Science.gov

Sample records for gene transfer tools

  1. An XMRV Derived Retroviral Vector as a Tool for Gene Transfer

    PubMed Central

    2011-01-01

    Background Retroviral vectors are widely used tools for gene delivery and gene therapy. They are useful for gene expression studies and genetic manipulation in vitro and in vivo. Many retroviral vectors are derived from the mouse gammaretrovirus, murine leukemia virus (MLV). These vectors have been widely used in gene therapy clinical trials. XMRV, initially found in prostate cancer tissue, was the first human gammaretrovirus described. Findings We developed a new retroviral vector based on XMRV called pXC. It was developed for gene transfer to human cells and is produced by transient cotransfection of LNCaP cells with pXC and XMRV-packaging plasmids. Conclusions We demonstrated that pXC mediates expression of inserted transgenes in cell lines. This new vector will be a useful tool for gene transfer in human and non-human cell lines, including gene therapy studies. PMID:21651801

  2. AAV Vectors for Cardiac Gene Transfer: Experimental Tools and Clinical Opportunities

    PubMed Central

    Pacak, Christina A; Byrne, Barry J

    2011-01-01

    Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver “pre-event” cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans. PMID:21792180

  3. HGT-Finder: A New Tool for Horizontal Gene Transfer Finding and Application to Aspergillus genomes

    PubMed Central

    Nguyen, Marcus; Ekstrom, Alex; Li, Xueqiong; Yin, Yanbin

    2015-01-01

    Horizontal gene transfer (HGT) is a fast-track mechanism that allows genetically unrelated organisms to exchange genes for rapid environmental adaptation. We developed a new phyletic distribution-based software, HGT-Finder, which implements a novel bioinformatics algorithm to calculate a horizontal transfer index and a probability value for each query gene. Applying this new tool to the Aspergillus fumigatus, Aspergillus flavus, and Aspergillus nidulans genomes, we found 273, 542, and 715 transferred genes (HTGs), respectively. HTGs have shorter length, higher guanine-cytosine (GC) content, and relaxed selection pressure. Metabolic process and secondary metabolism functions are significantly enriched in HTGs. Gene clustering analysis showed that 61%, 41% and 74% of HTGs in the three genomes form physically linked gene clusters (HTGCs). Overlapping manually curated, secondary metabolite gene clusters (SMGCs) with HTGCs found that 9 of the 33 A. fumigatus SMGCs and 31 of the 65 A. nidulans SMGCs share genes with HTGCs, and that HTGs are significantly enriched in SMGCs. Our genome-wide analysis thus presented very strong evidence to support the hypothesis that HGT has played a very critical role in the evolution of SMGCs. The program is freely available at http://cys.bios.niu.edu/HGTFinder/HGTFinder.tar.gz. PMID:26473921

  4. Non-Viral Gene Transfer as a Tool for Studying Transcription Regulation of Xenobiotic Metabolizing Enzymes

    PubMed Central

    Bonamassa, Barbara; Liu, Dexi

    2010-01-01

    Numerous xenobiotic metabolizing enzymes are regulated by nuclear receptors at transcriptional level. The challenge we currently face is to understand how a given nuclear receptor interacts with its xenobiotics, migrates into nucleus, binds to the xenobiotic response element of a target gene, and regulates transcription. Toward this end, new methods have been developed to introduce the nuclear receptor gene into appropriate cells and study its activity in activating reporter gene expression under the control of a promoter containing xenobiotic response elements. The goal of this review is to critically examine the gene transfer methods currently available. We concentrate on the gene transfer mechanism, advantages and limitations of each method when employed for nuclear receptor-mediated gene regulation studies. It is our hope that the information provided highlights the importance of gene transfer in studying the mechanisms by which our body eliminates the potentially harmful substances and maintains the homeostasis. PMID:20713102

  5. Regions of Unusual Statistical Properties as Tools in the Search for Horizontally Transferred Genes in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Putonti, Catherine; Chumakov, Sergei; Chavez, Arturo; Luo, Yi; Graur, Dan; Fox, George E.; Fofanov, Yuriy

    2006-09-01

    The observed diversity of statistical characteristics along genomic sequences is the result of the influences of a variety of ongoing processes including horizontal gene transfer, gene loss, genome rearrangements, and evolution. The rate at which various processes affect the genome typically varies between different genomic regions. Thus, variations in statistical properties seen in different regions of a genome are often associated with its evolution and functional organization. Analysis of such properties is therefore relevant to many ongoing biomedical research efforts. Similarity Plot or S-plot is a Windows-based application for large-scale comparisons and 2D visualization of similarities between genomic sequences. This application combines two approaches wildly used in genomics: window analysis of statistical characteristics along genomes and dot-plot visual representation. S-plot is effective in detecting highly similar regions between two genomes. Within a single genome, S-plot has the ability to identify highly dissimilar regions displaying unusual compositional properties. The application was used to perform a comparative analysis of 50+ microbial genomes as well as many eukaryote genomes including human, rat, mouse, and drosophila. We illustrate the uses of S-Plot in a comparison involving Escherichia coli K12 and E. coli O157:H7.

  6. Gene transfer: transduction.

    PubMed

    Frangipani, Emanuela

    2014-01-01

    Bacteriophages able to propagate on Pseudomonas strains are very common and can be easily isolated from natural environments or lysogenic strains. The development of transducing systems has allowed bacterial geneticists to perform chromosome analyses and mutation mapping. Moreover, these systems have also been proved to be a successful tool for molecular microbiologists to introduce a foreign gene or a mutation into the chromosome of a bacterial cell. This chapter provides a description of the phage methodology illustrated by Adams in 1959 and applicable to strain PAO1 derivatives. PMID:24818891

  7. Lateral gene transfer in eukaryotes.

    PubMed

    Andersson, J O

    2005-06-01

    Lateral gene transfer -- the transfer of genetic material between species -- has been acknowledged as a major mechanism in prokaryotic genome evolution for some time. Recently accumulating data indicate that the process also occurs in the evolution of eukaryotic genomes. However, there are large rate variations between groups of eukaryotes; animals and fungi seem to be largely unaffected, with a few exceptions, while lateral gene transfer frequently occurs in protists with phagotrophic lifestyles, possibly with rates comparable to prokaryotic organisms. Gene transfers often facilitate the acquisition of functions encoded in prokaryotic genomes by eukaryotic organisms, which may enable them to colonize new environments. Transfers between eukaryotes also occur, mainly into larger phagotrophic eukaryotes that ingest eukaryotic cells, but also between plant lineages. These findings have implications for eukaryotic genomic research in general, and studies of the origin and phylogeny of eukaryotes in particular. PMID:15761667

  8. Gene Transfer into Cardiac Myocytes

    PubMed Central

    Lang, Sarah E.; Westfall, Margaret V.

    2016-01-01

    Traditional methods for DNA transfection are often inefficient and toxic for terminally differentiated cells, such as cardiac myocytes. Vector-based gene transfer is an efficient approach for introducing exogenous cDNA into these types of primary cell cultures. In this chapter, separate protocols for adult rat cardiac myocyte isolation and gene transfer with recombinant adenovirus are provided and are routinely utilized for studying the effects of sarcomeric proteins on myofilament function. PMID:25836585

  9. Gene transfer for erythropoiesis enhancement.

    PubMed

    Naffakh, N; Danos, O

    1996-08-01

    The spectrum of anemias treated with recombinant human erythropoietin is rapidly broadening. Lifelong treatment with very high doses is now under evaluation for beta-thalassemia and sickle cell anemia. These indications make it worthwhile to search for methods that will allow a permanent systemic delivery of the hormone. Here, we review experimental gene-transfer-based procedures for erythropoietin delivery in vivo. In mice, both ex vivo and direct in vivo approaches for gene transfer have resulted in the long-term production of therapeutic levels of the hormone. Gene transfer of erythropoietin could become a viable alternative to the injection of the purified recombinant protein once reliable procedures for controlling transgene expression are available. PMID:8796920

  10. Gene transfer in intact animals

    NASA Astrophysics Data System (ADS)

    Cline, M. J.; Stang, H.; Mercola, K.; Morse, L.; Ruprecht, R.; Browne, J.; Salser, W.

    1980-04-01

    Resistance to methotrexate was induced in bone marrow cells of mice by transformation in vitro with DNA from a drug-resistant cell line. Transformed cells were injected in vivo and haematopoietic cells expressing resistance were selected by drug treatment of recipients. Transformed cells had elevated levels of dihydrofolate reductase and demonstrated a proliferative advantage over untransformed cells, indicating successful gene transfer.

  11. Horizontal gene transfer in plants.

    PubMed

    Gao, Caihua; Ren, Xiaodong; Mason, Annaliese S; Liu, Honglei; Xiao, Meili; Li, Jiana; Fu, Donghui

    2014-03-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components. PMID:24132513

  12. Perinatal Gene Transfer to the Liver

    PubMed Central

    McKay, Tristan R; Rahim, Ahad A; Buckley, Suzanne M.K; Ward, Natalie J; Chan, Jerry K.Y; Howe, Steven J; Waddington, Simon N

    2011-01-01

    The liver acts as a host to many functions hence raising the possibility that any one may be compromised by a single gene defect. Inherited or de novo mutations in these genes may result in relatively mild diseases or be so devastating that death within the first weeks or months of life is inevitable. Some diseases can be managed using conventional medicines whereas others are, as yet, untreatable. In this review we consider the application of early intervention gene therapy in neonatal and fetal preclinical studies. We appraise the tools of this technology, including lentivirus, adenovirus and adeno-associated virus (AAV)-based vectors. We highlight the application of these for a range of diseases including hemophilia, urea cycle disorders such as ornithine transcarbamylase deficiency, organic acidemias, lysosomal storage diseases including mucopolysaccharidoses, glycogen storage diseases and bile metabolism. We conclude by assessing the advantages and disadvantages associated with fetal and neonatal liver gene transfer. PMID:21774770

  13. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  14. Introductory Tools for Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Feldman, D.; Kuai, L.; Natraj, V.; Yung, Y.

    2006-12-01

    Satellite data are currently so voluminous that, despite their unprecedented quality and potential for scientific application, only a small fraction is analyzed due to two factors: researchers' computational constraints and a relatively small number of researchers actively utilizing the data. Ultimately it is hoped that the terabytes of unanalyzed data being archived can receive scientific scrutiny but this will require a popularization of the methods associated with the analysis. Since a large portion of complexity is associated with the proper implementation of the radiative transfer model, it is reasonable and appropriate to make the model as accessible as possible to general audiences. Unfortunately, the algorithmic and conceptual details that are necessary for state-of-the-art analysis also tend to frustrate the accessibility for those new to remote sensing. Several efforts have been made to have web- based radiative transfer calculations, and these are useful for limited calculations, but analysis of more than a few spectra requires the utilization of home- or server-based computing resources. We present a system that is designed to allow for easier access to radiative transfer models with implementation on a home computing platform in the hopes that this system can be utilized in and expanded upon in advanced high school and introductory college settings. This learning-by-doing process is aided through the use of several powerful tools. The first is a wikipedia-style introduction to the salient features of radiative transfer that references the seminal works in the field and refers to more complicated calculations and algorithms sparingly5. The second feature is a technical forum, commonly referred to as a tiki-wiki, that addresses technical and conceptual questions through public postings, private messages, and a ranked searching routine. Together, these tools may be able to facilitate greater interest in the field of remote sensing.

  15. Reducible cationic lipids for gene transfer.

    PubMed Central

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  16. Lateral Gene Transfer from the Dead

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Lartillot, Nicolas; Daubin, Vincent

    2013-01-01

    In phylogenetic studies, the evolution of molecular sequences is assumed to have taken place along the phylogeny traced by the ancestors of extant species. In the presence of lateral gene transfer, however, this may not be the case, because the species lineage from which a gene was transferred may have gone extinct or not have been sampled. Because it is not feasible to specify or reconstruct the complete phylogeny of all species, we must describe the evolution of genes outside the represented phylogeny by modeling the speciation dynamics that gave rise to the complete phylogeny. We demonstrate that if the number of sampled species is small compared with the total number of existing species, the overwhelming majority of gene transfers involve speciation to and evolution along extinct or unsampled lineages. We show that the evolution of genes along extinct or unsampled lineages can to good approximation be treated as those of independently evolving lineages described by a few global parameters. Using this result, we derive an algorithm to calculate the probability of a gene tree and recover the maximum-likelihood reconciliation given the phylogeny of the sampled species. Examining 473 near-universal gene families from 36 cyanobacteria, we find that nearly a third of transfer events (28%) appear to have topological signatures of evolution along extinct species, but only approximately 6% of transfers trace their ancestry to before the common ancestor of the sampled cyanobacteria. [Gene tree reconciliation; lateral gene transfer; macroevolution; phylogeny.] PMID:23355531

  17. Horizontal gene transfer between bacteria and animals.

    PubMed

    Dunning Hotopp, Julie C

    2011-04-01

    Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers. PMID:21334091

  18. High expression hampers horizontal gene transfer.

    PubMed

    Park, Chungoo; Zhang, Jianzhi

    2012-01-01

    Horizontal gene transfer (HGT), the movement of genetic material from one species to another, is a common phenomenon in prokaryotic evolution. Although the rate of HGT is known to vary among genes, our understanding of the cause of this variation, currently summarized by two rules, is far from complete. The first rule states that informational genes, which are involved in DNA replication, transcription, and translation, have lower transferabilities than operational genes. The second rule asserts that protein interactivity negatively impacts gene transferability. Here, we hypothesize that high expression hampers HGT, because the fitness cost of an HGT to the recipient, arising from the 1) energy expenditure in transcription and translation, 2) cytotoxic protein misfolding, 3) reduction in cellular translational efficiency, 4) detrimental protein misinteraction, and 5) disturbance of the optimal protein concentration or cell physiology, increases with the expression level of the transferred gene. To test this hypothesis, we examined laboratory and natural HGTs to Escherichia coli. We observed lower transferabilities of more highly expressed genes, even after controlling the confounding factors from the two established rules and the genic GC content. Furthermore, expression level predicts gene transferability better than all other factors examined. We also confirmed the significant negative impact of gene expression on the rate of HGTs to 127 of 133 genomes of eubacteria and archaebacteria. Together, these findings establish the gene expression level as a major determinant of horizontal gene transferability. They also suggest that most successful HGTs are initially slightly deleterious, fixed because of their negligibly low costs rather than high benefits to the recipient. PMID:22436996

  19. Horizontal gene transfer, genome innovation and evolution.

    PubMed

    Gogarten, J Peter; Townsend, Jeffrey P

    2005-09-01

    To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories. PMID:16138096

  20. Gene Transfers Between Distantly Related Organisms

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2003-01-01

    With the completion of numerous microbial genome sequences, reports of individual gene transfers between distantly related prokaryotes have become commonplace. On the other hand, transfers between prokaryotes and eukaryotes still excite the imagination. Many of these claims may be premature, but some are certainly valid. In this chapter, the kinds of supporting data needed to propose transfers between distantly related organisms and cite some interesting examples are considered.

  1. Horizontal gene transfer of stress resistance genes through plasmid transport.

    PubMed

    Shoeb, Erum; Badar, Uzma; Akhter, Jameela; Shams, Hina; Sultana, Maria; Ansari, Maqsood A

    2012-03-01

    The horizontal gene transfer of plasmid-determined stress tolerance was achieved under lab conditions. Bacterial isolates, Enterobacter cloacae (DGE50) and Escherichia coli (DGE57) were used throughout the study. Samples were collected from contaminated marine water and soil to isolate bacterial strains having tolerance against heavy metals and antimicrobial agents. We have demonstrated plasmid transfer, from Amp(+)Cu(+)Zn(-) strain (DGE50) to Amp(-)Cu(-)Zn(+) strain (DGE57), producing Amp(+)Cu(+)Zn(+) transconjugants (DGE(TC50→57)) and Amp(+)Cu(-)Zn(+) transformants (DGE(TF50→57)). DGE57 did not carry any plasmid, therefore, it can be speculated that zinc tolerance gene in DGE57 is located on chromosome. DGE50 was found to carry three plasmids, out of which two were transferred through conjugation into DGE57, and only one was transferred through transformation. Plasmid transferred through transformation was one out of the two transferred through conjugation. Through the results of transformation it was revealed that the genes of copper and ampicillin tolerance in DGE50 were located on separate plasmids, since only ampicillin tolerance genes were transferred through transformation as a result of one plasmid transfer. By showing transfer of plasmids under lab conditions and monitoring retention of respective phenotype via conjugation and transformation, it is very well demonstrated how multiple stress tolerant strains are generated in nature. PMID:22805823

  2. In vitro gene transfer by electrosonoporation.

    PubMed

    Escoffre, J M; Kaddur, K; Rols, M P; Bouakaz, A

    2010-10-01

    Among the nonviral methods for gene delivery in vitro, electroporation is simple, inexpensive and safe. To upregulate the expression level of transfected gene, we investigated the applicability of electrosonoporation. This approach consists of a combination of electric pulses and ultrasound assisted with gas microbubbles. Cells were first electroporated with plasmid DNA encoding-enhanced green fluorescent protein and then sonoporated in presence of contrast microbubbles. Twenty-four hours later, cells that received electrosonoporation demonstrated a four-fold increase in transfection level and a six-fold increase in transfection efficiency compared with cells having undergone electroporation alone. Although electroporation induced the formation of DNA aggregates into the cell membrane, sonoporation induced its direct propulsion into the cytoplasm. Sonoporation can improve the transfer of electro-induced DNA aggregates by allowing its free and rapid entrance into the cells. These results demonstrated that in vitro gene transfer by electrosonoporation could provide a new potent method for gene transfer. PMID:20850028

  3. Specific Gene Repression by CRISPRi System Transferred through Bacterial Conjugation

    PubMed Central

    2014-01-01

    In microbial communities, bacterial populations are commonly controlled using indiscriminate, broad range antibiotics. There are few ways to target specific strains effectively without disrupting the entire microbiome and local environment. Here, we use conjugation, a natural DNA horizontal transfer process among bacterial species, to deliver an engineered CRISPR interference (CRISPRi) system for targeting specific genes in recipient Escherichia coli cells. We show that delivery of the CRISPRi system is successful and can specifically repress a reporter gene in recipient cells, thereby establishing a new tool for gene regulation across bacterial cells and potentially for bacterial population control. PMID:25409531

  4. Gene transfer mediated by alpha2-macroglobulin.

    PubMed Central

    Schneider, H; Huse, K; Birkenmeier, G; Otto, A; Scholz, G H

    1996-01-01

    alpha2-Macroglobulin covalently linked to poly(L)-lysine can be used as a vehicle for receptor-mediated gene transfer. This modified alpha2-macroglobulin maintains its ability to bind to the alpha2-macroglobulin receptor, and was shown to introduce a luciferase reporter gene plasmid into HepG2 human hepatoma cells in vitro. The alpha2-macroglobulin receptor is a very large and multifunctional cell surface receptor, whose rapid and efficient internalization rate makes it attractive for gene therapy, e.g. for hepatic gene targeting via injection into the portal vein. PMID:8871570

  5. Viral Vectors for in Vivo Gene Transfer

    NASA Astrophysics Data System (ADS)

    Thévenot, E.; Dufour, N.; Déglon, N.

    The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the

  6. AAV-mediated gene transfer to the mouse CNS

    PubMed Central

    Stoica, Lorelei; Ahmed, Seemin S.

    2013-01-01

    Recombinant adeno associated virus (rAAV) vectors are great tools for gene transfer due to their ability to mediate long-term gene expression. Recombinant AAVs have been used at various ages of development with no apparent toxicity. There are multiple ways of delivering AAV vectors to the CNS, depending on the stage of development of the mouse. In neonates, intravascular injections into the facial vein are often used. In adults, direct injections into target regions of the brain are achieved with great spatiotemporal control through stereotaxic surgeries. Recently, discoveries of new AAV vectors with the ability to cross the blood brain barrier have made it possible to also target the adult CNS by intravascular injections. rAAVs have been successfully used as gene transfer vehicles in multiple animal models of CNS disorders, and several clinical trials are currently underway. PMID:23686825

  7. A tool to analyze the transferability of health promotion interventions

    PubMed Central

    2013-01-01

    Background Health promotion interventions are often complex and not easily transferable from one setting to another. The objective of this article is to present the development of a tool to analyze the transferability of these interventions and to support their development and adaptation to new settings. Methods The concept mapping (CM) method was used. CM is helpful for generating a list of ideas associated with a concept and grouping them statistically. Researchers and stakeholders in the health promotion field were mobilized to participate in CM and generated a first list of transferability criteria. Duplicates were eliminated, and the shortened list was returned to the experts, scored for relevance and grouped into categories. Concept maps were created, then the project team selected the definitive map. From the final list of criteria thus structured, a tool to analyze transferability was created. This tool was subsequently tested by 15 project leaders and nine experts. Results In all, 18 experts participated in CM. After testing, a tool, named ASTAIRE, contained 23 criteria structured into four categories: population, environment, implementation, and support for transfer. It consists of two tools—one for reporting data from primary interventions and one for analyzing interventions’ transferability and supporting their adaptation to new settings. Conclusion The tool is helpful for selecting the intervention to transfer into the setting being considered and for supporting its adaptation. It also facilitates new interventions to be produced with more explicit transferability criteria. PMID:24341441

  8. Unsupervised learning in detection of gene transfer.

    PubMed

    Hamel, L; Nahar, N; Poptsova, M S; Zhaxybayeva, O; Gogarten, J P

    2008-01-01

    The tree representation as a model for organismal evolution has been in use since before Darwin. However, with the recent unprecedented access to biomolecular data, it has been discovered that, especially in the microbial world, individual genes making up the genome of an organism give rise to different and sometimes conflicting evolutionary tree topologies. This discovery calls into question the notion of a single evolutionary tree for an organism and gives rise to the notion of an evolutionary consensus tree based on the evolutionary patterns of the majority of genes in a genome embedded in a network of gene histories. Here, we discuss an approach to the analysis of genomic data of multiple genomes using bipartition spectral analysis and unsupervised learning. An interesting observation is that genes within genomes that have evolutionary tree topologies, which are in substantial conflict with the evolutionary consensus tree of an organism, point to possible horizontal gene transfer events which often delineate significant evolutionary events. PMID:18509479

  9. Detection of horizontal gene transfers from phylogenetic comparisons.

    PubMed

    Pylro, Victor Satler; Vespoli, Luciano de Souza; Duarte, Gabriela Frois; Yotoko, Karla Suemy Clemente

    2012-01-01

    Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production. Our results clearly show that horizontal gene transfer events could be detected using common phylogenetic methods with gene sequences obtained from public sequence databases. PMID:22675653

  10. A Rice Stowaway MITE for Gene Transfer in Yeast

    PubMed Central

    Fattash, Isam; Bhardwaj, Priyanka; Hui, Caleb; Yang, Guojun

    2013-01-01

    Miniature inverted repeat transposable elements (MITEs) lack protein coding capacity and often share very limited sequence similarity with potential autonomous elements. Their capability of efficient transposition and dramatic amplification led to the proposition that MITEs are an untapped rich source of materials for transposable element (TE) based genetic tools. To test the concept of using MITE sequence in gene transfer, a rice Stowaway MITE previously shown to excise efficiently in yeast was engineered to carry cargo genes (neo and gfp) for delivery into the budding yeast genome. Efficient excision of the cargo gene cassettes was observed even though the excision frequency generally decreases with the increase of the cargo sizes. Excised elements insert into new genomic loci efficiently, with about 65% of the obtained insertion sites located in genes. Elements at the primary insertion sites can be remobilized, frequently resulting in copy number increase of the element. Surprisingly, the orientation of a cargo gene (neo) on a construct bearing dual reporter genes (gfp and neo) was found to have a dramatic effect on transposition frequency. These results demonstrated the concept that MITE sequences can be useful in engineering genetic tools to deliver cargo genes into eukaryotic genomes. PMID:23704977

  11. Lateral gene transfer in the subsurface

    SciTech Connect

    Barkay, Tamar; Sobecky, Patricia

    2007-08-27

    Lateral gene transfer (LGT) is an important adaptive mechanism among prokaryotic organisms. This mechanism is particularly important for the response of microorganisms to changing environmental conditions because it facilitates the transfer of a large number of genes and their rapid expression. Together the transferred genes promote rapid genetic and metabolic changes that may enhance survival to newly established and sometimes hostile environmental conditions. The goal of our project was to examine if and how LGT enhances microbial adaptation to toxic heavy metals in subsurface environments that had been contaminated by mixed wastes due to activities associated with the production of nuclear energy and weapons. This task has been accomplished by dividing the project to several sub-tasks. Thus, we: (1) Determined the level of resistance of subsurface bacterial isolates to several toxic metals, all identified as pollutants of concern in subsurface environments; (2) Designed, tested, and applied, a molecular approach that determined whether metal resistance genes had evolved by LGT among subsurface bacteria; and (3) Developed a DNA hybridization array for the identification of broad host range plasmids and of metal resistance plasmids. The results are briefly summarized below with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  12. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    PubMed

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-10-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain. PMID:26439115

  13. Detecting Horizontal Gene Transfer between Closely Related Taxa

    PubMed Central

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-01-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on “unusual” sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain. PMID:26439115

  14. Clinical Applications Involving CNS Gene Transfer

    PubMed Central

    Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.

    2015-01-01

    Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921

  15. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  16. TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria.

    PubMed

    Loeschcke, Anita; Markert, Annette; Wilhelm, Susanne; Wirtz, Astrid; Rosenau, Frank; Jaeger, Karl-Erich; Drepper, Thomas

    2013-01-18

    Secondary metabolites represent a virtually inexhaustible source of natural molecules exhibiting a high potential as pharmaceuticals or chemical building blocks. To gain broad access to these compounds, sophisticated expression systems are needed that facilitate the transfer and expression of large chromosomal regions, whose genes encode complex metabolic pathways. Here, we report on the development of the novel system for the transfer and expression of biosynthetic pathways (TREX), which comprises all functional elements necessary for the delivery and concerted expression of clustered pathway genes in different bacteria. TREX employs (i) conjugation for DNA transfer, (ii) randomized transposition for its chromosomal insertion, and (iii) T7 RNA polymerase for unimpeded bidirectional gene expression. The applicability of the TREX system was demonstrated by establishing the biosynthetic pathways of two pigmented secondary metabolites, zeaxanthin and prodigiosin, in bacteria with different metabolic capacities. Thus, TREX represents a valuable tool for accessing natural products by allowing comparative expression studies with clustered genes. PMID:23656323

  17. PepTool and GeneTool: platform-independent tools for biological sequence analysis.

    PubMed

    Wishart, D S; Stothard, P; Van Domselaar, G H

    2000-01-01

    Although we are unable to discuss all of the functionality available in PepTool and GeneTool, it should be evident from this brief review that both packages offer a great deal in terms of functionality and ease-of-use. Furthermore, a number of useful innovations including platform-independent GUI design, networked parallelism, direct internet connectivity, database compression, and a variety of enhanced or improved algorithms should make these two programs particularly useful in the rapidly changing world of biological sequence analysis. More complete descriptions of the programs, algorithms and operation of PepTool and GeneTool are available on the BioTools web site (www.biotools.com), in the associated program user manuals and in the on-line Help pages. PMID:10547833

  18. Foamy virus vectors for gene transfer

    PubMed Central

    Trobridge, Grant D.

    2009-01-01

    Foamy virus (FV) vectors are efficient gene delivery vehicles that have shown great promise for gene therapy in preclinical animal models. FVs or spumaretroviruses are not endemic in humans, but are prevalent in nonhuman primates and in other mammals. They have evolved means for efficient horizontal transmission in their host species without pathology. FV vectors have several unique properties that make them well-suited for therapeutic gene transfer including a desirable safety profile, a broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. They mediate efficient and stable gene transfer to hematopoietic stem cells (HSCs) in mouse models, and in the canine large animal model. Analysis of FV vector integration sites in vitro and in hematopoietic repopulating cells shows they have a unique integration profile, and suggests they may be safer than gammaretroviruses or lentiviral vectors. Here properties of FVs relevant to the safety and efficacy of FV vectors are discussed. The development of FV vector systems is described, and studies evaluating their potential in vitro, and in small and large animal models is reviewed. PMID:19743892

  19. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    PubMed Central

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio

    2015-01-01

    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  20. Debris disk radiative transfer simulation tool (DDS)

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Hillenbrand, L. A.

    2005-10-01

    A WWW interface for the simulation of spectral energy distributions of optically thin dust configurations with an embedded radiative source is presented. The density distribution, radiative source, and dust parameters can be selected either from an internal database or defined by the user. This tool is optimized for studying circumstellar debris disks where large grains (a ≫1 μm) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. The tool is available at http://aida28.mpia-hd.mpg.de/~swolf/dds. Catalogue identifier:ADVV Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computers:PC with Intel(R) XEON(TM) 2.80 GHz processor Operating systems or monitors under which the program has been tested:SUSE Linux 9.1 Programming language used:Fortran 90 (for the main program; furthermore Perl, CGI and HTML) Memory required to execute with typical data:108 words No. of bits in a word:8 No. of lines in distributed program, including test data, etc.:44 636 No. of bytes in distributed program, including test data, etc.: 4 806 280 Distribution format:tar.gz Nature of the physical problem:Simulation of scattered light and thermal reemission in arbitrary optically dust distributions with spherical, homogeneous grains where the dust parameters (optical properties, sublimation temperature, grain size) and SED of the illuminating/heating radiative source can be arbitrarily defined (example application: [S. Wolf, L.A. Hillenbrand, Astrophys. J. 596 (2003) 603]). The program is optimized for studying circumstellar debris disks where large grains (i.e. with large size parameters) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. Method of solution:Calculation of the dust temperature distribution and dust reemission and scattering spectrum in the

  1. Indications for Acquisition of Reductive Dehalogenase Genes through Horizontal Gene Transfer by Dehalococcoides ethenogenes Strain 195

    PubMed Central

    Regeard, Christophe; Maillard, Julien; Dufraigne, Christine; Deschavanne, Patrick; Holliger, Christof

    2005-01-01

    The genome of Dehalococcoides ethenogenes strain 195, an anaerobic dehalorespiring bacterium, contains 18 copies of putative reductive dehalogenase genes, including the well-characterized tceA gene, whose gene product functions as the key enzyme in the environmentally important dehalorespiration process. The genome of D. ethenogenes was analyzed using a bioinformatic tool based on the frequency of oligonucleotides. The results in the form of a genomic signature revealed several local disruptions of the host signature along the genome sequence. These fractures represent DNA segments of potentially foreign origin, so-called atypical regions, which may have been acquired by an ancestor through horizontal gene transfer. Most interestingly, 15 of the 18 reductive dehalogenase genes, including the tceA gene, were found to be located in these regions, strongly indicating the foreign nature of the dehalorespiration activity. The GC content and the presence of recombinase genes within some of these regions corroborate this hypothesis. A hierarchical classification of the atypical regions containing the reductive dehalogenase genes indicated that these regions were probably acquired by several gene transfer events. PMID:15932990

  2. Simple rapid method for gene transfer

    SciTech Connect

    Cockburn, A.F.; Meier, H.

    1990-01-30

    The object of the present invention is to provide methods for gene transfer that reduce or eliminate cellular pretreatment steps, e.g., the removal of cell wall by chemical or enzymatic methods, is rapid and can be practiced without the need of additional expensive equipment. Cells, embryos or tissues selected for genetic manipulation are suspended in an Eppendorf tube in an aliquot of the desired genetic material to be transferred to which the resulting mixture is added and is agitated by vortexing from about 30 to about 90 seconds. The cells, embryos or tissue are sedimented and the DNA supernatant removed. After sedimentation, the injected material is resuspended in or on a growth medium to assay for expression.

  3. Gene Transfer between Salmonella enterica Serovar Typhimurium inside Epithelial Cells

    PubMed Central

    Ferguson, Gayle C.; Heinemann, Jack A.; Kennedy, Martin A.

    2002-01-01

    Virulence and antibiotic resistance genes transfer between bacteria by bacterial conjugation. Conjugation also mediates gene transfer from bacteria to eukaryotic organisms, including yeast and human cells. Predicting when and where genes transfer by conjugation could enhance our understanding of the risks involved in the release of genetically modified organisms, including those being developed for use as vaccines. We report here that Salmonella enterica serovar Typhimurium conjugated inside cultured human cells. The DNA transfer from donor to recipient bacteria was proportional to the probability that the two types of bacteria occupied the same cell, which was dependent on viable and invasive bacteria and on plasmid tra genes. Based on the high frequencies of gene transfer between bacteria inside human cells, we suggest that such gene transfers occur in situ. The implications of gene transfer between bacteria inside human cells, particularly in the context of antibiotic resistance, are discussed. PMID:11914355

  4. Transfer of Development Rights: A New Tool for Planners

    ERIC Educational Resources Information Center

    Woodbury, Steven R.

    1975-01-01

    The article focuses on the separation of certain understood rights of ownership and on the provision for the compensation or transfer of those rights to other property. The author reviews the use of this tool and suggests it as a potentially useful device to channel and guide development toward public policy goals. (Author)

  5. PEGylated Cationic Serum Albumin for Boosting Retroviral Gene Transfer.

    PubMed

    Palesch, David; Boldt, Felix; Müller, Janis A; Eisele, Klaus; Stürzel, Christina M; Wu, Yuzhou; Münch, Jan; Weil, Tanja

    2016-08-17

    Retroviral vectors are common tools for introducing genes into the genome of a cell. However, low transduction rates are a major limitation in retroviral gene transfer, especially in clinical applications. We generated cationic human serum albumin (cHSA) protected by a shell of poly(ethylene glycol) (PEG); this significantly enhanced retroviral gene transduction with potentially attractive pharmacokinetics and low immunogenicity. By screening a panel of chemically optimized HSA compounds, we identified a very potent enhancer that boosted the transduction rates of viral vectors. Confocal microscopy revealed a drastically increased number of viral particles attached to the surfaces of target cells. In accordance with the positive net charge of cationic and PEGylated HSA, this suggests a mechanism of action in which the repulsion of the negatively charged cellular and viral vector membranes is neutralized, thereby promoting attachment and ultimately transduction. Importantly, the transduction-enhancing PEGylated HSA derivative evaded recognition by HSA-specific antibodies and macrophage activation. Our findings hold great promise for facilitating improved retroviral gene transfer. PMID:27239020

  6. Horizontal gene transfer from Agrobacterium to plants

    PubMed Central

    Matveeva, Tatiana V.; Lutova, Ludmila A.

    2014-01-01

    Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named “cellular T-DNA” (cT-DNA). It represents an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role. PMID:25157257

  7. Gene therapy: Biological pacemaker created by gene transfer

    NASA Astrophysics Data System (ADS)

    Miake, Junichiro; Marbán, Eduardo; Nuss, H. Bradley

    2002-09-01

    The pacemaker cells of the heart initiate the heartbeat, sustain the circulation, and dictate the rate and rhythm of cardiac contraction. Circulatory collapse ensues when these specialized cells are damaged by disease, a situation that currently necessitates the implantation of an electronic pacemaker. Here we report the use of viral gene transfer to convert quiescent heart-muscle cells into pacemaker cells, and the successful generation of spontaneous, rhythmic electrical activity in the ventricle in vivo. Our results indicate that genetically engineered pacemakers could be developed as a possible alternative to implantable electronic devices.

  8. Gene duplication and transfer events in plant mitochondria genome

    SciTech Connect

    Xiong Aisheng Peng Rihe; Zhuang Jing; Gao Feng; Zhu Bo; Fu Xiaoyan; Xue Yong; Jin Xiaofen; Tian Yongsheng; Zhao Wei; Yao Quanhong

    2008-11-07

    Gene or genome duplication events increase the amount of genetic material available to increase the genomic, and thereby phenotypic, complexity of organisms during evolution. Gene duplication and transfer events have been important to molecular evolution in all three domains of life, and may be the first step in the emergence of new gene functions. Gene transfer events have been proposed as another accelerator of evolution. The duplicated gene or genome, mainly nuclear, has been the subject of several recent reviews. In addition to the nuclear genome, organisms have organelle genomes, including mitochondrial genome. In this review, we briefly summarize gene duplication and transfer events in the plant mitochondrial genome.

  9. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  10. Lentiviral vector gene transfer to porcine airways.

    PubMed

    Sinn, Patrick L; Cooney, Ashley L; Oakland, Mayumi; Dylla, Douglas E; Wallen, Tanner J; Pezzulo, Alejandro A; Chang, Eugene H; McCray, Paul B

    2012-01-01

    In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE) and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE). Interestingly, feline immunodeficiency virus (FIV)-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1-based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF).Molecular Therapy - Nucleic Acids (2012) 1, e56; doi:10.1038/mtna.2012.47; published online 27 November 2012. PMID:23187455

  11. Plant transformation via pollen tube-mediated gene transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...

  12. Gene Transfer & Hybridization Studies in Hyperthermophilic Species

    SciTech Connect

    Nelson, Karen E.

    2005-10-14

    A. ABSTRACT The importance of lateral gene transfer (LGT) in the evolution of microbial species has become increasingly evident with each completed microbial genome sequence. Most significantly, the genome of Thermotoga maritima MSB8, a hyperthermophilic bacterium isolated by Karl Stetter and workers from Vulcano Italy in 1986, and sequenced at The Institute for Genomic Research (TIGR) in Rockville Maryland in 1999, revealed extensive LGT between % . this bacterium and members of the archaeal domain (in particular Archaeoglobus fulgidus, and Pyracoccus frcriosus species). Based on whole genome comparisons, it was estimated that 24% of the genetic information in this organism was acquired by genetic exchange with archaeal species, Independent analyses including periodicity analysis of the T. maritimu genomic DNA sequence, phylogenetic reconstruction based on genes that appear archaeal-like, and codon and amino acid usage, have provided additional evidence for LGT between T. maritima and the archaea. More recently, DiRuggiero and workers have identified a very recent LGT event between two genera of hyperthermophilic archaea, where a nearly identical DNA fragment of 16 kb in length flanked by insertion sequence (IS) elements, exists. Undoubtedly, additional examples of LGT will be identified as more microbial genomes are completed. For the present moment however, the genome sequence of T. maritima and other hyperthermophiles including P. furiosus, Pyrococcus horikoshii, Pyrococcus abyssi, A. fulgidus, and Aquifex aeolicus, have significantly increased out awareness of evolution being a web of life rather than a tree of life, as suggested by single gene phylogenies. In this proposal, we will aim to determine the extent of LGT across the hyperthemophiles, employing iY maritima as the model organism. A variety of biochemical techniques and phylogenetic reconstructions will allow for a detailed and thorough characterization of the extent of LGT in this species. The

  13. Gene transfer system for Rhodopseudomonas viridis.

    PubMed Central

    Lang, F S; Oesterhelt, D

    1989-01-01

    A gene transfer system for Rhodopseudomonas viridis was established which uses conjugation with Escherichia coli S17-I as the donor and mobilizable plasmids as vectors. Initially, plasmids of the incompatibility group P1 (pRK290 and pRK404) were used. The more effective shuttle vectors between E. coli and R. viridis, pKV1 and pKVS1, were derived from plasmid pBR322 and showed the highest conjugation frequency (10(-2] thus far demonstrated in purple bacteria. It was also demonstrated that Rhizobium meliloti can be used as a donor for conjugation with R. viridis. From a genomic cosmid library of R. viridis constructed in the vector pHC79, clones that coded for subunits H (puh operon), L, M and cytochrome c (puf operon) of the photosynthetic reaction center were isolated and characterized. For linkage of the two operons on the genome, cosmids that overlapped with the operon-carrying clones were identified. The relative positions of the two operons could not be determined, but the operons must be more than 100 kilobase pairs apart. Thus, the genomic organization of the reaction center in R. viridis is different from that of Rhodobacter capsulatus, for which a distance of about 39 kilobase pairs was determined. From a spontaneous mutant of R. viridis that is resistant to the herbicide terbutryn, the puf operon was cloned in pKVS1 and transferred by conjugation into R. viridis wild-type cells. The resulting exconjugants were resistant to the herbicide, which demonstrated that the puf operon on pKVS1 constructions was functionally expressed in R. viridis. Images PMID:2666398

  14. Problems associated with gene transfer and opportunities for microgravity environments

    NASA Astrophysics Data System (ADS)

    Tennessen, Daniel J.

    1997-01-01

    The method of crop improvement by gene transfer is becoming increasingly routine with transgenic foods and ornamental crops now being marketed to consumers. However, biological processes of plants, and the physical barriers of current protocols continue to limit the application of gene transfer in many commercial crops. The goal of this paper is to outline the current limitations of gene transfer and to hypothesize possible opportunities for use of microgravity to overcome such limitations. The limitations detailed in this paper include host-range specificity of Agrobacterium mediated transformation, probability of gene insertion, position effects of the inserted genes, gene copy number, stability of foreign gene expression in host plants, and regeneration of recalcitrant plant species. Microgravity offers an opportunity for gene transfer where cell growth kinetics, DNA synthesis, and genetic recombination rates can be altered. Such biological conditions may enhance the ability for recombination of reporter genes and other genes of interest to agriculture. Proposed studies would be useful for understanding instability of foreign gene expression and may lead to stable transformed plants. Other aspects of gene transfer in microgravity are discussed.

  15. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  16. Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions.

    PubMed

    Dreyer, Jean-Luc

    2011-02-01

    Lentiviral-mediated gene transfer in vivo or in cultured mammalian neurons can be used to address a wide variety of biological questions, to design animals models for specific neurodegenerative pathologies, or to test potential therapeutic approaches in a variety of brain disorders. Lentiviruses can infect non-dividing cells, thereby allowing stable gene transfer in post-mitotic cells such as mature neurons. An important contribution has been the use of inducible vectors: the same animal can thus be used repeatedly in the doxycycline-on or -off state, providing a powerful mean for assessing the function of a gene candidate in a disorder within a specific neuronal circuit. Furthermore, lentivirus vectors provide a unique tool to integrate siRNA expression constructs with the aim to locally knockdown expression of a specific gene, enabling to assess the function of a gene in a very specific neuronal pathway. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in the brain. Therefore, the use of lentiviruses for stable expression of siRNA in brain is a powerful aid to probe gene functions in vivo and for gene therapy of diseases of the central nervous system. In this chapter I review the applications of lentivirus-mediated gene transfer in the investigation of specific gene candidates involved in major brain disorders and neurodegenerative processes. Major applications have been in polyglutamine disorders, such as synucleinopathies and Parkinson's disease, or in investigating gene function in Huntington's disease, dystonia, or muscular dystrophy. Recently, lentivirus gene transfer has been an invaluable tool for evaluation of gene function in behavioral disorders such as drug addiction and attention-deficit hyperactivity disorder or in learning and cognition. PMID:20862616

  17. Targeted Gene Therapies: Tools, Applications, Optimization

    PubMed Central

    Humbert, Olivier; Davis, Luther; Maizels, Nancy

    2012-01-01

    Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways. PMID:22530743

  18. A recently transferred cluster of bacterial genes in Trichomonas vaginalis - lateral gene transfer and the fate of acquired genes

    PubMed Central

    2014-01-01

    Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes. PMID:24898731

  19. Cotransfer of linked eukaryotic genes and efficient transfer of hypoxanthine phosphoribosyltransferase by DNA-mediated gene transfer.

    PubMed Central

    Peterson, J L; McBride, O W

    1980-01-01

    The efficiency of DNA-mediated transfer of the gene (hprt) for hypoxanthine phosphoribosyltransferase (HPRT; IMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) is dependent upon the recipient cell used. hprt has been transferred into mouse TG8 or Chinese hamster CHTG49 cells at a high frequency, similar to the frequency of the gene (tk) for thymidine kinase (TK; ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) transfer into mouse LMTK- cells (i.e., 10(-6)). In contrast, the frequency of transfer of hprt into mouse A9 cells was about two orders of magnitude less. The identification of efficient recipient cells for hprt transfer permits the use of DNA-mediated transfer as a bioassay for the gene. Cotransfer of the linked tk gene and the gene (galk) for galactokinase (ATP: D-galactose 1-phosphotransferase, EC 2.7.1.6) to LMTK- cells has been detected once among 87 tk transferrents. This suggests that the distance between the tk and galk genes in the Chinese hamster genome may be smaller than was previously thought. Significant differences between chromosome-mediated and DNA-mediated gene transfer were observed with respect to both the size of the transferred functional genetic fragment and the recipient cell specificity. Images PMID:6929511

  20. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    PubMed

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes. PMID:26414246

  1. Direct transfer of IL-12 gene into growing Renca tumors.

    PubMed

    Budryk, M; Wilczyńska, U; Szary, J; Szala, S

    2000-01-01

    We investigated the feasibility of transferring naked plasmid DNA containing a therapeutic gene (IL-12) into mice harboring growing Renca tumors. We found that naked DNA transferred into growing Renca and B16(F10) tumors gives higher expression level of reporter gene than complexes of DNA with DDAB/DOPE or DC-Chol/DOPE. Transfer of naked DNA carrying the IL-12 gene into growing Renca tumors causes a distinct therapeutic effect that depends on the time span between inoculation of mice with cancer cells and the beginning of the therapy. Therapy started on day 3 resulted in total cure (100%) of mice. PMID:11051203

  2. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    SciTech Connect

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  3. Intracellular gene transfer: Reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase

    PubMed Central

    Daley, Daniel O.; Clifton, Rachel; Whelan, James

    2002-01-01

    Subunit 2 of cytochrome c oxidase (Cox2) in legumes offers a rare opportunity to investigate factors necessary for successful gene transfer of a hydrophobic protein that is usually mitochondrial-encoded. We found that changes in local hydrophobicity were necessary to allow import of this nuclear-encoded protein into mitochondria. All legume species containing both a mitochondrial and nuclear encoded Cox2 displayed a similar pattern, with a large decrease in hydrophobicity evident in the first transmembrane region of the nuclear encoded protein compared with the organelle-encoded protein. Mitochondrial-encoded Cox2 could not be imported into mitochondria under the direction of the mitochondrial targeting sequence that readily supports the import of nuclear encoded Cox2. Removal of the first transmembrane region promotes import ability of the mitochondrial-encoded Cox2. Changing just two amino acids in the first transmembrane region of mitochondrial-encoded Cox2 to the corresponding amino acids in the nuclear encoded Cox2 also promotes import ability, whereas changing the same two amino acids in the nuclear encoded Cox2 to what they are in the mitochondrial-encoded copy prevents import. Therefore, changes in amino acids in the mature protein were necessary and sufficient for gene transfer to allow import under the direction of an appropriate signal to achieve the functional topology of Cox2. PMID:12142462

  4. Resin-Transfer-Molding of a Tool Face

    NASA Technical Reports Server (NTRS)

    Fowler, Mike; Ehlers, Edward; Brainard, David; Kellermann, Charles

    2004-01-01

    A resin-transfer-molding (RTM) process has been devised for fabricating a matrix/graphite-cloth composite panel that serves as tool face for manufacturing other composite panels. Heretofore, RTM has generally been confined to resins with viscosities low enough that they can readily flow through interstices of cloth. The present process makes it possible to use a high-temperature, more-viscous resin required for the tool face. First, a release layer and then a graphite cloth are laid on a foam pattern that has the desired contour. A spring with an inside diameter of 3/8 in. (.9.5 mm) is placed along the long dimension of the pattern to act as a conduit for the resin. Springs with an inside diameter of 1/4 in. (.6.4 mm) are run off the larger lengthwise spring for distributing the resin over the tool face. A glass cloth is laid on top to act as breather. The whole layup is vacuum-bagged. Resin is mixed and made to flow under vacuum assistance to infiltrate the layup through the springs. The whole process takes less than a day, and the exposure of personnel to resin vapors is minimized.

  5. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  6. Gene Chips: A New Tool for Biology

    NASA Astrophysics Data System (ADS)

    Botstein, David

    2005-03-01

    The knowledge of many complete genomic sequences has led to a ``grand unification of biology,'' consisting of direct evidence that most of the basic cellular functions of all organisms are carried out by genes and proteins whose primary sequences are directly related by descent (i.e. orthologs). Further, genome sequences have made it possible to study all the genes of a single organism simultaneously. We have been using DNA microarrays (sometime referred to as ``gene chips'') to study patterns of gene expression and genome rearrangement in yeast and human cells under a variety of conditions and in human tumors and normal tissues. These experiments produce huge volumes of data; new computational and statistical methods are required to analyze them properly. Examples from this work will be presented to illustrate how genome-scale experiments and analysis can result in new biological insights not obtainable by traditional analyses of genes and proteins one by one. For lymphomas, breast tumors, lung tumors, liver tumors, gastric tumors, brain tumors and soft tissue tumors we have been able, by the application of clustering algorithms, to subclassify tumors of similar anatomical origin on the basis of their gene expression patterns. These subclassifications appear to be reproducible and clinically as well as biologically meaningful. By studying synchronized cells growing in culture, we have identified many hundreds of yeast and human genes that are expressed periodically, at characteristically different points in the cell division cycle. In humans, it turns out that most of these genes are the same genes that comprise the ``proliferation cluster,'' i.e. the genes whose expression is specifically associated with the proliferativeness of tumors and tumor cell lines. Finally, we have been applying a variant of our DNA microarray technology (which we call ``array comparative hybridization'') to follow the DNA copy number of genes, both in tumors and in yeast cells

  7. Fibrin-mediated lentivirus gene transfer: implications for lentivirus microarrays

    PubMed Central

    Raut, Shruti; Lei, Pedro; Padmashali, Roshan; Andreadis, Stelios T.

    2010-01-01

    We employed fibrin hydrogel as bioactive matrix for lentivirus mediated gene transfer. Fibrin-mediated gene transfer was highly efficient and exhibited strong dependence on fibrinogen concentration. Efficient gene transfer was achieved with fibrinogen concentration between 3.75 – 7.5 mg/mL. Lower fibrinogen concentrations resulted in diffusion of virus out of the gel while higher concentrations led to ineffective fibrin degradation by target cells. Addition of fibrinolytic inhibitors decreased gene transfer in a dose-dependent manner suggesting that fibrin degradation by target cells may be necessary for successful gene delivery. Under these conditions transduction may be limited only to cells interacting with the matrix thereby providing a method for spatially localized gene delivery. Indeed, when lentivirus-containing fibrin microgels were spotted in an array format gene transfer was confined to virus-containing fibrin spots with minimal cross-contamination between neighboring sites. Collectively, our data suggest that fibrin may provide an effective matrix for spatially-localized gene delivery with potential applications in high-throughput lentiviral microarrays and in regenerative medicine. PMID:20153386

  8. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer.

    PubMed

    Komatsubara, Akira T; Matsuda, Michiyuki; Aoki, Kazuhiro

    2015-01-01

    Biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) have been developed to visualize spatio-temporal dynamics of signalling molecules in living cells. Many of them adopt a backbone of intramolecular FRET biosensor with a cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as donor and acceptor, respectively. However, there remains the difficulty of establishing cells stably expressing FRET biosensors with a YFP and CFP pair by lentiviral or retroviral gene transfer, due to the high incidence of recombination between YFP and CFP genes. To address this, we examined the effects of codon-diversification of YFP on the recombination of FRET biosensors introduced by lentivirus or retrovirus. The YFP gene that was fully codon-optimized to E.coli evaded the recombination in lentiviral or retroviral gene transfer, but the partially codon-diversified YFP did not. Further, the length of spacer between YFP and CFP genes clearly affected recombination efficiency, suggesting that the intramolecular template switching occurred in the reverse-transcription process. The simple mathematical model reproduced the experimental data sufficiently, yielding a recombination rate of 0.002-0.005 per base. Together, these results show that the codon-diversified YFP is a useful tool for expressing FRET biosensors by lentiviral or retroviral gene transfer. PMID:26290434

  9. Novel gene expression tools for rice biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  10. GenePRIMP: A software quality control tool

    SciTech Connect

    Amrita Pati

    2010-05-05

    Amrita Pati of the DOE Joint Genome Institute's Genome Biology group describes the software tool GenePRIMP and how it fits into the quality control pipeline for microbial genomics. Further details regarding GenePRIMP appear in a paper published online May 2, 2010 in Nature Methods.

  11. GenePRIMP: A software quality control tool

    ScienceCinema

    Amrita Pati

    2010-09-01

    Amrita Pati of the DOE Joint Genome Institute's Genome Biology group describes the software tool GenePRIMP and how it fits into the quality control pipeline for microbial genomics. Further details regarding GenePRIMP appear in a paper published online May 2, 2010 in Nature Methods.

  12. Global Analysis of Horizontal Gene Transfer in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The co-occurrence of microbes within plants and other specialized niches may facilitate horizontal gene transfer (HGT) affecting host-pathogen interactions. We recently identified fungal-to-fungal HGTs involving metabolic gene clusters. For a global analysis of HGTs in the maize pathogen Fusarium ve...

  13. Evolution of and horizontal gene transfer in the Endornavirus genus.

    PubMed

    Song, Dami; Cho, Won Kyong; Park, Sang-Ho; Jo, Yeonhwa; Kim, Kook-Hyung

    2013-01-01

    The transfer of genetic information between unrelated species is referred to as horizontal gene transfer. Previous studies have demonstrated that both retroviral and non-retroviral sequences have been integrated into eukaryotic genomes. Recently, we identified many non-retroviral sequences in plant genomes. In this study, we investigated the evolutionary origin and gene transfer of domains present in endornaviruses which are double-stranded RNA viruses. Using the available sequences for endornaviruses, we found that Bell pepper endornavirus-like sequences homologous to the glycosyltransferase 28 domain are present in plants, fungi, and bacteria. The phylogenetic analysis revealed the glycosyltransferase 28 domain of Bell pepper endornavirus may have originated from bacteria. In addition, two domains of Oryza sativa endornavirus, a glycosyltransferase sugar-binding domain and a capsular polysaccharide synthesis protein, also exhibited high similarity to those of bacteria. We found evidence that at least four independent horizontal gene transfer events for the glycosyltransferase 28 domain have occurred among plants, fungi, and bacteria. The glycosyltransferase sugar-binding domains of two proteobacteria may have been horizontally transferred to the genome of Thalassiosira pseudonana. Our study is the first to show that three glycome-related viral genes in the genus Endornavirus have been acquired from marine bacteria by horizontal gene transfer. PMID:23667703

  14. Evolution of and Horizontal Gene Transfer in the Endornavirus Genus

    PubMed Central

    Park, Sang-Ho; Jo, Yeonhwa; Kim, Kook-Hyung

    2013-01-01

    The transfer of genetic information between unrelated species is referred to as horizontal gene transfer. Previous studies have demonstrated that both retroviral and non-retroviral sequences have been integrated into eukaryotic genomes. Recently, we identified many non-retroviral sequences in plant genomes. In this study, we investigated the evolutionary origin and gene transfer of domains present in endornaviruses which are double-stranded RNA viruses. Using the available sequences for endornaviruses, we found that Bell pepper endornavirus-like sequences homologous to the glycosyltransferase 28 domain are present in plants, fungi, and bacteria. The phylogenetic analysis revealed the glycosyltransferase 28 domain of Bell pepper endornavirus may have originated from bacteria. In addition, two domains of Oryza sativa endornavirus, a glycosyltransferase sugar-binding domain and a capsular polysaccharide synthesis protein, also exhibited high similarity to those of bacteria. We found evidence that at least four independent horizontal gene transfer events for the glycosyltransferase 28 domain have occurred among plants, fungi, and bacteria. The glycosyltransferase sugar-binding domains of two proteobacteria may have been horizontally transferred to the genome of Thalassiosira pseudonana. Our study is the first to show that three glycome-related viral genes in the genus Endornavirus have been acquired from marine bacteria by horizontal gene transfer. PMID:23667703

  15. XGet: a highly scalable and efficient file transfer tool for clusters

    SciTech Connect

    Greenberg, Hugh; Ionkov, Latchesar; Minnich, Ronald

    2008-01-01

    As clusters rapidly grow in size, transferring files between nodes can no longer be solved by the traditional transfer utilities due to their inherent lack of scalability. In this paper, we describe a new file transfer utility called XGet, which was designed to address the scalability problem of standard tools. We compared XGet against four transfer tools: Bittorrent, Rsync, TFTP, and Udpcast and our results show that XGet's performance is superior to the these utilities in many cases.

  16. Horizontal functional gene transfer from bacteria to fishes

    PubMed Central

    Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shun-Min; Huang, Da-Wei

    2015-01-01

    Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution. PMID:26691285

  17. Advancements in gene transfer-based therapy for hemophilia A

    PubMed Central

    Doering, Christopher B; Spencer, H Trent

    2010-01-01

    Gene therapy has promised clinical benefit to those suffering with hemophilia A, but this benefit has not yet been realized. However, during the past two decades, basic and applied gene therapy research has progressed and the goal of gene therapy for hemophilia A is once again in our sights. The hemophilia A patient population suffers from a disease that requires invasive, lifelong management, is exorbitantly expensive to treat, has geographically limited treatment access and can become untreatable due to immune reactions to the treatment product. Subsequent to the cloning of the factor VIII gene and cDNA in the early 1980s, academic and commercial research laboratories began to pursue gene transfer-based therapies to supplement or supplant the available protein replacement therapy. However, to date, clinical trials for gene therapy of hemophilia A have been unsuccessful. Three trials have been conducted with each having tested a different gene-transfer strategy and each demonstrating that there is a considerable barrier to achieving sustained expression of therapeutic amounts of factor VIII. Recent progress has been made in gene-transfer technology and, relevant to hemophilia A, towards increasing the biosynthetic efficiency of factor VIII. These advances are now being combined to develop novel strategies to treat and possibly cure hemophilia A. PMID:20577574

  18. WhichGenes: a web-based tool for gathering, building, storing and exporting gene sets with application in gene set enrichment analysis

    PubMed Central

    Glez-Peña, Daniel; Gómez-López, Gonzalo; Pisano, David G.; Fdez-Riverola, Florentino

    2009-01-01

    WhichGenes is a web-based interactive gene set building tool offering a very simple interface to extract always-updated gene lists from multiple databases and unstructured biological data sources. While the user can specify new gene sets of interest by following a simple four-step wizard, the tool is able to run several queries in parallel. Every time a new set is generated, it is automatically added to the private gene-set cart and the user is notified by an e-mail containing a direct link to the new set stored in the server. WhichGenes provides functionalities to edit, delete and rename existing sets as well as the capability of generating new ones by combining previous existing sets (intersection, union and difference operators). The user can export his sets configuring the output format and selecting among multiple gene identifiers. In addition to the user-friendly environment, WhichGenes allows programmers to access its functionalities in a programmatic way through a Representational State Transfer web service. WhichGenes front-end is freely available at http://www.whichgenes.org/, WhichGenes API is accessible at http://www.whichgenes.org/api/. PMID:19406925

  19. Computational Tools and Algorithms for Designing Customized Synthetic Genes

    PubMed Central

    Gould, Nathan; Hendy, Oliver; Papamichail, Dimitris

    2014-01-01

    Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations. PMID:25340050

  20. Computational tools and algorithms for designing customized synthetic genes.

    PubMed

    Gould, Nathan; Hendy, Oliver; Papamichail, Dimitris

    2014-01-01

    Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations. PMID:25340050

  1. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes

    PubMed Central

    Huddleston, Jennifer R

    2014-01-01

    Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed. PMID:25018641

  2. Experiments on gene transferring to primary hematopoietic cells by liposome.

    PubMed

    Hu, L; Zhang, B

    2000-01-01

    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by X-gal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33 +/- 2.68)% in human and about (16.28 +/- 2.95)% in mouse without G418 selection. After G418 selection, the blue cell rate was (46.06 +/- 3.47)% in human and (43.45 +/- 4.1)% in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia. PMID:12840913

  3. Estimating the Frequency of Horizontal Gene Transfer Using Phylogenetic Models of Gene Gain and Loss.

    PubMed

    Zamani-Dahaj, Seyed Alireza; Okasha, Mohamed; Kosakowski, Jakub; Higgs, Paul G

    2016-07-01

    We analyze patterns of gene presence and absence in a maximum likelihood framework with rate parameters for gene gain and loss. Standard methods allow independent gains and losses in different parts of a tree. While losses of the same gene are likely to be frequent, multiple gains need to be considered carefully. A gene gain could occur by horizontal transfer or by origin of a gene within the lineage being studied. If a gene is gained more than once, then at least one of these gains must be a horizontal transfer. A key parameter is the ratio of gain to loss rates, a/v We consider the limiting case known as the infinitely many genes model, where a/v tends to zero and a gene cannot be gained more than once. The infinitely many genes model is used as a null model in comparison to models that allow multiple gains. Using genome data from cyanobacteria and archaea, it is found that the likelihood is significantly improved by allowing for multiple gains, but the average a/v is very small. The fraction of genes whose presence/absence pattern is best explained by multiple gains is only 15% in the cyanobacteria and 20% and 39% in two data sets of archaea. The distribution of rates of gene loss is very broad, which explains why many genes follow a treelike pattern of vertical inheritance, despite the presence of a significant minority of genes that undergo horizontal transfer. PMID:27189546

  4. Horizontal gene transfer in eukaryotes: The weak-link model

    PubMed Central

    Huang, Jinling

    2013-01-01

    The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes. PMID:24037739

  5. Viral mediated gene transfer to sprouting blood vessels during angiogenesis.

    PubMed

    Alian, Akram; Eldor, Amiram; Falk, Haya; Panet, Amos

    2002-08-01

    Several experimental systems have been applied to investigate the development of new blood vessels. Angiogenesis can be followed ex-vivo by culturing explants of rat aorta 'rings' in biomatrix gels. This angiogenesis system was modified for the study of viral vector mediated gene transfer, using adenovirus, vaccinia- and retroviral vectors. Two modifications were introduced to the model in order to facilitate efficient viral mediated gene transfer, (i) placing the aorta ring on top of a thin layer of collagen such that the angiogenic tissue will be accessible to the viral vector; and (ii) infection of the aorta rings prior to embedding them into the collagen matrix. While adenovirus and vaccinia vectors infected efficiently the aorta rings they induced cell death. Subsequent gene transfer experiments were, therefore, carried with retroviral vectors containing vascular endothelial growth factor (VEGF) and the beta-interferon (IFN) genes. Overexpression of VEGF enhanced significantly microvessel sprouting, while overexpression of IFN-beta induced an antiviral effect. The experimental system described in this study can facilitate the application of other viral vectors to the study of genes that may regulate the complex angiogenic process and thereby open new avenues for vascular gene therapy. PMID:12176137

  6. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment

    PubMed Central

    JACOBS, WILLIAM R.

    2016-01-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids—chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages—was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research. “I had to know my enemy in order to prevail against him.”Nelson Mandela PMID:26105819

  7. Antibiotics and gene transfer in swine gut bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mammalian gastrointestinal (GI) tract hosts a diverse collection bacteria, most of which are beneficial for host health. This bacterial community also supports a community of viruses that infect bacteria (called bacteriophages or phages). Phages transfer genes between bacteria, and phage-media...

  8. Transferred interbacterial antagonism genes augment eukaryotic innate immune function

    PubMed Central

    Chou, Seemay; Daugherty, Matthew D.; Peterson, S. Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L.; Fritz-Laylin, Lillian K.; Ferrin, Michael A.; Harding, Brittany N.; Jacobs-Wagner, Christine; Yang, X. Frank; Vollmer, Waldemar; Malik, Harmit S.

    2015-01-01

    Horizontal gene transfer (HGT) allows organisms to rapidly acquire adaptive traits1. Though documented instances of HGT from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option2. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce anti-bacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system (T6SS)3. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years via purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the etiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for facile co-option by eukaryotic innate immune systems. PMID:25470067

  9. Rescuing the Failing Heart by Targeted Gene Transfer

    PubMed Central

    Kawase, Yoshiaki; Ladage, Dennis; Hajjar, Roger J.

    2011-01-01

    Congestive heart failure is a major cause of morbidity and mortality in the US. While progress in conventional treatments is making steady and incremental gains to reduce heart failure mortality, there is a critical need to explore new therapeutic approaches. Gene therapy was initially applied in the clinical setting for inherited monogenic disorders. It is now apparent that gene therapy has broader potential that also includes acquired polygenic diseases, such as congestive heart failure. Recent advances in understanding of the molecular basis of myocardial dysfunction, together with the evolution of increasingly efficient gene transfer technology, has placed heart failure within reach of gene-based therapy. Furthermore, the recent successful and safe completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) along with the start of more recent phase 1 trials usher a new era for gene therapy for the treatment of heart failure. PMID:21371634

  10. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes

    PubMed Central

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F.

    2015-01-01

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners—the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)—and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic—and plant and algal—lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller’s ratchet—the origin of eukaryotic recombination, or sex—might have required surprisingly little evolutionary innovation. PMID:25733873

  11. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation. PMID:25733873

  12. Human gene transfer: Characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man

    SciTech Connect

    Kasid, A.; Morecki, S.; Aebersold, P.; Cornetta, K.; Culver, K.; Freeman, S.; Director, E.; Lotze, M.T.; Blaese, R.M.; Anderson, W.F.; Rosenberg, S.A. )

    1990-01-01

    Tumor-infiltrating lymphocytes (TILs) are cells generated from tumor suspensions cultured in interleukin 2 that can mediate cancer regression when adoptively transferred into mice or humans. Since TILs proliferate rapidly in vitro, recirculate, and preferentially localize at the tumor site in vivo, they provide an attractive model for delivery of exogenous genetic material into man. To determine whether efficient gene transfer into TILs is feasible. The authors transduced human TILs with the bacterial gene for neomycin-resistance (Neo{sup R}) using the retroviral vector N2. The transduced TIL populations were stable and polyclonal with respect to the intact Neo{sup R} gene integration and expressed high levels of neomycin phosphotransferase activity. The Neo{sup R} gene insertion did not alter the in vitro growth pattern and interleukin 2 dependence of the transduced TILs. Analyses of T-cell receptor gene rearrangement for {beta}- and {gamma}-chain genes revealed the oligoclonal nature of the TIL populations with no major change in the DNA rearrangement patterns or the levels of mRNA expression of the {beta} and {gamma} chains following transduction and selection of TILs in the neomycin analog G418. Human TILs expressed mRNA for tumor necrosis factors ({alpha} and {beta}) and interleukin 2 receptor P55. This pattern of cytokine-mRNA expression was not significantly altered following the transduction of TILs. The studies demonstrate the feasibility of TILs as suitable cellular vehicles for the introduction of therapeutic genes into patients receiving autologous TILs.

  13. Immunotherapy of Malignancy by in vivo Gene Transfer into Tumors

    NASA Astrophysics Data System (ADS)

    Plautz, Gregory E.; Yang, Zhi-Yong; Wu, Bei-Yue; Gao, Xiang; Huang, Leaf; Nabel, Gary J.

    1993-05-01

    The immune system confers protection against a variety of pathogens and contributes to the surveillance and destruction of neoplastic cells. Several cell types participate in the recognition and lysis of tumors, and appropriate immune stimulation provides therapeutic effects in malignancy. Foreign major histocompatibility complex (MHC) proteins also serve as a potent stimulus to the immune system. In this report, a foreign MHC gene was introduced directly into malignant tumors in vivo in an effort to stimulate tumor rejection. In contrast to previous attempts to induce tumor immunity by cell-mediated gene transfer, the recombinant gene was introduced directly into tumors in vivo. Expression of the murine class I H-2K^s gene within the CT26 mouse colon adenocarcinoma (H-2K^d) or the MCA 106 fibrosarcoma (H-2K^b) induced a cytotoxic T-cell response to H-2K^s and, more importantly, to other antigens present on unmodified tumor cells. This immune response attenuated tumor growth and caused complete tumor regression in many cases. Direct gene transfer in vivo can therefore induce cell-mediated immunity against specific gene products, which provides an immunotherapeutic effect for malignancy, and potentially can be applied to the treatment of cancer and infectious diseases in man.

  14. Identifying Mendelian disease genes with the Variant Effect Scoring Tool

    PubMed Central

    2013-01-01

    Background Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. Results We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. Conclusions Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is

  15. [Experimental study of vascular gene transfer using soluble stent].

    PubMed

    Huang, Z; Gou, J; Li, X

    1997-05-01

    We assessed the possibility of gene transfer into anastomotic arteries in vivo using soluble stent containing Adv5-CMV/LacZ. After being soaked in a high concentration solution of glucose containing Adv5-CMV (control group) or Adv5-CMV/LacZ (treatment group) for 30 minutes, we inserted soluble stents into the lumina of cut rat carotid arteries, and end-to-end anastomoses of cut rat carotid were performed with standard microvascular surgical technique. 16 rats were killed after two weeks, the segments of anastomotic carotid arteries were prepared for assessing beta-galactosidase activity and histochemical staining. In the control group, the anastomotic arteries did not have detectable level of beta-galactosidase expression. In the treatment group, the amount of beta-galactosidase expression was 9.80 x 10-3 u/g tissue. Microscopic examination of histochemically stained arteries demonstrated that gene transfered not only to endothelial cells but also to smooth muscle cells, and all anastomotic arteries were transfered in the treatment group, but none of arteries revealed blue in the control group. The results of this experimental study suggested that soluble stent be a new method of direct gene transfer into arteries in vivo. PMID:10374573

  16. Parallel Multifactor Dimensionality Reduction: A tool for the large scale analysis of gene-gene interactions

    PubMed Central

    Bush, William S.; Dudek, Scott M.; Ritchie, Marylyn D.

    2016-01-01

    Summary Parallel multifactor dimensionality reduction is a tool for large scale analysis of gene-gene and gene-environment interactions. The MDR algorithm was redesigned to allow an unlimited number of study subjects, total variables, and variable states, and to remove restrictions on the order of interactions being analyzed. In addition, the algorithm is markedly more efficient, with an approximately 150-fold decrease in runtime for equivalent analyses. To facilitate the processing of large datasets, the algorithm was made parallel. PMID:16809395

  17. Nano-Sized Sunflower Polycations As Effective Gene Transfer Vehicles.

    PubMed

    Cheng, Yilong; Wei, Hua; Tan, James-Kevin Y; Peeler, David J; Maris, Don O; Sellers, Drew L; Horner, Philip J; Pun, Suzie H

    2016-05-01

    The architecture of polycations plays an important role in both gene transfection efficiency and cytotoxicity. In this work, a new polymer, sunflower poly(2-dimethyl amino)ethyl methacrylate) (pDMAEMA), is prepared by atom transfer radical polymerization and employed as nucleic acid carriers compared to linear pDMAEMA homopolymer and comb pDMAEMA. The sunflower pDMAEMAs show higher IC50 , greater buffering capacity, and stronger binding capacity toward plasmid DNA than their linear and comb counterparts. In vitro transfection studies demonstrate that sunflower pDMAEMAs exhibit high transfection efficiency as well as relatively low cytotoxicity in complete growth medium. In vivo gene delivery by intraventricular injection to the brain shows that sunflower polymer delivers plasmid DNA more effectively than comb polymer. This study provides a new insight into the relationship between polymeric architecture and gene delivery capability, and as well as a useful means to design potent vectors for successful gene delivery. PMID:27061622

  18. Electroporation-Mediated Gene Transfer Directly to the Swine Heart

    PubMed Central

    Hargrave, Barbara; Downey, Harre; Strange, Robert; Murray, Len; Cinnamond, Cade; Lundberg, Cathryn; Israel, Annelise; Chen, Yeong-Jer; Marshall, William; Heller, Richard

    2012-01-01

    In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential therapeutic approach for the treatment of heart disease. In the current study, we investigated the use of in vivo electroporation for gene transfer using 3 different penetrating electrodes and one non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. Eight electric pulses synchronized to the rising phase of the R wave of the ECG were administered at varying pulse widths and field strengths following an injection of either a plasmid encoding luciferase or one encoding green fluorescent protein. Four sites on the anterior wall of the left ventricle were treated. Animals were euthanized 48 hours after injection and electroporation and gene expression was determined. Results were compared to sites in the heart that received plasmid injection but no electric pulses or were not treated. Gene expression was higher in all electroporated sites when compared to injection only sites demonstrating the robustness of this approach. Our results provide evidence that in vivo electroporation can be a safe and effective non-viral method for delivering genes to the heart, in vivo. PMID:22456328

  19. Characterization of an Ancient Lepidopteran Lateral Gene Transfer

    PubMed Central

    Wheeler, David; Redding, Amanda J.; Werren, John H.

    2013-01-01

    Bacteria to eukaryote lateral gene transfers (LGT) are an important potential source of material for the evolution of novel genetic traits. The explosion in the number of newly sequenced genomes provides opportunities to identify and characterize examples of these lateral gene transfer events, and to assess their role in the evolution of new genes. In this paper, we describe an ancient lepidopteran LGT of a glycosyl hydrolase family 31 gene (GH31) from an Enterococcus bacteria. PCR amplification between the LGT and a flanking insect gene confirmed that the GH31 was integrated into the Bombyx mori genome and was not a result of an assembly error. Database searches in combination with degenerate PCR on a panel of 7 lepidopteran families confirmed that the GH31 LGT event occurred deep within the Order approximately 65–145 million years ago. The most basal species in which the LGT was found is Plutella xylostella (superfamily: Yponomeutoidea). Array data from Bombyx mori shows that GH31 is expressed, and low dN/dS ratios indicates the LGT coding sequence is under strong stabilizing selection. These findings provide further support for the proposition that bacterial LGTs are relatively common in insects and likely to be an underappreciated source of adaptive genetic material. PMID:23533610

  20. Adenovirus serotype 5 hexon mediates liver gene transfer.

    PubMed

    Waddington, Simon N; McVey, John H; Bhella, David; Parker, Alan L; Barker, Kristeen; Atoda, Hideko; Pink, Rebecca; Buckley, Suzanne M K; Greig, Jenny A; Denby, Laura; Custers, Jerome; Morita, Takashi; Francischetti, Ivo M B; Monteiro, Robson Q; Barouch, Dan H; van Rooijen, Nico; Napoli, Claudio; Havenga, Menzo J E; Nicklin, Stuart A; Baker, Andrew H

    2008-02-01

    Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo. PMID:18267072

  1. Gene transfer from a parasitic flowering plant to a fern

    PubMed Central

    Davis, Charles C; Anderson, William R; Wurdack, Kenneth J

    2005-01-01

    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps from root-parasitic Loranthaceae. These transgenes are restricted to B. virginianum and occur across the range of the species. Molecular and life-history traits indicate that the transfer preceded the global expansion of B. virginianum, and that the latter may have happened very rapidly. This is the first report of HGT from an angiosperm to a fern, through either direct parasitism or the mediation of interconnecting fungal symbionts. PMID:16191635

  2. [Viral transfer of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gene therapy].

    PubMed

    Wędrowska, Ewelina; Wandtke, Tomasz; Dyczek, Andrzej; Woźniak, Joanna

    2015-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces carcinoma cell death through the extrinsic pathway of apoptosis. Preclinical trials of gene therapy have been conducted using viral transfer of the TRAIL transgene into prostate, bladder, breast, kidney, liver, non-small cell lung cancer and also glioblastoma cells. Experiments in vitro demonstrated the extensive apoptosis of target cells as well as frequent disease regression or remission. TRAIL transfer did not show any side effects, opposite to chemotherapy. Encouraging results of TRAIL-related gene therapy were observed in rheumatoid arthritis and type 1 diabetes. Adenoviral vectors (AdV) encoding TRAIL are the most promising tool in anti-tumor therapy. They have undergone numerous modifications by increasing transfection efficiency and transgene expression in target cells. However, only one clinical phase I trial has been performed. AdV encoding the TRAIL transgene caused local inflammation and apoptosis in patients with prostate cancer. PMID:27259213

  3. Detection of homologous horizontal gene transfer in SNP data

    Energy Science and Technology Software Center (ESTSC)

    2012-07-23

    We study the detection of mutations, sequencing errors, and homologous horizontal gene transfers (HGT) in a set of closely related microbial genomes. We base the model on single nucleotide polymorphisms (SNP's) and break the genomes into blocks to handle the rearrangement problem. Then we apply a synamic programming algorithm to model whether changes within each block are likely a result of mutations, sequencing errors, or HGT.

  4. RADMC: A 2-D Continuum Radiative Transfer Tool

    NASA Astrophysics Data System (ADS)

    Dullemond, C. P.

    2011-08-01

    RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.

  5. Selective Gene Transfer to the Retina Using Intravitreal Ultrasound Irradiation

    PubMed Central

    Sonoda, Shozo; Tachibana, Katsuro; Yamashita, Toshifumi; Shirasawa, Makoto; Terasaki, Hiroto; Uchino, Eisuke; Suzuki, Ryo; Maruyama, Kazuo; Sakamoto, Taiji

    2012-01-01

    This paper aims to evaluate the efficacy of intravitreal ultrasound (US) irradiation for green fluorescent protein (GFP) plasmid transfer into the rabbit retina using a miniature US transducer. Intravitreal US irradiation was performed by a slight modification of the transconjunctival sutureless vitrectomy system utilizing a small probe. After vitrectomy, the US probe was inserted through a scleral incision. A mixture of GFP plasmid (50 μL) and bubble liposomes (BLs; 50 μL) was injected into the vitreous cavity, and US was generated to the retina using a SonoPore 4000. The control group was not exposed to US. After 72 h, the gene-transfer efficiency was quantified by counting the number of GFP-positive cells. The retinas that received plasmid, BL, and US showed a significant increase in the number (average ± SEM) of GFP-positive cells (32 ± 4.9; n = 7; P < 0.01 ). No GFP-positive cells were observed in the control eyes (n = 7). Intravitreal retinal US irradiation can transfer the GFP plasmid into the retina without causing any apparent damage. This procedure could be used to transfer genes and drugs directly to the retina and therefore has potential therapeutic value. PMID:22518277

  6. Dynamic monitoring of horizontal gene transfer in soil

    NASA Astrophysics Data System (ADS)

    Cheng, H. Y.; Masiello, C. A.; Silberg, J. J.; Bennett, G. N.

    2015-12-01

    Soil microbial gene expression underlies microbial behaviors (phenotypes) central to many aspects of C, N, and H2O cycling. However, continuous monitoring of microbial gene expression in soils is challenging because genetically-encoded reporter proteins widely used in the lab are difficult to deploy in soil matrices: for example, green fluorescent protein cannot be easily visualized in soils, even in the lab. To address this problem we have developed a reporter protein that releases small volatile gases. Here, we applied this gas reporter in a proof-of-concept soil experiment, monitoring horizontal gene transfer, a microbial activity that alters microbial genotypes and phenotypes. Horizontal gene transfer is central to bacterial evolution and adaptation and is relevant to problems such as the spread of antibiotic resistance, increasing metal tolerance in superfund sites, and bioremediation capability of bacterial consortia. This process is likely to be impacted by a number of matrix properties not well-represented in the petri dish, such as microscale variations in water, nutrients, and O2, making petri-dish experiments a poor proxy for environmental processes. We built a conjugation system using synthetic biology to demonstrate the use of gas-reporting biosensors in safe, lab-based biogeochemistry experiments, and here we report the use of these sensors to monitor horizontal gene transfer in soils. Our system is based on the F-plasmid conjugation in Escherichia coli. We have found that the gas signal reports on the number of cells that acquire F-plasmids (transconjugants) in a loamy Alfisol collected from Kellogg Biological Station. We will report how a gas signal generated by transconjugants varies with the number of F-plasmid donor and acceptor cells seeded in a soil, soil moisture, and soil O2 levels.

  7. [Synthesis of new gene-loaded microbubbles serve as gene delivery vehicle applied in reporter gene transfer into cardiac myocytes].

    PubMed

    Wang, Guozhong; Hu, Shenjiang; Zheng, Zhelan; Sun, Jian; Zheng, Xia; Zhu, Zhaohui; Li, Jiang; Yao, Yumei

    2006-08-01

    To improve the stability and gene-carried capability of gene-attached microbubbles, the method for manufacture of albumin microbubbles was modified and new gene-loaded microbubbles were synthesized by incorporated gene-PEI complex into the shell of microbubbles. Agarose gel electrophoresis and bacteria transformation showed that PEI had the ability to provide the protection of plasmid DNA from ultrasonic degradation. The new gene-loaded microbubbles exhibited excellent acoustical and hemorheological properties. Moreover, they could carry more plasmid DNA than gene-attached microbubbles. beta-galactosidase plasmid transfection into cardiac myocytes was performed by using ultrasound targeted destruction of new gene-loaded microbubbles or gene-attached microbubbles. Gene expression in cardiac myocytes was detected by beta-galactosidase in situ staining and quantitive assay. It was shown that beta-galactosidase activity in cardiac myocytes was enhanced 107-fold by ultrasonic destruction of gene-loaded microbubbles compared with naked plasmid transfection and new gene-loaded microbubbles resulted in 6.85-fold increase in beta-galactosidase activity compared with optimal transfection mediated by gene-attached microbubbles. These results suggested that ultrasonic destruction of the gene-loaded microbubbles can enhance the cardiac myocytes exogenous gene transfer efficiency significantly and new gene-loaded microbubbles is an efficient and safe gene delivery vehicle. PMID:17002125

  8. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory

    PubMed Central

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G.; Van Leeuwen, Thomas

    2016-01-01

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. PMID:27307274

  9. Evidence of horizontal gene transfer between obligate leaf nodule symbionts.

    PubMed

    Pinto-Carbó, Marta; Sieber, Simon; Dessein, Steven; Wicker, Thomas; Verstraete, Brecht; Gademann, Karl; Eberl, Leo; Carlier, Aurelien

    2016-09-01

    Bacteria of the genus Burkholderia establish an obligate symbiosis with plant species of the Rubiaceae and Primulaceae families. The bacteria, housed within the leaves, are transmitted hereditarily and have not yet been cultured. We have sequenced and compared the genomes of eight bacterial leaf nodule symbionts of the Rubiaceae plant family. All of the genomes exhibit features consistent with genome erosion. Genes potentially involved in the biosynthesis of kirkamide, an insecticidal C7N aminocyclitol, are conserved in most Rubiaceae symbionts. However, some have partially lost the kirkamide pathway due to genome erosion and are unable to synthesize the compound. Kirkamide synthesis is therefore not responsible for the obligate nature of the symbiosis. More importantly, we find evidence of intra-clade horizontal gene transfer (HGT) events affecting genes of the secondary metabolism. This indicates that substantial gene flow can occur at the early stages following host restriction in leaf nodule symbioses. We propose that host-switching events and plasmid conjugative transfers could have promoted these HGTs. This genomic analysis of leaf nodule symbionts gives, for the first time, new insights in the genome evolution of obligate symbionts in their early stages of the association with plants. PMID:26978165

  10. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    PubMed

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-01-01

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. PMID:27307274

  11. HGTree: database of horizontally transferred genes determined by tree reconciliation

    PubMed Central

    Jeong, Hyeonsoo; Sung, Samsun; Kwon, Taehyung; Seo, Minseok; Caetano-Anollés, Kelsey; Choi, Sang Ho; Cho, Seoae; Nasir, Arshan; Kim, Heebal

    2016-01-01

    The HGTree database provides putative genome-wide horizontal gene transfer (HGT) information for 2472 completely sequenced prokaryotic genomes. This task is accomplished by reconstructing approximate maximum likelihood phylogenetic trees for each orthologous gene and corresponding 16S rRNA reference species sets and then reconciling the two trees under parsimony framework. The tree reconciliation method is generally considered to be a reliable way to detect HGT events but its practical use has remained limited because the method is computationally intensive and conceptually challenging. In this regard, HGTree (http://hgtree.snu.ac.kr) represents a useful addition to the biological community and enables quick and easy retrieval of information for HGT-acquired genes to better understand microbial taxonomy and evolution. The database is freely available and can be easily scaled and updated to keep pace with the rapid rise in genomic information. PMID:26578597

  12. PCR-based detection of gene transfer vectors: application to gene doping surveillance.

    PubMed

    Perez, Irene C; Le Guiner, Caroline; Ni, Weiyi; Lyles, Jennifer; Moullier, Philippe; Snyder, Richard O

    2013-12-01

    Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR. PMID:23912835

  13. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  14. Bacterial gene transfer by natural genetic transformation in the environment.

    PubMed Central

    Lorenz, M G; Wackernagel, W

    1994-01-01

    Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation. PMID:7968924

  15. How Toddlers Acquire and Transfer Tool Knowledge: Developmental Changes and the Role of Executive Functions

    ERIC Educational Resources Information Center

    Pauen, Sabina; Bechtel-Kuehne, Sabrina

    2016-01-01

    This report investigates tool learning and its relations to executive functions (EFs) in toddlers. In Study 1 (N = 93), 18-, 20-, 22-, and 24-month-old children learned equally well to choose a correct tool from observation, whereas performance based on feedback improved with age. Knowledge transfer showed significant progress after 22 months of…

  16. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    PubMed Central

    Laganà, Alessandro; Shasha, Dennis; Croce, Carlo Maria

    2014-01-01

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches. PMID:25566532

  17. In vivo Cytokine Gene Transfer by Gene Gun Reduces Tumor Growth in Mice

    NASA Astrophysics Data System (ADS)

    Sun, Wenn H.; Burkholder, Joseph K.; Sun, Jian; Culp, Jerilyn; Turner, Joel; Lu, Xing G.; Pugh, Thomas D.; Ershler, William B.; Yang, Ning-Sun

    1995-03-01

    Implantation of tumor cells modified by in vitro cytokine gene transfer has been shown by many investigators to result in potent in vivo antitumor activities in mice. Here we describe an approach to tumor immunotherapy utilizing direct transfection of cytokine genes into tumorbearing animals by particle-mediated gene transfer. In vivo transfection of the human interleukin 6 gene into the tumor site reduced methylcholanthrene-induced fibrosarcoma growth, and a combination of murine tumor necrosis factor α and interferon γ genes inhibited growth of a renal carcinoma tumor model (Renca). In addition, treatment with murine interleukin 2 and interferon γ genes prolonged the survival of Renca tumor-bearing mice and resulted in tumor eradication in 25% of the test animals. Transgene expression was demonstrated in treated tissues by ELISA and immunohistochemical analysis. Significant serum levels of interleukin 6 and interferon γ were detected, demonstrating effective secretion of transgenic proteins from treated skin into the bloodstream. This in vivo cytokine gene therapy approach provides a system for evaluating the antitumor properties of various cytokines in different tumor models and has potential utility for human cancer gene therapy.

  18. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.

    PubMed

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-10-01

    Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. PMID:26412136

  19. Optimizing in vivo gene transfer into mouse corpus cavernosum by use of surface electroporation

    PubMed Central

    Song, Kang-Moon; Choi, Min Ji; Kwon, Mi-Hye; Ghatak, Kalyan; Park, Soo-Hwan; Ryu, Dong-Soo; Ryu, Ji-Kan

    2015-01-01

    Purpose Electroporation is known to enhance the efficiency of gene transfer through a transient increase in cell membrane permeability. The aim of this study was to determine the optimal conditions for in vivo electroporation-mediated gene delivery into mouse corpus cavernosum. Materials and Methods Diabetes was induced in C57BL/6 mice by intraperitoneal injections of streptozotocin. After intracavernous injection of pCMV-Luc (100 µg/40 µL), different electroporation settings (5-50 V, 8-16 pulses with a duration of 40-100 ms) were applied to the penis to establish the optimal conditions for electroporation. Gene expression was evaluated by luciferase assay. We also assessed the undesired consequences of electroporation by visual inspection and hematoxylin-eosin staining of penile tissue. Results Electroporation profoundly induced gene expression in the corpus cavernosum tissue of normal mice in a voltage-dependent manner. We observed electrical burn scars in the penis of normal mice who received electroporation with eight 40-ms pulses at a voltage of 50 V and sixteen 40-ms pulses, eight 100-ms pulses, and sixteen 100-ms pulses at a voltage of 30 V. No detectable burn scars were noted in normal mice stimulated with eight 40-ms pulses at a voltage of 30 V. Electroporation also significantly induced gene expression in diabetic mice stimulated with 40-ms pulse at a voltage of 30 V without injury to the penis. Conclusions We have established the optimal electroporation conditions for maximizing gene transfer into the corpus cavernosum of mice while avoiding damage to the erectile tissue. The electroporation-mediated gene delivery technique will be a valuable tool for gene therapy in the field of erectile dysfunction. PMID:25763123

  20. Plant-food and tool transfer among savanna chimpanzees at Fongoli, Senegal.

    PubMed

    Pruetz, Jill D; Lindshield, Stacy

    2012-04-01

    Transferring food is considered a defining characteristic of humans, as such behavior is relatively uncommon in other animal species save for kin-based transfer. Chimpanzees (Pan troglodytes) are one exception, as they commonly transfer meat among nonrelatives but rarely transfer other resources. New observations at Fongoli, Senegal, show habitual transfer of wild-plant foods and other non-meat resources among community members beyond transfers from mother to offspring. We explore various explanations for these behaviors with a focus on age- and sex-class patterns in transfer events. In a total of 27 of 41 cases, male chimpanzees at Fongoli transferred wild-plant foods or tools to females. Most other cases involved transfer among males or males taking food from females. In light of male-female transfer patterns at Fongoli, we examine four hypotheses that have been applied to food transfer in apes: (1) testing for male-coercive tendency (van Noordwijk and van Schaik, Behav Ecol Sociobiol 63:883-890, 2009), (2) costly signaling (Hockings et al. PLoS ONE 2:e886, 2007), (3) food-for-sex (Gomes and Boesch, PLoS ONE 4:5116, 2009), and (4) sharing-under-pressure (Gilby, Anim Behav 71:953-963, 2006). We also consider hypotheses posed to explain transfer among callitrichids, where such behavior is more common (Ruiz-Miranda et al. Am J Primatol 48:305-320, 1999). Finally, we examine variables such as patch and food size and food transport. We discuss our findings relative to general patterns of non-meat transfer in Pan and examine them in the context of chimpanzee sociality in particular. We then contrast chimpanzee species and subspecies in terms of non-meat food and tool transfer and address the possibility that a savanna environment contributes to the unusual pattern observed at Fongoli. PMID:22101639

  1. Interaction between Conjugative and Retrotransposable Elements in Horizontal Gene Transfer

    PubMed Central

    Novikova, Olga; Smith, Dorie; Hahn, Ingrid; Beauregard, Arthur; Belfort, Marlene

    2014-01-01

    Mobile genetic elements either encode their own mobilization machineries or hijack them from other mobile elements. Multiple classes of mobile elements often coexist within genomes and it is unclear whether they have the capacity to functionally interact and even collaborate. We investigate the possibility that molecular machineries of disparate mobile elements may functionally interact, using the example of a retrotransposon, in the form of a mobile group II intron, found on a conjugative plasmid pRS01 in Lactococcus lactis. This intron resides within the pRS01 ltrB gene encoding relaxase, the enzyme required for nicking the transfer origin (oriT) for conjugal transmission of the plasmid into a recipient cell. Here, we show that relaxase stimulates both the frequency and diversity of retrotransposition events using a retromobility indicator gene (RIG), and by developing a high-throughput genomic retrotransposition detection system called RIG-Seq. We demonstrate that LtrB relaxase not only nicks ssDNA of its cognate oriT in a sequence- and strand-specific manner, but also possesses weak off-target activity. Together, the data support a model in which the two different mobile elements, one using an RNA-based mechanism, the other using DNA-based transfer, do functionally interact. Intron splicing facilitates relaxase expression required for conjugation, whereas relaxase introduces spurious nicks in recipient DNA that stimulate both the frequency of intron mobility and the density of events. We hypothesize that this functional interaction between the mobile elements would promote horizontal conjugal gene transfer while stimulating intron dissemination in the donor and recipient cells. PMID:25474706

  2. Genes or culture: are mitochondrial genes associated with tool use in bottlenose dolphins (Tursiops sp.)?

    PubMed

    Bacher, K; Allen, S; Lindholm, A K; Bejder, L; Krützen, M

    2010-09-01

    Some bottlenose dolphins use marine sponges as foraging tools ('sponging'), which appears to be socially transmitted from mothers mainly to their female offspring. Yet, explanations alternative to social transmission have been proposed. Firstly, the propensity to engage in sponging might be due to differences in diving ability caused by variation of mitochondrial genes coding for proteins of the respiratory chain. Secondly, the cultural technique of sponging may have selected for changes in these same genes (or other autosomal ones) among its possessors. We tested whether sponging can be predicted by mitochondrial coding genes and whether these genes are under selection. In 29 spongers and 54 non-spongers from two study sites, the non-coding haplotype at the HVRI locus was a significant predictor of sponging, whereas the coding mitochondrial genes were not. There was no evidence of selection in the investigated genes. Our study shows that mitochondrial gene variation is unlikely to be a viable alternative to cultural transmission as a primary driver of tool use in dolphins. PMID:20582623

  3. The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer

    SciTech Connect

    Slattery, S. R.; Wilson, P. P. H.; Pawlowski, R. P.

    2013-07-01

    The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed in a parallel simulation. By repartitioning both domains such that they have the same geometric domain on each parallel process, efficient and load balanced search operations and data transfer can be performed at a desirable algorithmic time complexity with low communication overhead relative to other types of mapping algorithms. With the increased development efforts in multiphysics simulation and other multiple mesh and geometry problems, generating parallel topology maps for transferring fields and other data between geometric domains is a common operation. The algorithms used to generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK are described with an example using a conjugate heat transfer calculation and thermal coupling with a neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of algorithmic complexity that shows good scaling on 0(1 x 104) cores for topology map generation and excellent scaling on 0(1 x 105) cores for the data transfer operation with meshes of O(1 x 109) elements. (authors)

  4. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  5. Site-Specific Gene Expression in Vivo by Direct Gene Transfer into the Arterial Wall

    NASA Astrophysics Data System (ADS)

    Nabel, Elizabeth G.; Plautz, Gregory; Nabel, Gary J.

    1990-09-01

    A recombinant β-galactosidase gene has been expressed in a specific arterial segment in vivo by direct infection with a murine amphotropic retroviral vector or by DNA transfection with the use of liposomes. Several cell types in the vessel wall were transduced, including endothelial and vascular smooth muscle cells. After retroviral infection, a recombinant reporter gene was expressed for at least 5 months, and no helper virus was detected. Recombinant gene expression achieved by direct retroviral infection or liposome-mediated DNA transfection was limited to the site of infection and was absent from liver, lung, kidney, and spleen. These results demonstrate that site-specific gene expression can be achieved by direct gene transfer in vivo and could be applied to the treatment of such human diseases as atherosclerosis or cancer.

  6. Laterally Transferred Gene Recruited as a Venom in Parasitoid Wasps.

    PubMed

    Martinson, Ellen O; Martinson, Vincent G; Edwards, Rachel; Mrinalini; Werren, John H

    2016-04-01

    Parasitoid wasps use venom to manipulate the immunity and metabolism of their host insects in a variety of ways to provide resources for their offspring. Yet, how genes are recruited and evolve to perform venom functions remain open questions. A recently recognized source of eukaryotic genome innovation is lateral gene transfer (LGT). Glycoside hydrolase family 19 (GH19) chitinases are widespread in bacteria, microsporidia, and plants where they are used in nutrient acquisition or defense, but have previously not been known in metazoans. In this study, a GH19 chitinase LGT is described from the unicellular microsporidia/Rozella clade into parasitoid wasps of the superfamily Chalcidoidea, where it has become recruited as a venom protein. The GH19 chitinase is present in 15 species of chalcidoid wasps representing four families, and phylogenetic analysis indicates that it was laterally transferred near or before the origin of Chalcidoidea (∼95 Ma). The GH19 chitinase gene is highly expressed in the venom gland of at least seven species, indicating a role in the complex host manipulations performed by parasitoid wasp venom. RNAi knockdown in the model parasitoid Nasonia vitripennis reveals that-following envenomation-the GH19 chitinase induces fly hosts to upregulate genes involved in an immune response to fungi. A second, independent LGT of GH19 chitinase from microsporidia into mosquitoes was also found, also supported by phylogenetic reconstructions. Besides these two LGT events, GH19 chitinase is not found in any other sequenced animal genome, or in any fungi outside the microsporidia/Rozella clade. PMID:26715630

  7. Facilitating knowledge transfer: decision support tools in environment and health

    PubMed Central

    2012-01-01

    The HENVINET Health and Environment Network aimed to enhance the use of scientific knowledge in environmental health for policy making. One of the goals was to identify and evaluate Decision Support Tools (DST) in current use. Special attention was paid to four “priority” health issues: asthma and allergies, cancer, neurodevelopment disorders, and endocrine disruptors. We identified a variety of tools that are used for decision making at various levels and by various stakeholders. We developed a common framework for information acquisition about DSTs, translated this to a database structure and collected the information in an online Metadata Base (MDB). The primary product is an open access web-based MDB currently filled with 67 DSTs, accessible through the HENVINET networking portal http://www.henvinet.eu and http://henvinet.nilu.no. Quality assurance and control of the entries and evaluation of requirements to use the DSTs were also a focus of the work. The HENVINET DST MDB is an open product that enables the public to get basic information about the DSTs, and to search the DSTs using pre-designed attributes or free text. Registered users are able to 1) review and comment on existing DSTs; 2) evaluate each DST’s functionalities, and 3) add new DSTs, or change the entry for their own DSTs. Assessment of the available 67 DSTs showed: 1) more than 25% of the DSTs address only one pollution source; 2) 25% of the DSTs address only one environmental stressor; 3) almost 50% of the DSTs are only applied to one disease; 4) 41% of the DSTs can only be applied to one decision making area; 5) 60% of the DSTs’ results are used only by national authority and/or municipality/urban level administration; 6) almost half of the DSTs are used only by environmental professionals and researchers. This indicates that there is a need to develop DSTs covering an increasing number of pollution sources, environmental stressors and health end points, and considering links to other

  8. Facilitating knowledge transfer: decision support tools in environment and health.

    PubMed

    Liu, Hai-Ying; Bartonova, Alena; Neofytou, Panagiotis; Yang, Aileen; Kobernus, Michael J; Negrenti, Emanuele; Housiadas, Christos

    2012-01-01

    The HENVINET Health and Environment Network aimed to enhance the use of scientific knowledge in environmental health for policy making. One of the goals was to identify and evaluate Decision Support Tools (DST) in current use. Special attention was paid to four "priority" health issues: asthma and allergies, cancer, neurodevelopment disorders, and endocrine disruptors.We identified a variety of tools that are used for decision making at various levels and by various stakeholders. We developed a common framework for information acquisition about DSTs, translated this to a database structure and collected the information in an online Metadata Base (MDB).The primary product is an open access web-based MDB currently filled with 67 DSTs, accessible through the HENVINET networking portal http://www.henvinet.eu and http://henvinet.nilu.no. Quality assurance and control of the entries and evaluation of requirements to use the DSTs were also a focus of the work. The HENVINET DST MDB is an open product that enables the public to get basic information about the DSTs, and to search the DSTs using pre-designed attributes or free text. Registered users are able to 1) review and comment on existing DSTs; 2) evaluate each DST's functionalities, and 3) add new DSTs, or change the entry for their own DSTs. Assessment of the available 67 DSTs showed: 1) more than 25% of the DSTs address only one pollution source; 2) 25% of the DSTs address only one environmental stressor; 3) almost 50% of the DSTs are only applied to one disease; 4) 41% of the DSTs can only be applied to one decision making area; 5) 60% of the DSTs' results are used only by national authority and/or municipality/urban level administration; 6) almost half of the DSTs are used only by environmental professionals and researchers. This indicates that there is a need to develop DSTs covering an increasing number of pollution sources, environmental stressors and health end points, and considering links to other 'Driving

  9. CXCR4 gene transfer prevents pressure overload induced heart failure

    PubMed Central

    LaRocca, Thomas J.; Jeong, Dongtak; Kohlbrenner, Erik; Lee, Ahyoung; Chen, JiQiu; Hajjar, Roger J.; Tarzami, Sima T.

    2012-01-01

    Stem cell and gene therapies are being pursued as strategies for repairing damaged cardiac tissue following myocardial infarction in an attempt to prevent heart failure. The chemokine receptor-4 (CXCR4) and its ligand, CXCL12, play a critical role in stem cell recruitment post-acute myocardial infarction. Whereas progenitor cell migration via the CXCL12/CXCR4 axis is well characterized, little is known about the molecular mechanisms of CXCR4 mediated modulation of cardiac hypertrophy and failure. We used gene therapy to test the effects of CXCR4 gene delivery on adverse ventricular remodeling due to pressure overload. We assessed the effect of cardiac overexpression of CXCR4 during trans-aortic constriction (TAC) using a cardiotropic adeno-associated viral vector (AAV9) carrying the CXCR4 gene. Cardiac overexpression of CXCR4 in mice with pressure overload prevented ventricular remodeling, preserved capillary density and maintained function as determined by echocardiography and in vivo hemodynamics. In isolated adult rat cardiac myocytes, CXCL12 treatment prevented isoproterenol induced hypertrophy and interrupted the calcineurin/NFAT pathway. Finally, a complex involving the L-type calcium channel, β2-adenoreceptor, and CXCR4 (Cav1.2/β2AR/CXCR4) was identified in healthy cardiac myocytes and was shown to dissociate as a consequence of heart failure. CXCR4 administered to the heart via gene transfer prevents pressure overload induced heart failure. The identification of CXCR4 participation in a Cav1.2-β2AR regulatory complex provides further insight into the mechanism by which CXCR4 modulates calcium homeostasis and chronic pressure overload responses in the cardiac myocyte. Together these results suggest AAV9.CXCR4 gene therapy is a potential therapeutic approach for congestive heart failure. PMID:22668785

  10. Endothelial nitric oxide synthase gene transfer enhances dilation of newborn piglet pulmonary arteries.

    PubMed

    Aschner, J L; Kovacs, N; Perciaccante, J V; Figueroa, J P; Thrikawala, N; Robins, G S; Busija, D W

    1999-07-01

    We determined the expression and functional correlate of in vitro transfection with a recombinant adenoviral vector encoding the gene for bovine endothelial nitric oxide synthase (AdCMVeNOS) or Escherichia coli beta-galactosidase (AdCMVLacZ) in pulmonary endothelial cells (EC), vascular smooth muscle cells (VSMC), and pulmonary arteries (PA) from newborn piglets. AdCMVeNOS and AdCMVeLacZ vectors, grown in 293-cell monolayers, were purified by double-cesium gradient ultracentrifugation. Cell cultures and PA were incubated with increasing vector titers for 30 or 60 min, followed by incubation in fresh medium for 18 h at 37 degrees C. LacZ expression was assessed by histochemical staining; eNOS expression was evaluated by Western blot analysis. Functional eNOS expression was determined by measurement of cGMP and quantification of the relaxation response to bradykinin (BK). In PA, LacZ transgene expression was preferentially localized to the adventitia and endothelium. Increased eNOS protein expression was observed in EC and VSMC transfected with AdCMVeNOS. Functional studies revealed increased cGMP abundance in cultured cells and enhanced relaxation to BK in AdCMVeNOS-transfected PA. These studies demonstrate that gene transfer with AdCMVeNOS results in functional expression and altered vasoactive responses in the neonatal pulmonary vasculature. Gene transfer with replication-deficient adenovirus vectors is a useful tool for the study of targeted genes in vascular biology. PMID:10409217

  11. Resistance Gene Transfer during Treatments for Experimental Avian Colibacillosis

    PubMed Central

    Dheilly, Alexandra; Le Devendec, Laëtitia; Mourand, Gwenaëlle; Bouder, Axelle; Jouy, Eric

    2012-01-01

    An experiment was conducted in animal facilities to compare the impacts of four avian colibacillosis treatments—oxytetracycline (OTC), trimethoprim-sulfadimethoxine (SXT), amoxicillin (AMX), or enrofloxacin (ENR)—on the susceptibility of Escherichia coli in broiler intestinal tracts. Birds were first orally inoculated with rifampin-resistant E. coli strains bearing plasmid genes conferring resistance to fluoroquinolones (qnr), cephalosporins (blaCTX-M or blaFOX), trimethoprim-sulfonamides, aminoglycosides, or tetracyclines. Feces samples were collected before, during, and after antimicrobial treatments. The susceptibilities of E. coli strains were studied, and resistance gene transfer was analyzed. An increase in the tetracycline-resistant E. coli population was observed only in OTC-treated birds, whereas multiresistant E. coli was detected in the dominant E. coli populations of SXT-, AMX-, or ENR-treated birds. Most multiresistant E. coli strains were susceptible to rifampin and exhibited various pulsed-field gel electrophoresis profiles, suggesting the transfer of one of the multiresistance plasmids from the inoculated strains to other E. coli strains in the intestinal tract. In conclusion, this study clearly illustrates how, in E. coli, “old” antimicrobials may coselect antimicrobial resistance to recent and critical molecules. PMID:21986830

  12. Lateral gene transfers have polished animal genomes: lessons from nematodes

    PubMed Central

    Danchin, Etienne G. J.; Rosso, Marie-Noëlle

    2012-01-01

    It is now accepted that lateral gene transfers (LGT), have significantly contributed to the composition of bacterial genomes. The amplitude of the phenomenon is considered so high in prokaryotes that it challenges the traditional view of a binary hierarchical tree of life to correctly represent the evolutionary history of species. Given the plethora of transfers between prokaryotes, it is currently impossible to infer the last common ancestral gene set for any extant species. For this ensemble of reasons, it has been proposed that the Darwinian binary tree of life may be inappropriate to correctly reflect the actual relations between species, at least in prokaryotes. In contrast, the contribution of LGT to the composition of animal genomes is less documented. In the light of recent analyses that reported series of LGT events in nematodes, we discuss the importance of this phenomenon in the evolutionary history and in the current composition of an animal genome. Far from being neutral, it appears that besides having contributed to nematode genome contents, LGT have favored the emergence of important traits such as plant-parasitism. PMID:22919619

  13. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  14. Amoebozoa possess lineage-specific globin gene repertoires gained by individual horizontal gene transfers.

    PubMed

    Dröge, Jasmin; Buczek, Dorota; Suzuki, Yutaka; Makałowski, Wojciech

    2014-01-01

    The Amoebozoa represent a clade of unicellular amoeboid organisms that display a wide variety of lifestyles, including free-living and parasitic species. For example, the social amoeba Dictyostelium discoideum has the ability to aggregate into a multicellular fruiting body upon starvation, while the pathogenic amoeba Entamoeba histolytica is a parasite of humans. Globins are small heme proteins that are present in almost all extant organisms. Although several genomes of amoebozoan species have been sequenced, little is known about the phyletic distribution of globin genes within this phylum. Only two flavohemoglobins (FHbs) of D. discoideum have been reported and characterized previously while the genomes of Entamoeba species are apparently devoid of globin genes. We investigated eleven amoebozoan species for the presence of globin genes by genomic and phylogenetic in silico analyses. Additional FHb genes were identified in the genomes of four social amoebas and the true slime mold Physarum polycephalum. Moreover, a single-domain globin (SDFgb) of Hartmannella vermiformis, as well as two truncated hemoglobins (trHbs) of Acanthamoeba castellanii were identified. Phylogenetic evidence suggests that these globin genes were independently acquired via horizontal gene transfer from some ancestral bacteria. Furthermore, the phylogenetic tree of amoebozoan FHbs indicates that they do not share a common ancestry and that a transfer of FHbs from bacteria to amoeba occurred multiple times. PMID:25013378

  15. The GATO gene annotation tool for research laboratories.

    PubMed

    Fujita, A; Massirer, K B; Durham, A M; Ferreira, C E; Sogayar, M C

    2005-11-01

    Large-scale genome projects have generated a rapidly increasing number of DNA sequences. Therefore, development of computational methods to rapidly analyze these sequences is essential for progress in genomic research. Here we present an automatic annotation system for preliminary analysis of DNA sequences. The gene annotation tool (GATO) is a Bioinformatics pipeline designed to facilitate routine functional annotation and easy access to annotated genes. It was designed in view of the frequent need of genomic researchers to access data pertaining to a common set of genes. In the GATO system, annotation is generated by querying some of the Web-accessible resources and the information is stored in a local database, which keeps a record of all previous annotation results. GATO may be accessed from everywhere through the internet or may be run locally if a large number of sequences are going to be annotated. It is implemented in PHP and Perl and may be run on any suitable Web server. Usually, installation and application of annotation systems require experience and are time consuming, but GATO is simple and practical, allowing anyone with basic skills in informatics to access it without any special training. GATO can be downloaded at [http://mariwork.iq.usp.br/gato/]. Minimum computer free space required is 2 MB. PMID:16258624

  16. Genome-wide experimental determination of barriers to horizontal gene transfer.

    PubMed

    Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J; Francino, M Pilar; Bork, Peer; Rubin, Edward M

    2007-11-30

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to that of another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into Escherichia coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Our data suggest that toxicity to the host inhibited transfer regardless of the species of origin and that increased gene dosage and associated increased expression may be a predominant cause for transfer failure. Although these experimental studies examined transfer solely into E. coli, a computational analysis of gene-transfer rates across available bacterial and archaeal genomes supports that the barriers observed in our study are general across the tree of life. PMID:17947550

  17. Genome-wide experimental determination of barriers to horizontal gene transfer

    SciTech Connect

    Rubin, Edward; Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J.; Francino, M. Pilar; Bork, Peer; Rubin, Edward M.

    2007-09-24

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into E. coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Their toxicity to the host inhibited transfer regardless of the species of origin and our data suggest that increased gene dosage and associated increased expression is a predominant cause for transfer failure. While these experimental studies examined transfer solely into E. coli, a computational analysis of gene transfer rates across available bacterial and archaeal genomes indicates that the barriers observed in our study are general across the tree of life.

  18. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene.

    PubMed

    Sobreira, Nara; Schiettecatte, François; Valle, David; Hamosh, Ada

    2015-10-01

    Here, we describe an overview and update on GeneMatcher (http://www.genematcher.org), a freely accessible Web-based tool developed as part of the Baylor-Hopkins Center for Mendelian Genomics. We created GeneMatcher with the goal of identifying additional individuals with rare phenotypes who had variants in the same candidate disease gene. We also wanted to facilitate connections to basic scientists working on orthologous genes in model systems with the goal of connecting their work to human Mendelian phenotypes. Meeting these goals will enhance the identification of novel Mendelian genes. Launched in September, 2013, GeneMatcher now has 2,178 candidate genes from 486 submitters spread across 38 countries entered in the database (June 1, 2015). GeneMatcher is also part of the Matchmaker Exchange (http://matchmakerexchange.org/) with an Application Programing Interface enabling submitters to query other databases of genetic variants and phenotypes without having to create accounts and data entries in multiple systems. PMID:26220891

  19. GeneMatcher: A Matching Tool for Connecting Investigators with an Interest in the Same Gene

    PubMed Central

    Sobreira, Nara; Schiettecatte, François; Valle, David; Hamosh, Ada

    2016-01-01

    Here, we describe an overview and update on GeneMatcher (http://www.genematcher.org), a freely accessible Web-based tool developed as part of the Baylor-Hopkins Center for Mendelian Genomics. We created GeneMatcher with the goal of identifying additional individuals with rare phenotypes who had variants in the same candidate disease gene. We also wanted to facilitate connections to basic scientists working on orthologous genes in model systems with the goal of connecting their work to human Mendelian phenotypes. Meeting these goals will enhance the identification of novel Mendelian genes. Launched in September, 2013, Gene-Matcher now has 2,178 candidate genes from 486 submitters spread across 38 countries entered in the database (June 1, 2015). GeneMatcher is also part of the Match-maker Exchange (http://matchmakerexchange.org/) with an Application Programing Interface enabling submitters to query other databases of genetic variants and phenotypes without having to create accounts and data entries in multiple systems. PMID:26220891

  20. Area-Specific Cell Stimulation via Surface-Mediated Gene Transfer Using Apatite-Based Composite Layers

    PubMed Central

    Yazaki, Yushin; Oyane, Ayako; Sogo, Yu; Ito, Atsuo; Yamazaki, Atsushi; Tsurushima, Hideo

    2015-01-01

    Surface-mediated gene transfer systems using biocompatible calcium phosphate (CaP)-based composite layers have attracted attention as a tool for controlling cell behaviors. In the present study we aimed to demonstrate the potential of CaP-based composite layers to mediate area-specific dual gene transfer and to stimulate cells on an area-by-area basis in the same well. For this purpose we prepared two pairs of DNA–fibronectin–apatite composite (DF-Ap) layers using a pair of reporter genes and pair of differentiation factor genes. The results of the area-specific dual gene transfer successfully demonstrated that the cells cultured on a pair of DF-Ap layers that were adjacently placed in the same well showed specific gene expression patterns depending on the gene that was immobilized in theunderlying layer. Moreover, preliminary real-time PCR results indicated that multipotential C3H10T1/2 cells may have a potential to change into different types of cells depending on the differentiation factor gene that was immobilized in the underlying layer, even in the same well. Because DF-Ap layers have a potential to mediate area-specific cell stimulation on their surfaces, they could be useful in tissue engineering applications. PMID:25874757

  1. How Toddlers Acquire and Transfer Tool Knowledge: Developmental Changes and the Role of Executive Functions.

    PubMed

    Pauen, Sabina; Bechtel-Kuehne, Sabrina

    2016-07-01

    This report investigates tool learning and its relations to executive functions (EFs) in toddlers. In Study 1 (N = 93), 18-, 20-, 22-, and 24-month-old children learned equally well to choose a correct tool from observation, whereas performance based on feedback improved with age. Knowledge transfer showed significant progress after 22 months of age: Older children ignored irrelevant features more easily and adjusted their behavior more flexibly. Study 2 (N = 62) revealed that spontaneous transfer in 22- to 24-month-olds was related to set-shifting skills and response inhibition. Flexible adaptation to feedback correlated with working-memory capacity. These findings suggest that toddlerhood is a highly dynamic phase of tool learning and that EFs are related to transfer performance at this age. PMID:27138651

  2. Modeling a nonlinear water transfer between two reservoirs in a midterm hydroelectric scheduling tool

    NASA Astrophysics Data System (ADS)

    Moraga, RocíO.; GarcíA-GonzáLez, Javier; Parrilla, Ernesto; Nogales, Sergio

    2007-04-01

    In a competitive environment, operation and planning decisions of generating units are decentralized. Therefore the management of hydroelectric generation resources requires the development of advanced planning and scheduling tools adapted to the particular needs of each company. This paper presents a method for considering natural water transfers through a pipeline in the context of a midterm hydro scheduling model. The main complexity of gravitational transfer modeling resides in considering the nonlinear relation between the water levels in the connected reservoirs and the transfer flow. The methodology proposed consists first in simplifying the problem by means of a change of variables, subsequently using a piecewise linear approximation of the transfer flow equation in order to consider it within a mixed integer linear programming tool, and ultimately adjusting the final solution. The proposed methodology is currently being used to manage the Sil River hydro basin in the northwest of Spain, with satisfactory results, as shown in the case study.

  3. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants.

    PubMed

    Adams, K L; Daley, D O; Qiu, Y L; Whelan, J; Palmer, J D

    2000-11-16

    A central component of the endosymbiotic theory for the bacterial origin of the mitochondrion is that many of its genes were transferred to the nucleus. Most of this transfer occurred early in mitochondrial evolution; functional transfer of mitochondrial genes has ceased in animals. Although mitochondrial gene transfer continues to occur in plants, no comprehensive study of the frequency and timing of transfers during plant evolution has been conducted. Here we report frequent loss (26 times) and transfer to the nucleus of the mitochondrial gene rps10 among 277 diverse angiosperms. Characterization of nuclear rps10 genes from 16 out of 26 loss lineages implies that many independent, RNA-mediated rps10 transfers occurred during recent angiosperm evolution; each of the genes may represent a separate functional gene transfer. Thus, rps10 has been transferred to the nucleus at a surprisingly high rate during angiosperm evolution. The structures of several nuclear rps10 genes reveal diverse mechanisms by which transferred genes become activated, including parasitism of pre-existing nuclear genes for mitochondrial or cytoplasmic proteins, and activation without gain of a mitochondrial targeting sequence. PMID:11099041

  4. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi

    PubMed Central

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C.; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-01-01

    Summary Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1–5]. Few studies have focused on the domestication of fungi, with notable exceptions [6–11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making—P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13–15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. PMID:26412136

  5. Flexible tools for gene expression and silencing in tomato.

    PubMed

    Fernandez, Ana I; Viron, Nicolas; Alhagdow, Moftah; Karimi, Mansour; Jones, Matthew; Amsellem, Ziva; Sicard, Adrien; Czerednik, Anna; Angenent, Gerco; Grierson, Donald; May, Sean; Seymour, Graham; Eshed, Yuval; Lemaire-Chamley, Martine; Rothan, Christophe; Hilson, Pierre

    2009-12-01

    As a genetic platform, tomato (Solanum lycopersicum) benefits from rich germplasm collections and ease of cultivation and transformation that enable the analysis of biological processes impossible to investigate in other model species. To facilitate the assembly of an open genetic toolbox designed to study Solanaceae, we initiated a joint collection of publicly available gene manipulation tools. We focused on the characterization of promoters expressed at defined time windows during fruit development, for the regulated expression or silencing of genes of interest. Five promoter sequences were captured as entry clones compatible with the versatile MultiSite Gateway format: PPC2, PG, TPRP, and IMA from tomato and CRC from Arabidopsis (Arabidopsis thaliana). Corresponding transcriptional fusions were made with the GUS gene, a nuclear-localized GUS-GFP reporter, and the chimeric LhG4 transcription factor. The activity of the promoters during fruit development and in fruit tissues was confirmed in transgenic tomato lines. Novel Gateway destination vectors were generated for the transcription of artificial microRNA (amiRNA) precursors and hairpin RNAs under the control of these promoters, with schemes only involving Gateway BP and LR Clonase reactions. Efficient silencing of the endogenous phytoene desaturase gene was demonstrated in transgenic tomato lines producing a matching amiRNA under the cauliflower mosaic virus 35S or PPC2 promoter. Lastly, taking advantage of the pOP/LhG4 two-component system, we found that well-characterized flower-specific Arabidopsis promoters drive the expression of reporters in patterns generally compatible with heterologous expression. Tomato lines and plasmids will be distributed through a new Nottingham Arabidopsis Stock Centre service unit dedicated to Solanaceae resources. PMID:19812183

  6. Extensive Intra-Kingdom Horizontal Gene Transfer Converging on a Fungal Fructose Transporter Gene

    PubMed Central

    Coelho, Marco A.; Gonçalves, Carla; Sampaio, José Paulo; Gonçalves, Paula

    2013-01-01

    Comparative genomics revealed in the last decade a scenario of rampant horizontal gene transfer (HGT) among prokaryotes, but for fungi a clearly dominant pattern of vertical inheritance still stands, punctuated however by an increasing number of exceptions. In the present work, we studied the phylogenetic distribution and pattern of inheritance of a fungal gene encoding a fructose transporter (FSY1) with unique substrate selectivity. 109 FSY1 homologues were identified in two sub-phyla of the Ascomycota, in a survey that included 241 available fungal genomes. At least 10 independent inter-species instances of horizontal gene transfer (HGT) involving FSY1 were identified, supported by strong phylogenetic evidence and synteny analyses. The acquisition of FSY1 through HGT was sometimes suggestive of xenolog gene displacement, but several cases of pseudoparalogy were also uncovered. Moreover, evidence was found for successive HGT events, possibly including those responsible for transmission of the gene among yeast lineages. These occurrences do not seem to be driven by functional diversification of the Fsy1 proteins because Fsy1 homologues from widely distant lineages, including at least one acquired by HGT, appear to have similar biochemical properties. In summary, retracing the evolutionary path of the FSY1 gene brought to light an unparalleled number of independent HGT events involving a single fungal gene. We propose that the turbulent evolutionary history of the gene may be linked to the unique biochemical properties of the encoded transporter, whose predictable effect on fitness may be highly variable. In general, our results support the most recent views suggesting that inter-species HGT may have contributed much more substantially to shape fungal genomes than heretofore assumed. PMID:23818872

  7. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy

    PubMed Central

    Elmer, Jacob J.; Christensen, Matthew D.; Rege, Kaushal

    2014-01-01

    Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases. PMID:23994344

  8. Comparison between Agrobacterium-mediated and direct gene transfer using the gene gun.

    PubMed

    Gao, Caixia; Nielsen, Klaus K

    2013-01-01

    Agrobacterium-mediated transformation and direct gene transfer using the gene gun (microparticle -bombardment) are the two most widely used methods for plant genetic modification. The Agrobacterium method has been successfully practiced in dicots for many years, but only recently have efficient protocols been developed for grasses. Microparticle bombardment has evolved as a method delivering exogenous nucleic acids into plant genome and is a commonly employed technique in plant science. Here these two systems are compared for transformation efficiency, transgene integration, and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The tall fescue transformation protocols lead to the production of large numbers of fertile, independent transgenic lines. PMID:23104329

  9. DNA transfer by examination tools--a risk for forensic casework?

    PubMed

    Szkuta, Bianca; Harvey, Michelle L; Ballantyne, Kaye N; van Oorschot, Roland A H

    2015-05-01

    The introduction of profiling systems with increased sensitivity has led to a concurrent increase in the risk of detecting contaminating DNA in forensic casework. To evaluate the contamination risk of tools used during exhibit examination we have assessed the occurrence and level of DNA transferred between mock casework exhibits, comprised of cotton or glass substrates, and high-risk vectors (scissors, forceps, and gloves). The subsequent impact of such transfer in the profiling of a target sample was also investigated. Dried blood or touch DNA, deposited on the primary substrate, was transferred via the vector to the secondary substrate, which was either DNA-free or contained a target sample (dried blood or touch DNA). Pairwise combinations of both heavy and light contact were applied by each vector in order to simulate various levels of contamination. The transfer of dried blood to DNA-free cotton was observed for all vectors and transfer scenarios, with transfer substantially lower when glass was the substrate. Overall touch DNA transferred less efficiently, with significantly lower transfer rates than blood when transferred to DNA-free cotton; the greatest transfer of touch DNA occurred between cotton and glass substrates. In the presence of a target sample, the detectability of transferred DNA decreased due to the presence of background DNA. Transfer had no impact on the detectability of the target profile, however, in casework scenarios where the suspect profiles are not known, profile interpretation becomes complicated by the addition of contaminating alleles and the probative value of the evidence may be affected. The results of this study reiterate the need for examiners to adhere to stringent laboratory cleaning protocols, particularly in the interest of contamination minimisation, and to reduce the handling of items to prevent intra-item transfer. PMID:25735003

  10. Multiple Inter-Kingdom Horizontal Gene Transfers in the Evolution of the Phosphoenolpyruvate Carboxylase Gene Family

    PubMed Central

    Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  11. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    PubMed

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  12. Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles.

    PubMed

    Brevet, David; Hocine, Ouahiba; Delalande, Anthony; Raehm, Laurence; Charnay, Clarence; Midoux, Patrick; Durand, Jean-Olivier; Pichon, Chantal

    2014-08-25

    Mesoporous silica nanoparticles (MSN) were functionalized with aminopropyltriethoxysilane (MSN-NH2) then L-histidine (MSN-His) for pDNA delivery in cells and in vivo. The complexation of pDNA with MSN-NH2 and MSN-His was first studied with gel shift assay. pDNA complexed with MSN-His was better protected from DNase degradation than with MSN-NH2. An improvement of the transfection efficiency in cells was observed with MSN-His/pDNA compared to MSN-NH2/pDNA, which could be explained by a better internalization of MSN-His. The improvement of the transfection efficiency with MSN-His was also observed for gene transfer in Achilles tendons in vivo. PMID:24853464

  13. Statistical Mechanics of Horizontal Gene Transfer in Evolutionary Ecology

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Goldenfeld, Nigel

    2011-04-01

    The biological world, especially its majority microbial component, is strongly interacting and may be dominated by collective effects. In this review, we provide a brief introduction for statistical physicists of the way in which living cells communicate genetically through transferred genes, as well as the ways in which they can reorganize their genomes in response to environmental pressure. We discuss how genome evolution can be thought of as related to the physical phenomenon of annealing, and describe the sense in which genomes can be said to exhibit an analogue of information entropy. As a direct application of these ideas, we analyze the variation with ocean depth of transposons in marine microbial genomes, predicting trends that are consistent with recent observations using metagenomic surveys.

  14. Detecting rare gene transfer events in bacterial populations.

    PubMed

    Nielsen, Kaare M; Bøhn, Thomas; Townsend, Jeffrey P

    2014-01-01

    Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research. PMID:24432015

  15. Detecting rare gene transfer events in bacterial populations

    PubMed Central

    Nielsen, Kaare M.; Bøhn, Thomas; Townsend, Jeffrey P.

    2014-01-01

    Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research. PMID:24432015

  16. Widespread impact of horizontal gene transfer on plant colonization of land

    PubMed Central

    Yue, Jipei; Hu, Xiangyang; Sun, Hang; Yang, Yongping; Huang, Jinling

    2012-01-01

    In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants. PMID:23093189

  17. Design, development, and fabrication of extravehicular activity tools for support of the transfer orbit stage

    NASA Technical Reports Server (NTRS)

    Albritton, L. M.; Redmon, J. W.; Tyler, T. R.

    1993-01-01

    Seven extravehicular activity (EVA) tools and a tool carrier have been designed and developed by MSFC in order to provide a two fault tolerant system for the transfer orbit stage (TOS) shuttle mission. The TOS is an upper stage booster for delivering payloads to orbits higher than the shuttle can achieve. Payloads are required not to endanger the shuttle even after two failures have occurred. The Airborne Support Equipment (ASE), used in restraining and deploying TOS, does not meet this criteria. The seven EVA tools designed will provide the required redundancy with no impact to the TOS hardware.

  18. Design, development, and fabrication of extravehicular activity tools for the transfer orbit stage

    NASA Technical Reports Server (NTRS)

    Albritton, L. M.; Redmon, J. W.; Tyler, T. R.

    1992-01-01

    Seven extravehicular activity (EVA) tools and a tool carrier have been designed and developed by MSFC in order to provide a two fault tolerant system for the transfer orbit stage (TOS) shuttle mission. The TOS is an upper stage booster for delivering payloads to orbits higher than the shuttle can achieve. Payloads are required not to endanger the shuttle even after two failures have occurred. The Airborne Support Equipment (ASE), used in restraining and deploying TOS, does not meet this criteria. The seven EVA tools designed will provide the required redundancy with no impact to the TOS hardware.

  19. Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution.

    PubMed Central

    Adams, K L; Rosenblueth, M; Qiu, Y L; Palmer, J D

    2001-01-01

    Unlike in animals, the functional transfer of mitochondrial genes to the nucleus is an ongoing process in plants. All but one of the previously reported transfers in angiosperms involve ribosomal protein genes. Here we report frequent transfer of two respiratory genes, sdh3 and sdh4 (encoding subunits 3 and 4 of succinate dehydrogenase), and we also show that these genes are present and expressed in the mitochondria of diverse angiosperms. Southern hybridization surveys reveal that sdh3 and sdh4 have been lost from the mitochondrion about 40 and 19 times, respectively, among the 280 angiosperm genera examined. Transferred, functional copies of sdh3 and sdh4 were characterized from the nucleus in four and three angiosperm families, respectively. The mitochondrial targeting presequences of two sdh3 genes are derived from preexisting genes for anciently transferred mitochondrial proteins. On the basis of the unique presequences of the nuclear genes and the recent mitochondrial gene losses, we infer that each of the seven nuclear sdh3 and sdh4 genes was derived from a separate transfer to the nucleus. These results strengthen the hypothesis that angiosperms are experiencing a recent evolutionary surge of mitochondrial gene transfer to the nucleus and reveal that this surge includes certain respiratory genes in addition to ribosomal protein genes. PMID:11454775

  20. Kidney-specific Sonoporation-mediated Gene Transfer

    PubMed Central

    Ishida, Ryo; Kami, Daisuke; Kusaba, Tetsuro; Kirita, Yuhei; Kishida, Tsunao; Mazda, Osam; Adachi, Takaomi; Gojo, Satoshi

    2016-01-01

    Sonoporation can deliver agents to target local organs by systemic administration, while decreasing the associated risk of adverse effects. Sonoporation has been used for a variety of materials and in a variety of organs. Herein, we demonstrated that local sonoporation to the kidney can offer highly efficient transfer of oligonucleotides, which were systemically administrated to the tubular epithelium with high specificity. Ultrasonic wave irradiation to the kidney collapsed the microbubbles and transiently affected the glomerular filtration barrier and increased glomerular permeability. Oligonucleotides were passed through the barrier all at once and were absorbed throughout the tubular epithelium. Tumor necrosis factor alpha (TNFα), which plays a central role in renal ischemia–reperfusion injury, was targeted using small interfering RNA (siRNA) with renal sonoporation in a murine model. The reduction of TNFα expression after single gene transfer significantly inhibited the expression of kidney injury markers, suggesting that systemic administration of siRNA under temporary and local sonoporation could be applicable in the clinical setting of ischemic acute kidney injury. PMID:26419704

  1. Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases: An NHLBI Resource for the Gene Therapy Community

    PubMed Central

    Skarlatos, Sonia I.

    2012-01-01

    Abstract The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; “proof-of-principle”; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field. PMID:22974119

  2. The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer.

    PubMed

    Martin, K; Morlin, G; Smith, A; Nordyke, A; Eisenstark, A; Golomb, M

    1998-01-01

    Among strains of Haemophilus influenzae, the ability to catabolize tryptophan (as detected by indole production) varies and is correlated with pathogenicity. Tryptophan catabolism is widespread (70 to 75%) among harmless respiratory isolates but is nearly universal (94 to 100%) among strains causing serious disease, including meningitis. As a first step in investigating the relationship between tryptophan catabolism and virulence, we have identified genes in pathogenic H. influenzae which are homologous to the tryptophanase (tna) operon of Escherichia coli. The tna genes are located on a 3.1-kb fragment between nlpD and mutS in the H. influenzae type b (Eagan) genome, are flanked by 43-bp direct repeats of an uptake signal sequence downstream from nlpD, and appear to have been inserted as a mobile unit within this sequence. The organization of this insertion is reminiscent of pathogenicity islands. The tna cluster is found at the same map location in all indole-positive strains of H. influenzae surveyed and is absent from reference type d and e genomes. In contrast to H. influenzae, most other Haemophilus species lack tna genes. Phylogenetic comparisons suggest that the tna cluster was acquired by intergeneric lateral transfer, either by H. influenzae or a recent ancestor, and that E. coli may have acquired its tnaA gene from a related source. Genomes of virulent H. influenzae resemble those of pathogenic enterics in having an island of laterally transferred DNA next to mutS. PMID:9422600

  3. Gene-transfer study approval awaits more data

    SciTech Connect

    Marwick, C.

    1988-11-18

    Approval of the gene-transfer study in cancer patients has been delayed. The proposal was recommended for approval by a National Institutes of Health (NIH) advisory committee, but has been put on hold by James B. Wyngaarden, MD, NIH director, pending submission in writing of further information. Some of this information, now forthcoming, had been withheld because data on preliminary studies had been submitted to peer-reviewed journals. The study involves placing the gene for neomycin-resistance to tumor-infiltrating lymphocytes as a marker. When these cells are injected into the patient, the presence of the marker should enable their fate to be studied over a prolonged period and an improved antitumor regimen could result. The use of tumor-infiltrating lymphocytes as immunotherapy has been studied for two years at the NIH's National Cancer Institute. The patients' tumors are removed and the tumor-infiltrating lymphocytes are cultivated to obtain several billion cells. These cells are then injected back into the patient. Early clinical experience has shown a substantial decease in tumor size in some patients, but not in all, an no one knows why.

  4. Adenoviral-mediated gene transfer to rabbit synovium in vivo.

    PubMed Central

    Roessler, B J; Allen, E D; Wilson, J M; Hartman, J W; Davidson, B L

    1993-01-01

    Currently, treatment for rheumatoid arthritis and other inflammatory arthropathies is often ineffective in ameliorating the progression of the disease, particularly the invasive destruction of cartilage and bone by rheumatoid synovium. Multiple aspects of this inflammatory process are mediated by the synovial lining cells (synoviocytes). Genetic modification of these cells in vivo represents a potential method for the treatment of these conditions. In this report, we describe a novel technique for the genetic transduction of synovial lining cells in vivo using recombinant adenoviral vectors and intraarticular injection techniques. Purified high titer suspensions of a recombinant adenoviral vector containing the gene for Escherichia coli beta-galactosidase (AdCMVlacZ) were directly injected into the hind knees of New Zealand white rabbits. Synovial tissues were then examined for transgenic lacZ expression using a combination of in situ staining for beta-galactosidase activity, immunohistochemical staining, and transmission electron microscopy. High efficiency gene transfer and lacZ expression was observed in both type A and type B synoviocytes throughout the articular and periarticular synovium of the rabbit knee, with continued expression of transgenic lacZ detected for > or = 8 wk after infection. Images PMID:8349791

  5. Passive Immunization against HIV/AIDS by Antibody Gene Transfer

    PubMed Central

    Yang, Lili; Wang, Pin

    2014-01-01

    Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics. PMID:24473340

  6. Passive immunization against HIV/AIDS by antibody gene transfer.

    PubMed

    Yang, Lili; Wang, Pin

    2014-02-01

    Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics. PMID:24473340

  7. Horizontal transference of S-layer genes within Thermus thermophilus.

    PubMed Central

    Fernández-Herrero, L A; Olabarría, G; Castón, J R; Lasa, I; Berenguer, J

    1995-01-01

    The S-layers of Thermus thermophilus HB27 and T. thermophilus HB8 are composed of protein units of 95 kDa (P95) and 100 kDa (P100), respectively. We have selected S-layer deletion mutants from both strains by complete replacement of the slpA gene. Mutants of the two strains showed similar defects in growth and morphology and overproduced an external cell envelope inside of which cells remained after division. However, the nature of this external layer is strain specific, being easily stained and regular in the HB8 delta slpA derivative and amorphous and poorly stained in the HB27 delta slpA strain. The addition of chromosomic DNA from T. thermophilus HB8 to growing cultures of T. thermophilus HB27 delta slpA led to the selection of a new strain, HB27C8, which expressed a functional S-layer composed of the P100 protein. Conversely, the addition of chromosomic DNA from T. thermophilus HB27 to growing cultures of T. thermophilus HB8 delta slpA allowed the isolation of strain HB8C27, which expressed a functional S-layer composed of the P95 protein. The driving force which selected the transference of the S-layer genes in these experiments was the difference in growth rates, one of the main factors leading to selection in natural environments. PMID:7559330

  8. Magnetically Responsive Biodegradable Nanoparticles Enhance Adenoviral Gene Transfer in Cultured Smooth Muscle and Endothelial Cells

    PubMed Central

    Chorny, Michael; Fishbein, Ilia; Alferiev, Ivan; Levy, Robert J.

    2012-01-01

    Replication-defective adenoviral (Ad) vectors have shown promise as a tool for gene delivery-based therapeutic applications. Their clinical use is however limited by therapeutically suboptimal transduction levels in cell types expressing low levels of Coxsackie-Ad receptor (CAR), the primary receptor responsible for the cell entry of the virus, and by systemic adverse reactions. Targeted delivery achievable with Ad complexed with biodegradable magnetically responsive nanoparticles (MNP) may therefore be instrumental for improving both the safety and efficiency of these vectors. Our hypothesis was that magnetically driven delivery of Ad affinity-bound to biodegradable MNP can substantially increase transgene expression in CAR deficient vascular cells in culture. Fluorescently labeled MNP were formulated from polylactide with inclusion of iron oxide and surface-modified with the D1 domain of CAR as an affinity linker. MNP cellular uptake and GFP reporter transgene expression were assayed fluorimetrically in cultured endothelial and smooth muscle cells using λex/λem of 540 nm/575 nm and 485 nm/535 nm, respectively. Stable vector-specific association of Ad with MNP resulted in formation of MNP–Ad complexes displaying rapid cell binding kinetics following a brief exposure to a high gradient magnetic field with resultant gene transfer levels significantly increased compared to free vector or nonmagnetic control treatment. Multiple regression analysis suggested a mechanism of MNP–Ad mediated transduction distinct from that of free Ad, and confirmed the major contribution of the complexes to the gene transfer under magnetic conditions. The magnetically enhanced transduction was achieved without compromising the cell viability or growth kinetics. The enhancement of adenoviral gene delivery by affinity complexation with biodegradable MNP represents a promising approach with a potential to extend the applicability of the viral gene therapeutic strategies. PMID:19496618

  9. Genome-scale phylogenetic analysis finds extensive gene transfer among fungi

    PubMed Central

    Szöllősi, Gergely J.; Davín, Adrián Arellano; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    Although the role of lateral gene transfer is well recognized in the evolution of bacteria, it is generally assumed that it has had less influence among eukaryotes. To explore this hypothesis, we compare the dynamics of genome evolution in two groups of organisms: cyanobacteria and fungi. Ancestral genomes are inferred in both clades using two types of methods: first, Count, a gene tree unaware method that models gene duplications, gains and losses to explain the observed numbers of genes present in a genome; second, ALE, a more recent gene tree-aware method that reconciles gene trees with a species tree using a model of gene duplication, loss and transfer. We compare their merits and their ability to quantify the role of transfers, and assess the impact of taxonomic sampling on their inferences. We present what we believe is compelling evidence that gene transfer plays a significant role in the evolution of fungi. PMID:26323765

  10. Frequent, independent transfers of a catabolic gene from bacteria to contrasted filamentous eukaryotes

    PubMed Central

    Bruto, Maxime; Prigent-Combaret, Claire; Luis, Patricia; Moënne-Loccoz, Yvan; Muller, Daniel

    2014-01-01

    Even genetically distant prokaryotes can exchange genes between them, and these horizontal gene transfer events play a central role in adaptation and evolution. While this was long thought to be restricted to prokaryotes, certain eukaryotes have acquired genes of bacterial origin. However, gene acquisitions in eukaryotes are thought to be much less important in magnitude than in prokaryotes. Here, we describe the complex evolutionary history of a bacterial catabolic gene that has been transferred repeatedly from different bacterial phyla to stramenopiles and fungi. Indeed, phylogenomic analysis pointed to multiple acquisitions of the gene in these filamentous eukaryotes—as many as 15 different events for 65 microeukaryotes. Furthermore, once transferred, this gene acquired introns and was found expressed in mRNA databases for most recipients. Our results show that effective inter-domain transfers and subsequent adaptation of a prokaryotic gene in eukaryotic cells can happen at an unprecedented magnitude. PMID:24990676

  11. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists

    PubMed Central

    Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A

    2007-01-01

    The DAVID Gene Functional Classification Tool uses a novel agglomeration algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules. This organization is accomplished by mining the complex biological co-occurrences found in multiple sources of functional annotation. It is a powerful method to group functionally related genes and terms into a manageable number of biological modules for efficient interpretation of gene lists in a network context. PMID:17784955

  12. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen

    PubMed Central

    Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L.; Beauseigle, Stéphanie; Bernier, Louis; Copeland, Alex; Foster, Adam; Gill, Navdeep; Henrissat, Bernard; Herath, Padmini; LaButti, Kurt M.; Levasseur, Anthony; Lindquist, Erika A.; Majoor, Eline; Ohm, Robin A.; Pangilinan, Jasmyn L.; Pribowo, Amadeus; Saddler, John N.; Sakalidis, Monique L.; de Vries, Ronald P.; Grigoriev, Igor V.; Goodwin, Stephen B.; Tanguay, Philippe; Hamelin, Richard C.

    2015-01-01

    Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems. PMID:25733908

  13. Towards liver-directed gene therapy: retrovirus-mediated gene transfer into human hepatocytes.

    PubMed

    Grossman, M; Raper, S E; Wilson, J M

    1991-11-01

    Liver-directed gene therapy is being considered in the treatment of inherited metabolic diseases. One approach we are considering is the transplantation of autologous hepatocytes that have been genetically modified with recombinant retroviruses ex vivo. We describe, in this report, techniques for isolating human hepatocytes and efficiently transducing recombinant genes into primary cultures. Hepatocytes were isolated from tissue of four different donors, plated in primary culture, and exposed to recombinant retroviruses expressing either the LacZ reporter gene or the cDNA for rabbit LDL receptor. The efficiency of gene transfer under optimal conditions, as determined by Southern blot analysis, varied from a maximum of one proviral copy per cell to a minimum of 0.1 proviral copy per cell. Cytochemical assays were used to detect expression of the recombinant derived proteins, E. coli beta-galactosidase and rabbit LDL receptor. Hepatocytes transduced with the LDL receptor gene expressed levels of receptor protein that exceeded the normal endogenous levels. The ability to isolate and genetically modify human hepatocytes, as described in this report, is an important step towards the development of liver-directed gene therapies in humans. PMID:1767337

  14. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen.

    PubMed

    Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L; Beauseigle, Stéphanie; Bernier, Louis; Copeland, Alex; Foster, Adam; Gill, Navdeep; Henrissat, Bernard; Herath, Padmini; LaButti, Kurt M; Levasseur, Anthony; Lindquist, Erika A; Majoor, Eline; Ohm, Robin A; Pangilinan, Jasmyn L; Pribowo, Amadeus; Saddler, John N; Sakalidis, Monique L; de Vries, Ronald P; Grigoriev, Igor V; Goodwin, Stephen B; Tanguay, Philippe; Hamelin, Richard C

    2015-03-17

    Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems. PMID:25733908

  15. The Fusarium graminearum Genome Reveals More Secondary Metabolite Gene Clusters and Hints of Horizontal Gene Transfer

    PubMed Central

    Wong, Philip; Münsterkötter, Martin; Mewes, Hans-Werner; Schmeitzl, Clemens; Varga, Elisabeth; Berthiller, Franz; Adam, Gerhard; Güldener, Ulrich

    2014-01-01

    Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination. PMID:25333987

  16. Improved efficiency of the walnut somatic embryo gene transfer system.

    PubMed

    McGranahan, G H; Leslie, C A; Uratsu, S L; Dandekar, A M

    1990-01-01

    AnAgrobacterium-mediated gene transfer system which relies on repetitive embryogenesis to regenerate transgenic walnut plants has been made more efficient by using a more virulent strain ofAgrobacterium and vectors containing genes for both kanamycin resistance and beta-glucuronidase (GUS) activity to facilitate early screening and selection. Two plasmids (pCGN7001 and pCGN7314) introduced individually into the disarmedAgrobacterium host strain EHA101 were used as inoculum. Embryos maintained on medium containing 100 mg/l kanamycin after co-cultivation produced more transformed secondary embryos than embryos maintained on kanamycin-free medium. Of the 186 GUS-positive secondary embryo lines identified, 70% were regenerated from 3 out of 16 primary embryos inoculated with EHA101/pCGN7314 and grown on kanamycin- containing medium, 28% from 4 out of 17 primary embryos inoculated with EHA101/ pCGN7001 and grown on kanamycin medium, and 2% from one out of 13 primary embryos inoculated with EHA101/pCGN7001 but not exposed to kanamycin. Because kanamycin inhibits but does not completely block new embryo formation in controls, identification of transformants formerly required repetitive selection on kanamycin for several months. Introduction of the GUS marker gene allowed positive identification of transformant secondary embryos as early as 5-6 weeks after inoculation. DNA analysis of a representative subset of lines (n=13) derived from secondary embryos confirmed transformation and provided evidence for multiple insertion events in single inoculated primary embryos. PMID:24226275

  17. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents.

    PubMed

    Zhan, Yuanchao; Huang, Sijun; Voget, Sonja; Simon, Meinhard; Chen, Feng

    2016-01-01

    Bacteria in the Roseobacter lineage have been studied extensively due to their significant biogeochemical roles in the marine ecosystem. However, our knowledge on bacteriophage which infects the Roseobacter clade is still very limited. Here, we report a new bacteriophage, phage DSS3Φ8, which infects marine roseobacter Ruegeria pomeroyi DSS-3. DSS3Φ8 is a lytic siphovirus. Genomic analysis showed that DSS3Φ8 is most closely related to a group of siphoviruses, CbK-like phages, which infect freshwater bacterium Caulobacter crescentus. DSS3Φ8 contains a smaller capsid and has a reduced genome size (146 kb) compared to the CbK-like phages (205-279 kb). DSS3Φ8 contains the DNA polymerase gene which is closely related to T7-like podoviruses. DSS3Φ8 also contains the integrase and repressor genes, indicating its potential to involve in lysogenic cycle. In addition, four GTA (gene transfer agent) genes were identified in the DSS3Φ8 genome. Genomic analysis suggests that DSS3Φ8 is a highly mosaic phage that inherits the genetic features from siphoviruses, podoviruses, prophages and GTAs. This is the first report of CbK-like phages infecting marine bacteria. We believe phage isolation is still a powerful tool that can lead to discovery of new phages and help interpret the overwhelming unknown sequences in the viral metagenomics. PMID:27460944

  18. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents

    NASA Astrophysics Data System (ADS)

    Zhan, Yuanchao; Huang, Sijun; Voget, Sonja; Simon, Meinhard; Chen, Feng

    2016-07-01

    Bacteria in the Roseobacter lineage have been studied extensively due to their significant biogeochemical roles in the marine ecosystem. However, our knowledge on bacteriophage which infects the Roseobacter clade is still very limited. Here, we report a new bacteriophage, phage DSS3Φ8, which infects marine roseobacter Ruegeria pomeroyi DSS-3. DSS3Φ8 is a lytic siphovirus. Genomic analysis showed that DSS3Φ8 is most closely related to a group of siphoviruses, CbK-like phages, which infect freshwater bacterium Caulobacter crescentus. DSS3Φ8 contains a smaller capsid and has a reduced genome size (146 kb) compared to the CbK-like phages (205–279 kb). DSS3Φ8 contains the DNA polymerase gene which is closely related to T7-like podoviruses. DSS3Φ8 also contains the integrase and repressor genes, indicating its potential to involve in lysogenic cycle. In addition, four GTA (gene transfer agent) genes were identified in the DSS3Φ8 genome. Genomic analysis suggests that DSS3Φ8 is a highly mosaic phage that inherits the genetic features from siphoviruses, podoviruses, prophages and GTAs. This is the first report of CbK-like phages infecting marine bacteria. We believe phage isolation is still a powerful tool that can lead to discovery of new phages and help interpret the overwhelming unknown sequences in the viral metagenomics.

  19. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents

    PubMed Central

    Zhan, Yuanchao; Huang, Sijun; Voget, Sonja; Simon, Meinhard; Chen, Feng

    2016-01-01

    Bacteria in the Roseobacter lineage have been studied extensively due to their significant biogeochemical roles in the marine ecosystem. However, our knowledge on bacteriophage which infects the Roseobacter clade is still very limited. Here, we report a new bacteriophage, phage DSS3Φ8, which infects marine roseobacter Ruegeria pomeroyi DSS-3. DSS3Φ8 is a lytic siphovirus. Genomic analysis showed that DSS3Φ8 is most closely related to a group of siphoviruses, CbK-like phages, which infect freshwater bacterium Caulobacter crescentus. DSS3Φ8 contains a smaller capsid and has a reduced genome size (146 kb) compared to the CbK-like phages (205–279 kb). DSS3Φ8 contains the DNA polymerase gene which is closely related to T7-like podoviruses. DSS3Φ8 also contains the integrase and repressor genes, indicating its potential to involve in lysogenic cycle. In addition, four GTA (gene transfer agent) genes were identified in the DSS3Φ8 genome. Genomic analysis suggests that DSS3Φ8 is a highly mosaic phage that inherits the genetic features from siphoviruses, podoviruses, prophages and GTAs. This is the first report of CbK-like phages infecting marine bacteria. We believe phage isolation is still a powerful tool that can lead to discovery of new phages and help interpret the overwhelming unknown sequences in the viral metagenomics. PMID:27460944

  20. Multimodality Imaging of Gene Transfer with a Receptor-Based Reporter Gene

    PubMed Central

    Chen, Ron; Parry, Jesse J.; Akers, Walter J.; Berezin, Mikhail Y.; El Naqa, Issam M.; Achilefu, Samuel; Edwards, W. Barry; Rogers, Buck E.

    2010-01-01

    Gene therapy trials have traditionally used tumor and tissue biopsies for assessing the efficacy of gene transfer. Non-invasive imaging techniques offer a distinct advantage over tissue biopsies in that the magnitude and duration of gene transfer can be monitored repeatedly. Human somatostatin receptor subtype 2 (SSTR2) has been used for the nuclear imaging of gene transfer. To extend this concept, we have developed a somatostatin receptor–enhanced green fluorescent protein fusion construct (SSTR2-EGFP) for nuclear and fluorescent multimodality imaging. Methods An adenovirus containing SSTR2-EGFP (AdSSTR2-EGFP) was constructed and evaluated in vitro and in vivo. SCC-9 human squamous cell carcinoma cells were infected with AdEGFP, AdSSTR2, or AdSSTR2-EGFP for in vitro evaluation by saturation binding, internalization, and fluorescence spectroscopy assays. In vivo biodistribution and nano-SPECT imaging studies were conducted with mice bearing SCC-9 tumor xenografts directly injected with AdSSTR2-EGFP or AdSSTR2 to determine the tumor localization of 111In-diethylenetriaminepentaacetic acid (DTPA)-Tyr3-octreotate. Fluorescence imaging was conducted in vivo with mice receiving intratumoral injections of AdSSTR2, AdSSTR2-EGFP, or AdEGFP as well as ex vivo with tissues extracted from mice. Results The similarity between AdSSTR2-EGFP and wild-type AdSSTR2 was demonstrated in vitro by the saturation binding and internalization assays, and the fluorescence emission spectra of cells infected with AdSSTR2-EGFP was almost identical to the spectra of cells infected with wild-type AdEGFP. Biodistribution studies demonstrated that the tumor uptake of 111In-DTPA-Tyr3-octreotate was not significantly different (P > 0.05) when tumors (n = 5) were injected with AdSSTR2 or AdSSTR2-EGFP but was significantly greater than the uptake in control tumors. Fluorescence was observed in tumors injected with AdSSTR2-EGFP and AdEGFP in vivo and ex vivo but not in tumors injected with AdSSTR2

  1. Persistent Gene Expression in Mouse Nasal Epithelia following Feline Immunodeficiency Virus-Based Vector Gene Transfer

    PubMed Central

    Sinn, Patrick L.; Burnight, Erin R.; Hickey, Melissa A.; Blissard, Gary W.; McCray, Paul B.

    2005-01-01

    Gene transfer development for treatment or prevention of cystic fibrosis lung disease has been limited by the inability of vectors to efficiently and persistently transduce airway epithelia. Influenza A is an enveloped virus with natural lung tropism; however, pseudotyping feline immunodeficiency virus (FIV)-based lentiviral vector with the hemagglutinin envelope protein proved unsuccessful. Conversely, pseudotyping FIV with the envelope protein from influenza D (Thogoto virus GP75) resulted in titers of 106 transducing units (TU)/ml and conferred apical entry into well-differentiated human airway epithelial cells. Baculovirus GP64 envelope glycoproteins share sequence identity with influenza D GP75 envelope glycoproteins. Pseudotyping FIV with GP64 from three species of baculovirus resulted in titers of 107 to 109 TU/ml. Of note, GP64 from Autographa californica multicapsid nucleopolyhedrovirus resulted in high-titer FIV preparations (∼109 TU/ml) and conferred apical entry into polarized primary cultures of human airway epithelia. Using a luciferase reporter gene and bioluminescence imaging, we observed persistent gene expression from in vivo gene transfer in the mouse nose with A. californica GP64-pseudotyped FIV (AcGP64-FIV). Longitudinal bioluminescence analysis documented persistent expression in nasal epithelia for ∼1 year without significant decline. According to histological analysis using a LacZ reporter gene, olfactory and respiratory epithelial cells were transduced. In addition, methylcellulose-formulated AcGP64-FIV transduced mouse nasal epithelia with much greater efficiency than similarly formulated vesicular stomatitis virus glycoprotein-pseudotyped FIV. These data suggest that AcGP64-FIV efficiently transduces and persistently expresses a transgene in nasal epithelia in the absence of agents that disrupt the cellular tight junction integrity. PMID:16188984

  2. Horizontal gene transfer of a Chlamydial tRNA-guanine transglycosylase gene to eukaryotic microbes.

    PubMed

    Manna, Sam; Harman, Ashley

    2016-01-01

    tRNA-guanine transglycosylases are found in all domains of life and mediate the base exchange of guanine with queuine in the anticodon loop of tRNAs. They can also regulate virulence in bacteria such as Shigella flexneri, which has prompted the development of drugs that inhibit the function of these enzymes. Here we report a group of tRNA-guanine transglycosylases in eukaryotic microbes (algae and protozoa) which are more similar to their bacterial counterparts than previously characterized eukaryotic tRNA-guanine transglycosylases. We provide evidence demonstrating that the genes encoding these enzymes were acquired by these eukaryotic lineages via horizontal gene transfer from the Chlamydiae group of bacteria. Given that the S. flexneri tRNA-guanine transglycosylase can be targeted by drugs, we propose that the bacterial-like tRNA-guanine transglycosylases could potentially be targeted in a similar fashion in pathogenic amoebae that possess these enzymes such as Acanthamoeba castellanii. This work also presents ancient prokaryote-to-eukaryote horizontal gene transfer events as an untapped resource of potential drug target identification in pathogenic eukaryotes. PMID:26435002

  3. Transduction-like gene transfer in the methanogen Methanococcus voltae

    NASA Technical Reports Server (NTRS)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  4. Transduction-Like Gene Transfer in the Methanogen Methanococcus voltae

    PubMed Central

    Bertani, Giuseppe

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 × 10−5 (BES resistance) to a maximum of 10−3 (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae. PMID:10321998

  5. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  6. Calfection: a novel gene transfer method for suspension cells.

    PubMed

    Lindell, Jeanette; Girard, Philippe; Müller, Natalie; Jordan, Martin; Wurm, Florian

    2004-01-20

    We have developed a novel method called Calfection for gene delivery to and protein expression from suspension-cultivated mammalian cells. Plasmid DNA was simply diluted into a calcium chloride solution and then added to the cell culture for transfection. We evaluated and optimized this approach using suspension-adapted HEK293 cells grown in 12-well plates that were shaken on an orbital shaker. Highest expression levels were obtained when cells were transfected at a density of 5x10(5) cells/ml in the presence of 9 mM calcium and 5 microg/ml of plasmid DNA while maintaining a culture pH of 7.6 at the time of transfection. Suspension-adapted BHK 21 and CHO DG 44 cells could also be transfected using this method. Calfection differs from the widely known calcium phosphate coprecipitation technique. The physico-chemical composition of the DNA interacting complexes is not yet known. The transfection cocktail, DNA in a calcium chloride solution, remained highly efficient during long-term storage at temperatures ranging from room temperature to -80 degrees C. In contrast, calcium phosphate-DNA cocktails are only efficient for gene transfer when prepared fresh. Furthermore, passing the calcium-plasmid DNA mixture through a 0.2-microm filter did not compromise protein expression, whereas calcium phosphate-DNA coprecipitates were retained by the filter. High protein expression levels, a limited number of manipulations and the possibility to filter the cocktail make the Calfection approach suitable for both large-scale transfection in bioreactors and for high-throughput transfection experiments in microtiter plates. PMID:14746910

  7. How 24-Month-Olds Form and Transfer Knowledge about Tools: The Role of Perceptual, Functional, Causal, and Feedback Information

    ERIC Educational Resources Information Center

    Bechtel, Sabrina; Jeschonek, Susanna; Pauen, Sabina

    2013-01-01

    This study investigated cognitive processes underlying tool use and knowledge transfer in 24-month-olds (N = 123). Following a demonstration, participants chose a tool to reach a reward in a training transfer paradigm. Differing from previous research, various aspects considered to be relevant for children's performance were integrated within the…

  8. DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines

    NASA Technical Reports Server (NTRS)

    vonTerzi, Dominic; Bauer, H.-J.

    2010-01-01

    DNS is a powerful tool with high potential for investigating unsteady heat transfer and fluid flow phenomena, in particular for cases involving transition to turbulence and/or large coherent structures. - DNS of idealized configurations related to turbomachinery components is already possible. - For more realistic configurations and the inclusion of more effects, reduction of computational cost is key issue (e.g., hybrid methods). - Approach pursued here: Embedded DNS ( segregated coupling of DNS with LES and/or RANS). - Embedded DNS is an enabling technology for many studies. - Pre-transitional heat transfer and trailing-edge cutback film-cooling are good candidates for (embedded) DNS studies.

  9. Microbial Evolution Is in the Cards: Horizontal Gene Transfer in the Classroom

    ERIC Educational Resources Information Center

    Kagle, Jeanne; Hay, Anthony G.

    2007-01-01

    Horizontal gene transfer, the exchange of genetic material between bacteria, is a potentially important factor in the degradation of synthetic compounds introduced to the environment and in the acquisition of other characteristics including antibiotic resistance. This game-based activity illustrates the role of horizontal gene transfer in the…

  10. Horizontal gene transfer in the acquisition of novel traits by metazoans

    PubMed Central

    Boto, Luis

    2014-01-01

    Horizontal gene transfer is accepted as an important evolutionary force modulating the evolution of prokaryote genomes. However, it is thought that horizontal gene transfer plays only a minor role in metazoan evolution. In this paper, I critically review the rising evidence on horizontally transferred genes and on the acquisition of novel traits in metazoans. In particular, I discuss suspected examples in sponges, cnidarians, rotifers, nematodes, molluscs and arthropods which suggest that horizontal gene transfer in metazoans is not simply a curiosity. In addition, I stress the scarcity of studies in vertebrates and other animal groups and the importance of forthcoming studies to understand the importance and extent of horizontal gene transfer in animals. PMID:24403327

  11. Gene transfer in the evolution of parasite nucleotide biosynthesis.

    PubMed

    Striepen, Boris; Pruijssers, Andrea J P; Huang, Jinling; Li, Catherine; Gubbels, Marc-Jan; Umejiego, Nwakaso N; Hedstrom, Lizbeth; Kissinger, Jessica C

    2004-03-01

    Nucleotide metabolic pathways provide numerous successful targets for antiparasitic chemotherapy, but the human pathogen Cryptosporidium parvum thus far has proved extraordinarily refractory to classical treatments. Given the importance of this protist as an opportunistic pathogen afflicting immunosuppressed individuals, effective treatments are urgently needed. The genome sequence of C. parvum is approaching completion, and we have used this resource to critically assess nucleotide biosynthesis as a target in C. parvum. Genomic analysis indicates that this parasite is entirely dependent on salvage from the host for its purines and pyrimidines. Metabolic pathway reconstruction and experimental validation in the laboratory further suggest that the loss of pyrimidine de novo synthesis is compensated for by possession of three salvage enzymes. Two of these, uridine kinase-uracil phosphoribosyltransferase and thymidine kinase, are unique to C. parvum within the phylum Apicomplexa. Phylogenetic analysis suggests horizontal gene transfer of thymidine kinase from a proteobacterium. We further show that the purine metabolism in C. parvum follows a highly streamlined pathway. Salvage of adenosine provides C. parvum's sole source of purines. This renders the parasite susceptible to inhibition of inosine monophosphate dehydrogenase, the rate-limiting enzyme in the multistep conversion of AMP to GMP. The inosine 5' monophosphate dehydrogenase inhibitors ribavirin and mycophenolic acid, which are already in clinical use, show pronounced anticryptosporidial activity. Taken together, these data help to explain why widely used drugs fail in the treatment of cryptosporidiosis and suggest more promising targets. PMID:14973196

  12. Neprilysin gene transfer: A promising therapeutic approach for Alzheimer's disease.

    PubMed

    Li, Yuanli; Wang, Junqing; Zhang, Shenghao; Liu, Zhaohui

    2015-09-01

    Alzheimer's disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β (Aβ) in the neuropil and around blood vessels, and formation of neurofibrillary tangles. Aβ accumulation is considered the major pathological change in AD progression. In recent years, several therapeutic strategies for treating AD have focused on reducing the Aβ burden in the brain. Among these approaches, the expression of Aβ-degrading enzymes in the brain has been effective but, so far, impractical for treating patients. Neprilysin (NEP), the most prominent of the Aβ-degrading enzymes in vivo, has been successfully delivered intracranially by viral vectors and is a promising therapeutic approach for reducing Aβ accumulation and treating AD. However, some challenges are associated with the use of viral and nonviral vectors, including secondary toxicity, activation of the immune response, and low efficiency. Therefore, safe and efficient NEP delivery systems that could avoid the viral problems with minor injury and high transfection efficiency are required to deliver AD medical applications. This Mini-Review summarizes NEP gene transfer technologies that use viral and nonviral vectors and discusses the rationale and benefits of these delivery systems for AD treatment trials, providing a reference for basic and clinical studies on AD. PMID:26096375

  13. Gene transfer in the evolution of parasite nucleotide biosynthesis

    PubMed Central

    Striepen, Boris; Pruijssers, Andrea J. P.; Huang, Jinling; Li, Catherine; Gubbels, Marc-Jan; Umejiego, Nwakaso N.; Hedstrom, Lizbeth; Kissinger, Jessica C.

    2004-01-01

    Nucleotide metabolic pathways provide numerous successful targets for antiparasitic chemotherapy, but the human pathogen Cryptosporidium parvum thus far has proved extraordinarily refractory to classical treatments. Given the importance of this protist as an opportunistic pathogen afflicting immunosuppressed individuals, effective treatments are urgently needed. The genome sequence of C. parvum is approaching completion, and we have used this resource to critically assess nucleotide biosynthesis as a target in C. parvum. Genomic analysis indicates that this parasite is entirely dependent on salvage from the host for its purines and pyrimidines. Metabolic pathway reconstruction and experimental validation in the laboratory further suggest that the loss of pyrimidine de novo synthesis is compensated for by possession of three salvage enzymes. Two of these, uridine kinase-uracil phosphoribosyltransferase and thymidine kinase, are unique to C. parvum within the phylum Apicomplexa. Phylogenetic analysis suggests horizontal gene transfer of thymidine kinase from a proteobacterium. We further show that the purine metabolism in C. parvum follows a highly streamlined pathway. Salvage of adenosine provides C. parvum's sole source of purines. This renders the parasite susceptible to inhibition of inosine monophosphate dehydrogenase, the rate-limiting enzyme in the multistep conversion of AMP to GMP. The inosine 5′ monophosphate dehydrogenase inhibitors ribavirin and mycophenolic acid, which are already in clinical use, show pronounced anticryptosporidial activity. Taken together, these data help to explain why widely used drugs fail in the treatment of cryptosporidiosis and suggest more promising targets. PMID:14973196

  14. Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element.

    PubMed

    Delavat, François; Mitri, Sara; Pelet, Serge; van der Meer, Jan Roelof

    2016-06-14

    Horizontal gene transfer is an important evolutionary mechanism for bacterial adaptation. However, given the typical low transfer frequencies in a bacterial population, little is known about the fate and interplay of donor cells and the mobilized DNA during transfer. Here we study transfer of an integrative and conjugative element (ICE) among individual live bacterial cells. ICEs are widely distributed mobile DNA elements that are different than plasmids because they reside silent in the host chromosome and are maintained through vertical descent. Occasionally, ICEs become active, excise, and transmit their DNA to a new recipient, where it is reintegrated. We develop a fluorescent tool to differentiate excision, transfer, and reintegration of a model ICE named ICEclc (for carrying the clc genes for chlorocatechol metabolism) among single Pseudomonas cells by using time-lapse microscopy. We find that ICEclc activation is initiated in stationary phase cells, but excision and transfer predominantly occur only when such cells have been presented with new nutrients. Donors with activated ICE develop a number of different states, characterized by reduced cell division rates or growth arrest, persistence, or lysis, concomitant with ICE excision, and likely, ICE loss or replication. The donor cell state transitions can be described by using a stochastic model, which predicts that ICE fitness is optimal at low initiation rates in stationary phase. Despite highly variable donor cell fates, ICE transfer is remarkably robust overall, with 75% success after excision. Our results help to better understand ICE behavior and shed a new light on bacterial cellular differentiation during horizontal gene transfer. PMID:27247406

  15. Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element

    PubMed Central

    Delavat, François; Mitri, Sara; Pelet, Serge; van der Meer, Jan Roelof

    2016-01-01

    Horizontal gene transfer is an important evolutionary mechanism for bacterial adaptation. However, given the typical low transfer frequencies in a bacterial population, little is known about the fate and interplay of donor cells and the mobilized DNA during transfer. Here we study transfer of an integrative and conjugative element (ICE) among individual live bacterial cells. ICEs are widely distributed mobile DNA elements that are different than plasmids because they reside silent in the host chromosome and are maintained through vertical descent. Occasionally, ICEs become active, excise, and transmit their DNA to a new recipient, where it is reintegrated. We develop a fluorescent tool to differentiate excision, transfer, and reintegration of a model ICE named ICEclc (for carrying the clc genes for chlorocatechol metabolism) among single Pseudomonas cells by using time-lapse microscopy. We find that ICEclc activation is initiated in stationary phase cells, but excision and transfer predominantly occur only when such cells have been presented with new nutrients. Donors with activated ICE develop a number of different states, characterized by reduced cell division rates or growth arrest, persistence, or lysis, concomitant with ICE excision, and likely, ICE loss or replication. The donor cell state transitions can be described by using a stochastic model, which predicts that ICE fitness is optimal at low initiation rates in stationary phase. Despite highly variable donor cell fates, ICE transfer is remarkably robust overall, with 75% success after excision. Our results help to better understand ICE behavior and shed a new light on bacterial cellular differentiation during horizontal gene transfer. PMID:27247406

  16. Robust retention and transfer of tool construction techniques in chimpanzees (Pan troglodytes).

    PubMed

    Vale, Gill L; Flynn, Emma G; Pender, Lydia; Price, Elizabeth; Whiten, Andrew; Lambeth, Susan P; Schapiro, Steven J; Kendal, Rachel L

    2016-02-01

    Long-term memory can be critical to a species' survival in environments with seasonal and even longer-term cycles of resource availability. The present, longitudinal study investigated whether complex tool behaviors used to gain an out-of-reach reward, following a hiatus of about 3 years and 7 months since initial experiences with a tool use task, were retained and subsequently executed more quickly by experienced than by naïve chimpanzees. Ten of the 11 retested chimpanzees displayed impressive long-term procedural memory, creating elongated tools using the same methods employed years previously, either combining 2 tools or extending a single tool. The complex tool behaviors were also transferred to a different task context, showing behavioral flexibility. This represents some of the first evidence for appreciable long-term procedural memory, and improvements in the utility of complex tool manufacture in chimpanzees. Such long-term procedural memory and behavioral flexibility have important implications for the longevity and transmission of behavioral traditions. PMID:26881941

  17. Identification of the class I genes of the mouse major histocompatibility complex by DNA-mediated gene transfer.

    PubMed

    Goodenow, R S; McMillan, M; Nicolson, M; Sher, B T; Eakle, K; Davidson, N; Hood, L

    1982-11-18

    DNA-mediated gene transfer was used to identify cloned class I genes from the major histocompatibility complex of the BALB/c mouse. Three genes encoding the transplantation antigens H-2 Kd, Dd and Ld were identified as well as genes encoding the Qa-2,3 and two TL differentiation antigens. As many as 10 putative novel class I genes were detected by the association of their gene products with beta 2-microglobulin. Alloantiserum prepared to one of the novel antigens was used to demonstrate the expression of the previously undetected antigen on spleen cells of various inbred, congeneic, and recombinant congeneic strains of mice. PMID:6815535

  18. Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised

    NASA Technical Reports Server (NTRS)

    Key, Jeffrey R.; Schweiger, Axel J.

    1998-01-01

    Two tools for the solution of radiative transfer problems are presented. Streamer is a highly flexible medium spectral resolution radiative transfer model based on the plane-parallel theory of radiative transfer. Capable of computing either fluxes or radiances, it is suitable for studying radiative processes at the surface or within the atmosphere and for the development of remote-sensing algorithms. FluxNet is a fast neural network-based implementation of Streamer for computing surface fluxes. It allows for a sophisticated treatment of radiative processes in the analysis of large data sets and potential integration into geophysical models where computational efficiency is an issue. Documentation and tools for the development of alternative versions of Fluxnet are available. Collectively, Streamer and FluxNet solve a wide variety of problems related to radiative transfer: Streamer provides the detail and sophistication needed to perform basic research on most aspects of complex radiative processes while the efficiency and simplicity of FluxNet make it ideal for operational use.

  19. Bioinformatics tools for achieving better gene silencing in plants.

    PubMed

    Ahmed, Firoz; Dai, Xinbin; Zhao, Patrick Xuechun

    2015-01-01

    RNA interference (RNAi) is one of the most popular and effective molecular technologies for knocking down the expression of an individual gene of interest in living organisms. Yet the technology still faces the major issue of nonspecific gene silencing, which can compromise gene functional characterization and the interpretation of phenotypes associated with individual gene knockdown. Designing an effective and target-specific small interfering RNA (siRNA) for induction of RNAi is therefore the major challenge in RNAi-based gene silencing. A 'good' siRNA molecule must possess three key features: (a) the ability to specifically silence an individual gene of interest, (b) little or no effect on the expressions of unintended siRNA gene targets (off-target genes), and (c) no cell toxicity. Although several siRNA design and analysis algorithms have been developed, only a few of them are specifically focused on gene silencing in plants. Furthermore, current algorithms lack a comprehensive consideration of siRNA specificity, efficacy, and nontoxicity in siRNA design, mainly due to lack of integration of all known rules that govern different steps in the RNAi pathway. In this review, we first describe popular RNAi methods that have been used for gene silencing in plants and their serious limitations regarding gene-silencing potency and specificity. We then present novel, rationale-based strategies in combination with computational and experimental approaches to induce potent, specific, and nontoxic gene silencing in plants. PMID:25740355

  20. G-SESAME: web tools for GO-term-based gene similarity analysis and knowledge discovery

    PubMed Central

    Du, Zhidian; Li, Lin; Chen, Chin-Fu; Yu, Philip S.; Wang, James Z.

    2009-01-01

    We have developed a set of online tools for measuring the semantic similarities of Gene Ontology (GO) terms and the functional similarities of gene products, and for further discovering biomedical knowledge from the GO database. The tools have been used for about 6.9 million times by 417 institutions from 43 countries since October 2006. The online tools are available at: http://bioinformatics.clemson.edu/G-SESAME. PMID:19491312

  1. Serial analysis of gene expression (SAGE): unraveling the bioinformatics tools.

    PubMed

    Tuteja, Renu; Tuteja, Narendra

    2004-08-01

    Serial analysis of gene expression (SAGE) is a powerful technique that can be used for global analysis of gene expression. Its chief advantage over other methods is that it does not require prior knowledge of the genes of interest and provides qualitative and quantitative data of potentially every transcribed sequence in a particular cell or tissue type. This is a technique of expression profiling, which permits simultaneous, comparative and quantitative analysis of gene-specific, 9- to 13-basepair sequences. These short sequences, called SAGE tags, are linked together for efficient sequencing. The sequencing data are then analyzed to identify each gene expressed in the cell and the levels at which each gene is expressed. The main benefit of SAGE includes the digital output and the identification of novel genes. In this review, we present an outline of the method, various bioinformatics methods for data analysis and general applications of this important technology. PMID:15273993

  2. Apramycin resistance as a selective marker for gene transfer in mycobacteria.

    PubMed Central

    Paget, E; Davies, J

    1996-01-01

    We have explored the potential of using the apramycin resistance gene as a marker in mycobacterial gene transfer studies. Shuttle plasmids available for both electroporation and conjugation studies have been constructed, and we have successfully validated the use of the apramycin resistance gene as a component of cloning vectors for Mycobacterium smegmatis, M. bovis BCG, and M. tuberculosis. PMID:8892841

  3. JAG: A Computational Tool to Evaluate the Role of Gene-Sets in Complex Traits

    PubMed Central

    Lips, Esther S.; Kooyman, Maarten; de Leeuw, Christiaan; Posthuma, Danielle

    2015-01-01

    Gene-set analysis has been proposed as a powerful tool to deal with the highly polygenic architecture of complex traits, as well as with the small effect sizes typically found in GWAS studies for complex traits. We developed a tool, Joint Association of Genetic variants (JAG), which can be applied to Genome Wide Association (GWA) data and tests for the joint effect of all single nucleotide polymorphisms (SNPs) located in a user-specified set of genes or biological pathway. JAG assigns SNPs to genes and incorporates self-contained and/or competitive tests for gene-set analysis. JAG uses permutation to evaluate gene-set significance, which implicitly controls for linkage disequilibrium, sample size, gene size, the number of SNPs per gene and the number of genes in the gene-set. We conducted a power analysis using the Wellcome Trust Case Control Consortium (WTCCC) Crohn’s disease data set and show that JAG correctly identifies validated gene-sets for Crohn’s disease and has more power than currently available tools for gene-set analysis. JAG is a powerful, novel tool for gene-set analysis, and can be freely downloaded from the CTG Lab website. PMID:26110313

  4. Migration and horizontal gene transfer divide microbial genomes into multiple niches.

    PubMed

    Niehus, Rene; Mitri, Sara; Fletcher, Alexander G; Foster, Kevin R

    2015-01-01

    Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches. PMID:26592443

  5. Migration and horizontal gene transfer divide microbial genomes into multiple niches

    PubMed Central

    Niehus, Rene; Mitri, Sara; Fletcher, Alexander G.; Foster, Kevin R.

    2015-01-01

    Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches. PMID:26592443

  6. Proteomic profiling of salivary gland after nonviral gene transfer mediated by conventional plasmids and minicircles

    PubMed Central

    Geguchadze, Ramaz; Wang, Zhimin; Zourelias, Lee; Perez-Riveros, Paola; Edwards, Paul C; Machen, Laurie; Passineau, Michael J

    2014-01-01

    In this study, we compared gene transfer efficiency and host response to ultrasound-assisted, nonviral gene transfer with a conventional plasmid and a minicircle vector in the submandibular salivary glands of mice. Initially, we looked at gene transfer efficiency with equimolar amounts of the plasmid and minicircle vectors, corroborating an earlier report showing that minicircle is more efficient in the context of a physical method of gene transfer. We then sought to characterize the physiological response of the salivary gland to exogenous gene transfer using global proteomic profiling. Somewhat surprisingly, we found that sonoporation alone, without a gene transfer vector present, had virtually no effect on the salivary gland proteome. However, when a plasmid vector was used, we observed profound perturbations of the salivary gland proteome that compared in magnitude to that seen in a previous report after high doses of adeno-associated virus. Finally, we found that gene transfer with a minicircle induces only minor proteomic alterations that were similar to sonoporation alone. Using mass spectrometry, we assigned protein IDs to 218 gel spots that differed between plasmid and minicircle. Bioinformatic analysis of these proteins demonstrated convergence on 68 known protein interaction pathways, most notably those associated with innate immunity, cellular stress, and morphogenesis. PMID:25414909

  7. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects

    PubMed Central

    Shelomi, Matan; Danchin, Etienne G. J.; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick

    2016-01-01

    Genes acquired by horizontal transfer are increasingly being found in animal genomes. Understanding their origin and evolution requires knowledge about the phylogenetic relationships from both source and recipient organisms. We used RNASeq data and respective assembled transcript libraries to trace the evolutionary history of polygalacturonase (pectinase) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early euphasmatodean ancestor that took place between 60 and 100 million years ago. This transfer preceded the rapid diversification of the suborder, enabling symbiont-free pectinase production that would increase the insects’ digestive efficiency and reduce dependence on microbes. Bacteria-to-insect gene transfer was thought to be uncommon, however the increasing availability of large-scale genomic data may change this prevailing notion. PMID:27210832

  8. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects.

    PubMed

    Shelomi, Matan; Danchin, Etienne G J; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick

    2016-01-01

    Genes acquired by horizontal transfer are increasingly being found in animal genomes. Understanding their origin and evolution requires knowledge about the phylogenetic relationships from both source and recipient organisms. We used RNASeq data and respective assembled transcript libraries to trace the evolutionary history of polygalacturonase (pectinase) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early euphasmatodean ancestor that took place between 60 and 100 million years ago. This transfer preceded the rapid diversification of the suborder, enabling symbiont-free pectinase production that would increase the insects' digestive efficiency and reduce dependence on microbes. Bacteria-to-insect gene transfer was thought to be uncommon, however the increasing availability of large-scale genomic data may change this prevailing notion. PMID:27210832

  9. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    SciTech Connect

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  10. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.

    PubMed

    Keeling, Patrick J

    2009-01-01

    Plastids are the organelles derived from a cyanobacterium through endosymbiosis. Unlike mitochondria, plastids are not found in all eukaryotes, but their evolution has an added layer of complexity since plastids have moved between eukaryotic lineages by secondary and tertiary endosymbiotic events. This complex history, together with the genetic integration between plastids and their host, has led to many opportunities for gene flow between phylogenetically distinct lineages. Some intracellular transfers do not lead to a protein functioning in a new environment, but many others do and the protein makeup of many plastids appears to have been influenced by exogenous sources as well. Here, different evolutionary sources and cellular destinations of gene flow that has affected the plastid lineage are reviewed. Most horizontal gene transfer (HGT) affecting the modern plastid has taken place via the host nucleus, in the form of genes for plastid-targeted proteins. The impact of this varies greatly from lineage to lineage, but in some cases such transfers can be as high as one fifth of analyzed genes. More rarely, genes have also been transferred to the plastid genome itself, and plastid genes have also been transferred to other non-plant, non-algal lineages. Overall, the proteome of many plastids has emerged as a mosaic of proteins from many sources, some from within the same cell (e.g., cytosolic genes or genes left over from the replacement of an earlier plastid), some from the plastid of other algal lineages, and some from completely unrelated sources. PMID:19271204

  11. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus.

    PubMed

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-08-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton-virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  12. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus

    PubMed Central

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J.; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-01-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton–virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  13. Horizontally transferred genes in the genome of Pacific white shrimp, Litopenaeus vannamei

    PubMed Central

    2013-01-01

    Background In recent years, as the development of next-generation sequencing technology, a growing number of genes have been reported as being horizontally transferred from prokaryotes to eukaryotes, most of them involving arthropods. As a member of the phylum Arthropoda, the Pacific white shrimp Litopenaeus vannamei has to adapt to the complex water environments with various symbiotic or parasitic microorganisms, which provide a platform for horizontal gene transfer (HGT). Results In this study, we analyzed the genome-wide HGT events in L. vannamei. Through homology search and phylogenetic analysis, followed by experimental PCR confirmation, 14 genes with HGT event were identified: 12 of them were transferred from bacteria and two from fungi. Structure analysis of these genes showed that the introns of the two fungi-originated genes were substituted by shrimp DNA fragment, two genes transferred from bacteria had shrimp specific introns inserted in them. Furthermore, around other three bacteria-originated genes, there were three large DNA segments inserted into the shrimp genome. One segment was a transposon that fully transferred, and the other two segments contained only coding regions of bacteria. Functional prediction of these 14 genes showed that 6 of them might be related to energy metabolism, and 4 others related to defense of the organism. Conclusions HGT events from bacteria or fungi were happened in the genome of L. vannamei, and these horizontally transferred genes can be transcribed in shrimp. This is the first time to report the existence of horizontally transferred genes in shrimp. Importantly, most of these genes are exposed to a negative selection pressure and appeared to be functional. PMID:23914989

  14. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes

    PubMed Central

    Chan, Patricia P.; Lowe, Todd M.

    2016-01-01

    Transfer RNAs represent the largest, most ubiquitous class of non-protein coding RNA genes found in all living organisms. The tRNAscan-SE search tool has become the de facto standard for annotating tRNA genes in genomes, and the Genomic tRNA Database (GtRNAdb) was created as a portal for interactive exploration of these gene predictions. Since its published description in 2009, the GtRNAdb has steadily grown in content, and remains the most commonly cited web-based source of tRNA gene information. In this update, we describe not only a major increase in the number of tRNA predictions (>367000) and genomes analyzed (>4370), but more importantly, the integration of new analytic and functional data to improve the quality and biological context of tRNA gene predictions. New information drawn from other sources includes tRNA modification data, epigenetic data, single nucleotide polymorphisms, gene expression and evolutionary conservation. A richer set of analytic data is also presented, including better tRNA functional prediction, non-canonical features, predicted structural impacts from sequence variants and minimum free energy structural predictions. Views of tRNA genes in genomic context are provided via direct links to the UCSC genome browsers. The database can be searched by sequence or gene features, and is available at http://gtrnadb.ucsc.edu/. PMID:26673694

  15. GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data.

    PubMed

    Ben-Ari Fuchs, Shani; Lieder, Iris; Stelzer, Gil; Mazor, Yaron; Buzhor, Ella; Kaplan, Sergey; Bogoch, Yoel; Plaschkes, Inbar; Shitrit, Alina; Rappaport, Noa; Kohn, Asher; Edgar, Ron; Shenhav, Liraz; Safran, Marilyn; Lancet, Doron; Guan-Golan, Yaron; Warshawsky, David; Shtrichman, Ronit

    2016-03-01

    Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics

  16. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera

    PubMed Central

    Qiu, Zhigang; Yu, Yunmei; Chen, Zhaoli; Jin, Min; Yang, Dong; Zhao, Zuguo; Wang, Jingfeng; Shen, Zhiqiang; Wang, Xinwei; Qian, Di; Huang, Aihua; Zhang, Buchang; Li, Jun-Wen

    2012-01-01

    Antibiotic resistance is a worldwide public health concern. Conjugative transfer between closely related strains or species of bacteria is an important method for the horizontal transfer of multidrug-resistance genes. The extent to which nanomaterials are able to cause an increase in antibiotic resistance by the regulation of the conjugative transfer of antibiotic-resistance genes in bacteria, especially across genera, is still unknown. Here we show that nanomaterials in water can significantly promote the horizontal conjugative transfer of multidrug-resistance genes mediated by the RP4, RK2, and pCF10 plasmids. Nanoalumina can promote the conjugative transfer of the RP4 plasmid from Escherichia coli to Salmonella spp. by up to 200-fold compared with untreated cells. We also explored the mechanisms behind this phenomenon and demonstrate that nanoalumina is able to induce oxidative stress, damage bacterial cell membranes, enhance the expression of mating pair formation genes and DNA transfer and replication genes, and depress the expression of global regulatory genes that regulate the conjugative transfer of RP4. These findings are important in assessing the risk of nanomaterials to the environment, particularly from water and wastewater treatment systems, and in the estimation of the effect of manufacture and use of nanomaterials on the environment. PMID:22411796

  17. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery

    PubMed Central

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-01-01

    Background DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. Results GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations

  18. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors.

    PubMed

    Boviatsis, E J; Chase, M; Wei, M X; Tamiya, T; Hurford, R K; Kowall, N W; Tepper, R I; Breakefield, X O; Chiocca, E A

    1994-02-01

    Three vectors derived from retrovirus, herpes simplex virus type 1 (HSV), and adenovirus were compared in cultured rat 9L gliosarcoma cells for gene transfer efficiency and in a 9L rat brain tumor model for histologic pattern and distribution of foreign gene delivery, as well as for associated tumor necrosis and inflammation. At a multiplicity of infection of 1, in vitro transfer of a foreign gene (lacZ from Escherichia coli) into cells was more efficient with either the replication-defective retrovirus vector or the replication-conditional thymidine kinase (TK)-deficient HSV vector than with the replication-defective adenovirus vector. In vivo, stereotactic injections of each vector into rat brain tumors revealed three main histopathologic findings: (i) retrovirus and HSV vector-mediated gene transfer was relatively selective for cells within the tumor, whereas adenovirus vector-mediated gene transfer occurred into several types of endogenous neural cells, as well as into cells within the tumor; (ii) gene transfer to multiple infiltrating tumor deposits without apparent gene transfer to intervening normal brain tissue occurred uniquely in one animal inoculated with the HSV vector, and (iii) extensive necrosis and selective inflammation in the tumor were evident with the HSV vector, whereas there was minimal evidence of tumor necrosis and inflammation with either the retrovirus or adenovirus vectors. PMID:8186298

  19. Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids

    PubMed Central

    Dimitriu, Tatiana; Misevic, Dusan; Lotton, Chantal; Brown, Sam P.; Lindner, Ariel B.; Taddei, François

    2016-01-01

    Bacterial genes that confer crucial phenotypes, such as antibiotic resistance, can spread horizontally by residing on mobile genetic elements (MGEs). Although many mobile genes provide strong benefits to their hosts, the fitness consequences of the process of transfer itself are less clear. In previous studies, transfer has been interpreted as a parasitic trait of the MGEs because of its costs to the host but also as a trait benefiting host populations through the sharing of a common gene pool. Here, we show that costly donation is an altruistic act when it spreads beneficial MGEs favoured when it increases the inclusive fitness of donor ability alleles. We show mathematically that donor ability can be selected when relatedness at the locus modulating transfer is sufficiently high between donor and recipients, ensuring high frequency of transfer between cells sharing donor alleles. We further experimentally demonstrate that either population structure or discrimination in transfer can increase relatedness to a level selecting for chromosomal transfer alleles. Both mechanisms are likely to occur in natural environments. The simple process of strong dilution can create sufficient population structure to select for donor ability. Another mechanism observed in natural isolates, discrimination in transfer, can emerge through coselection of transfer and discrimination alleles. Our work shows that horizontal gene transfer in bacteria can be promoted by bacterial hosts themselves and not only by MGEs. In the longer term, the success of cells bearing beneficial MGEs combined with biased transfer leads to an association between high donor ability, discrimination, and mobile beneficial genes. However, in conditions that do not select for altruism, host bacteria promoting transfer are outcompeted by hosts with lower transfer rate, an aspect that could be relevant in the fight against the spread of antibiotic resistance. PMID:27270455

  20. Biomaterial-Mediated Retroviral Gene Transfer Using Self-Assembled Monolayers

    PubMed Central

    Gersbach, Charles A.; Coyer, Sean R.; Le Doux, Joseph M.; García, Andrés J.

    2007-01-01

    Biomaterial-mediated gene delivery has recently emerged as a promising alternative to conventional gene transfer technologies that focus on direct delivery of viral vectors or DNA-polymer/matrix complexes. However, biomaterial-based strategies have primarily targeted transient gene expression vehicles, including plasmid DNA and adenovirus particles. This study expands on this work by characterizing biomaterial properties conducive to the surface immobilization of retroviral particles and subsequent transduction of mammalian cells at the cell-material interface. Self-assembled monolayers (SAMs) of functionally-terminated alkanethiols on gold were used to establish biomaterial surfaces of defined chemical composition. Gene transfer was observed to be greater than 90% on NH2-terminated surfaces, approximately 50% on COOH-functionalized surfaces, and undetectable on CH3-terminated SAMs, similar to controls of tissue culture-treated polystyrene. Gene delivery via the NH2-SAM was further characterized as a function of coating time, virus concentration, and cell seeding density. Finally, SAM-mediated gene delivery was comparable to fibronectin- and poly-L-lysine-based methods for gene transfer. This work is significant to establishing safe and effective gene therapy strategies, developing efficient methods for gene delivery, and supporting recent progress in the field of biomaterial-mediated gene transfer. PMID:17698189

  1. YAGM: a web tool for mining associated genes in yeast based on diverse biological associations

    PubMed Central

    2015-01-01

    Background Investigating association between genes can be used in understanding the relations of genes in biological processes. STRING and GeneMANIA are two well-known web tools which can provide a list of associated genes of a query gene based on diverse biological associations such as co-expression, co-localization, co-citation and so on. However, the transcriptional regulation association and mutant phenotype association have not been used in these two web tools. Since the comprehensive transcription factor (TF)-gene binding data, TF-gene regulation data and mutant phenotype data are available in yeast, we developed a web tool called YAGM (Yeast Associated Genes Miner) which constructed the transcriptional regulation association, mutant phenotype association and five commonly used biological associations to mine a list of associated genes of a query yeast gene. Description In YAGM, we collected seven kinds of datasets including TF-gene binding (TFB) data, TF-gene regulation (TFR) data, mutant phenotype (MP) data, functional annotation (FA) data, physical interaction (PI) data, genetic interaction (GI) data, and literature evidence (LE) data. Then by using the hypergeometric test to calculate the association scores of all gene pairs in yeast, we constructed seven biological associations including two transcriptional regulation associations (TFB association and TFR association), MP association, FA association, PI association, GI association, and LE association. Moreover, the expression profile association from SPELL database was also included in YAGM. When using YAGM, users can input a query gene and choose any possible subsets of the eight biological associations, then a list of associated genes of the query gene will be returned based on the chosen biological associations. Conclusions In this study, we presented the YAGM which provides eight biological associations for mining associated genes of a query gene in yeast. Among the eight biological associations

  2. GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data

    PubMed Central

    Ben-Ari Fuchs, Shani; Lieder, Iris; Mazor, Yaron; Buzhor, Ella; Kaplan, Sergey; Bogoch, Yoel; Plaschkes, Inbar; Shitrit, Alina; Rappaport, Noa; Kohn, Asher; Edgar, Ron; Shenhav, Liraz; Safran, Marilyn; Lancet, Doron; Guan-Golan, Yaron; Warshawsky, David; Shtrichman, Ronit

    2016-01-01

    Abstract Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from “data-to-knowledge-to-innovation,” a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ (geneanalytics.genecards.org), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®—the human gene database; the MalaCards—the human diseases database; and the PathCards—the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®—the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene–tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell “cards” in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics

  3. An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis.

    PubMed

    Woolfit, Megan; Iturbe-Ormaetxe, Iñaki; McGraw, Elizabeth A; O'Neill, Scott L

    2009-02-01

    The extent and biological relevance of horizontal gene transfer (HGT) in eukaryotic evolution remain highly controversial. Recent studies have demonstrated frequent and large-scale HGT from endosymbiotic bacteria to their hosts, but the great majority of these transferred genes rapidly become nonfunctional in the recipient genome. Here, we investigate an ancient HGT between a host metazoan and an endosymbiotic bacterium, Wolbachia pipientis. The transferred gene has so far been found only in mosquitoes and Wolbachia. In mosquitoes, it is a member of a gene family encoding candidate receptors required for malaria sporozoite invasion of the mosquito salivary gland. The gene copy in Wolbachia has substantially diverged in sequence from the mosquito homolog, is evolving under purifying selection, and is expressed, suggesting that this gene is also functional in the bacterial genome. Several lines of evidence indicate that the gene may have been transferred from eukaryotic host to bacterial endosymbiont. Regardless of the direction of transfer, however, these results demonstrate that interdomain HGT may give rise to functional, persistent, and possibly evolutionarily significant new genes. PMID:18988686

  4. SAFETY AND EFFICIENCY OF MODULATING PARACELLULAR PERMEABILITY TO ENHANCE AIRWAY EPITHELIAL GENE TRANSFER IN VIVO

    EPA Science Inventory


    ABSTRACT

    We evaluated the safety of agents that enhance gene transfer by modulating paracellular permeability. Lactate dehydrogenase (LDH) and cytokine release were measured in polarized primary human airway epithelial (HAE) cells after luminal application of vehicle, ...

  5. Alphavirus vectors as tools in neuroscience and gene therapy.

    PubMed

    Lundstrom, Kenneth

    2016-05-01

    Alphavirus-based vectors have been engineered for in vitro and in vivo expression of heterelogous genes. The rapid and easy generation of replication-deficient recombinant particles and the broad range of host cell infection have made alphaviruses attractive vehicles for applications in neuroscience and gene therapy. Efficient delivery to primary neurons and hippocampal slices has allowed localization studies of gene expression and electrophysiological recordings of ion channels. Alphavirus vectors have also been applied for in vivo delivery to rodent brain. Due to the strong local transient expression provided by alphavirus vectors a number of immunization and gene therapy approaches have demonstrated both therapeutic and prophylactic efficacy in various animal models. PMID:26307195

  6. Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer

    NASA Astrophysics Data System (ADS)

    Kotnik, Tadej

    2013-09-01

    Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during the early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms of DNA transfer: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism - cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and electrofusion are efficient tools for artificial transformation and hybridization, respectively, but the quantitative analysis developed here shows that conditions for electroporation-based DNA release, DNA uptake and transformation, as well as for electrofusion are also present in many natural aqueous environments exposed to lightnings. Electroporation is thus a plausible contributor to natural HGT among prokaryotes, and could have been particularly important during the early evolution, when the other mechanisms might have been scarcer or nonexistent. In modern prokaryotes, natural absence of the cell wall is rare, but it is reasonable to assume that the wall has formed during a certain stage of evolution, and at least prior to this, electrofusion could also have contributed to natural HGT. The concluding section outlines several guidelines for assessment of the feasibility of lightning-triggered HGT.

  7. Adenoviral gene transfer of macrophage inflammatory protein-2 in rat lung.

    PubMed Central

    Foley, R.; Driscoll, K.; Wan, Y.; Braciak, T.; Howard, B.; Xing, Z.; Graham, F.; Gauldie, J.

    1996-01-01

    Replication-defective adenoviral vectors are capable of localized transfer and expression of incorporated gene product in lung tissue. We have constructed an adenoviral vector that expresses rat macrophage inflammatory protein (MIP)-2, a C-X-C chemokine specifically chemotactic for neutrophils, Supernatants from 293 cells, infected with the adenoviral MIP-2 (ADMIP-2) construct, showed potent chemotactic activity and the ability of the ADMIP-2 vector to transcribe and make functional protein was confirmed. In vivo analysis of bronchoalveolar lavage fluid from rats after intratracheal instillation of ADMIP-2 (10(9) plaque-forming units) showed a 10-fold increase in the absolute number of neutrophils in bronchoalveolar lavage fluid as opposed to rats treated with an equal titer of an E1-disabled control virus expressing firefly luciferase (ADCA-18). Neutrophils constituted 65% of total BAL cells with alveolar macrophages being the other major cell type recovered. Rat MIP-2 protein was increased (nanograms per milliliter) in bronchoalveolar lavage fluid over a period of 7 days in ADMIP-2-treated animals. MIP-2 mRNA was demonstrated by Northern blot analysis in lung tissue, and histological analysis confirmed the presence of massive localized tissue neutrophilia. Evidence of chronic tissue injury and repair (ie, fibrosis) was not detected up to 2 weeks after the neutrophil infiltrate had resolved, subsequent to decreased chemokine presence. Adenoviral gene transfer proved an effective tool for the assessment of lung tissue expression of this chemokine in vivo and is useful in developing rodent models of tissue neutrophilia. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:8863686

  8. Tool for Quantification of Staphylococcal Enterotoxin Gene Expression in Cheese▿

    PubMed Central

    Duquenne, Manon; Fleurot, Isabelle; Aigle, Marina; Darrigo, Claire; Borezée-Durant, Elise; Derzelle, Sylviane; Bouix, Marielle; Deperrois-Lafarge, Véronique; Delacroix-Buchet, Agnès

    2010-01-01

    Cheese is a complex and dynamic microbial ecosystem characterized by the presence of a large variety of bacteria, yeasts, and molds. Some microorganisms, including species of lactobacilli or lactococci, are known to contribute to the organoleptic quality of cheeses, whereas the presence of other microorganisms may lead to spoilage or constitute a health risk. Staphylococcus aureus is recognized worldwide as an important food-borne pathogen, owing to the production of enterotoxins in food matrices. In order to study enterotoxin gene expression during cheese manufacture, we developed an efficient procedure to recover total RNA from cheese and applied a robust strategy to study gene expression by reverse transcription-quantitative PCR (RT-qPCR). This method yielded pure preparations of undegraded RNA suitable for RT-qPCR. To normalize RT-qPCR data, expression of 10 potential reference genes was investigated during S. aureus growth in milk and in cheese. The three most stably expressed reference genes during cheese manufacture were ftsZ, pta, and gyrB, and these were used as internal controls for RT-qPCR of the genes sea and sed, encoding staphylococcal enterotoxins A and D, respectively. Expression of these staphylococcal enterotoxin genes was monitored during the first 72 h of the cheese-making process, and mRNA data were correlated with enterotoxin production. PMID:20061456

  9. Tools for regulated gene expression in the chloroplast of Chlamydomonas.

    PubMed

    Rochaix, Jean-David; Surzycki, Raymond; Ramundo, Silvia

    2014-01-01

    The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region. PMID:24599871

  10. Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts

    PubMed Central

    Marsit, Souhir; Mena, Adriana; Bigey, Frédéric; Sauvage, François-Xavier; Couloux, Arnaud; Guy, Julie; Legras, Jean-Luc; Barrio, Eladio; Dequin, Sylvie; Galeote, Virginie

    2015-01-01

    Although an increasing number of horizontal gene transfers have been reported in eukaryotes, experimental evidence for their adaptive value is lacking. Here, we report the recent transfer of a 158-kb genomic region between Torulaspora microellipsoides and Saccharomyces cerevisiae wine yeasts or closely related strains. This genomic region has undergone several rearrangements in S. cerevisiae strains, including gene loss and gene conversion between two tandemly duplicated FOT genes encoding oligopeptide transporters. We show that FOT genes confer a strong competitive advantage during grape must fermentation by increasing the number and diversity of oligopeptides that yeast can utilize as a source of nitrogen, thereby improving biomass formation, fermentation efficiency, and cell viability. Thus, the acquisition of FOT genes has favored yeast adaptation to the nitrogen-limited wine fermentation environment. This finding indicates that anthropic environments offer substantial ecological opportunity for evolutionary diversification through gene exchange between distant yeast species. PMID:25750179

  11. Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane

    SciTech Connect

    Tao, W.; Wilkinson, J.; Stanbridge, E.J.; Berns, M.W.

    1987-06-01

    The selective alteration of the cellular genome by laser microbeam irradiation has been extensively applied in cell biology. We report here the use of the third harmonic (355 nm) of an yttrium-aluminum garnet laser to facilitate the direct transfer of the neo gene into cultured human HT1080-6TG cells. The resultant transformants were selected in media containing an aminoglycoside antibiotic, G418. Integration of the neo gene into individual chromosomes and expression of the gene were demonstrated by Southern blot analyses, microcell-mediated chromosome transfer, and chromosome analyses. The stability of the integrated neo gene in the transformants was shown by a comparative growth assay in selective and nonselective media. Transformation and incorporation of the neo gene into the host genome occurred at a frequency of 8x10-4-3x10-3. This method appears to be 100-fold more efficient than the standard calcium phosphate-mediated method of DNA transfer.

  12. Direct Gene Transfer into Human Cultured Cells Facilitated by Laser Micropuncture of the Cell Membrane

    NASA Astrophysics Data System (ADS)

    Tao, Wen; Wilkinson, Joyce; Stanbridge, Eric J.; Berns, Michael W.

    1987-06-01

    The selective alteration of the cellular genome by laser microbeam irradiation has been extensively applied in cell biology. We report here the use of the third harmonic (355 nm) of an yttrium-aluminum garnet laser to facilitate the direct transfer of the neo gene into cultured human HT1080-6TG cells. The resultant transformants were selected in medium containing an aminoglycoside antibiotic, G418. Integration of the neo gene into individual human chromosomes and expression of the gene were demonstrated by Southern blot analyses, microcell-mediated chromosome transfer, and chromosome analyses. The stability of the integrated neo gene in the transformants was shown by a comparative growth assay in selective and nonselective media. Transformation and incorporation of the neo gene into the host genome occurred at a frequency of 8 × 10-4-3 × 10-3. This method appears to be 100-fold more efficient than the standard calcium phosphate-mediated method of DNA transfer.

  13. Development of second- and third-generation bovine immunodeficiency virus-based gene transfer systems.

    PubMed

    Matukonis, Meghan; Li, Mengtao; Molina, Rene P; Paszkiet, Brian; Kaleko, Michael; Luo, Tianci

    2002-07-20

    Lentivirus-based gene transfer systems have demonstrated their utility in mediating gene transfer to dividing and nondividing cells both in vitro and in vivo. An early-generation gene transfer system developed from bovine immunodeficiency virus (BIV) has been described (Berkowitz et al., J. Virol. 2001;75:3371-3382). In this paper, we describe the development of second-generation (three-plasmid) and third-generation (four-plasmid) BIV-based systems. All accessory genes (vif, vpw, vpy, and tmx) and the regulatory gene tat were deleted or largely truncated from the packaging construct. Furthermore, we split the packaging function into two constructs by expressing Rev in a separate plasmid. Together with our minimal BIV transfer vector construct and a vesicular stomatitis virus G glycoprotein-expressing plasmid, the BIV vectors were generated. The vectors produced by the three- and four-plasmid systems had titers greater than 1 x 10(6) transducing units per milliliter and were fully functional as indicated by their ability to efficiently transduce both dividing and nondividing cells. These results suggest that the accessory genes vif, vpw, vpy, and tmx are dispensable for functional BIV vector development. The modifications made to the packaging constructs improve the safety profile of the vector system. Finally, BIV vectors provide an alternative to human immunodeficiency virus-based gene transfer systems. PMID:12162812

  14. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria.

    PubMed

    Demanèche, Sandrine; Monier, Jean-Michel; Dugat-Bony, Eric; Simonet, Pascal

    2011-10-01

    The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes. PMID:21564143

  15. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    SciTech Connect

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  16. Chloroplast-like transfer RNA genes expressed in wheat mitochondria.

    PubMed Central

    Joyce, P B; Gray, M W

    1989-01-01

    In the course of a systematic survey of wheat mitochondrial tRNA genes, we have sequenced chloroplast-like serine (trnS-GGA), phenylalanine (trnF-GAA) and cysteine (trnC-GCA) tRNA genes and their flanking regions. These genes are remnants of 'promiscuous' chloroplast DNA that has been incorporated into wheat mtDNA in the course of its evolution. Each gene differs by one or a few nucleotides from the authentic chloroplast homolog previously characterized in wheat or other plants, and each could potentially encode a functional tRNA whose secondary structure shows no deviations from the generalized model. To determine whether these chloroplast-like tRNA genes are actually expressed, wheat mitochondrial tRNAs were resolved by a series of polyacrylamide gel electrophoreses, after being specifically end-labeled in vitro by 3'-CCA addition mediated by wheat tRNA nucleotidyltransferase. Subsequent direct RNA sequence analysis identified prominent tRNA species corresponding to the mitochondrial and not the chloroplast trnS, trnF and trnC genes. This analysis also revealed chloroplast-like elongator methionine, asparagine and tryptophan tRNAs. Our results suggest that at least some chloroplast-like tRNA genes in wheat mtDNA are transcribed, with transcripts undergoing processing, post-transcriptional modification and 3'-CCA addition, to produce mature tRNAs that may participate in mitochondrial protein synthesis. Images PMID:2762145

  17. NIH tools facilitate matching cancer drugs with gene targets

    Cancer.gov

    A new study details how a suite of web-based tools provides the research community with greatly improved capacity to compare data derived from large collections of genomic information against thousands of drugs. By comparing drugs and genetic targets, re

  18. Gene transfer into hematopoietic progenitor and stem cells: progress and problems.

    PubMed

    Dunbar, C E; Emmons, R V

    1994-11-01

    Gene transfer to hematopoietic cells for the purpose of "gene therapy" is a new and rapidly developing field with clinical trials in progress. A fundamental goal of research in this field is the incorporation of exogenous genes into the chromosomes of the most primitive hematopoietic progenitor cells--stem cells. Recombinantly engineered retroviral vectors are the best characterized and are currently the only vector type in clinical trials directed at the hematopoietic system. High efficiency gene transfer and expression in murine stem cells and their progeny is now routine, but in larger animal models such as dogs or primates and preliminary clinical trials, gene transfer has been less successful. Problems such as retroviral efficiency, gene expression, insertional mutagenesis and helper virus contamination are being addressed. A promising new vector, the adeno-associated virus (AAV), has shown promise and may allow production of high titer, stable, recombinant virions without helper contamination and with potentially better safety parameters. However, the technology for AAV gene transfer is currently underdeveloped, and issues related to the reproducible production of vectors must be addressed. Other non-viral vector systems are being explored, but little data are available on applications to hematopoietic cells. Better preclinical models are needed to study gene targeting and expression in human cells. An overview of recombinant retroviral and adeno-associated viral vector production, preclinical data and preliminary clinical data will be given, and problems needing to be addressed at all stages of development before broad clinical utility can be achieved will be discussed. PMID:7881358

  19. Evolutionary transfer of the chloroplast tufA gene to the nucleus.

    PubMed

    Baldauf, S L; Palmer, J D

    1990-03-15

    Evolutionary gene transfer is a basic corollary of the now widely accepted endosymbiotic theory, which proposes that mitochondria and chloroplasts originated from once free-living eubacteria. The small organellar chromosomes are remnants of larger bacterial genomes, with most endosymbiont genes having been either transferred to the nucleus soon after endosymbiosis or lost entirely, with some being functionally replaced by pre-existing nuclear genes. Several lines of evidence indicate that relocation of some organelle genes could have been more recent. These include the abundance of non-functional organelle sequences of recent origin in nuclear DNA, successful artificial transfer of functional organelle genes to the nucleus, and several examples of recently lost organelle genes, although none of these is known to have been replaced by a nuclear homologue that is clearly of organellar ancestry. We present gene sequence and molecular phylogenetic evidence for the transfer of the chloroplast tufA gene to the nucleus in the green algal ancestor of land plants. PMID:2314461

  20. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  1. Horizontal Gene Transfers from Bacteria to Entamoeba Complex: A Strategy for Dating Events along Species Divergence.

    PubMed

    Romero, Miguel; Cerritos, R; Ximenez, Cecilia

    2016-01-01

    Horizontal gene transfer has proved to be relevant in eukaryotic evolution, as it has been found more often than expected and related to adaptation to certain niches. A relatively large list of laterally transferred genes has been proposed and evaluated for the parasite Entamoeba histolytica. The goals of this work were to elucidate the importance of lateral gene transfer along the evolutionary history of some members of the genus Entamoeba, through identifying donor groups and estimating the divergence time of some of these events. In order to estimate the divergence time of some of the horizontal gene transfer events, the dating of some Entamoeba species was necessary, following an indirect dating strategy based on the fossil record of plausible hosts. The divergence between E. histolytica and E. nuttallii probably occurred 5.93 million years ago (Mya); this lineage diverged from E. dispar 9.97 Mya, while the ancestor of the latter separated from E. invadens 68.18 Mya. We estimated times for 22 transferences; the most recent occurred 31.45 Mya and the oldest 253.59 Mya. Indeed, the acquisition of genes through lateral transfer may have triggered a period of adaptive radiation, thus playing a major role in the evolution of the Entamoeba genus. PMID:27239333

  2. Horizontal Gene Transfers from Bacteria to Entamoeba Complex: A Strategy for Dating Events along Species Divergence

    PubMed Central

    Romero, Miguel; Ximenez, Cecilia

    2016-01-01

    Horizontal gene transfer has proved to be relevant in eukaryotic evolution, as it has been found more often than expected and related to adaptation to certain niches. A relatively large list of laterally transferred genes has been proposed and evaluated for the parasite Entamoeba histolytica. The goals of this work were to elucidate the importance of lateral gene transfer along the evolutionary history of some members of the genus Entamoeba, through identifying donor groups and estimating the divergence time of some of these events. In order to estimate the divergence time of some of the horizontal gene transfer events, the dating of some Entamoeba species was necessary, following an indirect dating strategy based on the fossil record of plausible hosts. The divergence between E. histolytica and E. nuttallii probably occurred 5.93 million years ago (Mya); this lineage diverged from E. dispar 9.97 Mya, while the ancestor of the latter separated from E. invadens 68.18 Mya. We estimated times for 22 transferences; the most recent occurred 31.45 Mya and the oldest 253.59 Mya. Indeed, the acquisition of genes through lateral transfer may have triggered a period of adaptive radiation, thus playing a major role in the evolution of the Entamoeba genus. PMID:27239333

  3. Kinetics of conjugative gene transfer on surfaces in granular porous media

    NASA Astrophysics Data System (ADS)

    Massoudieh, A.; Crain, C.; Lambertini, E.; Nelson, K. E.; Barkouki, T.; L'Amoreaux, P.; Loge, F. J.; Ginn, T. R.

    2010-03-01

    The transfer of genetic material among bacteria in the environment can occur both in the planktonic and attached state. Given the propensity of organisms to exist in sessile microbial communities in oligotrophic subsurface conditions, and that such conditions typify the subsurface, this study focuses on exploratory modeling of horizontal gene transfer among surface-associated Escherichiacoli in the subsurface. The mathematics so far used to describe the kinetics of conjugation in biofilms are developed largely from experimental observations of planktonic gene transfer, and are absent of lags or plasmid stability that appear experimentally. We develop a model and experimental system to quantify bacterial filtration and gene transfer in the attached state, on granular porous media. We include attachment kinetics described in Nelson et al. (2007) using the filtration theory approach of Nelson and Ginn (2001, 2005) with motility of E. coli described according to Biondi et al. (1998).

  4. Kinetics of conjugative gene transfer on surfaces in granular porous media

    NASA Astrophysics Data System (ADS)

    Ginn, T.; Massoudieh, A.; Nelson, K.; Mathew, A.; Lambertini, E.

    2005-12-01

    The transfer of genetic material among bacteria in the environment can occur both in the planktonic and attached state. Given the propensity of organisms to exist in sessile microbial communities in oligotrophic conditions, and that such conditions typify the subsurface, this study focuses on exploratory modeling of horizontal gene transfer among surface-associated E. coli in the subsurface. The mathematics so far used to describe the kinetics of conjugation in biofilms are developed largely from experimental observations of planktonic gene transfer, and are absent of lags or plasmid stability that appear experimentally. We develop a model for bacterial filtration and gene transfer in the attached state, for the early stages of biofilm formation using a recently revised filtration theory approach (Nelson and Ginn, 2005) with motility of E. coli described as a continuous time random walk according to data from microflow chamber experiments (Biondi et al., 2002).

  5. Suspension array technology: new tools for gene and protein analysis.

    PubMed

    Nolan, J P; Mandy, F F

    2001-11-01

    Flow cytometry has long been a key tool in the analysis of lymphocytes and other cells, owing to its ability to make quantitative, homogeneous, multiparameter measurements of particles. New developments in illumination sources, digital signal processing and microsphere chemistry are driving the development of flow cytometry in new areas of biomedical research. In particular. the maturation of approaches to perform highly parallel analyses using suspension arrays of microspheres with different morphospectral features is making flow cytometry an important tool in protein and genetic analysis. In this paper, we review the development of suspension array technology (SAT), current applications in protein and genomic analysis, and the prospects for this platform in a variety of large scale screening applications. PMID:11838973

  6. Limitations of the murine nose in the development of nonviral airway gene transfer.

    PubMed

    Griesenbach, Uta; Sumner-Jones, Stephanie G; Holder, Emma; Munkonge, Felix M; Wodehouse, Theresa; Smith, Stephen N; Wasowicz, Marguerite Y; Pringle, Ian; Casamayor, Isabel; Chan, Mario; Coles, Rebecca; Cornish, Nikki; Dewar, Ann; Doherty, Ann; Farley, Raymond; Green, Anne-Marie; Jones, Bryony L; Larsen, Mia D B; Lawton, Anna E; Manvell, Michelle; Painter, Hazel; Singh, Charanjit; Somerton, Lucinda; Stevenson, Barbara; Varathalingam, Anusha; Siegel, Craig; Scheule, Ronald K; Cheng, Seng H; Davies, Jane C; Porteous, David J; Gill, Deborah R; Boyd, A Christopher; Hyde, Steve C; Alton, Eric W F W

    2010-07-01

    A clinical program to assess whether lipid GL67A-mediated gene transfer can ameliorate cystic fibrosis (CF) lung disease is currently being undertaken by the UK CF Gene Therapy Consortium. We have evaluated GL67A gene transfer to the murine nasal epithelium of wild-type and CF knockout mice to assess this tissue as a test site for gene transfer agents. The plasmids used were regulated by either (1) the commonly used short-acting cytomegalovirus promoter/enhancer or (2) the ubiquitin C promoter. In a study of approximately 400 mice with CF, vector-specific CF transmembrane conductance regulator (CFTR) mRNA was detected in nasal epithelial cells of 82% of mice treated with a cytomegalovirus-plasmid (pCF1-CFTR), and 62% of mice treated with an ubiquitin C-plasmid. We then assessed whether CFTR gene transfer corrected a panel of CFTR-specific endpoint assays in the murine nose, including ion transport, periciliary liquid height, and ex vivo bacterial adherence. Importantly, even with the comparatively large number of animals assessed, the CFTR function studies were only powered to detect changes of more than 50% toward wild-type values. Within this limitation, no significant correction of the CF phenotype was detected. At the current levels of gene transfer efficiency achievable with nonviral vectors, the murine nose is of limited value as a stepping stone to human trials. PMID:19648474

  7. Complexity of genetic sequences modified by horizontal gene transfer and degraded-DNA uptake

    NASA Astrophysics Data System (ADS)

    Tremberger, George; Dehipawala, S.; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    Horizontal gene transfer has been a major vehicle for efficient transfer of genetic materials among living species and could be one of the sources for noncoding DNA incorporation into a genome. Our previous study of lnc- RNA sequence complexity in terms of fractal dimension and information entropy shows a tight regulation among the studied genes in numerous diseases. The role of sequence complexity in horizontal transferred genes was investigated with Mealybug in symbiotic relation with a 139K genome microbe and Deinococcus radiodurans as examples. The fractal dimension and entropy showed correlation R-sq of 0.82 (N = 6) for the studied Deinococcus radiodurans sequences. For comparison the Deinococcus radiodurans oxidative stress tolerant catalase and superoxide dismutase genes under extracellular dGMP growth condition showed R-sq ~ 0.42 (N = 6); and the studied arsenate reductase horizontal transferred genes for toxicity survival in several microorganisms showed no correlation. Simulation results showed that R-sq < 0.4 would be improbable at less than one percent chance, suggestive of additional selection pressure when compared to the R-sq ~ 0.29 (N = 21) in the studied transferred genes in Mealybug. The mild correlation of R-sq ~ 0.5 for fractal dimension versus transcription level in the studied Deinococcus radiodurans sequences upon extracellular dGMP growth condition would suggest that lower fractal dimension with less electron density fluctuation favors higher transcription level.

  8. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves.

    PubMed

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis. PMID:21950944

  9. Gene Transfers Shaped the Evolution of De Novo NAD+ Biosynthesis in Eukaryotes

    PubMed Central

    Ternes, Chad M.; Schönknecht, Gerald

    2014-01-01

    NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers. PMID:25169983

  10. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  11. Data mining as a discovery tool for imprinted genes.

    PubMed

    Brideau, Chelsea; Soloway, Paul

    2012-01-01

    This chapter serves as an introduction to the collection of genome-wide sequence and epigenomic data, as well as the use of these data in training generalized linear models (glm) to predicted imprinted status. This is meant to be an introduction to the method, so only the most straightforward examples will be covered. For instance, the examples given below refer to 11 classes of genomic regions (the entire gene body, introns, exons, 5' UTR, 3' UTR, and 1, 10, and 100 kb upstream and downstream of each gene). One could also build models based on combinations of these regions. Likewise, models could be built on combinations of epigenetic features, or on combinations of both genomic regions and epigenetic features.This chapter relies heavily on computational methods, including basic programming. However, this chapter is not meant to be an introduction to programming. Throughout the chapter, the reader will be provided with example code in the Perl programming language. PMID:22907493

  12. Synthetic gene transfer vectors II: back to the future.

    PubMed

    Behr, Jean-Paul

    2012-07-17

    The discovery of RNA interference has given a new lease on life to both the chemistry of oligonucleotides and chemical approaches for the intracellular delivery of nucleic acids. In particular, delivery of siRNA, whether in vitro for screening and target validation purposes or in humans as a new class of drugs, may revolutionize our approach to therapy. Their impact could equal that of the bioproduction and various uses of monoclonal antibodies today. Unfortunately, global pharmaceutical companies again seem to be waiting to buy the next Genentech or Genzyme of gene silencing rather than investing research and development into this promising area of research. Gene silencing encounters barriers similar to gene addition and hence may benefit from the extra decade of experience brought by gene therapy. "Chemical" transfection of cells in culture has become routine, and this Account discusses some of the reasons this success has not extended to nonviral gene therapy trials, most of which do not progress beyond the phase 2 stage. The author also discusses a (much debated) mechanism of nucleic acid cell entry and subsequent release of the polycationic particles into the cytoplasm. Both topics should be useful to those interested in delivery of siRNA. The move from gene therapy toward siRNA as an oligonucleotide-based therapy strategy provides a much wider range of druggable targets. Even though these molecules are a hundredfold smaller than a gene, they are delivered via similar cellular mechanisms. Their complexes with cationic polymers are less stable than those with a higher number of phosphate groups, which may be compensated by siRNA concatemerization or by chemical conjugation with the cationic carrier. Thus chemistry is again desperately needed. PMID:22311735

  13. Optical fiber-based photomechanical gene transfer system for in vivo application.

    PubMed

    Sato, Shunichi; Ando, Takahiro; Obara, Minoru

    2011-12-01

    We developed an optical-fiber-based photomechanical gene transfer system for endoscopic or catheter-based application. A fiber tip with a laser-absorbing film covered with a transparent plastic disk for plasma confinement was attached to a quartz fiber; the film was irradiated with nanosecond laser pulses transmitted through the fiber to generate photomechanical waves (PMWs). Characteristics of PMWs emitted from the fiber tip were examined to confirm the necessary conditions for gene transfer. We then attempted to transfer reporter genes to the rat skin as a test tissue in vivo with the fiber system, and the results showed significantly high protein levels and spatially selective pinpoint gene expressions in the tissue. PMID:22139237

  14. The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella

    PubMed Central

    Bearson, Bradley L.; Allen, Heather K.; Brunelle, Brian W.; Lee, In Soo; Casjens, Sherwood R.; Stanton, Thaddeus B.

    2013-01-01

    Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the US during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli (STEC) and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness genes in the

  15. Adenovirus-mediated gene transfer to ciliated airway epithelia requires prolonged incubation time.

    PubMed Central

    Zabner, J; Zeiher, B G; Friedman, E; Welsh, M J

    1996-01-01

    The efficiency of adenovirus-mediated gene transfer to airway epithelia will be an important factor in determining whether recombinant adenoviruses can be developed as vectors for transferring cystic fibrosis transmembrane conductance regulator (CFTR) cDNA to patients with cystic fibrosis. Current understanding of the biology of CF lung disease suggests that vectors should express transgene in mature, ciliated airway epithelia. We evaluated the efficiency of adenovirus-mediated gene transfer to primary cultures of normal and CF human airway epithelia. Our studies showed that the airway cells developed from an undifferentiated epithelium with markers characteristic of basal cells and a surface covered by short microvilli 3 days after seeding to a mature epithelium whose apical surface was covered with cilia by 10 to 14 days. The ability of adenovirus vectors to express a reporter gene and to correct defective cyclic AMP-stimulated Cl- transport in CF epithelia was correlated inversely with the state of differentiation. However, the inefficiency of adenovirus-mediated gene transfer could be partially corrected when the contact time between vector and epithelium was prolonged. After prolonged contact, we observed complete correction of the CF Cl- transport defect in differentiated CF airway epithelia in culture and of the Cl- transport defect in the nasal epithelia of mice homozygous for the deltaF508 mutation. The fact that gene transfer to airway epithelia required prolonged incubation with vector contrasts with the rapid infection observed in cell models such as 293 and HeLa cells, which are commonly used to study adenovirus infection. Gene transfer observed after prolonged incubation may result from mechanisms different from those that mediate infection of 293 cells. These observations suggest that interventions that either increase the contact time or alter the epithelium or the vector may be required to facilitate gene transfer to ciliated respiratory epithelia

  16. Prokaryotic genes in eukaryotic genome sequences: when to infer horizontal gene transfer and when to suspect an actual microbe.

    PubMed

    Artamonova, Irena I; Lappi, Tanya; Zudina, Liudmila; Mushegian, Arcady R

    2015-07-01

    Assessment of phylogenetic positions of predicted gene and protein sequences is a routine step in any genome project, useful for validating the species' taxonomic position and for evaluating hypotheses about genome evolution and function. Several recent eukaryotic genome projects have reported multiple gene sequences that were much more similar to homologues in bacteria than to any eukaryotic sequence. In the spirit of the times, horizontal gene transfer from bacteria to eukaryotes has been invoked in some of these cases. Here, we show, using comparative sequence analysis, that some of those bacteria-like genes indeed appear likely to have been horizontally transferred from bacteria to eukaryotes. In other cases, however, the evidence strongly indicates that the eukaryotic DNA sequenced in the genome project contains a sample of non-integrated DNA from the actual bacteria, possibly providing a window into the host microbiome. Recent literature suggests also that common reagents, kits and laboratory equipment may be systematically contaminated with bacterial DNA, which appears to be sampled by metagenome projects non-specifically. We review several bioinformatic criteria that help to distinguish putative horizontal gene transfers from the admixture of genes from autonomously replicating bacteria in their hosts' genome databases or from the reagent contamination. PMID:25919787

  17. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    PubMed Central

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  18. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    PubMed

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells. PMID:25189742

  19. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals.

    PubMed

    Cobbs, Cassidy; Heath, Jeremy; Stireman, John O; Abbot, Patrick

    2013-08-01

    Carotenoids are conjugated isoprenoid molecules with many important physiological functions in organisms, including roles in photosynthesis, oxidative stress reduction, vision, diapause, photoperiodism, and immunity. Until recently, it was believed that only plants, microorganisms, and fungi were capable of synthesizing carotenoids and that animals acquired them from their diet, but recent studies have demonstrated that two arthropods (pea aphid and spider mite) possess a pair of genes homologous to those required for the first step of carotenoid biosynthesis. Absent in all other known animal genomes, these genes appear to have been acquired by aphids and spider mites in one or several lateral gene transfer events from a fungal donor. We report the third case of fungal carotenoid biosynthesis gene homologs in an arthropod: flies from the family Cecidomyiidae, commonly known as gall midges. Using phylogenetic analyses we show that it is unlikely that lycopene cyclase/phytoene synthase and phytoene desaturase homologs were transferred singly to an ancient arthropod ancestor; instead we propose that genes were transferred independently from related fungal donors after divergence of the major arthropod lineages. We also examine variation in intron placement and copy number of the carotenoid genes that may underlie function in the midges. This trans-kingdom transfer of carotenoid genes may represent a key innovation, underlying the evolution of phytophagy and plant-galling in gall midges and facilitating their extensive diversification across plant lineages. PMID:23542649

  20. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    PubMed

    Glenn, Anthony E; Davis, C Britton; Gao, Minglu; Gold, Scott E; Mitchell, Trevor R; Proctor, Robert H; Stewart, Jane E; Snook, Maurice E

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  1. A functional variomics tool for discovering drug resistance genes and drug targets

    PubMed Central

    Huang, Zhiwei; Chen, Kaifu; Zhang, Jianhuai; Li, Yongxiang; Wang, Hui; Cui, Dandan; Tang, Jiangwu; Liu, Yong; Shi, Xiaomin; Li, Wei; Liu, Dan; Chen, Rui; Sucgang, Richard S.; Pan, Xuewen

    2013-01-01

    Comprehensive discovery of genetic mechanisms of drug resistance and identification of in vivo drug targets represent significant challenges. Here we present a functional variomics technology in the model organism Saccharomyces cerevisiae. This tool analyzes numerous genetic variants and effectively tackles both problems simultaneously. Using this tool, we discovered almost all genes that, due to mutations or modest overexpression, confer resistance to rapamycin, cycloheximide, and amphotericin B. Most significant among the resistance genes were drug targets, including multiple targets of a given drug. With amphotericin B, we discovered the highly conserved membrane protein Pmp3 as a potent resistance factor and a possible novel target. Widespread application of this tool should allow rapid identification of conserved resistance mechanisms and targets of many more compounds. New genes and alleles that confer resistance to other stresses can also be discovered. Similar tools in other systems such as human cell lines will also be useful. PMID:23416056

  2. Guanidinylated block copolymers for gene transfer: A comparison with amine-based materials for in vitro and in vivo gene transfer efficiency

    PubMed Central

    Choi, Jennifer L.; Tan, James-Kevin Y.; Sellers, Drew L.; Wei, Hua; Horner, Philip J.; Pun, Suzie H.

    2015-01-01

    There is currently no cure for neuron loss in the brain, which can occur due to traumatic injury or neurodegenerative disease. One method proposed to enhance neurogenesis in the brain is gene transfer to neural progenitor cells. In this work, a guanidine-based copolymer was synthesized and compared to an amine-based copolymer analog previously shown to effectively deliver genes in the murine brain. The guanidine-based copolymer was more efficient at gene transfer to immortalized, cultured cell lines; however, the amine-based copolymer was more effective at gene transfer in the brain. DNA condensation studies revealed that the nucleic acid complexes formed with the guanidine-based copolymer were more susceptible to unpackaging in the presence of heparin sulfate proteoglycans compared to complexes formed with the amine-based copolymer. Therefore, polyplexes formed from the amine-based copolymer may be more resistant to destabilization by the heparan sulfate proteoglycans present in the stem cell niches of the brain. PMID:25907042

  3. Horizontal transfer of archaeal genes into the deinococcaceae: detection by molecular and computer-based approaches

    NASA Technical Reports Server (NTRS)

    Olendzenski, L.; Liu, L.; Zhaxybayeva, O.; Murphey, R.; Shin, D. G.; Gogarten, J. P.

    2000-01-01

    Members of the Deinococcaceae (e.g., Thermus, Meiothermus, Deinococcus) contain A/V-ATPases typically found in Archaea or Eukaryotes which were probably acquired by horizontal gene transfer. Two methods were used to quantify the extent to which archaeal or eukaryotic genes have been acquired by this lineage. Screening of a Meiothermus ruber library with probes made against Thermoplasma acidophilum DNA yielded a number of clones which hybridized more strongly than background. One of these contained the prolyl tRNA synthetase (RS) gene. Phylogenetic analysis shows the M. ruber and D. radiodurans prolyl RS to be more closely related to archaeal and eukaryal forms of this gene than to the typical bacterial type. Using a bioinformatics approach, putative open reading frames (ORFs) from the prerelease version of the D. radiodurans genome were screened for genes more closely related to archaeal or eukaryotic genes. Putative ORFs were searched against representative genomes from each of the three domains using automated BLAST. ORFs showing the highest matches against archaeal and eukaryotic genes were collected and ranked. Among the top-ranked hits were the A/V-ATPase catalytic and noncatalytic subunits and the prolyl RS genes. Using phylogenetic methods, ORFs were analyzed and trees assessed for evidence of horizontal gene transfer. Of the 45 genes examined, 20 showed topologies in which D. radiodurans homologues clearly group with eukaryotic or archaeal homologues, and 17 additional trees were found to show probable evidence of horizontal gene transfer. Compared to the total number of ORFs in the genome, those that can be identified as having been acquired from Archaea or Eukaryotes are relatively few (approximately 1%), suggesting that interdomain transfer is rare.

  4. MERAV: a tool for comparing gene expression across human tissues and cell types.

    PubMed

    Shaul, Yoav D; Yuan, Bingbing; Thiru, Prathapan; Nutter-Upham, Andy; McCallum, Scott; Lanzkron, Carolyn; Bell, George W; Sabatini, David M

    2016-01-01

    The oncogenic transformation of normal cells into malignant, rapidly proliferating cells requires major alterations in cell physiology. For example, the transformed cells remodel their metabolic processes to supply the additional demand for cellular building blocks. We have recently demonstrated essential metabolic processes in tumor progression through the development of a methodological analysis of gene expression. Here, we present the Metabolic gEne RApid Visualizer (MERAV, http://merav.wi.mit.edu), a web-based tool that can query a database comprising ∼4300 microarrays, representing human gene expression in normal tissues, cancer cell lines and primary tumors. MERAV has been designed as a powerful tool for whole genome analysis which offers multiple advantages: one can search many genes in parallel; compare gene expression among different tissue types as well as between normal and cancer cells; download raw data; and generate heatmaps; and finally, use its internal statistical tool. Most importantly, MERAV has been designed as a unique tool for analyzing metabolic processes as it includes matrixes specifically focused on metabolic genes and is linked to the Kyoto Encyclopedia of Genes and Genomes pathway search. PMID:26626150

  5. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms

    PubMed Central

    2010-01-01

    Background An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Results Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. Conclusions GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions

  6. Horizontal Gene Transfer and the Genomics of Enterococcal Antibiotic Resistance

    PubMed Central

    Palmer, Kelli L.; Kos, Veronica N.

    2010-01-01

    Summary Enterococci are Gram-positive bacteria that normally colonize gastrointestinal tracts of humans and animals. They are of growing concern because of their ability to cause antibiotic resistant hospital infections. Antibiotic resistance has been acquired, and has disseminated throughout enterococci, via horizontal transfer of mobile genetic elements. This transmission has been mediated mainly by conjugative plasmids of the pheromone-responsive and broad host range incompatibility group 18 type. Genome sequencing is revealing the extent of diversity of these and other mobile elements in enterococci, as well as the extent of recombination and rearrangement resulting in new phenotypes. Pheromone-responsive plasmids were recently shown to promote genome plasticity in antibiotic resistant Enterococcus faecalis, and their involvement has been implicated in E. faecium as well. Further, incompatibility group 18 plasmids have recently played an important role in mediating transfer of vancomycin resistance from enterococci to methicillin resistant strains of S. aureus. PMID:20837397

  7. Gene Transfer to the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis

    PubMed Central

    Billi, Daniela; Friedmann, E. Imre; Helm, Richard F.; Potts, Malcolm

    2001-01-01

    The coccoid cyanobacterium Chroococcidiopsis dominates microbial communities in the most extreme arid hot and cold deserts. These communities withstand constraints that result from multiple cycles of drying and wetting and/or prolonged desiccation, through mechanisms which remain poorly understood. Here we describe the first system for genetic manipulation of Chroococcidiopsis. Plasmids pDUCA7 and pRL489, based on the pDU1 replicon of Nostoc sp. strain PCC 7524, were transferred to different isolates of Chroococcidiopsis via conjugation and electroporation. This report provides the first evidence that pDU1 replicons can be maintained in cyanobacteria other than Nostoc and Anabaena. Following conjugation, both plasmids replicated in Chroococcidiopsis sp. strains 029, 057, and 123 but not in strains 171 and 584. Both plasmids were electroporated into strains 029 and 123 but not into strains 057, 171, and 584. Expression of PpsbA-luxAB on pRL489 was visualized through in vivo luminescence. Efficiencies of conjugative transfer for pDUCA7 and pRL489 into Chroococcidiopsis sp. strain 029 were approximately 10−2 and 10−4 transconjugants per recipient cell, respectively. Conjugative transfer occurred with a lower efficiency into strains 057 and 123. Electrotransformation efficiencies of about 10−4 electrotransformants per recipient cell were achieved with strains 029 and 123, using either pDUCA7 or pRL489. Extracellular deoxyribonucleases were associated with each of the five strains. Phylogenetic analysis, based upon the V6 to V8 variable regions of 16S rRNA, suggests that desert strains 057, 123, 171, and 029 are distinct from the type species strain Chroococcidiopsis thermalis PCC 7203. The high efficiency of conjugative transfer of Chroococcidiopsis sp. strain 029, from the Negev Desert, Israel, makes this a suitable experimental strain for genetic studies on desiccation tolerance. PMID:11244070

  8. Transferring Sclerotinia Resistance Genes from Wild Helianthus into Cultivated Sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To enhance resistance to Sclerotinia head and stalk rot in cultivated sunflower, mining and introgression of Sclerotinia resistance genes from diverse wild Helianthus accessions into cultivated sunflower has been conducted using backcrossing method since 2004. During the last four years, numerous in...

  9. Interactive Radiative Transfer Modeling Tools to Map Volcanic Emissions with Thermal Infrared Remote Sensing

    NASA Astrophysics Data System (ADS)

    Realmuto, V. J.

    2012-12-01

    The estimation of plume composition from thermal infrared (TIR) radiance measurements is based in radiative transfer (RT) modeling. To model the observed spectra we must consider the temperature, emissivity, and elevation of the surface beneath the plume, plume altitude and thickness, and the local atmospheric temperature and humidity. Our knowledge of these parameters is never perfect, and interactive RT modeling allows us to evaluate the impact of these uncertainties on our estimates of plume composition. Interactive RT modeling has three main components: retrieval procedures for plume components, an engine for RT calculations, and a graphic user interface (GUI) to input radiance data, modify model parameters, launch retrievals, and visualize the resulting estimates of plume composition. The Jet Propulsion Laboratory (JPL), in collaboration with Spectral Sciences, Inc. (SSI), is developing a new class of tools for interactive RT modeling. We will implement RT modeling on graphics processors (GPU) to achieve a 100-fold increase in processing speed, relative to conventional CPU-based processing, and thus enable fully-interactive estimation and visualization of plume composition. The heritage for our new tools is based on the Plume Tracker toolkit, developed at JPL, and MODTRAN RT model, developed by SSI. Plume Tracker integrates retrieval procedures, interactive visualization tools, and an interface to a modified version of MODTRAN under a single GUI. Our new tools will incorporate refinements from a recent adaptation of MODTRAN to optimize modeling the radiative properties of chemical clouds. This presentation will include a review of the foundations of plume mapping in the TIR and examples of the application of Plume Tracker to ASTER, MODIS, and AIRS data. We will present an overview of our tool development effort and discuss the application of these tools to data from new and future instruments, such as the airborne Hyperspectral Thermal Emission Spectrometer

  10. GEE: An Informatics Tool for Gene Expression Data Explore

    PubMed Central

    Lee, Soo Youn; Park, Chan Hee; Yoon, Jun Hee; Yun, Sunmin

    2016-01-01

    Objectives Major public high-throughput functional genomic data repositories, including the Gene Expression Omnibus (GEO) and ArrayExpress have rapidly expanded. As a result, a large number of diverse high-throughput functional genomic data retrieval systems have been developed. However, high-throughput functional genomic data retrieval remains challenging. Methods We developed Gene Expression data Explore (GEE), the first powerful, flexible web and mobile search application for searching whole-genome epigenetic data and microarray data in public databases, such as GEO and ArrayExpress. Results GEE provides an elaborate, convenient interface of query generation competences not available via various high-throughput functional genomic data retrieval systems, including GEO, ArrayExpress, and Atlas. In particular, GEE provides a suitable query generator using eVOC, the Experimental Factor Ontology (EFO), which is well represented with a variety of high-throughput functional genomic data experimental conditions. In addition, GEE provides an experimental design query constructor (EDQC), which provides elaborate retrieval filter conditions when the user designs real experiments. Conclusions The web version of GEE is available at http://www.snubi.org/software/gee, and its app version is available from the Apple App Store. PMID:27200217

  11. Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome

    PubMed Central

    Mungpakdee, Sutada; Shinzato, Chuya; Takeuchi, Takeshi; Kawashima, Takeshi; Koyanagi, Ryo; Hisata, Kanako; Tanaka, Makiko; Goto, Hiroki; Fujie, Manabu; Lin, Senjie; Satoh, Nori; Shoguchi, Eiichi

    2014-01-01

    Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. PMID:24881086

  12. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium.

    PubMed

    Ferrari, S; Kitson, C; Farley, R; Steel, R; Marriott, C; Parkins, D A; Scarpa, M; Wainwright, B; Evans, M J; Colledge, W H; Geddes, D M; Alton, E W

    2001-09-01

    Nonviral vectors have been shown to be a safe and valid alternative to recombinant viruses for gene therapy of cystic fibrosis (CF). Nevertheless, gene transfer efficiency needs to be increased before clinical efficacy is likely in man. One barrier to increased efficacy is normal airway mucus. Using an ex vivo model of sheep tracheal epithelium, we show that this barrier can, in part, be overcome by treatment with the mucolytic agents, Nacystelyn or N-acetylcysteine using either a cationic lipid or a cationic polymer as the gene transfer agent. Further, in vivo application of either Nacystelyn or the anticholinergic glycopyrrolate, both clinically used agents, resulted in increased reporter gene expression in the mouse lung, but no significant correction of the bioelectric defect in CF null mice. These results, whilst unlikely to be sufficient in themselves to achieve clinically relevant gene therapy, may be a further useful step in the attainment of this goal. PMID:11571577

  13. Degrees of separation as a statistical tool for evaluating candidate genes.

    PubMed

    Nelson, Ronald M; Pettersson, Mats E

    2014-12-01

    Selection of candidate genes is an important step in the exploration of complex genetic architecture. The number of gene networks available is increasing and these can provide information to help with candidate gene selection. It is currently common to use the degree of connectedness in gene networks as validation in Genome Wide Association (GWA) and Quantitative Trait Locus (QTL) mapping studies. However, it can cause misleading results if not validated properly. Here we present a method and tool for validating the gene pairs from GWA studies given the context of the network they co-occur in. It ensures that proposed interactions and gene associations are not statistical artefacts inherent to the specific gene network architecture. The CandidateBacon package provides an easy and efficient method to calculate the average degree of separation (DoS) between pairs of genes to currently available gene networks. We show how these empirical estimates of average connectedness are used to validate candidate gene pairs. Validation of interacting genes by comparing their connectedness with the average connectedness in the gene network will provide support for said interactions by utilising the growing amount of gene network information available. PMID:25450218

  14. GFP as a marker for transient gene transfer and expression in Mycoplasma hyorhinis.

    PubMed

    Ishag, Hassan Z A; Liu, Maojun; Yang, Ruosong; Xiong, Qiyan; Feng, Zhixin; Shao, Guoqing

    2016-01-01

    Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pathogen of pigs and has been shown to transform cell cultures, which has increased the interest of researchers. The green florescence proteins (GFP) gene of Aquorea victoria, proved to be a vital marker to identify transformed cells in mixed populations. Use of GFP to observe gene transfer and expression in M. hyorhinis (strain HUB-1) has not been described. We have constructed a pMD18-O/MHRgfp plasmid containing the p97 gene promoter, origin of replication, tetracycline resistance marker and GFP gene controlled by the p97 gene promoter. The plasmid transformed into M. hyorhinis with a frequency of ~4 × 10(-3) cfu/µg plasmid DNA and could be detected by PCR amplification of the GFP gene from the total DNA of the transformant mycoplasmas. Analysis of a single clone grown on KM2-Agar containing tetracycline, showed a green fluorescence color. Conclusively, this report suggests the usefulness of GFP to monitor transient gene transfer and expression in M. hyorhinis, eventually minimizing screening procedures for gene transfer and expression. PMID:27386255

  15. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.

    PubMed

    Nikolaidis, Nikolas; Doran, Nicole; Cosgrove, Daniel J

    2014-02-01

    Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species. PMID:24150040

  16. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool

    PubMed Central

    Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi

    2016-01-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405

  17. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    SciTech Connect

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  18. CGUG: in silico proteome and genome parsing tool for the determination of "core" and unique genes in the analysis of genomes up to ca. 1.9 Mb

    PubMed Central

    Mahadevan, Padmanabhan; King, John F; Seto, Donald

    2009-01-01

    Background Viruses and small-genome bacteria (~2 megabases and smaller) comprise a considerable population in the biosphere and are of interest to many researchers. These genomes are now sequenced at an unprecedented rate and require complementary computational tools to analyze. "CoreGenesUniqueGenes" (CGUG) is an in silico genome data mining tool that determines a "core" set of genes from two to five organisms with genomes in this size range. Core and unique genes may reflect similar niches and needs, and may be used in classifying organisms. Findings CGUG is available at as a web-based on-the-fly tool that performs iterative BLASTP analyses using a reference genome and up to four query genomes to provide a table of genes common to these genomes. The result is an in silico display of genomes and their proteomes, allowing for further analysis. CGUG can be used for "genome annotation by homology", as demonstrated with Chlamydophila and Francisella genomes. Conclusion CGUG is used to reanalyze the ICTV-based classifications of bacteriophages, to reconfirm long-standing relationships and to explore new classifications. These genomes have been problematic in the past, due largely to horizontal gene transfers. CGUG is validated as a tool for reannotating small genome bacteria using more up-to-date annotations by similarity or homology. These serve as an entry point for wet-bench experiments to confirm the functions of these "hypothetical" and "unknown" proteins. PMID:19706165

  19. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Brenna, Andrea; Montanini, Barbara; Muggiano, Eleonora; Proietto, Marco; Filetici, Patrizia; Ottonello, Simone; Ballario, Paola

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi ("truffles") with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites. PMID:24949275

  20. Direct Gene Transfer into Plant Mature Seeds via Electroporation After Vacuum Treatment

    NASA Astrophysics Data System (ADS)

    Hagio, Takashi

    A number of direct gene transfer methods have been used successfully in plant genetic engineering, providing powerful tools to investigate fundamental and applied problems in plant biology (Chowrira et al., 1996; D'halluin et al., 1992; Morandini and Salamini, 2003; Rakoczy-Trojanowska, 2002; Songstad et al., 1995). In cereals, several methods have been found to be suitable for obtaining transgenic plant; these include bombardment of scutellum (Hagio et al., 1995) and inflorescence cultures (He et al., 2001), and silicon carbide fiber-mediated DNA delivery (Asano et al., 1991) and Agrobacterium tumefaciens transformation (Potrykus, 1990). Electroporation of cereal protoplasts also has proved successful but it involves prolonged cell treatments and generally is limited by the difficulties of regeneration from cereal protoplast cultures (Fromm et al., 1987). Many laboratories worldwide are now using Agrobacterium as a vehicle for routine production of transgenic crop plants. The primary application of the particle system (Klein et al., 1987) has been for transformation of species recalcitrant to conventional Agrobacterium (Binns, 1990) or protoplast methods. But these conventional methods can be applied to the species and varieties that are amenable to tissue culture (Machii et al., 1998). Mature seeds are readily available and free from the seasonal limits that immature embryo, inflorescence, and anther have. This method enables us to produce transgenic plants without time-consuming tissue culture process.

  1. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation

    PubMed Central

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi (“truffles”) with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites. PMID:24949275

  2. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.

    PubMed

    Mao, Junwen; Lu, Ting

    2016-01-01

    Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general. PMID:26745428

  3. Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene

    PubMed Central

    Tian, Ren-Mao; Cai, Lin; Zhang, Wei-Peng; Cao, Hui-Luo; Qian, Pei-Yuan

    2015-01-01

    Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese’s complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity <98.0%), and further analysis revealed HGT events and potential donors of the heterogeneous copies (such as HGT from Chlamydia suis to Chlamydia trachomatis) and mutation events of some heterogeneous copies (such as Streptococcus suis JS14). Interestingly, HGT of the 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes. PMID:26220935

  4. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene

    PubMed Central

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-01-01

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1α (EF-1α), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of “EFL-containing” lineages within “EF-1α-containing” lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1α and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1α gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor–recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1α. PMID:18458344

  5. Improving lipoprotein profiles by liver-directed gene transfer of low density lipoprotein receptor gene in hypercholesterolaemia mice.

    PubMed

    Ou, Hailong; Zhang, Qinghai; Zeng, Jia

    2016-06-01

    The defect of low density lipoprotein receptor disturbs cholesterol metabolism and causes familial hypercholesterolaemia (FH). In this study, we directly delivered exogenous Ldlr gene into the liver of FH model mice (Ldlr(-/-)) by lentiviral gene transfer system. The results showed that the Ldlr gene controlled by hepatocyte-specific human thyroxine-binding globulin (TBG) promoter successfully and exclusively expressed in livers.We found that, although, the content of high density lipoprotein in serum was not significantly affected by the Ldlr gene expression, the serum low density lipoprotein level was reduced by 46%, associated with a 30% and 28% decrease in triglyceride and total cholesterol, respectively, compared to uninjected Ldlr(-/-) mice. Moreover, the TBG directed expression of Ldlr significantly decreased the lipid accumulation in liver and reduced plaque burden in aorta (32%). Our results indicated that the hepatocyte-specific expression of Ldlr gene strikingly lowered serum lipid levels and resulted in amelioration of hypercholesterolaemia. PMID:27350674

  6. The transfer and transformation of collective network information in gene-matched networks

    PubMed Central

    Kitsukawa, Takashi; Yagi, Takeshi

    2015-01-01

    Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type. PMID:26450411

  7. Eukaryote to gut bacteria transfer of a glycoside hydrolase gene essential for starch breakdown in plants

    PubMed Central

    Arias, Maria Cecilia; Danchin, Étienne G.J.; Coutinho, Pedro; Henrissat, Bernard; Ball, Steven

    2012-01-01

    Lateral gene transfer (LGT) between bacteria constitutes a strong force in prokaryote evolution, transforming the hierarchical tree of life into a network of relationships between species. In contrast, only a few cases of LGT from eukaryotes to prokaryotes have been reported so far. The distal animal intestine is predominantly a bacterial ecosystem, supplying the host with energy from dietary polysaccharides through carbohydrate-active enzymes absent from its genome. It has been suggested that LGT is particularly important for the human microbiota evolution. Here we show evidence for the first eukaryotic gene identified in multiple gut bacterial genomes. We found in the genome sequence of several gut bacteria, a typically eukaryotic glycoside-hydrolase necessary for starch breakdown in plants. The distribution of this gene is patchy in gut bacteria with presence otherwise detected only in a few environmental bacteria. We speculate that the transfer of this gene to gut bacteria occurred by a sequence of two key LGT events; first, an original eukaryotic gene was transferred probably from Archaeplastida to environmental bacteria specialized in plant polysaccharides degradation and second, the gene was transferred from the environmental bacteria to gut microbes. PMID:22934241

  8. The transfer and transformation of collective network information in gene-matched networks.

    PubMed

    Kitsukawa, Takashi; Yagi, Takeshi

    2015-01-01

    Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type. PMID:26450411

  9. Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate.

    PubMed

    Baker, Michelle; Hobman, Jon L; Dodd, Christine E R; Ramsden, Stephen J; Stekel, Dov J

    2016-04-01

    Antimicrobial resistance is of global concern. Most antimicrobial use is in agriculture; manures and slurry are especially important because they contain a mix of bacteria, including potential pathogens, antimicrobial resistance genes and antimicrobials. In many countries, manures and slurry are stored, especially over winter, before spreading onto fields as organic fertilizer. Thus, these are a potential location for gene exchange and selection for resistance. We develop and analyse a mathematical model to quantify the spread of antimicrobial resistance in stored agricultural waste. We use parameters from a slurry tank on a UK dairy farm as an exemplar. We show that the spread of resistance depends in a subtle way on the rates of gene transfer and antibiotic inflow. If the gene transfer rate is high, then its reduction controls resistance, while cutting antibiotic inflow has little impact. If the gene transfer rate is low, then reducing antibiotic inflow controls resistance. Reducing length of storage can also control spread of resistance. Bacterial growth rate, fitness costs of carrying antimicrobial resistance and proportion of resistant bacteria in animal faeces have little impact on spread of resistance. Therefore, effective treatment strategies depend critically on knowledge of gene transfer rates. PMID:26906100

  10. Gene gun transferring-bone morphogenetic protein 2 (BMP-2) gene enhanced bone fracture healing in rabbits

    PubMed Central

    Li, Wenju; Wei, Haifeng; Xia, Chunmei; Zhu, Xiaomeng; Hou, Guozhu; Xu, Feng; Song, Xinghua; Zhan, Yulin

    2015-01-01

    Purpose: Transferring the bone morphogenetic protein 2 (BMP-2) genes into the tissues or cells can improve the bone healing of the fracture has been widely accepted. We evaluated the efficiency of using gene gun to transfer the BMP-2 gene thereby affected the healing of a fractured bone. Methods: The vector coding for BMP-2 was constructed by a non-replicating encephalo-myocarditis virus (ECMV)-based vector. The segmental bone defect (1.5 cm) model was created by a wire-saw at the middle part of the radius bone of the New Zealand white rabbits. Then either BMP-2 gene or control vector without BMP-2 gene was injected into the tissues around the fracture site. Healing of the defects was monitored radiographically for 9 weeks, bone consolidation was determined by the Lane-Sandhu score pre- and post-operatively, which can evaluated bone formation, bone connect and bone plasticity. Results: The radiographic score and bone consolidation rates were significantly higher in animals injected with BMP-2 gene group as compared with control vector-injected animals (P<0.05). The control group still showed no radiological signs of stable healing. Western-blot and RT-PCR showed BMP-2 expression was significant increase in the tissues around the site of osseous lesions in comparison with the control vector-injected animals (P<0.05). Conclusions: Our results suggested that BMP-2 gene transferred by gene gun could increase the expression of BMP-2 protein and improved the bone callus formation therefore shortened the time of bone defect healing. PMID:26884910

  11. Adenovirus-mediated gene transfer to tumor cells.

    PubMed

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting. PMID:14970588

  12. Decreasing the effects of horizontal gene transfer on bacterial phylogeny: the Escherichia coli case study.

    PubMed

    Escobar-Páramo, Patricia; Sabbagh, Audrey; Darlu, Pierre; Pradillon, Olivier; Vaury, Christelle; Denamur, Erick; Lecointre, Guillaume

    2004-01-01

    Phylogenetic reconstructions of bacterial species from DNA sequences are hampered by the existence of horizontal gene transfer. One possible way to overcome the confounding influence of such movement of genes is to identify and remove sequences which are responsible for significant character incongruence when compared to a reference dataset free of horizontal transfer (e.g., multilocus enzyme electrophoresis, restriction fragment length polymorphism, or random amplified polymorphic DNA) using the incongruence length difference (ILD) test of Farris et al. [Cladistics 10 (1995) 315]. As obtaining this "whole genome dataset" prior to the reconstruction of a phylogeny is clearly troublesome, we have tested alternative approaches allowing the release from such reference dataset, designed for a species with modest level of horizontal gene transfer, i.e., Escherichia coli. Eleven different genes available or sequenced in this work were studied in a set of 30 E. coli reference (ECOR) strains. Either using ILD to test incongruence between each gene against the all remaining (in this case 10) genes in order to remove sequences responsible for significant incongruence, or using just a simultaneous analysis without removals, gave robust phylogenies with slight topological differences. The use of the ILD test remains a suitable method for estimating the level of horizontal gene transfer in bacterial species. Supertrees also had suitable properties to extract the phylogeny of strains, because the way they summarize taxonomic congruence clearly limits the impact of individual gene transfers on the global topology. Furthermore, this work allowed a significant improvement of the accuracy of the phylogeny within E. coli. PMID:15022774

  13. Microbubble-Enhanced Ultrasound Gene Transfer into Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Hirayama, Kota; Kaneko, Yukio; Tei, Yuichi; Matsumoto, Yoichiro

    2007-05-01

    Ultrasound finds many applications in the medical field, including ultrasound imaging, non-invasive treatment of tumors and lithotripsy. Ultrasound also has a potential to deliver some therapeutic materials, such as genes, drugs or proteins into cells. It is known that microbubbles can improve the delivery efficiency. It is believed that therapeutic materials can pass through the cell membrane whose permeability is increased by microbubble destruction or the ultrasound pressure. In this study, we investigated the delivery of GFP plasmid gene into the fibroblast cells. Ultrasound (frequency = 2.1 MHz, duty cycle = 10%) was used to irradiate the cultured cells through a medium that contains microbubbles and GFP plasmid. GFP plasmid transfection could be easily observed by fluorescence microscopy. Ultrasound irradiation under a variety of conditions resulted in successful GFP plasmid delivery. Microbubbles enhanced GFP transfection, and conclusions were drawn as to the relationship between gene transfection and various ultrasound exposure parameters. We also investigated the effect of ultrasound intensity on cell viability.

  14. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  15. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists

    PubMed Central

    Huang, Da Wei; Sherman, Brad T.; Lempicki, Richard A.

    2009-01-01

    Functional analysis of large gene lists, derived in most cases from emerging high-throughput genomic, proteomic and bioinformatics scanning approaches, is still a challenging and daunting task. The gene-annotation enrichment analysis is a promising high-throughput strategy that increases the likelihood for investigators to identify biological processes most pertinent to their study. Approximately 68 bioinformatics enrichment tools that are currently available in the community are collected in this survey. Tools are uniquely categorized into three major classes, according to their underlying enrichment algorithms. The comprehensive collections, unique tool classifications and associated questions/issues will provide a more comprehensive and up-to-date view regarding the advantages, pitfalls and recent trends in a simpler tool-class level rather than by a tool-by-tool approach. Thus, the survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests. PMID:19033363

  16. Transference factors as a tool for the estimation of arsenic milk concentration.

    PubMed

    Pérez-Carrera, Alejo; Alvarez-Gonçalvez, Cristina V; Fernández-Cirelli, Alicia

    2016-08-01

    The Chaco Pampean Plain of central Argentina represents one of the largest regions with high levels of arsenic (As) in groundwater. The aim of this study was the assessment of a biotransference factor (BTF) as a tool for the estimation of As concentration in cow's milk from As drinking water concentration. Total As content in livestock drinking water, soil, forage, and milk was determined in farms located in an area of high As groundwater, in order to analyze the relation between As uptake and its transfer to milk. The concentrations of As in milk ranged from 0.5 to 8.0 μg/L. From the results obtained, drinking water may be considered the main source of exposure to As, and the biotransference factor for milk ranges from 1.5 × 10(-5) to 4.3 × 10(-4). Therefore, BTF provides a simple tool for the estimation of arsenic levels in milk through the As livestock drinking water content. PMID:27155835

  17. Potential transfer of extended spectrum β-lactamase encoding gene, blashv18 gene, between Klebsiella pneumoniae in raw foods.

    PubMed

    Jung, Yangjin; Matthews, Karl R

    2016-12-01

    This study investigated the transfer frequency of the extended-spectrum β-lactamase-encoding gene (blaSHV18) among Klebsiella pneumoniae in tryptic soy broth (TSB), pasteurized milk, unpasteurized milk, alfalfa sprouts and chopped lettuce at defined temperatures. All transconjugants were characterized phenotypically and genotypically. KP04(ΔKM) and KP08(ΔKM) isolated from seed sprouts and KP342 were used as recipients in mating experiments with K. pneumoniae ATCC 700603 serving as the donor. In mating experiments, no transconjugants were detected at 4 °C in liquid media or chopped lettuce, but detected in all media tested at 15 °C, 24 °C, and 37 °C. At 24 °C, the transfer of blaSHV18 gene occurred more frequently in alfalfa sprouts (5.15E-04 transconjugants per recipient) and chopped lettuce (3.85E-05) than liquid media (1.08E-05). On chopped lettuce, transconjugants were not detected at day 1 post-mating at 15 °C, but observed on day 2 (1.43E-05). Transconjugants carried the blaSHV18 gene transferred from the donor and the virulence gene harbored by recipient. More importantly, a class 1 integrase gene and resistance to tetracycline, trimethoprim/sulfamethoxazole were co-transferred during mating. These quantitative results suggest that fresh produce exposed to temperature abuse may serve as a competent vehicle for the spread of gene encoding for antibiotic resistance, having a potential negative impact on human health. PMID:27554144

  18. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    SciTech Connect

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.; Homa, F.L.; Levine, M.; Kelley, W.N.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  19. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  20. Stable and Efficient Gene Transfer into the Retina Using an HIV-Based Lentiviral Vector

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hiroyuki; Takahashi, Masayo; Gage, Fred H.; Verma, Inder M.

    1997-09-01

    The development of methods for efficient gene transfer to terminally differentiated retinal cells is important to study the function of the retina as well as for gene therapy of retinal diseases. We have developed a lentiviral vector system based on the HIV that can transduce terminally differentiated neurons of the brain in vivo. In this study, we have evaluated the ability of HIV vectors to transfer genes into retinal cells. An HIV vector containing a gene encoding the green fluorescent protein (GFP) was injected into the subretinal space of rat eyes. The GFP gene under the control of the cytomegalovirus promoter was efficiently expressed in both photoreceptor cells and retinal pigment epithelium. However, the use of the rhodopsin promoter resulted in expression predominantly in photoreceptor cells. Most successfully transduced eyes showed that photoreceptor cells in >80% of the area of whole retina expressed the GFP. The GFP expression persisted for at least 12 weeks with no apparent decrease. The efficient gene transfer into photoreceptor cells by HIV vectors will be useful for gene therapy of retinal diseases such as retinitis pigmentosa.

  1. Site-specific recombinases as tools for heterologous gene integration.

    PubMed

    Hirano, Nobutaka; Muroi, Tetsurou; Takahashi, Hideo; Haruki, Mitsuru

    2011-10-01

    Site-specific recombinases are the enzymes that catalyze site-specific recombination between two specific DNA sequences to mediate DNA integration, excision, resolution, or inversion and that play a pivotal role in the life cycles of many microorganisms including bacteria and bacteriophages. These enzymes are classified as tyrosine-type or serine-type recombinases based on whether a tyrosine or serine residue mediates catalysis. All known tyrosine-type recombinases catalyze the formation of a Holliday junction intermediate, whereas the catalytic mechanism of all known serine-type recombinases includes the 180° rotation and rejoining of cleaved substrate DNAs. Both recombinase families are further subdivided into two families; the tyrosine-type recombinases are subdivided by the recombination directionality, and the serine-type recombinases are subdivided by the protein size. Over more than two decades, many different site-specific recombinases have been applied to in vivo genome engineering, and some of them have been used successfully to mediate integration, deletion, or inversion in a wide variety of heterologous genomes, including those from bacteria to higher eukaryotes. Here, we review the recombination mechanisms of the best characterized recombinases in each site-specific recombinase family and recent advances in the application of these recombinases to genomic manipulation, especially manipulations involving site-specific gene integration into heterologous genomes. PMID:21822899

  2. Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment.

    PubMed Central

    Bruce, W B; Christensen, A H; Klein, T; Fromm, M; Quail, P H

    1989-01-01

    The regulatory photoreceptor phytochrome controls the transcription of its own phy genes in a negative feedback fashion. We have exploited microprojectile-mediated gene transfer to develop a rapid transient expression assay system for the study of DNA sequences involved in the phytochrome-regulated expression of these genes. The 5'-flanking sequence and part of the structural region of an oat phy gene have been fused to a reporter coding sequence (chloramphenicol acetyltransferase, CAT) and introduced into intact darkgrown seedlings by using high-velocity microprojectiles. Expression is assayable in less than 24 hr from bombardment. The introduced oat phy-CAT fusion gene is expressed and down-regulated by white light in barley, rice, and oat, whereas no expression is detected in three dicots tested, tobacco, cucumber, and Arabidopsis thaliana. In bombarded rice shoots, red/far-red light-reversible repression of expression of the heterologous oat phy-CAT gene shows that it is regulated by phytochrome in a manner parallel to that of the endogenous rice phy genes. These data indicate that the transduction pathway components and promoter sequences involved in autoregulation of phy expression have been evolutionarily conserved between oat and rice. The experiments show the feasibility of using high-velocity microprojectile-mediated gene transfer for the rapid analysis of light-controlled monocot gene promoters in monocot tissues that until now have been recalcitrant to such studies. Images PMID:2602370

  3. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    PubMed

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine. PMID:26683492

  4. DepthTools: an R package for a robust analysis of gene expression data

    PubMed Central

    2013-01-01

    Background The use of DNA microarrays and oligonucleotide chips of high density in modern biomedical research provides complex, high dimensional data which have been proven to convey crucial information about gene expression levels and to play an important role in disease diagnosis. Therefore, there is a need for developing new, robust statistical techniques to analyze these data. Results depthTools is an R package for a robust statistical analysis of gene expression data, based on an efficient implementation of a feasible notion of depth, the Modified Band Depth. This software includes several visualization and inference tools successfully applied to high dimensional gene expression data. A user-friendly interface is also provided via an R-commander plugin. Conclusion We illustrate the utility of the depthTools package, that could be used, for instance, to achieve a better understanding of genome-level variation between tumors and to facilitate the development of personalized treatments. PMID:23885712

  5. Improved retroviral suicide gene transfer in colon cancer cell lines after cell synchronization with methotrexate

    PubMed Central

    2011-01-01

    Background Cancer gene therapy by retroviral vectors is mainly limited by the level of transduction. Retroviral gene transfer requires target cell division. Cell synchronization, obtained by drugs inducing a reversible inhibition of DNA synthesis, could therefore be proposed to precondition target cells to retroviral gene transfer. We tested whether drug-mediated cell synchronization could enhance the transfer efficiency of a retroviral-mediated gene encoding herpes simplex virus thymidine kinase (HSV-tk) in two colon cancer cell lines, DHDK12 and HT29. Methods Synchronization was induced by methotrexate (MTX), aracytin (ara-C) or aphidicolin. Gene transfer efficiency was assessed by the level of HSV-TK expression. Transduced cells were driven by ganciclovir (GCV) towards apoptosis that was assessed using annexin V labeling by quantitative flow cytometry. Results DHDK12 and HT29 cells were synchronized in S phase with MTX but not ara-C or aphidicolin. In synchronized DHDK12 and HT29 cells, the HSV-TK transduction rates were 2 and 1.5-fold higher than those obtained in control cells, respectively. Furthermore, the rate of apoptosis was increased two-fold in MTX-treated DHDK12 cells after treatment with GCV. Conclusions Our findings indicate that MTX-mediated synchronization of target cells allowed a significant improvement of retroviral HSV-tk gene transfer, resulting in an increased cell apoptosis in response to GCV. Pharmacological control of cell cycle may thus be a useful strategy to optimize the efficiency of retroviral-mediated cancer gene therapy. PMID:21970612

  6. Transferring Gus gene into intact rice cells by low energy ion beam

    NASA Astrophysics Data System (ADS)

    Zengliang, Yu; Jianbo, Yang; Yuejin, Wu; Beijiu, Cheng; Jianjun, He; Yuping, Huo

    1993-06-01

    A new technique of transferring genes by low energy ion beam has been reported in this paper. The Gus and CAT (chloramphenicol acetyltransferase) genes, as "foreign" genetic materials, were introduced into the suspension cells and ripe embryos or rice by implantation of 20-30 keV Ar + at doses ranging from 1 × 10 15 to 4 × 10 15 ions/cm 2. The activities of CAT and Gus were detected in the cells and embryos after several weeks. The results indicate that the transfer was a success.

  7. Efficient Gene Transfer and Targeted Mutagenesis in Fusobacterium nucleatum

    PubMed Central

    Haake, Susan Kinder; Yoder, Sean; Gerardo, Sharon Hunt

    2006-01-01

    Fusobacterium nucleatum is a Gram-negative anaerobe important in dental biofilm ecology and infectious diseases with significant societal impact. The lack of efficient genetic systems has hampered molecular analyses in this microorganism. We previously reported construction of a shuttle plasmid, pHS17, using the native fusobacterial plasmid pFN1 and an erythromycin resistance cassette. However, the host range of pHS17 was restricted to F. nucleatum, ATCC 10953 and the transformation efficiency was limited. This study was undertaken to improve genetic systems for molecular analysis in F. nucleatum. We identified a second F. nucleatum strain, ATCC 23726, which is transformed with improved efficiency compared to ATCC 10953. Two novel second generation pFN1-based shuttle plasmids, pHS23 and pHS30, were developed and enable transformation of ATCC 23726 at 6.2 x 104 and 1.5 x 106 transformants/microgram of plasmid DNA, respectively. The transformation efficiency of pHS30, which harbors a catP gene conferring resistance to chloramphenicol, was more than 1,000-fold greater than that of pHS17. The improved transformation efficiency facilitated disruption of the chromosomal rnr gene using a suicide plasmid pHS19, the first demonstration of targeted mutagenesis in F. nucleatum. These results provide significant advances in the development of systems for molecular analysis in F. nucleatum. PMID:16115683

  8. Nano-vectors for efficient liver specific gene transfer

    PubMed Central

    Pathak, Atul; Vyas, Suresh P; Gupta, Kailash C

    2008-01-01

    Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in various body functions and in addition, the site is a primary location of metastatic tumor growth. In past few years, a plethora of nano-vectors have been developed and investigated to target liver associated cells through receptor mediated endocytosis. This emerging paradigm in cellular drug/gene delivery provides promising approach to eradicate genetic as well as acquired diseases affecting the liver. The present review provides a comprehensive overview of potential of various delivery systems, viz., lipoplexes, liposomes, polyplexes, nanoparticles and so forth to selectively relocate foreign therapeutic DNA into liver specific cell type via the receptor mediated endocytosis. Various receptors like asialoglycoprotein receptors (ASGP-R) provide unique opportunity to target liver parenchymal cells. The results obtained so far reveal tremendous promise and offer enormous options to develop novel DNA-based pharmaceuticals for liver disorders in near future. PMID:18488414

  9. The Gene Expression Barcode 3.0: improved data processing and mining tools

    PubMed Central

    McCall, Matthew N.; Jaffee, Harris A.; Zelisko, Susan J.; Sinha, Neeraj; Hooiveld, Guido; Irizarry, Rafael A.; Zilliox, Michael J.

    2014-01-01

    The Gene Expression Barcode project, http://barcode.luhs.org, seeks to determine the genes expressed for every tissue and cell type in humans and mice. Understanding the absolute expression of genes across tissues and cell types has applications in basic cell biology, hypothesis generation for gene function and clinical predictions using gene expression signatures. In its current version, this project uses the abundant publicly available microarray data sets combined with a suite of single-array preprocessing, quality control and analysis methods. In this article, we present the improvements that have been made since the previous version of the Gene Expression Barcode in 2011. These include a variety of new data mining tools and summaries, estimated transcriptomes and curated annotations. PMID:24271388

  10. In situ gene transfer and suicide gene therapy of gastric cancer induced by N-ethyl-N'-nitro-N-nitrosoguanidine in dogs.

    PubMed

    Matsukura, N; Hoshino, A; Igarashi, T; Hasegawa, H; Okino, T; Onda, M; Iijima, O; Akiyama, K; Goto, T; Takubo, K; Suzuki, S; Shimada, T

    1999-09-01

    Gene therapy could potentially revolutionize the treatment of gastrointestinal (GI) tract cancer. The aim of this study was to establish a practical method of gene transfer which would be applicable to human gastric cancer. Retrovirus or/and adenovirus vectors carrying the lacZ marker gene were transferred in situ by needle through an endoscopic biopsy channel into primary gastric cancer in six male beagle dogs that had been treated with N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG). In addition, an adenovirus vector carrying the herpes simplex virus thymidine kinase (Ad.CAGHSV-TK) gene was introduced in situ into cancer tissues in the stomach of three dogs, and the animals were treated with intravenous ganciclovir (GCV). Retrovirus-producing cells which expressed the lacZ gene were specifically localized to the injection site in the stomach. The lacZ gene was more widely transferred into the tumor by the adenovirus vector than by retrovirus-producing cells. Improvement of the needle used for gene transfer and the use of multiple injections per tumor led to more diffuse transfer of the vector into the tumor. The Ad.CAGlacZ gene was also transferred into regional lymph nodes of the stomach. Moderate to diffuse degeneration of the primary cancer tissues of the stomach was found after Ad.CAGHSV-TK/GCV gene therapy. Moreover, almost complete tissue degeneration was observed in the regional lymph nodes of the stomach. An adverse effect of HSV-TK/GCV gene therapy was acute hepatotoxicity, which was not found after Ad.CAGlacZ gene transfer, but was found after high-titer Ad.CAGHSV-TK gene transfer followed by GCV. These findings suggest that in situ gene transfer of a suicide gene followed by prodrug treatment may be applicable not only to primary tumors, but also to lymph node metastases of gastric cancer, though further study of both beneficial and adverse effects is required before clinical usage. PMID:10551335

  11. Regulatory and ethical issues for phase I in utero gene transfer studies.

    PubMed

    Strong, Carson

    2011-11-01

    Clinical gene transfer research has involved adult and child subjects, and it is expected that gene transfer in fetal subjects will occur in the future. Some genetic diseases have serious adverse effects on the fetus before birth, and there is hope that prenatal gene therapy could prevent such disease progression. Research in animal models of prenatal gene transfer is actively being pursued. The prospect of human phase I in utero gene transfer studies raises important regulatory and ethical issues. One issue not previously addressed arises in applying U.S. research regulations to such studies. Specifically, current regulations state that research involving greater than minimal risk to the fetus and no prospect of direct benefit to the fetus or pregnant woman is not permitted. Phase I studies will involve interventions such as needle insertions through the uterus, which carry risks to the fetus including spontaneous abortion and preterm birth. It is possible that these risks will be regarded as exceeding minimal. Also, some regard the probability of therapeutic benefit in phase I studies to be so low that these studies do not satisfy the regulatory requirement that they "hold out the prospect of direct benefit" to subjects. On the basis of these considerations, investigators and institutional review boards might reasonably conclude that some phase I in utero studies are not to be permitted. This paper identifies considerations that are relevant to such judgments and explores ethically acceptable ways in which phase I studies can be designed so that they are permitted by the regulations. PMID:21846200

  12. Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses

    NASA Astrophysics Data System (ADS)

    Yolamanova, Maral; Meier, Christoph; Shaytan, Alexey K.; Vas, Virag; Bertoncini, Carlos W.; Arnold, Franziska; Zirafi, Onofrio; Usmani, Shariq M.; Müller, Janis A.; Sauter, Daniel; Goffinet, Christine; Palesch, David; Walther, Paul; Roan, Nadia R.; Geiger, Hartmut; Lunov, Oleg; Simmet, Thomas; Bohne, Jens; Schrezenmeier, Hubert; Schwarz, Klaus; Ständker, Ludger; Forssmann, Wolf-Georg; Salvatella, Xavier; Khalatur, Pavel G.; Khokhlov, Alexei R.; Knowles, Tuomas P. J.; Weil, Tanja; Kirchhoff, Frank; Münch, Jan

    2013-02-01

    Inefficient gene transfer and low virion concentrations are common limitations of retroviral transduction. We and others have previously shown that peptides derived from human semen form amyloid fibrils that boost retroviral gene delivery by promoting virion attachment to the target cells. However, application of these natural fibril-forming peptides is limited by moderate efficiencies, the high costs of peptide synthesis, and variability in fibril size and formation kinetics. Here, we report the development of nanofibrils that self-assemble in aqueous solution from a 12-residue peptide, termed enhancing factor C (EF-C). These artificial nanofibrils enhance retroviral gene transfer substantially more efficiently than semen-derived fibrils or other transduction enhancers. Moreover, EF-C nanofibrils allow the concentration of retroviral vectors by conventional low-speed centrifugation, and are safe and effective, as assessed in an ex vivo gene transfer study. Our results show that EF-C fibrils comprise a highly versatile, convenient and broadly applicable nanomaterial that holds the potential to significantly facilitate retroviral gene transfer in basic research and clinical applications.

  13. Different gene transfer methods at the very early, early, late and whole embryonic stages in chicken.

    PubMed

    Gong, Ping; Yang, Y P; Yang, Y; Feng, Yan P; Li, S J; Peng, Xiu L; Gong, Y Z

    2012-12-01

    New technologies in gene transfer combined with experimental embryology make the chicken embryo an excellent model system for gene function studies. The techniques of in ovo electroporation, in vitro culture for ex ovo electroporation and retrovirus-mediated gene transfer have already been fully developed in chicken. Yet to our knowledge, there are no definite descriptions on the features and application scopes of these techniques. The survival rates of different in vitro culture methods were compared and the EGFP expression areas of different gene transfer techniques were explored. It was that the optimal timings of removing embryo for EC culture and Petri dish system was at E1.5 and E2.5, respectively; and optimal timing of injecting retrovirus is at E0. Results indicated that the EC culture, in ovo electroporation, the Petri dish system and retrovirus-mediated method are, respectively, suitable for the very early, early, late and whole embryonic stages in chicken. Comparison of different gene transfer methods and establishment of optimal timings are expected to provide a better choice of the efficient method for a particular experiment. PMID:23134602

  14. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents

    PubMed Central

    Donnelly, Amanda; Yata, Teerapong; Bentayebi, Kaoutar; Suwan, Keittisak; Hajitou, Amin

    2015-01-01

    The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications. PMID:26670247

  15. Semantic integration of gene expression analysis tools and data sources using software connectors

    PubMed Central

    2013-01-01

    Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools

  16. Collective evolution of cyanobacteria and cyanophages mediated by horizontal gene transfer

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Rogers, Tim; Goldenfeld, Nigel

    We describe a model for how antagonistic predator-prey coevolution can lead to mutualistic adaptation to an environment, as a result of horizontal gene transfer. Our model is a simple description of ecosystems such as marine cyanobacteria and their predator cyanophages, which carry photosynthesis genes. These genes evolve more rapidly in the virosphere than the bacterial pan-genome, and thus the bacterial population could potentially benefit from phage predation. By modeling both the barrier to predation and horizontal gene transfer, we study this balance between individual sacrifice and collective benefits. The outcome is an emergent mutualistic coevolution of improved photosynthesis capability, benefiting both bacteria and phage. This form of multi-level selection can contribute to niche stratification in the cyanobacteria-phage ecosystem. This work is supported in part by a cooperative agreement with NASA, Grant NNA13AA91A/A0018.

  17. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia

    PubMed Central

    Drapkin, Paola T.; O’Riordan, Catherine R.; Yi, Su Min; Chiorini, John A.; Cardella, Jonathan; Zabner, Joseph; Welsh, Michael J.

    2000-01-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  18. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia.

    PubMed

    Drapkin, P T; O'Riordan, C R; Yi, S M; Chiorini, J A; Cardella, J; Zabner, J; Welsh, M J

    2000-03-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  19. CorrelaGenes: a new tool for the interpretation of the human transcriptome

    PubMed Central

    2014-01-01

    Background The amount of gene expression data available in public repositories has grown exponentially in the last years, now requiring new data mining tools to transform them in information easily accessible to biologists. Results By exploiting expression data publicly available in the Gene Expression Omnibus (GEO) database, we developed a new bioinformatics tool aimed at the identification of genes whose expression appeared simultaneously altered in different experimental conditions, thus suggesting co-regulation or coordinated action in the same biological process. To accomplish this task, we used the 978 human GEO Curated DataSets and we manually performed the selection of 2,109 pair-wise comparisons based on their biological rationale. The lists of differentially expressed genes, obtained from the selected comparisons, were stored in a PostgreSQL database and used as data source for the CorrelaGenes tool. Our application uses a customized Association Rule Mining (ARM) algorithm to identify sets of genes showing expression profiles correlated with a gene of interest. The significance of the correlation is measured coupling the Lift, a well-known standard ARM index, and the χ2 p value. The manually curated selection of the comparisons and the developed algorithm constitute a new approach in the field of gene expression profiling studies. Simulation performed on 100 randomly selected target genes allowed us to evaluate the efficiency of the procedure and to obtain preliminary data demonstrating the consistency of the results. Conclusions The preliminary results of the simulation showed how CorrelaGenes could contribute to the characterization of molecular pathways and biological processes integrating data obtained from other applications and available in public repositories. PMID:24564370

  20. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets

    PubMed Central

    Hurley, Daniel; Araki, Hiromitsu; Tamada, Yoshinori; Dunmore, Ben; Sanders, Deborah; Humphreys, Sally; Affara, Muna; Imoto, Seiya; Yasuda, Kaori; Tomiyasu, Yuki; Tashiro, Kosuke; Savoie, Christopher; Cho, Vicky; Smith, Stephen; Kuhara, Satoru; Miyano, Satoru; Charnock-Jones, D. Stephen; Crampin, Edmund J.; Print, Cristin G.

    2012-01-01

    Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions. PMID:22121215

  1. Express primer tool for high-throughput gene cloning and expression.

    SciTech Connect

    Yoon, J. R.; Laible, P. D.; Gu, M.; Scott, H. N.; Collart, F. R.; Biosciences Division

    2002-12-01

    High-throughput approaches for gene cloning and expression require the development of new nonstandard tools for molecular biologists and biochemists. We introduce a Web-based tool to design primers specifically for the generation of expression clones for both laboratory-scale and high-throughput projects. The application is designed not only to allow the user complete flexibility to specify primer design parameters but also to minimize the amount of manual intervention needed to generate a large number of primers for the simultaneous amplification of multiple target genes.

  2. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation

    PubMed Central

    Liu, Honglei; Wei, Zheng; Dominguez, Antonia; Li, Yanda; Wang, Xiaowo; Qi, Lei S.

    2015-01-01

    Summary: The CRISPR/Cas9 system was recently developed as a powerful and flexible technology for targeted genome engineering, including genome editing (altering the genetic sequence) and gene regulation (without altering the genetic sequence). These applications require the design of single guide RNAs (sgRNAs) that are efficient and specific. However, this remains challenging, as it requires the consideration of many criteria. Several sgRNA design tools have been developed for gene editing, but currently there is no tool for the design of sgRNAs for gene regulation. With accumulating experimental data on the use of CRISPR/Cas9 for gene editing and regulation, we implement a comprehensive computational tool based on a set of sgRNA design rules summarized from these published reports. We report a genome-wide sgRNA design tool and provide an online website for predicting sgRNAs that are efficient and specific. We name the tool CRISPR-ERA, for clustered regularly interspaced short palindromic repeat-mediated editing, repression, and activation (ERA). Availability and implementation: http://CRISPR-ERA.stanford.edu. Contact: stanley.qi@stanford.edu or xwwang@tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26209430

  3. Creation and validation of a widely applicable multiple gene transfer vector system for stable transformation in plant.

    PubMed

    Sun, Quanxi; Liu, Jiang; Li, Yaxiao; Zhang, Qin; Shan, Shihua; Li, Xinzheng; Qi, Baoxiu

    2013-11-01

    Multiple gene transfer (MGT) technology has become a powerful tool for basic and applied plant biology research in recent years. Despite some notable successes in obtaining plant lines harbouring multiple transgenes, these methods are still generally unwieldy and costly. We report here a straightforward and cost effective strategy, utilizing commonly available restriction enzymes for the transfer of multiple genes into plants, hence greatly widening the accessibility of MGT. This methodology exploits the specific 'nested' arrangement of a pair of isocaudomer restriction enzymes (for example XbaI-AvrII-XbaI) so that through the alternate use of these two enzymes in a reiterative fashion multiple genes/constructs (up to five in this study) could be 'stacked' together with ease. In a proof-of-concept experiment, we constructed a plant transformation vector containing three reporter gene expression cassettes flanked by two matrix attachment region sequences. The expression of all three genes was confirmed in transgenic Arabidopsis thaliana. The usefulness of this technology was further validated by the construction of a plant transformation vector containing five transgenes for the production of eicosapentaenoic acid (EPA, C20∆⁵,⁸,¹¹,¹⁴,¹⁷), a polyunsaturated essential fatty acid found in fish oils that is beneficial for health. In addition, we constructed four more vectors, incorporating one seed specific and three promoters conferring constitutive expression. These expression cassettes are flanked by a different isocaudomer pair (AvrII-SpeI-AvrII) and four other unique restriction sites, allowing the exchange of promoters and terminators of choice. PMID:23839253

  4. Rate of gene transfer from mitochondria to nucleus: effects of cytoplasmic inheritance system and intensity of intracellular competition.

    PubMed

    Yamauchi, Atsushi

    2005-11-01

    Endosymbiotic theory states that mitochondria originated as bacterial intracellular symbionts, the size of the mitochondrial genome gradually reducing over a long period owing to, among other things, gene transfer from the mitochondria to the nucleus. Such gene transfer was observed in more genes in animals than in plants, implying a higher transfer rate of animals. The evolution of gene transfer may have been affected by an intensity of intracellular competition among organelle strains and the organelle inheritance system of the organism concerned. This article reveals a relationship between those factors and the gene transfer rate from organelle to nuclear genomes, using a mathematical model. Mutant mitochondria that lose a certain gene by deletion are considered to replicate more rapidly than normal ones, resulting in an advantage in intracellular competition. If the competition is intense, heteroplasmic individuals possessing both types of mitochondria change to homoplasmic individuals including mutant mitochondria only, with high probability. According to the mathematical model, it was revealed that the rate of gene transfer from mitochondria to the nucleus can be affected by three factors, the intensity of intracellular competition, the probability of paternal organelle transmission, and the effective population size. The gene transfer rate tends to increase with decreasing intracellular competition, increasing paternal organelle transmission, and decreasing effective population size. Intense intracellular competition tends to suppress gene transfer because it is likely to exclude mutant mitochondria that lose the essential gene due to the production of lethal individuals. PMID:16079242

  5. A literature search tool for intelligent extraction of disease-associated genes

    PubMed Central

    Jung, Jae-Yoon; DeLuca, Todd F; Nelson, Tristan H; Wall, Dennis P

    2014-01-01

    Objective To extract disorder-associated genes from the scientific literature in PubMed with greater sensitivity for literature-based support than existing methods. Methods We developed a PubMed query to retrieve disorder-related, original research articles. Then we applied a rule-based text-mining algorithm with keyword matching to extract target disorders, genes with significant results, and the type of study described by the article. Results We compared our resulting candidate disorder genes and supporting references with existing databases. We demonstrated that our candidate gene set covers nearly all genes in manually curated databases, and that the references supporting the disorder–gene link are more extensive and accurate than other general purpose gene-to-disorder association databases. Conclusions We implemented a novel publication search tool to find target articles, specifically focused on links between disorders and genotypes. Through comparison against gold-standard manually updated gene–disorder databases and comparison with automated databases of similar functionality we show that our tool can search through the entirety of PubMed to extract the main gene findings for human diseases rapidly and accurately. PMID:23999671

  6. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  7. Inferring gene duplications, transfers and losses can be done in a discrete framework.

    PubMed

    Ranwez, Vincent; Scornavacca, Celine; Doyon, Jean-Philippe; Berry, Vincent

    2016-06-01

    In the field of phylogenetics, the evolutionary history of a set of organisms is commonly depicted by a species tree-whose internal nodes represent speciation events-while the evolutionary history of a gene family is depicted by a gene tree-whose internal nodes can also represent macro-evolutionary events such as gene duplications and transfers. As speciation events are only part of the events shaping a gene history, the topology of a gene tree can show incongruences with that of the corresponding species tree. These incongruences can be used to infer the macro-evolutionary events undergone by the gene family. This is done by embedding the gene tree inside the species tree and hence providing a reconciliation of those trees. In the past decade, several parsimony-based methods have been developed to infer such reconciliations, accounting for gene duplications ([Formula: see text]), transfers ([Formula: see text]) and losses ([Formula: see text]). The main contribution of this paper is to formally prove an important assumption implicitly made by previous works on these reconciliations, namely that solving the (maximum) parsimony [Formula: see text] reconciliation problem in the discrete framework is equivalent to finding a most parsimonious [Formula: see text] scenario in the continuous framework. In the process, we also prove several intermediate results that are useful on their own and constitute a theoretical toolbox that will likely facilitate future theoretical contributions in the field. PMID:26337177

  8. Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A Phylogenetic Study

    PubMed Central

    Slot, Jason C.; Hibbett, David S.

    2007-01-01

    High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC) that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(P)H-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts). We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts) to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota), which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the “selfish operon” hypothesis for maintenance of gene clusters. PMID:17971860

  9. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    PubMed

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J

    2009-07-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages. PMID:19584142

  10. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer

    PubMed Central

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  11. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer.

    PubMed

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  12. Gene Transfer and the Reconstruction of Life's Early History from Genomic Data

    NASA Astrophysics Data System (ADS)

    Gogarten, J. Peter; Fournier, Gregory; Zhaxybayeva, Olga

    2008-03-01

    The metaphor of the unique and strictly bifurcating tree of life, suggested by Charles Darwin, needs to be replaced (or at least amended) to reflect and include processes that lead to the merging of and communication between independent lines of descent. Gene histories include and reflect processes such as gene transfer, symbioses and lineage fusion. No single molecule can serve as a proxy for the tree of life. Individual gene histories can be reconstructed from the growing molecular databases containing sequence and structural information. With some simplifications these gene histories can be represented by furcating trees; however, merging these gene histories into web-like organismal histories, including the transfer of metabolic pathways and cell biological innovations from now-extinct lineages, has yet to be accomplished. Because of these difficulties in interpreting the record retained in molecular sequences, correlations with biochemical fossils and with the geological record need to be interpreted with caution. Advances to detect and pinpoint transfer events promise to untangle at least a few of the intertwined histories of individual genes within organisms and trace them to the organismal ancestors. Furthermore, analysis of the shape of molecular phylogenetic trees may point towards organismal radiations that might reflect early mass extinction events that occurred on a planetary scale.

  13. Gene Transfer and the Reconstruction of Life's Early History from Genomic Data

    NASA Astrophysics Data System (ADS)

    Gogarten, J. Peter; Fournier, Gregory; Zhaxybayeva, Olga

    The metaphor of the unique and strictly bifurcating tree of life, suggested by Charles Darwin, needs to be replaced (or at least amended) to reflect and include processes that lead to the merging of and communication between independent lines of descent. Gene histories include and reflect processes such as gene transfer, symbioses and lineage fusion. No single molecule can serve as a proxy for the tree of life. Individual gene histories can be reconstructed from the growing molecular databases containing sequence and structural information. With some simplifications these gene histories can be represented by furcating trees; however, merging these gene histories into web-like organismal histories, including the transfer of metabolic pathways and cell biological innovations from now-extinct lineages, has yet to be accomplished. Because of these difficulties in interpreting the record retained in molecular sequences, correlations with biochemical fossils and with the geological record need to be interpreted with caution. Advances to detect and pinpoint transfer events promise to untangle at least a few of the intertwined histories of individual genes within organisms and trace them to the organismal ancestors. Furthermore, analysis of the shape of molecular phylogenetic trees may point towards organismal radiations that might reflect early mass extinction events that occurred on a planetary scale.

  14. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses

    PubMed Central

    Monier, Adam; Claverie, Jean-Michel; Ogata, Hiroyuki

    2007-01-01

    Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria) that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA) genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their modern hosts. The large

  15. Lateral Gene Transfer and Gene Duplication Played a Key Role in the Evolution of Mastigamoeba balamuthi Hydrogenosomes

    PubMed Central

    Nývltová, Eva; Stairs, Courtney W.; Hrdý, Ivan; Rídl, Jakub; Mach, Jan; Pačes, Jan; Roger, Andrew J.; Tachezy, Jan

    2015-01-01

    Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition. PMID:25573905

  16. GeneMarker® Genotyping Software: Tools to Increase the Statistical Power of DNA Fragment Analysis

    PubMed Central

    Hulce, D.; Li, X.; Snyder-Leiby, T.; Johathan Liu, C.S.

    2011-01-01

    The discriminatory power of post-genotyping analyses, such as kinship or clustering analysis, is dependent on the amount of genetic information obtained from the DNA fragment/genotyping analysis. The number of microsatellite loci amplified in one multiplex is limited by the number of dyes and overlapping loci boundaries; requiring researchers to amplify replicate samples with 2 or more multiplexes in order to obtain a genotype for 12–15 loci. AFLP is another method that is limited by the number of dyes, often requiring multiple amplifications of replicate samples to obtain more complete results. Traditionally, researchers export the genotyping results into a spread sheet, manually combine the results for each individual and then import into a third software package for post-genotyping analysis. GeneMarker is highly accurate, user-friendly genotyping software that allows all of these steps to be done in one software package, avoiding potential errors from data transfer to different programs and decreasing the amount of time needed to process the results. The Merge Project tool automatically combines the results from replicate samples processed with different primer sets. Replicate animal (diploid) DNA samples were amplified with three different multiplexes, each multiplex provided information on 4–6 loci. The kinship analysis using the merged results provided a 1017 increase in statistical power with a range of 108 when 5 loci were used versus 1025 when 15 loci were used to determine potential relationship levels with identity by descent calculations. These same sample sets were used in clustering analysis to diagram dendrograms. The dendrogram based on a single multiplex resulted in three branches at a given Euclidian distance. In comparison, the dendrogram that was constructed using the merged results had eight branches at the same Euclidian distance.

  17. HGCS: an online tool for prioritizing disease-causing gene variants by biological distance

    PubMed Central

    2014-01-01

    Background Identifying the genotypes underlying human disease phenotypes is a fundamental step in human genetics and medicine. High-throughput genomic technologies provide thousands of genetic variants per individual. The causal genes of a specific phenotype are usually expected to be functionally close to each other. According to this hypothesis, candidate genes are picked from high-throughput data on the basis of their biological proximity to core genesgenes already known to be responsible for the phenotype. There is currently no effective gene-centric online interface for this purpose. Results We describe here the human gene connectome server (HGCS), a powerful, easy-to-use interactive online tool enabling researchers to prioritize any list of genes according to their biological proximity to core genes associated with the phenotype of interest. We also make available an updated and extended version for all human gene-specific connectomes. The HGCS is freely available to noncommercial users from: http://hgc.rockefeller.edu/. Conclusions The HGCS should help investigators from diverse fields to identify new disease-causing candidate genes more effectively, via a user-friendly online interface. PMID:24694260

  18. The informed decisions toolbox: tools for knowledge transfer and performance improvement.

    PubMed

    Rundall, Thomas G; Martelli, Peter F; Arroyo, Laura; McCurdy, Rodney; Graetz, Ilana; Neuwirth, Esther B; Curtis, Pam; Schmittdiel, Julie; Gibson, Mark; Hsu, John

    2007-01-01

    In recent years, spurred by developments in evidence-informed medicine, a movement to strengthen evidence-informed managerial decision making in healthcare organizations has emerged in the United States and in other countries. The drivers of this movement include demands by payers and consumer groups for improved quality of care, increased operational efficiency, and greater accountability from healthcare organizations. But numerous barriers to managers' use of evidence in decision making exist, including time pressures, perceived threats to autonomy, preference for colloquial knowledge based on individual experiences, difficulty accessing the relevant evidence base, reliance on external consultants (and others) to determine the quality of the information, and lack of resources. To help managers overcome these barriers, we developed the Informed Decisions Toolbox. It provides tools to help managers efficiently perform the six key steps in the evidence-informed approach to decision making: (1) framing the management question, (2) finding sources of information, (3) assessing the accuracy of the information, (4) assessing the applicability of the information, (5) assessing the actionability of the evidence, and (6) determining if the information is adequate. To build an organizational environment conducive to evidence-informed decision making, we suggest four leadership-driven strategies: (1) recognize and respond to the growing demand for accountability as a strategic issue, (2) establish organizational structures and processes for knowledge transfer, (3) build a questioning organizational culture, and (4) build organizational research capabilities. With organizational support, managers who use the tools presented in the Informed Decisions Toolbox will be able to take control of the decision-making process, will be less reliant on colloquial evidence and consultants, and will be better able to improve the performance of their organizations. PMID:17933188

  19. Security Transition Program Office (STPO), technology transfer of the STPO process, tools, and techniques

    SciTech Connect

    Hauth, J.T.; Forslund, C.R.J.; Underwood, J.A.

    1994-09-01

    In 1990, with the transition from a defense mission to environmental restoration, the U.S. Department of Energy`s (DOE`s) Hanford Site began a significant effort to diagnose, redesign, and implement new safeguards and security (SAS) processes. In 1992 the Security Transition Program Office (STPO) was formed to address the sweeping changes that were being identified. Comprised of SAS and other contractor staff with extensive experience and supported by staff experienced in organizational analysis and work process redesign, STPO undertook a series of tasks designed to make fundamental changes to SAS processes throughout the Hanford Site. The goal of STPO is to align the SAS work and organization with the new Site mission. This report describes the key strategy, tools, methods, and techniques used by STPO to change SAS processes at Hanford. A particular focus of this review is transferring STPO`s experience to other DOE sites and federal agency efforts: that is, to extract, analyze, and provide a critical review of the approach, tools, and techniques used by STPO that will be useful to other DOE sites and national laboratories in transitioning from a defense production mode to environmental restoration and other missions. In particular, what lessons does STPO provide as a pilot study or model for implementing change in other transition activities throughout the DOE complex? More broadly, what theoretical and practical contributions do DOE transition efforts, such as STPO, provide to federal agency streamlining efforts and attempts to {open_quotes}reinvent{close_quotes} government enterprises in the public sector? The approach used by STPO should provide valuable information to those examining their own processes in light of new mission requirements.

  20. Study of Lateral Gene Transfer in an Acid Mine Drainage Community Enabled by Comparative Genomics

    NASA Astrophysics Data System (ADS)

    Hugenholtz, P.; Croft, L.; Tyson, G. W.; Baker, B. J.; Detter, C.; Richardson, P. M.; Banfield, J. F.

    2002-12-01

    Lateral gene transfer (LGT) is thought to play a crucial role in the ecology and evolution of prokaryotes. We are investigating the role of LGT in an acid mine drainage community hosted in a pyrite-dominated metal sulfide deposit at the Richmond mine at Iron Mountain, CA. Due to biologically-mediated pyrite dissolution, the prevailing conditions within the mine are extremely low pH (< 1.0), very high ionic concentrations (molar concentrations of iron sulfate and mM concentrations of arsenic, copper and zinc), and moderate to high temperatures (30 to >50 C). These conditions are thought to largely isolate the community from potential external gene donors since naked DNA, phage and prokaryotes native to neutral pH habitats do not persist at pH <1.0 precluding an external influx of genes by transformation, transduction and conjugation, respectively. Microbial communities exist in several distinct habitats within Richmond mine including biofilms (subaqueous slime streamers and subaerial slimes) and cells attached directly to pyrite granules. This, however, belies an unusual simplicity in community composition. All communities investigated to date comprise only a handful of phylogenetically distinct organisms, typically dominated by the iron-oxidizing genera Leptospirillum and Ferroplasma. We have undertaken a community genomics analysis of a subaerial biofilm dominated by a Leptospirillum population to facilitate the study of LGT in this type of environment. The genome of Ferroplasma acidarmanus fer1, a minor component of the target community (but a major component of other Richmond mine communities), has been sequenced. Comparative genome analyses indicate that F. acidarmanus and the ancestor of two acidophilic Thermoplasma species belonging to the Euryarchaeota have traded many genes with phylogenetically remote acidophilic Sulfolobus species (Crenarchaeota). The putatively transferred sets of Sulfolobus genes in Ferroplasma and the Thermoplasma ancestor are distinct

  1. Characterization of DNA-hyaluronan matrix for sustained gene transfer.

    PubMed

    Kim, Angela; Checkla, Daniel M; Dehazya, Philip; Chen, Weiliam

    2003-06-01

    DNA-Hyaluronan (DNA-HA) matrix formulations intended for use as gene delivery systems have been developed and their potential for delivering DNA encoding a model therapeutic cytokine, platelet-derived growth factor (PDGF), has been evaluated. The results of enzyme-mediated release kinetics studies suggested that the rate of DNA release from the DNA-HA matrices could be modulated by changing the DNA loading or the degree of crosslinking. SEM imaging of the DNA-HA matrix showed that it was gradually eroded by enzymatic action. The results of gel electrophoresis suggested that there was some degree of interaction between DNA and native HA and that portions of the DNA released from the DNA-HA matrices were associated with crosslinked HA fragments. Only fractions of the DNA released from the DNA-HA matrices were free and the rest was entrapped by HA fragments, which could serve as a mechanism for DNA protection. The results from cell transfection studies using DNA samples collected during the course of release studies confirmed this hypothesis. The PDGF produced by transfection of the DNA released from DNA-HA matrices induced human dermal fibroblast cells to proliferate. PMID:12767709

  2. Identification of a Divided Genome for VSH-1, the Prophage-Like Gene Transfer Agent of Brachyspira hyodysenteriae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Brachyspira hyodysenteriae B204 genome sequence revealed three VSH-1 tail genes hvp31, hvp60, and hvp37, in a 3.6 kb cluster. The location and transcription direction of these genes relative to the previously described VSH-1 16.3 kb gene operon indicate that the gene transfer agent VSH-1 has a ...

  3. A case of horizontal gene transfer from Wolbachia to Aedes albopictus C6/36 cell line

    PubMed Central

    Hou, Qing; He, Ji; Yu, Jing; Ye, Yuting; Zhou, Dan; Sun, Yan; Zhang, Donghui; Ma, Lei; Shen, Bo; Zhu, Changliang

    2014-01-01

    Horizontal gene transfer plays an essential role in evolution and ecological adaptation, yet this phenomenon has remained controversial, particularly where it occurs between prokaryotes and eukaryotes. There are a handful of reported examples of horizontal gene transfer occurring between prokaryotes and eukaryotes in the literature, with most of these documented cases pertaining to invertebrates and endosymbionts. However, the vast majority of these horizontally transferred genes were either eventually excluded or rapidly became nonfunctional in the recipient genome. In this study, we report the discovery of a horizontal gene transfer from the endosymbiont Wolbachia in the C6/36 cell line derived from the mosquito Aedes albopictus. Moreover, we report that this horizontally transferred gene displayed high transcription level. This finding and the results of further experimentation strongly suggest this gene is functional and has been expressed and translated into a protein in the mosquito host cells. PMID:24812591

  4. pGenN, a Gene Normalization Tool for Plant Genes and Proteins in Scientific Literature

    PubMed Central

    Ding, Ruoyao; Arighi, Cecilia N.; Lee, Jung-Youn; Wu, Cathy H.; Vijay-Shanker, K.

    2015-01-01

    Background Automatically detecting gene/protein names in the literature and connecting them to databases records, also known as gene normalization, provides a means to structure the information buried in free-text literature. Gene normalization is critical for improving the coverage of annotation in the databases, and is an essential component of many text mining systems and database curation pipelines. Methods In this manuscript, we describe a gene normalization system specifically tailored for plant species, called pGenN (pivot-based Gene Normalization). The system consists of three steps: dictionary-based gene mention detection, species assignment, and intra species normalization. We have developed new heuristics to improve each of these phases. Results We evaluated the performance of pGenN on an in-house expertly annotated corpus consisting of 104 plant relevant abstracts. Our system achieved an F-value of 88.9% (Precision 90.9% and Recall 87.2%) on this corpus, outperforming state-of-art systems presented in BioCreative III. We have processed over 440,000 plant-related Medline abstracts using pGenN. The gene normalization results are stored in a local database for direct query from the pGenN web interface (proteininformationresource.org/pgenn/). The annotated literature corpus is also publicly available through the PIR text mining portal (proteininformationresource.org/iprolink/). PMID:26258475

  5. Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain.

    PubMed

    Tan, James-Kevin Y; Pham, Binhan; Zong, Yujin; Perez, Camilo; Maris, Don O; Hemphill, Ashton; Miao, Carol H; Matula, Thomas J; Mourad, Pierre D; Wei, Hua; Sellers, Drew L; Horner, Philip J; Pun, Suzie H

    2016-06-10

    Neurons in the brain can be damaged or lost from neurodegenerative disease, stroke, or traumatic injury. Although neurogenesis occurs in mammalian adult brains, the levels of natural neurogenesis are insufficient to restore function in these cases. Gene therapy has been pursued as a promising strategy to induce differentiation of neural progenitor cells into functional neurons. Non-viral vectors are a preferred method of gene transfer due to potential safety and manufacturing benefits but suffer from lower delivery efficiencies compared to viral vectors. Since the neural stem and progenitor cells reside in the subventricular zone of the brain, intraventricular injection has been used as an administration route for gene transfer to these cells. However, the choroid plexus epithelium remains an obstacle to delivery. Recently, transient disruption of the blood-brain barrier by microbubble-enhanced ultrasound has been used to successfully improve drug delivery to the brain after intravenous injection. In this work, we demonstrate that microbubble-enhanced ultrasound can similarly improve gene transfer to the subventricular zone after intraventricular injection. Microbubbles of different surface charges (neutral, slightly cationic, and cationic) were prepared, characterized by acoustic flow cytometry, and evaluated for their ability to increase the permeability of immortalized choroid plexus epithelium monolayers in vitro. Based on these results, slightly cationic microbubbles were evaluated for microbubble and ultrasound-mediated enhancement of non-viral gene transfer in vivo. When coupled with our previously reported gene delivery vehicles, the slightly cationic microbubbles significantly increased ultrasound-mediated transfection of the murine brain when compared to commercially available Definity® microbubbles. Temporary disruption of the choroid plexus by microbubble-enhanced ultrasound is therefore a viable way of enhancing gene delivery to the brain and merits

  6. Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Xichun; Tong, Zhen; Liang, Yingchun

    2014-12-01

    In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology.

  7. Editing T cell specificity towards leukemia by zinc-finger nucleases and lentiviral gene transfer

    PubMed Central

    Lombardo, Angelo; Magnani, Zulma; Liu, Pei-Qi; Reik, Andreas; Chu, Victoria; Paschon, David E.; Zhang, Lei; Kuball, Jurgen; Camisa, Barbara; Bondanza, Attilio; Casorati, Giulia; Ponzoni, Maurilio; Ciceri, Fabio; Bordignon, Claudio; Greenberg, Philip D.; Holmes, Michael C.; Gregory, Philip D.; Naldini, Luigi; Bonini, Chiara

    2016-01-01

    The transfer of high-avidity T-cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted specificities. We designed zinc-finger nucleases (ZFNs) promoting the disruption of endogenous TCR β and α chain genes. ZFN-treated lymphocytes lacked CD3/TCR surface expression and expanded with IL-7 and IL-15. Upon lentiviral transfer of a TCR for the WT1 tumor antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near-purity, and proved superior in specific antigen recognition to matched TCR-transferred cells. In contrast to TCR-transferred cells, TCR edited lymphocytes did not mediate off-target reactivity while maintaining anti-tumor activity in vivo, thus demonstrating that complete editing of T-cell specificity generate tumor-specific lymphocytes with improved biosafety profile. PMID:22466705

  8. Gene transfer rate from CL rice to diverse red rice biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The future and sustainability of ClearfieldTM (CL) technology at the producers’ level will be dictated by various factors. Among many, prominent factors which affect the transfer of ALS-resistant gene from CL rice to red rice are: disparity in red rice biotypes and CL cultivars; flowering time of re...

  9. Bacteriophage-like Particles Associated with the Gene Transfer Agent of Methanococcus Voltale PS

    NASA Technical Reports Server (NTRS)

    Bertani, G.; Eiserling, F.; Pushkin, A.; Gingery, M.

    1999-01-01

    The methanogenic archaebacterium Methanococus voltae (strain PS) is known to produce a filterable, DNase resistant agent (called VTA, for voltae transfer agent), which carries very small fragments (4,400 base pairs) of bacterial DNA and is able to transduce bacterial genes between derivatives of the strain.

  10. Transfer of herbicide-resistant gene to weedy rice populations and its implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice diversity in terms of phenology, sexual compatibility with cultivated rice, and the wide window of rice planting time can affect the rate of herbicide-resistant gene transfer from rice to RR. Experiments were conducted to a) determine the effect of red rice, rice cultivar, and planting date...

  11. Assessing the effects of a sequestered germline on interdomain lateral gene transfer in Metazoa.

    PubMed

    Jensen, Lindy; Grant, Jessica R; Laughinghouse, Haywood Dail; Katz, Laura A

    2016-06-01

    A sequestered germline in Metazoa has been argued to be an obstacle to lateral gene transfer (LGT), though few studies have specifically assessed this claim. Here, we test the hypothesis that the origin of a sequestered germline reduced LGT events in Bilateria (i.e., triploblast lineages) as compared to early-diverging Metazoa (i.e., Ctenophora, Cnidaria, Porifera, and Placozoa). We analyze single-gene phylogenies generated with over 900 species sampled from among Bacteria, Archaea, and Eukaryota to identify well-supported interdomain LGTs. We focus on ancient interdomain LGT (i.e., those between prokaryotes and multiple lineages of Metazoa) as systematic errors in single-gene tree reconstruction create uncertainties for interpreting eukaryote-to-eukaryote transfer. The breadth of the sampled Metazoa enables us to estimate the timing of LGTs, and to examine the pattern before versus after the evolution of a sequestered germline. We identified 58 LGTs found only in Metazoa and prokaryotes (i.e., bacteria and/or archaea), and seven genes transferred from prokaryotes into Metazoa plus one other eukaryotic clade. Our analyses indicate that more interdomain transfers occurred before the development of a sequestered germline, consistent with the hypothesis that this feature is an obstacle to LGT. PMID:27139503

  12. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications

    PubMed Central

    Zou, Ming; De Koninck, Paul; Neve, Rachael L.; Friedrich, Rainer W.

    2014-01-01

    The zebrafish has various advantages as a model organism to analyze the structure and function of neural circuits but efficient viruses or other tools for fast gene transfer are lacking. We show that transgenes can be introduced directly into the adult zebrafish brain by herpes simplex type I viruses (HSV-1) or electroporation. We developed a new procedure to target electroporation to defined brain areas and identified promoters that produced strong long-term expression. The fast workflow of electroporation was exploited to express multiple channelrhodopsin-2 variants and genetically encoded calcium indicators in telencephalic neurons for measurements of neuronal activity and synaptic connectivity. The results demonstrate that HSV-1 and targeted electroporation are efficient tools for gene delivery into the zebrafish brain, similar to adeno-associated viruses and lentiviruses in other species. These methods fill an important gap in the spectrum of molecular tools for zebrafish and are likely to have a wide range of applications. PMID:24834028

  13. Diversity, evolution, and horizontal gene transfer (HGT) in soda lakes

    NASA Astrophysics Data System (ADS)

    Pinkart, Holly C.; Storrie-Lombardi, Michael C.

    2007-09-01

    Soap Lake is a hypersaline, alkaline lake in Central Washington State (USA). For the past five years the lake has been the site of an NSF Microbial Observatory project devoted to identifying critical geochemical and microbial characteristics of the monimolimnion sediment and water column, and has demonstrated rich multispecies communities occupy all areas of the lake. Soap Lake and similar soda lakes are subject to repeated transient periods of extreme evaporation characterized by significant repetitive alterations in salinity, pH, and total water volume, yet maintain high genetic and metabolic diversity. It has been argued that this repetitive cycle for salinity, alkalinity, and sulfur concentration has been a major driver for prokaryote evolution and diversity. The rapidity of wet-dry cycling places special demands on genome evolution, requirements that are beyond the relatively conservative eukaryotic evolutionary strategy of serial alteration of existing gene sequences in a relatively stable genome. Although HGT is most likely responsible for adding a significant amount of noise to the genetic record, analysis of HGT activity can also provide us with a much-needed probe for exploration of prokaryotic genome evolution and the origin of diversity. Packaging of genetic information within the protective protein capsid of a bacteriophage would seem preferable to exposing naked DNA to the highly alkaline conditions in the lake. In this study, we present preliminary data demonstrating the presence of a diverse group of phage integrases in Soap Lake. Integrase is the viral enzyme responsible for the insertion of phage DNA into the bacterial host's chromosome. The presence of the integrase sequence in bacterial chromosomes is evidence of lysogeny, and the diversity of integrase sequences reported here suggests a wide variety of temperate phage exist in this system, and are especially active in transition zones.

  14. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria

    PubMed Central

    Bennett, P M

    2008-01-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes). The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  15. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria.

    PubMed

    Bennett, P M

    2008-03-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  16. Ancient gene transfer from algae to animals: Mechanisms and evolutionary significance

    PubMed Central

    2012-01-01

    Background Horizontal gene transfer (HGT) is traditionally considered to be rare in multicellular eukaryotes such as animals. Recently, many genes of miscellaneous algal origins were discovered in choanoflagellates. Considering that choanoflagellates are the existing closest relatives of animals, we speculated that ancient HGT might have occurred in the unicellular ancestor of animals and affected the long-term evolution of animals. Results Through genome screening, phylogenetic and domain analyses, we identified 14 gene families, including 92 genes, in the tunicate Ciona intestinalis that are likely derived from miscellaneous photosynthetic eukaryotes. Almost all of these gene families are distributed in diverse animals, suggesting that they were mostly acquired by the common ancestor of animals. Their miscellaneous origins also suggest that these genes are not derived from a particular algal endosymbiont. In addition, most genes identified in our analyses are functionally related to molecule transport, cellular regulation and methylation signaling, suggesting that the acquisition of these genes might have facilitated the intercellular communication in the ancestral animal. Conclusions Our findings provide additional evidence that algal genes in aplastidic eukaryotes are not exclusively derived from historical plastids and thus important for interpreting the evolution of eukaryotic photosynthesis. Most importantly, our data represent the first evidence that more anciently acquired genes might exist in animals and that ancient HGT events have played an important role in animal evolution. PMID:22690978

  17. Development of a low-cost, modified resin transfer molding process using elastomeric tooling and automated preform fabrication

    NASA Technical Reports Server (NTRS)

    Doane, William J.; Hall, Ronald G.

    1992-01-01

    This paper describes the design and process development of low-cost structural parts made by a modified resin transfer molding process. Innovative application of elastomeric tooling to increase laminate fiber volume and automated forming of fiber preforms are discussed, as applied to fabrication of a representative section of a cruise missile fuselage.

  18. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements.

    PubMed Central

    Salyers, A A; Shoemaker, N B; Stevens, A M; Li, L Y

    1995-01-01

    Conjugative transposons are integrated DNA elements that excise themselves to form a covalently closed circular intermediate. This circular intermediate can either reintegrate in the same cell (intracellular transposition) or transfer by conjugation to a recipient and integrate into the recipient's genome (intercellular transposition). Conjugative transposons were first found in gram-positive cocci but are now known to be present in a variety of gram-positive and gram-negative bacteria also. Conjugative transposons have a surprisingly broad host range, and they probably contribute as much as plasmids to the spread of antibiotic resistance genes in some genera of disease-causing bacteria. Resistance genes need not be carried on the conjugative transposon to be transferred. Many conjugative transposons can mobilize coresident plasmids, and the Bacteroides conjugative transposons can even excise and mobilize unlinked integrated elements. The Bacteroides conjugative transposons are also unusual in that their transfer activities are regulated by tetracycline via a complex regulatory network. PMID:8531886

  19. Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes

    PubMed Central

    Cordero, P; Campion, J; Milagro, FI; Marzo, F; Martinez, JA

    2008-01-01

    The glyoxylate cycle, which is well characterized in higher plants and some microorganisms but not in vertebrates, is able to bypass the citric acid cycle to achieve fat-to-carbohydrate interconversion. In this context, the hydrodynamic transfer of two glyoxylate cycle enzymes, such as isocytrate lyase (ICL) and malate synthase (MS), could accomplish the shift of using fat for the synthesis of glucose. Therefore, 20 mice weighing 23.37 ± 0.96 g were hydrodinamically gene transferred by administering into the tail vein a bolus with ICL and MS. After 36 hours, body weight, plasma glucose, respiratory quotient and energy expenditure were measured. The respiratory quotient was increased by gene transfer, which suggests that a higher carbohydrate/lipid ratio is oxidized in such animals. This application could help, if adequate protocols are designed, to induce fat utilization for glucose synthesis, which might be eventually useful to reduce body fat depots in situations of obesity and diabetes. PMID:19077206

  20. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications.

    PubMed

    Wong, Liang-Fong; Goodhead, Lucy; Prat, Christine; Mitrophanous, Kyriacos A; Kingsman, Susan M; Mazarakis, Nicholas D

    2006-01-01

    The management of disorders of the nervous system remains a medical challenge. The key goals are to understand disease mechanisms, to validate therapeutic targets, and to develop new therapeutic strategies. Viral vector-mediated gene transfer can meet these goals and vectors based on lentiviruses have particularly useful features. Lentiviral vectors can deliver 8 kb of sequence, they mediate gene transfer into any neuronal cell type, expression and therapy are sustained, and normal cellular functions in vitro and in vivo are not compromised. After delivery into the nervous system they induce no significant immune responses, there are no unwanted side effects of the vectors per se to date, and manufacturing and safety testing for clinical applications are well advanced. There are now numerous examples of effective long-term treatment of animal models of neurological disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, motor neuron diseases, lysosomal storage diseases, and spinal injury, using a range of therapeutic genes expressed in lentiviral vectors. Significant issues remain in some areas of neural gene therapy including defining the optimum therapeutic gene(s), increasing the specificity of delivery, regulating expression of potentially toxic genes, and designing clinically relevant strategies. We discuss the applications of lentiviral vectors in therapy and research and highlight the essential features that will ensure their translation to the clinic in the near future. PMID:16409120

  1. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions.

    PubMed

    Koonin, Eugene V

    2016-01-01

    The wide spread of gene exchange and loss in the prokaryotic world has prompted the concept of 'lateral genomics' to the point of an outright denial of the relevance of phylogenetic trees for evolution. However, the pronounced coherence congruence of the topologies of numerous gene trees, particularly those for (nearly) universal genes, translates into the notion of a statistical tree of life (STOL), which reflects a central trend of vertical evolution. The STOL can be employed as a framework for reconstruction of the evolutionary processes in the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT) dominates microbial evolution, with the rate of gene gain and loss being comparable to the rate of point mutations and much greater than the duplication rate. Theoretical models of evolution suggest that HGT is essential for the survival of microbial populations that otherwise deteriorate due to the Muller's ratchet effect. Apparently, at least some bacteria and archaea evolved dedicated vehicles for gene transfer that evolved from selfish elements such as plasmids and viruses. Recent phylogenomic analyses suggest that episodes of massive HGT were pivotal for the emergence of major groups of organisms such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear to indicate that, in addition to donating hundreds of genes to the emerging eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT. These results shed new light on the routes of evolutionary transitions, but caution is due given the inherent uncertainty of deep phylogenies. PMID:27508073

  2. Gene transfer in the liver using recombinant adeno-associated virus

    PubMed Central

    Ahmed, Seemin Seher; Li, Jia; Godwin, Jonathan; Gao, Guangping; Zhong, Li

    2013-01-01

    Liver-directed gene transfer and gene therapy are rapidly gaining attention primarily because the liver is centrally involved in a variety of metabolic functions that are affected in various inherited disorders. Recombinant adeno-associated virus (rAAV) is a popular gene delivery vehicle for gene therapy and intravenous delivery of some rAAV serotypes results in very efficient transduction of the liver. rAAV-mediated and liver-directed gene transfer can help in creating somatic transgenic animals or disease models and studying the function of various genes and miRNAs. The liver is the target tissue for gene therapy of many inborn metabolic diseases and may also be exploited as a “bio-factory” for the production of coagulation factors, insulin and growth hormones and other non-hepatic proteins. Hence efficient delivery of transgenes and small RNAs to the liver by rAAV vectors has been of long-standing interest to research scientists and clinicians alike. PMID:23686826

  3. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions

    PubMed Central

    Koonin, Eugene V.

    2016-01-01

    The wide spread of gene exchange and loss in the prokaryotic world has prompted the concept of ‘lateral genomics’ to the point of an outright denial of the relevance of phylogenetic trees for evolution. However, the pronounced coherence congruence of the topologies of numerous gene trees, particularly those for (nearly) universal genes, translates into the notion of a statistical tree of life (STOL), which reflects a central trend of vertical evolution. The STOL can be employed as a framework for reconstruction of the evolutionary processes in the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT) dominates microbial evolution, with the rate of gene gain and loss being comparable to the rate of point mutations and much greater than the duplication rate. Theoretical models of evolution suggest that HGT is essential for the survival of microbial populations that otherwise deteriorate due to the Muller’s ratchet effect. Apparently, at least some bacteria and archaea evolved dedicated vehicles for gene transfer that evolved from selfish elements such as plasmids and viruses. Recent phylogenomic analyses suggest that episodes of massive HGT were pivotal for the emergence of major groups of organisms such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear to indicate that, in addition to donating hundreds of genes to the emerging eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT. These results shed new light on the routes of evolutionary transitions, but caution is due given the inherent uncertainty of deep phylogenies. PMID:27508073

  4. AnGeLi: A Tool for the Analysis of Gene Lists from Fission Yeast.

    PubMed

    Bitton, Danny A; Schubert, Falk; Dey, Shoumit; Okoniewski, Michal; Smith, Graeme C; Khadayate, Sanjay; Pancaldi, Vera; Wood, Valerie; Bähler, Jürg

    2015-01-01

    Genome-wide assays and screens typically result in large lists of genes or proteins. Enrichments of functional or other biological properties within such lists can provide valuable insights and testable hypotheses. To systematically detect these enrichments can be challenging and time-consuming, because relevant data to compare against query gene lists are spread over many different sources. We have developed AnGeLi (Analysis of Gene Lists), an intuitive, integrated web-tool for comprehensive and customized interrogation of gene lists from the fission yeast, Schizosaccharomyces pombe. AnGeLi searches for significant enrichments among multiple qualitative and quantitative information sources, including gene and phenotype ontologies, genetic and protein interactions, numerous features of genes, transcripts, translation, and proteins such as copy numbers, chromosomal positions, genetic diversity, RNA polymerase II and ribosome occupancy, localization, conservation, half-lives, domains, and molecular weight among others, as well as diverse sets of genes that are co-regulated or lead to the same phenotypes when mutated. AnGeLi uses robust statistics which can be tailored to specific needs. It also provides the option to upload user-defined gene sets to compare against the query list. Through an integrated data submission form, AnGeLi encourages the community to contribute additional curated gene lists to further increase the usefulness of this resource and to get the most from the ever increasing large-scale experiments. AnGeLi offers a rigorous yet flexible statistical analysis platform for rich insights into functional enrichments and biological context for query gene lists, thus providing a powerful exploratory tool through which S. pombe researchers can uncover fresh perspectives and unexpected connections from genomic data. AnGeLi is freely available at: www.bahlerlab.info/AnGeLi. PMID:26635866

  5. PointCloudXplore: a visualization tool for 3D gene expressiondata

    SciTech Connect

    Rubel, Oliver; Weber, Gunther H.; Keranen, Soile V.E.; Fowlkes,Charles C.; Luengo Hendriks, Cristian L.; Simirenko, Lisa; Shah, NameetaY.; Eisen, Michael B.; Biggn, Mark D.; Hagen, Hans; Sudar, Damir J.; Malik, Jitendra; Knowles, David W.; Hamann, Bernd

    2006-10-01

    The Berkeley Drosophila Transcription Network Project (BDTNP) has developed a suite of methods that support quantitative, computational analysis of three-dimensional (3D) gene expression patterns with cellular resolution in early Drosophila embryos, aiming at a more in-depth understanding of gene regulatory networks. We describe a new tool, called PointCloudXplore (PCX), that supports effective 3D gene expression data exploration. PCX is a visualization tool that uses the established visualization techniques of multiple views, brushing, and linking to support the analysis of high-dimensional datasets that describe many genes' expression. Each of the views in PointCloudXplore shows a different gene expression data property. Brushing is used to select and emphasize data associated with defined subsets of embryo cells within a view. Linking is used to show in additional views the expression data for a group of cells that have first been highlighted as a brush in a single view, allowing further data subset properties to be determined. In PCX, physical views of the data are linked to abstract data displays such as parallel coordinates. Physical views show the spatial relationships between different genes' expression patterns within an embryo. Abstract gene expression data displays on the other hand allow for an analysis of relationships between different genes directly in the gene expression space. We discuss on parallel coordinates as one example abstract data view currently available in PCX. We have developed several extensions to standard parallel coordinates to facilitate brushing and the visualization of 3D gene expression data.

  6. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool

    PubMed Central

    2013-01-01

    Background System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes/proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries. While many enrichment analysis tools and gene-set libraries databases have been developed, there is still room for improvement. Results Here, we present Enrichr, an integrative web-based and mobile software application that includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. We applied Enrichr to analyze nine cancer cell lines by comparing their enrichment signatures to the enrichment signatures of matched normal tissues. We observed a common pattern of up regulation of the polycomb group PRC2 and enrichment for the histone mark H3K27me3 in many cancer cell lines, as well as alterations in Toll-like receptor and interlukin signaling in K562 cells when compared with normal myeloid CD33+ cells. Such analyses provide global visualization of critical differences between normal tissues and cancer cell lines but can be applied to many other scenarios. Conclusions Enrichr is an easy to use intuitive enrichment analysis web-based tool providing various types of visualization summaries of collective functions of gene lists. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr. PMID:23586463

  7. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins.

    PubMed Central

    Wickham, T J; Tzeng, E; Shears, L L; Roelvink, P W; Li, Y; Lee, G M; Brough, D E; Lizonova, A; Kovesdi, I

    1997-01-01

    Alteration of the natural tropism of adenovirus (Ad) will permit gene transfer into specific cell types and thereby greatly broaden the scope of target diseases that can be treated by using Ad. We have constructed two Ad vectors which contain modifications to the Ad fiber coat protein that redirect virus binding to either alpha(v) integrin [AdZ.F(RGD)] or heparan sulfate [AdZ.F(pK7)] cellular receptors. These vectors were constructed by a novel method involving E4 rescue of an E4-deficient Ad with a transfer vector containing both the E4 region and the modified fiber gene. AdZ.F(RGD) increased gene delivery to endothelial and smooth muscle cells expressing alpha(v) integrins. Likewise, AdZ.F(pK7) increased transduction 5- to 500-fold in multiple cell types lacking high levels of Ad fiber receptor, including macrophage, endothelial, smooth muscle, fibroblast, and T cells. In addition, AdZ.F(pK7) significantly increased gene transfer in vivo to vascular smooth muscle cells of the porcine iliac artery following balloon angioplasty. These vectors may therefore be useful in gene therapy for vascular restenosis or for targeting endothelial cells in tumors. Although binding to the fiber receptor still occurs with these vectors, they demonstrate the feasibility of tissue-specific receptor targeting in cells which express low levels of Ad fiber receptor. PMID:9343173

  8. Intensive Pharmacological Immunosuppression Allows for Repetitive Liver Gene Transfer With Recombinant Adenovirus in Nonhuman Primates

    PubMed Central

    Fontanellas, Antonio; Hervás-Stubbs, Sandra; Mauleón, Itsaso; Dubrot, Juan; Mancheño, Uxua; Collantes, María; Sampedro, Ana; Unzu, Carmen; Alfaro, Carlos; Palazón, Asis; Smerdou, Cristian; Benito, Alberto; Prieto, Jesús; Peñuelas, Iván; Melero, Ignacio

    2010-01-01

    Repeated administration of gene therapies is hampered by host immunity toward vectors and transgenes. Attempts to circumvent antivector immunity include pharmacological immunosuppression or alternating different vectors and vector serotypes with the same transgene. Our studies show that B-cell depletion with anti-CD20 monoclonal antibody and concomitant T-cell inhibition with clinically available drugs permits repeated liver gene transfer to a limited number of nonhuman primates with recombinant adenovirus. Adenoviral vector–mediated transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene was visualized in vivo with a semiquantitative transgene-specific positron emission tomography (PET) technique, liver immunohistochemistry, and immunoblot for the reporter transgene in needle biopsies. Neutralizing antibody and T cell–mediated responses toward the viral capsids were sequentially monitored and found to be repressed by the drug combinations tested. Repeated liver transfer of the HSV1-tk reporter gene with the same recombinant adenoviral vector was achieved in macaques undergoing a clinically feasible immunosuppressive treatment that ablated humoral and cellular immune responses. This strategy allows measurable gene retransfer to the liver as late as 15 months following the first adenoviral exposure in a macaque, which has undergone a total of four treatments with the same adenoviral vector. PMID:20087317

  9. Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane

    SciTech Connect

    Tao, W.; Wilkinson, J.; Stanbridge, E.J.; Berns, M.W.

    1987-06-01

    The selective alteration of the cellular genome by laser microbeam irradiation has been extensively applied in cell biology. The authors report here the use of the third harmonic (355 nm) of an yttrium-aluminum garnet laser to facilitate the direct transfer of the neo gene into cultured human HT1080-6TG cells. The resultant transformants were selected in medium containing an aminoglycoside antibiotic, G418. Integration of the neo gene into individual human chromosomes and expression of the gene were demonstrated by Southern blot analyses, microcell-mediated chromosome transfer, and chromosome analyses. The stability of the integrated neo gene in the transformants was shown by a comparative growth assay in selective and nonselective media. Transformation and incorporation of the neo gene into the host genome occurred at a frequency of 8 x 10 /sup -4/-3 x 10/sup -3/. This method appears to be 100-fold more efficient than the standard calcium phosphate-mediated method of DNA transfer.

  10. AthaMap web tools for the analysis and identification of co-regulated genes.

    PubMed

    Galuschka, Claudia; Schindler, Martin; Bülow, Lorenz; Hehl, Reinhard

    2007-01-01

    The AthaMap database generates a map of cis-regulatory elements for the whole Arabidopsis thaliana genome. This database has been extended by new tools to identify common cis-regulatory elements in specific regions of user-provided gene sets. A resulting table displays all cis-regulatory elements annotated in AthaMap including positional information relative to the respective gene. Further tables show overviews with the number of individual transcription factor binding sites (TFBS) present and TFBS common to the whole set of genes. Over represented cis-elements are easily identified. These features were used to detect specific enrichment of drought-responsive elements in cold-induced genes. For identification of co-regulated genes, the output table of the colocalization function was extended to show the closest genes and their relative distances to the colocalizing TFBS. Gene sets determined by this function can be used for a co-regulation analysis in microarray gene expression databases such as Genevestigator or PathoPlant. Additional improvements of AthaMap include display of the gene structure in the sequence window and a significant data increase. AthaMap is freely available at http://www.athamap.de/. PMID:17148485

  11. Myocardial Gene Transfer: Routes and Devices for Regulation of Transgene Expression by Modulation of Cellular Permeability

    PubMed Central

    Katz, Michael G.; Bridges, Charles R.

    2013-01-01

    Abstract Heart diseases are major causes of morbidity and mortality in Western society. Gene therapy approaches are becoming promising therapeutic modalities to improve underlying molecular processes affecting failing cardiomyocytes. Numerous cardiac clinical gene therapy trials have yet to demonstrate strong positive results and advantages over current pharmacotherapy. The success of gene therapy depends largely on the creation of a reliable and efficient delivery method. The establishment of such a system is determined by its ability to overcome the existing biological barriers, including cellular uptake and intracellular trafficking as well as modulation of cellular permeability. In this article, we describe a variety of physical and mechanical methods, based on the transient disruption of the cell membrane, which are applied in nonviral gene transfer. In addition, we focus on the use of different physiological techniques and devices and pharmacological agents to enhance endothelial permeability. Development of these methods will undoubtedly help solve major problems facing gene therapy. PMID:23427834

  12. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody

    PubMed Central

    2013-01-01

    Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer

  13. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities

    PubMed Central

    Wood, A. Jamie

    2016-01-01

    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (HgR) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable HgR captured to the chromosome in P. putida. A simple mathematical model suggests these differences were likely due to pQBR57’s lower intraspecific conjugation rate in P. putida. By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source–sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal HgR in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability. PMID:27385827

  14. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities.

    PubMed

    Hall, James P J; Wood, A Jamie; Harrison, Ellie; Brockhurst, Michael A

    2016-07-19

    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (Hg(R)) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable Hg(R) captured to the chromosome in P. putida A simple mathematical model suggests these differences were likely due to pQBR57's lower intraspecific conjugation rate in P. putida By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source-sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal Hg(R) in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability. PMID:27385827

  15. Targeting a newly established spontaneous feline fibrosarcoma cell line by gene transfer.

    PubMed

    Nande, Rounak; Di Benedetto, Altomare; Aimola, Pierpaolo; De Carlo, Flavia; Carper, Miranda; Claudio, Charlene D; Denvir, Jim; Valluri, Jagan; Duncan, Gary C; Claudio, Pier Paolo

    2012-01-01

    Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas. PMID:22666387

  16. Targeting a Newly Established Spontaneous Feline Fibrosarcoma Cell Line by Gene Transfer

    PubMed Central

    Nande, Rounak; De Carlo, Flavia; Carper, Miranda; Claudio, Charlene D.; Denvir, Jim; Valluri, Jagan; Duncan, Gary C.; Claudio, Pier Paolo

    2012-01-01

    Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas. PMID:22666387

  17. IGG: A tool to integrate GeneChips for genetic studies.

    PubMed

    Li, M-X; Jiang, L; Ho, S-L; Song, Y-Q; Sham, P-C

    2007-11-15

    To facilitate genetic studies using high-throughput genotyping technologies, we have developed an open source tool to integrate genotype data across the Affymetrix and Illumina platforms. It can efficiently integrate a large amount of data from various GeneChips, add genotypes of the HapMap Project into a specific project, flexibly trim and export the integrated data with different formats of popular genetic analysis tools, and highly control the quality of genotype data. Furthermore, this tool has sufficiently simplified its usage through its user-friendly graphic interface and is independent of third-party databases. IGG has successfully been applied to a genome-wide linkage scan in a Charcot-Marie-Tooth disease pedigree by integrating three types of GeneChips and HapMap project genotypes. PMID:17872914

  18. Networks of lexical borrowing and lateral gene transfer in language and genome evolution

    PubMed Central

    List, Johann-Mattis; Nelson-Sathi, Shijulal; Geisler, Hans; Martin, William

    2014-01-01

    Like biological species, languages change over time. As noted by Darwin, there are many parallels between language evolution and biological evolution. Insights into these parallels have also undergone change in the past 150 years. Just like genes, words change over time, and language evolution can be likened to genome evolution accordingly, but what kind of evolution? There are fundamental differences between eukaryotic and prokaryotic evolution. In the former, natural variation entails the gradual accumulation of minor mutations in alleles. In the latter, lateral gene transfer is an integral mechanism of natural variation. The study of language evolution using biological methods has attracted much interest of late, most approaches focusing on language tree construction. These approaches may underestimate the important role that borrowing plays in language evolution. Network approaches that were originally designed to study lateral gene transfer may provide more realistic insights into the complexities of language evolution. PMID:24375688

  19. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    PubMed Central

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E.; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  20. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments.

    PubMed

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  1. Growth enhancement of shrimp (Litopenaeus schmitti) after transfer of tilapia growth hormone gene.

    PubMed

    Arenal, Amilcar; Pimentel, Rafael; Pimentel, Eulogio; Martín, Leonardo; Santiesteban, Dayamí; Franco, Ramón; Aleström, Peter

    2008-05-01

    Electroporation of Litopenaeus schmitti embryos was used to transfer the pE300tiGH15 plasmid that contains the tilapia growth hormone gene (tiGH) complexed with a nuclear localization signal peptide into the zygotes. The gene construct was detected in 35 (36%) of the 98 larvae screened by PCR and Southern blot analyses. Western blot analyses revealed that 34% of the screened larvae expressed a single tiGH-specific band with the expected molecular mass (23.1 kDa). The development index and larval length indicated a significant growth enhancement from day 3 on after electroporation, with an average of 32% of the growth enhancement. To our knowledge, this is the first report on gene transfer enhanced growth in crustaceans. PMID:18204820

  2. Detecting horizontal gene transfer with T-REX and RHOM programs.

    PubMed

    Li, Zuofeng; Wang, Li; Zhong, Yang

    2005-12-01

    As the Human Genome Project and other genome projects experience remarkable success and a flood of biological data is produced by means of high-throughout sequencing techniques, detection of horizontal gene transfer (HGT) becomes a promising field in bioinformatics. This review describes two freeware programs: T-REX for MS Windows and RHOM for Linux. T-REX is a graphical user interface program that offers functions to reconstruct the HGT network among the donor and receptor hosts from the gene and species distance matrices. RHOM is a set of command-line driven programs used to detect HGT in genomes. While T-REX impresses with a user-friendly interface and drawing of the reticulation network, the strength of RHOM is an extensive statistical framework of genome and the graphical display of the estimated sequence position probabilities for the candidate horizontally transferred genes. PMID:16420738

  3. Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications.

    PubMed

    Romano, G; Michell, P; Pacilio, C; Giordano, A

    2000-01-01

    Over the last decade, more than 300 phase I and phase II gene-based clinical trials have been conducted worldwide for the treatment of cancer and monogenic disorders. Lately, these trials have been extended to the treatment of AIDS and, to a lesser extent, cardiovascular diseases. There are 27 currently active gene therapy protocols for the treatment of HIV-1 infection in the USA. Preclinical studies are currently in progress to evaluate the possibility of increasing the number of gene therapy clinical trials for cardiopathies, and of beginning new gene therapy programs for neurologic illnesses, autoimmuno diseases, allergies, regeneration of tissues, and to implement procedures of allogeneic tissues or cell transplantation. In addition, gene transfer technology has allowed for the development of innovative vaccine design, known as genetic immunization. This technique has already been applied in the AIDS vaccine programs in the USA. These programs aim to confer protective immunity against HIV-1 transmission to individuals who are at risk of infection. Research programs have also been considered to develop therapeutic vaccines for patients with AIDS and generate either preventive or therapeutic vaccines against malaria, tuberculosis, hepatitis A, B and C viruses, influenza virus, La Crosse virus, and Ebola virus. The potential therapeutic applications of gene transfer technology are enormous. However, the effectiveness of gene therapy programs is still questioned. Furthermore, there is growing concern over the matter of safety of gene delivery and controversy has arisen over the proposal to begin in utero gene therapy clinical trials for the treatment of inherited genetic disorders. From this standpoint, despite the latest significant achievements reported in vector design, it is not possible to predict to what extent gene therapeutic interventions will be effective in patients, and in what time frame. PMID:10661569

  4. Effect of Plant and Environmental Factors on ALS-resistant Gene Transfer from ClearfieldTM Rice to Red Rice.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imazethapyr-resistant gene from ClearfieldTM (CL) rice varieties transfers through pollen flow to red rice (Oryza sativa L.), a noxious weed in rice production in southern states. Factors which affect gene transfer rate include, but are not limited to, plant and environmental factors. Thus, we aimed...

  5. Intraspecies Transfer of the Chromosomal Acinetobacter baumannii blaNDM-1 Carbapenemase Gene.

    PubMed

    Krahn, Thomas; Wibberg, Daniel; Maus, Irena; Winkler, Anika; Bontron, Séverine; Sczyrba, Alexander; Nordmann, Patrice; Pühler, Alfred; Poirel, Laurent; Schlüter, Andreas

    2016-05-01

    The species Acinetobacter baumannii is one of the most important multidrug-resistant human pathogens. To determine its virulence and antibiotic resistance determinants, the genome of the nosocomial blaNDM-1-positive A. baumannii strain R2090 originating from Egypt was completely sequenced. Genome analysis revealed that strain R2090 is highly related to the community-acquired Australian A. baumannii strain D1279779. The two strains belong to sequence type 267 (ST267). Isolate R2090 harbored the chromosomally integrated transposon Tn125 carrying the carbapenemase gene blaNDM-1 that is not present in the D1279779 genome. To test the transferability of the metallo-β-lactamase (MBL) gene region, the clinical isolate R2090 was mated with the susceptible A. baumannii recipient CIP 70.10, and the carbapenem-resistant derivative R2091 was obtained. Genome sequencing of the R2091 derivative revealed that it had received an approximately 66-kb region comprising the transposon Tn125 embedding the blaNDM-1 gene. This region had integrated into the chromosome of the recipient strain CIP 70.10. From the four known mechanisms for horizontal gene transfer (conjugation, outer membrane vesicle-mediated transfer, transformation, and transduction), conjugation could be ruled out, since strain R2090 lacks any plasmid, and a type IV secretion system is not encoded in its chromosome. However, strain R2090 possesses three putative prophages, two of which were predicted to be complete and therefore functional. Accordingly, it was supposed that the transfer of the resistance gene region from the clinical isolate R2090 to the recipient occurred by general transduction facilitated by one of the prophages present in the R2090 genome. Hence, phage-mediated transduction has to be taken into account for the dissemination of antibiotic resistance genes within the species A. baumannii. PMID:26953198

  6. Immune Recognition of Gene Transfer Vectors: Focus on Adenovirus as a Paradigm

    PubMed Central

    Aldhamen, Yasser Ali; Seregin, Sergey S.; Amalfitano, Andrea

    2011-01-01

    Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene transfer platform in multiple pre-clinical and clinical applications. These applications are numerous, and inclusive of both gene therapy and vaccine based approaches to human or animal diseases. The widespread utilization of these vectors in both animal models, as well as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors relative to numbers of patients treated, as well as number of clinical trials overall), has shed light on how this virus vector interacts with both the innate and adaptive immune systems. The ability to generate and administer large amounts of this vector likely contributes not only to their ability to allow for highly efficient gene transfer, but also their elicitation of host immune responses to the vector and/or the transgene the vector expresses in vivo. These facts, coupled with utilization of several models that allow for full detection of these responses has predicted several observations made in human trials, an important point as lack of similar capabilities by other vector systems may prevent detection of such responses until only after human trials are initiated. Finally, induction of innate or adaptive immune responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications). Herein, we review the current understanding of innate and adaptive immune responses to Ad vectors, as well some recent advances that attempt to capitalize on this understanding so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in general. PMID:22566830

  7. Evolution and Horizontal Transfer of dUTPase-Encoding Genes in Viruses and Their Hosts

    PubMed Central

    Baldo, Angela M.; McClure, Marcella A.

    1999-01-01

    dUTPase is a ubiquitous and essential enzyme responsible for regulating cellular levels of dUTP. The dut gene exists as single, tandemly duplicated, and tandemly triplicated copies. Crystallized single-copy dUTPases have been shown to assemble as homotrimers. dUTPase is encoded as an auxiliary gene in a number of virus genomes. The origin of viral dut genes has remained unresolved since their initial discovery. A comprehensive analysis of dUTPase amino acid sequence relationships was performed to explore the evolutionary dynamics of dut in viruses and their hosts. Our data set, comprised of 24 host and 51 viral sequences, includes representative sequences from available eukaryotes, archaea, eubacteria cells, and viruses, including herpesviruses. These amino acid sequences were aligned by using a hidden Markov model approach developed to align divergent data. Known secondary structures from single-copy crystals were mapped onto the aligned duplicate and triplicate sequences. We show how duplicated dUTPases might fold into a monomer, and we hypothesize that triplicated dUTPases also assemble as monomers. Phylogenetic analysis revealed at least five viral dUTPase sequence lineages in well-supported monophyletic clusters with eukaryotic, eubacterial, and archaeal hosts. We have identified all five as strong examples of horizontal transfer as well as additional potential transfer of dut genes among eubacteria, between eubacteria and viruses, and between retroviruses. The evidence for horizontal transfers is particularly interesting since eukaryotic dut genes have introns, while DNA virus dut genes do not. This implies that an intermediary retroid agent facilitated the horizontal transfer process between host mRNA and DNA viruses. PMID:10438861

  8. Divergence of genes encoding non-specific lipid transfer proteins in the poaceae family.

    PubMed

    Jang, Cheol Seong; Jung, Jae Hyeong; Yim, Won Cheol; Lee, Byung-Moo; Seo, Yong Weon; Kim, Wook

    2007-10-31

    The genes encoding non-specific lipid transfer proteins (nsLTPs), members of a small multigene family, show a complex pattern of expressional regulation, suggesting that some diversification may have resulted from changes in their expression after duplication. In this study, the evolution of nsLTP genes within the Poaceae family was characterized via a survey of the pseudogenes and unigenes encoding the nsLTP in rice pseudomolecules and the NCBI unigene database. nsLTP-rich regions were detected in the distal portions of rice chromosomes 11 and 12; these may have resulted from the most recent large segmental duplication in the rice genome. Two independent tandem duplications were shown to occur within the nsLTP-rich regions of rice. The genomic distribution of the nsLTP genes in the rice genome differs from that in wheat. This may be attributed to gene migration, chromosomal rearrangement, and/or differential gene loss. The genomic distribution pattern of nsLTP genes in the Poaceae family points to the existence of some differences among cereal nsLTP genes, all of which diverged from an ancient gene. The unigenes encoding nsLTPs in each cereal species are clustered into five groups. The somewhat different distribution of nsLTP-encoding EST clones between the groups across cereal species imply that independent duplication(s) followed by subfunctionalization (and/or neofunctionalization) of the nsLTP gene family in each species occurred during speciation. PMID:17978574

  9. Analysis of the heat transfer at the tool-workpiece interface in machining: determination of heat generation and heat transfer coefficients

    NASA Astrophysics Data System (ADS)

    Haddag, B.; Atlati, S.; Nouari, M.; Zenasni, M.

    2015-10-01

    This paper deals with the modelling and identification of the heat exchange at the tool-workpiece interface in machining. A thermomechanical modelling has been established including heat balance equations of the tool-workpiece interface which take into account the heat generated by friction and the heat transfer by conduction due to the thermal contact resistance. The interface heat balance equations involve two coefficients: heat generation coefficient (HGC) of the frictional heat and heat transfer coefficient (HTC) of the heat conduction (inverse of the thermal contact resistance coefficient). Using experimental average heat flux in the tool, estimated for several cutting speeds, an identification procedure of the HGC-HTC couple, involved in the established thermomechanical FE-based modelling of the cutting process, has been proposed, which gives the numerical heat flux equal the measured one for each cutting speed. Using identified values of the HGC-HTC couple, evolution laws are proposed for the HGC as function of cutting speed, and then as function of sliding velocity at the tool-workpiece interface. Such laws can be implemented for instance in a Finite Element code for machining simulations.

  10. The Transfer Function Model (TFM) as a Tool for Simulating Gravity Wave Phenomena in the Mesosphere

    NASA Astrophysics Data System (ADS)

    Porter, H.; Mayr, H.; Moore, J.; Wilson, S.; Armaly, A.

    2008-12-01

    The Transfer Function Model (TFM) is semi-analytical and linear, and it is designed to describe the acoustic gravity waves (GW) propagating over the globe and from the ground to 600 km under the influence of vertical temperature variations. Wave interactions with the flow are not accounted for. With an expansion in terms of frequency-dependent spherical harmonics, the time consuming vertical integration of the conservation equations is reduced to computing the transfer function (TF). (The applied lower and upper boundary conditions assure that spurious wave reflections will not occur.) The TF describes the dynamical properties of the medium divorced from the complexities of the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source is then obtained in short order to simulate the GW propagating through the atmosphere over the globe. In the past, this model has been applied to study auroral processes, which produce distinct wave phenomena such as: (1) standing lamb modes that propagate horizontally in the viscous medium of the thermosphere, (2) waves generated in the auroral oval that experience geometric amplification propagating to the pole where constructive interference generates secondary waves that propagate equatorward, (3) ducted modes propagating through the middle atmosphere that leak back into the thermosphere, and (4) GWs reflected from the Earth's surface that reach the thermosphere in a narrow propagation cone. Well-defined spectral features characterize these wave modes in the TF to provide analytical understanding. We propose the TFM as a tool for simulating GW in the mesosphere and in particular the features observed in Polar Mesospheric Clouds (PMC). With present-day computers, it takes less than one hour to compute the TF, so that there is virtually no practical limitation on the source configurations that can be applied and tested in the lower atmosphere. And there is no limitation on

  11. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade

    PubMed Central

    Boothby, Thomas C.; Tenlen, Jennifer R.; Smith, Frank W.; Wang, Jeremy R.; Patanella, Kiera A.; Osborne Nishimura, Erin; Tintori, Sophia C.; Li, Qing; Jones, Corbin D.; Yandell, Mark; Glasscock, Jarret; Goldstein, Bob

    2015-01-01

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes. PMID:26598659

  12. Growth factor enhanced retroviral gene transfer to the adult central nervous system.

    PubMed

    King, L A; Mitrophanous, K A; Clark, L A; Kim, V N; Rohll, J B; Kingsman, A J; Colello, R J

    2000-07-01

    The use of viral vectors for gene delivery into mammalian cells provides a new approach in the treatment of many human diseases. The first viral vector approved for human clinical trials was murine leukemia virus (MLV), which remains the most commonly used vector in clinical trials to date. However, the application of MLV vectors is limited since MLV requires cells to be actively dividing in order for transduction and therefore gene delivery to occur. This limitation precludes the use of MLV for delivering genes to the adult CNS, where very little cell division is occurring. However, we speculated that this inherent limitation of ML V may be overcome by utilizing the known mitogenic effect of growth factors on cells of the CNS. Specifically, an in vivo application of growth factor to the adult brain, if able to induce cell division, could enhance MLV-based gene transfer to the adult brain. We now show that an exogenous application of basic fibroblast growth factor induces cell division in vivo. Under these conditions, where cells of the adult brain are stimulated to divide, MLV-based gene transfer is significantly enhanced. This novel approach precludes any vector modifications and provides a simple and effective way of delivering genes to cells of the adult brain utilizing MLV-based retroviral vectors. PMID:10918476

  13. Gene transfer of arginine kinase to skeletal muscle using adeno-associated virus

    PubMed Central

    Forbes, Sean C.; Bish, Lawrence T.; Ye, Fan; Spinazzola, Janelle; Baligand, Celine; Plant, Daniel; Vandenborne, Krista; Barton, Elisabeth R.; Sweeney, H. Lee; Walter, Glenn A.

    2014-01-01

    In this study we tested the feasibility of non-invasively measuring phosphoarginine (PArg) after gene delivery of arginine kinase (AK) using an adeno-associated virus (AAV) to murine hindlimbs. This was achieved by evaluating the time course, regional distribution, and metabolic flux of PArg using 31 phosphorus magnetic resonance spectroscopy (31P-MRS). AK gene was injected into the gastrocnemius of the left hindlimb of C57Bl10 mice (age 5wk, male) using self-complementary AAV, type 2/8 with desmin promoter. Non-localized 31P-MRS data were acquired over nine months after injection using 11.1-T and 17.6-T Bruker Avance spectrometers. In addition, 31P 2-D chemical shift imaging and saturation transfer experiments were performed to examine the spatial distribution and metabolic flux of PArg, respectively. PArg was evident in each injected mouse hindlimb after gene delivery, increased until 28 weeks, and remained elevated for at least nine months (p<.05). Furthermore, PArg was primarily localized to the injected posterior hindimb region with the metabolite being in exchange with ATP. Overall, the results show the viability of AAV gene transfer of AK gene to skeletal muscle, and provide support of PArg as a reporter that can be utilized to non-invasively monitor the transduction of genes for therapeutic interventions. PMID:24572791

  14. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    SciTech Connect

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  15. Gene transfer of arginine kinase to skeletal muscle using adeno-associated virus.

    PubMed

    Forbes, S C; Bish, L T; Ye, F; Spinazzola, J; Baligand, C; Plant, D; Vandenborne, K; Barton, E R; Sweeney, H L; Walter, G A

    2014-04-01

    In this study, we tested the feasibility of non-invasively measuring phosphoarginine (PArg) after gene delivery of arginine kinase (AK) using an adeno-associated virus (AAV) to murine hindlimbs. This was achieved by evaluating the time course, regional distribution and metabolic flux of PArg using (31)phosphorus magnetic resonance spectroscopy ((31)P-MRS). AK gene was injected into the gastrocnemius of the left hindlimb of C57Bl10 mice (age 5 weeks, male) using self-complementary AAV, type 2/8 with desmin promoter. Non-localized (31)P-MRS data were acquired over 9 months after injection using 11.1-T and 17.6-T Bruker Avance spectrometers. In addition, (31)P two-dimensional chemical shift imaging and saturation transfer experiments were performed to examine the spatial distribution and metabolic flux of PArg, respectively. PArg was evident in each injected mouse hindlimb after gene delivery, increased until 28 weeks, and remained elevated for at least 9 months (P<0.05). Furthermore, PArg was primarily localized to the injected posterior hindimb region and the metabolite was in exchange with ATP. Overall, the results show the viability of AAV gene transfer of AK gene to skeletal muscle, and provide support of PArg as a reporter that can be used to non-invasively monitor the transduction of genes for therapeutic interventions. PMID:24572791

  16. Non-Invasive Gene Transfer by Iontophoresis for Therapy of an Inherited Retinal Degeneration

    PubMed Central

    Souied, Eric H.; Reid, Silvia N. M.; Piri, Natik I.; Lerner, Leonid E.; Nusinowitz, Steven; Farber, Debora B.

    2009-01-01

    Despite extensive research on many of the genes responsible for inherited retinal degenerations leading to blindness, no effective treatment is currently available for patients affected with these diseases. Among the therapeutic approaches tested on animal models of human retinal degeneration, gene therapy using different types of viral vectors as delivery agents has yielded promising results. We report here our results on a non-invasive, non-viral delivery approach using transscleral iontophoresis for transfer of plasmid DNA into mouse retina. Proof of principle experiments were carried out using plasmid containing GFP cDNA to demonstrate expression of the transferred gene in the retina after single applications of iontophoresis. Various parameters for multiple applications of iontophoresis were optimized to sustain GFP gene expression in mouse photoreceptors. Subsequently, repeated iontophoresis of plasmid containing normal β-phosphodiesterase (β-PDE) cDNA was performed in the rd1 mouse, an animal model of autosomal recessive retinitis pigmentosa caused by a mutant β-PDE gene. In normal mice, transscleral iontophoresis of the GFP plasmid provided a significant increase in fluorescence of the retina in the treated versus non-treated eyes. In rd1 mice, repeated iontophoresis of β-PDE cDNA plasmid partially rescued photoreceptors morphologically, as observed by microscopy, and functionally, as recorded on ERG measurements, without adverse effects. Therefore, transscleral iontophoresis of plasmid DNA containing therapeutic genes may be an efficient, safe and non-invasive method for the treatment of retinal degenerations. PMID:18653181

  17. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade.

    PubMed

    Boothby, Thomas C; Tenlen, Jennifer R; Smith, Frank W; Wang, Jeremy R; Patanella, Kiera A; Osborne Nishimura, Erin; Tintori, Sophia C; Li, Qing; Jones, Corbin D; Yandell, Mark; Messina, David N; Glasscock, Jarret; Goldstein, Bob

    2015-12-29

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes. PMID:26598659

  18. An Adenovirus Vector Incorporating Carbohydrate Binding Domains Utilizes Glycans for Gene Transfer

    PubMed Central

    Nakayama, Masaharu; Ak, Ferhat; Ugai, Hideyo; Curiel, David T.

    2013-01-01

    Background Vectors based on human adenovirus serotype 5 (HAdV-5) continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting. Methodology/Principal Findings As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4). This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells. Conclusions/Significance These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers. PMID:23383334

  19. Horizontal transfer of the msp130 gene supported the evolution of metazoan biomineralization.

    PubMed

    Ettensohn, Charles A

    2014-05-01

    It is widely accepted that biomineralized structures appeared independently in many metazoan clades during the Cambrian. How this occurred, and whether it involved the parallel co-option of a common set of biochemical and developmental pathways (i.e., a shared biomineralization "toolkit"), are questions that remain unanswered. Here, I provide evidence that horizontal gene transfer supported the evolution of biomineralization in some metazoans. I show that Msp130 proteins, first described as proteins expressed selectively by the biomineral-forming primary mesenchyme cells of the sea urchin embryo, have a much wider taxonomic distribution than was previously appreciated. Msp130 proteins are present in several invertebrate deuterostomes and in one protostome clade (molluscs). Surprisingly, closely related proteins are also present in many bacteria and several algae, and I propose that msp130 genes were introduced into metazoan lineages via multiple, independent horizontal gene transfer events. Phylogenetic analysis shows that the introduction of an ancestral msp130 gene occurred in the sea urchin lineage more than 250 million years ago and that msp130 genes underwent independent, parallel duplications in each of the metazoan phyla in which these genes are found. PMID:24735463

  20. Horizontal Gene Transfer Regulation in Bacteria as a “Spandrel” of DNA Repair Mechanisms

    PubMed Central

    Fall, Saliou; Mercier, Anne; Bertolla, Franck; Calteau, Alexandra; Gueguen, Laurent; Perrière, Guy; Vogel, Timothy M.; Simonet, Pascal

    2007-01-01

    Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic “hot spots”, which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination “hot-spots” to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment might have led

  1. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    SciTech Connect

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  2. Hyperactive piggyBac Gene Transfer in Human Cells and In Vivo

    PubMed Central

    Doherty, Joseph E.; Huye, Leslie E.; Yusa, Kosuke; Zhou, Liqin; Craig, Nancy L.

    2012-01-01

    Abstract We characterized a recently developed hyperactive piggyBac (pB) transposase enzyme [containing seven mutations (7pB)] for gene transfer in human cells in vitro and to somatic cells in mice in vivo. Despite a protein level expression similar to that of native pB, 7pB significantly increased the gene transfer efficiency of a neomycin resistance cassette transposon in both HEK293 and HeLa cultured human cells. Native pB and SB100X, the most active transposase of the Sleeping Beauty transposon system, exhibited similar transposition efficiency in cultured human cell lines. When delivered to primary human T cells ex vivo, 7pB increased gene delivery two- to threefold compared with piggyBac and SB100X. The activity of hyperactive 7pB transposase was not affected by the addition of a 24-kDa N-terminal tag, whereas SB100X manifested a 50% reduction in transposition. Hyperactive 7pB was compared with native pB and SB100X in vivo in mice using hydrodynamic tail-vein injection of a limiting dose of transposase DNA combined with luciferase reporter transposons. We followed transgene expression for up to 6 months and observed approximately 10-fold greater long-term gene expression in mice injected with a codon-optimized version of 7pB compared with mice injected with native pB or SB100X. We conclude that hyperactive piggyBac elements can increase gene transfer in human cells and in vivo and should enable improved gene delivery using the piggyBac transposon system in a variety of cell and gene-therapy applications. PMID:21992617

  3. Lateral Transfer of the Denitrification Pathway Genes among Thermus thermophilus Strains▿

    PubMed Central

    Alvarez, Laura; Bricio, Carlos; José Gómez, Manuel; Berenguer, José

    2011-01-01

    Nitrate respiration is a common and strain-specific property in Thermus thermophilus encoded by the nitrate respiration conjugative element (NCE) that can be laterally transferred by conjugation. In contrast, nitrite respiration and further denitrification steps are restricted to a few isolates of this species. These later steps of the denitrification pathway are under the regulatory control of an NCE-encoded transcription factor, but nothing is known about their coding sequences or its putative genetic linkage to the NCE. In this study we examine the genetic linkage between nitrate and nitrite respiration through lateral gene transfer (LGT) assays and describe a cluster of genes encoding the nitrite-nitric oxide respiration in T. thermophilus PRQ25. We show that the whole denitrification pathway can be transferred from the denitrificant strain PRQ25 to an aerobic strain, HB27, and that the genes coding for nitrite and nitric oxide respiration are encoded near the NCE. Sequence data from the draft genome of PRQ25 confirmed these results and allowed us to describe the most compact nor-nir cluster known thus far and to demonstrate the expression and activities of the encoded enzymes in the HB27 denitrificant derivatives obtained by LGT. We conclude that this NCE nor-nir supercluster constitutes a whole denitrification island that can be spread by lateral transfer among Thermus thermophilus strains. PMID:21169443

  4. Evolution and Distribution of the ospC Gene, a Transferable Serotype Determinant of Borrelia burgdorferi

    PubMed Central

    Barbour, Alan G.; Travinsky, Bridgit

    2010-01-01

    Borrelia burgdorferi, an emerging bacterial pathogen, is maintained in nature by transmission from one vertebrate host to another by ticks. One of the few antigens against which mammals develop protective immunity is the highly polymorphic OspC protein, encoded by the ospC gene on the cp26 plasmid. Intragenic recombination among ospC genes is known, but the extent to which recombination extended beyond the ospC locus itself is undefined. We accessed and supplemented collections of DNA sequences of ospC and other loci from ticks in three U.S. regions (the Northeast, the Midwest, and northern California); a total of 839 ospC sequences were analyzed. Three overlapping but distinct populations of B. burgdorferi corresponded to the geographic regions. In addition, we sequenced 99 ospC flanking sequences from different lineages and compared the complete cp26 sequences of 11 strains as well as the cp26 bbb02 loci of 56 samples. Besides recombinations with traces limited to the ospC gene itself, there was evidence of lateral gene transfers that involved (i) part of the ospC gene and one of the two flanks or (ii) the entire ospC gene and different lengths of both flanks. Lateral gene transfers resulted in different linkages between the ospC gene and loci of the chromosome or other plasmids. By acquisition of the complete part or a large part of a novel ospC gene, an otherwise adapted strain would assume a new serotypic identity, thereby being comparatively fitter in an area with a high prevalence of immunity to existing OspC types. PMID:20877579

  5. Inducible long-term gene expression in brain with adeno-associated virus gene transfer.

    PubMed

    Haberman, R P; McCown, T J; Samulski, R J

    1998-12-01

    Recombinant adeno-associated virus (rAAV) vectors hold promise for treating a number of neurological disorders due to the ability to deliver long-term gene expression without toxicity or immune response. Critical to these endeavors will be controlled expression of the therapeutic gene in target cells. We have constructed and tested a dual cassette rAAV vector carrying a reporter gene under the control of the tetracycline-responsive system and the tetracycline transactivator. Transduction in vitro resulted in stable expression from the vector that can be suppressed 20-fold by tetracycline treatment. In vivo experiments, carried out to 6 weeks, demonstrated that vector-transduced expression is sustained until doxycycline administration upon which reporter gene expression is reduced. Moreover, the suppression of vector-driven expression can be reversed by removal of the drug. These studies demonstrate long-term regulated gene expression from rAAV vectors. This system will provide a valuable approach for controlling vector gene expression both in vitro and in vivo. PMID:10023439

  6. Transcriptional Analysis of the Conjugal Transfer Genes of Rickettsia bellii RML 369-C

    PubMed Central

    Heu, Chan C.; Kurtti, Timothy J.; Nelson, Curtis M.; Munderloh, Ulrike G.

    2015-01-01

    Rickettsia bellii is an obligate intracellular bacterium that is one of the few rickettsiae that encode a complete set of conjugative transfer (tra) genes involved in bacterial conjugation and has been shown to exhibit pili-like structures. The reductive genomes of rickettsiae beg the question whether the tra genes are nonfunctional or functioning to enhance the genetic plasticity and biology of rickettsiae. We characterized the transcriptional dynamics of R. bellii tra genes in comparison to genes transcribed stably and above the background level to understand when and at what levels the tra genes are active or whether the tra genes are degenerative. We determined that the best reference genes, out of 10 tested, were methionyl tRNA ligase (metG) or a combination of metG and ribonucleoside diphosphate reductase 2 subunit beta (nrdF), using statistical algorithms from two different programs: Normfinder and BestKeeper. To validate the use of metG with other rickettsial genes exhibiting variable transcriptional patterns we examined its use with sca2 and rickA, genes involved in actin based motility. Both were shown to be up-regulated at different times of replication in Vero cells, showing variable and stable transcription levels of rickA and sca2, respectively. traATi was up-regulated at 72 hours post inoculation in the tick cell line ISE6, but showed no apparent changes in the monkey cell line Vero and mouse cell line L929. The transcription of tra genes was positively correlated with one another and up-regulated from 12 to 72 hours post inoculation (HPI) when compared to RBE_0422 (an inactivated transposase-derivative found within the tra cluster). Thus, the up-regulation of the tra genes indicated that the integrity and activity of each gene were intact and may facilitate the search for the optimal conditions necessary to demonstrate conjugation in rickettsiae. PMID:26352829

  7. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review).

    PubMed

    Sinkovics, Joseph G

    2009-09-01

    Evolving young genomes of archaea, prokaryota and unicellular eukaryota were wide open for the acceptance of alien genomic sequences, which they often preserved and vertically transferred to their descendants throughout three billion years of evolution. Established complex large genomes, although seeded with ancestral retroelements, have come to regulate strictly their integrity. However, intruding retroelements, especially the descendents of Ty3/Gypsy, the chromoviruses, continue to find their ways into even the most established genomes. The simian and hominoid-Homo genomes preserved and accommodated a large number of endogenous retroviral genomic segments. These retroelements may mature into exogenous retroviruses, or into functional new genes. Phages and viruses have been instrumental in incorporating and transferring host cell genes. These events profoundly influenced and altered the course of evolution. Horizontal (lateral) gene transfers (HGT) overwhelmed the genomes of the ancient protocells and the evolving unicellular microorganisms, actually leading to their Cambrian explosion. While the rigidly organized genomes of multicellular organisms increasingly resist H/LGT, de-differentiated cells assuming the metabolism of their onto- or phylogenetic ancestors, open up widely to the practice of H/LGT by direct transfer, or to transfers mediated by viruses, or by cell fusions. This activity is intensified in malignantly transformed cells, thus rendering these subjects receptive to therapy with oncolytic viruses and with viral vectors of tumor-suppressive or immunogenic genetic materials. Naturally formed hybrids of dendritic and tumor cells are often tolerogenic, whereas laboratory products of these unisons may be immunogenic in the hosts of origin. As human breast cancer stem cells are induced by a treacherous class of CD8+ T cells to undergo epithelial to mesenchymal (ETM) transition and to yield to malignant transformation by the omnipresent proto

  8. p53MutaGene: an online tool to estimate the effect of p53 mutational status on gene regulation in cancer

    PubMed Central

    Amelio, I; Knight, R A; Lisitsa, A; Melino, G; Antonov, A V

    2016-01-01

    p53MutaGene is the first online tool for statistical validation of hypotheses regarding the effect of p53 mutational status on gene regulation in cancer. This tool is based on several large-scale clinical gene expression data sets and currently covers breast, colon and lung cancers. The tool detects differential co-expression patterns in expression data between p53 mutated versus p53 normal samples for the user-specified genes. Statistically significant differential co-expression for a gene pair is indicative that regulation of two genes is sensitive to the presence of p53 mutations. p53MutaGene can be used in ‘single mode' where the user can test a specific pair of genes or in ‘discovery mode' designed for analysis of several genes. Using several examples, we demonstrate that p53MutaGene is a useful tool for fast statistical validation in clinical data of p53-dependent gene regulation patterns. The tool is freely available at http://www.bioprofiling.de/tp53 PMID:26986515

  9. "This Is a Tool for You to Use": Expansive Framing and Adaptive Transfer in Two PBL Science Classrooms

    NASA Astrophysics Data System (ADS)

    Becherer, Kendall

    This dissertation is a qualitative, comparative case study investigating productive disciplinary engagement, framing for transfer, and tool use in two high school science classrooms. My goal was to investigate the implementation of material resources that were developed to support students' engagement, driven by my primary research question: How does the implementation of material tools as a learning resource support or impede students' productive disciplinary engagement in a project-based learning setting? Using a grounded theory approach, I analyzed video transcriptions and interviews of two teachers and their students at the same school as they enacted a coordinated project-based, advanced placement curriculum as part of a design-based implementation research project. Findings suggest that intentional framing and use of tools may help teachers support students in making connections across multiple parts of a project in ways that facilitate productive engagement in the discipline of science as well as students building on and adapting their knowledge over time. Keywords: Project-based learning, advanced placement, environmental science, scientific practices, dialogic discourse, grammar of schooling, situative theory, student engagement, productive disciplinary engagement, material resources, student authorship, framing for transfer, expansive framing, near transfer, adaptive transfer.

  10. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer

    PubMed Central

    Nonaka, Satoko; Ezura, Hiroshi

    2014-01-01

    Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR) can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium. PMID:25520733

  11. Cell-specific expression of the carrot EP2 lipid transfer protein gene.

    PubMed Central

    Sterk, P; Booij, H; Schellekens, G A; Van Kammen, A; De Vries, S C

    1991-01-01

    A cDNA corresponding to a 10-kD protein, designated extracellular protein 2 (EP2), that is secreted by embryogenic cell cultures of carrot was obtained by expression screening. The derived protein sequence and antisera against heterologous plant lipid transfer proteins identified the EP2 protein as a lipid transfer protein. Protein gel blot analysis showed that the EP2 protein is present in cell walls and conditioned medium of cell cultures. RNA gel blot analysis revealed that the EP2 gene is expressed in embryogenic cell cultures, the shoot apex of seedlings, developing flowers, and maturing seeds. In situ hybridization showed expression of the EP2 gene in protoderm cells of somatic and zygotic embryos and transient expression in epidermis cells of leaf primordia and all flower organs. In the shoot apical meristem, expression is found in the tunica and lateral zone. In maturing seeds, the EP2 gene is expressed in the outer epidermis of the integument, the seed coat, and the pericarp epidermis, as well as transiently in between both mericarps. Based on the extracellular location of the EP2 protein and the expression pattern of the encoding gene, we propose a role for plant lipid transfer proteins in the transport of cutin monomers through the extracellular matrix to sites of cutin synthesis. PMID:1822991

  12. Reliable and sample saving gene expression analysis approach for diagnostic tool development.

    PubMed

    Port, Matthias; Seidl, Christof; Ruf, Christian G; Riecke, Armin; Meineke, Viktor; Abend, Michael

    2012-08-01

    This work answers the question of whether it is necessary to hybridize individual instead of pooled RNA samples on microarrays for screening gene targets suitable as diagnostic tools for radiation exposure scenarios, while at the same time meeting comparable microarray quality criteria. For developing new clinical diagnostic tools, a two-stage study design was employed in five projects. At first, pooled and not individual RNA samples were hybridized on microarrays for screening purposes. Potential gene candidates were selected based on their fold-change only. This was followed by a validation/quantification step using individual RNA samples and quantitative RT-PCR. Quality criteria from the screening approach with pooled RNA samples were compared with published data from the MicroArray Quality Control (MAQC) consortium that hybridized each reference RNA sample separately and established quality criteria for microarrays. When comparing both approaches, only insignificant differences for quality criteria such as false positives, sensitivity, specificity, and overall agreement were found. However, material, costs, and time were drastically reduced when hybridizing pooled RNA and gene targets applicable for clinical diagnostic purposes could be successfully selected. In search of new diagnostic tools for radiation exposure scenarios, the two stage study design using either pooled or individual RNA samples on microarrays shows comparable quality criteria, but the RNA pooling approach saves unique material, costs, and efforts and successfully selects gene targets that can be used for the desired diagnostic purposes. PMID:22951474

  13. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.

    PubMed

    Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark

    2011-02-01

    We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. PMID:21070832

  14. Bioinformatics tools help molecular characterization of Perkinsus olseni differentially expressed genes.

    PubMed

    Ascenso, Rita M T

    2011-01-01

    In the 80ies, in Southern Europe and in particular in Ria Formosa there was an episode of heavy mortality of the economically relevant clam Ruditapes (R.) decussatus associated with a debilitating disease (Perkinsosis) caused by Perkinsus olseni. This protozoan parasite was poorly known concerning its' differential transcriptome in response to its host, R. decussatus. This laboratory available protozoan system was used to identify parasite genes related to host interaction. Beyond the application of molecular biology technologies and methodologies, only the help of Bioinformatics tools allowed to analyze the results of the study. The strategy started with SSH technique, allowing the identification of parasite up-regulated genes in response to its natural host, then a macroarray was constructed and hybridized to characterize the parasite genes expression when exposed to bivalves hemolymph from permissive host (R. decussatus), resistant host (R. philippinarum) and non permissive bivalve (Donax trunculus) that cohabit in the same or adjacent habitats in Southern Portugal. Genes and respective peptides full molecular characterization depended on several Bioinformatic tools application. Also a new Bioinformatic tool was developed. PMID:21926442

  15. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells

    SciTech Connect

    Powers, T.P.; Davidson, R.L.; Shows, T.B.

    1994-02-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. 46 refs., 5 figs., 2 tabs.

  16. Enterococcus faecalis Gene Transfer under Natural Conditions in Municipal Sewage Water Treatment Plants†

    PubMed Central

    Marcinek, Herbert; Wirth, Reinhard; Muscholl-Silberhorn, Albrecht; Gauer, Matthias

    1998-01-01

    The ability of Enterococcus faecalis to transfer various genetic elements under natural conditions was tested in two municipal sewage water treatment plants. Experiments in activated sludge basins of the plants were performed in a microcosm which allowed us to work under sterile conditions; experiments in anoxic sludge digestors were performed in dialysis bags. We used the following naturally occurring genetic elements: pAD1 and pIP1017 (two so-called sex pheromone plasmids with restricted host ranges, which are transferred at high rates under laboratory conditions); pIP501 (a resistance plasmid possessing a broad host range for gram-positive bacteria, which is transferred at low rates under laboratory conditions); and Tn916 (a conjugative transposon which is transferred under laboratory conditions at low rates to gram-positive bacteria and at very low rates to gram-negative bacteria). The transfer rate between different strains of E. faecalis under natural conditions was, compared to that under laboratory conditions, at least 105-fold lower for the sex pheromone plasmids, at least 100-fold lower for pIP501, and at least 10-fold lower for Tn916. In no case was transfer from E. faecalis to another bacterial species detected. By determining the dependence of transfer rates for pIP1017 on bacterial concentration and extrapolating to actual concentrations in the sewage water treatment plant, we calculated that the maximum number of transfer events for the sex pheromone plasmids between different strains of E. faecalis in the municipal sewage water treatment plant of the city of Regensburg ranged from 105 to 108 events per 4 h, indicating that gene transfer should take place under natural conditions. PMID:9464401

  17. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an

  18. Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.

    PubMed

    Zaldivar, Andrew; Krichmar, Jeffrey L

    2014-01-01

    The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources. PMID:24904397

  19. Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?

    PubMed Central

    Budd, Aidan; Blandin, Stephanie; Levashina, Elena A; Gibson, Toby J

    2004-01-01

    Background Invasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion. Results Database searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor. Conclusions Metazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might

  20. Gene therapy as a potential tool for treating neuroblastoma-a focused review.

    PubMed

    Kumar, M D; Dravid, A; Kumar, A; Sen, D

    2016-05-01

    Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma. PMID:27080224

  1. Gene Transfer by Guanidinium-Cholesterol Cationic Lipids into Airway Epithelial Cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Oudrhiri, Noufissa; Vigneron, Jean-Pierre; Peuchmaur, Michel; Leclerc, Tony; Lehn, Jean-Marie; Lehn, Pierre

    1997-03-01

    Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis (guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.

  2. Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases.

    PubMed

    Candotti, Fabio

    2014-04-01

    Gene transfer into the hematopoietic stem cell has shown curative potential for a variety of hematological disorders. Primary immunodeficiency diseases have led to the way in this field of gene therapy as an example and a model. Clinical results from the past 15 years have shown that significant improvement and even cure can be achieved for diseases such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease and Wiskott-Aldrich syndrome. Unfortunately, with the initial clear clinical benefits, the first serious complications of gene therapy have also occurred. In a significant number of patients treated using vectors based on murine gamma-retroviruses and carrying powerful viral enhancer elements, insertional oncogenesis events have resulted in acute leukemias that, in some cases, have had fatal outcomes. These serious adverse events have sparked a revision of the assessment of risks and benefits of integrating gene transfer for hematological diseases and prompted the development and application of new generations of viral vectors with recognized superior safety characteristics. This review summarizes the clinical experience of gene therapy for primary immunodeficiencies and discusses the likely avenues of progress in the future development of this expanding field of clinical investigations. PMID:24488786

  3. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells.

    PubMed

    Hyland, Kendra A; Olson, Erik R; McIvor, R Scott

    2015-10-01

    The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34(+) HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon-chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications. PMID:26176276

  4. Multiple Phenotypic Changes Associated with Large-Scale Horizontal Gene Transfer

    PubMed Central

    Dougherty, Kevin; Smith, Brian A.; Moore, Autumn F.; Maitland, Shannon; Fanger, Chris; Murillo, Rachel; Baltrus, David A.

    2014-01-01

    Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts. PMID:25048697

  5. Enhanced Horizontal Transfer of Antibiotic Resistance Genes in Freshwater Microcosms Induced by an Ionic Liquid

    PubMed Central

    Wang, Qing; Mao, Daqing; Mu, Quanhua; Luo, Yi

    2015-01-01

    The spread and propagation of antibiotic resistance genes (ARGs) is a worldwide public health concern. Ionic liquids (ILs), considered as “environmentally friendly” replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment. In this paper, the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) (0.001-5.0 g/L) was tested for its effects on facilitating ARGs horizontal transfer mediated by plasmid RP4 in freshwater microcosms. In the horizontal transfer microcosms, the transfer frequency of plasmid RP4 was significantly enhanced (60-fold higher than untreated groups) by the IL [BMIm][PF6] (1.0 g/L). Meanwhile, two strains of opportunistic pathogen Acinetobacter spp. and Salmonella spp. were isolated among the transconjugants, illustrating plasmid RP4 mediated horizontal transfer of ARGs occurred in pathogen. This could increase the risk of ARGs dissemination to human pathogens and pose great threat to public health. The cause that [BMIm[PF6] enhanced the transfer frequency of plasmid RP4 was proposed by suppressed cell membrane barrier and enhanced cell membrane permeability, which was evidenced by flow cytometry (FCM). This is the first report that some ILs facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment and thus add the adverse effects of the environmental risk of ILs. PMID:25951456

  6. Transfer of antibiotic-resistance genes via phage-related mobile elements.

    PubMed

    Brown-Jaque, Maryury; Calero-Cáceres, William; Muniesa, Maite

    2015-05-01

    Antibiotic resistance is a major concern for society because it threatens the effective prevention of infectious diseases. While some bacterial strains display intrinsic resistance, others achieve antibiotic resistance by mutation, by the recombination of foreign DNA into the chromosome or by horizontal gene acquisition. In many cases, these three mechanisms operate together. Several mobile genetic elements (MGEs) have been reported to mobilize different types of resistance genes and despite sharing common features, they are often considered and studied separately. Bacteriophages and phage-related particles have recently been highlighted as MGEs that transfer antibiotic resistance. This review focuses on phages, phage-related elements and on composite MGEs (phages-MGEs) involved in antibiotic resistance mobility. We review common features of these elements, rather than differences, and provide a broad overview of the antibiotic resistance transfer mechanisms observed in nature, which is a necessary first step to controlling them. PMID:25597519

  7. Emergence of collective territorial defense in bacterial communities: horizontal gene transfer can stabilize microbiomes.

    PubMed

    Juhász, János; Kertész-Farkas, Attila; Szabó, Dóra; Pongor, Sándor

    2014-01-01

    Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and resilient even though they consist of cells and species that compete for resources and also produce a large number of antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents while preserving a varied metabolic repertoire of the constituent species. In other words horizontal transfer of resistance genes makes a community compatible in terms of exoproducts and capable to maintain a varied and mature metagenome. The same property may allow microbiota to protect a host organism, or if used as a microbial therapy, to purge pathogens and restore a protective environment. PMID:24755769

  8. Light-controlled inhibition of malignant glioma by opsin gene transfer

    PubMed Central

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  9. Development of new tools for studying gene function in fungi based on the Gateway system.

    PubMed

    Shafran, Hadas; Miyara, Itay; Eshed, Ravit; Prusky, Dov; Sherman, Amir

    2008-08-01

    Genomic information of many fungi has been released but large scale functional genomic studies are still limited by a lack of high-throughput methods. The low rates of homologous recombination and low rates of transformation are limiting steps in filamentous fungi, but the molecular tools are also lagging behind. In this paper we describe two new high-throughput functional genomic tools for filamentous fungi that are based on the Gateway technology. One system is the Gateway RNAi vector for fungi that allows gene silencing in a high-throughput manner. The other system is a high-throughput deletion construct system. These systems were tested using the PAC1 gene of Colletotrichum gloeosporioides. Using these types of approaches, large scale functional genomics experiments can be performed in filamentous fungi. PMID:18550398

  10. Interkingdom Gene Transfer May Contribute to the Evolution of Phytopathogenicity in Botrytis Cinerea

    PubMed Central

    Zhu, Bo; Zhou, Qing; Xie, Guanlin; Zhang, Guoqing; Zhang, Xiaowei; Wang, Yanli; Sun, Gunchang; Li, Bin; Jin, Gulei

    2012-01-01

    The ascomycete Botrytis cinerea is a phytopathogenic fungus infecting and causing significant yield losses in a number of crops. The genome of B. cinerea has been fully sequenced while the importance of horizontal gene transfer (HGT) to extend the host range in plant pathogenic fungi has been recently appreciated. However, recent data confirm that the B. cinerea fungus shares conserved virulence factors with other fungal plant pathogens with narrow host range. Therefore, interkingdom HGT may contribute to the evolution of phytopathogenicity in B. cinerea. In this study, a stringent genome comparison pipeline was used to identify potential genes that have been obtained by B. cinerea but not by other fungi through interkingdom HGT. This search led to the identification of four genes: a UDP-glucosyltransferase (UGT), a lipoprotein and two alpha/beta hydrolase fold proteins. Phylogenetic analysis of the four genes suggests that B. cinerea acquired UGT from plants and the other 3 genes from bacteria. Based on the known gene functions and literature searching, a correlation between gene acquision and the evolution of pathogenicity in B. cinerea can be postulated. PMID:22346340

  11. Effects of laser parameters on propagation characteristics of laser-induced stress wave for gene transfer

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Terakawa, Mitsuhiro; Ashida, Hiroshi; Obara, Minoru

    2010-02-01

    Laser-based gene delivery is attractive as a new method for topical gene therapy because of the high spatial controllability of laser energy. Previously, we demonstrated that an exogenous gene can be transferred to cells both in vitro and in vivo by applying nanosecond pulsed laser-induced stress waves (LISWs) or photomechanical waves (PMWs). In this study, we investigated effects of laser parameters on the propagation characteristics of LISWs in soft tissue phantoms and depth-dependent properties of gene transfection. Temporal pressure profiles of LISWs were measured with a hydrophone, showing that with a larger laser spot diameter, LISWs can be propagated more efficiently in phantoms with keeping flat wavefront. Phantoms with various thicknesses were placed on the rat dorsal skin that had been injected with plasmid DNA coding for reporter gene, and LISWs were applied from the top of the phantom. Efficient gene expression was observed in the rat skin that had interacted with LISWs propagating through a 15-mm-thick phantom. These results would be useful to determine appropriate laser parameters for gene delivery to deep-located tissue by transcutaneous application of LISWs.

  12. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes.

    PubMed

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J M; Paulsen, Peter; Szostak, Michael P; Humphrey, Tom; Hilbert, Friederike

    2015-07-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  13. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    PubMed Central

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom

    2015-01-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  14. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    PubMed Central

    Rodriguez-Osorio, Nelida; Wang, Zhongde; Kasinathan, Poothappillai; Page, Grier P; Robl, James M; Memili, Erdogan

    2009-01-01

    Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT). Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively) have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF) than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively). However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research. PMID:19393066

  15. Glutaric acidemia type II: gene structure and mutations of the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) gene.

    PubMed

    Goodman, Stephen I; Binard, Robert J; Woontner, Michael R; Frerman, Frank E

    2002-01-01

    Glutaric acidemia type II is a human inborn error of metabolism which can be due to defects in either subunit of electron transfer flavoprotein (ETF) or in ETF:ubiquinone oxidoreductase (ETF:QO), but few disease-causing mutations have been described. The ETF:QO gene is located on 4q33, and contains 13 exons. Primers to amplify these exons are presented, together with mutations identified by molecular analysis of 20 ETF:QO-deficient patients. Twenty-one different disease-causing mutations were identified on 36 of the 40 chromosomes. PMID:12359134

  16. B.E.A.R. GeneInfo: A tool for identifying gene-related biomedical publications through user modifiable queries

    PubMed Central

    Zhou, Guohui; Wen, Xinyu; Liu, Hang; Schlicht, Michael J; Hessner, Martin J; Tonellato, Peter J; Datta, Milton W

    2004-01-01

    Background Once specific genes are identified through high throughput genomics technologies there is a need to sort the final gene list to a manageable size for validation studies. The triaging and sorting of genes often relies on the use of supplemental information related to gene structure, metabolic pathways, and chromosomal location. Yet in disease states where the genes may not have identifiable structural elements, poorly defined metabolic pathways, or limited chromosomal data, flexible systems for obtaining additional data are necessary. In these situations having a tool for searching the biomedical literature using the list of identified genes while simultaneously defining additional search terms would be useful. Results We have built a tool, BEAR GeneInfo, that allows flexible searches based on the investigators knowledge of the biological process, thus allowing for data mining that is specific to the scientist's strengths and interests. This tool allows a user to upload a series of GenBank accession numbers, Unigene Ids, Locuslink Ids, or gene names. BEAR GeneInfo takes these IDs and identifies the associated gene names, and uses the lists of gene names to query PubMed. The investigator can add additional modifying search terms to the query. The subsequent output provides a list of publications, along with the associated reference hyperlinks, for reviewing the identified articles for relevance and interest. An example of the use of this tool in the study of human prostate cancer cells treated with Selenium is presented. Conclusions This tool can be used to further define a list of genes that have been identified through genomic or genetic studies. Through the use of targeted searches with additional search terms the investigator can limit the list to genes that match their specific research interests or needs. The tool is freely available on the web at [1], and the authors will provide scripts and database components if requested mdatta@mcw.edu PMID

  17. Phage-mediated transfer of a dextranase gene in Lactobacillus sanfranciscensis and characterization of the enzyme.

    PubMed

    Picozzi, Claudia; Meissner, Daniel; Chierici, Margherita; Ehrmann, Matthias A; Vigentini, Ileana; Foschino, Roberto; Vogel, Rudi F

    2015-06-01

    While phages of lactobacilli are extensively studied with respect to their structure and role in the dairy environment, knowledge about phages in bacteria residing in sourdough fermentation is limited. Based on the previous finding that the Lactobacillus sanfranciscensis phage EV3 carries a putative dextranase gene (dex), we have investigated the distribution of similar dex(+) phages in L. sanfranciscensis, the chance of gene transfer and the properties of the dextranase encoded by phage EV3. L. sanfranciscensis H2A (dex(-)), originally isolated from a wheat sourdough, expressed a Dex(+) phenotype upon infection with EV3. The dextranase gene was isolated from the transductant and heterologously expressed in Escherichia coli. The gene encoded a protein of 801 amino acids with a calculated molecular weight (Mw) of 89.09 kDa and a calculated pI of 5.62. Upon purification aided by a 6-His tag, enzyme kinetic parameters were determined. The Km value was 370 mM, and the Vmax was calculated in about 16 μmol of glucose released from dextran by 1 mg of enzyme in 1 min in a buffer solution at pH 5.0. The optimum conditions were 60 °C and pH 4.5. The enzyme retained its activity for >3h at 60 °C and exhibited only 40% activity at 30 °C; the highest homology of 72% was found to a dextranase gene from Lactobacillus fermentum phage φPYB5. Within 25 L. sanfransiscensis isolates tested, the strain 4B5 carried a similar prophage encoding a dextranase gene. Our data suggest a phage-mediated transfer of dextranase genes in the sourdough environment resulting in superinfection-resistant L. sanfranciscensis Dex(+) strains with a possible ecological advantage in dextran-containing sourdoughs. PMID:25771219

  18. Clinical trial design issues raised during recombinant DNA advisory committee review of gene transfer protocols.

    PubMed

    Scharschmidt, Tiffany; Lo, Bernard

    2006-04-01

    Gene transfer clinical trial protocols are reviewed by the Recombinant DNA Advisory Committee (RAC). Identifying the design concerns and suggestions commonly raised during RAC review may help investigators and sponsors shorten the process of protocol development and improve the quality of gene transfer trials. We therefore examined 53 full public reviews of gene transfer clinical trial protocols performed by the RAC between December 2000 and June 2004 to determine what trial design concerns or suggestions RAC members raised during written review or public discussion or in the formal letter to investigators after the review was completed. We also determined how frequently these concerns were raised. We found that RAC members raised issues regarding selection of subjects in 89% of reviews, dose escalation in 77%, selection of safety end points in 76%, biological activity measures in 66%, and overall design in 60% of reviews. The most common issue raised by RAC reviewers was the need to exclude subjects at increased risk for adverse events. Furthermore, in 89% of reviews, at least one design issue pertaining to safety of participants was raised. In 91% of reviews, at least one design concern was presented as a written RAC recommendation or concern to the investigator after the public review. When submitting protocols for RAC review, investigators and sponsors might devote more attention to issues that RAC reviewers commonly raise. Such attention might help strengthen clinical trial protocols, shorten the protocol development process, and enhance the protection of research participants. PMID:16610932

  19. The Use of Chromatin Insulators to Improve the Expression and Safety of Integrating Gene Transfer Vectors

    PubMed Central

    2011-01-01

    Abstract The therapeutic application of recombinant retroviruses and other integrating gene transfer vectors has been limited by problems of vector expression and vector-mediated genotoxicity. These problems arise in large part from the interactions between vector sequences and the genomic environment surrounding sites of integration. Strides have been made in overcoming both of these problems through the modification of deleterious vector sequences, the inclusion of better enhancers and promoters, and the use of alternative virus systems. However, these modifications often add other restrictions on vector design, which in turn can further limit therapeutic applications. As an alternative, several groups have been investigating a class of DNA regulatory elements known as chromatin insulators. These elements provide a means of blocking the interaction between an integrating vector and the target cell genome in a manner that is independent of the vector transgene, regulatory elements, or virus of origin. This review outlines the background, rationale, and evidence for using chromatin insulators to improve the expression and safety of gene transfer vectors. Also reviewed are topological factors that constrain the use of insulators in integrating gene transfer vectors, alternative sources of insulators, and the role of chromatin insulators as one of several components for optimal vector design. PMID:21247248

  20. Mechanism by which calcium phosphate coprecipitation enhances adenovirus-mediated gene transfer.

    PubMed

    Walters, R; Welsh, M

    1999-11-01

    Delivery of a normal copy of CFTR cDNA to airway epithelia may provide a novel treatment for cystic fibrosis lung disease. Unfortunately, current vectors are inefficient because of limited binding to the apical surface of airway epithelia. We recently reported that incorporation of adenovirus in a calcium phosphate coprecipitate (Ad:CaPi) improves adenovirus-mediated gene transfer to airway epithelia in vitro and in vivo. To understand better how coprecipitation improves gene transfer, we tested the hypothesis that incorporation in a CaPi coprecipitate increases the binding of adenovirus to the apical surface of differentiated human airway epithelia. When a Cy3-labelled adenovirus was delivered in a coprecipitate, binding increased 54-fold as compared with adenovirus alone. Moreover, infection by Ad:CaPi was independent of fiber knob-CAR and penton base-integrin interactions. After binding to the cell surface, the virus must enter the cell in order to infect. We hypothesized that Ad:CaPi may stimulate fluid phase endocytosis, thereby facilitating entry. However, we found that neither adenovirus nor Ad:CaPi coprecipitates altered fluid phase endocytosis. Nevertheless, Ad:CaPi preferentially infected cells showing endocytosis. Thus, CaPi coprecipitation improves adenovirus-mediated gene transfer by coating the epithelial surface with a layer of virus which enters cells during the normal process of endocytosis. PMID:10602380

  1. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers

    PubMed Central

    Grilli, Jacopo; Romano, Mariacristina; Bassetti, Federico; Cosentino Lagomarsino, Marco

    2014-01-01

    Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome ‘flux’. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection. PMID:24829449

  2. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12

    PubMed Central

    Kingston, Anthony W.; Raleigh, Elisabeth A.

    2015-01-01

    In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F’-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10-12 CFU/recipient per hour. PMID:26162088

  3. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    PubMed

    Kingston, Anthony W; Roussel-Rossin, Chloé; Dupont, Claire; Raleigh, Elisabeth A

    2015-01-01

    In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12) CFU/recipient per hour. PMID:26162088

  4. TOPS: a versatile software tool for statistical analysis and visualization of combinatorial gene-gene and gene-drug interaction screens

    PubMed Central

    2014-01-01

    Background Measuring the impact of combinations of genetic or chemical perturbations on cellular fitness, sometimes referred to as synthetic lethal screening, is a powerful method for obtaining novel insights into gene function and drug action. Especially when performed at large scales, gene-gene or gene-drug interaction screens can reveal complex genetic interactions or drug mechanism of action or even identify novel therapeutics for the treatment of diseases. The result of such large-scale screen results can be represented as a matrix with a numeric score indicating the cellular fitness (e.g. viability or doubling time) for each double perturbation. In a typical screen, the majority of combinations do not impact the cellular fitness. Thus, it is critical to first discern true "hits" from noise. Subsequent data exploration and visualization methods can assist to extract meaningful biological information from the data. However, despite the increasing interest in combination perturbation screens, no user friendly open-source program exists that combines statistical analysis, data exploration tools and visualization. Results We developed TOPS (Tool for Combination Perturbation Screen Analysis), a Java and R-based software tool with a simple graphical user interface that allows the user to import, analyze, filter and plot data from double perturbation screens as well as other compatible data. TOPS was designed in a modular fashion to allow the user to add alternative importers for data formats or custom analysis scripts not covered by the original release. We demonstrate the utility of TOPS on two datasets derived from functional genetic screens using different methods. Dataset 1 is a gene-drug interaction screen and is based on Luminex xMAP technology. Dataset 2 is a gene-gene short hairpin (sh)RNAi screen exploring the interactions between deubiquitinating enzymes and a number of prominent oncogenes using massive parallel sequencing (MPS). Conclusions TOPS provides

  5. In Vivo Gene Transfer Strategies to Achieve Partial Correction of von Willebrand Disease

    PubMed Central

    Wang, Lan; Rosenberg, Jonathan B.; De, Bishnu P.; Ferris, Barbara; Wang, Rui; Rivella, Stefano; Kaminsky, Stephen M.

    2012-01-01

    Abstract von Willebrand disease (VWD), the most common hereditary coagulation disorder, results from mutations in the 52-exon gene for von Willebrand factor (VWF), which encodes an 8.4-kB cDNA. Studies with VWF cDNA plasmids have demonstrated that in vivo gene transfer to the liver will correct the coagulation dysfunction in VWF−/− mice, but the correction is transient. To develop gene therapy for VWF that would mediate long-term expression of the VWF cDNA in liver, we first evaluated segmental pre-mRNA trans-splicing (SPTS) with two adeno-associated virus (AAV) serotype 8 vectors, each delivering one-half of the VWF cDNA. However, although the two vectors functioned well to generate VWF multimers after infection of cells in vitro, the efficiency of SPTS was insufficient to correct the VWF−/− mouse in vivo. As an alternative, we assessed the ability of a lentiviral vector to transfer the intact murine VWF cDNA in vivo directly to the neonatal liver of VWF−/− mice, using generation of VWF multimers, bleeding time, and bleeding volume as efficacy parameters. The VWF lentivirus generated VWF multimers and partially or completely corrected the coagulation defect on a persistent basis in 33% of the treated VWF-deficient mice. On the basis of the concept that partial persistent correction with gene transfer could be beneficial in VWD patients, these observations suggest that lentiviral delivery of VWF cDNA should be explored as a candidate for gene therapy in patients with a severe form of VWD. PMID:22482515

  6. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12.

    PubMed

    Hernandez-Alcoceba, Ruben; Poutou, Joanna; Ballesteros-Briones, María Cristina; Smerdou, Cristian

    2016-02-01

    IL-12 is an immunostimulatory cytokine with strong antitumor properties. Systemic administration of IL-12 in cancer patients led to severe toxic effects, prompting the development of gene therapy vectors able to express this cytokine locally in tumors. Both nonviral and viral vectors have demonstrated a high antitumor efficacy in preclinical tumor models. Some of these vectors, including DNA electroporation, adenovirus and ex vivo transduced dendritic cells, were tested in patients, showing low toxicity and moderate antitumor efficacy. IL-12 activity can be potentiated by molecules with immunostimulatory, antiangiogenic or cytotoxic activity. These combination therapies are of clinical interest because they could lower the threshold for IL-12 efficacy, increasing the therapeutic potential of gene therapy and preventing the toxicity mediated by this cytokine. PMID:26786809

  7. Airway gene transfer in a non-human primate: lentiviral gene expression in marmoset lungs.

    PubMed

    Farrow, N; Miller, D; Cmielewski, P; Donnelley, M; Bright, R; Parsons, D W

    2013-01-01

    Genetic therapies for cystic fibrosis (CF) must be assessed for safety and efficacy, so testing in a non-human primate (NHP) model is invaluable. In this pilot study we determined if the conducting airways of marmosets (n = 2) could be transduced using an airway pre-treatment followed by an intratracheal bolus dose of a VSV-G pseudotyped HIV-1 based lentiviral (LV) vector (LacZ reporter). LacZ gene expression (X-gal) was assessed after 7 days and found primarily in conducting airway epithelia as well as in alveolar regions. The LacZ gene was not detected in liver or spleen via qPCR. Vector p24 protein bio-distribution into blood was transient. Dosing was well tolerated. This preliminary study confirmed the transducibility of CF-relevant airway cell types. The marmoset is a promising NHP model for testing and translating genetic treatments for CF airway disease towards clinical trials. PMID:23412644

  8. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae

    DOE PAGESBeta

    Hunsperger, Heather M.; Randhawa, Tejinder; Cattolico, Rose Ann

    2015-02-10

    Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages.

  9. The UniTrap resource: tools for the biologist enabling optimized use of gene trap clones

    PubMed Central

    Roma, Guglielmo; Sardiello, Marco; Cobellis, Gilda; Cruz, Pedro; Lago, Giampiero; Sanges, Remo; Stupka, Elia

    2008-01-01

    We have developed a comprehensive resource devoted to biologists wanting to optimize the use of gene trap clones in their experiments. We have processed 300 602 such clones from both public and private projects to generate 28 199 ‘UniTraps’, i.e. distinct collections of unambiguous insertions at the same subgenic region of annotated genes. The UniTrap resource contains data relative to 9583 trapped genes, which represent 42.3% of the mouse gene content. Among the trapped genes, 7 728 have a counterpart in humans, and 677 are known to be involved in the pathogenesis of human diseases. The aim of this analysis is to provide the wet lab researchers with a comprehensive database and curated tools for (i) identifying and comparing the clones carrying a trap into the genes of interest, (ii) evaluating the severity of the mutation to the protein function in each independent trapping event and (iii) supplying complete information to perform PCR, RT-PCR and restriction experiments to verify the clone and identify the exact point of vector insertion. To share this unique resource with the scientific community, we have designed and implemented a web interface that is freely accessible at http://unitrap.cbm.fvg.it/. PMID:17942430

  10. Gene-expression profiling in rheumatic disease: tools and therapeutic potential.

    PubMed

    Bauer, Jason W; Bilgic, Hatice; Baechler, Emily C

    2009-05-01

    Gene-expression profiling is a powerful tool for the discovery of molecular fingerprints that underlie human disease. Microarray technologies allow the analysis of messenger RNA transcript levels for every gene in the genome. However, gene-expression profiling is best viewed as part of a pipeline that extends from sample collection through clinical application. Key genes and pathways identified by microarray profiling should be validated in independent sample sets and with alternative technologies. Analysis of relevant signaling pathways at the protein level is an important step towards understanding the functional consequences of aberrant gene expression. Peripheral blood is a convenient and rich source of potential biomarkers, but surveying purified cell populations and target tissues can also enhance our understanding of disease states. In rheumatic disease, probing the transcriptome of circulating immune cells has shed light on mechanisms underlying the pathogenesis of complex diseases, such as systemic lupus erythematosus. As these discoveries advance through the pipeline, a variety of clinical applications are on the horizon, including the use of molecular fingerprints to aid in diagnosis and prognosis, improved use of existing therapies, and the development of drugs that target relevant genes and pathways. PMID:19412192

  11. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools

    PubMed Central

    Quast, Christian; Pruesse, Elmar; Yilmaz, Pelin; Gerken, Jan; Schweer, Timmy; Yarza, Pablo; Peplies, Jörg; Glöckner, Frank Oliver

    2013-01-01

    SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches. PMID:23193283

  12. Alpharetroviral Vectors: From a Cancer-Causing Agent to a Useful Tool for Human Gene Therapy

    PubMed Central

    Suerth, Julia D.; Labenski, Verena; Schambach, Axel

    2014-01-01

    Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings. PMID:25490763

  13. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens.

    PubMed

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze

    2016-01-01

    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses. PMID:27270140

  14. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia.

    PubMed

    Narcisi, T M; Shoulders, C C; Chester, S A; Read, J; Brett, D J; Harrison, G B; Grantham, T T; Fox, M F; Povey, S; de Bruin, T W

    1995-12-01

    Elevated plasma levels of apolipoprotein B (apoB)-containing lipoproteins constitute a major risk factor for the development of coronary heart disease. In the rare recessively inherited disorder abetalipoproteinemia (ABL) the production of apoB-containing lipoproteins is abolished, despite no abnormality of the apoB gene. In the current study we have characterized the gene encoding a microsomal triglyceride-transfer protein (MTP), localized to chromosome 4q22-24, and have identified a mutation of the MTP gene in both alleles of all individuals in a cohort of eight patients with classical ABL. Each mutant allele is predicted to encode a truncated form of MTP with a variable number of aberrant amino acids at its C-terminal end. Expression of genetically engineered forms of MTP in Cos-1 cells indicates that the C-terminal portion of MTP is necessary for triglyceride-transfer activity. Deletion of 20 amino acids from the carboxyl terminus of the 894-amino-acid protein and a missense mutation of cysteine 878 to serine both abolished activity. These results establish that defects of the MTP gene are the predominant, if not sole, cause of hereditary ABL and that an intact carboxyl terminus is necessary for activity. PMID:8533758

  15. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens

    PubMed Central

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze

    2016-01-01

    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses. PMID:27270140

  16. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia

    SciTech Connect

    Narcisi, T.M.E.; Shoulders, C.C.; Chester, S.A.

    1995-12-01

    Elevated plasma levels of apolipoprotein B (apoB)-containing lipoproteins constitute a major risk factor for the development of coronary heart disease. In the rare recessively inherited disorder abetalipoproteinemia (ABL) the production of apoB-containing lipoproteins is abolished, despite no abnormality of the apoB gene. In the current study we have characterized the gene encoding a microsomal triglyceride-transfer protein (MTP), localized to chromosome 4q22-24, and have identified a mutation of the MTP gene in both alleles of all individuals in a cohort of eight patients with classical ABL. Each mutant allele is predicted to encode a truncated form of MTP with a variable number of aberrant amino acids at its C-terminal end. Expression of genetically engineered forms of MTP in Cos-1 cells indicates that the C-terminal portion of MTP is necessary for triglyceride-transfer activity. Deletion of 20 amino acids from the carboxyl terminus of the 894-amino-acid protein and a missense mutation of cysteine 878 to serine both abolished activity. These results establish that defects of the MTP gene are the predominant, if not sole, cause of hereditary ABL and that an intact carboxyl terminus is necessary for activity. 49 refs., 4 figs., 5 tabs.

  17. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer.

    PubMed Central

    Bandara, G; Mueller, G M; Galea-Lauri, J; Tindal, M H; Georgescu, H I; Suchanek, M K; Hung, G L; Glorioso, J C; Robbins, P D; Evans, C H

    1993-01-01

    Gene therapy offers a radical different approach to the treatment of arthritis. Here we have demonstrated that two marker genes (lacZ and neo) and cDNA coding for a potentially therapeutic protein (human interleukin 1-receptor-antagonist protein; IRAP or IL-1ra) can be delivered, by ex vivo techniques, to the synovial lining of joints; intraarticular expression of IRAP inhibited intraarticular responses to interleukin 1. To achieve this, lapine synoviocytes were first transduced in culture by retroviral infection. The genetically modified synovial cells were then transplanted by intraarticular injection into the knee joints of rabbits, where they efficiently colonized the synovium. Assay of joint lavages confirmed the in vivo expression of biologically active human IRAP. With allografted cells, IRAP expression was lost by 12 days after transfer. In contrast, autografted synoviocytes continued to express IRAP for approximately 5 weeks. Knee joints expressing human IRAP were protected from the leukocytosis that otherwise follows the intraarticular injection of recombinant human interleukin 1 beta. Thus, we report the intraarticular expression and activity of a potentially therapeutic protein by gene-transfer technology; these experiments demonstrate the feasibility of treating arthritis and other joint disorders with gene therapy. Images Fig. 1 Fig. 2 PMID:8248169

  18. Horizontal Transfer of Tetracycline Resistance Genes in the Subsurface of a Poultry Farm

    NASA Astrophysics Data System (ADS)

    You, Y.; Ward, M.; Hilpert, M.

    2008-12-01

    Concentrated animal feeding operations (CAFOs) are considered to be important man-made reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. At a poultry farm, we, together with Mr.~James Doolittle from USDA, measured the apparent subsurface electrical conductivity (ECa) using a EM38 meter. The resulting ECaR) associated with the poultry farm due to the fact that tetracycline (Tc) is one of the most frequently used antibiotics in food animal production and therefore is probably used at this farm. Soil and aquifer samples were taken from the farm. TcR bacteria were detected, with higher concentrations in the top layer of soil than in the aquifer. TcR bacteria were then enriched from a soil sample, and two classes of TcR genes were detected: tet(M) genes encoding ribosomal protection proteins and tet(L) genes encoding tet efflux pumps. Sequences of the PCR products were compared to known tet(M) and tet(L) genes in GenBank using BLASTN. Phylogenetic trees were also built based on the sequence information. The tet(M) genes found in our soil sample were highly similar to those located on transposons. In a soil microcosm experiment, we used the aforementioned soil sample as incubation medium as well as genetic donor (TcR soil bacteria), and a green fluorescent strain of E. coli as a model genetic recipient to study horizontal transfer of TcR genes from soil bacteria to naïve bacteria. Concentrations of inoculated E. coli were continuously monitored for 15 days, TcR E. coli isolated, and colony PCR performed. The tet(M) genes were found to be transferred to naïve E. coli. The highest horizontal transfer ratio, 0.62 transconjugant per recipient, was observed when Tc was supplemented to a soil microcosm at a concentration of 140 μg/kg soil. Modeling is also ongoing to obtain a better understanding of this complex phenomenon.

  19. Ocular gene transfer in the spotlight: implications of newspaper content for clinical communications

    PubMed Central

    2014-01-01

    Background Ocular gene transfer clinical trials are raising hopes for blindness treatments and attracting media attention. News media provide an accessible health information source for patients and the public, but are often criticized for overemphasizing benefits and underplaying risks of novel biomedical interventions. Overly optimistic portrayals of unproven interventions may influence public and patient expectations; the latter may cause patients to downplay risks and over-emphasize benefits, with implications for informed consent for clinical trials. We analyze the news media communications landscape about ocular gene transfer and make recommendations for improving communications between clinicians and potential trial participants in light of media coverage. Methods We analyzed leading newspaper articles about ocular gene transfer (1990-2012) from United States (n = 55), Canada (n = 26), and United Kingdom (n = 77) from Factiva and Canadian Newsstand databases using pre-defined coding categories. We evaluated the content of newspaper articles about ocular gene transfer for hereditary retinopathies, exploring representations of framing techniques, research design, risks/benefits, and translational timelines. Results The dominant frame in 61% of stories was a celebration of progress, followed by human-interest in 30% of stories. Missing from the positive frames were explanations of research design; articles conflated clinical research with treatment. Conflicts-of-interest and funding sources were similarly omitted. Attention was directed to the benefits of gene transfer, while risks were only reported in 43% of articles. A range of visual outcomes was described from slowing vision loss to cure, but the latter was the most frequently represented even though it is clinically infeasible. Despite the prominence of visual benefit portrayals, 87% of the articles failed to provide timelines for the commencement of clinical trials or for clinical

  20. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer

    NASA Astrophysics Data System (ADS)

    Kos, Petra; Lächelt, Ulrich; Herrmann, Annika; Mickler, Frauke Martina; Döblinger, Markus; He, Dongsheng; Krhač Levačić, Ana; Morys, Stephan; Bräuchle, Christoph; Wagner, Ernst

    2015-03-01

    Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing

  1. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes.

    PubMed

    Kang, Hoin; Park, Jong Im; Roh, Sangho

    2016-01-01

    In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes. PMID:26369430

  2. Evaluation of tetrafunctional block copolymers as synthetic vectors for lung gene transfer.

    PubMed

    Richard-Fiardo, Peggy; Hervouet, Catherine; Marsault, Robert; Franken, Philippe R; Cambien, Béatrice; Guglielmi, Julien; Warnez-Soulie, Julie; Darcourt, Jacques; Pourcher, Thierry; Colombani, Thibault; Haudebourg, Thomas; Peuziat, Pauline; Pitard, Bruno; Vassaux, Georges

    2015-03-01

    In the present study, we evaluated, in mice, the efficacy of the tetrafunctional block copolymer 704 as a nonviral gene delivery vector to the lungs. SPECT/CT molecular imaging of gene expression, biochemical assays, and immunohistochemistry were used. Our dataset shows that the formulation 704 resulted in higher levels of reporter gene expression than the GL67A formulation currently being used in a clinical trial in cystic fibrosis patients. The inflammatory response associated with this gene transfer was lower than that induced by the GL67A formulation, and the 704 formulation was amenable to repeated administrations. The cell types transfected by the 704 formulation were type I and type II pneumocytes, and transgene expression could not be detected in macrophages. These results emphasize the relevance of the 704 formulation as a nonviral gene delivery vector for lung gene therapy. Further studies will be required to validate this vector in larger animals, in which the lungs are more similar to human lungs. PMID:25662490

  3. Dicyema Pax6 and Zic: tool-kit genes in a highly simplified bilaterian

    PubMed Central

    Aruga, Jun; Odaka, Yuri S; Kamiya, Akiko; Furuya, Hidetaka

    2007-01-01

    Background Dicyemid mesozoans (Phylum Dicyemida) are simple (8–40-cell) cephalopod endoparasites. They have neither body cavities nor differentiated organs, such as nervous and gastrointestinal systems. Whether dicyemids are intermediate between Protozoa and Metazoa (as represented by their "Mesozoa" classification) or degenerate species of more complex metazoans is controversial. Recent molecular phylogenetic studies suggested that they are simplified bilaterians belonging to the Lophotrochozoa. We cloned two genes developmentally critical in bilaterian animals (Pax6 and Zic), together with housekeeping genes (actin, fructose-bisphosphate aldolase, and ATP synthase beta subunit) from a dicyemid to reveal whether their molecular phylogeny supported the "simplification" hypothesis, and to clarify evolutionary changes in dicyemid gene structure and expression profiles. Results Genomic/cDNA sequence analysis showed that 1) the Pax6 molecular phylogeny and Zic intron positions supported the idea of dicyemids as reduced bilaterians; 2) the aa sequences deduced from the five genes were highly divergent; and 3) Dicyema genes contained very short introns of uniform length. In situ hybridization analyses revealed that Zic genes were expressed in hermaphroditic gonads, and Pax6 was expressed weakly throughout the developmental stages of the 2 types of embryo and in the hermaphroditic gonads. Conclusion The accelerated evolutionary rates and very short and uniform intron may represent a part of Dicyema genomic features. The presence and expression of the two tool-kit genes (Pax6 and Zic) in Dicyema suggests that they can be very versatile genes even required for the highly reduced bilaterian like Dicyema. Dicyemids may be useful models of evolutionary body plan simplification. PMID:17961212

  4. Full Genotyping of a Highly Polymorphic Human Gene Trait by Time-Resolved Fluorescence Resonance Energy Transfer

    PubMed Central

    Totè, Edoardo; Lamperti, Marco; Bondani, Maria; Salerno, Domenico; Cassina, Valeria; Nardo, Luca

    2014-01-01

    The ability of detecting the subtle variations occurring, among different individuals, within specific DNA sequences encompassed in highly polymorphic genes discloses new applications in genomics and diagnostics. DQB1 is a gene of the HLA-II DQ locus of the Human Leukocyte Antigens (HLA) system. The polymorphisms of the trait of the DQB1 gene including codons 52–57 modulate the susceptibility to a number of severe pathologies. Moreover, the donor-receiver tissue compatibility in bone marrow transplantations is routinely assessed through crossed genotyping of DQB and DQA. For the above reasons, the development of rapid, reliable and cost-effective typing technologies of DQB1 in general, and more specifically of the codons 52–57, is a relevant although challenging task. Quantitative assessment of the fluorescence resonance energy transfer (FRET) efficiency between chromophores labelling the opposite ends of gene-specific oligonucleotide probes has proven to be a powerful tool to type DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, i.e. time-correlated single-photon counting, which allows working on very diluted template specimens and in the presence of fluorescent contaminants. Here we present a full in-vitro characterization of the fluorescence responses of two probes when hybridized to oligonucleotide mixtures mimicking all the possible genotypes of the codons 52–57 trait of DQB