

    Germline mutation of DNA mismatch repair (MMR) genes is a cause of Lynch syndrome. Methylation of MutL homolog 1 ( MLH1 ) and MutS homolog 2 ( MSH2 ) has been detected in peripheral blood cells of patients with colorectal cancer. This methylation is referred to as epimutation. Methylation of these genes has not been studied in an unselected series of endometrial cancer cases. Therefore, we examined methylation of MLH1 , MSH2 , and MSH6 promoter regions of peripheral blood cells in 206 patients with endometrial cancer using a methylation-specific polymerase chain reaction (MSP). Germline mutation of MMR genes, microsatellite instability (MSI), and immunohistochemistry (IHC) were also analyzed in each case with epimutation. MLH1 epimutation was detected in a single patient out of a total of 206 (0.49%)-1 out of 58 (1.72%) with an onset age of less than 50 years. The patient with MLH1 epimutation showed high level MSI (MSI-H), loss of MLH1 expression and had developed endometrial cancer at 46 years old, complicated with colorectal cancer. No case had epimutation of MSH2 or MSH6 . The MLH1 epimutation detected in a patient with endometrial cancer may be a cause of endometrial carcinogenesis. This result indicates that it is important to check epimutation in patients with endometrial cancer without a germline mutation of MMR genes.

  13. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    USDA-ARS?s Scientific Manuscript database

    Scope: Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single...

  14. Heterogeneity of DNA methylation in multifocal prostate cancer.

    PubMed

    Serenaite, Inga; Daniunaite, Kristina; Jankevicius, Feliksas; Laurinavicius, Arvydas; Petroska, Donatas; Lazutka, Juozas R; Jarmalaite, Sonata

    2015-01-01

    Most prostate cancer (PCa) cases are multifocal, and separate foci display histological and molecular heterogeneity. DNA hypermethylation is a frequent alteration in PCa, but interfocal heterogeneity of these changes has not been extensively investigated. Ten pairs of foci from multifocal PCa and 15 benign prostatic hyperplasia (BPH) samples were obtained from prostatectomy specimens, resulting altogether in 35 samples. Methylation-specific PCR (MSP) was used to evaluate methylation status of nine tumor suppressor genes (TSGs), and a set of selected TSGs was quantitatively analyzed for methylation intensity by pyrosequencing. Promoter sequences of the RASSF1 and ESR1 genes were methylated in all paired PCa foci, and frequent (≥75 %) DNA methylation was detected in RARB, GSTP1, and ABCB1 genes. MSP revealed different methylation status of at least one gene in separate foci in 8 out of 10 multifocal tumors. The mean methylation level of ESR1, GSTP1, RASSF1, and RARB differed between the paired foci of all PCa cases. The intensity of DNA methylation in these TSGs was significantly higher in PCa cases than in BPH (p < 0.001). Hierarchical cluster analysis revealed a divergent methylation profile of paired PCa foci, while the foci from separate cases with biochemical recurrence showed similar methylation profile and the highest mean levels of DNA methylation. Our findings suggest that PCa tissue is heterogeneous, as between paired foci differences in DNA methylation status were found. Common epigenetic profile of recurrent tumors can be inferred from our data.

  15. Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription.

    PubMed

    Clancy, Kathleen W; Russell, Anna-Maria; Subramanian, Venkataraman; Nguyen, Hannah; Qian, Yuewei; Campbell, Robert M; Thompson, Paul R

    2017-06-16

    Posttranslational modifications of histone tails are a key contributor to epigenetic regulation. Histone H3 Arg26 and Lys27 are both modified by multiple enzymes, and their modifications have profound effects on gene expression. Citrullination of H3R26 by PAD2 and methylation of H3K27 by PRC2 have opposing downstream impacts on gene regulation; H3R26 citrullination activates gene expression, and H3K27 methylation represses gene expression. Both of these modifications are drivers of a variety of cancers, and their writer enzymes, PAD2 and EZH2, are the targets of drug therapies. After biochemical and cell-based analysis of these modifications, a negative crosstalk interaction is observed. Methylation of H3K27 slows citrullination of H3R26 30-fold, whereas citrullination of H3R26 slows methylation 30,000-fold. Examination of the mechanism of this crosstalk interaction uncovered a change in structure of the histone tail upon citrullination which prevents methylation by the PRC2 complex. This mechanism of crosstalk is reiterated in cell lines using knockdowns and inhibitors of both enzymes. Based our data, we propose a model in which, after H3 Cit26 formation, H3K27 demethylases are recruited to the chromatin to activate transcription. In total, our studies support the existence of crosstalk between citrullination of H3R26 and methylation of H3K27.

  16. Methylation of CpG island of p14(ARK), p15(INK4b) and p16(INK4a) genes in coke oven workers.

    PubMed

    Zhang, H; Li, X; Ge, L; Yang, J; Sun, J; Niu, Q

    2015-02-01

    To detect the blood genomic DNA methylation in coke oven workers and find a possible early screening index for occupational lung cancer, 74 coke oven workers as the exposed group and 47 water pump workers as the controls were surveyed, and urine samples and peripheral blood mononuclear cells (PBMCs) were collected. Airborne benzo[a]pyrene (B[a]P) levels in workplace and urinary 1-hydroxypyrene (1-OH-Py) levels were determined by high-performance liquid chromatography. DNA damage of PBMCs and the p14(ARK), p15(INK4b) and p16(INK4a) gene CpG island methylation in the promoter region were detected by comet assay and methylation-specific polymerase chain reaction techniques, respectively. Results show that compared with the controls, concentration of airborne B[a]Ps was elevated in the coke plant, and urinary 1-OH-Py's level and DNA olive tail moment in comet assay were significantly increased in the coke oven workers, and p14(ARK), p15(INK4b) and p16(INK4a) gene methylation rates were also significantly increased. With the working years and urinary 1-OH-Py's level, the rates of p14(ARK) and p16(INK4a) gene methylation were significantly increased while that of p15(INK4b) gene methylation displayed no statistical change. We conclude that PBMCs' p14(ARK) and p16(INK4a) gene methylation may be used for screening and warning lung cancer in coke oven workers. © The Author(s) 2015.

  17. Protective effects of folic acid on DNA damage and DNA methylation levels induced by N-methyl- N'-nitro- N-nitrosoguanidine in Kazakh esophageal epithelial cells.

    PubMed

    Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H

    2018-01-01

    The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.

  18. KRAS mutations and CDKN2A promoter methylation show an interactive adverse effect on survival and predict recurrence of rectal cancer.

    PubMed

    Kohonen-Corish, Maija R J; Tseung, Jason; Chan, Charles; Currey, Nicola; Dent, Owen F; Clarke, Stephen; Bokey, Les; Chapuis, Pierre H

    2014-06-15

    Colonic and rectal cancers differ in their clinicopathologic features and treatment strategies. Molecular markers such as gene methylation, microsatellite instability and KRAS mutations, are becoming increasingly important in guiding treatment decisions in colorectal cancer. However, their association with clinicopathologic variables and utility in the management of rectal cancer is still poorly understood. We analyzed CDKN2A gene methylation, CpG island methylator phenotype (CIMP), microsatellite instability and KRAS/BRAF mutations in a cohort of 381 rectal cancers with extensive clinical follow-up data. BRAF mutations (2%), CIMP-high (4%) and microsatellite instability-high (2%) were rare, whereas KRAS mutations (39%), CDKN2A methylation (20%) and CIMP-low (25%) were more common. Only CDKN2A methylation and KRAS mutations showed an association with poor overall survival but these did not remain significant when analyzed with other clinicopathologic factors. In contrast, this prognostic effect was strengthened by the joint presence of CDKN2A methylation and KRAS mutations, which independently predicted recurrence of cancer and was associated with poor overall and cancer-specific survival. This study has identified a subgroup of more aggressive rectal cancers that may arise through the KRAS-p16 pathway. It has been previously shown that an interaction of p16 deficiency and oncogenic KRAS promotes carcinogenesis in the mouse and is characterized by loss of oncogene-induced senescence. These findings may provide avenues for the discovery of new treatments in rectal cancer. © 2013 UICC.

  19. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    DOE PAGES

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; ...

    2015-10-09

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments,more » and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.« less

  20. DNA methylation in inflammatory genes among children with obstructive sleep apnea.

    PubMed

    Kim, Jinkwan; Bhattacharjee, Rakesh; Khalyfa, Abdelnaby; Kheirandish-Gozal, Leila; Capdevila, Oscar Sans; Wang, Yang; Gozal, David

    2012-02-01

    Pediatric obstructive sleep apnea (OSA) leads to multiple end-organ morbidities that are mediated by the cumulative burden of oxidative stress and inflammation. Because not all children with OSA exhibit increased systemic inflammation, genetic and environmental factors may be affecting patterns of DNA methylation in genes subserving inflammatory functions. DNA from matched children with OSA with and without high levels of high-sensitivity C-reactive protein (hsCRP) were assessed for DNA methylation levels of 24 inflammatory-related genes. Primer-based polymerase chain reaction assays in a case-control setting involving 47 OSA cases and 31 control subjects were conducted to confirm the findings; hsCRP and myeloid-related protein (MRP) 8/14 levels were also assayed. Forkhead box P3 (FOXP3) and interferon regulatory factor 1 (IRF1) showed higher methylation in six children with OSA and high hsCRP levels compared with matched children with OSA and low hsCRP levels (P < 0.05). In the case-control cohort, children with OSA and high CRP levels had higher log FOXP3 DNA methylation levels compared with children with OSA and low CRP levels and control subjects. IRF1 did not exhibit significant differences. FOXP3 DNA methylation levels correlated with hsCRP and MRP 8/14 levels and with apnea-hypopnea index (AHI), BMI z score, and apolipoprotein B levels. A stepwise multiple regression model showed that AHI was independently associated with FOXP3 DNA methylation levels (P < 0.03). The FOXP3 gene, which regulates expression of T regulatory lymphocytes, is more likely to display increased methylation among children with OSA who exhibit increased systemic inflammatory responses. Thus, epigenetic modifications may constitute an important determinant of inflammatory phenotype in OSA, and FOXP3 DNA methylation levels may provide a potential biomarker for end-organ vulnerability.